WorldWideScience

Sample records for selective auditory attention

  1. Selective Attention to Auditory Memory Neurally Enhances Perceptual Precision.

    Science.gov (United States)

    Lim, Sung-Joo; Wöstmann, Malte; Obleser, Jonas

    2015-12-09

    Selective attention to a task-relevant stimulus facilitates encoding of that stimulus into a working memory representation. It is less clear whether selective attention also improves the precision of a stimulus already represented in memory. Here, we investigate the behavioral and neural dynamics of selective attention to representations in auditory working memory (i.e., auditory objects) using psychophysical modeling and model-based analysis of electroencephalographic signals. Human listeners performed a syllable pitch discrimination task where two syllables served as to-be-encoded auditory objects. Valid (vs neutral) retroactive cues were presented during retention to allow listeners to selectively attend to the to-be-probed auditory object in memory. Behaviorally, listeners represented auditory objects in memory more precisely (expressed by steeper slopes of a psychometric curve) and made faster perceptual decisions when valid compared to neutral retrocues were presented. Neurally, valid compared to neutral retrocues elicited a larger frontocentral sustained negativity in the evoked potential as well as enhanced parietal alpha/low-beta oscillatory power (9-18 Hz) during memory retention. Critically, individual magnitudes of alpha oscillatory power (7-11 Hz) modulation predicted the degree to which valid retrocues benefitted individuals' behavior. Our results indicate that selective attention to a specific object in auditory memory does benefit human performance not by simply reducing memory load, but by actively engaging complementary neural resources to sharpen the precision of the task-relevant object in memory. Can selective attention improve the representational precision with which objects are held in memory? And if so, what are the neural mechanisms that support such improvement? These issues have been rarely examined within the auditory modality, in which acoustic signals change and vanish on a milliseconds time scale. Introducing a new auditory memory

  2. Auditory-Cortex Short-Term Plasticity Induced by Selective Attention

    Science.gov (United States)

    Jääskeläinen, Iiro P.; Ahveninen, Jyrki

    2014-01-01

    The ability to concentrate on relevant sounds in the acoustic environment is crucial for everyday function and communication. Converging lines of evidence suggests that transient functional changes in auditory-cortex neurons, “short-term plasticity”, might explain this fundamental function. Under conditions of strongly focused attention, enhanced processing of attended sounds can take place at very early latencies (~50 ms from sound onset) in primary auditory cortex and possibly even at earlier latencies in subcortical structures. More robust selective-attention short-term plasticity is manifested as modulation of responses peaking at ~100 ms from sound onset in functionally specialized nonprimary auditory-cortical areas by way of stimulus-specific reshaping of neuronal receptive fields that supports filtering of selectively attended sound features from task-irrelevant ones. Such effects have been shown to take effect in ~seconds following shifting of attentional focus. There are findings suggesting that the reshaping of neuronal receptive fields is even stronger at longer auditory-cortex response latencies (~300 ms from sound onset). These longer-latency short-term plasticity effects seem to build up more gradually, within tens of seconds after shifting the focus of attention. Importantly, some of the auditory-cortical short-term plasticity effects observed during selective attention predict enhancements in behaviorally measured sound discrimination performance. PMID:24551458

  3. Sustained selective attention to competing amplitude-modulations in human auditory cortex.

    Science.gov (United States)

    Riecke, Lars; Scharke, Wolfgang; Valente, Giancarlo; Gutschalk, Alexander

    2014-01-01

    Auditory selective attention plays an essential role for identifying sounds of interest in a scene, but the neural underpinnings are still incompletely understood. Recent findings demonstrate that neural activity that is time-locked to a particular amplitude-modulation (AM) is enhanced in the auditory cortex when the modulated stream of sounds is selectively attended to under sensory competition with other streams. However, the target sounds used in the previous studies differed not only in their AM, but also in other sound features, such as carrier frequency or location. Thus, it remains uncertain whether the observed enhancements reflect AM-selective attention. The present study aims at dissociating the effect of AM frequency on response enhancement in auditory cortex by using an ongoing auditory stimulus that contains two competing targets differing exclusively in their AM frequency. Electroencephalography results showed a sustained response enhancement for auditory attention compared to visual attention, but not for AM-selective attention (attended AM frequency vs. ignored AM frequency). In contrast, the response to the ignored AM frequency was enhanced, although a brief trend toward response enhancement occurred during the initial 15 s. Together with the previous findings, these observations indicate that selective enhancement of attended AMs in auditory cortex is adaptive under sustained AM-selective attention. This finding has implications for our understanding of cortical mechanisms for feature-based attentional gain control.

  4. Sustained Selective Attention to Competing Amplitude-Modulations in Human Auditory Cortex

    Science.gov (United States)

    Riecke, Lars; Scharke, Wolfgang; Valente, Giancarlo; Gutschalk, Alexander

    2014-01-01

    Auditory selective attention plays an essential role for identifying sounds of interest in a scene, but the neural underpinnings are still incompletely understood. Recent findings demonstrate that neural activity that is time-locked to a particular amplitude-modulation (AM) is enhanced in the auditory cortex when the modulated stream of sounds is selectively attended to under sensory competition with other streams. However, the target sounds used in the previous studies differed not only in their AM, but also in other sound features, such as carrier frequency or location. Thus, it remains uncertain whether the observed enhancements reflect AM-selective attention. The present study aims at dissociating the effect of AM frequency on response enhancement in auditory cortex by using an ongoing auditory stimulus that contains two competing targets differing exclusively in their AM frequency. Electroencephalography results showed a sustained response enhancement for auditory attention compared to visual attention, but not for AM-selective attention (attended AM frequency vs. ignored AM frequency). In contrast, the response to the ignored AM frequency was enhanced, although a brief trend toward response enhancement occurred during the initial 15 s. Together with the previous findings, these observations indicate that selective enhancement of attended AMs in auditory cortex is adaptive under sustained AM-selective attention. This finding has implications for our understanding of cortical mechanisms for feature-based attentional gain control. PMID:25259525

  5. Changes in otoacoustic emissions during selective auditory and visual attention.

    Science.gov (United States)

    Walsh, Kyle P; Pasanen, Edward G; McFadden, Dennis

    2015-05-01

    Previous studies have demonstrated that the otoacoustic emissions (OAEs) measured during behavioral tasks can have different magnitudes when subjects are attending selectively or not attending. The implication is that the cognitive and perceptual demands of a task can affect the first neural stage of auditory processing-the sensory receptors themselves. However, the directions of the reported attentional effects have been inconsistent, the magnitudes of the observed differences typically have been small, and comparisons across studies have been made difficult by significant procedural differences. In this study, a nonlinear version of the stimulus-frequency OAE (SFOAE), called the nSFOAE, was used to measure cochlear responses from human subjects while they simultaneously performed behavioral tasks requiring selective auditory attention (dichotic or diotic listening), selective visual attention, or relative inattention. Within subjects, the differences in nSFOAE magnitude between inattention and attention conditions were about 2-3 dB for both auditory and visual modalities, and the effect sizes for the differences typically were large for both nSFOAE magnitude and phase. These results reveal that the cochlear efferent reflex is differentially active during selective attention and inattention, for both auditory and visual tasks, although they do not reveal how attention is improved when efferent activity is greater.

  6. Changes in otoacoustic emissions during selective auditory and visual attention

    Science.gov (United States)

    Walsh, Kyle P.; Pasanen, Edward G.; McFadden, Dennis

    2015-01-01

    Previous studies have demonstrated that the otoacoustic emissions (OAEs) measured during behavioral tasks can have different magnitudes when subjects are attending selectively or not attending. The implication is that the cognitive and perceptual demands of a task can affect the first neural stage of auditory processing—the sensory receptors themselves. However, the directions of the reported attentional effects have been inconsistent, the magnitudes of the observed differences typically have been small, and comparisons across studies have been made difficult by significant procedural differences. In this study, a nonlinear version of the stimulus-frequency OAE (SFOAE), called the nSFOAE, was used to measure cochlear responses from human subjects while they simultaneously performed behavioral tasks requiring selective auditory attention (dichotic or diotic listening), selective visual attention, or relative inattention. Within subjects, the differences in nSFOAE magnitude between inattention and attention conditions were about 2–3 dB for both auditory and visual modalities, and the effect sizes for the differences typically were large for both nSFOAE magnitude and phase. These results reveal that the cochlear efferent reflex is differentially active during selective attention and inattention, for both auditory and visual tasks, although they do not reveal how attention is improved when efferent activity is greater. PMID:25994703

  7. The role of working memory in auditory selective attention.

    Science.gov (United States)

    Dalton, Polly; Santangelo, Valerio; Spence, Charles

    2009-11-01

    A growing body of research now demonstrates that working memory plays an important role in controlling the extent to which irrelevant visual distractors are processed during visual selective attention tasks (e.g., Lavie, Hirst, De Fockert, & Viding, 2004). Recently, it has been shown that the successful selection of tactile information also depends on the availability of working memory (Dalton, Lavie, & Spence, 2009). Here, we investigate whether working memory plays a role in auditory selective attention. Participants focused their attention on short continuous bursts of white noise (targets) while attempting to ignore pulsed bursts of noise (distractors). Distractor interference in this auditory task, as measured in terms of the difference in performance between congruent and incongruent distractor trials, increased significantly under high (vs. low) load in a concurrent working-memory task. These results provide the first evidence demonstrating a causal role for working memory in reducing interference by irrelevant auditory distractors.

  8. Interhemispheric interaction expands attentional capacity in an auditory selective attention task.

    Science.gov (United States)

    Scalf, Paige E; Banich, Marie T; Erickson, Andrew B

    2009-04-01

    Previous work from our laboratory indicates that interhemispheric interaction (IHI) functionally increases the attentional capacity available to support performance on visual tasks (Banich in The asymmetrical brain, pp 261-302, 2003). Because manipulations of both computational complexity and selection demand alter the benefits of IHI to task performance, we argue that IHI may be a general strategy for meeting increases in attentional demand. Other researchers, however, have suggested that the apparent benefits of IHI to attentional capacity are an epiphenomenon of the organization of the visual system (Fecteau and Enns in Neuropsychologia 43:1412-1428, 2005; Marsolek et al. in Neuropsychologia 40:1983-1999, 2002). In the current experiment, we investigate whether IHI increases attentional capacity outside the visual system by manipulating the selection demands of an auditory temporal pattern-matching task. We find that IHI expands attentional capacity in the auditory system. This suggests that the benefits of requiring IHI derive from a functional increase in attentional capacity rather than the organization of a specific sensory modality.

  9. Music training relates to the development of neural mechanisms of selective auditory attention.

    Science.gov (United States)

    Strait, Dana L; Slater, Jessica; O'Connell, Samantha; Kraus, Nina

    2015-04-01

    Selective attention decreases trial-to-trial variability in cortical auditory-evoked activity. This effect increases over the course of maturation, potentially reflecting the gradual development of selective attention and inhibitory control. Work in adults indicates that music training may alter the development of this neural response characteristic, especially over brain regions associated with executive control: in adult musicians, attention decreases variability in auditory-evoked responses recorded over prefrontal cortex to a greater extent than in nonmusicians. We aimed to determine whether this musician-associated effect emerges during childhood, when selective attention and inhibitory control are under development. We compared cortical auditory-evoked variability to attended and ignored speech streams in musicians and nonmusicians across three age groups: preschoolers, school-aged children and young adults. Results reveal that childhood music training is associated with reduced auditory-evoked response variability recorded over prefrontal cortex during selective auditory attention in school-aged child and adult musicians. Preschoolers, on the other hand, demonstrate no impact of selective attention on cortical response variability and no musician distinctions. This finding is consistent with the gradual emergence of attention during this period and may suggest no pre-existing differences in this attention-related cortical metric between children who undergo music training and those who do not. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Neuronal effects of nicotine during auditory selective attention.

    Science.gov (United States)

    Smucny, Jason; Olincy, Ann; Eichman, Lindsay S; Tregellas, Jason R

    2015-06-01

    Although the attention-enhancing effects of nicotine have been behaviorally and neurophysiologically well-documented, its localized functional effects during selective attention are poorly understood. In this study, we examined the neuronal effects of nicotine during auditory selective attention in healthy human nonsmokers. We hypothesized to observe significant effects of nicotine in attention-associated brain areas, driven by nicotine-induced increases in activity as a function of increasing task demands. A single-blind, prospective, randomized crossover design was used to examine neuronal response associated with a go/no-go task after 7 mg nicotine or placebo patch administration in 20 individuals who underwent functional magnetic resonance imaging at 3T. The task design included two levels of difficulty (ordered vs. random stimuli) and two levels of auditory distraction (silence vs. noise). Significant treatment × difficulty × distraction interaction effects on neuronal response were observed in the hippocampus, ventral parietal cortex, and anterior cingulate. In contrast to our hypothesis, U and inverted U-shaped dependencies were observed between the effects of nicotine on response and task demands, depending on the brain area. These results suggest that nicotine may differentially affect neuronal response depending on task conditions. These results have important theoretical implications for understanding how cholinergic tone may influence the neurobiology of selective attention.

  11. The spectrotemporal filter mechanism of auditory selective attention

    Science.gov (United States)

    Lakatos, Peter; Musacchia, Gabriella; O’Connell, Monica N.; Falchier, Arnaud Y.; Javitt, Daniel C.; Schroeder, Charles E.

    2013-01-01

    SUMMARY While we have convincing evidence that attention to auditory stimuli modulates neuronal responses at or before the level of primary auditory cortex (A1), the underlying physiological mechanisms are unknown. We found that attending to rhythmic auditory streams resulted in the entrainment of ongoing oscillatory activity reflecting rhythmic excitability fluctuations in A1. Strikingly, while the rhythm of the entrained oscillations in A1 neuronal ensembles reflected the temporal structure of the attended stream, the phase depended on the attended frequency content. Counter-phase entrainment across differently tuned A1 regions resulted in both the amplification and sharpening of responses at attended time points, in essence acting as a spectrotemporal filter mechanism. Our data suggest that selective attention generates a dynamically evolving model of attended auditory stimulus streams in the form of modulatory subthreshold oscillations across tonotopically organized neuronal ensembles in A1 that enhances the representation of attended stimuli. PMID:23439126

  12. Auditory Selective Attention in Cerebral-Palsied Individuals.

    Science.gov (United States)

    Laraway, Lee Ann

    1985-01-01

    To examine differences between auditory selective attention abilities of normal and cerebral-palsied individuals, 23 cerebral-palsied and 23 normal subjects (5-21) were asked to repeat a series of 30 items in presence of intermittent white noise. Results indicated that cerebral-palsied individuals perform significantly more poorly when the…

  13. Neural effects of cognitive control load on auditory selective attention.

    Science.gov (United States)

    Sabri, Merav; Humphries, Colin; Verber, Matthew; Liebenthal, Einat; Binder, Jeffrey R; Mangalathu, Jain; Desai, Anjali

    2014-08-01

    Whether and how working memory disrupts or alters auditory selective attention is unclear. We compared simultaneous event-related potentials (ERP) and functional magnetic resonance imaging (fMRI) responses associated with task-irrelevant sounds across high and low working memory load in a dichotic-listening paradigm. Participants performed n-back tasks (1-back, 2-back) in one ear (Attend ear) while ignoring task-irrelevant speech sounds in the other ear (Ignore ear). The effects of working memory load on selective attention were observed at 130-210ms, with higher load resulting in greater irrelevant syllable-related activation in localizer-defined regions in auditory cortex. The interaction between memory load and presence of irrelevant information revealed stronger activations primarily in frontal and parietal areas due to presence of irrelevant information in the higher memory load. Joint independent component analysis of ERP and fMRI data revealed that the ERP component in the N1 time-range is associated with activity in superior temporal gyrus and medial prefrontal cortex. These results demonstrate a dynamic relationship between working memory load and auditory selective attention, in agreement with the load model of attention and the idea of common neural resources for memory and attention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Effects of selective attention on the electrophysiological representation of concurrent sounds in the human auditory cortex.

    Science.gov (United States)

    Bidet-Caulet, Aurélie; Fischer, Catherine; Besle, Julien; Aguera, Pierre-Emmanuel; Giard, Marie-Helene; Bertrand, Olivier

    2007-08-29

    In noisy environments, we use auditory selective attention to actively ignore distracting sounds and select relevant information, as during a cocktail party to follow one particular conversation. The present electrophysiological study aims at deciphering the spatiotemporal organization of the effect of selective attention on the representation of concurrent sounds in the human auditory cortex. Sound onset asynchrony was manipulated to induce the segregation of two concurrent auditory streams. Each stream consisted of amplitude modulated tones at different carrier and modulation frequencies. Electrophysiological recordings were performed in epileptic patients with pharmacologically resistant partial epilepsy, implanted with depth electrodes in the temporal cortex. Patients were presented with the stimuli while they either performed an auditory distracting task or actively selected one of the two concurrent streams. Selective attention was found to affect steady-state responses in the primary auditory cortex, and transient and sustained evoked responses in secondary auditory areas. The results provide new insights on the neural mechanisms of auditory selective attention: stream selection during sound rivalry would be facilitated not only by enhancing the neural representation of relevant sounds, but also by reducing the representation of irrelevant information in the auditory cortex. Finally, they suggest a specialization of the left hemisphere in the attentional selection of fine-grained acoustic information.

  15. Switching in the Cocktail Party: Exploring Intentional Control of Auditory Selective Attention

    Science.gov (United States)

    Koch, Iring; Lawo, Vera; Fels, Janina; Vorlander, Michael

    2011-01-01

    Using a novel variant of dichotic selective listening, we examined the control of auditory selective attention. In our task, subjects had to respond selectively to one of two simultaneously presented auditory stimuli (number words), always spoken by a female and a male speaker, by performing a numerical size categorization. The gender of the…

  16. Focal Suppression of Distractor Sounds by Selective Attention in Auditory Cortex.

    Science.gov (United States)

    Schwartz, Zachary P; David, Stephen V

    2018-01-01

    Auditory selective attention is required for parsing crowded acoustic environments, but cortical systems mediating the influence of behavioral state on auditory perception are not well characterized. Previous neurophysiological studies suggest that attention produces a general enhancement of neural responses to important target sounds versus irrelevant distractors. However, behavioral studies suggest that in the presence of masking noise, attention provides a focal suppression of distractors that compete with targets. Here, we compared effects of attention on cortical responses to masking versus non-masking distractors, controlling for effects of listening effort and general task engagement. We recorded single-unit activity from primary auditory cortex (A1) of ferrets during behavior and found that selective attention decreased responses to distractors masking targets in the same spectral band, compared with spectrally distinct distractors. This suppression enhanced neural target detection thresholds, suggesting that limited attention resources serve to focally suppress responses to distractors that interfere with target detection. Changing effort by manipulating target salience consistently modulated spontaneous but not evoked activity. Task engagement and changing effort tended to affect the same neurons, while attention affected an independent population, suggesting that distinct feedback circuits mediate effects of attention and effort in A1. © The Author 2017. Published by Oxford University Press.

  17. Auditory selective attention in adolescents with major depression: An event-related potential study.

    Science.gov (United States)

    Greimel, E; Trinkl, M; Bartling, J; Bakos, S; Grossheinrich, N; Schulte-Körne, G

    2015-02-01

    Major depression (MD) is associated with deficits in selective attention. Previous studies in adults with MD using event-related potentials (ERPs) reported abnormalities in the neurophysiological correlates of auditory selective attention. However, it is yet unclear whether these findings can be generalized to MD in adolescence. Thus, the aim of the present ERP study was to explore the neural mechanisms of auditory selective attention in adolescents with MD. 24 male and female unmedicated adolescents with MD and 21 control subjects were included in the study. ERPs were collected during an auditory oddball paradigm. Depressive adolescents tended to show a longer N100 latency to target and non-target tones. Moreover, MD subjects showed a prolonged latency of the P200 component to targets. Across groups, longer P200 latency was associated with a decreased tendency of disinhibited behavior as assessed by a behavioral questionnaire. To be able to draw more precise conclusions about differences between the neural bases of selective attention in adolescents vs. adults with MD, future studies should include both age groups and apply the same experimental setting across all subjects. The study provides strong support for abnormalities in the neurophysiolgical bases of selective attention in adolecents with MD at early stages of auditory information processing. Absent group differences in later ERP components reflecting voluntary attentional processes stand in contrast to results reported in adults with MD and may suggest that adolescents with MD possess mechanisms to compensate for abnormalities in the early stages of selective attention. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Tuning In to Sound: Frequency-Selective Attentional Filter in Human Primary Auditory Cortex

    Science.gov (United States)

    Da Costa, Sandra; van der Zwaag, Wietske; Miller, Lee M.; Clarke, Stephanie

    2013-01-01

    Cocktail parties, busy streets, and other noisy environments pose a difficult challenge to the auditory system: how to focus attention on selected sounds while ignoring others? Neurons of primary auditory cortex, many of which are sharply tuned to sound frequency, could help solve this problem by filtering selected sound information based on frequency-content. To investigate whether this occurs, we used high-resolution fMRI at 7 tesla to map the fine-scale frequency-tuning (1.5 mm isotropic resolution) of primary auditory areas A1 and R in six human participants. Then, in a selective attention experiment, participants heard low (250 Hz)- and high (4000 Hz)-frequency streams of tones presented at the same time (dual-stream) and were instructed to focus attention onto one stream versus the other, switching back and forth every 30 s. Attention to low-frequency tones enhanced neural responses within low-frequency-tuned voxels relative to high, and when attention switched the pattern quickly reversed. Thus, like a radio, human primary auditory cortex is able to tune into attended frequency channels and can switch channels on demand. PMID:23365225

  19. Selective and divided attention modulates auditory-vocal integration in the processing of pitch feedback errors.

    Science.gov (United States)

    Liu, Ying; Hu, Huijing; Jones, Jeffery A; Guo, Zhiqiang; Li, Weifeng; Chen, Xi; Liu, Peng; Liu, Hanjun

    2015-08-01

    Speakers rapidly adjust their ongoing vocal productions to compensate for errors they hear in their auditory feedback. It is currently unclear what role attention plays in these vocal compensations. This event-related potential (ERP) study examined the influence of selective and divided attention on the vocal and cortical responses to pitch errors heard in auditory feedback regarding ongoing vocalisations. During the production of a sustained vowel, participants briefly heard their vocal pitch shifted up two semitones while they actively attended to auditory or visual events (selective attention), or both auditory and visual events (divided attention), or were not told to attend to either modality (control condition). The behavioral results showed that attending to the pitch perturbations elicited larger vocal compensations than attending to the visual stimuli. Moreover, ERPs were likewise sensitive to the attentional manipulations: P2 responses to pitch perturbations were larger when participants attended to the auditory stimuli compared to when they attended to the visual stimuli, and compared to when they were not explicitly told to attend to either the visual or auditory stimuli. By contrast, dividing attention between the auditory and visual modalities caused suppressed P2 responses relative to all the other conditions and caused enhanced N1 responses relative to the control condition. These findings provide strong evidence for the influence of attention on the mechanisms underlying the auditory-vocal integration in the processing of pitch feedback errors. In addition, selective attention and divided attention appear to modulate the neurobehavioral processing of pitch feedback errors in different ways. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Evoked potential correlates of selective attention with multi-channel auditory inputs

    Science.gov (United States)

    Schwent, V. L.; Hillyard, S. A.

    1975-01-01

    Ten subjects were presented with random, rapid sequences of four auditory tones which were separated in pitch and apparent spatial position. The N1 component of the auditory vertex evoked potential (EP) measured relative to a baseline was observed to increase with attention. It was concluded that the N1 enhancement reflects a finely tuned selective attention to one stimulus channel among several concurrent, competing channels. This EP enhancement probably increases with increased information load on the subject.

  1. Electrophysiological evidence for altered visual, but not auditory, selective attention in adolescent cochlear implant users.

    Science.gov (United States)

    Harris, Jill; Kamke, Marc R

    2014-11-01

    Selective attention fundamentally alters sensory perception, but little is known about the functioning of attention in individuals who use a cochlear implant. This study aimed to investigate visual and auditory attention in adolescent cochlear implant users. Event related potentials were used to investigate the influence of attention on visual and auditory evoked potentials in six cochlear implant users and age-matched normally-hearing children. Participants were presented with streams of alternating visual and auditory stimuli in an oddball paradigm: each modality contained frequently presented 'standard' and infrequent 'deviant' stimuli. Across different blocks attention was directed to either the visual or auditory modality. For the visual stimuli attention boosted the early N1 potential, but this effect was larger for cochlear implant users. Attention was also associated with a later P3 component for the visual deviant stimulus, but there was no difference between groups in the later attention effects. For the auditory stimuli, attention was associated with a decrease in N1 latency as well as a robust P3 for the deviant tone. Importantly, there was no difference between groups in these auditory attention effects. The results suggest that basic mechanisms of auditory attention are largely normal in children who are proficient cochlear implant users, but that visual attention may be altered. Ultimately, a better understanding of how selective attention influences sensory perception in cochlear implant users will be important for optimising habilitation strategies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Measuring Auditory Selective Attention using Frequency Tagging

    Directory of Open Access Journals (Sweden)

    Hari M Bharadwaj

    2014-02-01

    Full Text Available Frequency tagging of sensory inputs (presenting stimuli that fluctuate periodically at rates to which the cortex can phase lock has been used to study attentional modulation of neural responses to inputs in different sensory modalities. For visual inputs, the visual steady-state response (VSSR at the frequency modulating an attended object is enhanced, while the VSSR to a distracting object is suppressed. In contrast, the effect of attention on the auditory steady-state response (ASSR is inconsistent across studies. However, most auditory studies analyzed results at the sensor level or used only a small number of equivalent current dipoles to fit cortical responses. In addition, most studies of auditory spatial attention used dichotic stimuli (independent signals at the ears rather than more natural, binaural stimuli. Here, we asked whether these methodological choices help explain discrepant results. Listeners attended to one of two competing speech streams, one simulated from the left and one from the right, that were modulated at different frequencies. Using distributed source modeling of magnetoencephalography results, we estimate how spatially directed attention modulates the ASSR in neural regions across the whole brain. Attention enhances the ASSR power at the frequency of the attended stream in the contralateral auditory cortex. The attended-stream modulation frequency also drives phase-locked responses in the left (but not right precentral sulcus (lPCS, a region implicated in control of eye gaze and visual spatial attention. Importantly, this region shows no phase locking to the distracting stream suggesting that the lPCS in engaged in an attention-specific manner. Modeling results that take account of the geometry and phases of the cortical sources phase locked to the two streams (including hemispheric asymmetry of lPCS activity help partly explain why past ASSR studies of auditory spatial attention yield seemingly contradictory

  3. Impact of Auditory Selective Attention on Verbal Short-Term Memory and Vocabulary Development

    Science.gov (United States)

    Majerus, Steve; Heiligenstein, Lucie; Gautherot, Nathalie; Poncelet, Martine; Van der Linden, Martial

    2009-01-01

    This study investigated the role of auditory selective attention capacities as a possible mediator of the well-established association between verbal short-term memory (STM) and vocabulary development. A total of 47 6- and 7-year-olds were administered verbal immediate serial recall and auditory attention tasks. Both task types probed processing…

  4. Auditory attention in childhood and adolescence: An event-related potential study of spatial selective attention to one of two simultaneous stories

    Science.gov (United States)

    Karns, Christina M.; Isbell, Elif; Giuliano, Ryan J.; Neville, Helen J.

    2015-01-01

    Auditory selective attention is a critical skill for goal-directed behavior, especially where noisy distractions may impede focusing attention. To better understand the developmental trajectory of auditory spatial selective attention in an acoustically complex environment, in the current study we measured auditory event-related potentials (ERPs) in human children across five age groups: 3–5 years; 10 years; 13 years; 16 years; and young adults using a naturalistic dichotic listening paradigm, characterizing the ERP morphology for nonlinguistic and linguistic auditory probes embedded in attended and unattended stories. We documented robust maturational changes in auditory evoked potentials that were specific to the types of probes. Furthermore, we found a remarkable interplay between age and attention-modulation of auditory evoked potentials in terms of morphology and latency from the early years of childhood through young adulthood. The results are consistent with the view that attention can operate across age groups by modulating the amplitude of maturing auditory early-latency evoked potentials or by invoking later endogenous attention processes. Development of these processes is not uniform for probes with different acoustic properties within our acoustically dense speech-based dichotic listening task. In light of the developmental differences we demonstrate, researchers conducting future attention studies of children and adolescents should be wary of combining analyses across diverse ages. PMID:26002721

  5. Auditory attention in childhood and adolescence: An event-related potential study of spatial selective attention to one of two simultaneous stories.

    Science.gov (United States)

    Karns, Christina M; Isbell, Elif; Giuliano, Ryan J; Neville, Helen J

    2015-06-01

    Auditory selective attention is a critical skill for goal-directed behavior, especially where noisy distractions may impede focusing attention. To better understand the developmental trajectory of auditory spatial selective attention in an acoustically complex environment, in the current study we measured auditory event-related potentials (ERPs) across five age groups: 3-5 years; 10 years; 13 years; 16 years; and young adults. Using a naturalistic dichotic listening paradigm, we characterized the ERP morphology for nonlinguistic and linguistic auditory probes embedded in attended and unattended stories. We documented robust maturational changes in auditory evoked potentials that were specific to the types of probes. Furthermore, we found a remarkable interplay between age and attention-modulation of auditory evoked potentials in terms of morphology and latency from the early years of childhood through young adulthood. The results are consistent with the view that attention can operate across age groups by modulating the amplitude of maturing auditory early-latency evoked potentials or by invoking later endogenous attention processes. Development of these processes is not uniform for probes with different acoustic properties within our acoustically dense speech-based dichotic listening task. In light of the developmental differences we demonstrate, researchers conducting future attention studies of children and adolescents should be wary of combining analyses across diverse ages. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Selective attention modulates human auditory brainstem responses: relative contributions of frequency and spatial cues.

    Directory of Open Access Journals (Sweden)

    Alexandre Lehmann

    Full Text Available Selective attention is the mechanism that allows focusing one's attention on a particular stimulus while filtering out a range of other stimuli, for instance, on a single conversation in a noisy room. Attending to one sound source rather than another changes activity in the human auditory cortex, but it is unclear whether attention to different acoustic features, such as voice pitch and speaker location, modulates subcortical activity. Studies using a dichotic listening paradigm indicated that auditory brainstem processing may be modulated by the direction of attention. We investigated whether endogenous selective attention to one of two speech signals affects amplitude and phase locking in auditory brainstem responses when the signals were either discriminable by frequency content alone, or by frequency content and spatial location. Frequency-following responses to the speech sounds were significantly modulated in both conditions. The modulation was specific to the task-relevant frequency band. The effect was stronger when both frequency and spatial information were available. Patterns of response were variable between participants, and were correlated with psychophysical discriminability of the stimuli, suggesting that the modulation was biologically relevant. Our results demonstrate that auditory brainstem responses are susceptible to efferent modulation related to behavioral goals. Furthermore they suggest that mechanisms of selective attention actively shape activity at early subcortical processing stages according to task relevance and based on frequency and spatial cues.

  7. Selective Attention to Visual Stimuli Using Auditory Distractors Is Altered in Alpha-9 Nicotinic Receptor Subunit Knock-Out Mice.

    Science.gov (United States)

    Terreros, Gonzalo; Jorratt, Pascal; Aedo, Cristian; Elgoyhen, Ana Belén; Delano, Paul H

    2016-07-06

    During selective attention, subjects voluntarily focus their cognitive resources on a specific stimulus while ignoring others. Top-down filtering of peripheral sensory responses by higher structures of the brain has been proposed as one of the mechanisms responsible for selective attention. A prerequisite to accomplish top-down modulation of the activity of peripheral structures is the presence of corticofugal pathways. The mammalian auditory efferent system is a unique neural network that originates in the auditory cortex and projects to the cochlear receptor through the olivocochlear bundle, and it has been proposed to function as a top-down filter of peripheral auditory responses during attention to cross-modal stimuli. However, to date, there is no conclusive evidence of the involvement of olivocochlear neurons in selective attention paradigms. Here, we trained wild-type and α-9 nicotinic receptor subunit knock-out (KO) mice, which lack cholinergic transmission between medial olivocochlear neurons and outer hair cells, in a two-choice visual discrimination task and studied the behavioral consequences of adding different types of auditory distractors. In addition, we evaluated the effects of contralateral noise on auditory nerve responses as a measure of the individual strength of the olivocochlear reflex. We demonstrate that KO mice have a reduced olivocochlear reflex strength and perform poorly in a visual selective attention paradigm. These results confirm that an intact medial olivocochlear transmission aids in ignoring auditory distraction during selective attention to visual stimuli. The auditory efferent system is a neural network that originates in the auditory cortex and projects to the cochlear receptor through the olivocochlear system. It has been proposed to function as a top-down filter of peripheral auditory responses during attention to cross-modal stimuli. However, to date, there is no conclusive evidence of the involvement of olivocochlear

  8. Neural Correlates of Selective Attention With Hearing Aid Use Followed by ReadMyQuips Auditory Training Program.

    Science.gov (United States)

    Rao, Aparna; Rishiq, Dania; Yu, Luodi; Zhang, Yang; Abrams, Harvey

    The objectives of this study were to investigate the effects of hearing aid use and the effectiveness of ReadMyQuips (RMQ), an auditory training program, on speech perception performance and auditory selective attention using electrophysiological measures. RMQ is an audiovisual training program designed to improve speech perception in everyday noisy listening environments. Participants were adults with mild to moderate hearing loss who were first-time hearing aid users. After 4 weeks of hearing aid use, the experimental group completed RMQ training in 4 weeks, and the control group received listening practice on audiobooks during the same period. Cortical late event-related potentials (ERPs) and the Hearing in Noise Test (HINT) were administered at prefitting, pretraining, and post-training to assess effects of hearing aid use and RMQ training. An oddball paradigm allowed tracking of changes in P3a and P3b ERPs to distractors and targets, respectively. Behavioral measures were also obtained while ERPs were recorded from participants. After 4 weeks of hearing aid use but before auditory training, HINT results did not show a statistically significant change, but there was a significant P3a reduction. This reduction in P3a was correlated with improvement in d prime (d') in the selective attention task. Increased P3b amplitudes were also correlated with improvement in d' in the selective attention task. After training, this correlation between P3b and d' remained in the experimental group, but not in the control group. Similarly, HINT testing showed improved speech perception post training only in the experimental group. The criterion calculated in the auditory selective attention task showed a reduction only in the experimental group after training. ERP measures in the auditory selective attention task did not show any changes related to training. Hearing aid use was associated with a decrement in involuntary attention switch to distractors in the auditory selective

  9. Can you hear me now? Musical training shapes functional brain networks for selective auditory attention and hearing speech in noise

    Directory of Open Access Journals (Sweden)

    Dana L Strait

    2011-06-01

    Full Text Available Even in the quietest of rooms, our senses are perpetually inundated by a barrage of sounds, requiring the auditory system to adapt to a variety of listening conditions in order to extract signals of interest (e.g., one speaker’s voice amidst others. Brain networks that promote selective attention are thought to sharpen the neural encoding of a target signal, suppressing competing sounds and enhancing perceptual performance. Here, we ask: does musical training benefit cortical mechanisms that underlie selective attention to speech? To answer this question, we assessed the impact of selective auditory attention on cortical auditory-evoked response variability in musicians and nonmusicians. Outcomes indicate strengthened brain networks for selective auditory attention in musicians in that musicians but not nonmusicians demonstrate decreased prefrontal response variability with auditory attention. Results are interpreted in the context of previous work from our laboratory documenting perceptual and subcortical advantages in musicians for the hearing and neural encoding of speech in background noise. Musicians’ neural proficiency for selectively engaging and sustaining auditory attention to language indicates a potential benefit of music for auditory training. Given the importance of auditory attention for the development of language-related skills, musical training may aid in the prevention, habilitation and remediation of children with a wide range of attention-based language and learning impairments.

  10. Selective attention reduces physiological noise in the external ear canals of humans. I: Auditory attention

    Science.gov (United States)

    Walsh, Kyle P.; Pasanen, Edward G.; McFadden, Dennis

    2014-01-01

    In this study, a nonlinear version of the stimulus-frequency OAE (SFOAE), called the nSFOAE, was used to measure cochlear responses from human subjects while they simultaneously performed behavioral tasks requiring, or not requiring, selective auditory attention. Appended to each stimulus presentation, and included in the calculation of each nSFOAE response, was a 30-ms silent period that was used to estimate the level of the inherent physiological noise in the ear canals of our subjects during each behavioral condition. Physiological-noise magnitudes were higher (noisier) for all subjects in the inattention task, and lower (quieter) in the selective auditory-attention tasks. These noise measures initially were made at the frequency of our nSFOAE probe tone (4.0 kHz), but the same attention effects also were observed across a wide range of frequencies. We attribute the observed differences in physiological-noise magnitudes between the inattention and attention conditions to different levels of efferent activation associated with the differing attentional demands of the behavioral tasks. One hypothesis is that when the attentional demand is relatively great, efferent activation is relatively high, and a decrease in the gain of the cochlear amplifier leads to lower-amplitude cochlear activity, and thus a smaller measure of noise from the ear. PMID:24732069

  11. Feature-Selective Attention Adaptively Shifts Noise Correlations in Primary Auditory Cortex.

    Science.gov (United States)

    Downer, Joshua D; Rapone, Brittany; Verhein, Jessica; O'Connor, Kevin N; Sutter, Mitchell L

    2017-05-24

    Sensory environments often contain an overwhelming amount of information, with both relevant and irrelevant information competing for neural resources. Feature attention mediates this competition by selecting the sensory features needed to form a coherent percept. How attention affects the activity of populations of neurons to support this process is poorly understood because population coding is typically studied through simulations in which one sensory feature is encoded without competition. Therefore, to study the effects of feature attention on population-based neural coding, investigations must be extended to include stimuli with both relevant and irrelevant features. We measured noise correlations ( r noise ) within small neural populations in primary auditory cortex while rhesus macaques performed a novel feature-selective attention task. We found that the effect of feature-selective attention on r noise depended not only on the population tuning to the attended feature, but also on the tuning to the distractor feature. To attempt to explain how these observed effects might support enhanced perceptual performance, we propose an extension of a simple and influential model in which shifts in r noise can simultaneously enhance the representation of the attended feature while suppressing the distractor. These findings present a novel mechanism by which attention modulates neural populations to support sensory processing in cluttered environments. SIGNIFICANCE STATEMENT Although feature-selective attention constitutes one of the building blocks of listening in natural environments, its neural bases remain obscure. To address this, we developed a novel auditory feature-selective attention task and measured noise correlations ( r noise ) in rhesus macaque A1 during task performance. Unlike previous studies showing that the effect of attention on r noise depends on population tuning to the attended feature, we show that the effect of attention depends on the tuning

  12. The human auditory brainstem response to running speech reveals a subcortical mechanism for selective attention.

    Science.gov (United States)

    Forte, Antonio Elia; Etard, Octave; Reichenbach, Tobias

    2017-10-10

    Humans excel at selectively listening to a target speaker in background noise such as competing voices. While the encoding of speech in the auditory cortex is modulated by selective attention, it remains debated whether such modulation occurs already in subcortical auditory structures. Investigating the contribution of the human brainstem to attention has, in particular, been hindered by the tiny amplitude of the brainstem response. Its measurement normally requires a large number of repetitions of the same short sound stimuli, which may lead to a loss of attention and to neural adaptation. Here we develop a mathematical method to measure the auditory brainstem response to running speech, an acoustic stimulus that does not repeat and that has a high ecological validity. We employ this method to assess the brainstem's activity when a subject listens to one of two competing speakers, and show that the brainstem response is consistently modulated by attention.

  13. Bottom-up influences of voice continuity in focusing selective auditory attention.

    Science.gov (United States)

    Bressler, Scott; Masud, Salwa; Bharadwaj, Hari; Shinn-Cunningham, Barbara

    2014-01-01

    Selective auditory attention causes a relative enhancement of the neural representation of important information and suppression of the neural representation of distracting sound, which enables a listener to analyze and interpret information of interest. Some studies suggest that in both vision and in audition, the "unit" on which attention operates is an object: an estimate of the information coming from a particular external source out in the world. In this view, which object ends up in the attentional foreground depends on the interplay of top-down, volitional attention and stimulus-driven, involuntary attention. Here, we test the idea that auditory attention is object based by exploring whether continuity of a non-spatial feature (talker identity, a feature that helps acoustic elements bind into one perceptual object) also influences selective attention performance. In Experiment 1, we show that perceptual continuity of target talker voice helps listeners report a sequence of spoken target digits embedded in competing reversed digits spoken by different talkers. In Experiment 2, we provide evidence that this benefit of voice continuity is obligatory and automatic, as if voice continuity biases listeners by making it easier to focus on a subsequent target digit when it is perceptually linked to what was already in the attentional foreground. Our results support the idea that feature continuity enhances streaming automatically, thereby influencing the dynamic processes that allow listeners to successfully attend to objects through time in the cacophony that assails our ears in many everyday settings.

  14. Role of the right inferior parietal cortex in auditory selective attention: An rTMS study.

    Science.gov (United States)

    Bareham, Corinne A; Georgieva, Stanimira D; Kamke, Marc R; Lloyd, David; Bekinschtein, Tristan A; Mattingley, Jason B

    2018-02-01

    Selective attention is the process of directing limited capacity resources to behaviourally relevant stimuli while ignoring competing stimuli that are currently irrelevant. Studies in healthy human participants and in individuals with focal brain lesions have suggested that the right parietal cortex is crucial for resolving competition for attention. Following right-hemisphere damage, for example, patients may have difficulty reporting a brief, left-sided stimulus if it occurs with a competitor on the right, even though the same left stimulus is reported normally when it occurs alone. Such "extinction" of contralesional stimuli has been documented for all the major sense modalities, but it remains unclear whether its occurrence reflects involvement of one or more specific subregions of the temporo-parietal cortex. Here we employed repetitive transcranial magnetic stimulation (rTMS) over the right hemisphere to examine the effect of disruption of two candidate regions - the supramarginal gyrus (SMG) and the superior temporal gyrus (STG) - on auditory selective attention. Eighteen neurologically normal, right-handed participants performed an auditory task, in which they had to detect target digits presented within simultaneous dichotic streams of spoken distractor letters in the left and right channels, both before and after 20 min of 1 Hz rTMS over the SMG, STG or a somatosensory control site (S1). Across blocks, participants were asked to report on auditory streams in the left, right, or both channels, which yielded focused and divided attention conditions. Performance was unchanged for the two focused attention conditions, regardless of stimulation site, but was selectively impaired for contralateral left-sided targets in the divided attention condition following stimulation of the right SMG, but not the STG or S1. Our findings suggest a causal role for the right inferior parietal cortex in auditory selective attention. Copyright © 2017 Elsevier Ltd. All rights

  15. Auditory attention activates peripheral visual cortex.

    Directory of Open Access Journals (Sweden)

    Anthony D Cate

    Full Text Available BACKGROUND: Recent neuroimaging studies have revealed that putatively unimodal regions of visual cortex can be activated during auditory tasks in sighted as well as in blind subjects. However, the task determinants and functional significance of auditory occipital activations (AOAs remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: We examined AOAs in an intermodal selective attention task to distinguish whether they were stimulus-bound or recruited by higher-level cognitive operations associated with auditory attention. Cortical surface mapping showed that auditory occipital activations were localized to retinotopic visual cortex subserving the far peripheral visual field. AOAs depended strictly on the sustained engagement of auditory attention and were enhanced in more difficult listening conditions. In contrast, unattended sounds produced no AOAs regardless of their intensity, spatial location, or frequency. CONCLUSIONS/SIGNIFICANCE: Auditory attention, but not passive exposure to sounds, routinely activated peripheral regions of visual cortex when subjects attended to sound sources outside the visual field. Functional connections between auditory cortex and visual cortex subserving the peripheral visual field appear to underlie the generation of AOAs, which may reflect the priming of visual regions to process soon-to-appear objects associated with unseen sound sources.

  16. A Comparison of Selective Auditory Attention Abilities in Open-Space Versus Closed Classroom Students.

    Science.gov (United States)

    Reinertsen, Gloria M.

    A study compared performances on a test of selective auditory attention between students educated in open-space versus closed classroom environments. An open-space classroom environment was defined as having no walls separating it from hallways or other classrooms. It was hypothesized that the incidence of auditory figure-ground (ability to focus…

  17. Brain activity during divided and selective attention to auditory and visual sentence comprehension tasks

    OpenAIRE

    Moisala, Mona; Salmela, Viljami; Salo, Emma; Carlson, Synnove; Vuontela, Virve; Salonen, Oili; Alho, Kimmo

    2015-01-01

    Using functional magnetic resonance imaging (fMRI), we measured brain activity of human participants while they performed a sentence congruence judgment task in either the visual or auditory modality separately, or in both modalities simultaneously. Significant performance decrements were observed when attention was divided between the two modalities compared with when one modality was selectively attended. Compared with selective attention (i.e., single tasking), divided attention (i.e., dua...

  18. Bottom-up influences of voice continuity in focusing selective auditory attention

    OpenAIRE

    Bressler, Scott; Masud, Salwa; Bharadwaj, Hari; Shinn-Cunningham, Barbara

    2014-01-01

    Selective auditory attention causes a relative enhancement of the neural representation of important information and suppression of the neural representation of distracting sound, which enables a listener to analyze and interpret information of interest. Some studies suggest that in both vision and in audition, the “unit” on which attention operates is an object: an estimate of the information coming from a particular external source out in the world. In this view, which object ends up in the...

  19. Spatial selective auditory attention in the presence of reverberant energy: individual differences in normal-hearing listeners.

    Science.gov (United States)

    Ruggles, Dorea; Shinn-Cunningham, Barbara

    2011-06-01

    Listeners can selectively attend to a desired target by directing attention to known target source features, such as location or pitch. Reverberation, however, reduces the reliability of the cues that allow a target source to be segregated and selected from a sound mixture. Given this, it is likely that reverberant energy interferes with selective auditory attention. Anecdotal reports suggest that the ability to focus spatial auditory attention degrades even with early aging, yet there is little evidence that middle-aged listeners have behavioral deficits on tasks requiring selective auditory attention. The current study was designed to look for individual differences in selective attention ability and to see if any such differences correlate with age. Normal-hearing adults, ranging in age from 18 to 55 years, were asked to report a stream of digits located directly ahead in a simulated rectangular room. Simultaneous, competing masker digit streams were simulated at locations 15° left and right of center. The level of reverberation was varied to alter task difficulty by interfering with localization cues (increasing localization blur). Overall, performance was best in the anechoic condition and worst in the high-reverberation condition. Listeners nearly always reported a digit from one of the three competing streams, showing that reverberation did not render the digits unintelligible. Importantly, inter-subject differences were extremely large. These differences, however, were not significantly correlated with age, memory span, or hearing status. These results show that listeners with audiometrically normal pure tone thresholds differ in their ability to selectively attend to a desired source, a task important in everyday communication. Further work is necessary to determine if these differences arise from differences in peripheral auditory function or in more central function.

  20. Modality-specificity of Selective Attention Networks

    OpenAIRE

    Stewart, Hannah J.; Amitay, Sygal

    2015-01-01

    Objective: To establish the modality specificity and generality of selective attention networks. Method: Forty-eight young adults completed a battery of four auditory and visual selective attention tests based upon the Attention Network framework: the visual and auditory Attention Network Tests (vANT, aANT), the Test of Everyday Attention (TEA), and the Test of Attention in Listening (TAiL). These provided independent measures for auditory and visual alerting, orienting, and conflict resoluti...

  1. A right-ear bias of auditory selective attention is evident in alpha oscillations.

    Science.gov (United States)

    Payne, Lisa; Rogers, Chad S; Wingfield, Arthur; Sekuler, Robert

    2017-04-01

    Auditory selective attention makes it possible to pick out one speech stream that is embedded in a multispeaker environment. We adapted a cued dichotic listening task to examine suppression of a speech stream lateralized to the nonattended ear, and to evaluate the effects of attention on the right ear's well-known advantage in the perception of linguistic stimuli. After being cued to attend to input from either their left or right ear, participants heard two different four-word streams presented simultaneously to the separate ears. Following each dichotic presentation, participants judged whether a spoken probe word had been in the attended ear's stream. We used EEG signals to track participants' spatial lateralization of auditory attention, which is marked by interhemispheric differences in EEG alpha (8-14 Hz) power. A right-ear advantage (REA) was evident in faster response times and greater sensitivity in distinguishing attended from unattended words. Consistent with the REA, we found strongest parietal and right frontotemporal alpha modulation during the attend-right condition. These findings provide evidence for a link between selective attention and the REA during directed dichotic listening. © 2016 Society for Psychophysiological Research.

  2. Selective attention to phonology dynamically modulates initial encoding of auditory words within the left hemisphere.

    Science.gov (United States)

    Yoncheva, Yuliya; Maurer, Urs; Zevin, Jason D; McCandliss, Bruce D

    2014-08-15

    Selective attention to phonology, i.e., the ability to attend to sub-syllabic units within spoken words, is a critical precursor to literacy acquisition. Recent functional magnetic resonance imaging evidence has demonstrated that a left-lateralized network of frontal, temporal, and posterior language regions, including the visual word form area, supports this skill. The current event-related potential (ERP) study investigated the temporal dynamics of selective attention to phonology during spoken word perception. We tested the hypothesis that selective attention to phonology dynamically modulates stimulus encoding by recruiting left-lateralized processes specifically while the information critical for performance is unfolding. Selective attention to phonology was captured by manipulating listening goals: skilled adult readers attended to either rhyme or melody within auditory stimulus pairs. Each pair superimposed rhyming and melodic information ensuring identical sensory stimulation. Selective attention to phonology produced distinct early and late topographic ERP effects during stimulus encoding. Data-driven source localization analyses revealed that selective attention to phonology led to significantly greater recruitment of left-lateralized posterior and extensive temporal regions, which was notably concurrent with the rhyme-relevant information within the word. Furthermore, selective attention effects were specific to auditory stimulus encoding and not observed in response to cues, arguing against the notion that they reflect sustained task setting. Collectively, these results demonstrate that selective attention to phonology dynamically engages a left-lateralized network during the critical time-period of perception for achieving phonological analysis goals. These findings suggest a key role for selective attention in on-line phonological computations. Furthermore, these findings motivate future research on the role that neural mechanisms of attention may

  3. Auditory Selective Attention: an introduction and evidence for distinct facilitation and inhibition mechanisms

    OpenAIRE

    Mikyska, Constanze Elisabeth Anna

    2012-01-01

    Objective Auditory selective attention is a complex brain function that is still not completely understood. The classic example is the so-called “cocktail party effect” (Cherry, 1953), which describes the impressive ability to focus one’s attention on a single voice from a multitude of voices. This means that particular stimuli in the environment are enhanced in contrast to other ones of lower priority that are ignored. To be able to understand how attention can influence the perception and p...

  4. [Some electrophysiological and hemodynamic characteristics of auditory selective attention in norm and schizophrenia].

    Science.gov (United States)

    Lebedeva, I S; Akhadov, T A; Petriaĭkin, A V; Kaleda, V G; Barkhatova, A N; Golubev, S A; Rumiantseva, E E; Vdovenko, A M; Fufaeva, E A; Semenova, N A

    2011-01-01

    Six patients in the state of remission after the first episode ofjuvenile schizophrenia and seven sex- and age-matched mentally healthy subjects were examined by fMRI and ERP methods. The auditory oddball paradigm was applied. Differences in P300 parameters didn't reach the level of significance, however, a significantly higher hemodynamic response to target stimuli was found in patients bilaterally in the supramarginal gyrus and in the right medial frontal gyrus, which points to pathology of these brain areas in supporting of auditory selective attention.

  5. Early auditory evoked potential is modulated by selective attention and related to individual differences in visual working memory capacity.

    Science.gov (United States)

    Giuliano, Ryan J; Karns, Christina M; Neville, Helen J; Hillyard, Steven A

    2014-12-01

    A growing body of research suggests that the predictive power of working memory (WM) capacity for measures of intellectual aptitude is due to the ability to control attention and select relevant information. Crucially, attentional mechanisms implicated in controlling access to WM are assumed to be domain-general, yet reports of enhanced attentional abilities in individuals with larger WM capacities are primarily within the visual domain. Here, we directly test the link between WM capacity and early attentional gating across sensory domains, hypothesizing that measures of visual WM capacity should predict an individual's capacity to allocate auditory selective attention. To address this question, auditory ERPs were recorded in a linguistic dichotic listening task, and individual differences in ERP modulations by attention were correlated with estimates of WM capacity obtained in a separate visual change detection task. Auditory selective attention enhanced ERP amplitudes at an early latency (ca. 70-90 msec), with larger P1 components elicited by linguistic probes embedded in an attended narrative. Moreover, this effect was associated with greater individual estimates of visual WM capacity. These findings support the view that domain-general attentional control mechanisms underlie the wide variation of WM capacity across individuals.

  6. Auditory Stream Segregation Improves Infants' Selective Attention to Target Tones Amid Distracters

    Science.gov (United States)

    Smith, Nicholas A.; Trainor, Laurel J.

    2011-01-01

    This study examined the role of auditory stream segregation in the selective attention to target tones in infancy. Using a task adapted from Bregman and Rudnicky's 1975 study and implemented in a conditioned head-turn procedure, infant and adult listeners had to discriminate the temporal order of 2,200 and 2,400 Hz target tones presented alone,…

  7. Selective attention to phonology dynamically modulates initial encoding of auditory words within the left hemisphere

    Science.gov (United States)

    Yoncheva; Maurer, Urs; Zevin, Jason; McCandliss, Bruce

    2015-01-01

    Selective attention to phonology, i.e., the ability to attend to sub-syllabic units within spoken words, is a critical precursor to literacy acquisition. Recent functional magnetic resonance imaging evidence has demonstrated that a left-lateralized network of frontal, temporal, and posterior language regions, including the visual word form area, supports this skill. The current event-related potential (ERP) study investigated the temporal dynamics of selective attention to phonology during spoken word perception. We tested the hypothesis that selective atten tion to phonology dynamically modulates stimulus encoding by recruiting left-lateralized processes specifically while the information critical for performance is unfolding. Selective attention to phonology was captured by ma nipulating listening goals: skilled adult readers attended to either rhyme or melody within auditory stimulus pairs. Each pair superimposed rhyming and melodic information ensuring identical sensory stimulation. Selective attention to phonology produced distinct early and late topographic ERP effects during stimulus encoding. Data- driven source localization analyses revealed that selective attention to phonology led to significantly greater re cruitment of left-lateralized posterior and extensive temporal regions, which was notably concurrent with the rhyme-relevant information within the word. Furthermore, selective attention effects were specific to auditory stimulus encoding and not observed in response to cues, arguing against the notion that they reflect sustained task setting. Collectively, these results demonstrate that selective attention to phonology dynamically engages a left-lateralized network during the critical time-period of perception for achieving phonological analysis goals. These findings support the key role of selective attention to phonology in the development of literacy and motivate future research on the neural bases of the interaction between phonological

  8. Enhancing Auditory Selective Attention Using a Visually Guided Hearing Aid

    Science.gov (United States)

    2017-01-01

    Purpose Listeners with hearing loss, as well as many listeners with clinically normal hearing, often experience great difficulty segregating talkers in a multiple-talker sound field and selectively attending to the desired “target” talker while ignoring the speech from unwanted “masker” talkers and other sources of sound. This listening situation forms the classic “cocktail party problem” described by Cherry (1953) that has received a great deal of study over the past few decades. In this article, a new approach to improving sound source segregation and enhancing auditory selective attention is described. The conceptual design, current implementation, and results obtained to date are reviewed and discussed in this article. Method This approach, embodied in a prototype “visually guided hearing aid” (VGHA) currently used for research, employs acoustic beamforming steered by eye gaze as a means for improving the ability of listeners to segregate and attend to one sound source in the presence of competing sound sources. Results The results from several studies demonstrate that listeners with normal hearing are able to use an attention-based “spatial filter” operating primarily on binaural cues to selectively attend to one source among competing spatially distributed sources. Furthermore, listeners with sensorineural hearing loss generally are less able to use this spatial filter as effectively as are listeners with normal hearing especially in conditions high in “informational masking.” The VGHA enhances auditory spatial attention for speech-on-speech masking and improves signal-to-noise ratio for conditions high in “energetic masking.” Visual steering of the beamformer supports the coordinated actions of vision and audition in selective attention and facilitates following sound source transitions in complex listening situations. Conclusions Both listeners with normal hearing and with sensorineural hearing loss may benefit from the acoustic

  9. Selective attention and the auditory vertex potential. 1: Effects of stimulus delivery rate

    Science.gov (United States)

    Schwent, V. L.; Hillyard, S. A.; Galambos, R.

    1975-01-01

    Enhancement of the auditory vertex potentials with selective attention to dichotically presented tone pips was found to be critically sensitive to the range of inter-stimulus intervals in use. Only at the shortest intervals was a clear-cut enhancement of the latency component to stimuli observed for the attended ear.

  10. Early Auditory Evoked Potential Is Modulated by Selective Attention and Related to Individual Differences in Visual Working Memory Capacity

    Science.gov (United States)

    Giuliano, Ryan J.; Karns, Christina M.; Neville, Helen J.; Hillyard, Steven A.

    2015-01-01

    A growing body of research suggests that the predictive power of working memory (WM) capacity for measures of intellectual aptitude is due to the ability to control attention and select relevant information. Crucially, attentional mechanisms implicated in controlling access to WM are assumed to be domain-general, yet reports of enhanced attentional abilities in individuals with larger WM capacities are primarily within the visual domain. Here, we directly test the link between WM capacity and early attentional gating across sensory domains, hypothesizing that measures of visual WM capacity should predict an individual’s capacity to allocate auditory selective attention. To address this question, auditory ERPs were recorded in a linguistic dichotic listening task, and individual differences in ERP modulations by attention were correlated with estimates of WM capacity obtained in a separate visual change detection task. Auditory selective attention enhanced ERP amplitudes at an early latency (ca. 70–90 msec), with larger P1 components elicited by linguistic probes embedded in an attended narrative. Moreover, this effect was associated with greater individual estimates of visual WM capacity. These findings support the view that domain-general attentional control mechanisms underlie the wide variation of WM capacity across individuals. PMID:25000526

  11. Modality-specificity of Selective Attention Networks.

    Science.gov (United States)

    Stewart, Hannah J; Amitay, Sygal

    2015-01-01

    To establish the modality specificity and generality of selective attention networks. Forty-eight young adults completed a battery of four auditory and visual selective attention tests based upon the Attention Network framework: the visual and auditory Attention Network Tests (vANT, aANT), the Test of Everyday Attention (TEA), and the Test of Attention in Listening (TAiL). These provided independent measures for auditory and visual alerting, orienting, and conflict resolution networks. The measures were subjected to an exploratory factor analysis to assess underlying attention constructs. The analysis yielded a four-component solution. The first component comprised of a range of measures from the TEA and was labeled "general attention." The third component was labeled "auditory attention," as it only contained measures from the TAiL using pitch as the attended stimulus feature. The second and fourth components were labeled as "spatial orienting" and "spatial conflict," respectively-they were comprised of orienting and conflict resolution measures from the vANT, aANT, and TAiL attend-location task-all tasks based upon spatial judgments (e.g., the direction of a target arrow or sound location). These results do not support our a-priori hypothesis that attention networks are either modality specific or supramodal. Auditory attention separated into selectively attending to spatial and non-spatial features, with the auditory spatial attention loading onto the same factor as visual spatial attention, suggesting spatial attention is supramodal. However, since our study did not include a non-spatial measure of visual attention, further research will be required to ascertain whether non-spatial attention is modality-specific.

  12. Attentional modulation of auditory steady-state responses.

    Science.gov (United States)

    Mahajan, Yatin; Davis, Chris; Kim, Jeesun

    2014-01-01

    Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR). The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence). The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex.

  13. Modality-specificity of selective attention networks

    Directory of Open Access Journals (Sweden)

    Hannah Jamieson Stewart

    2015-11-01

    Full Text Available Objective: To establish the modality specificity and generality of selective attention networks. Method: Forty-eight young adults completed a battery of four auditory and visual selective attention tests based upon the Attention Network framework: the visual and auditory Attention Network Tests (vANT, aANT, the Test of Everyday Attention (TEA, and the Test of Attention in Listening (TAiL. These provided independent measures for auditory and visual alerting, orienting, and conflict resolution networks. The measures were subjected to an exploratory factor analysis to assess underlying attention constructs. Results: The analysis yielded a four-component solution. The first component comprised of a range of measures from the TEA and was labeled ‘general attention’. The third component was labeled ‘auditory attention’, as it only contained measures from the TAiL using pitch as the attended stimulus feature. The second and fourth components were labeled as ‘spatial orienting’ and ‘spatial conflict’, respectively – they were comprised of orienting and conflict resolution measures from the vANT, aANT and TAiL attend-location task – all tasks based upon spatial judgments (e.g., the direction of a target arrow or sound location. Conclusions: These results do not support our a-priori hypothesis that attention networks are either modality specific or supramodal. Auditory attention separated into selectively attending to spatial and non-spatial features, with the auditory spatial attention loading onto the same factor as visual spatial attention, suggesting spatial attention is supramodal. However, since our study did not include a non-spatial measure of visual attention, further research will be required to ascertain whether non-spatial attention is modality-specific.

  14. Attentional Modulation of Auditory Steady-State Responses

    Science.gov (United States)

    Mahajan, Yatin; Davis, Chris; Kim, Jeesun

    2014-01-01

    Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR). The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence). The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex. PMID:25334021

  15. Attentional modulation of auditory steady-state responses.

    Directory of Open Access Journals (Sweden)

    Yatin Mahajan

    Full Text Available Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR. The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence. The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex.

  16. Stroke caused auditory attention deficits in children

    Directory of Open Access Journals (Sweden)

    Karla Maria Ibraim da Freiria Elias

    2013-01-01

    Full Text Available OBJECTIVE: To verify the auditory selective attention in children with stroke. METHODS: Dichotic tests of binaural separation (non-verbal and consonant-vowel and binaural integration - digits and Staggered Spondaic Words Test (SSW - were applied in 13 children (7 boys, from 7 to 16 years, with unilateral stroke confirmed by neurological examination and neuroimaging. RESULTS: The attention performance showed significant differences in comparison to the control group in both kinds of tests. In the non-verbal test, identifications the ear opposite the lesion in the free recall stage was diminished and, in the following stages, a difficulty in directing attention was detected. In the consonant- vowel test, a modification in perceptual asymmetry and difficulty in focusing in the attended stages was found. In the digits and SSW tests, ipsilateral, contralateral and bilateral deficits were detected, depending on the characteristics of the lesions and demand of the task. CONCLUSION: Stroke caused auditory attention deficits when dealing with simultaneous sources of auditory information.

  17. Atypical auditory refractory periods in children from lower socio-economic status backgrounds: ERP evidence for a role of selective attention.

    Science.gov (United States)

    Stevens, Courtney; Paulsen, David; Yasen, Alia; Neville, Helen

    2015-02-01

    Previous neuroimaging studies indicate that lower socio-economic status (SES) is associated with reduced effects of selective attention on auditory processing. Here, we investigated whether lower SES is also associated with differences in a stimulus-driven aspect of auditory processing: the neural refractory period, or reduced amplitude response at faster rates of stimulus presentation. Thirty-two children aged 3 to 8 years participated, and were divided into two SES groups based on maternal education. Event-related brain potentials were recorded to probe stimuli presented at interstimulus intervals (ISIs) of 200, 500, or 1000 ms. These probes were superimposed on story narratives when attended and ignored, permitting a simultaneous experimental manipulation of selective attention. Results indicated that group differences in refractory periods differed as a function of attention condition. Children from higher SES backgrounds showed full neural recovery by 500 ms for attended stimuli, but required at least 1000 ms for unattended stimuli. In contrast, children from lower SES backgrounds showed similar refractory effects to attended and unattended stimuli, with full neural recovery by 500 ms. Thus, in higher SES children only, one functional consequence of selective attention is attenuation of the response to unattended stimuli, particularly at rapid ISIs, altering basic properties of the auditory refractory period. Together, these data indicate that differences in selective attention impact basic aspects of auditory processing in children from lower SES backgrounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Modelling auditory attention: Insights from the Theory of Visual Attention (TVA)

    DEFF Research Database (Denmark)

    Roberts, K. L.; Andersen, Tobias; Kyllingsbæk, Søren

    modelled using a log-logistic function than an exponential function. A more challenging difference is that in the partial report task, there is more target-distractor confusion for auditory than visual stimuli. This failure of object-formation (prior to attentional object-selection) is not yet effectively......We report initial progress towards creating an auditory analogue of a mathematical model of visual attention: the ‘Theory of Visual Attention’ (TVA; Bundesen, 1990). TVA is one of the best established models of visual attention. It assumes that visual stimuli are initially processed in parallel......, and that there is a ‘race’ for selection and representation in visual short term memory (VSTM). In the basic TVA task, participants view a brief display of letters and are asked to report either all of the letters (whole report) or a subset of the letters (e.g., the red letters; partial report). Fitting the model...

  19. Negative emotion provides cues for orienting auditory spatial attention

    Directory of Open Access Journals (Sweden)

    Erkin eAsutay

    2015-05-01

    Full Text Available The auditory stimuli provide information about the objects and events around us. They can also carry biologically significant emotional information (such as unseen dangers and conspecific vocalizations, which provides cues for allocation of attention and mental resources. Here, we investigated whether task-irrelevant auditory emotional information can provide cues for orientation of auditory spatial attention. We employed a covert spatial orienting task: the dot-probe task. In each trial, two task irrelevant auditory cues were simultaneously presented at two separate locations (left-right or front-back. Environmental sounds were selected to form emotional vs. neutral, emotional vs. emotional, and neutral vs. neutral cue pairs. The participants’ task was to detect the location of an acoustic target that was presented immediately after the task-irrelevant auditory cues. The target was presented at the same location as one of the auditory cues. The results indicated that participants were significantly faster to locate the target when it replaced the negative cue compared to when it replaced the neutral cue. The positive cues did not produce a clear attentional bias. Further, same valence pairs (emotional-emotional or neutral-neutral did not modulate reaction times due to a lack of spatial attention capture by one cue in the pair. Taken together, the results indicate that negative affect can provide cues for the orientation of spatial attention in the auditory domain.

  20. Brain activity during divided and selective attention to auditory and visual sentence comprehension tasks.

    Science.gov (United States)

    Moisala, Mona; Salmela, Viljami; Salo, Emma; Carlson, Synnöve; Vuontela, Virve; Salonen, Oili; Alho, Kimmo

    2015-01-01

    Using functional magnetic resonance imaging (fMRI), we measured brain activity of human participants while they performed a sentence congruence judgment task in either the visual or auditory modality separately, or in both modalities simultaneously. Significant performance decrements were observed when attention was divided between the two modalities compared with when one modality was selectively attended. Compared with selective attention (i.e., single tasking), divided attention (i.e., dual-tasking) did not recruit additional cortical regions, but resulted in increased activity in medial and lateral frontal regions which were also activated by the component tasks when performed separately. Areas involved in semantic language processing were revealed predominantly in the left lateral prefrontal cortex by contrasting incongruent with congruent sentences. These areas also showed significant activity increases during divided attention in relation to selective attention. In the sensory cortices, no crossmodal inhibition was observed during divided attention when compared with selective attention to one modality. Our results suggest that the observed performance decrements during dual-tasking are due to interference of the two tasks because they utilize the same part of the cortex. Moreover, semantic dual-tasking did not appear to recruit additional brain areas in comparison with single tasking, and no crossmodal inhibition was observed during intermodal divided attention.

  1. Brain activity during divided and selective attention to auditory and visual sentence comprehension tasks

    Science.gov (United States)

    Moisala, Mona; Salmela, Viljami; Salo, Emma; Carlson, Synnöve; Vuontela, Virve; Salonen, Oili; Alho, Kimmo

    2015-01-01

    Using functional magnetic resonance imaging (fMRI), we measured brain activity of human participants while they performed a sentence congruence judgment task in either the visual or auditory modality separately, or in both modalities simultaneously. Significant performance decrements were observed when attention was divided between the two modalities compared with when one modality was selectively attended. Compared with selective attention (i.e., single tasking), divided attention (i.e., dual-tasking) did not recruit additional cortical regions, but resulted in increased activity in medial and lateral frontal regions which were also activated by the component tasks when performed separately. Areas involved in semantic language processing were revealed predominantly in the left lateral prefrontal cortex by contrasting incongruent with congruent sentences. These areas also showed significant activity increases during divided attention in relation to selective attention. In the sensory cortices, no crossmodal inhibition was observed during divided attention when compared with selective attention to one modality. Our results suggest that the observed performance decrements during dual-tasking are due to interference of the two tasks because they utilize the same part of the cortex. Moreover, semantic dual-tasking did not appear to recruit additional brain areas in comparison with single tasking, and no crossmodal inhibition was observed during intermodal divided attention. PMID:25745395

  2. The Influence of Selective and Divided Attention on Audiovisual Integration in Children.

    Science.gov (United States)

    Yang, Weiping; Ren, Yanna; Yang, Dan Ou; Yuan, Xue; Wu, Jinglong

    2016-01-24

    This article aims to investigate whether there is a difference in audiovisual integration in school-aged children (aged 6 to 13 years; mean age = 9.9 years) between the selective attention condition and divided attention condition. We designed a visual and/or auditory detection task that included three blocks (divided attention, visual-selective attention, and auditory-selective attention). The results showed that the response to bimodal audiovisual stimuli was faster than to unimodal auditory or visual stimuli under both divided attention and auditory-selective attention conditions. However, in the visual-selective attention condition, no significant difference was found between the unimodal visual and bimodal audiovisual stimuli in response speed. Moreover, audiovisual behavioral facilitation effects were compared between divided attention and selective attention (auditory or visual attention). In doing so, we found that audiovisual behavioral facilitation was significantly difference between divided attention and selective attention. The results indicated that audiovisual integration was stronger in the divided attention condition than that in the selective attention condition in children. Our findings objectively support the notion that attention can modulate audiovisual integration in school-aged children. Our study might offer a new perspective for identifying children with conditions that are associated with sustained attention deficit, such as attention-deficit hyperactivity disorder. © The Author(s) 2016.

  3. Attention-driven auditory cortex short-term plasticity helps segregate relevant sounds from noise.

    Science.gov (United States)

    Ahveninen, Jyrki; Hämäläinen, Matti; Jääskeläinen, Iiro P; Ahlfors, Seppo P; Huang, Samantha; Lin, Fa-Hsuan; Raij, Tommi; Sams, Mikko; Vasios, Christos E; Belliveau, John W

    2011-03-08

    How can we concentrate on relevant sounds in noisy environments? A "gain model" suggests that auditory attention simply amplifies relevant and suppresses irrelevant afferent inputs. However, it is unclear whether this suffices when attended and ignored features overlap to stimulate the same neuronal receptive fields. A "tuning model" suggests that, in addition to gain, attention modulates feature selectivity of auditory neurons. We recorded magnetoencephalography, EEG, and functional MRI (fMRI) while subjects attended to tones delivered to one ear and ignored opposite-ear inputs. The attended ear was switched every 30 s to quantify how quickly the effects evolve. To produce overlapping inputs, the tones were presented alone vs. during white-noise masking notch-filtered ±1/6 octaves around the tone center frequencies. Amplitude modulation (39 vs. 41 Hz in opposite ears) was applied for "frequency tagging" of attention effects on maskers. Noise masking reduced early (50-150 ms; N1) auditory responses to unattended tones. In support of the tuning model, selective attention canceled out this attenuating effect but did not modulate the gain of 50-150 ms activity to nonmasked tones or steady-state responses to the maskers themselves. These tuning effects originated at nonprimary auditory cortices, purportedly occupied by neurons that, without attention, have wider frequency tuning than ±1/6 octaves. The attentional tuning evolved rapidly, during the first few seconds after attention switching, and correlated with behavioral discrimination performance. In conclusion, a simple gain model alone cannot explain auditory selective attention. In nonprimary auditory cortices, attention-driven short-term plasticity retunes neurons to segregate relevant sounds from noise.

  4. Frequency-specific attentional modulation in human primary auditory cortex and midbrain

    NARCIS (Netherlands)

    Riecke, Lars; Peters, Judith C; Valente, Giancarlo; Poser, Benedikt A; Kemper, Valentin G; Formisano, Elia; Sorger, Bettina

    2018-01-01

    Paying selective attention to an audio frequency selectively enhances activity within primary auditory cortex (PAC) at the tonotopic site (frequency channel) representing that frequency. Animal PAC neurons achieve this 'frequency-specific attentional spotlight' by adapting their frequency tuning,

  5. Selective attention in normal and impaired hearing.

    Science.gov (United States)

    Shinn-Cunningham, Barbara G; Best, Virginia

    2008-12-01

    A common complaint among listeners with hearing loss (HL) is that they have difficulty communicating in common social settings. This article reviews how normal-hearing listeners cope in such settings, especially how they focus attention on a source of interest. Results of experiments with normal-hearing listeners suggest that the ability to selectively attend depends on the ability to analyze the acoustic scene and to form perceptual auditory objects properly. Unfortunately, sound features important for auditory object formation may not be robustly encoded in the auditory periphery of HL listeners. In turn, impaired auditory object formation may interfere with the ability to filter out competing sound sources. Peripheral degradations are also likely to reduce the salience of higher-order auditory cues such as location, pitch, and timbre, which enable normal-hearing listeners to select a desired sound source out of a sound mixture. Degraded peripheral processing is also likely to increase the time required to form auditory objects and focus selective attention so that listeners with HL lose the ability to switch attention rapidly (a skill that is particularly important when trying to participate in a lively conversation). Finally, peripheral deficits may interfere with strategies that normal-hearing listeners employ in complex acoustic settings, including the use of memory to fill in bits of the conversation that are missed. Thus, peripheral hearing deficits are likely to cause a number of interrelated problems that challenge the ability of HL listeners to communicate in social settings requiring selective attention.

  6. Brain activity associated with selective attention, divided attention and distraction.

    Science.gov (United States)

    Salo, Emma; Salmela, Viljami; Salmi, Juha; Numminen, Jussi; Alho, Kimmo

    2017-06-01

    Top-down controlled selective or divided attention to sounds and visual objects, as well as bottom-up triggered attention to auditory and visual distractors, has been widely investigated. However, no study has systematically compared brain activations related to all these types of attention. To this end, we used functional magnetic resonance imaging (fMRI) to measure brain activity in participants performing a tone pitch or a foveal grating orientation discrimination task, or both, distracted by novel sounds not sharing frequencies with the tones or by extrafoveal visual textures. To force focusing of attention to tones or gratings, or both, task difficulty was kept constantly high with an adaptive staircase method. A whole brain analysis of variance (ANOVA) revealed fronto-parietal attention networks for both selective auditory and visual attention. A subsequent conjunction analysis indicated partial overlaps of these networks. However, like some previous studies, the present results also suggest segregation of prefrontal areas involved in the control of auditory and visual attention. The ANOVA also suggested, and another conjunction analysis confirmed, an additional activity enhancement in the left middle frontal gyrus related to divided attention supporting the role of this area in top-down integration of dual task performance. Distractors expectedly disrupted task performance. However, contrary to our expectations, activations specifically related to the distractors were found only in the auditory and visual cortices. This suggests gating of the distractors from further processing perhaps due to strictly focused attention in the current demanding discrimination tasks. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Examining age-related differences in auditory attention control using a task-switching procedure.

    Science.gov (United States)

    Lawo, Vera; Koch, Iring

    2014-03-01

    Using a novel task-switching variant of dichotic selective listening, we examined age-related differences in the ability to intentionally switch auditory attention between 2 speakers defined by their sex. In our task, young (M age = 23.2 years) and older adults (M age = 66.6 years) performed a numerical size categorization on spoken number words. The task-relevant speaker was indicated by a cue prior to auditory stimulus onset. The cuing interval was either short or long and varied randomly trial by trial. We found clear performance costs with instructed attention switches. These auditory attention switch costs decreased with prolonged cue-stimulus interval. Older adults were generally much slower (but not more error prone) than young adults, but switching-related effects did not differ across age groups. These data suggest that the ability to intentionally switch auditory attention in a selective listening task is not compromised in healthy aging. We discuss the role of modality-specific factors in age-related differences.

  8. Contributions of Sensory Coding and Attentional Control to Individual Differences in Performance in Spatial Auditory Selective Attention Tasks.

    Science.gov (United States)

    Dai, Lengshi; Shinn-Cunningham, Barbara G

    2016-01-01

    Listeners with normal hearing thresholds (NHTs) differ in their ability to steer attention to whatever sound source is important. This ability depends on top-down executive control, which modulates the sensory representation of sound in the cortex. Yet, this sensory representation also depends on the coding fidelity of the peripheral auditory system. Both of these factors may thus contribute to the individual differences in performance. We designed a selective auditory attention paradigm in which we could simultaneously measure envelope following responses (EFRs, reflecting peripheral coding), onset event-related potentials (ERPs) from the scalp (reflecting cortical responses to sound) and behavioral scores. We performed two experiments that varied stimulus conditions to alter the degree to which performance might be limited due to fine stimulus details vs. due to control of attentional focus. Consistent with past work, in both experiments we find that attention strongly modulates cortical ERPs. Importantly, in Experiment I, where coding fidelity limits the task, individual behavioral performance correlates with subcortical coding strength (derived by computing how the EFR is degraded for fully masked tones compared to partially masked tones); however, in this experiment, the effects of attention on cortical ERPs were unrelated to individual subject performance. In contrast, in Experiment II, where sensory cues for segregation are robust (and thus less of a limiting factor on task performance), inter-subject behavioral differences correlate with subcortical coding strength. In addition, after factoring out the influence of subcortical coding strength, behavioral differences are also correlated with the strength of attentional modulation of ERPs. These results support the hypothesis that behavioral abilities amongst listeners with NHTs can arise due to both subcortical coding differences and differences in attentional control, depending on stimulus characteristics

  9. Contributions of sensory coding and attentional control to individual differences in performance in spatial auditory selective attention tasks

    Directory of Open Access Journals (Sweden)

    Lengshi Dai

    2016-10-01

    Full Text Available Listeners with normal hearing thresholds differ in their ability to steer attention to whatever sound source is important. This ability depends on top-down executive control, which modulates the sensory representation of sound in cortex. Yet, this sensory representation also depends on the coding fidelity of the peripheral auditory system. Both of these factors may thus contribute to the individual differences in performance. We designed a selective auditory attention paradigm in which we could simultaneously measure envelope following responses (EFRs, reflecting peripheral coding, onset event-related potentials from the scalp (ERPs, reflecting cortical responses to sound, and behavioral scores. We performed two experiments that varied stimulus conditions to alter the degree to which performance might be limited due to fine stimulus details vs. due to control of attentional focus. Consistent with past work, in both experiments we find that attention strongly modulates cortical ERPs. Importantly, in Experiment I, where coding fidelity limits the task, individual behavioral performance correlates with subcortical coding strength (derived by computing how the EFR is degraded for fully masked tones compared to partially masked tones; however, in this experiment, the effects of attention on cortical ERPs were unrelated to individual subject performance. In contrast, in Experiment II, where sensory cues for segregation are robust (and thus less of a limiting factor on task performance, inter-subject behavioral differences correlate with subcortical coding strength. In addition, after factoring out the influence of subcortical coding strength, behavioral differences are also correlated with the strength of attentional modulation of ERPs. These results support the hypothesis that behavioral abilities amongst listeners with normal hearing thresholds can arise due to both subcortical coding differences and differences in attentional control, depending on

  10. The effects of divided attention on auditory priming.

    Science.gov (United States)

    Mulligan, Neil W; Duke, Marquinn; Cooper, Angela W

    2007-09-01

    Traditional theorizing stresses the importance of attentional state during encoding for later memory, based primarily on research with explicit memory. Recent research has begun to investigate the role of attention in implicit memory but has focused almost exclusively on priming in the visual modality. The present experiments examined the effect of divided attention on auditory implicit memory, using auditory perceptual identification, word-stem completion and word-fragment completion. Participants heard study words under full attention conditions or while simultaneously carrying out a distractor task (the divided attention condition). In Experiment 1, a distractor task with low response frequency failed to disrupt later auditory priming (but diminished explicit memory as assessed with auditory recognition). In Experiment 2, a distractor task with greater response frequency disrupted priming on all three of the auditory priming tasks as well as the explicit test. These results imply that although auditory priming is less reliant on attention than explicit memory, it is still greatly affected by at least some divided-attention manipulations. These results are consistent with research using visual priming tasks and have relevance for hypotheses regarding attention and auditory priming.

  11. Sensorineural hearing loss degrades behavioral and physiological measures of human spatial selective auditory attention

    Science.gov (United States)

    Dai, Lengshi; Best, Virginia; Shinn-Cunningham, Barbara G.

    2018-01-01

    Listeners with sensorineural hearing loss often have trouble understanding speech amid other voices. While poor spatial hearing is often implicated, direct evidence is weak; moreover, studies suggest that reduced audibility and degraded spectrotemporal coding may explain such problems. We hypothesized that poor spatial acuity leads to difficulty deploying selective attention, which normally filters out distracting sounds. In listeners with normal hearing, selective attention causes changes in the neural responses evoked by competing sounds, which can be used to quantify the effectiveness of attentional control. Here, we used behavior and electroencephalography to explore whether control of selective auditory attention is degraded in hearing-impaired (HI) listeners. Normal-hearing (NH) and HI listeners identified a simple melody presented simultaneously with two competing melodies, each simulated from different lateral angles. We quantified performance and attentional modulation of cortical responses evoked by these competing streams. Compared with NH listeners, HI listeners had poorer sensitivity to spatial cues, performed more poorly on the selective attention task, and showed less robust attentional modulation of cortical responses. Moreover, across NH and HI individuals, these measures were correlated. While both groups showed cortical suppression of distracting streams, this modulation was weaker in HI listeners, especially when attending to a target at midline, surrounded by competing streams. These findings suggest that hearing loss interferes with the ability to filter out sound sources based on location, contributing to communication difficulties in social situations. These findings also have implications for technologies aiming to use neural signals to guide hearing aid processing. PMID:29555752

  12. Frequency-Selective Attention in Auditory Scenes Recruits Frequency Representations Throughout Human Superior Temporal Cortex.

    Science.gov (United States)

    Riecke, Lars; Peters, Judith C; Valente, Giancarlo; Kemper, Valentin G; Formisano, Elia; Sorger, Bettina

    2017-05-01

    A sound of interest may be tracked amid other salient sounds by focusing attention on its characteristic features including its frequency. Functional magnetic resonance imaging findings have indicated that frequency representations in human primary auditory cortex (AC) contribute to this feat. However, attentional modulations were examined at relatively low spatial and spectral resolutions, and frequency-selective contributions outside the primary AC could not be established. To address these issues, we compared blood oxygenation level-dependent (BOLD) responses in the superior temporal cortex of human listeners while they identified single frequencies versus listened selectively for various frequencies within a multifrequency scene. Using best-frequency mapping, we observed that the detailed spatial layout of attention-induced BOLD response enhancements in primary AC follows the tonotopy of stimulus-driven frequency representations-analogous to the "spotlight" of attention enhancing visuospatial representations in retinotopic visual cortex. Moreover, using an algorithm trained to discriminate stimulus-driven frequency representations, we could successfully decode the focus of frequency-selective attention from listeners' BOLD response patterns in nonprimary AC. Our results indicate that the human brain facilitates selective listening to a frequency of interest in a scene by reinforcing the fine-grained activity pattern throughout the entire superior temporal cortex that would be evoked if that frequency was present alone. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Extensive Tonotopic Mapping across Auditory Cortex Is Recapitulated by Spectrally Directed Attention and Systematically Related to Cortical Myeloarchitecture.

    Science.gov (United States)

    Dick, Frederic K; Lehet, Matt I; Callaghan, Martina F; Keller, Tim A; Sereno, Martin I; Holt, Lori L

    2017-12-13

    Auditory selective attention is vital in natural soundscapes. But it is unclear how attentional focus on the primary dimension of auditory representation-acoustic frequency-might modulate basic auditory functional topography during active listening. In contrast to visual selective attention, which is supported by motor-mediated optimization of input across saccades and pupil dilation, the primate auditory system has fewer means of differentially sampling the world. This makes spectrally-directed endogenous attention a particularly crucial aspect of auditory attention. Using a novel functional paradigm combined with quantitative MRI, we establish in male and female listeners that human frequency-band-selective attention drives activation in both myeloarchitectonically estimated auditory core, and across the majority of tonotopically mapped nonprimary auditory cortex. The attentionally driven best-frequency maps show strong concordance with sensory-driven maps in the same subjects across much of the temporal plane, with poor concordance in areas outside traditional auditory cortex. There is significantly greater activation across most of auditory cortex when best frequency is attended, versus ignored; the same regions do not show this enhancement when attending to the least-preferred frequency band. Finally, the results demonstrate that there is spatial correspondence between the degree of myelination and the strength of the tonotopic signal across a number of regions in auditory cortex. Strong frequency preferences across tonotopically mapped auditory cortex spatially correlate with R 1 -estimated myeloarchitecture, indicating shared functional and anatomical organization that may underlie intrinsic auditory regionalization. SIGNIFICANCE STATEMENT Perception is an active process, especially sensitive to attentional state. Listeners direct auditory attention to track a violin's melody within an ensemble performance, or to follow a voice in a crowded cafe. Although

  14. Gender-specific effects of prenatal and adolescent exposure to tobacco smoke on auditory and visual attention.

    Science.gov (United States)

    Jacobsen, Leslie K; Slotkin, Theodore A; Mencl, W Einar; Frost, Stephen J; Pugh, Kenneth R

    2007-12-01

    Prenatal exposure to active maternal tobacco smoking elevates risk of cognitive and auditory processing deficits, and of smoking in offspring. Recent preclinical work has demonstrated a sex-specific pattern of reduction in cortical cholinergic markers following prenatal, adolescent, or combined prenatal and adolescent exposure to nicotine, the primary psychoactive component of tobacco smoke. Given the importance of cortical cholinergic neurotransmission to attentional function, we examined auditory and visual selective and divided attention in 181 male and female adolescent smokers and nonsmokers with and without prenatal exposure to maternal smoking. Groups did not differ in age, educational attainment, symptoms of inattention, or years of parent education. A subset of 63 subjects also underwent functional magnetic resonance imaging while performing an auditory and visual selective and divided attention task. Among females, exposure to tobacco smoke during prenatal or adolescent development was associated with reductions in auditory and visual attention performance accuracy that were greatest in female smokers with prenatal exposure (combined exposure). Among males, combined exposure was associated with marked deficits in auditory attention, suggesting greater vulnerability of neurocircuitry supporting auditory attention to insult stemming from developmental exposure to tobacco smoke in males. Activation of brain regions that support auditory attention was greater in adolescents with prenatal or adolescent exposure to tobacco smoke relative to adolescents with neither prenatal nor adolescent exposure to tobacco smoke. These findings extend earlier preclinical work and suggest that, in humans, prenatal and adolescent exposure to nicotine exerts gender-specific deleterious effects on auditory and visual attention, with concomitant alterations in the efficiency of neurocircuitry supporting auditory attention.

  15. Adapting the Theory of Visual Attention (TVA) to model auditory attention

    DEFF Research Database (Denmark)

    Roberts, Katherine L.; Andersen, Tobias; Kyllingsbæk, Søren

    Mathematical and computational models have provided useful insights into normal and impaired visual attention, but less progress has been made in modelling auditory attention. We are developing a Theory of Auditory Attention (TAA), based on an influential visual model, the Theory of Visual...... Attention (TVA). We report that TVA provides a good fit to auditory data when the stimuli are closely matched to those used in visual studies. In the basic visual TVA task, participants view a brief display of letters and are asked to report either all of the letters (whole report) or a subset of letters (e...... the auditory data, producing good estimates of the rate at which information is encoded (C), the minimum exposure duration required for processing to begin (t0), and the relative attentional weight to targets versus distractors (α). Future work will address the issue of target-distractor confusion, and extend...

  16. Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention.

    Science.gov (United States)

    Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei

    2016-01-13

    An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features.

  17. Effect of handedness on auditory attentional performance in ADHD students

    Directory of Open Access Journals (Sweden)

    Schmidt SL

    2017-12-01

    Full Text Available Sergio L Schmidt,1,2 Ana Lucia Novais Carvaho,3 Eunice N Simoes2 1Department of Neurophysiology, State University of Rio de Janeiro, Rio de Janeiro, 2Neurology Department, Federal University of the State of Rio de Janeiro, Rio de Janeiro, 3Department of Psychology, Fluminense Federal University, Niteroi, Brazil Abstract: The relationship between handedness and attentional performance is poorly understood. Continuous performance tests (CPTs using visual stimuli are commonly used to assess subjects suffering from attention deficit hyperactivity disorder (ADHD. However, auditory CPTs are considered more useful than visual ones to evaluate classroom attentional problems. A previous study reported that there was a significant effect of handedness on students’ performance on a visual CPT. Here, we examined whether handedness would also affect CPT performance using only auditory stimuli. From an initial sample of 337 students, 11 matched pairs were selected. Repeated ANOVAs showed a significant effect of handedness on attentional performance that was exhibited even in the control group. Left-handers made more commission errors than right-handers. The results were interpreted considering that the association between ADHD and handedness reflects that consistent left-handers are less lateralized and have decreased interhemispheric connections. Auditory attentional data suggest that left-handers have problems in the impulsive/hyperactivity domain. In ADHD, clinical therapeutics and rehabilitation must take handedness into account because consistent sinistrals are more impulsive than dextrals. Keywords: attention, ADHD, consistent left-handers, auditory attention, continuous performance test

  18. Global dynamics of selective attention and its lapses in primary auditory cortex.

    Science.gov (United States)

    Lakatos, Peter; Barczak, Annamaria; Neymotin, Samuel A; McGinnis, Tammy; Ross, Deborah; Javitt, Daniel C; O'Connell, Monica Noelle

    2016-12-01

    Previous research demonstrated that while selectively attending to relevant aspects of the external world, the brain extracts pertinent information by aligning its neuronal oscillations to key time points of stimuli or their sampling by sensory organs. This alignment mechanism is termed oscillatory entrainment. We investigated the global, long-timescale dynamics of this mechanism in the primary auditory cortex of nonhuman primates, and hypothesized that lapses of entrainment would correspond to lapses of attention. By examining electrophysiological and behavioral measures, we observed that besides the lack of entrainment by external stimuli, attentional lapses were also characterized by high-amplitude alpha oscillations, with alpha frequency structuring of neuronal ensemble and single-unit operations. Entrainment and alpha-oscillation-dominated periods were strongly anticorrelated and fluctuated rhythmically at an ultra-slow rate. Our results indicate that these two distinct brain states represent externally versus internally oriented computational resources engaged by large-scale task-positive and task-negative functional networks.

  19. Selective Impairment of Auditory Selective Attention under Concurrent Cognitive Load

    Science.gov (United States)

    Dittrich, Kerstin; Stahl, Christoph

    2012-01-01

    Load theory predicts that concurrent cognitive load impairs selective attention. For visual stimuli, it has been shown that this impairment can be selective: Distraction was specifically increased when the stimulus material used in the cognitive load task matches that of the selective attention task. Here, we report four experiments that…

  20. The Relationship between Types of Attention and Auditory Processing Skills: Reconsidering Auditory Processing Disorder Diagnosis

    Science.gov (United States)

    Stavrinos, Georgios; Iliadou, Vassiliki-Maria; Edwards, Lindsey; Sirimanna, Tony; Bamiou, Doris-Eva

    2018-01-01

    Measures of attention have been found to correlate with specific auditory processing tests in samples of children suspected of Auditory Processing Disorder (APD), but these relationships have not been adequately investigated. Despite evidence linking auditory attention and deficits/symptoms of APD, measures of attention are not routinely used in APD diagnostic protocols. The aim of the study was to examine the relationship between auditory and visual attention tests and auditory processing tests in children with APD and to assess whether a proposed diagnostic protocol for APD, including measures of attention, could provide useful information for APD management. A pilot study including 27 children, aged 7–11 years, referred for APD assessment was conducted. The validated test of everyday attention for children, with visual and auditory attention tasks, the listening in spatialized noise sentences test, the children's communication checklist questionnaire and tests from a standard APD diagnostic test battery were administered. Pearson's partial correlation analysis examining the relationship between these tests and Cochrane's Q test analysis comparing proportions of diagnosis under each proposed battery were conducted. Divided auditory and divided auditory-visual attention strongly correlated with the dichotic digits test, r = 0.68, p attention battery identified as having Attention Deficits (ADs). The proposed APD battery excluding AD cases did not have a significantly different diagnosis proportion than the standard APD battery. Finally, the newly proposed diagnostic battery, identifying an inattentive subtype of APD, identified five children who would have otherwise been considered not having ADs. The findings show that a subgroup of children with APD demonstrates underlying sustained and divided attention deficits. Attention deficits in children with APD appear to be centred around the auditory modality but further examination of types of attention in both

  1. Stress improves selective attention towards emotionally neutral left ear stimuli.

    Science.gov (United States)

    Hoskin, Robert; Hunter, M D; Woodruff, P W R

    2014-09-01

    Research concerning the impact of psychological stress on visual selective attention has produced mixed results. The current paper describes two experiments which utilise a novel auditory oddball paradigm to test the impact of psychological stress on auditory selective attention. Participants had to report the location of emotionally-neutral auditory stimuli, while ignoring task-irrelevant changes in their content. The results of the first experiment, in which speech stimuli were presented, suggested that stress improves the ability to selectively attend to left, but not right ear stimuli. When this experiment was repeated using tonal stimuli the same result was evident, but only for female participants. Females were also found to experience greater levels of distraction in general across the two experiments. These findings support the goal-shielding theory which suggests that stress improves selective attention by reducing the attentional resources available to process task-irrelevant information. The study also demonstrates, for the first time, that this goal-shielding effect extends to auditory perception. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Switching auditory attention using spatial and non-spatial features recruits different cortical networks.

    Science.gov (United States)

    Larson, Eric; Lee, Adrian K C

    2014-01-01

    Switching attention between different stimuli of interest based on particular task demands is important in many everyday settings. In audition in particular, switching attention between different speakers of interest that are talking concurrently is often necessary for effective communication. Recently, it has been shown by multiple studies that auditory selective attention suppresses the representation of unwanted streams in auditory cortical areas in favor of the target stream of interest. However, the neural processing that guides this selective attention process is not well understood. Here we investigated the cortical mechanisms involved in switching attention based on two different types of auditory features. By combining magneto- and electro-encephalography (M-EEG) with an anatomical MRI constraint, we examined the cortical dynamics involved in switching auditory attention based on either spatial or pitch features. We designed a paradigm where listeners were cued in the beginning of each trial to switch or maintain attention halfway through the presentation of concurrent target and masker streams. By allowing listeners time to switch during a gap in the continuous target and masker stimuli, we were able to isolate the mechanisms involved in endogenous, top-down attention switching. Our results show a double dissociation between the involvement of right temporoparietal junction (RTPJ) and the left inferior parietal supramarginal part (LIPSP) in tasks requiring listeners to switch attention based on space and pitch features, respectively, suggesting that switching attention based on these features involves at least partially separate processes or behavioral strategies. © 2013 Elsevier Inc. All rights reserved.

  3. Impaired Facilitatory Mechanisms of Auditory Attention After Damage of the Lateral Prefrontal Cortex

    OpenAIRE

    Bidet-Caulet, Aurélie; Buchanan, Kelly G.; Viswanath, Humsini; Black, Jessica; Scabini, Donatella; Bonnet-Brilhault, Frédérique; Knight, Robert T.

    2014-01-01

    There is growing evidence that auditory selective attention operates via distinct facilitatory and inhibitory mechanisms enabling selective enhancement and suppression of sound processing, respectively. The lateral prefrontal cortex (LPFC) plays a crucial role in the top-down control of selective attention. However, whether the LPFC controls facilitatory, inhibitory, or both attentional mechanisms is unclear. Facilitatory and inhibitory mechanisms were assessed, in patients with LPFC damage, ...

  4. Comparative Evaluation of Auditory Attention in 7 to 9 Year Old Learning Disabled Students

    Directory of Open Access Journals (Sweden)

    Fereshteh Amiriani

    2011-06-01

    Full Text Available Background and Aim: Learning disability is a term referes to a group of disorders manifesting listening, reading, writing, or mathematical problems. These children mostly have attention difficulties in classroom that leads to many learning problems. In this study we aimed to compare the auditory attention of 7 to 9 year old children with learning disability to non- learning disability age matched normal group.Methods: Twenty seven male 7 to 9 year old students with learning disability and 27 age and sex matched normal conrols were selected with unprobable simple sampling. 27 In order to evaluate auditory selective and divided attention, Farsi versions of speech in noise and dichotic digit test were used respectively.Results: Comparison of mean scores of Farsi versions of speech in noise in both ears of 7 and 8 year-old students in two groups indicated no significant difference (p>0.05 Mean scores of 9 year old controls was significant more than those of the cases only in the right ear (p=0.033. However, no significant difference was observed between mean scores of dichotic digit test assessing the right ear of 9 year-old learning disability and non learning disability students (p>0.05. Moreover, mean scores of 7 and 8 year- old students with learning disability was less than those of their normal peers in the left ear (p>0.05.Conclusion: Selective auditory attention is not affected in the optimal signal to noise ratio, while divided attention seems to be affected by maturity delay of auditory system or central auditory system disorders.

  5. Auditory measures of selective and divided attention in young and older adults using single-talker competition.

    Science.gov (United States)

    Humes, Larry E; Lee, Jae Hee; Coughlin, Maureen P

    2006-11-01

    In this study, two experiments were conducted on auditory selective and divided attention in which the listening task involved the identification of words in sentences spoken by one talker while a second talker produced a very similar competing sentence. Ten young normal-hearing (YNH) and 13 elderly hearing-impaired (EHI) listeners participated in each experiment. The type of attention cue used was the main difference between experiments. Across both experiments, several consistent trends were observed. First, in eight of the nine divided-attention tasks across both experiments, the EHI subjects performed significantly worse than the YNH subjects. By comparison, significant differences in performance between age groups were only observed on three of the nine selective-attention tasks. Finally, there were consistent individual differences in performance across both experiments. Correlational analyses performed on the data from the 13 older adults suggested that the individual differences in performance were associated with individual differences in memory (digit span). Among the elderly, differences in age or differences in hearing loss did not contribute to the individual differences observed in either experiment.

  6. The effects of interstimulus interval on event-related indices of attention: an auditory selective attention test of perceptual load theory.

    Science.gov (United States)

    Gomes, Hilary; Barrett, Sophia; Duff, Martin; Barnhardt, Jack; Ritter, Walter

    2008-03-01

    We examined the impact of perceptual load by manipulating interstimulus interval (ISI) in two auditory selective attention studies that varied in the difficulty of the target discrimination. In the paradigm, channels were separated by frequency and target/deviant tones were softer in intensity. Three ISI conditions were presented: fast (300ms), medium (600ms) and slow (900ms). Behavioral (accuracy and RT) and electrophysiological measures (Nd, P3b) were observed. In both studies, participants evidenced poorer accuracy during the fast ISI condition than the slow suggesting that ISI impacted task difficulty. However, none of the three measures of processing examined, Nd amplitude, P3b amplitude elicited by unattended deviant stimuli, or false alarms to unattended deviants, were impacted by ISI in the manner predicted by perceptual load theory. The prediction based on perceptual load theory, that there would be more processing of irrelevant stimuli under conditions of low as compared to high perceptual load, was not supported in these auditory studies. Task difficulty/perceptual load impacts the processing of irrelevant stimuli in the auditory modality differently than predicted by perceptual load theory, and perhaps differently than in the visual modality.

  7. Attention-driven auditory cortex short-term plasticity helps segregate relevant sounds from noise

    OpenAIRE

    Ahveninen, Jyrki; Hämäläinen, Matti; Jääskeläinen, Iiro P.; Ahlfors, Seppo P.; Huang, Samantha; Lin, Fa-Hsuan; Raij, Tommi; Sams, Mikko; Vasios, Christos E.; Belliveau, John W.

    2011-01-01

    How can we concentrate on relevant sounds in noisy environments? A “gain model” suggests that auditory attention simply amplifies relevant and suppresses irrelevant afferent inputs. However, it is unclear whether this suffices when attended and ignored features overlap to stimulate the same neuronal receptive fields. A “tuning model” suggests that, in addition to gain, attention modulates feature selectivity of auditory neurons. We recorded magnetoencephalography, EEG, and functional MRI (fMR...

  8. Spatial auditory attention is modulated by tactile priming.

    Science.gov (United States)

    Menning, Hans; Ackermann, Hermann; Hertrich, Ingo; Mathiak, Klaus

    2005-07-01

    Previous studies have shown that cross-modal processing affects perception at a variety of neuronal levels. In this study, event-related brain responses were recorded via whole-head magnetoencephalography (MEG). Spatial auditory attention was directed via tactile pre-cues (primes) to one of four locations in the peripersonal space (left and right hand versus face). Auditory stimuli were white noise bursts, convoluted with head-related transfer functions, which ensured spatial perception of the four locations. Tactile primes (200-300 ms prior to acoustic onset) were applied randomly to one of these locations. Attentional load was controlled by three different visual distraction tasks. The auditory P50m (about 50 ms after stimulus onset) showed a significant "proximity" effect (larger responses to face stimulation as well as a "contralaterality" effect between side of stimulation and hemisphere). The tactile primes essentially reduced both the P50m and N100m components. However, facial tactile pre-stimulation yielded an enhanced ipsilateral N100m. These results show that earlier responses are mainly governed by exogenous stimulus properties whereas cross-sensory interaction is spatially selective at a later (endogenous) processing stage.

  9. Did You Listen to the Beat? Auditory Steady-State Responses in the Human Electroencephalogram at 4 and 7 Hz Modulation Rates Reflect Selective Attention.

    Science.gov (United States)

    Jaeger, Manuela; Bleichner, Martin G; Bauer, Anna-Katharina R; Mirkovic, Bojana; Debener, Stefan

    2018-02-27

    The acoustic envelope of human speech correlates with the syllabic rate (4-8 Hz) and carries important information for intelligibility, which is typically compromised in multi-talker, noisy environments. In order to better understand the dynamics of selective auditory attention to low frequency modulated sound sources, we conducted a two-stream auditory steady-state response (ASSR) selective attention electroencephalogram (EEG) study. The two streams consisted of 4 and 7 Hz amplitude and frequency modulated sounds presented from the left and right side. One of two streams had to be attended while the other had to be ignored. The attended stream always contained a target, allowing for the behavioral confirmation of the attention manipulation. EEG ASSR power analysis revealed a significant increase in 7 Hz power for the attend compared to the ignore conditions. There was no significant difference in 4 Hz power when the 4 Hz stream had to be attended compared to when it had to be ignored. This lack of 4 Hz attention modulation could be explained by a distracting effect of a third frequency at 3 Hz (beat frequency) perceivable when the 4 and 7 Hz streams are presented simultaneously. Taken together our results show that low frequency modulations at syllabic rate are modulated by selective spatial attention. Whether attention effects act as enhancement of the attended stream or suppression of to be ignored stream may depend on how well auditory streams can be segregated.

  10. Entrainment to an auditory signal: Is attention involved?

    NARCIS (Netherlands)

    Kunert, R.; Jongman, S.R.

    2017-01-01

    Many natural auditory signals, including music and language, change periodically. The effect of such auditory rhythms on the brain is unclear however. One widely held view, dynamic attending theory, proposes that the attentional system entrains to the rhythm and increases attention at moments of

  11. Musical experience shapes top-down auditory mechanisms: evidence from masking and auditory attention performance.

    Science.gov (United States)

    Strait, Dana L; Kraus, Nina; Parbery-Clark, Alexandra; Ashley, Richard

    2010-03-01

    A growing body of research suggests that cognitive functions, such as attention and memory, drive perception by tuning sensory mechanisms to relevant acoustic features. Long-term musical experience also modulates lower-level auditory function, although the mechanisms by which this occurs remain uncertain. In order to tease apart the mechanisms that drive perceptual enhancements in musicians, we posed the question: do well-developed cognitive abilities fine-tune auditory perception in a top-down fashion? We administered a standardized battery of perceptual and cognitive tests to adult musicians and non-musicians, including tasks either more or less susceptible to cognitive control (e.g., backward versus simultaneous masking) and more or less dependent on auditory or visual processing (e.g., auditory versus visual attention). Outcomes indicate lower perceptual thresholds in musicians specifically for auditory tasks that relate with cognitive abilities, such as backward masking and auditory attention. These enhancements were observed in the absence of group differences for the simultaneous masking and visual attention tasks. Our results suggest that long-term musical practice strengthens cognitive functions and that these functions benefit auditory skills. Musical training bolsters higher-level mechanisms that, when impaired, relate to language and literacy deficits. Thus, musical training may serve to lessen the impact of these deficits by strengthening the corticofugal system for hearing. 2009 Elsevier B.V. All rights reserved.

  12. Dissociable influences of auditory object vs. spatial attention on visual system oscillatory activity.

    Directory of Open Access Journals (Sweden)

    Jyrki Ahveninen

    Full Text Available Given that both auditory and visual systems have anatomically separate object identification ("what" and spatial ("where" pathways, it is of interest whether attention-driven cross-sensory modulations occur separately within these feature domains. Here, we investigated how auditory "what" vs. "where" attention tasks modulate activity in visual pathways using cortically constrained source estimates of magnetoencephalograpic (MEG oscillatory activity. In the absence of visual stimuli or tasks, subjects were presented with a sequence of auditory-stimulus pairs and instructed to selectively attend to phonetic ("what" vs. spatial ("where" aspects of these sounds, or to listen passively. To investigate sustained modulatory effects, oscillatory power was estimated from time periods between sound-pair presentations. In comparison to attention to sound locations, phonetic auditory attention was associated with stronger alpha (7-13 Hz power in several visual areas (primary visual cortex; lingual, fusiform, and inferior temporal gyri, lateral occipital cortex, as well as in higher-order visual/multisensory areas including lateral/medial parietal and retrosplenial cortices. Region-of-interest (ROI analyses of dynamic changes, from which the sustained effects had been removed, suggested further power increases during Attend Phoneme vs. Location centered at the alpha range 400-600 ms after the onset of second sound of each stimulus pair. These results suggest distinct modulations of visual system oscillatory activity during auditory attention to sound object identity ("what" vs. sound location ("where". The alpha modulations could be interpreted to reflect enhanced crossmodal inhibition of feature-specific visual pathways and adjacent audiovisual association areas during "what" vs. "where" auditory attention.

  13. Music-induced positive mood broadens the scope of auditory attention.

    Science.gov (United States)

    Putkinen, Vesa; Makkonen, Tommi; Eerola, Tuomas

    2017-07-01

    Previous studies indicate that positive mood broadens the scope of visual attention, which can manifest as heightened distractibility. We used event-related potentials (ERP) to investigate whether music-induced positive mood has comparable effects on selective attention in the auditory domain. Subjects listened to experimenter-selected happy, neutral or sad instrumental music and afterwards participated in a dichotic listening task. Distractor sounds in the unattended channel elicited responses related to early sound encoding (N1/MMN) and bottom-up attention capture (P3a) while target sounds in the attended channel elicited a response related to top-down-controlled processing of task-relevant stimuli (P3b). For the subjects in a happy mood, the N1/MMN responses to the distractor sounds were enlarged while the P3b elicited by the target sounds was diminished. Behaviorally, these subjects tended to show heightened error rates on target trials following the distractor sounds. Thus, the ERP and behavioral results indicate that the subjects in a happy mood allocated their attentional resources more diffusely across the attended and the to-be-ignored channels. Therefore, the current study extends previous research on the effects of mood on visual attention and indicates that even unfamiliar instrumental music can broaden the scope of auditory attention via its effects on mood. © The Author (2017). Published by Oxford University Press.

  14. Frequency-specific attentional modulation in human primary auditory cortex and midbrain.

    Science.gov (United States)

    Riecke, Lars; Peters, Judith C; Valente, Giancarlo; Poser, Benedikt A; Kemper, Valentin G; Formisano, Elia; Sorger, Bettina

    2018-07-01

    Paying selective attention to an audio frequency selectively enhances activity within primary auditory cortex (PAC) at the tonotopic site (frequency channel) representing that frequency. Animal PAC neurons achieve this 'frequency-specific attentional spotlight' by adapting their frequency tuning, yet comparable evidence in humans is scarce. Moreover, whether the spotlight operates in human midbrain is unknown. To address these issues, we studied the spectral tuning of frequency channels in human PAC and inferior colliculus (IC), using 7-T functional magnetic resonance imaging (FMRI) and frequency mapping, while participants focused on different frequency-specific sounds. We found that shifts in frequency-specific attention alter the response gain, but not tuning profile, of PAC frequency channels. The gain modulation was strongest in low-frequency channels and varied near-monotonically across the tonotopic axis, giving rise to the attentional spotlight. We observed less prominent, non-tonotopic spatial patterns of attentional modulation in IC. These results indicate that the frequency-specific attentional spotlight in human PAC as measured with FMRI arises primarily from tonotopic gain modulation, rather than adapted frequency tuning. Moreover, frequency-specific attentional modulation of afferent sound processing in human IC seems to be considerably weaker, suggesting that the spotlight diminishes toward this lower-order processing stage. Our study sheds light on how the human auditory pathway adapts to the different demands of selective hearing. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Auditory and Visual Attention Performance in Children With ADHD: The Attentional Deficiency of ADHD Is Modality Specific.

    Science.gov (United States)

    Lin, Hung-Yu; Hsieh, Hsieh-Chun; Lee, Posen; Hong, Fu-Yuan; Chang, Wen-Dien; Liu, Kuo-Cheng

    2017-08-01

    This study explored auditory and visual attention in children with ADHD. In a randomized, two-period crossover design, 50 children with ADHD and 50 age- and sex-matched typically developing peers were measured with the Test of Various Attention (TOVA). The deficiency of visual attention is more serious than that of auditory attention in children with ADHD. On the auditory modality, only the deficit of attentional inconsistency is sufficient to explain most cases of ADHD; however, most of the children with ADHD suffered from deficits of sustained attention, response inhibition, and attentional inconsistency on the visual modality. Our results also showed that the deficit of attentional inconsistency is the most important indicator in diagnosing and intervening in ADHD when both auditory and visual modalities are considered. The findings provide strong evidence that the deficits of auditory attention are different from those of visual attention in children with ADHD.

  16. Cross-modal attention influences auditory contrast sensitivity: Decreasing visual load improves auditory thresholds for amplitude- and frequency-modulated sounds.

    Science.gov (United States)

    Ciaramitaro, Vivian M; Chow, Hiu Mei; Eglington, Luke G

    2017-03-01

    We used a cross-modal dual task to examine how changing visual-task demands influenced auditory processing, namely auditory thresholds for amplitude- and frequency-modulated sounds. Observers had to attend to two consecutive intervals of sounds and report which interval contained the auditory stimulus that was modulated in amplitude (Experiment 1) or frequency (Experiment 2). During auditory-stimulus presentation, observers simultaneously attended to a rapid sequential visual presentation-two consecutive intervals of streams of visual letters-and had to report which interval contained a particular color (low load, demanding less attentional resources) or, in separate blocks of trials, which interval contained more of a target letter (high load, demanding more attentional resources). We hypothesized that if attention is a shared resource across vision and audition, an easier visual task should free up more attentional resources for auditory processing on an unrelated task, hence improving auditory thresholds. Auditory detection thresholds were lower-that is, auditory sensitivity was improved-for both amplitude- and frequency-modulated sounds when observers engaged in a less demanding (compared to a more demanding) visual task. In accord with previous work, our findings suggest that visual-task demands can influence the processing of auditory information on an unrelated concurrent task, providing support for shared attentional resources. More importantly, our results suggest that attending to information in a different modality, cross-modal attention, can influence basic auditory contrast sensitivity functions, highlighting potential similarities between basic mechanisms for visual and auditory attention.

  17. Auditory-Motor Control of Vocal Production during Divided Attention: Behavioral and ERP Correlates.

    Science.gov (United States)

    Liu, Ying; Fan, Hao; Li, Jingting; Jones, Jeffery A; Liu, Peng; Zhang, Baofeng; Liu, Hanjun

    2018-01-01

    When people hear unexpected perturbations in auditory feedback, they produce rapid compensatory adjustments of their vocal behavior. Recent evidence has shown enhanced vocal compensations and cortical event-related potentials (ERPs) in response to attended pitch feedback perturbations, suggesting that this reflex-like behavior is influenced by selective attention. Less is known, however, about auditory-motor integration for voice control during divided attention. The present cross-modal study investigated the behavioral and ERP correlates of auditory feedback control of vocal pitch production during divided attention. During the production of sustained vowels, 32 young adults were instructed to simultaneously attend to both pitch feedback perturbations they heard and flashing red lights they saw. The presentation rate of the visual stimuli was varied to produce a low, intermediate, and high attentional load. The behavioral results showed that the low-load condition elicited significantly smaller vocal compensations for pitch perturbations than the intermediate-load and high-load conditions. As well, the cortical processing of vocal pitch feedback was also modulated as a function of divided attention. When compared to the low-load and intermediate-load conditions, the high-load condition elicited significantly larger N1 responses and smaller P2 responses to pitch perturbations. These findings provide the first neurobehavioral evidence that divided attention can modulate auditory feedback control of vocal pitch production.

  18. Association of blood antioxidants status with visual and auditory sustained attention.

    Science.gov (United States)

    Shiraseb, Farideh; Siassi, Fereydoun; Sotoudeh, Gity; Qorbani, Mostafa; Rostami, Reza; Sadeghi-Firoozabadi, Vahid; Narmaki, Elham

    2015-01-01

    A low antioxidants status has been shown to result in oxidative stress and cognitive impairment. Because antioxidants can protect the nervous system, it is expected that a better blood antioxidant status might be related to sustained attention. However, the relationship between the blood antioxidant status and visual and auditory sustained attention has not been investigated. The aim of this study was to evaluate the association of fruits and vegetables intake and the blood antioxidant status with visual and auditory sustained attention in women. This cross-sectional study was performed on 400 healthy women (20-50 years) who attended the sports clubs of Tehran Municipality. Sustained attention was evaluated based on the Integrated Visual and Auditory Continuous Performance Test using the Integrated Visual and Auditory (IVA) software. The 24-hour food recall questionnaire was used for estimating fruits and vegetables intake. Serum total antioxidant capacity (TAC), and erythrocyte superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were measured in 90 participants. After adjusting for energy intake, age, body mass index (BMI), years of education and physical activity, higher reported fruits, and vegetables intake was associated with better visual and auditory sustained attention (P attention (P visual and auditory sustained attention after adjusting for age, years of education, physical activity, energy, BMI, and caffeine intake (P visual and auditory sustained attention is associated with a better blood antioxidant status. Therefore, improvement of the antioxidant status through an appropriate dietary intake can possibly enhance sustained attention.

  19. Examining Age-Related Differences in Auditory Attention Control Using a Task-Switching Procedure

    OpenAIRE

    Vera Lawo; Iring Koch

    2014-01-01

    Objectives. Using a novel task-switching variant of dichotic selective listening, we examined age-related differences in the ability to intentionally switch auditory attention between 2 speakers defined by their sex.

  20. Auditory and visual sustained attention in Down syndrome.

    Science.gov (United States)

    Faught, Gayle G; Conners, Frances A; Himmelberger, Zachary M

    2016-01-01

    Sustained attention (SA) is important to task performance and development of higher functions. It emerges as a separable component of attention during preschool and shows incremental improvements during this stage of development. The current study investigated if auditory and visual SA match developmental level or are particular challenges for youth with DS. Further, we sought to determine if there were modality effects in SA that could predict those seen in short-term memory (STM). We compared youth with DS to typically developing youth matched for nonverbal mental age and receptive vocabulary. Groups completed auditory and visual sustained attention to response tests (SARTs) and STM tasks. Results indicated groups performed similarly on both SARTs, even over varying cognitive ability. Further, within groups participants performed similarly on auditory and visual SARTs, thus SA could not predict modality effects in STM. However, SA did generally predict a significant portion of unique variance in groups' STM. Ultimately, results suggested both auditory and visual SA match developmental level in DS. Further, SA generally predicts STM, though SA does not necessarily predict the pattern of poor auditory relative to visual STM characteristic of DS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The selective processing of emotional visual stimuli while detecting auditory targets: an ERP analysis.

    Science.gov (United States)

    Schupp, Harald T; Stockburger, Jessica; Bublatzky, Florian; Junghöfer, Markus; Weike, Almut I; Hamm, Alfons O

    2008-09-16

    Event-related potential studies revealed an early posterior negativity (EPN) for emotional compared to neutral pictures. Exploring the emotion-attention relationship, a previous study observed that a primary visual discrimination task interfered with the emotional modulation of the EPN component. To specify the locus of interference, the present study assessed the fate of selective visual emotion processing while attention is directed towards the auditory modality. While simply viewing a rapid and continuous stream of pleasant, neutral, and unpleasant pictures in one experimental condition, processing demands of a concurrent auditory target discrimination task were systematically varied in three further experimental conditions. Participants successfully performed the auditory task as revealed by behavioral performance and selected event-related potential components. Replicating previous results, emotional pictures were associated with a larger posterior negativity compared to neutral pictures. Of main interest, increasing demands of the auditory task did not modulate the selective processing of emotional visual stimuli. With regard to the locus of interference, selective emotion processing as indexed by the EPN does not seem to reflect shared processing resources of visual and auditory modality.

  2. Auditory attention: time of day and type of school

    Directory of Open Access Journals (Sweden)

    Picolini, Mirela Machado

    2010-06-01

    Full Text Available Introduction: The sustained auditory attention is crucial for the development of some communication skills and learning. Objective: To evaluate the effect of time of day and type of school attended by children in their ability to sustained auditory attention. Method: We performed a prospective study of 50 volunteer children of both sexes, aged 7 years, with normal hearing, no learning or behavioral problems and no complaints of attention. These participants underwent Ability Test of Sustained Auditory Attention (SAAAT. The performance was evaluated by total score and the decrease of vigilance. Statistical analysis was used to analysis of variance (ANOVA with significance level of 5% (p<0.05. Results: The result set by the normative test for the age group evaluated showed a statistically significant difference for the errors of inattention (p=0.041, p=0.027 and total error score (p=0.033, p=0.024, in different periods assessment and school types, respectively. Conclusion: Children evaluated in the afternoon and the children studying in public schools had a poorer performance on auditory attention sustained.

  3. Superior pre-attentive auditory processing in musicians.

    Science.gov (United States)

    Koelsch, S; Schröger, E; Tervaniemi, M

    1999-04-26

    The present study focuses on influences of long-term experience on auditory processing, providing the first evidence for pre-attentively superior auditory processing in musicians. This was revealed by the brain's automatic change-detection response, which is reflected electrically as the mismatch negativity (MMN) and generated by the operation of sensoric (echoic) memory, the earliest cognitive memory system. Major chords and single tones were presented to both professional violinists and non-musicians under ignore and attend conditions. Slightly impure chords, presented among perfect major chords elicited a distinct MMN in professional musicians, but not in non-musicians. This demonstrates that compared to non-musicians, musicians are superior in pre-attentively extracting more information out of musically relevant stimuli. Since effects of long-term experience on pre-attentive auditory processing have so far been reported for language-specific phonemes only, results indicate that sensory memory mechanisms can be modulated by training on a more general level.

  4. Higher dietary diversity is related to better visual and auditory sustained attention.

    Science.gov (United States)

    Shiraseb, Farideh; Siassi, Fereydoun; Qorbani, Mostafa; Sotoudeh, Gity; Rostami, Reza; Narmaki, Elham; Yavari, Parvaneh; Aghasi, Mohadeseh; Shaibu, Osman Mohammed

    2016-04-01

    Attention is a complex cognitive function that is necessary for learning, for following social norms of behaviour and for effective performance of responsibilities and duties. It is especially important in sensitive occupations requiring sustained attention. Improvement of dietary diversity (DD) is recognised as an important factor in health promotion, but its association with sustained attention is unknown. The aim of this study was to determine the association between auditory and visual sustained attention and DD. A cross-sectional study was carried out on 400 women aged 20-50 years who attended sports clubs at Tehran Municipality. Sustained attention was evaluated on the basis of the Integrated Visual and Auditory Continuous Performance Test using Integrated Visual and Auditory software. A single 24-h dietary recall questionnaire was used for DD assessment. Dietary diversity scores (DDS) were determined using the FAO guidelines. The mean visual and auditory sustained attention scores were 40·2 (sd 35·2) and 42·5 (sd 38), respectively. The mean DDS was 4·7 (sd 1·5). After adjusting for age, education years, physical activity, energy intake and BMI, mean visual and auditory sustained attention showed a significant increase as the quartiles of DDS increased (P=0·001). In addition, the mean subscales of attention, including auditory consistency and vigilance, visual persistence, visual and auditory focus, speed, comprehension and full attention, increased significantly with increasing DDS (Pvisual and auditory sustained attention.

  5. Self-Regulation of the Primary Auditory Cortex Attention Via Directed Attention Mediated By Real Time fMRI Neurofeedback

    Science.gov (United States)

    2017-05-05

    NELSON FROM: 59 MDW /SGYU SUBJECT: Professional Presentation Approval 1. Your paper, entitled Self - regulation of the Primary Auditory Cortex Attention via...DATE Sherwood - p.1 Self - regulation of the primary auditory cortex attention via directed attention mediated by real-time fMRI neurofeedback M S...auditory cortex hyperactivity by self - regulation of the primary auditory cortex (A 1) based on real-time functional magnetic resonance imaging neurofeedback

  6. Control of Auditory Attention in Children With Specific Language Impairment.

    Science.gov (United States)

    Victorino, Kristen R; Schwartz, Richard G

    2015-08-01

    Children with specific language impairment (SLI) appear to demonstrate deficits in attention and its control. Selective attention involves the cognitive control of attention directed toward a relevant stimulus and simultaneous inhibition of attention toward irrelevant stimuli. The current study examined attention control during a cross-modal word recognition task. Twenty participants with SLI (ages 9-12 years) and 20 age-matched peers with typical language development (TLD) listened to words through headphones and were instructed to attend to the words in 1 ear while ignoring the words in the other ear. They were simultaneously presented with pictures and asked to make a lexical decision about whether the pictures and auditory words were the same or different. Accuracy and reaction time were measured in 5 conditions, in which the stimulus in the unattended channel was manipulated. The groups performed with similar accuracy. Compared with their peers with TLD, children with SLI had slower reaction times overall and different within-group patterns of performance by condition. Children with TLD showed efficient inhibitory control in conditions that required active suppression of competing stimuli. Participants with SLI had difficulty exerting control over their auditory attention in all conditions, with particular difficulty inhibiting distractors of all types.

  7. The right planum temporale is involved in stimulus-driven, auditory attention--evidence from transcranial magnetic stimulation.

    Directory of Open Access Journals (Sweden)

    Marco Hirnstein

    Full Text Available It is well known that the planum temporale (PT area in the posterior temporal lobe carries out spectro-temporal analysis of auditory stimuli, which is crucial for speech, for example. There are suggestions that the PT is also involved in auditory attention, specifically in the discrimination and selection of stimuli from the left and right ear. However, direct evidence is missing so far. To examine the role of the PT in auditory attention we asked fourteen participants to complete the Bergen Dichotic Listening Test. In this test two different consonant-vowel syllables (e.g., "ba" and "da" are presented simultaneously, one to each ear, and participants are asked to verbally report the syllable they heard best or most clearly. Thus attentional selection of a syllable is stimulus-driven. Each participant completed the test three times: after their left and right PT (located with anatomical brain scans had been stimulated with repetitive transcranial magnetic stimulation (rTMS, which transiently interferes with normal brain functioning in the stimulated sites, and after sham stimulation, where participants were led to believe they had been stimulated but no rTMS was applied (control. After sham stimulation the typical right ear advantage emerged, that is, participants reported relatively more right than left ear syllables, reflecting a left-hemispheric dominance for language. rTMS over the right but not left PT significantly reduced the right ear advantage. This was the result of participants reporting more left and fewer right ear syllables after right PT stimulation, suggesting there was a leftward shift in stimulus selection. Taken together, our findings point to a new function of the PT in addition to auditory perception: particularly the right PT is involved in stimulus selection and (stimulus-driven, auditory attention.

  8. Psychometric properties of Persian version of the Sustained Auditory Attention Capacity Test in children with attention deficit-hyperactivity disorder.

    Science.gov (United States)

    Soltanparast, Sanaz; Jafari, Zahra; Sameni, Seyed Jalal; Salehi, Masoud

    2014-01-01

    The purpose of the present study was to evaluate the psychometric properties (validity and reliability) of the Persian version of the Sustained Auditory Attention Capacity Test in children with attention deficit hyperactivity disorder. The Persian version of the Sustained Auditory Attention Capacity Test was constructed to assess sustained auditory attention using the method provided by Feniman and colleagues (2007). In this test, comments were provided to assess the child's attentional deficit by determining inattention and impulsiveness error, the total scores of the sustained auditory attention capacity test and attention span reduction index. In the present study for determining the validity and reliability of in both Rey Auditory Verbal Learning test and the Persian version of the Sustained Auditory Attention Capacity Test (SAACT), 46 normal children and 41 children with Attention Deficit Hyperactivity (ADHD), all right-handed and aged between 7 and 11 of both genders, were evaluated. In determining convergent validity, a negative significant correlation was found between the three parts of the Rey Auditory Verbal Learning test (first, fifth, and immediate recall) and all indicators of the SAACT except attention span reduction. By comparing the test scores between the normal and ADHD groups, discriminant validity analysis showed significant differences in all indicators of the test except for attention span reduction (pAttention Capacity test has good validity and reliability, that matches other reliable tests, and it can be used for the identification of children with attention deficits and if they suspected to have Attention Deficit Hyperactivity Disorder.

  9. Separable sustained and selective attention factors are apparent in 5-year-old children

    DEFF Research Database (Denmark)

    Underbjerg, Mette; George, Melanie S; Thorsen, Poul

    2013-01-01

    In adults and older children, evidence consistent with relative separation between selective and sustained attention, superimposed upon generally positive inter-test correlations, has been reported. Here we examine whether this pattern is detectable in 5-year-old children from the healthy...... and auditory stimuli were good. In a factor analysis, the two TEA-Ch(J) selective attention tasks (one visual, one auditory) loaded onto a common factor and diverged from the two sustained attention tasks (one auditory, one motor), which shared a common loading on the second factor. This pattern, which...... suggests that the tests are indeed sensitive to underlying attentional capacities, was supported by the relationships between the TEA-Ch(J) factors and Test of Everyday Attention for Children subtests in the older children in the sample. It is possible to gain convincing performance-based estimates...

  10. Modification of sudden onset auditory ERP by involuntary attention to visual stimuli.

    Science.gov (United States)

    Oray, Serkan; Lu, Zhong-Lin; Dawson, Michael E

    2002-03-01

    To investigate the cross-modal nature of the exogenous attention system, we studied how involuntary attention in the visual modality affects ERPs elicited by sudden onset of events in the auditory modality. Relatively loud auditory white noise bursts were presented to subjects with random and long inter-trial intervals. The noise bursts were either presented alone, or paired with a visual stimulus with a visual to auditory onset asynchrony of 120 ms. In a third condition, the visual stimuli were shown alone. All three conditions, auditory alone, visual alone, and paired visual/auditory, were randomly inter-mixed and presented with equal probabilities. Subjects were instructed to fixate on a point in front of them without task instructions concerning either the auditory or visual stimuli. ERPs were recorded from 28 scalp sites throughout every experimental session. Compared to ERPs in the auditory alone condition, pairing the auditory noise bursts with the visual stimulus reduced the amplitude of the auditory N100 component at Cz by 40% and the auditory P200/P300 component at Cz by 25%. No significant topographical change was observed in the scalp distributions of the N100 and P200/P300. Our results suggest that involuntary attention to visual stimuli suppresses early sensory (N100) as well as late cognitive (P200/P300) processing of sudden auditory events. The activation of the exogenous attention system by sudden auditory onset can be modified by involuntary visual attention in a cross-model, passive prepulse inhibition paradigm.

  11. Vestibular Stimulation and Auditory Perception in Children with Attention Deficit Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Azin Salamati

    2014-09-01

    Full Text Available Objectives: Rehabilitation strategies play a pivotal role in reliving the inappropriate behaviors and improving children's performance during school. Concentration and visual and auditory comprehension in children are crucial to effective learning and have drawn interest from researchers and clinicians. Vestibular function deficits usually cause high level of alertness and vigilance, and problems in maintaining focus, paying selective attention, and altering in precision and attention to the stimulus. The aim of this study is to investigate the correlation between vestibular stimulation and auditory perception in children with attention deficit hyperactivity disorder. Methods: Totally 30 children aged from 7 to 12 years with attention deficit hyperactivity disorder participated in this study. They were assessed based on the criteria of diagnostic and statistical manual of mental disorders. After obtaining guardian and parental consent, they were enrolled and randomly matched on age to two groups of intervention and control. Integrated visual and auditory continuous performance test was carried out as a pre-test. Those in the intervention group received vestibular stimulation during the therapy sessions, twice a week for 10 weeks. At the end the test was done to both groups as post-test. Results: The pre-and post-test scores were measured and compared the differences between means for two subject groups. Statistical analyses found a significant difference for the mean differences regarding auditory comprehension improvement. Discussion: The findings suggest that vestibular training is a reliable and powerful option treatment for attention deficit hyperactivity disorder especially along with other trainings, meaning that stimulating the sense of balance highlights the importance of interaction between inhabitation and cognition.

  12. Visual selective attention in amnestic mild cognitive impairment.

    Science.gov (United States)

    McLaughlin, Paula M; Anderson, Nicole D; Rich, Jill B; Chertkow, Howard; Murtha, Susan J E

    2014-11-01

    Subtle deficits in visual selective attention have been found in amnestic mild cognitive impairment (aMCI). However, few studies have explored performance on visual search paradigms or the Simon task, which are known to be sensitive to disease severity in Alzheimer's patients. Furthermore, there is limited research investigating how deficiencies can be ameliorated with exogenous support (auditory cues). Sixteen individuals with aMCI and 14 control participants completed 3 experimental tasks that varied in demand and cue availability: visual search-alerting, visual search-orienting, and Simon task. Visual selective attention was influenced by aMCI, auditory cues, and task characteristics. Visual search abilities were relatively consistent across groups. The aMCI participants were impaired on the Simon task when working memory was required, but conflict resolution was similar to controls. Spatially informative orienting cues improved response times, whereas spatially neutral alerting cues did not influence performance. Finally, spatially informative auditory cues benefited the aMCI group more than controls in the visual search task, specifically at the largest array size where orienting demands were greatest. These findings suggest that individuals with aMCI have working memory deficits and subtle deficiencies in orienting attention and rely on exogenous information to guide attention. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Selective attention and the auditory vertex potential. I - Effects of stimulus delivery rate. II - Effects of signal intensity and masking noise

    Science.gov (United States)

    Schwent, V. L.; Hillyard, S. A.; Galambos, R.

    1976-01-01

    The effects of varying the rate of delivery of dichotic tone pip stimuli on selective attention measured by evoked-potential amplitudes and signal detectability scores were studied. The subjects attended to one channel (ear) of tones, ignored the other, and pressed a button whenever occasional targets - tones of a slightly higher pitch were detected in the attended ear. Under separate conditions, randomized interstimulus intervals were short, medium, and long. Another study compared the effects of attention on the N1 component of the auditory evoked potential for tone pips presented alone and when white noise was added to make the tones barely above detectability threshold in a three-channel listening task. Major conclusions are that (1) N1 is enlarged to stimuli in an attended channel only in the short interstimulus interval condition (averaging 350 msec), (2) N1 and P3 are related to different modes of selective attention, and (3) attention selectivity in multichannel listening task is greater when tones are faint and/or difficult to detect.

  14. The auditory attention status in Iranian bilingual and monolingual people

    Directory of Open Access Journals (Sweden)

    Nayiere Mansoori

    2013-05-01

    Full Text Available Background and Aim: Bilingualism, as one of the discussing issues of psychology and linguistics, can influence the speech processing. Of several tests for assessing auditory processing, dichotic digit test has been designed to study divided auditory attention. Our study was performed to compare the auditory attention between Iranian bilingual and monolingual young adults. Methods: This cross-sectional study was conducted on 60 students including 30 Turkish-Persian bilinguals and 30 Persian monolinguals aged between 18 to 30 years in both genders. Dichotic digit test was performed on young individuals with normal peripheral hearing and right hand preference. Results: No significant correlation was found between the results of dichotic digit test of monolinguals and bilinguals (p=0.195, and also between the results of right and left ears in monolingual (p=0.460 and bilingual (p=0.054 groups. The mean score of women was significantly more than men (p=0.031. Conclusion: There was no significant difference between bilinguals and monolinguals in divided auditory attention; and it seems that acquisition of second language in lower ages has no noticeable effect on this type of auditory attention.

  15. Neural dynamics underlying attentional orienting to auditory representations in short-term memory.

    Science.gov (United States)

    Backer, Kristina C; Binns, Malcolm A; Alain, Claude

    2015-01-21

    Sounds are ephemeral. Thus, coherent auditory perception depends on "hearing" back in time: retrospectively attending that which was lost externally but preserved in short-term memory (STM). Current theories of auditory attention assume that sound features are integrated into a perceptual object, that multiple objects can coexist in STM, and that attention can be deployed to an object in STM. Recording electroencephalography from humans, we tested these assumptions, elucidating feature-general and feature-specific neural correlates of auditory attention to STM. Alpha/beta oscillations and frontal and posterior event-related potentials indexed feature-general top-down attentional control to one of several coexisting auditory representations in STM. Particularly, task performance during attentional orienting was correlated with alpha/low-beta desynchronization (i.e., power suppression). However, attention to one feature could occur without simultaneous processing of the second feature of the representation. Therefore, auditory attention to memory relies on both feature-specific and feature-general neural dynamics. Copyright © 2015 the authors 0270-6474/15/351307-12$15.00/0.

  16. Auditory and visual capture during focused visual attention

    NARCIS (Netherlands)

    Koelewijn, T.; Bronkhorst, A.W.; Theeuwes, J.

    2009-01-01

    It is well known that auditory and visual onsets presented at a particular location can capture a person's visual attention. However, the question of whether such attentional capture disappears when attention is focused endogenously beforehand has not yet been answered. Moreover, previous studies

  17. Intentional switching in auditory selective attention: Exploring age-related effects in a spatial setup requiring speech perception.

    Science.gov (United States)

    Oberem, Josefa; Koch, Iring; Fels, Janina

    2017-06-01

    Using a binaural-listening paradigm, age-related differences in the ability to intentionally switch auditory selective attention between two speakers, defined by their spatial location, were examined. Therefore 40 normal-hearing participants (20 young, Ø 24.8years; 20 older Ø 67.8years) were tested. The spatial reproduction of stimuli was provided by headphones using head-related-transfer-functions of an artificial head. Spoken number words of two speakers were presented simultaneously to participants from two out of eight locations on the horizontal plane. Guided by a visual cue indicating the spatial location of the target speaker, the participants were asked to categorize the target's number word into smaller vs. greater than five while ignoring the distractor's speech. Results showed significantly higher reaction times and error rates for older participants. The relative influence of the spatial switch of the target-speaker (switch or repetition of speaker's direction in space) was identical across age groups. Congruency effects (stimuli spoken by target and distractor may evoke the same answer or different answers) were increased for older participants and depend on the target's position. Results suggest that the ability to intentionally switch auditory attention to a new cued location was unimpaired whereas it was generally harder for older participants to suppress processing the distractor's speech. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Auditory and Visual Capture during Focused Visual Attention

    Science.gov (United States)

    Koelewijn, Thomas; Bronkhorst, Adelbert; Theeuwes, Jan

    2009-01-01

    It is well known that auditory and visual onsets presented at a particular location can capture a person's visual attention. However, the question of whether such attentional capture disappears when attention is focused endogenously beforehand has not yet been answered. Moreover, previous studies have not differentiated between capture by onsets…

  19. Short-term plasticity in auditory cognition.

    Science.gov (United States)

    Jääskeläinen, Iiro P; Ahveninen, Jyrki; Belliveau, John W; Raij, Tommi; Sams, Mikko

    2007-12-01

    Converging lines of evidence suggest that auditory system short-term plasticity can enable several perceptual and cognitive functions that have been previously considered as relatively distinct phenomena. Here we review recent findings suggesting that auditory stimulation, auditory selective attention and cross-modal effects of visual stimulation each cause transient excitatory and (surround) inhibitory modulations in the auditory cortex. These modulations might adaptively tune hierarchically organized sound feature maps of the auditory cortex (e.g. tonotopy), thus filtering relevant sounds during rapidly changing environmental and task demands. This could support auditory sensory memory, pre-attentive detection of sound novelty, enhanced perception during selective attention, influence of visual processing on auditory perception and longer-term plastic changes associated with perceptual learning.

  20. Cognitive Training Enhances Auditory Attention Efficiency in Older Adults

    Directory of Open Access Journals (Sweden)

    Jennifer L. O’Brien

    2017-10-01

    Full Text Available Auditory cognitive training (ACT improves attention in older adults; however, the underlying neurophysiological mechanisms are still unknown. The present study examined the effects of ACT on the P3b event-related potential reflecting attention allocation (amplitude and speed of processing (latency during stimulus categorization and the P1-N1-P2 complex reflecting perceptual processing (amplitude and latency. Participants completed an auditory oddball task before and after 10 weeks of ACT (n = 9 or a no contact control period (n = 15. Parietal P3b amplitudes to oddball stimuli decreased at post-test in the trained group as compared to those in the control group, and frontal P3b amplitudes show a similar trend, potentially reflecting more efficient attentional allocation after ACT. No advantages for the ACT group were evident for auditory perceptual processing or speed of processing in this small sample. Our results provide preliminary evidence that ACT may enhance the efficiency of attention allocation, which may account for the positive impact of ACT on the everyday functioning of older adults.

  1. Aberrant interference of auditory negative words on attention in patients with schizophrenia.

    Directory of Open Access Journals (Sweden)

    Norichika Iwashiro

    Full Text Available Previous research suggests that deficits in attention-emotion interaction are implicated in schizophrenia symptoms. Although disruption in auditory processing is crucial in the pathophysiology of schizophrenia, deficits in interaction between emotional processing of auditorily presented language stimuli and auditory attention have not yet been clarified. To address this issue, the current study used a dichotic listening task to examine 22 patients with schizophrenia and 24 age-, sex-, parental socioeconomic background-, handedness-, dexterous ear-, and intelligence quotient-matched healthy controls. The participants completed a word recognition task on the attended side in which a word with emotionally valenced content (negative/positive/neutral was presented to one ear and a different neutral word was presented to the other ear. Participants selectively attended to either ear. In the control subjects, presentation of negative but not positive word stimuli provoked a significantly prolonged reaction time compared with presentation of neutral word stimuli. This interference effect for negative words existed whether or not subjects directed attention to the negative words. This interference effect was significantly smaller in the patients with schizophrenia than in the healthy controls. Furthermore, the smaller interference effect was significantly correlated with severe positive symptoms and delusional behavior in the patients with schizophrenia. The present findings suggest that aberrant interaction between semantic processing of negative emotional content and auditory attention plays a role in production of positive symptoms in schizophrenia. (224 words.

  2. Development of Attentional Control of Verbal Auditory Perception from Middle to Late Childhood: Comparisons to Healthy Aging

    Science.gov (United States)

    Passow, Susanne; Müller, Maike; Westerhausen, René; Hugdahl, Kenneth; Wartenburger, Isabell; Heekeren, Hauke R.; Lindenberger, Ulman; Li, Shu-Chen

    2013-01-01

    Multitalker situations confront listeners with a plethora of competing auditory inputs, and hence require selective attention to relevant information, especially when the perceptual saliency of distracting inputs is high. This study augmented the classical forced-attention dichotic listening paradigm by adding an interaural intensity manipulation…

  3. Intentional preparation of auditory attention-switches: Explicit cueing and sequential switch-predictability.

    Science.gov (United States)

    Seibold, Julia C; Nolden, Sophie; Oberem, Josefa; Fels, Janina; Koch, Iring

    2018-06-01

    In an auditory attention-switching paradigm, participants heard two simultaneously spoken number-words, each presented to one ear, and decided whether the target number was smaller or larger than 5 by pressing a left or right key. An instructional cue in each trial indicated which feature had to be used to identify the target number (e.g., female voice). Auditory attention-switch costs were found when this feature changed compared to when it repeated in two consecutive trials. Earlier studies employing this paradigm showed mixed results when they examined whether such cued auditory attention-switches can be prepared actively during the cue-stimulus interval. This study systematically assessed which preconditions are necessary for the advance preparation of auditory attention-switches. Three experiments were conducted that controlled for cue-repetition benefits, modality switches between cue and stimuli, as well as for predictability of the switch-sequence. Only in the third experiment, in which predictability for an attention-switch was maximal due to a pre-instructed switch-sequence and predictable stimulus onsets, active switch-specific preparation was found. These results suggest that the cognitive system can prepare auditory attention-switches, and this preparation seems to be triggered primarily by the memorised switching-sequence and valid expectations about the time of target onset.

  4. Auditory and visual sustained attention in children with speech sound disorder.

    Directory of Open Access Journals (Sweden)

    Cristina F B Murphy

    Full Text Available Although research has demonstrated that children with specific language impairment (SLI and reading disorder (RD exhibit sustained attention deficits, no study has investigated sustained attention in children with speech sound disorder (SSD. Given the overlap of symptoms, such as phonological memory deficits, between these different language disorders (i.e., SLI, SSD and RD and the relationships between working memory, attention and language processing, it is worthwhile to investigate whether deficits in sustained attention also occur in children with SSD. A total of 55 children (18 diagnosed with SSD (8.11 ± 1.231 and 37 typically developing children (8.76 ± 1.461 were invited to participate in this study. Auditory and visual sustained-attention tasks were applied. Children with SSD performed worse on these tasks; they committed a greater number of auditory false alarms and exhibited a significant decline in performance over the course of the auditory detection task. The extent to which performance is related to auditory perceptual difficulties and probable working memory deficits is discussed. Further studies are needed to better understand the specific nature of these deficits and their clinical implications.

  5. Visual unimodal grouping mediates auditory attentional bias in visuo-spatial working memory.

    Science.gov (United States)

    Botta, Fabiano; Lupiáñez, Juan; Sanabria, Daniel

    2013-09-01

    Audiovisual links in spatial attention have been reported in many previous studies. However, the effectiveness of auditory spatial cues in biasing the information encoding into visuo-spatial working memory (VSWM) is still relatively unknown. In this study, we addressed this issue by combining a cuing paradigm with a change detection task in VSWM. Moreover, we manipulated the perceptual organization of the to-be-remembered visual stimuli. We hypothesized that the auditory effect on VSWM would depend on the perceptual association between the auditory cue and the visual probe. Results showed, for the first time, a significant auditory attentional bias in VSWM. However, the effect was observed only when the to-be-remembered visual stimuli were organized in two distinctive visual objects. We propose that these results shed new light on audio-visual crossmodal links in spatial attention suggesting that, apart from the spatio-temporal contingency, the likelihood of perceptual association between the auditory cue and the visual target can have a large impact on crossmodal attentional biases. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Difference in Perseverative Errors during a Visual Attention Task with Auditory Distractors in Alpha-9 Nicotinic Receptor Subunit Wild Type and Knock-Out Mice.

    Science.gov (United States)

    Jorratt, Pascal; Delano, Paul H; Delgado, Carolina; Dagnino-Subiabre, Alexies; Terreros, Gonzalo

    2017-01-01

    The auditory efferent system is a neural network that originates in the auditory cortex and projects to the cochlear receptor through olivocochlear (OC) neurons. Medial OC neurons make cholinergic synapses with outer hair cells (OHCs) through nicotinic receptors constituted by α9 and α10 subunits. One of the physiological functions of the α9 nicotinic receptor subunit (α9-nAChR) is the suppression of auditory distractors during selective attention to visual stimuli. In a recent study we demonstrated that the behavioral performance of alpha-9 nicotinic receptor knock-out (KO) mice is altered during selective attention to visual stimuli with auditory distractors since they made less correct responses and more omissions than wild type (WT) mice. As the inhibition of the behavioral responses to irrelevant stimuli is an important mechanism of the selective attention processes, behavioral errors are relevant measures that can reflect altered inhibitory control. Errors produced during a cued attention task can be classified as premature, target and perseverative errors. Perseverative responses can be considered as an inability to inhibit the repetition of an action already planned, while premature responses can be considered as an index of the ability to wait or retain an action. Here, we studied premature, target and perseverative errors during a visual attention task with auditory distractors in WT and KO mice. We found that α9-KO mice make fewer perseverative errors with longer latencies than WT mice in the presence of auditory distractors. In addition, although we found no significant difference in the number of target error between genotypes, KO mice made more short-latency target errors than WT mice during the presentation of auditory distractors. The fewer perseverative error made by α9-KO mice could be explained by a reduced motivation for reward and an increased impulsivity during decision making with auditory distraction in KO mice.

  7. Attention, awareness, and the perception of auditory scenes

    Directory of Open Access Journals (Sweden)

    Joel S Snyder

    2012-02-01

    Full Text Available Auditory perception and cognition entails both low-level and high-level processes, which are likely to interact with each other to create our rich conscious experience of soundscapes. Recent research that we review has revealed numerous influences of high-level factors, such as attention, intention, and prior experience, on conscious auditory perception. And recently, studies have shown that auditory scene analysis tasks can exhibit multistability in a manner very similar to ambiguous visual stimuli, presenting a unique opportunity to study neural correlates of auditory awareness and the extent to which mechanisms of perception are shared across sensory modalities. Research has also led to a growing number of techniques through which auditory perception can be manipulated and even completely suppressed. Such findings have important consequences for our understanding of the mechanisms of perception and also should allow scientists to precisely distinguish the influences of different higher-level influences.

  8. Crossmodal effects of Guqin and piano music on selective attention: an event-related potential study.

    Science.gov (United States)

    Zhu, Weina; Zhang, Junjun; Ding, Xiaojun; Zhou, Changle; Ma, Yuanye; Xu, Dan

    2009-11-27

    To compare the effects of music from different cultural environments (Guqin: Chinese music; piano: Western music) on crossmodal selective attention, behavioral and event-related potential (ERP) data in a standard two-stimulus visual oddball task were recorded from Chinese subjects in three conditions: silence, Guqin music or piano music background. Visual task data were then compared with auditory task data collected previously. In contrast with the results of the auditory task, the early (N1) and late (P300) stages exhibited no differences between Guqin and piano backgrounds during the visual task. Taking our previous study and this study together, we can conclude that: although the cultural-familiar music influenced selective attention both in the early and late stages, these effects appeared only within a sensory modality (auditory) but not in cross-sensory modalities (visual). Thus, the musical cultural factor is more obvious in intramodal than in crossmodal selective attention.

  9. Identification of Auditory Object-Specific Attention from Single-Trial Electroencephalogram Signals via Entropy Measures and Machine Learning

    Directory of Open Access Journals (Sweden)

    Yun Lu

    2018-05-01

    Full Text Available Existing research has revealed that auditory attention can be tracked from ongoing electroencephalography (EEG signals. The aim of this novel study was to investigate the identification of peoples’ attention to a specific auditory object from single-trial EEG signals via entropy measures and machine learning. Approximate entropy (ApEn, sample entropy (SampEn, composite multiscale entropy (CmpMSE and fuzzy entropy (FuzzyEn were used to extract the informative features of EEG signals under three kinds of auditory object-specific attention (Rest, Auditory Object1 Attention (AOA1 and Auditory Object2 Attention (AOA2. The linear discriminant analysis and support vector machine (SVM, were used to construct two auditory attention classifiers. The statistical results of entropy measures indicated that there were significant differences in the values of ApEn, SampEn, CmpMSE and FuzzyEn between Rest, AOA1 and AOA2. For the SVM-based auditory attention classifier, the auditory object-specific attention of Rest, AOA1 and AOA2 could be identified from EEG signals using ApEn, SampEn, CmpMSE and FuzzyEn as features and the identification rates were significantly different from chance level. The optimal identification was achieved by the SVM-based auditory attention classifier using CmpMSE with the scale factor τ = 10. This study demonstrated a novel solution to identify the auditory object-specific attention from single-trial EEG signals without the need to access the auditory stimulus.

  10. Auditory event-related responses to diphthongs in different attention conditions

    DEFF Research Database (Denmark)

    Morris, David Jackson; Steinmetzger, Kurt; Tøndering, John

    2016-01-01

    The modulation of auditory event-related potentials (ERP) by attention generally results in larger amplitudes when stimuli are attended. We measured the P1-N1-P2 acoustic change complex elicited with synthetic overt (second formant, F2 = 1000 Hz) and subtle (F2 = 100 Hz) diphthongs, while subjects...... (i) attended to the auditory stimuli, (ii) ignored the auditory stimuli and watched a film, and (iii) diverted their attention to a visual discrimination task. Responses elicited by diphthongs where F2 values rose and fell were found to be different and this precluded their combined analysis....... Multivariate analysis of ERP components from the rising F2 changes showed main effects of attention on P2 amplitude and latency, and N1-P2 amplitude. P2 amplitude decreased by 40% between the attend and ignore conditions, and by 60% between the attend and divert conditions. The effect of diphthong magnitude...

  11. Automatic phoneme category selectivity in the dorsal auditory stream.

    Science.gov (United States)

    Chevillet, Mark A; Jiang, Xiong; Rauschecker, Josef P; Riesenhuber, Maximilian

    2013-03-20

    Debates about motor theories of speech perception have recently been reignited by a burst of reports implicating premotor cortex (PMC) in speech perception. Often, however, these debates conflate perceptual and decision processes. Evidence that PMC activity correlates with task difficulty and subject performance suggests that PMC might be recruited, in certain cases, to facilitate category judgments about speech sounds (rather than speech perception, which involves decoding of sounds). However, it remains unclear whether PMC does, indeed, exhibit neural selectivity that is relevant for speech decisions. Further, it is unknown whether PMC activity in such cases reflects input via the dorsal or ventral auditory pathway, and whether PMC processing of speech is automatic or task-dependent. In a novel modified categorization paradigm, we presented human subjects with paired speech sounds from a phonetic continuum but diverted their attention from phoneme category using a challenging dichotic listening task. Using fMRI rapid adaptation to probe neural selectivity, we observed acoustic-phonetic selectivity in left anterior and left posterior auditory cortical regions. Conversely, we observed phoneme-category selectivity in left PMC that correlated with explicit phoneme-categorization performance measured after scanning, suggesting that PMC recruitment can account for performance on phoneme-categorization tasks. Structural equation modeling revealed connectivity from posterior, but not anterior, auditory cortex to PMC, suggesting a dorsal route for auditory input to PMC. Our results provide evidence for an account of speech processing in which the dorsal stream mediates automatic sensorimotor integration of speech and may be recruited to support speech decision tasks.

  12. Attention-related modulation of auditory brainstem responses during contralateral noise exposure.

    Science.gov (United States)

    Ikeda, Kazunari; Sekiguchi, Takahiro; Hayashi, Akiko

    2008-10-29

    As determinants facilitating attention-related modulation of the auditory brainstem response (ABR), two experimental factors were examined: (i) auditory discrimination; and (ii) contralateral masking intensity. Tone pips at 80 dB sound pressure level were presented to the left ear via either single-tone exposures or oddball exposures, whereas white noise was delivered continuously to the right ear at variable intensities (none--80 dB sound pressure level). Participants each conducted two tasks during stimulation, either reading a book (ignoring task) or detecting target tones (attentive task). Task-related modulation within the ABR range was found only during oddball exposures at contralateral masking intensities greater than or equal to 60 dB. Attention-related modulation of ABR can thus be detected reliably during auditory discrimination under contralateral masking of sufficient intensity.

  13. Dynamic crossmodal links revealed by steady-state responses in auditory-visual divided attention.

    Science.gov (United States)

    de Jong, Ritske; Toffanin, Paolo; Harbers, Marten

    2010-01-01

    Frequency tagging has been often used to study intramodal attention but not intermodal attention. We used EEG and simultaneous frequency tagging of auditory and visual sources to study intermodal focused and divided attention in detection and discrimination performance. Divided-attention costs were smaller, but still significant, in detection than in discrimination. The auditory steady-state response (SSR) showed no effects of attention at frontocentral locations, but did so at occipital locations where it was evident only when attention was divided between audition and vision. Similarly, the visual SSR at occipital locations was substantially enhanced when attention was divided across modalities. Both effects were equally present in detection and discrimination. We suggest that both effects reflect a common cause: An attention-dependent influence of auditory information processing on early cortical stages of visual information processing, mediated by enhanced effective connectivity between the two modalities under conditions of divided attention. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  14. Auditory and visual capture during focused visual attention

    OpenAIRE

    Koelewijn, T.; Bronkhorst, A.W.; Theeuwes, J.

    2009-01-01

    It is well known that auditory and visual onsets presented at a particular location can capture a person's visual attention. However, the question of whether such attentional capture disappears when attention is focused endogenously beforehand has not yet been answered. Moreover, previous studies have not differentiated between capture by onsets presented at a nontarget (invalid) location and possible performance benefits occurring when the target location is (validly) cued. In this study, th...

  15. EEG phase reset due to auditory attention: an inverse time-scale approach

    International Nuclear Information System (INIS)

    Low, Yin Fen; Strauss, Daniel J

    2009-01-01

    We propose a novel tool to evaluate the electroencephalograph (EEG) phase reset due to auditory attention by utilizing an inverse analysis of the instantaneous phase for the first time. EEGs were acquired through auditory attention experiments with a maximum entropy stimulation paradigm. We examined single sweeps of auditory late response (ALR) with the complex continuous wavelet transform. The phase in the frequency band that is associated with auditory attention (6–10 Hz, termed as theta–alpha border) was reset to the mean phase of the averaged EEGs. The inverse transform was applied to reconstruct the phase-modified signal. We found significant enhancement of the N100 wave in the reconstructed signal. Analysis of the phase noise shows the effects of phase jittering on the generation of the N100 wave implying that a preferred phase is necessary to generate the event-related potential (ERP). Power spectrum analysis shows a remarkable increase of evoked power but little change of total power after stabilizing the phase of EEGs. Furthermore, by resetting the phase only at the theta border of no attention data to the mean phase of attention data yields a result that resembles attention data. These results show strong connections between EEGs and ERP, in particular, we suggest that the presentation of an auditory stimulus triggers the phase reset process at the theta–alpha border which leads to the emergence of the N100 wave. It is concluded that our study reinforces other studies on the importance of the EEG in ERP genesis

  16. EEG phase reset due to auditory attention: an inverse time-scale approach.

    Science.gov (United States)

    Low, Yin Fen; Strauss, Daniel J

    2009-08-01

    We propose a novel tool to evaluate the electroencephalograph (EEG) phase reset due to auditory attention by utilizing an inverse analysis of the instantaneous phase for the first time. EEGs were acquired through auditory attention experiments with a maximum entropy stimulation paradigm. We examined single sweeps of auditory late response (ALR) with the complex continuous wavelet transform. The phase in the frequency band that is associated with auditory attention (6-10 Hz, termed as theta-alpha border) was reset to the mean phase of the averaged EEGs. The inverse transform was applied to reconstruct the phase-modified signal. We found significant enhancement of the N100 wave in the reconstructed signal. Analysis of the phase noise shows the effects of phase jittering on the generation of the N100 wave implying that a preferred phase is necessary to generate the event-related potential (ERP). Power spectrum analysis shows a remarkable increase of evoked power but little change of total power after stabilizing the phase of EEGs. Furthermore, by resetting the phase only at the theta border of no attention data to the mean phase of attention data yields a result that resembles attention data. These results show strong connections between EEGs and ERP, in particular, we suggest that the presentation of an auditory stimulus triggers the phase reset process at the theta-alpha border which leads to the emergence of the N100 wave. It is concluded that our study reinforces other studies on the importance of the EEG in ERP genesis.

  17. Selective attention reduces physiological noise in the external ear canals of humans. II: Visual attention

    Science.gov (United States)

    Walsh, Kyle P.; Pasanen, Edward G.; McFadden, Dennis

    2014-01-01

    Human subjects performed in several behavioral conditions requiring, or not requiring, selective attention to visual stimuli. Specifically, the attentional task was to recognize strings of digits that had been presented visually. A nonlinear version of the stimulus-frequency otoacoustic emission (SFOAE), called the nSFOAE, was collected during the visual presentation of the digits. The segment of the physiological response discussed here occurred during brief silent periods immediately following the SFOAE-evoking stimuli. For all subjects tested, the physiological-noise magnitudes were substantially weaker (less noisy) during the tasks requiring the most visual attention. Effect sizes for the differences were >2.0. Our interpretation is that cortico-olivo influences adjusted the magnitude of efferent activation during the SFOAE-evoking stimulation depending upon the attention task in effect, and then that magnitude of efferent activation persisted throughout the silent period where it also modulated the physiological noise present. Because the results were highly similar to those obtained when the behavioral conditions involved auditory attention, similar mechanisms appear to operate both across modalities and within modalities. Supplementary measurements revealed that the efferent activation was spectrally global, as it was for auditory attention. PMID:24732070

  18. Difference in Perseverative Errors during a Visual Attention Task with Auditory Distractors in Alpha-9 Nicotinic Receptor Subunit Wild Type and Knock-Out Mice

    Directory of Open Access Journals (Sweden)

    Pascal Jorratt

    2017-11-01

    Full Text Available The auditory efferent system is a neural network that originates in the auditory cortex and projects to the cochlear receptor through olivocochlear (OC neurons. Medial OC neurons make cholinergic synapses with outer hair cells (OHCs through nicotinic receptors constituted by α9 and α10 subunits. One of the physiological functions of the α9 nicotinic receptor subunit (α9-nAChR is the suppression of auditory distractors during selective attention to visual stimuli. In a recent study we demonstrated that the behavioral performance of alpha-9 nicotinic receptor knock-out (KO mice is altered during selective attention to visual stimuli with auditory distractors since they made less correct responses and more omissions than wild type (WT mice. As the inhibition of the behavioral responses to irrelevant stimuli is an important mechanism of the selective attention processes, behavioral errors are relevant measures that can reflect altered inhibitory control. Errors produced during a cued attention task can be classified as premature, target and perseverative errors. Perseverative responses can be considered as an inability to inhibit the repetition of an action already planned, while premature responses can be considered as an index of the ability to wait or retain an action. Here, we studied premature, target and perseverative errors during a visual attention task with auditory distractors in WT and KO mice. We found that α9-KO mice make fewer perseverative errors with longer latencies than WT mice in the presence of auditory distractors. In addition, although we found no significant difference in the number of target error between genotypes, KO mice made more short-latency target errors than WT mice during the presentation of auditory distractors. The fewer perseverative error made by α9-KO mice could be explained by a reduced motivation for reward and an increased impulsivity during decision making with auditory distraction in KO mice.

  19. Attention-dependent allocation of auditory processing resources as measured by mismatch negativity.

    Science.gov (United States)

    Dittmann-Balcar, A; Thienel, R; Schall, U

    1999-12-16

    Mismatch negativity (MMN) is a pre-attentive event-related potential measure of echoic memory. However, recent studies suggest attention-related modulation of MMN. This study investigates duration-elicited MMN in healthy subjects (n = 12) who were performing a visual discrimination task and, subsequently, an auditory discrimination task in a series of increasing task difficulty. MMN amplitude was found to be maximal at centro-frontal electrode sites without hemispheric differences. Comparison of both attend conditions (visual vs. auditory), revealed larger MMN amplitudes at Fz in the visual task without differences across task difficulty. However, significantly smaller MMN in the most demanding auditory condition supports the notion of limited processing capacity whose resources are modulated by attention in response to task requirements.

  20. Modulatory Effects of Attention on Lateral Inhibition in the Human Auditory Cortex.

    Science.gov (United States)

    Engell, Alva; Junghöfer, Markus; Stein, Alwina; Lau, Pia; Wunderlich, Robert; Wollbrink, Andreas; Pantev, Christo

    2016-01-01

    Reduced neural processing of a tone is observed when it is presented after a sound whose spectral range closely frames the frequency of the tone. This observation might be explained by the mechanism of lateral inhibition (LI) due to inhibitory interneurons in the auditory system. So far, several characteristics of bottom up influences on LI have been identified, while the influence of top-down processes such as directed attention on LI has not been investigated. Hence, the study at hand aims at investigating the modulatory effects of focused attention on LI in the human auditory cortex. In the magnetoencephalograph, we present two types of masking sounds (white noise vs. withe noise passing through a notch filter centered at a specific frequency), followed by a test tone with a frequency corresponding to the center-frequency of the notch filter. Simultaneously, subjects were presented with visual input on a screen. To modulate the focus of attention, subjects were instructed to concentrate either on the auditory input or the visual stimuli. More specific, on one half of the trials, subjects were instructed to detect small deviations in loudness in the masking sounds while on the other half of the trials subjects were asked to detect target stimuli on the screen. The results revealed a reduction in neural activation due to LI, which was larger during auditory compared to visual focused attention. Attentional modulations of LI were observed in two post-N1m time intervals. These findings underline the robustness of reduced neural activation due to LI in the auditory cortex and point towards the important role of attention on the modulation of this mechanism in more evaluative processing stages.

  1. Auditory attention enhances processing of positive and negative words in inferior and superior prefrontal cortex.

    Science.gov (United States)

    Wegrzyn, Martin; Herbert, Cornelia; Ethofer, Thomas; Flaisch, Tobias; Kissler, Johanna

    2017-11-01

    Visually presented emotional words are processed preferentially and effects of emotional content are similar to those of explicit attention deployment in that both amplify visual processing. However, auditory processing of emotional words is less well characterized and interactions between emotional content and task-induced attention have not been fully understood. Here, we investigate auditory processing of emotional words, focussing on how auditory attention to positive and negative words impacts their cerebral processing. A Functional magnetic resonance imaging (fMRI) study manipulating word valence and attention allocation was performed. Participants heard negative, positive and neutral words to which they either listened passively or attended by counting negative or positive words, respectively. Regardless of valence, active processing compared to passive listening increased activity in primary auditory cortex, left intraparietal sulcus, and right superior frontal gyrus (SFG). The attended valence elicited stronger activity in left inferior frontal gyrus (IFG) and left SFG, in line with these regions' role in semantic retrieval and evaluative processing. No evidence for valence-specific attentional modulation in auditory regions or distinct valence-specific regional activations (i.e., negative > positive or positive > negative) was obtained. Thus, allocation of auditory attention to positive and negative words can substantially increase their processing in higher-order language and evaluative brain areas without modulating early stages of auditory processing. Inferior and superior frontal brain structures mediate interactions between emotional content, attention, and working memory when prosodically neutral speech is processed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Domain-Specific Control of Selective Attention

    Science.gov (United States)

    Lin, Szu-Hung; Yeh, Yei-Yu

    2014-01-01

    Previous research has shown that loading information on working memory affects selective attention. However, whether the load effect on selective attention is domain-general or domain-specific remains unresolved. The domain-general effect refers to the findings that load in one content (e.g. phonological) domain in working memory influences processing in another content (e.g., visuospatial) domain. Attentional control supervises selection regardless of information domain. The domain-specific effect refers to the constraint of influence only when maintenance and processing operate in the same domain. Selective attention operates in a specific content domain. This study is designed to resolve this controversy. Across three experiments, we manipulated the type of representation maintained in working memory and the type of representation upon which the participants must exert control to resolve conflict and select a target into the focus of attention. In Experiments 1a and 1b, participants maintained digits and nonverbalized objects, respectively, in working memory while selecting a target in a letter array. In Experiment 2, we presented auditory digits with a letter flanker task to exclude the involvement of resource competition within the same input modality. In Experiments 3a and 3b, we replaced the letter flanker task with an object flanker task while manipulating the memory load on object and digit representation, respectively. The results consistently showed that memory load modulated distractibility only when the stimuli of the two tasks were represented in the same domain. The magnitude of distractor interference was larger under high load than under low load, reflecting a lower efficacy of information prioritization. When the stimuli of the two tasks were represented in different domains, memory load did not modulate distractibility. Control of processing priority in selective attention demands domain-specific resources. PMID:24866977

  3. Abnormal Selective Attention Normalizes P3 Amplitudes in PDD

    Science.gov (United States)

    Hoeksma, Marco R.; Kemner, Chantal; Kenemans, J. Leon; van Engeland, Herman

    2006-01-01

    This paper studied whether abnormal P3 amplitudes in PDD are a corollary of abnormalities in ERP components related to selective attention in visual and auditory tasks. Furthermore, this study sought to clarify possible age differences in such abnormalities. Children with PDD showed smaller P3 amplitudes than controls, but no abnormalities in…

  4. [Thalamus and Attention].

    Science.gov (United States)

    Tokoro, Kazuhiko; Sato, Hironobu; Yamamoto, Mayumi; Nagai, Yoshiko

    2015-12-01

    Attention is the process by which information and selection occurs, the thalamus plays an important role in the selective attention of visual and auditory information. Selective attention is a conscious effort; however, it occurs subconsciously, as well. The lateral geniculate body (LGB) filters visual information before it reaches the cortex (bottom-up attention). The thalamic reticular nucleus (TRN) provides a strong inhibitory input to both the LGB and pulvinar. This regulation involves focusing a spotlight on important information, as well as inhibiting unnecessary background information. Behavioral contexts more strongly modulate activity of the TRN and pulvinar influencing feedforward and feedback information transmission between the frontal, temporal, parietal and occipital cortical areas (top-down attention). The medial geniculate body (MGB) filters auditory information the TRN inhibits the MGB. Attentional modulation occurring in the auditory pathway among the cochlea, cochlear nucleus, superior olivary complex, and inferior colliculus is more important than that of the MGB and TRN. We also discuss the attentional consequence of thalamic hemorrhage.

  5. Modulatory Effects of Attention on Lateral Inhibition in the Human Auditory Cortex.

    Directory of Open Access Journals (Sweden)

    Alva Engell

    Full Text Available Reduced neural processing of a tone is observed when it is presented after a sound whose spectral range closely frames the frequency of the tone. This observation might be explained by the mechanism of lateral inhibition (LI due to inhibitory interneurons in the auditory system. So far, several characteristics of bottom up influences on LI have been identified, while the influence of top-down processes such as directed attention on LI has not been investigated. Hence, the study at hand aims at investigating the modulatory effects of focused attention on LI in the human auditory cortex. In the magnetoencephalograph, we present two types of masking sounds (white noise vs. withe noise passing through a notch filter centered at a specific frequency, followed by a test tone with a frequency corresponding to the center-frequency of the notch filter. Simultaneously, subjects were presented with visual input on a screen. To modulate the focus of attention, subjects were instructed to concentrate either on the auditory input or the visual stimuli. More specific, on one half of the trials, subjects were instructed to detect small deviations in loudness in the masking sounds while on the other half of the trials subjects were asked to detect target stimuli on the screen. The results revealed a reduction in neural activation due to LI, which was larger during auditory compared to visual focused attention. Attentional modulations of LI were observed in two post-N1m time intervals. These findings underline the robustness of reduced neural activation due to LI in the auditory cortex and point towards the important role of attention on the modulation of this mechanism in more evaluative processing stages.

  6. Rejection Positivity Predicts Trial-to-Trial Reaction Times in an Auditory Selective Attention Task: A Computational Analysis of Inhibitory Control

    Directory of Open Access Journals (Sweden)

    Sufen eChen

    2014-08-01

    Full Text Available A series of computer simulations using variants of a formal model of attention (Melara & Algom, 2003 probed the role of rejection positivity (RP, a slow-wave electroencephalographic (EEG component, in the inhibitory control of distraction. Behavioral and EEG data were recorded as participants performed auditory selective attention tasks. Simulations that modulated processes of distractor inhibition accounted well for reaction-time (RT performance, whereas those that modulated target excitation did not. A model that incorporated RP from actual EEG recordings in estimating distractor inhibition was superior in predicting changes in RT as a function of distractor salience across conditions. A model that additionally incorporated momentary fluctuations in EEG as the source of trial-to-trial variation in performance precisely predicted individual RTs within each condition. The results lend support to the linking proposition that RP controls the speed of responding to targets through the inhibitory control of distractors.

  7. Nonverbal spatially selective attention in 4- and 5-year-old children.

    Science.gov (United States)

    Sanders, Lisa D; Zobel, Benjamin H

    2012-07-01

    Under some conditions 4- and 5-year-old children can differentially process sounds from attended and unattended locations. In fact, the latency of spatially selective attention effects on auditory processing as measured with event-related potentials (ERPs) is quite similar in young children and adults. However, it is not clear if developmental differences in the polarity, distribution, and duration of attention effects are best attributed to acoustic characteristics, availability of non-spatial attention cues, task demands, or domain. In the current study adults and children were instructed to attend to one of two simultaneously presented soundscapes (e.g., city sounds or night sounds) to detect targets (e.g., car horn or owl hoot) in the attended channel only. Probes presented from the same location as the attended soundscape elicited a larger negativity by 80 ms after onset in both adults and children. This initial negative difference (Nd) was followed by a larger positivity for attended probes in adults and another negativity for attended probes in children. The results indicate that the neural systems by which attention modulates early auditory processing are available for young children even when presented with nonverbal sounds. They also suggest important interactions between attention, acoustic characteristics, and maturity on auditory evoked potentials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Priming T2 in a Visual and Auditory Attentional Blink Task

    NARCIS (Netherlands)

    Burg, E. van der; Olivers, C.N.L.; Bronkhorst, A.W.; Theeuwes, J.

    2008-01-01

    Participants performed an attentional blink (AB) task including digits as targets and letters as distractors within the visual and auditory domains. Prior to the rapid serial visual presentation, a visual or auditory prime was presented in the form of a digit that was identical to the second target

  9. Influence of memory, attention, IQ and age on auditory temporal processing tests: preliminary study

    OpenAIRE

    Murphy, Cristina Ferraz Borges; Zachi, Elaine Cristina; Roque, Daniela Tsubota; Ventura, Dora Selma Fix; Schochat, Eliane

    2014-01-01

    PURPOSE: To investigate the existence of correlations between the performance of children in auditory temporal tests (Frequency Pattern and Gaps in Noise - GIN) and IQ, attention, memory and age measurements. METHOD: Fifteen typically developing individuals between the ages of 7 to 12 years and normal hearing participated in the study. Auditory temporal processing tests (GIN and Frequency Pattern), as well as a Memory test (Digit Span), Attention tests (auditory and visual modality) and ...

  10. Sustained attention, selective attention and cognitive control in deaf and hearing children

    Science.gov (United States)

    Dye, Matthew W. G.; Hauser, Peter C.

    2014-01-01

    Deaf children have been characterized as being impulsive, distractible, and unable to sustain attention. However, past research has tested deaf children born to hearing parents who are likely to have experienced language delays. The purpose of this study was to determine whether an absence of auditory input modulates attentional problems in deaf children with no delayed exposure to language. Two versions of a continuous performance test were administered to 37 deaf children born to Deaf parents and 60 hearing children, all aged 6–13 years. A vigilance task was used to measure sustained attention over the course of several minutes, and a distractibility test provided a measure of the ability to ignore task irrelevant information – selective attention. Both tasks provided assessments of cognitive control through analysis of commission errors. The deaf and hearing children did not differ on measures of sustained attention. However, younger deaf children were more distracted by task-irrelevant information in their peripheral visual field, and deaf children produced a higher number of commission errors in the selective attention task. It is argued that this is not likely to be an effect of audition on cognitive processing, but may rather reflect difficulty in endogenous control of reallocated visual attention resources stemming from early profound deafness. PMID:24355653

  11. A common source of attention for auditory and visual tracking.

    Science.gov (United States)

    Fougnie, Daryl; Cockhren, Jurnell; Marois, René

    2018-05-01

    Tasks that require tracking visual information reveal the severe limitations of our capacity to attend to multiple objects that vary in time and space. Although these limitations have been extensively characterized in the visual domain, very little is known about tracking information in other sensory domains. Does tracking auditory information exhibit characteristics similar to those of tracking visual information, and to what extent do these two tracking tasks draw on the same attention resources? We addressed these questions by asking participants to perform either single or dual tracking tasks from the same (visual-visual) or different (visual-auditory) perceptual modalities, with the difficulty of the tracking tasks being manipulated across trials. The results revealed that performing two concurrent tracking tasks, whether they were in the same or different modalities, affected tracking performance as compared to performing each task alone (concurrence costs). Moreover, increasing task difficulty also led to increased costs in both the single-task and dual-task conditions (load-dependent costs). The comparison of concurrence costs between visual-visual and visual-auditory dual-task performance revealed slightly greater interference when two visual tracking tasks were paired. Interestingly, however, increasing task difficulty led to equivalent costs for visual-visual and visual-auditory pairings. We concluded that visual and auditory tracking draw largely, though not exclusively, on common central attentional resources.

  12. Reduced auditory efferent activity in childhood selective mutism.

    Science.gov (United States)

    Bar-Haim, Yair; Henkin, Yael; Ari-Even-Roth, Daphne; Tetin-Schneider, Simona; Hildesheimer, Minka; Muchnik, Chava

    2004-06-01

    Selective mutism is a psychiatric disorder of childhood characterized by consistent inability to speak in specific situations despite the ability to speak normally in others. The objective of this study was to test whether reduced auditory efferent activity, which may have direct bearings on speaking behavior, is compromised in selectively mute children. Participants were 16 children with selective mutism and 16 normally developing control children matched for age and gender. All children were tested for pure-tone audiometry, speech reception thresholds, speech discrimination, middle-ear acoustic reflex thresholds and decay function, transient evoked otoacoustic emission, suppression of transient evoked otoacoustic emission, and auditory brainstem response. Compared with control children, selectively mute children displayed specific deficiencies in auditory efferent activity. These aberrations in efferent activity appear along with normal pure-tone and speech audiometry and normal brainstem transmission as indicated by auditory brainstem response latencies. The diminished auditory efferent activity detected in some children with SM may result in desensitization of their auditory pathways by self-vocalization and in reduced control of masking and distortion of incoming speech sounds. These children may gradually learn to restrict vocalization to the minimal amount possible in contexts that require complex auditory processing.

  13. Irrelevant Auditory and Visual Events Induce a Visual Attentional Blink

    NARCIS (Netherlands)

    Van der Burg, Erik; Nieuwenstein, Mark R.; Theeuwes, Jan; Olivers, Christian N. L.

    2013-01-01

    In the present study we investigated whether a task-irrelevant distractor can induce a visual attentional blink pattern. Participants were asked to detect only a visual target letter (A, B, or C) and to ignore the preceding auditory, visual, or audiovisual distractor. An attentional blink was

  14. A spatial approach of magnitude-squared coherence applied to selective attention detection.

    Science.gov (United States)

    Bonato Felix, Leonardo; de Souza Ranaudo, Fernando; D'affonseca Netto, Aluizio; Ferreira Leite Miranda de Sá, Antonio Mauricio

    2014-05-30

    Auditory selective attention is the human ability of actively focusing in a certain sound stimulus while avoiding all other ones. This ability can be used, for example, in behavioral studies and brain-machine interface. In this work we developed an objective method - called Spatial Coherence - to detect the side where a subject is focusing attention to. This method takes into consideration the Magnitude Squared Coherence and the topographic distribution of responses among electroencephalogram electrodes. The individuals were stimulated with amplitude-modulated tones binaurally and were oriented to focus attention to only one of the stimuli. The results indicate a contralateral modulation of ASSR in the attention condition and are in agreement with prior studies. Furthermore, the best combination of electrodes led to a hit rate of 82% for 5.03 commands per minute. Using a similar paradigm, in a recent work, a maximum hit rate of 84.33% was achieved, but with a greater a classification time (20s, i.e. 3 commands per minute). It seems that Spatial Coherence is a useful technique for detecting focus of auditory selective attention. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Gender differences in pre-attentive change detection for visual but not auditory stimuli.

    Science.gov (United States)

    Yang, Xiuxian; Yu, Yunmiao; Chen, Lu; Sun, Hailian; Qiao, Zhengxue; Qiu, Xiaohui; Zhang, Congpei; Wang, Lin; Zhu, Xiongzhao; He, Jincai; Zhao, Lun; Yang, Yanjie

    2016-01-01

    Despite ongoing debate about gender differences in pre-attention processes, little is known about gender effects on change detection for auditory and visual stimuli. We explored gender differences in change detection while processing duration information in auditory and visual modalities. We investigated pre-attentive processing of duration information using a deviant-standard reverse oddball paradigm (50 ms/150 ms) for auditory and visual mismatch negativity (aMMN and vMMN) in males and females (n=21/group). In the auditory modality, decrement and increment aMMN were observed at 150-250 ms after the stimulus onset, and there was no significant gender effect on MMN amplitudes in temporal or fronto-central areas. In contrast, in the visual modality, only increment vMMN was observed at 180-260 ms after the onset of stimulus, and it was higher in males than in females. No gender effect was found in change detection for auditory stimuli, but change detection was facilitated for visual stimuli in males. Gender effects should be considered in clinical studies of pre-attention for visual stimuli. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Modulation of auditory spatial attention by visual emotional cues: differential effects of attentional engagement and disengagement for pleasant and unpleasant cues.

    Science.gov (United States)

    Harrison, Neil R; Woodhouse, Rob

    2016-05-01

    Previous research has demonstrated that threatening, compared to neutral pictures, can bias attention towards non-emotional auditory targets. Here we investigated which subcomponents of attention contributed to the influence of emotional visual stimuli on auditory spatial attention. Participants indicated the location of an auditory target, after brief (250 ms) presentation of a spatially non-predictive peripheral visual cue. Responses to targets were faster at the location of the preceding visual cue, compared to at the opposite location (cue validity effect). The cue validity effect was larger for targets following pleasant and unpleasant cues compared to neutral cues, for right-sided targets. For unpleasant cues, the crossmodal cue validity effect was driven by delayed attentional disengagement, and for pleasant cues, it was driven by enhanced engagement. We conclude that both pleasant and unpleasant visual cues influence the distribution of attention across modalities and that the associated attentional mechanisms depend on the valence of the visual cue.

  17. Countering the Consequences of Ego Depletion: The Effects of Self-Talk on Selective Attention.

    Science.gov (United States)

    Gregersen, Jón; Hatzigeorgiadis, Antonis; Galanis, Evangelos; Comoutos, Nikos; Papaioannou, Athanasios

    2017-06-01

    This study examined the effects of a self-talk intervention on selective attention in a state of ego depletion. Participants were 62 undergraduate students with a mean age of 20.02 years (SD = 1.17). The experiment was conducted in four consecutive sessions. Following baseline assessment, participants were randomly assigned into experimental and control groups. A two-session training was conducted for the two groups, with the experimental group using self-talk. In the final assessment, participants performed a selective attention test, including visual and auditory components, following a task inducing a state of ego depletion. The analysis showed that participants of the experimental group achieved a higher percentage of correct responses on the visual test and produced faster reaction times in both the visual and the auditory test compared with participants of the control group. The results of this study suggest that the use of self-talk can benefit selective attention for participants in states of ego depletion.

  18. Automatic selective attention as a function of sensory modality in aging.

    Science.gov (United States)

    Guerreiro, Maria J S; Adam, Jos J; Van Gerven, Pascal W M

    2012-03-01

    It was recently hypothesized that age-related differences in selective attention depend on sensory modality (Guerreiro, M. J. S., Murphy, D. R., & Van Gerven, P. W. M. (2010). The role of sensory modality in age-related distraction: A critical review and a renewed view. Psychological Bulletin, 136, 975-1022. doi:10.1037/a0020731). So far, this hypothesis has not been tested in automatic selective attention. The current study addressed this issue by investigating age-related differences in automatic spatial cueing effects (i.e., facilitation and inhibition of return [IOR]) across sensory modalities. Thirty younger (mean age = 22.4 years) and 25 older adults (mean age = 68.8 years) performed 4 left-right target localization tasks, involving all combinations of visual and auditory cues and targets. We used stimulus onset asynchronies (SOAs) of 100, 500, 1,000, and 1,500 ms between cue and target. The results showed facilitation (shorter reaction times with valid relative to invalid cues at shorter SOAs) in the unimodal auditory and in both cross-modal tasks but not in the unimodal visual task. In contrast, there was IOR (longer reaction times with valid relative to invalid cues at longer SOAs) in both unimodal tasks but not in either of the cross-modal tasks. Most important, these spatial cueing effects were independent of age. The results suggest that the modality hypothesis of age-related differences in selective attention does not extend into the realm of automatic selective attention.

  19. Visual Input Enhances Selective Speech Envelope Tracking in Auditory Cortex at a ‘Cocktail Party’

    Science.gov (United States)

    Golumbic, Elana Zion; Cogan, Gregory B.; Schroeder, Charles E.; Poeppel, David

    2013-01-01

    Our ability to selectively attend to one auditory signal amidst competing input streams, epitomized by the ‘Cocktail Party’ problem, continues to stimulate research from various approaches. How this demanding perceptual feat is achieved from a neural systems perspective remains unclear and controversial. It is well established that neural responses to attended stimuli are enhanced compared to responses to ignored ones, but responses to ignored stimuli are nonetheless highly significant, leading to interference in performance. We investigated whether congruent visual input of an attended speaker enhances cortical selectivity in auditory cortex, leading to diminished representation of ignored stimuli. We recorded magnetoencephalographic (MEG) signals from human participants as they attended to segments of natural continuous speech. Using two complementary methods of quantifying the neural response to speech, we found that viewing a speaker’s face enhances the capacity of auditory cortex to track the temporal speech envelope of that speaker. This mechanism was most effective in a ‘Cocktail Party’ setting, promoting preferential tracking of the attended speaker, whereas without visual input no significant attentional modulation was observed. These neurophysiological results underscore the importance of visual input in resolving perceptual ambiguity in a noisy environment. Since visual cues in speech precede the associated auditory signals, they likely serve a predictive role in facilitating auditory processing of speech, perhaps by directing attentional resources to appropriate points in time when to-be-attended acoustic input is expected to arrive. PMID:23345218

  20. Intentional attention switching in dichotic listening: exploring the efficiency of nonspatial and spatial selection.

    Science.gov (United States)

    Lawo, Vera; Fels, Janina; Oberem, Josefa; Koch, Iring

    2014-10-01

    Using an auditory variant of task switching, we examined the ability to intentionally switch attention in a dichotic-listening task. In our study, participants responded selectively to one of two simultaneously presented auditory number words (spoken by a female and a male, one for each ear) by categorizing its numerical magnitude. The mapping of gender (female vs. male) and ear (left vs. right) was unpredictable. The to-be-attended feature for gender or ear, respectively, was indicated by a visual selection cue prior to auditory stimulus onset. In Experiment 1, explicitly cued switches of the relevant feature dimension (e.g., from gender to ear) and switches of the relevant feature within a dimension (e.g., from male to female) occurred in an unpredictable manner. We found large performance costs when the relevant feature switched, but switches of the relevant feature dimension incurred only small additional costs. The feature-switch costs were larger in ear-relevant than in gender-relevant trials. In Experiment 2, we replicated these findings using a simplified design (i.e., only within-dimension switches with blocked dimensions). In Experiment 3, we examined preparation effects by manipulating the cueing interval and found a preparation benefit only when ear was cued. Together, our data suggest that the large part of attentional switch costs arises from reconfiguration at the level of relevant auditory features (e.g., left vs. right) rather than feature dimensions (ear vs. gender). Additionally, our findings suggest that ear-based target selection benefits more from preparation time (i.e., time to direct attention to one ear) than gender-based target selection.

  1. Auditory Attentional Capture: Effects of Singleton Distractor Sounds

    Science.gov (United States)

    Dalton, Polly; Lavie, Nilli

    2004-01-01

    The phenomenon of attentional capture by a unique yet irrelevant singleton distractor has typically been studied in visual search. In this article, the authors examine whether a similar phenomenon occurs in the auditory domain. Participants searched sequences of sounds for targets defined by frequency, intensity, or duration. The presence of a…

  2. Contingent capture of involuntary visual attention interferes with detection of auditory stimuli.

    Science.gov (United States)

    Kamke, Marc R; Harris, Jill

    2014-01-01

    The involuntary capture of attention by salient visual stimuli can be influenced by the behavioral goals of an observer. For example, when searching for a target item, irrelevant items that possess the target-defining characteristic capture attention more strongly than items not possessing that feature. Such contingent capture involves a shift of spatial attention toward the item with the target-defining characteristic. It is not clear, however, if the associated decrements in performance for detecting the target item are entirely due to involuntary orienting of spatial attention. To investigate whether contingent capture also involves a non-spatial interference, adult observers were presented with streams of visual and auditory stimuli and were tasked with simultaneously monitoring for targets in each modality. Visual and auditory targets could be preceded by a lateralized visual distractor that either did, or did not, possess the target-defining feature (a specific color). In agreement with the contingent capture hypothesis, target-colored distractors interfered with visual detection performance (response time and accuracy) more than distractors that did not possess the target color. Importantly, the same pattern of results was obtained for the auditory task: visual target-colored distractors interfered with sound detection. The decrement in auditory performance following a target-colored distractor suggests that contingent capture involves a source of processing interference in addition to that caused by a spatial shift of attention. Specifically, we argue that distractors possessing the target-defining characteristic enter a capacity-limited, serial stage of neural processing, which delays detection of subsequently presented stimuli regardless of the sensory modality.

  3. Contingent capture of involuntary visual attention interferes with detection of auditory stimuli

    Directory of Open Access Journals (Sweden)

    Marc R. Kamke

    2014-06-01

    Full Text Available The involuntary capture of attention by salient visual stimuli can be influenced by the behavioral goals of an observer. For example, when searching for a target item, irrelevant items that possess the target-defining characteristic capture attention more strongly than items not possessing that feature. Such contingent capture involves a shift of spatial attention toward the item with the target-defining characteristic. It is not clear, however, if the associated decrements in performance for detecting the target item are entirely due to involuntary orienting of spatial attention. To investigate whether contingent capture also involves a non-spatial interference, adult observers were presented with streams of visual and auditory stimuli and were tasked with simultaneously monitoring for targets in each modality. Visual and auditory targets could be preceded by a lateralized visual distractor that either did, or did not, possess the target-defining feature (a specific color. In agreement with the contingent capture hypothesis, target-colored distractors interfered with visual detection performance (response time and accuracy more than distractors that did not possess the target color. Importantly, the same pattern of results was obtained for the auditory task: visual target-colored distractors interfered with sound detection. The decrement in auditory performance following a target-colored distractor suggests that contingent capture involves a source of processing interference in addition to that caused by a spatial shift of attention. Specifically, we argue that distractors possessing the target-defining characteristic enter a capacity-limited, serial stage of neural processing, which delays detection of subsequently presented stimuli regardless of the sensory modality.

  4. Sustained attention, selective attention and cognitive control in deaf and hearing children.

    Science.gov (United States)

    Dye, Matthew W G; Hauser, Peter C

    2014-03-01

    Deaf children have been characterized as being impulsive, distractible, and unable to sustain attention. However, past research has tested deaf children born to hearing parents who are likely to have experienced language delays. The purpose of this study was to determine whether an absence of auditory input modulates attentional problems in deaf children with no delayed exposure to language. Two versions of a continuous performance test were administered to 37 deaf children born to Deaf parents and 60 hearing children, all aged 6-13 years. A vigilance task was used to measure sustained attention over the course of several minutes, and a distractibility test provided a measure of the ability to ignore task irrelevant information - selective attention. Both tasks provided assessments of cognitive control through analysis of commission errors. The deaf and hearing children did not differ on measures of sustained attention. However, younger deaf children were more distracted by task-irrelevant information in their peripheral visual field, and deaf children produced a higher number of commission errors in the selective attention task. It is argued that this is not likely to be an effect of audition on cognitive processing, but may rather reflect difficulty in endogenous control of reallocated visual attention resources stemming from early profound deafness. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. A Characterization of Visual, Semantic and Auditory Memory in Children with Combination-Type Attention Deficit, Primarily Inattentive, and a Control Group

    Science.gov (United States)

    Ramirez, Luz Angela; Arenas, Angela Maria; Henao, Gloria Cecilia

    2005-01-01

    Introduction: This investigation describes and compares characteristics of visual, semantic and auditory memory in a group of children diagnosed with combined-type attention deficit with hyperactivity, attention deficit predominating, and a control group. Method: 107 boys and girls were selected, from 7 to 11 years of age, all residents in the…

  6. Selective attention and the "Asynchrony Theory" in native Hebrew-speaking adult dyslexics: Behavioral and ERPs measures.

    Science.gov (United States)

    Menashe, Shay

    2017-01-01

    The main aim of the present study was to determine whether adult dyslexic readers demonstrate the "Asynchrony Theory" (Breznitz [Reading Fluency: Synchronization of Processes, Lawrence Erlbaum and Associates, Mahwah, NJ, USA, 2006]) when selective attention is studied. Event-related potentials (ERPs) and behavioral parameters were collected from nonimpaired readers group and dyslexic readers group performing alphabetic and nonalphabetic tasks. The dyslexic readers group was found to demonstrate asynchrony between the auditory and the visual modalities when it came to processing alphabetic stimuli. These findings were found both for behavioral and ERPs parameters. Unlike the dyslexic readers, the nonimpaired readers showed synchronized speed of processing in the auditory and the visual modalities while processing alphabetic stimuli. The current study suggests that established reading is dependent on a synchronization between the auditory and the visual modalities even when it comes to selective attention.

  7. The selective processing of emotional visual stimuli while detecting auditory targets : An ERP analysis

    OpenAIRE

    Schupp, Harald Thomas; Stockburger, Jessica; Bublatzky, Florian; Junghöfer, Markus; Weike, Almut I.; Hamm, Alfons O.

    2008-01-01

    Event-related potential studies revealed an early posterior negativity (EPN) for emotional compared to neutral pictures. Exploring the emotion-attention relationship, a previous study observed that a primary visual discrimination task interfered with the emotional modulation of the EPN component. To specify the locus of interference, the present study assessed the fate of selective visual emotion processing while attention is directed towards the auditory modality. While simply viewing a rapi...

  8. Human pupillary dilation response to deviant auditory stimuli: Effects of stimulus properties and voluntary attention

    Directory of Open Access Journals (Sweden)

    Hsin-I eLiao

    2016-02-01

    Full Text Available A unique sound that deviates from a repetitive background sound induces signature neural responses, such as mismatch negativity and novelty P3 response in electro-encephalography studies. Here we show that a deviant auditory stimulus induces a human pupillary dilation response (PDR that is sensitive to the stimulus properties and irrespective whether attention is directed to the sounds or not. In an auditory oddball sequence, we used white noise and 2000-Hz tones as oddballs against repeated 1000-Hz tones. Participants’ pupillary responses were recorded while they listened to the auditory oddball sequence. In Experiment 1, they were not involved in any task. Results show that pupils dilated to the noise oddballs for approximately 4 s, but no such PDR was found for the 2000-Hz tone oddballs. In Experiments 2, two types of visual oddballs were presented synchronously with the auditory oddballs. Participants discriminated the auditory or visual oddballs while trying to ignore stimuli from the other modality. The purpose of this manipulation was to direct attention to or away from the auditory sequence. In Experiment 3, the visual oddballs and the auditory oddballs were always presented asynchronously to prevent residuals of attention on to-be-ignored oddballs due to the concurrence with the attended oddballs. Results show that pupils dilated to both the noise and 2000-Hz tone oddballs in all conditions. Most importantly, PDRs to noise were larger than those to the 2000-Hz tone oddballs regardless of the attention condition in both experiments. The overall results suggest that the stimulus-dependent factor of the PDR appears to be independent of attention.

  9. Human Pupillary Dilation Response to Deviant Auditory Stimuli: Effects of Stimulus Properties and Voluntary Attention.

    Science.gov (United States)

    Liao, Hsin-I; Yoneya, Makoto; Kidani, Shunsuke; Kashino, Makio; Furukawa, Shigeto

    2016-01-01

    A unique sound that deviates from a repetitive background sound induces signature neural responses, such as mismatch negativity and novelty P3 response in electro-encephalography studies. Here we show that a deviant auditory stimulus induces a human pupillary dilation response (PDR) that is sensitive to the stimulus properties and irrespective whether attention is directed to the sounds or not. In an auditory oddball sequence, we used white noise and 2000-Hz tones as oddballs against repeated 1000-Hz tones. Participants' pupillary responses were recorded while they listened to the auditory oddball sequence. In Experiment 1, they were not involved in any task. Results show that pupils dilated to the noise oddballs for approximately 4 s, but no such PDR was found for the 2000-Hz tone oddballs. In Experiments 2, two types of visual oddballs were presented synchronously with the auditory oddballs. Participants discriminated the auditory or visual oddballs while trying to ignore stimuli from the other modality. The purpose of this manipulation was to direct attention to or away from the auditory sequence. In Experiment 3, the visual oddballs and the auditory oddballs were always presented asynchronously to prevent residuals of attention on to-be-ignored oddballs due to the concurrence with the attended oddballs. Results show that pupils dilated to both the noise and 2000-Hz tone oddballs in all conditions. Most importantly, PDRs to noise were larger than those to the 2000-Hz tone oddballs regardless of the attention condition in both experiments. The overall results suggest that the stimulus-dependent factor of the PDR appears to be independent of attention.

  10. Broken Expectations: Violation of Expectancies, Not Novelty, Captures Auditory Attention

    Science.gov (United States)

    Vachon, Francois; Hughes, Robert W.; Jones, Dylan M.

    2012-01-01

    The role of memory in behavioral distraction by auditory attentional capture was investigated: We examined whether capture is a product of the novelty of the capturing event (i.e., the absence of a recent memory for the event) or its violation of learned expectancies on the basis of a memory for an event structure. Attentional capture--indicated…

  11. Working memory capacity and visual-verbal cognitive load modulate auditory-sensory gating in the brainstem: toward a unified view of attention.

    Science.gov (United States)

    Sörqvist, Patrik; Stenfelt, Stefan; Rönnberg, Jerker

    2012-11-01

    Two fundamental research questions have driven attention research in the past: One concerns whether selection of relevant information among competing, irrelevant, information takes place at an early or at a late processing stage; the other concerns whether the capacity of attention is limited by a central, domain-general pool of resources or by independent, modality-specific pools. In this article, we contribute to these debates by showing that the auditory-evoked brainstem response (an early stage of auditory processing) to task-irrelevant sound decreases as a function of central working memory load (manipulated with a visual-verbal version of the n-back task). Furthermore, individual differences in central/domain-general working memory capacity modulated the magnitude of the auditory-evoked brainstem response, but only in the high working memory load condition. The results support a unified view of attention whereby the capacity of a late/central mechanism (working memory) modulates early precortical sensory processing.

  12. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex.

    Science.gov (United States)

    Kostopoulos, Penelope; Petrides, Michael

    2016-02-16

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top-down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience.

  13. Dynamic crossmodal links revealed by steady-state responses in auditory-visual divided attention

    NARCIS (Netherlands)

    de Jong, Ritske; Toffanin, Paolo; Harbers, Marten; Martens, Sander

    Frequency tagging has been often used to study intramodal attention but not intermodal attention. We used EEG and simultaneous frequency tagging of auditory and visual sources to study intermodal focused and divided attention in detection and discrimination performance. Divided-attention costs were

  14. Size and synchronization of auditory cortex promotes musical, literacy, and attentional skills in children.

    Science.gov (United States)

    Seither-Preisler, Annemarie; Parncutt, Richard; Schneider, Peter

    2014-08-13

    Playing a musical instrument is associated with numerous neural processes that continuously modify the human brain and may facilitate characteristic auditory skills. In a longitudinal study, we investigated the auditory and neural plasticity of musical learning in 111 young children (aged 7-9 y) as a function of the intensity of instrumental practice and musical aptitude. Because of the frequent co-occurrence of central auditory processing disorders and attentional deficits, we also tested 21 children with attention deficit (hyperactivity) disorder [AD(H)D]. Magnetic resonance imaging and magnetoencephalography revealed enlarged Heschl's gyri and enhanced right-left hemispheric synchronization of the primary evoked response (P1) to harmonic complex sounds in children who spent more time practicing a musical instrument. The anatomical characteristics were positively correlated with frequency discrimination, reading, and spelling skills. Conversely, AD(H)D children showed reduced volumes of Heschl's gyri and enhanced volumes of the plana temporalia that were associated with a distinct bilateral P1 asynchrony. This may indicate a risk for central auditory processing disorders that are often associated with attentional and literacy problems. The longitudinal comparisons revealed a very high stability of auditory cortex morphology and gray matter volumes, suggesting that the combined anatomical and functional parameters are neural markers of musicality and attention deficits. Educational and clinical implications are considered. Copyright © 2014 the authors 0270-6474/14/3410937-13$15.00/0.

  15. Distraction task rather than focal attention modulates gamma activity associated with auditory steady-state responses (ASSRs)

    DEFF Research Database (Denmark)

    Griskova-Bulanova, Inga; Ruksenas, Osvaldas; Dapsys, Kastytis

    2011-01-01

    To explore the modulation of auditory steady-state response (ASSR) by experimental tasks, differing in attentional focus and arousal level.......To explore the modulation of auditory steady-state response (ASSR) by experimental tasks, differing in attentional focus and arousal level....

  16. Central auditory processing outcome after stroke in children

    Directory of Open Access Journals (Sweden)

    Karla M. I. Freiria Elias

    2014-09-01

    Full Text Available Objective To investigate central auditory processing in children with unilateral stroke and to verify whether the hemisphere affected by the lesion influenced auditory competence. Method 23 children (13 male between 7 and 16 years old were evaluated through speech-in-noise tests (auditory closure; dichotic digit test and staggered spondaic word test (selective attention; pitch pattern and duration pattern sequence tests (temporal processing and their results were compared with control children. Auditory competence was established according to the performance in auditory analysis ability. Results Was verified similar performance between groups in auditory closure ability and pronounced deficits in selective attention and temporal processing abilities. Most children with stroke showed an impaired auditory ability in a moderate degree. Conclusion Children with stroke showed deficits in auditory processing and the degree of impairment was not related to the hemisphere affected by the lesion.

  17. Impact of Spatial and Verbal Short-Term Memory Load on Auditory Spatial Attention Gradients.

    Science.gov (United States)

    Golob, Edward J; Winston, Jenna; Mock, Jeffrey R

    2017-01-01

    Short-term memory load can impair attentional control, but prior work shows that the extent of the effect ranges from being very general to very specific. One factor for the mixed results may be reliance on point estimates of memory load effects on attention. Here we used auditory attention gradients as an analog measure to map-out the impact of short-term memory load over space. Verbal or spatial information was maintained during an auditory spatial attention task and compared to no-load. Stimuli were presented from five virtual locations in the frontal azimuth plane, and subjects focused on the midline. Reaction times progressively increased for lateral stimuli, indicating an attention gradient. Spatial load further slowed responses at lateral locations, particularly in the left hemispace, but had little effect at midline. Verbal memory load had no (Experiment 1), or a minimal (Experiment 2) influence on reaction times. Spatial and verbal load increased switch costs between memory encoding and attention tasks relative to the no load condition. The findings show that short-term memory influences the distribution of auditory attention over space; and that the specific pattern depends on the type of information in short-term memory.

  18. Impact of Spatial and Verbal Short-Term Memory Load on Auditory Spatial Attention Gradients

    Directory of Open Access Journals (Sweden)

    Edward J. Golob

    2017-11-01

    Full Text Available Short-term memory load can impair attentional control, but prior work shows that the extent of the effect ranges from being very general to very specific. One factor for the mixed results may be reliance on point estimates of memory load effects on attention. Here we used auditory attention gradients as an analog measure to map-out the impact of short-term memory load over space. Verbal or spatial information was maintained during an auditory spatial attention task and compared to no-load. Stimuli were presented from five virtual locations in the frontal azimuth plane, and subjects focused on the midline. Reaction times progressively increased for lateral stimuli, indicating an attention gradient. Spatial load further slowed responses at lateral locations, particularly in the left hemispace, but had little effect at midline. Verbal memory load had no (Experiment 1, or a minimal (Experiment 2 influence on reaction times. Spatial and verbal load increased switch costs between memory encoding and attention tasks relative to the no load condition. The findings show that short-term memory influences the distribution of auditory attention over space; and that the specific pattern depends on the type of information in short-term memory.

  19. The effects of selective and divided attention on sensory precision and integration.

    Science.gov (United States)

    Odegaard, Brian; Wozny, David R; Shams, Ladan

    2016-02-12

    In our daily lives, our capacity to selectively attend to stimuli within or across sensory modalities enables enhanced perception of the surrounding world. While previous research on selective attention has studied this phenomenon extensively, two important questions still remain unanswered: (1) how selective attention to a single modality impacts sensory integration processes, and (2) the mechanism by which selective attention improves perception. We explored how selective attention impacts performance in both a spatial task and a temporal numerosity judgment task, and employed a Bayesian Causal Inference model to investigate the computational mechanism(s) impacted by selective attention. We report three findings: (1) in the spatial domain, selective attention improves precision of the visual sensory representations (which were relatively precise), but not the auditory sensory representations (which were fairly noisy); (2) in the temporal domain, selective attention improves the sensory precision in both modalities (both of which were fairly reliable to begin with); (3) in both tasks, selective attention did not exert a significant influence over the tendency to integrate sensory stimuli. Therefore, it may be postulated that a sensory modality must possess a certain inherent degree of encoding precision in order to benefit from selective attention. It also appears that in certain basic perceptual tasks, the tendency to integrate crossmodal signals does not depend significantly on selective attention. We conclude with a discussion of how these results relate to recent theoretical considerations of selective attention. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Auditory Attention and Comprehension During a Simulated Night Shift: Effects of Task Characteristics.

    Science.gov (United States)

    Pilcher, June J; Jennings, Kristen S; Phillips, Ginger E; McCubbin, James A

    2016-11-01

    The current study investigated performance on a dual auditory task during a simulated night shift. Night shifts and sleep deprivation negatively affect performance on vigilance-based tasks, but less is known about the effects on complex tasks. Because language processing is necessary for successful work performance, it is important to understand how it is affected by night work and sleep deprivation. Sixty-two participants completed a simulated night shift resulting in 28 hr of total sleep deprivation. Performance on a vigilance task and a dual auditory language task was examined across four testing sessions. The results indicate that working at night negatively impacts vigilance, auditory attention, and comprehension. The effects on the auditory task varied based on the content of the auditory material. When the material was interesting and easy, the participants performed better. Night work had a greater negative effect when the auditory material was less interesting and more difficult. These findings support research that vigilance decreases during the night. The results suggest that auditory comprehension suffers when individuals are required to work at night. Maintaining attention and controlling effort especially on passages that are less interesting or more difficult could improve performance during night shifts. The results from the current study apply to many work environments where decision making is necessary in response to complex auditory information. Better predicting the effects of night work on language processing is important for developing improved means of coping with shiftwork. © 2016, Human Factors and Ergonomics Society.

  1. Attentional Capture by Deviant Sounds: A Noncontingent Form of Auditory Distraction?

    Science.gov (United States)

    Vachon, François; Labonté, Katherine; Marsh, John E.

    2017-01-01

    The occurrence of an unexpected, infrequent sound in an otherwise homogeneous auditory background tends to disrupt the ongoing cognitive task. This "deviation effect" is typically explained in terms of attentional capture whereby the deviant sound draws attention away from the focal activity, regardless of the nature of this activity.…

  2. Pre-attentive, context-specific representation of fear memory in the auditory cortex of rat.

    Directory of Open Access Journals (Sweden)

    Akihiro Funamizu

    Full Text Available Neural representation in the auditory cortex is rapidly modulated by both top-down attention and bottom-up stimulus properties, in order to improve perception in a given context. Learning-induced, pre-attentive, map plasticity has been also studied in the anesthetized cortex; however, little attention has been paid to rapid, context-dependent modulation. We hypothesize that context-specific learning leads to pre-attentively modulated, multiplex representation in the auditory cortex. Here, we investigate map plasticity in the auditory cortices of anesthetized rats conditioned in a context-dependent manner, such that a conditioned stimulus (CS of a 20-kHz tone and an unconditioned stimulus (US of a mild electrical shock were associated only under a noisy auditory context, but not in silence. After the conditioning, although no distinct plasticity was found in the tonotopic map, tone-evoked responses were more noise-resistive than pre-conditioning. Yet, the conditioned group showed a reduced spread of activation to each tone with noise, but not with silence, associated with a sharpening of frequency tuning. The encoding accuracy index of neurons showed that conditioning deteriorated the accuracy of tone-frequency representations in noisy condition at off-CS regions, but not at CS regions, suggesting that arbitrary tones around the frequency of the CS were more likely perceived as the CS in a specific context, where CS was associated with US. These results together demonstrate that learning-induced plasticity in the auditory cortex occurs in a context-dependent manner.

  3. Pre-attentive, context-specific representation of fear memory in the auditory cortex of rat.

    Science.gov (United States)

    Funamizu, Akihiro; Kanzaki, Ryohei; Takahashi, Hirokazu

    2013-01-01

    Neural representation in the auditory cortex is rapidly modulated by both top-down attention and bottom-up stimulus properties, in order to improve perception in a given context. Learning-induced, pre-attentive, map plasticity has been also studied in the anesthetized cortex; however, little attention has been paid to rapid, context-dependent modulation. We hypothesize that context-specific learning leads to pre-attentively modulated, multiplex representation in the auditory cortex. Here, we investigate map plasticity in the auditory cortices of anesthetized rats conditioned in a context-dependent manner, such that a conditioned stimulus (CS) of a 20-kHz tone and an unconditioned stimulus (US) of a mild electrical shock were associated only under a noisy auditory context, but not in silence. After the conditioning, although no distinct plasticity was found in the tonotopic map, tone-evoked responses were more noise-resistive than pre-conditioning. Yet, the conditioned group showed a reduced spread of activation to each tone with noise, but not with silence, associated with a sharpening of frequency tuning. The encoding accuracy index of neurons showed that conditioning deteriorated the accuracy of tone-frequency representations in noisy condition at off-CS regions, but not at CS regions, suggesting that arbitrary tones around the frequency of the CS were more likely perceived as the CS in a specific context, where CS was associated with US. These results together demonstrate that learning-induced plasticity in the auditory cortex occurs in a context-dependent manner.

  4. Functional Imaging of Audio–Visual Selective Attention in Monkeys and Humans: How do Lapses in Monkey Performance Affect Cross-Species Correspondences?

    Science.gov (United States)

    Muers, Ross S.; Salo, Emma; Slater, Heather; Petkov, Christopher I.

    2017-01-01

    Abstract The cross-species correspondences and differences in how attention modulates brain responses in humans and animal models are poorly understood. We trained 2 monkeys to perform an audio–visual selective attention task during functional magnetic resonance imaging (fMRI), rewarding them to attend to stimuli in one modality while ignoring those in the other. Monkey fMRI identified regions strongly modulated by auditory or visual attention. Surprisingly, auditory attention-related modulations were much more restricted in monkeys than humans performing the same tasks during fMRI. Further analyses ruled out trivial explanations, suggesting that labile selective-attention performance was associated with inhomogeneous modulations in wide cortical regions in the monkeys. The findings provide initial insights into how audio–visual selective attention modulates the primate brain, identify sources for “lost” attention effects in monkeys, and carry implications for modeling the neurobiology of human cognition with nonhuman animals. PMID:28419201

  5. Towards a Cognitive Model of Distraction by Auditory Novelty: The Role of Involuntary Attention Capture and Semantic Processing

    Science.gov (United States)

    Parmentier, Fabrice B. R.

    2008-01-01

    Unexpected auditory stimuli are potent distractors, able to break through selective attention and disrupt performance in an unrelated visual task. This study examined the processing fate of novel sounds by examining the extent to which their semantic content is analyzed and whether the outcome of this processing can impact on subsequent behavior.…

  6. Neuropsychological characteristics of selective attention in children with nonverbal learning disabilities

    Institute of Scientific and Technical Information of China (English)

    静进; 王庆雄; 杨斌让; 陈学彬

    2004-01-01

    Background Children with nonverbal learning disabilities (NLD) usually manifest defective attention function. This study sought to investigate the neuropsychological characteristics of selective attention, such as attention control, working memory, and attention persistence of the frontal lobe in children with NLD. Methods Using the auditory detection test (ADT), Wisconsin card sorting test (WCST), and C-WISC, 27 children with NLD and 33 normal children in the control group were tested, and the results of C-WISC subtests were analyzed with factor analysis. Results Compared with the control group, the correct response rate in the auditory detection test in the NLD group was much lower (P<0.01), and the number of incorrect responses was much higher (P<0.01); NLD children also scored lower in WCST categories achieved (CA) and perseverative errors (PE) (P<0.05). Factor analysis showed that perceptual organization (PO) related to visual space and freedom from distractibility (FD) relating to attention persistence in the NLD group were obviously lower than in the control group (P<0.01). Conclusions Children with NLD have attention control disorder and working memory disorder mainly in the frontal lobe. We believe that the disorder is particularly prominent in the right frontal lobe.

  7. A Brief Period of Postnatal Visual Deprivation Alters the Balance between Auditory and Visual Attention.

    Science.gov (United States)

    de Heering, Adélaïde; Dormal, Giulia; Pelland, Maxime; Lewis, Terri; Maurer, Daphne; Collignon, Olivier

    2016-11-21

    Is a short and transient period of visual deprivation early in life sufficient to induce lifelong changes in how we attend to, and integrate, simple visual and auditory information [1, 2]? This question is of crucial importance given the recent demonstration in both animals and humans that a period of blindness early in life permanently affects the brain networks dedicated to visual, auditory, and multisensory processing [1-16]. To address this issue, we compared a group of adults who had been treated for congenital bilateral cataracts during early infancy with a group of normally sighted controls on a task requiring simple detection of lateralized visual and auditory targets, presented alone or in combination. Redundancy gains obtained from the audiovisual conditions were similar between groups and surpassed the reaction time distribution predicted by Miller's race model. However, in comparison to controls, cataract-reversal patients were faster at processing simple auditory targets and showed differences in how they shifted attention across modalities. Specifically, they were faster at switching attention from visual to auditory inputs than in the reverse situation, while an opposite pattern was observed for controls. Overall, these results reveal that the absence of visual input during the first months of life does not prevent the development of audiovisual integration but enhances the salience of simple auditory inputs, leading to a different crossmodal distribution of attentional resources between auditory and visual stimuli. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Functional Imaging of Audio-Visual Selective Attention in Monkeys and Humans: How do Lapses in Monkey Performance Affect Cross-Species Correspondences?

    Science.gov (United States)

    Rinne, Teemu; Muers, Ross S; Salo, Emma; Slater, Heather; Petkov, Christopher I

    2017-06-01

    The cross-species correspondences and differences in how attention modulates brain responses in humans and animal models are poorly understood. We trained 2 monkeys to perform an audio-visual selective attention task during functional magnetic resonance imaging (fMRI), rewarding them to attend to stimuli in one modality while ignoring those in the other. Monkey fMRI identified regions strongly modulated by auditory or visual attention. Surprisingly, auditory attention-related modulations were much more restricted in monkeys than humans performing the same tasks during fMRI. Further analyses ruled out trivial explanations, suggesting that labile selective-attention performance was associated with inhomogeneous modulations in wide cortical regions in the monkeys. The findings provide initial insights into how audio-visual selective attention modulates the primate brain, identify sources for "lost" attention effects in monkeys, and carry implications for modeling the neurobiology of human cognition with nonhuman animals. © The Author 2017. Published by Oxford University Press.

  9. A Persian version of the sustained auditory attention capacity test and its results in normal children

    Directory of Open Access Journals (Sweden)

    Sanaz Soltanparast

    2013-03-01

    Full Text Available Background and Aim: Sustained attention refers to the ability to maintain attention in target stimuli over a sustained period of time. This study was conducted to develop a Persian version of the sustained auditory attention capacity test and to study its results in normal children.Methods: To develop the Persian version of the sustained auditory attention capacity test, like the original version, speech stimuli were used. The speech stimuli consisted of one hundred monosyllabic words consisting of a 20 times random of and repetition of the words of a 21-word list of monosyllabic words, which were randomly grouped together. The test was carried out at comfortable hearing level using binaural, and diotic presentation modes on 46 normal children of 7 to 11 years of age of both gender.Results: There was a significant difference between age, and an average of impulsiveness error score (p=0.004 and total score of sustained auditory attention capacity test (p=0.005. No significant difference was revealed between age, and an average of inattention error score and attention reduction span index. Gender did not have a significant impact on various indicators of the test.Conclusion: The results of this test on a group of normal hearing children confirmed its ability to measure sustained auditory attention capacity through speech stimuli.

  10. Individual differences in selective attention predict speech identification at a cocktail party.

    Science.gov (United States)

    Oberfeld, Daniel; Klöckner-Nowotny, Felicitas

    2016-08-31

    Listeners with normal hearing show considerable individual differences in speech understanding when competing speakers are present, as in a crowded restaurant. Here, we show that one source of this variance are individual differences in the ability to focus selective attention on a target stimulus in the presence of distractors. In 50 young normal-hearing listeners, the performance in tasks measuring auditory and visual selective attention was associated with sentence identification in the presence of spatially separated competing speakers. Together, the measures of selective attention explained a similar proportion of variance as the binaural sensitivity for the acoustic temporal fine structure. Working memory span, age, and audiometric thresholds showed no significant association with speech understanding. These results suggest that a reduced ability to focus attention on a target is one reason why some listeners with normal hearing sensitivity have difficulty communicating in situations with background noise.

  11. The impact of visual gaze direction on auditory object tracking

    OpenAIRE

    Pomper, U.; Chait, M.

    2017-01-01

    Subjective experience suggests that we are able to direct our auditory attention independent of our visual gaze, e.g when shadowing a nearby conversation at a cocktail party. But what are the consequences at the behavioural and neural level? While numerous studies have investigated both auditory attention and visual gaze independently, little is known about their interaction during selective listening. In the present EEG study, we manipulated visual gaze independently of auditory attention wh...

  12. The influence of an auditory-memory attention-demanding task on postural control in blind persons.

    Science.gov (United States)

    Melzer, Itshak; Damry, Elad; Landau, Anat; Yagev, Ronit

    2011-05-01

    In order to evaluate the effect of an auditory-memory attention-demanding task on balance control, nine blind adults were compared to nine age-gender-matched sighted controls. This issue is particularly relevant for the blind population in which functional assessment of postural control has to be revealed through "real life" motor and cognitive function. The study aimed to explore whether an auditory-memory attention-demanding cognitive task would influence postural control in blind persons and compare this with blindfolded sighted persons. Subjects were instructed to minimize body sway during narrow base upright standing on a single force platform under two conditions: 1) standing still (single task); 2) as in 1) while performing an auditory-memory attention-demanding cognitive task (dual task). Subjects in both groups were required to stand blindfolded with their eyes closed. Center of Pressure displacement data were collected and analyzed using summary statistics and stabilogram-diffusion analysis. Blind and sighted subjects had similar postural sway in eyes closed condition. However, for dual compared to single task, sighted subjects show significant decrease in postural sway while blind subjects did not. The auditory-memory attention-demanding cognitive task had no interference effect on balance control on blind subjects. It seems that sighted individuals used auditory cues to compensate for momentary loss of vision, whereas blind subjects did not. This may suggest that blind and sighted people use different sensorimotor strategies to achieve stability. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Influence of memory, attention, IQ and age on auditory temporal processing tests: preliminary study.

    Science.gov (United States)

    Murphy, Cristina Ferraz Borges; Zachi, Elaine Cristina; Roque, Daniela Tsubota; Ventura, Dora Selma Fix; Schochat, Eliane

    2014-01-01

    To investigate the existence of correlations between the performance of children in auditory temporal tests (Frequency Pattern and Gaps in Noise--GIN) and IQ, attention, memory and age measurements. Fifteen typically developing individuals between the ages of 7 to 12 years and normal hearing participated in the study. Auditory temporal processing tests (GIN and Frequency Pattern), as well as a Memory test (Digit Span), Attention tests (auditory and visual modality) and intelligence tests (RAVEN test of Progressive Matrices) were applied. Significant and positive correlation between the Frequency Pattern test and age variable were found, which was considered good (p<0.01, 75.6%). There were no significant correlations between the GIN test and the variables tested. Auditory temporal skills seem to be influenced by different factors: while the performance in temporal ordering skill seems to be influenced by maturational processes, the performance in temporal resolution was not influenced by any of the aspects investigated.

  14. Acute stress alters auditory selective attention in humans independent of HPA: a study of evoked potentials.

    Directory of Open Access Journals (Sweden)

    Ludger Elling

    Full Text Available BACKGROUND: Acute stress is a stereotypical, but multimodal response to a present or imminent challenge overcharging an organism. Among the different branches of this multimodal response, the consequences of glucocorticoid secretion have been extensively investigated, mostly in connection with long-term memory (LTM. However, stress responses comprise other endocrine signaling and altered neuronal activity wholly independent of pituitary regulation. To date, knowledge of the impact of such "paracorticoidal" stress responses on higher cognitive functions is scarce. We investigated the impact of an ecological stressor on the ability to direct selective attention using event-related potentials in humans. Based on research in rodents, we assumed that a stress-induced imbalance of catecholaminergic transmission would impair this ability. METHODOLOGY/PRINCIPAL FINDINGS: The stressor consisted of a single cold pressor test. Auditory negative difference (Nd and mismatch negativity (MMN were recorded in a tonal dichotic listening task. A time series of such tasks confirmed an increased distractibility occurring 4-7 minutes after onset of the stressor as reflected by an attenuated Nd. Salivary cortisol began to rise 8-11 minutes after onset when no further modulations in the event-related potentials (ERP occurred, thus precluding a causal relationship. This effect may be attributed to a stress-induced activation of mesofrontal dopaminergic projections. It may also be attributed to an activation of noradrenergic projections. Known characteristics of the modulation of ERP by different stress-related ligands were used for further disambiguation of causality. The conjuncture of an attenuated Nd and an increased MMN might be interpreted as indicating a dopaminergic influence. The selective effect on the late portion of the Nd provides another tentative clue for this. CONCLUSIONS/SIGNIFICANCE: Prior studies have deliberately tracked the adrenocortical influence

  15. Thalamic control of sensory selection in divided attention.

    Science.gov (United States)

    Wimmer, Ralf D; Schmitt, L Ian; Davidson, Thomas J; Nakajima, Miho; Deisseroth, Karl; Halassa, Michael M

    2015-10-29

    How the brain selects appropriate sensory inputs and suppresses distractors is unknown. Given the well-established role of the prefrontal cortex (PFC) in executive function, its interactions with sensory cortical areas during attention have been hypothesized to control sensory selection. To test this idea and, more generally, dissect the circuits underlying sensory selection, we developed a cross-modal divided-attention task in mice that allowed genetic access to this cognitive process. By optogenetically perturbing PFC function in a temporally precise window, the ability of mice to select appropriately between conflicting visual and auditory stimuli was diminished. Equivalent sensory thalamocortical manipulations showed that behaviour was causally dependent on PFC interactions with the sensory thalamus, not sensory cortex. Consistent with this notion, we found neurons of the visual thalamic reticular nucleus (visTRN) to exhibit PFC-dependent changes in firing rate predictive of the modality selected. visTRN activity was causal to performance as confirmed by bidirectional optogenetic manipulations of this subnetwork. Using a combination of electrophysiology and intracellular chloride photometry, we demonstrated that visTRN dynamically controls visual thalamic gain through feedforward inhibition. Our experiments introduce a new subcortical model of sensory selection, in which the PFC biases thalamic reticular subnetworks to control thalamic sensory gain, selecting appropriate inputs for further processing.

  16. Auditory spatial attention to speech and complex non-speech sounds in children with autism spectrum disorder.

    Science.gov (United States)

    Soskey, Laura N; Allen, Paul D; Bennetto, Loisa

    2017-08-01

    One of the earliest observable impairments in autism spectrum disorder (ASD) is a failure to orient to speech and other social stimuli. Auditory spatial attention, a key component of orienting to sounds in the environment, has been shown to be impaired in adults with ASD. Additionally, specific deficits in orienting to social sounds could be related to increased acoustic complexity of speech. We aimed to characterize auditory spatial attention in children with ASD and neurotypical controls, and to determine the effect of auditory stimulus complexity on spatial attention. In a spatial attention task, target and distractor sounds were played randomly in rapid succession from speakers in a free-field array. Participants attended to a central or peripheral location, and were instructed to respond to target sounds at the attended location while ignoring nearby sounds. Stimulus-specific blocks evaluated spatial attention for simple non-speech tones, speech sounds (vowels), and complex non-speech sounds matched to vowels on key acoustic properties. Children with ASD had significantly more diffuse auditory spatial attention than neurotypical children when attending front, indicated by increased responding to sounds at adjacent non-target locations. No significant differences in spatial attention emerged based on stimulus complexity. Additionally, in the ASD group, more diffuse spatial attention was associated with more severe ASD symptoms but not with general inattention symptoms. Spatial attention deficits have important implications for understanding social orienting deficits and atypical attentional processes that contribute to core deficits of ASD. Autism Res 2017, 10: 1405-1416. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  17. [Attention characteristics of children with different clinical subtypes of attention deficit hyperactivity disorder].

    Science.gov (United States)

    Liu, Wen-Long; Zhao, Xu; Tan, Jian-Hui; Wang, Juan

    2014-09-01

    To explore the attention characteristics of children with different clinical subtypes of attention deficit hyperactivity disorder (ADHD) and to provide a basis for clinical intervention. A total of 345 children diagnosed with ADHD were selected and the subtypes were identified. Attention assessment was performed by the intermediate visual and auditory continuous performance test at diagnosis, and the visual and auditory attention characteristics were compared between children with different subtypes. A total of 122 normal children were recruited in the control group and their attention characteristics were compared with those of children with ADHD. The scores of full scale attention quotient (AQ) and full scale response control quotient (RCQ) of children with all three subtypes of ADHD were significantly lower than those of normal children (Phyperactive/impulsive subtype (Pattention function of children with ADHD is worse than that of normal children, and the impairment of visual attention function is severer than that of auditory attention function. The degree of functional impairment of visual or auditory attention shows no significant differences between three subtypes of ADHD.

  18. Individual differences in selective attention predict speech identification at a cocktail party

    Science.gov (United States)

    Oberfeld, Daniel; Klöckner-Nowotny, Felicitas

    2016-01-01

    Listeners with normal hearing show considerable individual differences in speech understanding when competing speakers are present, as in a crowded restaurant. Here, we show that one source of this variance are individual differences in the ability to focus selective attention on a target stimulus in the presence of distractors. In 50 young normal-hearing listeners, the performance in tasks measuring auditory and visual selective attention was associated with sentence identification in the presence of spatially separated competing speakers. Together, the measures of selective attention explained a similar proportion of variance as the binaural sensitivity for the acoustic temporal fine structure. Working memory span, age, and audiometric thresholds showed no significant association with speech understanding. These results suggest that a reduced ability to focus attention on a target is one reason why some listeners with normal hearing sensitivity have difficulty communicating in situations with background noise. DOI: http://dx.doi.org/10.7554/eLife.16747.001 PMID:27580272

  19. The Relation Between Selective Attention to Television Forms and Children's Comprehension of Content.

    Science.gov (United States)

    Calvert, Sandra L.; And Others

    1982-01-01

    Investigates the relationship between the moment-to-moment occurrence of selected visual and auditory formal features of a prosocial cartoon and two aspects of information processing (visual attention and comprehension). Subjects, 128 White kindergarten and third- to fourth-grade children, were equally distributed by sex and age and viewed the…

  20. Coupling between Theta Oscillations and Cognitive Control Network during Cross-Modal Visual and Auditory Attention: Supramodal vs Modality-Specific Mechanisms.

    Science.gov (United States)

    Wang, Wuyi; Viswanathan, Shivakumar; Lee, Taraz; Grafton, Scott T

    2016-01-01

    Cortical theta band oscillations (4-8 Hz) in EEG signals have been shown to be important for a variety of different cognitive control operations in visual attention paradigms. However the synchronization source of these signals as defined by fMRI BOLD activity and the extent to which theta oscillations play a role in multimodal attention remains unknown. Here we investigated the extent to which cross-modal visual and auditory attention impacts theta oscillations. Using a simultaneous EEG-fMRI paradigm, healthy human participants performed an attentional vigilance task with six cross-modal conditions using naturalistic stimuli. To assess supramodal mechanisms, modulation of theta oscillation amplitude for attention to either visual or auditory stimuli was correlated with BOLD activity by conjunction analysis. Negative correlation was localized to cortical regions associated with the default mode network and positively with ventral premotor areas. Modality-associated attention to visual stimuli was marked by a positive correlation of theta and BOLD activity in fronto-parietal area that was not observed in the auditory condition. A positive correlation of theta and BOLD activity was observed in auditory cortex, while a negative correlation of theta and BOLD activity was observed in visual cortex during auditory attention. The data support a supramodal interaction of theta activity with of DMN function, and modality-associated processes within fronto-parietal networks related to top-down theta related cognitive control in cross-modal visual attention. On the other hand, in sensory cortices there are opposing effects of theta activity during cross-modal auditory attention.

  1. Attention, memory, and auditory processing in 10- to 15-year-old children with listening difficulties.

    Science.gov (United States)

    Sharma, Mridula; Dhamani, Imran; Leung, Johahn; Carlile, Simon

    2014-12-01

    The aim of this study was to examine attention, memory, and auditory processing in children with reported listening difficulty in noise (LDN) despite having clinically normal hearing. Twenty-one children with LDN and 15 children with no listening concerns (controls) participated. The clinically normed auditory processing tests included the Frequency/Pitch Pattern Test (FPT; Musiek, 2002), the Dichotic Digits Test (Musiek, 1983), the Listening in Spatialized Noise-Sentences (LiSN-S) test (Dillon, Cameron, Glyde, Wilson, & Tomlin, 2012), gap detection in noise (Baker, Jayewardene, Sayle, & Saeed, 2008), and masking level difference (MLD; Wilson, Moncrieff, Townsend, & Pillion, 2003). Also included were research-based psychoacoustic tasks, such as auditory stream segregation, localization, sinusoidal amplitude modulation (SAM), and fine structure perception. All were also evaluated on attention and memory test batteries. The LDN group was significantly slower switching their auditory attention and had poorer inhibitory control. Additionally, the group mean results showed significantly poorer performance on FPT, MLD, 4-Hz SAM, and memory tests. Close inspection of the individual data revealed that only 5 participants (out of 21) in the LDN group showed significantly poor performance on FPT compared with clinical norms. Further testing revealed the frequency discrimination of these 5 children to be significantly impaired. Thus, the LDN group showed deficits in attention switching and inhibitory control, whereas only a subset of these participants demonstrated an additional frequency resolution deficit.

  2. Action video games improve reading abilities and visual-to-auditory attentional shifting in English-speaking children with dyslexia.

    Science.gov (United States)

    Franceschini, Sandro; Trevisan, Piergiorgio; Ronconi, Luca; Bertoni, Sara; Colmar, Susan; Double, Kit; Facoetti, Andrea; Gori, Simone

    2017-07-19

    Dyslexia is characterized by difficulties in learning to read and there is some evidence that action video games (AVG), without any direct phonological or orthographic stimulation, improve reading efficiency in Italian children with dyslexia. However, the cognitive mechanism underlying this improvement and the extent to which the benefits of AVG training would generalize to deep English orthography, remain two critical questions. During reading acquisition, children have to integrate written letters with speech sounds, rapidly shifting their attention from visual to auditory modality. In our study, we tested reading skills and phonological working memory, visuo-spatial attention, auditory, visual and audio-visual stimuli localization, and cross-sensory attentional shifting in two matched groups of English-speaking children with dyslexia before and after they played AVG or non-action video games. The speed of words recognition and phonological decoding increased after playing AVG, but not non-action video games. Furthermore, focused visuo-spatial attention and visual-to-auditory attentional shifting also improved only after AVG training. This unconventional reading remediation program also increased phonological short-term memory and phoneme blending skills. Our report shows that an enhancement of visuo-spatial attention and phonological working memory, and an acceleration of visual-to-auditory attentional shifting can directly translate into better reading in English-speaking children with dyslexia.

  3. Emotionally negative pictures increase attention to a subsequent auditory stimulus.

    Science.gov (United States)

    Tartar, Jaime L; de Almeida, Kristen; McIntosh, Roger C; Rosselli, Monica; Nash, Allan J

    2012-01-01

    Emotionally negative stimuli serve as a mechanism of biological preparedness to enhance attention. We hypothesized that emotionally negative stimuli would also serve as motivational priming to increase attention resources for subsequent stimuli. To that end, we tested 11 participants in a dual sensory modality task, wherein emotionally negative pictures were contrasted with emotionally neutral pictures and each picture was followed 600 ms later by a tone in an auditory oddball paradigm. Each trial began with a picture displayed for 200 ms; half of the trials began with an emotionally negative picture and half of the trials began with an emotionally neutral picture; 600 ms following picture presentation, the participants heard either an oddball tone or a standard tone. At the end of each trial (picture followed by tone), the participants categorized, with a button press, the picture and tone combination. As expected, and consistent with previous studies, we found an enhanced visual late positive potential (latency range=300-700 ms) to the negative picture stimuli. We further found that compared to neutral pictures, negative pictures resulted in early attention and orienting effects to subsequent tones (measured through an enhanced N1 and N2) and sustained attention effects only to the subsequent oddball tones (measured through late processing negativity, latency range=400-700 ms). Number pad responses to both the picture and tone category showed the shortest response latencies and greatest percentage of correct picture-tone categorization on the negative picture followed by oddball tone trials. Consistent with previous work on natural selective attention, our results support the idea that emotional stimuli can alter attention resource allocation. This finding has broad implications for human attention and performance as it specifically shows the conditions in which an emotionally negative stimulus can result in extended stimulus evaluation. Copyright © 2011

  4. Attending to auditory memory.

    Science.gov (United States)

    Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude

    2016-06-01

    Attention to memory describes the process of attending to memory traces when the object is no longer present. It has been studied primarily for representations of visual stimuli with only few studies examining attention to sound object representations in short-term memory. Here, we review the interplay of attention and auditory memory with an emphasis on 1) attending to auditory memory in the absence of related external stimuli (i.e., reflective attention) and 2) effects of existing memory on guiding attention. Attention to auditory memory is discussed in the context of change deafness, and we argue that failures to detect changes in our auditory environments are most likely the result of a faulty comparison system of incoming and stored information. Also, objects are the primary building blocks of auditory attention, but attention can also be directed to individual features (e.g., pitch). We review short-term and long-term memory guided modulation of attention based on characteristic features, location, and/or semantic properties of auditory objects, and propose that auditory attention to memory pathways emerge after sensory memory. A neural model for auditory attention to memory is developed, which comprises two separate pathways in the parietal cortex, one involved in attention to higher-order features and the other involved in attention to sensory information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Auditory and Visual Working Memory Functioning in College Students with Attention-Deficit/Hyperactivity Disorder and/or Learning Disabilities.

    Science.gov (United States)

    Liebel, Spencer W; Nelson, Jason M

    2017-12-01

    We investigated the auditory and visual working memory functioning in college students with attention-deficit/hyperactivity disorder, learning disabilities, and clinical controls. We examined the role attention-deficit/hyperactivity disorder subtype status played in working memory functioning. The unique influence that both domains of working memory have on reading and math abilities was investigated. A sample of 268 individuals seeking postsecondary education comprise four groups of the present study: 110 had an attention-deficit/hyperactivity disorder diagnosis only, 72 had a learning disability diagnosis only, 35 had comorbid attention-deficit/hyperactivity disorder and learning disability diagnoses, and 60 individuals without either of these disorders comprise a clinical control group. Participants underwent a comprehensive neuropsychological evaluation, and licensed psychologists employed a multi-informant, multi-method approach in obtaining diagnoses. In the attention-deficit/hyperactivity disorder only group, there was no difference between auditory and visual working memory functioning, t(100) = -1.57, p = .12. In the learning disability group, however, auditory working memory functioning was significantly weaker compared with visual working memory, t(71) = -6.19, p attention-deficit/hyperactivity disorder only group, there were no auditory or visual working memory functioning differences between participants with either a predominantly inattentive type or a combined type diagnosis. Visual working memory did not incrementally contribute to the prediction of academic achievement skills. Individuals with attention-deficit/hyperactivity disorder did not demonstrate significant working memory differences compared with clinical controls. Individuals with a learning disability demonstrated weaker auditory working memory than individuals in either the attention-deficit/hyperactivity or clinical control groups. © The Author 2017. Published by Oxford University

  6. Age-dependent impairment of auditory processing under spatially focused and divided attention: an electrophysiological study.

    Science.gov (United States)

    Wild-Wall, Nele; Falkenstein, Michael

    2010-01-01

    By using event-related potentials (ERPs) the present study examines if age-related differences in preparation and processing especially emerge during divided attention. Binaurally presented auditory cues called for focused (valid and invalid) or divided attention to one or both ears. Responses were required to subsequent monaurally presented valid targets (vowels), but had to be suppressed to non-target vowels or invalidly cued vowels. Middle-aged participants were more impaired under divided attention than young ones, likely due to an age-related decline in preparatory attention following cues as was reflected in a decreased CNV. Under divided attention, target processing was increased in the middle-aged, likely reflecting compensatory effort to fulfill task requirements in the difficult condition. Additionally, middle-aged participants processed invalidly cued stimuli more intensely as was reflected by stimulus ERPs. The results suggest an age-related impairment in attentional preparation after auditory cues especially under divided attention and latent difficulties to suppress irrelevant information.

  7. Selective increase of auditory cortico-striatal coherence during auditory-cued Go/NoGo discrimination learning.

    Directory of Open Access Journals (Sweden)

    Andreas L. Schulz

    2016-01-01

    Full Text Available Goal directed behavior and associated learning processes are tightly linked to neuronal activity in the ventral striatum. Mechanisms that integrate task relevant sensory information into striatal processing during decision making and learning are implicitly assumed in current reinforcementmodels, yet they are still weakly understood. To identify the functional activation of cortico-striatal subpopulations of connections during auditory discrimination learning, we trained Mongolian gerbils in a two-way active avoidance task in a shuttlebox to discriminate between falling and rising frequency modulated tones with identical spectral properties. We assessed functional coupling by analyzing the field-field coherence between the auditory cortex and the ventral striatum of animals performing the task. During the course of training, we observed a selective increase of functionalcoupling during Go-stimulus presentations. These results suggest that the auditory cortex functionally interacts with the ventral striatum during auditory learning and that the strengthening of these functional connections is selectively goal-directed.

  8. Pre-Attentive Auditory Processing of Lexicality

    Science.gov (United States)

    Jacobsen, Thomas; Horvath, Janos; Schroger, Erich; Lattner, Sonja; Widmann, Andreas; Winkler, Istvan

    2004-01-01

    The effects of lexicality on auditory change detection based on auditory sensory memory representations were investigated by presenting oddball sequences of repeatedly presented stimuli, while participants ignored the auditory stimuli. In a cross-linguistic study of Hungarian and German participants, stimulus sequences were composed of words that…

  9. Reduced auditory processing capacity during vocalization in children with Selective Mutism.

    Science.gov (United States)

    Arie, Miri; Henkin, Yael; Lamy, Dominique; Tetin-Schneider, Simona; Apter, Alan; Sadeh, Avi; Bar-Haim, Yair

    2007-02-01

    Because abnormal Auditory Efferent Activity (AEA) is associated with auditory distortions during vocalization, we tested whether auditory processing is impaired during vocalization in children with Selective Mutism (SM). Participants were children with SM and abnormal AEA, children with SM and normal AEA, and normally speaking controls, who had to detect aurally presented target words embedded within word lists under two conditions: silence (single task), and while vocalizing (dual task). To ascertain specificity of auditory-vocal deficit, effects of concurrent vocalizing were also examined during a visual task. Children with SM and abnormal AEA showed impaired auditory processing during vocalization relative to children with SM and normal AEA, and relative to control children. This impairment is specific to the auditory modality and does not reflect difficulties in dual task per se. The data extends previous findings suggesting that deficient auditory processing is involved in speech selectivity in SM.

  10. Evaluation of selective attention in patients with misophonia.

    Science.gov (United States)

    Silva, Fúlvia Eduarda da; Sanchez, Tanit Ganz

    2018-03-21

    Misophonia is characterized by the aversion to very selective sounds, which evoke a strong emotional reaction. It has been inferred that misophonia, as well as tinnitus, is associated with hyperconnectivity between auditory and limbic systems. Individuals with bothersome tinnitus may have selective attention impairment, but it has not been demonstrated in case of misophonia yet. To characterize a sample of misophonic subjects and compare it with two control groups, one with tinnitus individuals (without misophonia) and the other with asymptomatic individuals (without misophonia and without tinnitus), regarding the selective attention. We evaluated 40 normal-hearing participants: 10 with misophonia, 10 with tinnitus (without misophonia) and 20 without tinnitus and without misophonia. In order to evaluate the selective attention, the dichotic sentence identification test was applied in three situations: firstly, the Brazilian Portuguese test was applied. Then, the same test was applied, combined with two competitive sounds: chewing sound (representing a sound that commonly triggers misophonia), and white noise (representing a common type of tinnitus which causes discomfort to patients). The dichotic sentence identification test with chewing sound, showed that the average of correct responses differed between misophonia and without tinnitus and without misophonia (p=0.027) and between misophonia and tinnitus (without misophonia) (p=0.002), in both cases lower in misophonia. Both, the dichotic sentence identification test alone, and with white noise, failed to show differences in the average of correct responses among the three groups (p≥0.452). The misophonia participants presented a lower percentage of correct responses in the dichotic sentence identification test with chewing sound; suggesting that individuals with misophonia may have selective attention impairment when they are exposed to sounds that trigger this condition. Copyright © 2018 Associa

  11. Disturbed prepulse inhibition in patients with schizophrenia is consequential to dysfunction of selective attention.

    Science.gov (United States)

    Scholes, Kirsty E; Martin-Iverson, Mathew T

    2010-03-01

    Controversy exists as to the cause of disturbed prepulse inhibition (PPI) in patients with schizophrenia. This study aimed to clarify the nature of PPI in schizophrenia using improved methodology. Startle and PPI were measured in 44 patients with schizophrenia and 32 controls across a range of startling stimulus intensities under two conditions, one while participants were attending to the auditory stimuli (ATTEND condition) and one while participants completed a visual task in order to ensure they were ignoring the auditory stimuli (IGNORE condition). Patients showed reduced PPI of R(MAX) (reflex capacity) and increased PPI of Hillslope (reflex efficacy) only under the INGORE condition, and failed to show the same pattern of attentional modulation of the reflex parameters as controls. In conclusion, disturbed PPI in schizophrenia appears to result from deficits in selective attention, rather than from preattentive dysfunction.

  12. Selective attention to sound location or pitch studied with fMRI.

    Science.gov (United States)

    Degerman, Alexander; Rinne, Teemu; Salmi, Juha; Salonen, Oili; Alho, Kimmo

    2006-03-10

    We used 3-T functional magnetic resonance imaging to compare the brain mechanisms underlying selective attention to sound location and pitch. In different tasks, the subjects (N = 10) attended to a designated sound location or pitch or to pictures presented on the screen. In the Attend Location conditions, the sound location varied randomly (left or right), while the pitch was kept constant (high or low). In the Attend Pitch conditions, sounds of randomly varying pitch (high or low) were presented at a constant location (left or right). Both attention to location and attention to pitch produced enhanced activity (in comparison with activation caused by the same sounds when attention was focused on the pictures) in widespread areas of the superior temporal cortex. Attention to either sound feature also activated prefrontal and inferior parietal cortical regions. These activations were stronger during attention to location than during attention to pitch. Attention to location but not to pitch produced a significant increase of activation in the premotor/supplementary motor cortices of both hemispheres and in the right prefrontal cortex, while no area showed activity specifically related to attention to pitch. The present results suggest some differences in the attentional selection of sounds on the basis of their location and pitch consistent with the suggested auditory "what" and "where" processing streams.

  13. Cross-modal selective attention: on the difficulty of ignoring sounds at the locus of visual attention.

    Science.gov (United States)

    Spence, C; Ranson, J; Driver, J

    2000-02-01

    In three experiments, we investigated whether the ease with which distracting sounds can be ignored depends on their distance from fixation and from attended visual events. In the first experiment, participants shadowed an auditory stream of words presented behind their heads, while simultaneously fixating visual lip-read information consistent with the relevant auditory stream, or meaningless "chewing" lip movements. An irrelevant auditory stream of words, which participants had to ignore, was presented either from the same side as the fixated visual stream or from the opposite side. Selective shadowing was less accurate in the former condition, implying that distracting sounds are harder to ignore when fixated. Furthermore, the impairment when fixating toward distractor sounds was greater when speaking lips were fixated than when chewing lips were fixated, suggesting that people find it particularly difficult to ignore sounds at locations that are actively attended for visual lipreading rather than merely passively fixated. Experiments 2 and 3 tested whether these results are specific to cross-modal links in speech perception by replacing the visual lip movements with a rapidly changing stream of meaningless visual shapes. The auditory task was again shadowing, but the active visual task was now monitoring for a specific visual shape at one location. A decrement in shadowing was again observed when participants passively fixated toward the irrelevant auditory stream. This decrement was larger when participants performed a difficult active visual task there versus fixating, but not for a less demanding visual task versus fixation. The implications for cross-modal links in spatial attention are discussed.

  14. A new test of attention in listening (TAIL) predicts auditory performance.

    Science.gov (United States)

    Zhang, Yu-Xuan; Barry, Johanna G; Moore, David R; Amitay, Sygal

    2012-01-01

    Attention modulates auditory perception, but there are currently no simple tests that specifically quantify this modulation. To fill the gap, we developed a new, easy-to-use test of attention in listening (TAIL) based on reaction time. On each trial, two clearly audible tones were presented sequentially, either at the same or different ears. The frequency of the tones was also either the same or different (by at least two critical bands). When the task required same/different frequency judgments, presentation at the same ear significantly speeded responses and reduced errors. A same/different ear (location) judgment was likewise facilitated by keeping tone frequency constant. Perception was thus influenced by involuntary orienting of attention along the task-irrelevant dimension. When information in the two stimulus dimensions were congruent (same-frequency same-ear, or different-frequency different-ear), response was faster and more accurate than when they were incongruent (same-frequency different-ear, or different-frequency same-ear), suggesting the involvement of executive control to resolve conflicts. In total, the TAIL yielded five independent outcome measures: (1) baseline reaction time, indicating information processing efficiency, (2) involuntary orienting of attention to frequency and (3) location, and (4) conflict resolution for frequency and (5) location. Processing efficiency and conflict resolution accounted for up to 45% of individual variances in the low- and high-threshold variants of three psychoacoustic tasks assessing temporal and spectral processing. Involuntary orientation of attention to the irrelevant dimension did not correlate with perceptual performance on these tasks. Given that TAIL measures are unlikely to be limited by perceptual sensitivity, we suggest that the correlations reflect modulation of perceptual performance by attention. The TAIL thus has the power to identify and separate contributions of different components of attention

  15. Long-term memory biases auditory spatial attention.

    Science.gov (United States)

    Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude

    2017-10-01

    Long-term memory (LTM) has been shown to bias attention to a previously learned visual target location. Here, we examined whether memory-predicted spatial location can facilitate the detection of a faint pure tone target embedded in real world audio clips (e.g., soundtrack of a restaurant). During an initial familiarization task, participants heard audio clips, some of which included a lateralized target (p = 50%). On each trial participants indicated whether the target was presented from the left, right, or was absent. Following a 1 hr retention interval, participants were presented with the same audio clips, which now all included a target. In Experiment 1, participants showed memory-based gains in response time and d'. Experiment 2 showed that temporal expectations modulate attention, with greater memory-guided attention effects on performance when temporal context was reinstated from learning (i.e., when timing of the target within audio clips was not changed from initially learned timing). Experiment 3 showed that while conscious recall of target locations was modulated by exposure to target-context associations during learning (i.e., better recall with higher number of learning blocks), the influence of LTM associations on spatial attention was not reduced (i.e., number of learning blocks did not affect memory-guided attention). Both Experiments 2 and 3 showed gains in performance related to target-context associations, even for associations that were not explicitly remembered. Together, these findings indicate that memory for audio clips is acquired quickly and is surprisingly robust; both implicit and explicit LTM for the location of a faint target tone modulated auditory spatial attention. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Neural responses to complex auditory rhythms: the role of attending

    Directory of Open Access Journals (Sweden)

    Heather L Chapin

    2010-12-01

    Full Text Available The aim of this study was to explore the role of attention in pulse and meter perception using complex rhythms. We used a selective attention paradigm in which participants attended to either a complex auditory rhythm or a visually presented word list. Performance on a reproduction task was used to gauge whether participants were attending to the appropriate stimulus. We hypothesized that attention to complex rhythms – which contain no energy at the pulse frequency – would lead to activations in motor areas involved in pulse perception. Moreover, because multiple repetitions of a complex rhythm are needed to perceive a pulse, activations in pulse related areas would be seen only after sufficient time had elapsed for pulse perception to develop. Selective attention was also expected to modulate activity in sensory areas specific to the modality. We found that selective attention to rhythms led to increased BOLD responses in basal ganglia, and basal ganglia activity was observed only after the rhythms had cycled enough times for a stable pulse percept to develop. These observations suggest that attention is needed to recruit motor activations associated with the perception of pulse in complex rhythms. Moreover, attention to the auditory stimulus enhanced activity in an attentional sensory network including primary auditory, insula, anterior cingulate, and prefrontal cortex, and suppressed activity in sensory areas associated with attending to the visual stimulus.

  17. Attention deficits revealed by passive auditory change detection for pure tones and lexical tones in ADHD children.

    Science.gov (United States)

    Yang, Ming-Tao; Hsu, Chun-Hsien; Yeh, Pei-Wen; Lee, Wang-Tso; Liang, Jao-Shwann; Fu, Wen-Mei; Lee, Chia-Ying

    2015-01-01

    Inattention (IA) has been a major problem in children with attention deficit/hyperactivity disorder (ADHD), accounting for their behavioral and cognitive dysfunctions. However, there are at least three processing steps underlying attentional control for auditory change detection, namely pre-attentive change detection, involuntary attention orienting, and attention reorienting for further evaluation. This study aimed to examine whether children with ADHD would show deficits in any of these subcomponents by using mismatch negativity (MMN), P3a, and late discriminative negativity (LDN) as event-related potential (ERP) markers, under the passive auditory oddball paradigm. Two types of stimuli-pure tones and Mandarin lexical tones-were used to examine if the deficits were general across linguistic and non-linguistic domains. Participants included 15 native Mandarin-speaking children with ADHD and 16 age-matched controls (across groups, age ranged between 6 and 15 years). Two passive auditory oddball paradigms (lexical tones and pure tones) were applied. The pure tone oddball paradigm included a standard stimulus (1000 Hz, 80%) and two deviant stimuli (1015 and 1090 Hz, 10% each). The Mandarin lexical tone oddball paradigm's standard stimulus was /yi3/ (80%) and two deviant stimuli were /yi1/ and /yi2/ (10% each). The results showed no MMN difference, but did show attenuated P3a and enhanced LDN to the large deviants for both pure and lexical tone changes in the ADHD group. Correlation analysis showed that children with higher ADHD tendency, as indexed by parents' and teachers' ratings on ADHD symptoms, showed less positive P3a amplitudes when responding to large lexical tone deviants. Thus, children with ADHD showed impaired auditory change detection for both pure tones and lexical tones in both involuntary attention switching, and attention reorienting for further evaluation. These ERP markers may therefore be used for the evaluation of anti-ADHD drugs that aim to

  18. Attention deficits revealed by passive auditory change detection for pure tones and lexical tones in ADHD children

    Directory of Open Access Journals (Sweden)

    Ming-Tao eYang

    2015-08-01

    Full Text Available Inattention has been a major problem in children with attention deficit/hyperactivity disorder (ADHD, accounting for their behavioral and cognitive dysfunctions. However, there are at least three processing steps underlying attentional control for auditory change detection, namely pre-attentive change detection, involuntary attention orienting, and attention reorienting for further evaluation. This study aimed to examine whether children with ADHD would show deficits in any of these subcomponents by using mismatch negativity (MMN, P3a, and late discriminative negativity (LDN as event-related potential (ERP markers, under the passive auditory oddball paradigm. Two types of stimuli - pure tones and Mandarin lexical tones - were used to examine if the deficits were general across linguistic and non-linguistic domains. Participants included 15 native Mandarin-speaking children with ADHD and 16 age-matched controls (across groups, age ranged between 6 and 15 years. Two passive auditory oddball paradigms (lexical tones and pure tones were applied. Pure tone paradigm included standard stimuli (1000 Hz, 80% and two deviant stimuli (1015 Hz and 1090 Hz, 10% each. The Mandarin lexical tone paradigm’s standard stimuli was /yi3/ (80% and two deviant stimuli were /yi1/ and /yi2/ (10% each. The results showed no MMN difference, but did show attenuated P3a and enhanced LDN to the large deviants for both pure and lexical tone changes in the ADHD group. Correlation analysis showed that children with higher ADHD tendency, as indexed by parents’ and teachers’ rating on ADHD symptoms, showed less positive P3a amplitudes when responding to large lexical tone deviants. Thus, children with ADHD showed impaired auditory change detection for both pure tones and lexical tones in both involuntary attention switching, and attention reorienting for further evaluation. These ERP markers may therefore be used for evaluation of anti-ADHD drugs that aim to alleviate these

  19. Attention effects at auditory periphery derived from human scalp potentials: displacement measure of potentials.

    Science.gov (United States)

    Ikeda, Kazunari; Hayashi, Akiko; Sekiguchi, Takahiro; Era, Shukichi

    2006-10-01

    It is known in humans that electrophysiological measures such as the auditory brainstem response (ABR) are difficult to identify the attention effect at the auditory periphery, whereas the centrifugal effect has been detected by measuring otoacoustic emissions. This research developed a measure responsive to the shift of human scalp potentials within a brief post-stimulus period (13 ms), that is, displacement percentage, and applied it to an experiment to retrieve the peripheral attention effect. In the present experimental paradigm, tone pips were exposed to the left ear whereas the other ear was masked by white noise. Twelve participants each conducted two conditions of either ignoring or attending to the tone pips. Relative to averaged scalp potentials in the ignoring condition, the shift of the potentials was found within early component range during the attentive condition, and displacement percentage then revealed a significant magnitude difference between the two conditions. These results suggest that, using a measure representing the potential shift itself, the peripheral effect of attention can be detected from human scalp potentials.

  20. Increased psychophysiological parameters of attention in non-psychotic individuals with auditory verbal hallucinations

    DEFF Research Database (Denmark)

    van Lutterveld, Remko; Oranje, Bob; Abramovic, Lucija

    2010-01-01

    with an auditory oddball paradigm in 18 non-psychotic individuals with AVH and 18 controls. RESULTS: P300 amplitude was increased in the AVH group as compared to controls, reflecting superior effortful attention. A trend in the same direction was found for processing negativity. No significant differences were...... found for mismatch negativity. CONCLUSION: Contrary to our expectations, non-psychotic individuals with AVH show increased rather than decreased psychophysiological measures of effortful attention compared to healthy controls, refuting a pivotal role of decreased effortful attention...

  1. White Matter Integrity Dissociates Verbal Memory and Auditory Attention Span in Emerging Adults with Congenital Heart Disease.

    Science.gov (United States)

    Brewster, Ryan C; King, Tricia Z; Burns, Thomas G; Drossner, David M; Mahle, William T

    2015-01-01

    White matter disruptions have been identified in individuals with congenital heart disease (CHD). However, no specific theory-driven relationships between microstructural white matter disruptions and cognition have been established in CHD. We conducted a two-part study. First, we identified significant differences in fractional anisotropy (FA) of emerging adults with CHD using Tract-Based Spatial Statistics (TBSS). TBSS analyses between 22 participants with CHD and 18 demographically similar controls identified five regions of normal appearing white matter with significantly lower FA in CHD, and two higher. Next, two regions of lower FA in CHD were selected to examine theory-driven differential relationships with cognition: voxels along the left uncinate fasciculus (UF; a tract theorized to contribute to verbal memory) and voxels along the right middle cerebellar peduncle (MCP; a tract previously linked to attention). In CHD, a significant positive correlation between UF FA and memory was found, r(20)=.42, p=.049 (uncorrected). There was no correlation between UF and auditory attention span. A positive correlation between MCP FA and auditory attention span was found, r(20)=.47, p=.027 (uncorrected). There was no correlation between MCP and memory. In controls, no significant relationships were identified. These results are consistent with previous literature demonstrating lower FA in younger CHD samples, and provide novel evidence for disrupted white matter integrity in emerging adults with CHD. Furthermore, a correlational double dissociation established distinct white matter circuitry (UF and MCP) and differential cognitive correlates (memory and attention span, respectively) in young adults with CHD.

  2. The impact of visual gaze direction on auditory object tracking.

    Science.gov (United States)

    Pomper, Ulrich; Chait, Maria

    2017-07-05

    Subjective experience suggests that we are able to direct our auditory attention independent of our visual gaze, e.g when shadowing a nearby conversation at a cocktail party. But what are the consequences at the behavioural and neural level? While numerous studies have investigated both auditory attention and visual gaze independently, little is known about their interaction during selective listening. In the present EEG study, we manipulated visual gaze independently of auditory attention while participants detected targets presented from one of three loudspeakers. We observed increased response times when gaze was directed away from the locus of auditory attention. Further, we found an increase in occipital alpha-band power contralateral to the direction of gaze, indicative of a suppression of distracting input. Finally, this condition also led to stronger central theta-band power, which correlated with the observed effect in response times, indicative of differences in top-down processing. Our data suggest that a misalignment between gaze and auditory attention both reduce behavioural performance and modulate underlying neural processes. The involvement of central theta-band and occipital alpha-band effects are in line with compensatory neural mechanisms such as increased cognitive control and the suppression of task irrelevant inputs.

  3. Development of Auditory Selective Attention: Why Children Struggle to Hear in Noisy Environments

    Science.gov (United States)

    Jones, Pete R.; Moore, David R.; Amitay, Sygal

    2015-01-01

    Children's hearing deteriorates markedly in the presence of unpredictable noise. To explore why, 187 school-age children (4-11 years) and 15 adults performed a tone-in-noise detection task, in which the masking noise varied randomly between every presentation. Selective attention was evaluated by measuring the degree to which listeners were…

  4. Visual evoked potentials and selective attention to points in space

    Science.gov (United States)

    Van Voorhis, S.; Hillyard, S. A.

    1977-01-01

    Visual evoked potentials (VEPs) were recorded to sequences of flashes delivered to the right and left visual fields while subjects responded promptly to designated stimuli in one field at a time (focused attention), in both fields at once (divided attention), or to neither field (passive). Three stimulus schedules were used: the first was a replication of a previous study (Eason, Harter, and White, 1969) where left- and right-field flashes were delivered quasi-independently, while in the other two the flashes were delivered to the two fields in random order (Bernoulli sequence). VEPs to attended-field stimuli were enhanced at both occipital (O2) and central (Cz) recording sites under all stimulus sequences, but different components were affected at the two scalp sites. It was suggested that the VEP at O2 may reflect modality-specific processing events, while the response at Cz, like its auditory homologue, may index more general aspects of selective attention.

  5. Concurrent deployment of visual attention and response selection bottleneck in a dual-task: Electrophysiological and behavioural evidence.

    Science.gov (United States)

    Reimer, Christina B; Strobach, Tilo; Schubert, Torsten

    2017-12-01

    Visual attention and response selection are limited in capacity. Here, we investigated whether visual attention requires the same bottleneck mechanism as response selection in a dual-task of the psychological refractory period (PRP) paradigm. The dual-task consisted of an auditory two-choice discrimination Task 1 and a conjunction search Task 2, which were presented at variable temporal intervals (stimulus onset asynchrony, SOA). In conjunction search, visual attention is required to select items and to bind their features resulting in a serial search process around the items in the search display (i.e., set size). We measured the reaction time of the visual search task (RT2) and the N2pc, an event-related potential (ERP), which reflects lateralized visual attention processes. If the response selection processes in Task 1 influence the visual attention processes in Task 2, N2pc latency and amplitude would be delayed and attenuated at short SOA compared to long SOA. The results, however, showed that latency and amplitude were independent of SOA, indicating that visual attention was concurrently deployed to response selection. Moreover, the RT2 analysis revealed an underadditive interaction of SOA and set size. We concluded that visual attention does not require the same bottleneck mechanism as response selection in dual-tasks.

  6. Feature-selective attention in healthy old age: a selective decline in selective attention?

    Science.gov (United States)

    Quigley, Cliodhna; Müller, Matthias M

    2014-02-12

    Deficient selection against irrelevant information has been proposed to underlie age-related cognitive decline. We recently reported evidence for maintained early sensory selection when older and younger adults used spatial selective attention to perform a challenging task. Here we explored age-related differences when spatial selection is not possible and feature-selective attention must be deployed. We additionally compared the integrity of feedforward processing by exploiting the well established phenomenon of suppression of visual cortical responses attributable to interstimulus competition. Electroencephalogram was measured while older and younger human adults responded to brief occurrences of coherent motion in an attended stimulus composed of randomly moving, orientation-defined, flickering bars. Attention was directed to horizontal or vertical bars by a pretrial cue, after which two orthogonally oriented, overlapping stimuli or a single stimulus were presented. Horizontal and vertical bars flickered at different frequencies and thereby elicited separable steady-state visual-evoked potentials, which were used to examine the effect of feature-based selection and the competitive influence of a second stimulus on ongoing visual processing. Age differences were found in feature-selective attentional modulation of visual responses: older adults did not show consistent modulation of magnitude or phase. In contrast, the suppressive effect of a second stimulus was robust and comparable in magnitude across age groups, suggesting that bottom-up processing of the current stimuli is essentially unchanged in healthy old age. Thus, it seems that visual processing per se is unchanged, but top-down attentional control is compromised in older adults when space cannot be used to guide selection.

  7. The role of modality : Auditory and visual distractors in Stroop interference

    NARCIS (Netherlands)

    Elliott, Emily M.; Morey, Candice C.; Morey, Richard D.; Eaves, Sharon D.; Shelton, Jill Talley; Lutfi-Proctor, Danielle A.

    2014-01-01

    As a commonly used measure of selective attention, it is important to understand the factors contributing to interference in the Stroop task. The current research examined distracting stimuli in the auditory and visual modalities to determine whether the use of auditory distractors would create

  8. Interaction of streaming and attention in human auditory cortex.

    Science.gov (United States)

    Gutschalk, Alexander; Rupp, André; Dykstra, Andrew R

    2015-01-01

    Serially presented tones are sometimes segregated into two perceptually distinct streams. An ongoing debate is whether this basic streaming phenomenon reflects automatic processes or requires attention focused to the stimuli. Here, we examined the influence of focused attention on streaming-related activity in human auditory cortex using magnetoencephalography (MEG). Listeners were presented with a dichotic paradigm in which left-ear stimuli consisted of canonical streaming stimuli (ABA_ or ABAA) and right-ear stimuli consisted of a classical oddball paradigm. In phase one, listeners were instructed to attend the right-ear oddball sequence and detect rare deviants. In phase two, they were instructed to attend the left ear streaming stimulus and report whether they heard one or two streams. The frequency difference (ΔF) of the sequences was set such that the smallest and largest ΔF conditions generally induced one- and two-stream percepts, respectively. Two intermediate ΔF conditions were chosen to elicit bistable percepts (i.e., either one or two streams). Attention enhanced the peak-to-peak amplitude of the P1-N1 complex, but only for ambiguous ΔF conditions, consistent with the notion that automatic mechanisms for streaming tightly interact with attention and that the latter is of particular importance for ambiguous sound sequences.

  9. The role of visual spatial attention in audiovisual speech perception

    DEFF Research Database (Denmark)

    Andersen, Tobias; Tiippana, K.; Laarni, J.

    2009-01-01

    Auditory and visual information is integrated when perceiving speech, as evidenced by the McGurk effect in which viewing an incongruent talking face categorically alters auditory speech perception. Audiovisual integration in speech perception has long been considered automatic and pre-attentive b......Auditory and visual information is integrated when perceiving speech, as evidenced by the McGurk effect in which viewing an incongruent talking face categorically alters auditory speech perception. Audiovisual integration in speech perception has long been considered automatic and pre...... from each of the faces and from the voice on the auditory speech percept. We found that directing visual spatial attention towards a face increased the influence of that face on auditory perception. However, the influence of the voice on auditory perception did not change suggesting that audiovisual...... integration did not change. Visual spatial attention was also able to select between the faces when lip reading. This suggests that visual spatial attention acts at the level of visual speech perception prior to audiovisual integration and that the effect propagates through audiovisual integration...

  10. Selective attention and the auditory vertex potential. 2: Effects of signal intensity and masking noise

    Science.gov (United States)

    Schwent, V. L.; Hillyard, S. A.; Galambos, R.

    1975-01-01

    A randomized sequence of tone bursts was delivered to subjects at short inter-stimulus intervals with the tones originating from one of three spatially and frequency specific channels. The subject's task was to count the tones in one of the three channels at a time, ignoring the other two, and press a button after each tenth tone. In different conditions, tones were given at high and low intensities and with or without a background white noise to mask the tones. The N sub 1 component of the auditory vertex potential was found to be larger in response to attended channel tones in relation to unattended tones. This selective enhancement of N sub 1 was minimal for loud tones presented without noise and increased markedly for the lower tone intensity and in noise added conditions.

  11. Readout from iconic memory and selective spatial attention involve similar neural processes.

    Science.gov (United States)

    Ruff, Christian C; Kristjánsson, Arni; Driver, Jon

    2007-10-01

    Iconic memory and spatial attention are often considered separately, but they may have functional similarities. Here we provide functional magnetic resonance imaging evidence for some common underlying neural effects. Subjects judged three visual stimuli in one hemifield of a bilateral array comprising six stimuli. The relevant hemifield for partial report was indicated by an auditory cue, administered either before the visual array (precue, spatial attention) or shortly after the array (postcue, iconic memory). Pre- and postcues led to similar activity modulations in lateral occipital cortex contralateral to the cued side. This finding indicates that readout from iconic memory can have some neural effects similar to those of spatial attention. We also found common bilateral activation of a fronto-parietal network for postcue and precue trials. These neuroimaging data suggest that some common neural mechanisms underlie selective spatial attention and readout from iconic memory. Some differences were also found; compared with precues, postcues led to higher activity in the right middle frontal gyrus.

  12. More insight into the interplay of response selection and visual attention in dual-tasks: masked visual search and response selection are performed in parallel.

    Science.gov (United States)

    Reimer, Christina B; Schubert, Torsten

    2017-09-15

    Both response selection and visual attention are limited in capacity. According to the central bottleneck model, the response selection processes of two tasks in a dual-task situation are performed sequentially. In conjunction search, visual attention is required to select the items and to bind their features (e.g., color and form), which results in a serial search process. Search time increases as items are added to the search display (i.e., set size effect). When the search display is masked, visual attention deployment is restricted to a brief period of time and target detection decreases as a function of set size. Here, we investigated whether response selection and visual attention (i.e., feature binding) rely on a common or on distinct capacity limitations. In four dual-task experiments, participants completed an auditory Task 1 and a conjunction search Task 2 that were presented with an experimentally modulated temporal interval between them (Stimulus Onset Asynchrony, SOA). In Experiment 1, Task 1 was a two-choice discrimination task and the conjunction search display was not masked. In Experiment 2, the response selection difficulty in Task 1 was increased to a four-choice discrimination and the search task was the same as in Experiment 1. We applied the locus-of-slack method in both experiments to analyze conjunction search time, that is, we compared the set size effects across SOAs. Similar set size effects across SOAs (i.e., additive effects of SOA and set size) would indicate sequential processing of response selection and visual attention. However, a significantly smaller set size effect at short SOA compared to long SOA (i.e., underadditive interaction of SOA and set size) would indicate parallel processing of response selection and visual attention. In both experiments, we found underadditive interactions of SOA and set size. In Experiments 3 and 4, the conjunction search display in Task 2 was masked. Task 1 was the same as in Experiments 1 and 2

  13. Oscillatory Mechanisms of Stimulus Processing and Selection in the Visual and Auditory Systems: State-of-the-Art, Speculations and Suggestions

    Directory of Open Access Journals (Sweden)

    Benedikt Zoefel

    2017-05-01

    Full Text Available All sensory systems need to continuously prioritize and select incoming stimuli in order to avoid overflow or interference, and provide a structure to the brain's input. However, the characteristics of this input differ across sensory systems; therefore, and as a direct consequence, each sensory system might have developed specialized strategies to cope with the continuous stream of incoming information. Neural oscillations are intimately connected with this selection process, as they can be used by the brain to rhythmically amplify or attenuate input and therefore represent an optimal tool for stimulus selection. In this paper, we focus on oscillatory processes for stimulus selection in the visual and auditory systems. We point out both commonalities and differences between the two systems and develop several hypotheses, inspired by recently published findings: (1 The rhythmic component in its input is crucial for the auditory, but not for the visual system. The alignment between oscillatory phase and rhythmic input (phase entrainment is therefore an integral part of stimulus selection in the auditory system whereas the visual system merely adjusts its phase to upcoming events, without the need for any rhythmic component. (2 When input is unpredictable, the visual system can maintain its oscillatory sampling, whereas the auditory system switches to a different, potentially internally oriented, “mode” of processing that might be characterized by alpha oscillations. (3 Visual alpha can be divided into a faster occipital alpha (10 Hz and a slower frontal alpha (7 Hz that critically depends on attention.

  14. Is the effect of tinnitus on auditory steady-state response amplitude mediated by attention?

    Directory of Open Access Journals (Sweden)

    Eugen eDiesch

    2012-05-01

    Full Text Available Objectives: The amplitude of the auditory steady-state response (ASSR is enhanced in tinnitus. As ASSR ampli¬tude is also enhanced by attention, the effect of tinnitus on ASSR amplitude could be interpreted as an effect of attention mediated by tinnitus. As attention effects on the N1 are signi¬fi¬cantly larger than those on the ASSR, if the effect of tinnitus on ASSR amplitude were due to attention, there should be similar amplitude enhancement effects in tinnitus for the N1 component of the auditory evoked response. Methods: MEG recordings of auditory evoked responses which were previously examined for the ASSR (Diesch et al. 2010 were analysed with respect to the N1m component. Like the ASSR previously, the N1m was analysed in the source domain (source space projection. Stimuli were amplitude-modulated tones with one of three carrier fre¬quen¬cies matching the tinnitus frequency or a surrogate frequency 1½ octaves above the audio¬metric edge frequency in con¬trols, the audiometric edge frequency, and a frequency below the audio¬metric edgeResults: In the earlier ASSR study (Diesch et al., 2010, the ASSR amplitude in tinnitus patients, but not in controls, was significantly larger in the (surrogate tinnitus condition than in the edge condition. In the present study, both tinnitus patients and healthy controls show an N1m-amplitude profile identical to the one of ASSR amplitudes in healthy controls. N1m amplitudes elicited by tonal frequencies located at the audiometric edge and at the (surrogate tinnitus frequency are smaller than N1m amplitudes elicited by sub-edge tones and do not differ among each other.Conclusions: There is no N1-amplitude enhancement effect in tinnitus. The enhancement effect of tinnitus on ASSR amplitude cannot be accounted for in terms of attention induced by tinnitus.

  15. Brain correlates of the orientation of auditory spatial attention onto speaker location in a "cocktail-party" situation.

    Science.gov (United States)

    Lewald, Jörg; Hanenberg, Christina; Getzmann, Stephan

    2016-10-01

    Successful speech perception in complex auditory scenes with multiple competing speakers requires spatial segregation of auditory streams into perceptually distinct and coherent auditory objects and focusing of attention toward the speaker of interest. Here, we focused on the neural basis of this remarkable capacity of the human auditory system and investigated the spatiotemporal sequence of neural activity within the cortical network engaged in solving the "cocktail-party" problem. Twenty-eight subjects localized a target word in the presence of three competing sound sources. The analysis of the ERPs revealed an anterior contralateral subcomponent of the N2 (N2ac), computed as the difference waveform for targets to the left minus targets to the right. The N2ac peaked at about 500 ms after stimulus onset, and its amplitude was correlated with better localization performance. Cortical source localization for the contrast of left versus right targets at the time of the N2ac revealed a maximum in the region around left superior frontal sulcus and frontal eye field, both of which are known to be involved in processing of auditory spatial information. In addition, a posterior-contralateral late positive subcomponent (LPCpc) occurred at a latency of about 700 ms. Both these subcomponents are potential correlates of allocation of spatial attention to the target under cocktail-party conditions. © 2016 Society for Psychophysiological Research.

  16. Top-down modulation of the auditory steady-state response in a task-switch paradigm

    Directory of Open Access Journals (Sweden)

    Nadia Müller

    2009-02-01

    Full Text Available Auditory selective attention is an important mechanism for top-down selection of the vast amount of auditory information our perceptual system is exposed to. In the present study, the impact of attention on auditory steady-state responses - previously shown to be generated in primary auditory regions - was investigated. This issue is still a matter of debate and recent findings point to a complex pattern of attentional effects on the aSSR. The present study aimed at shedding light on the involvement of ipsilateral and contralateral activations to the attended sound taking into account hemispheric differences and a possible dependency on modulation frequency. In aid of this, a dichotic listening experiment was designed using amplitude-modulated tones that were presented to the left and right ear simultaneously. Participants had to detect target tones in a cued ear while their brain activity was assessed using MEG. Thereby, a modulation of the aSSR by attention could be revealed, interestingly restricted to the left hemisphere and 20 Hz responses: Contralateral activations were enhanced while ipsilateral activations turned out to be reduced. Thus, our findings support and extend recent findings, showing that auditory attention can influence the aSSR, but only under specific circumstances and in a complex pattern regarding the different effects for ipsilateral and contralateral activations.

  17. The absence of an auditory-visual attentional blink is not due to echoic memory.

    Science.gov (United States)

    Van der Burg, Erik; Olivers, Christian N; Bronkhorst, Adelbei W; Koelewijn, Thomas; Theeuwes, Jan

    2007-10-01

    The second of two targets is often missed when presented shortly after the first target--a phenomenon referred to as the attentional blink (AB). Whereas the AB is a robust phenomenon within sensory modalities, the evidence for cross-modal ABs is rather mixed. Here, we test the possibility that the absence of an auditory-visual AB for visual letter recognition when streams of tones are used is due to the efficient use of echoic memory, allowing for the postponement of auditory processing. However, forcing participants to immediately process the auditory target, either by presenting interfering sounds during retrieval or by making the first target directly relevant for a speeded response to the second target, did not result in a return of a cross-modal AB. Thefindings argue against echoic memory as an explanation for efficient cross-modal processing. Instead, we hypothesized that a cross-modal AB may be observed when the different modalities use common representations, such as semantic representations. In support of this, a deficit for visual letter recognition returned when the auditory task required a distinction between spoken digits and letters.

  18. Self-supervised, mobile-application based cognitive training of auditory attention: A behavioral and fMRI evaluation

    Directory of Open Access Journals (Sweden)

    Josef J. Bless

    2014-07-01

    Full Text Available Emerging evidence of the validity of collecting data in natural settings using smartphone applications has opened new possibilities for psychological assessment, treatment, and research. In this study we explored the feasibility and effectiveness of using a mobile application for self-supervised training of auditory attention. In addition, we investigated the neural underpinnings of the training procedure with functional magnetic resonance imaging (fMRI, as well as possible transfer effects to untrained cognitive interference tasks. Subjects in the training group performed the training task on an iPod touch two times a day (morning/evening for three weeks; subjects in the control group received no training, but were tested at the same time interval as the training group. Behavioral responses were measured before and after the training period in both groups, together with measures of task-related neural activations by fMRI. The results showed an expected performance increase after training that corresponded to activation decreases in brain regions associated with selective auditory processing (left posterior temporal gyrus and executive functions (right middle frontal gyrus, indicating more efficient processing in task-related neural networks after training. Our study suggests that cognitive training delivered via mobile applications is feasible and improves the ability to focus attention with corresponding effects on neural plasticity. Future research should focus on the clinical benefits of mobile cognitive training. Limitations of the study are discussed including reduced experimental control and lack of transfer effects.

  19. Spatial selective attention in a complex auditory environment such as polyphonic music.

    Science.gov (United States)

    Saupe, Katja; Koelsch, Stefan; Rübsamen, Rudolf

    2010-01-01

    To investigate the influence of spatial information in auditory scene analysis, polyphonic music (three parts in different timbres) was composed and presented in free field. Each part contained large falling interval jumps in the melody and the task of subjects was to detect these events in one part ("target part") while ignoring the other parts. All parts were either presented from the same location (0 degrees; overlap condition) or from different locations (-28 degrees, 0 degrees, and 28 degrees or -56 degrees, 0 degrees, and 56 degrees in the azimuthal plane), with the target part being presented either at 0 degrees or at one of the right-sided locations. Results showed that spatial separation of 28 degrees was sufficient for a significant improvement in target detection (i.e., in the detection of large interval jumps) compared to the overlap condition, irrespective of the position (frontal or right) of the target part. A larger spatial separation of the parts resulted in further improvements only if the target part was lateralized. These data support the notion of improvement in the suppression of interfering signals with spatial sound source separation. Additionally, the data show that the position of the relevant sound source influences auditory performance.

  20. Active listening impairs visual perception and selectivity: an ERP study of auditory dual-task costs on visual attention.

    Science.gov (United States)

    Gherri, Elena; Eimer, Martin

    2011-04-01

    The ability to drive safely is disrupted by cell phone conversations, and this has been attributed to a diversion of attention from the visual environment. We employed behavioral and ERP measures to study whether the attentive processing of spoken messages is, in itself, sufficient to produce visual-attentional deficits. Participants searched for visual targets defined by a unique feature (Experiment 1) or feature conjunction (Experiment 2), and simultaneously listened to narrated text passages that had to be recalled later (encoding condition), or heard backward-played speech sounds that could be ignored (control condition). Responses to targets were slower in the encoding condition, and ERPs revealed that the visual processing of search arrays and the attentional selection of target stimuli were less efficient in the encoding relative to the control condition. Results demonstrate that the attentional processing of visual information is impaired when concurrent spoken messages are encoded and maintained, in line with cross-modal links in selective attention, but inconsistent with the view that attentional resources are modality-specific. The distraction of visual attention by active listening could contribute to the adverse effects of cell phone use on driving performance.

  1. Intrusion recognition for optic fiber vibration sensor based on the selective attention mechanism

    Science.gov (United States)

    Xu, Haiyan; Xie, Yingjuan; Li, Min; Zhang, Zhuo; Zhang, Xuewu

    2017-11-01

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. A fiber optic perimeter detection system based on all-fiber interferometric sensor is proposed, through the back-end analysis, processing and intelligent identification, which can distinguish effects of different intrusion activities. In this paper, an intrusion recognition based on the auditory selective attention mechanism is proposed. Firstly, considering the time-frequency of vibration, the spectrogram is calculated. Secondly, imitating the selective attention mechanism, the color, direction and brightness map of the spectrogram is computed. Based on these maps, the feature matrix is formed after normalization. The system could recognize the intrusion activities occurred along the perimeter sensors. Experiment results show that the proposed method for the perimeter is able to differentiate intrusion signals from ambient noises. What's more, the recognition rate of the system is improved while deduced the false alarm rate, the approach is proved by large practical experiment and project.

  2. Peripheral hearing loss reduces the ability of children to direct selective attention during multi-talker listening.

    Science.gov (United States)

    Holmes, Emma; Kitterick, Padraig T; Summerfield, A Quentin

    2017-07-01

    Restoring normal hearing requires knowledge of how peripheral and central auditory processes are affected by hearing loss. Previous research has focussed primarily on peripheral changes following sensorineural hearing loss, whereas consequences for central auditory processing have received less attention. We examined the ability of hearing-impaired children to direct auditory attention to a voice of interest (based on the talker's spatial location or gender) in the presence of a common form of background noise: the voices of competing talkers (i.e. during multi-talker, or "Cocktail Party" listening). We measured brain activity using electro-encephalography (EEG) when children prepared to direct attention to the spatial location or gender of an upcoming target talker who spoke in a mixture of three talkers. Compared to normally-hearing children, hearing-impaired children showed significantly less evidence of preparatory brain activity when required to direct spatial attention. This finding is consistent with the idea that hearing-impaired children have a reduced ability to prepare spatial attention for an upcoming talker. Moreover, preparatory brain activity was not restored when hearing-impaired children listened with their acoustic hearing aids. An implication of these findings is that steps to improve auditory attention alongside acoustic hearing aids may be required to improve the ability of hearing-impaired children to understand speech in the presence of competing talkers. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2002-07-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depressin, and hyperacute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of The Sound of a Moracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  4. At what time is the cocktail party? A late locus of selective attention to natural speech.

    Science.gov (United States)

    Power, Alan J; Foxe, John J; Forde, Emma-Jane; Reilly, Richard B; Lalor, Edmund C

    2012-05-01

    Distinguishing between speakers and focusing attention on one speaker in multi-speaker environments is extremely important in everyday life. Exactly how the brain accomplishes this feat and, in particular, the precise temporal dynamics of this attentional deployment are as yet unknown. A long history of behavioral research using dichotic listening paradigms has debated whether selective attention to speech operates at an early stage of processing based on the physical characteristics of the stimulus or at a later stage during semantic processing. With its poor temporal resolution fMRI has contributed little to the debate, while EEG-ERP paradigms have been hampered by the need to average the EEG in response to discrete stimuli which are superimposed onto ongoing speech. This presents a number of problems, foremost among which is that early attention effects in the form of endogenously generated potentials can be so temporally broad as to mask later attention effects based on the higher level processing of the speech stream. Here we overcome this issue by utilizing the AESPA (auditory evoked spread spectrum analysis) method which allows us to extract temporally detailed responses to two concurrently presented speech streams in natural cocktail-party-like attentional conditions without the need for superimposed probes. We show attentional effects on exogenous stimulus processing in the 200-220 ms range in the left hemisphere. We discuss these effects within the context of research on auditory scene analysis and in terms of a flexible locus of attention that can be deployed at a particular processing stage depending on the task. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  5. Neural Correlates of Automatic and Controlled Auditory Processing in Schizophrenia

    Science.gov (United States)

    Morey, Rajendra A.; Mitchell, Teresa V.; Inan, Seniha; Lieberman, Jeffrey A.; Belger, Aysenil

    2009-01-01

    Individuals with schizophrenia demonstrate impairments in selective attention and sensory processing. The authors assessed differences in brain function between 26 participants with schizophrenia and 17 comparison subjects engaged in automatic (unattended) and controlled (attended) auditory information processing using event-related functional MRI. Lower regional neural activation during automatic auditory processing in the schizophrenia group was not confined to just the temporal lobe, but also extended to prefrontal regions. Controlled auditory processing was associated with a distributed frontotemporal and subcortical dysfunction. Differences in activation between these two modes of auditory information processing were more pronounced in the comparison group than in the patient group. PMID:19196926

  6. Beyond the real world: attention debates in auditory mismatch negativity.

    Science.gov (United States)

    Chung, Kyungmi; Park, Jin Young

    2018-04-11

    The aim of this study was to address the potential for the auditory mismatch negativity (aMMN) to be used in applied event-related potential (ERP) studies by determining whether the aMMN would be an attention-dependent ERP component and could be differently modulated across visual tasks or virtual reality (VR) stimuli with different visual properties and visual complexity levels. A total of 80 participants, aged 19-36 years, were assigned to either a reading-task (21 men and 19 women) or a VR-task (22 men and 18 women) group. Two visual-task groups of healthy young adults were matched in age, sex, and handedness. All participants were instructed to focus only on the given visual tasks and ignore auditory change detection. While participants in the reading-task group read text slides, those in the VR-task group viewed three 360° VR videos in a random order and rated how visually complex the given virtual environment was immediately after each VR video ended. Inconsistent with the finding of a partial significant difference in perceived visual complexity in terms of brightness of virtual environments, both visual properties of distance and brightness showed no significant differences in the modulation of aMMN amplitudes. A further analysis was carried out to compare elicited aMMN amplitudes of a typical MMN task and an applied VR task. No significant difference in the aMMN amplitudes was found across the two groups who completed visual tasks with different visual-task demands. In conclusion, the aMMN is a reliable ERP marker of preattentive cognitive processing for auditory deviance detection.

  7. Selective attention without a neocortex.

    Science.gov (United States)

    Krauzlis, Richard J; Bogadhi, Amarender R; Herman, James P; Bollimunta, Anil

    2018-05-01

    Selective attention refers to the ability to restrict neural processing and behavioral responses to a relevant subset of available stimuli, while simultaneously excluding other valid stimuli from consideration. In primates and other mammals, descriptions of this ability typically emphasize the neural processing that takes place in the cerebral neocortex. However, non-mammals such as birds, reptiles, amphibians and fish, which completely lack a neocortex, also have the ability to selectively attend. In this article, we survey the behavioral evidence for selective attention in non-mammals, and review the midbrain and forebrain structures that are responsible. The ancestral forms of selective attention are presumably selective orienting behaviors, such as prey-catching and predator avoidance. These behaviors depend critically on a set of subcortical structures, including the optic tectum (OT), thalamus and striatum, that are highly conserved across vertebrate evolution. In contrast, the contributions of different pallial regions in the forebrain to selective attention have been subject to more substantial changes and reorganization. This evolutionary perspective makes plain that selective attention is not a function achieved de novo with the emergence of the neocortex, but instead is implemented by circuits accrued and modified over hundreds of millions of years, beginning well before the forebrain contained a neocortex. Determining how older subcortical circuits interact with the more recently evolved components in the neocortex will likely be crucial for understanding the complex properties of selective attention in primates and other mammals, and for identifying the etiology of attention disorders. Published by Elsevier Ltd.

  8. Functional sex differences in human primary auditory cortex

    International Nuclear Information System (INIS)

    Ruytjens, Liesbet; Georgiadis, Janniko R.; Holstege, Gert; Wit, Hero P.; Albers, Frans W.J.; Willemsen, Antoon T.M.

    2007-01-01

    We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a baseline (no auditory stimulation). We found a sex difference in activation of the left and right PAC when comparing music to noise. The PAC was more activated by music than by noise in both men and women. But this difference between the two stimuli was significantly higher in men than in women. To investigate whether this difference could be attributed to either music or noise, we compared both stimuli with the baseline and revealed that noise gave a significantly higher activation in the female PAC than in the male PAC. Moreover, the male group showed a deactivation in the right prefrontal cortex when comparing noise to the baseline, which was not present in the female group. Interestingly, the auditory and prefrontal regions are anatomically and functionally linked and the prefrontal cortex is known to be engaged in auditory tasks that involve sustained or selective auditory attention. Thus we hypothesize that differences in attention result in a different deactivation of the right prefrontal cortex, which in turn modulates the activation of the PAC and thus explains the sex differences found in the activation of the PAC. Our results suggest that sex is an important factor in auditory brain studies. (orig.)

  9. Functional sex differences in human primary auditory cortex

    Energy Technology Data Exchange (ETDEWEB)

    Ruytjens, Liesbet [University Medical Center Groningen, Department of Otorhinolaryngology, Groningen (Netherlands); University Medical Center Utrecht, Department Otorhinolaryngology, P.O. Box 85500, Utrecht (Netherlands); Georgiadis, Janniko R. [University of Groningen, University Medical Center Groningen, Department of Anatomy and Embryology, Groningen (Netherlands); Holstege, Gert [University of Groningen, University Medical Center Groningen, Center for Uroneurology, Groningen (Netherlands); Wit, Hero P. [University Medical Center Groningen, Department of Otorhinolaryngology, Groningen (Netherlands); Albers, Frans W.J. [University Medical Center Utrecht, Department Otorhinolaryngology, P.O. Box 85500, Utrecht (Netherlands); Willemsen, Antoon T.M. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands)

    2007-12-15

    We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a baseline (no auditory stimulation). We found a sex difference in activation of the left and right PAC when comparing music to noise. The PAC was more activated by music than by noise in both men and women. But this difference between the two stimuli was significantly higher in men than in women. To investigate whether this difference could be attributed to either music or noise, we compared both stimuli with the baseline and revealed that noise gave a significantly higher activation in the female PAC than in the male PAC. Moreover, the male group showed a deactivation in the right prefrontal cortex when comparing noise to the baseline, which was not present in the female group. Interestingly, the auditory and prefrontal regions are anatomically and functionally linked and the prefrontal cortex is known to be engaged in auditory tasks that involve sustained or selective auditory attention. Thus we hypothesize that differences in attention result in a different deactivation of the right prefrontal cortex, which in turn modulates the activation of the PAC and thus explains the sex differences found in the activation of the PAC. Our results suggest that sex is an important factor in auditory brain studies. (orig.)

  10. Hippocampal volume and auditory attention on a verbal memory task with adult survivors of pediatric brain tumor.

    Science.gov (United States)

    Jayakar, Reema; King, Tricia Z; Morris, Robin; Na, Sabrina

    2015-03-01

    We examined the nature of verbal memory deficits and the possible hippocampal underpinnings in long-term adult survivors of childhood brain tumor. 35 survivors (M = 24.10 ± 4.93 years at testing; 54% female), on average 15 years post-diagnosis, and 59 typically developing adults (M = 22.40 ± 4.35 years, 54% female) participated. Automated FMRIB Software Library (FSL) tools were used to measure hippocampal, putamen, and whole brain volumes. The California Verbal Learning Test-Second Edition (CVLT-II) was used to assess verbal memory. Hippocampal, F(1, 91) = 4.06, ηp² = .04; putamen, F(1, 91) = 11.18, ηp² = .11; and whole brain, F(1, 92) = 18.51, ηp² = .17, volumes were significantly lower for survivors than controls (p memory indices of auditory attention list span (Trial 1: F(1, 92) = 12.70, η² = .12) and final list learning (Trial 5: F(1, 92) = 6.01, η² = .06) were significantly lower for survivors (p attention, but none of the other CVLT-II indices. Secondary analyses for the effect of treatment factors are presented. Volumetric differences between survivors and controls exist for the whole brain and for subcortical structures on average 15 years post-diagnosis. Treatment factors seem to have a unique effect on subcortical structures. Memory differences between survivors and controls are largely contingent upon auditory attention list span. Only hippocampal volume is associated with the auditory attention list span component of verbal memory. These findings are particularly robust for survivors treated with radiation. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  11. Selective Attention and Multisensory Integration: Multiple Phases of Effects on the Evoked Brain Activity

    NARCIS (Netherlands)

    Talsma, D.; Woldorff, Marty G.

    2005-01-01

    We used event-related potentials (ERPs) to evaluate the role of attention in the integration of visual and auditory features of multisensory objects. This was done by contrasting the ERPs to multisensory stimuli (AV) to the sum of the ERPs to the corresponding auditory-only (A) and visual-only (V)

  12. Focussing on aging : An electrophysiological exploration of spatial and attentional processing during reading

    NARCIS (Netherlands)

    Gunter, TC; Jackson, JL; Mulder, G

    1996-01-01

    Three types of selective attention tasks were presented to 24 young (20.5 years) and 24 middle-aged (57.5 years) participants. The major aim of the experiment was to explore three different aspects of selective attention, namely a pre-attentive level (i.e. auditory passive oddball task), an

  13. Time perception, attention, and memory: a selective review.

    Science.gov (United States)

    Block, Richard A; Gruber, Ronald P

    2014-06-01

    This article provides a selective review of time perception research, mainly focusing on the authors' research. Aspects of psychological time include simultaneity, successiveness, temporal order, and duration judgments. In contrast to findings at interstimulus intervals or durations less than 3.0-5.0 s, there is little evidence for an "across-senses" effect of perceptual modality (visual vs. auditory) at longer intervals or durations. In addition, the flow of time (events) is a pervasive perceptual illusion, and we review evidence on that. Some temporal information is encoded All rights reserved. relatively automatically into memory: People can judge time-related attributes such as recency, frequency, temporal order, and duration of events. Duration judgments in prospective and retrospective paradigms reveal differences between them, as well as variables that moderate the processes involved. An attentional-gate model is needed to account for prospective judgments, and a contextual-change model is needed to account for retrospective judgments. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Visuospatial selective attention in chickens.

    Science.gov (United States)

    Sridharan, Devarajan; Ramamurthy, Deepa L; Schwarz, Jason S; Knudsen, Eric I

    2014-05-13

    Voluntary control of attention promotes intelligent, adaptive behaviors by enabling the selective processing of information that is most relevant for making decisions. Despite extensive research on attention in primates, the capacity for selective attention in nonprimate species has never been quantified. Here we demonstrate selective attention in chickens by applying protocols that have been used to characterize visual spatial attention in primates. Chickens were trained to localize and report the vertical position of a target in the presence of task-relevant distracters. A spatial cue, the location of which varied across individual trials, indicated the horizontal, but not vertical, position of the upcoming target. Spatial cueing improved localization performance: accuracy (d') increased and reaction times decreased in a space-specific manner. Distracters severely impaired perceptual performance, and this impairment was greatly reduced by spatial cueing. Signal detection analysis with an "indecision" model demonstrated that spatial cueing significantly increased choice certainty in localizing targets. By contrast, error-aversion certainty (certainty of not making an error) remained essentially constant across cueing protocols, target contrasts, and individuals. The results show that chickens shift spatial attention rapidly and dynamically, following principles of stimulus selection that closely parallel those documented in primates. The findings suggest that the mechanisms that control attention have been conserved through evolution, and establish chickens--a highly visual species that is easily trained and amenable to cutting-edge experimental technologies--as an attractive model for linking behavior to neural mechanisms of selective attention.

  15. Auditory Processing Assessment in Children with Attention Deficit Hyperactivity Disorder: An Open Study Examining Methylphenidate Effects.

    Science.gov (United States)

    Lanzetta-Valdo, Bianca Pinheiro; Oliveira, Giselle Alves de; Ferreira, Jane Tagarro Correa; Palacios, Ester Miyuki Nakamura

    2017-01-01

    Introduction  Children with Attention Deficit Hyperactivity Disorder can present Auditory Processing (AP) Disorder. Objective  The study examined the AP in ADHD children compared with non-ADHD children, and before and after 3 and 6 months of methylphenidate (MPH) treatment in ADHD children. Methods  Drug-naive children diagnosed with ADHD combined subtype aging between 7 and 11 years, coming from public and private outpatient service or public and private school, and age-gender-matched non-ADHD children, participated in an open, non-randomized study from February 2013 to December 2013. They were submitted to a behavioral battery of AP tests comprising Speech with white Noise, Dichotic Digits (DD), and Pitch Pattern Sequence (PPS) and were compared with non-ADHD children. They were followed for 3 and 6 months of MPH treatment (0.5 mg/kg/day). Results  ADHD children presented larger number of errors in DD ( p  < 0.01), and less correct responses in the PPS ( p  < 0.0001) and in the SN ( p  < 0.05) tests when compared with non-ADHD children. The treatment with MPH, especially along 6 months, significantly decreased the mean errors in the DD ( p  < 0.01) and increased the correct response in the PPS ( p  < 0.001) and SN ( p  < 0.01) tests when compared with the performance before MPH treatment. Conclusions  ADHD children show inefficient AP in selected behavioral auditory battery suggesting impaired in auditory closure, binaural integration, and temporal ordering. Treatment with MPH gradually improved these deficiencies and completely reversed them by reaching a performance similar to non-ADHD children at 6 months of treatment.

  16. Is Visual Selective Attention in Deaf Individuals Enhanced or Deficient? The Case of the Useful Field of View

    Science.gov (United States)

    Dye, Matthew W. G.; Hauser, Peter C.; Bavelier, Daphne

    2009-01-01

    Background Early deafness leads to enhanced attention in the visual periphery. Yet, whether this enhancement confers advantages in everyday life remains unknown, as deaf individuals have been shown to be more distracted by irrelevant information in the periphery than their hearing peers. Here, we show that, in a complex attentional task, a performance advantage results for deaf individuals. Methodology/Principal Findings We employed the Useful Field of View (UFOV) which requires central target identification concurrent with peripheral target localization in the presence of distractors – a divided, selective attention task. First, the comparison of deaf and hearing adults with or without sign language skills establishes that deafness and not sign language use drives UFOV enhancement. Second, UFOV performance was enhanced in deaf children, but only after 11 years of age. Conclusions/Significance This work demonstrates that, following early auditory deprivation, visual attention resources toward the periphery slowly get augmented to eventually result in a clear behavioral advantage by pre-adolescence on a selective visual attention task. PMID:19462009

  17. Attention and multisensory integration of emotions in schizophrenia

    Directory of Open Access Journals (Sweden)

    Mikhail eZvyagintsev

    2013-10-01

    Full Text Available The impairment of multisensory integration in schizophrenia is often explained by deficits of attentional selection. Emotion perception, however, does not always depend on attention because affective stimuli can capture attention automatically. In our study, we specify the role of attention in the multisensory perception of emotional stimuli in schizophrenia. We evaluated attention by interference between conflicting auditory and visual information in two multisensory paradigms in patients with schizophrenia and healthy participants. In the first paradigm, interference occurred between physical features of the dynamic auditory and visual stimuli. In the second paradigm, interference occurred between the emotional content of the auditory and visual stimuli, namely fearful and sad emotions. In patients with schizophrenia, the interference effect was observed in both paradigms. In contrast, in healthy participants, the interference occurred in the emotional paradigm only. These findings indicate that the information leakage between different modalities in patients with schizophrenia occurs at the perceptual level, which is intact in healthy participants. However, healthy participants can have problems with the separation of fearful and sad emotions similar to those of patients with schizophrenia.

  18. Interference by Process, Not Content, Determines Semantic Auditory Distraction

    Science.gov (United States)

    Marsh, John E.; Hughes, Robert W.; Jones, Dylan M.

    2009-01-01

    Distraction by irrelevant background sound of visually-based cognitive tasks illustrates the vulnerability of attentional selectivity across modalities. Four experiments centred on auditory distraction during tests of memory for visually-presented semantic information. Meaningful irrelevant speech disrupted the free recall of semantic…

  19. Linguistic processing in visual and modality-nonspecific brain areas: PET recordings during selective attention.

    Science.gov (United States)

    Vorobyev, Victor A; Alho, Kimmo; Medvedev, Svyatoslav V; Pakhomov, Sergey V; Roudas, Marina S; Rutkovskaya, Julia M; Tervaniemi, Mari; Van Zuijen, Titia L; Näätänen, Risto

    2004-07-01

    Positron emission tomography (PET) was used to investigate the neural basis of selective processing of linguistic material during concurrent presentation of multiple stimulus streams ("cocktail-party effect"). Fifteen healthy right-handed adult males were to attend to one of three simultaneously presented messages: one presented visually, one to the left ear, and one to the right ear. During the control condition, subjects attended to visually presented consonant letter strings and ignored auditory messages. This paper reports the modality-nonspecific language processing and visual word-form processing, whereas the auditory attention effects have been reported elsewhere [Cogn. Brain Res. 17 (2003) 201]. The left-hemisphere areas activated by both the selective processing of text and speech were as follows: the inferior prefrontal (Brodmann's area, BA 45, 47), anterior temporal (BA 38), posterior insular (BA 13), inferior (BA 20) and middle temporal (BA 21), occipital (BA 18/30) cortices, the caudate nucleus, and the amygdala. In addition, bilateral activations were observed in the medial occipito-temporal cortex and the cerebellum. Decreases of activation during both text and speech processing were found in the parietal (BA 7, 40), frontal (BA 6, 8, 44) and occipito-temporal (BA 37) regions of the right hemisphere. Furthermore, the present data suggest that the left occipito-temporal cortex (BA 18, 20, 37, 21) can be subdivided into three functionally distinct regions in the posterior-anterior direction on the basis of their activation during attentive processing of sublexical orthography, visual word form, and supramodal higher-level aspects of language.

  20. The deployment of intersensory selective attention: a high-density electrical mapping study of the effects of theanine.

    Science.gov (United States)

    Gomez-Ramirez, Manuel; Higgins, Beth A; Rycroft, Jane A; Owen, Gail N; Mahoney, Jeannette; Shpaner, Marina; Foxe, John J

    2007-01-01

    : Ingestion of the nonproteinic amino acid theanine (5-N-ethylglutamine) has been shown to increase oscillatory brain activity in the so-called alpha band (8-14 Hz) during resting electroencephalographic recordings in humans. Independently, alpha band activity has been shown to be a key component in selective attentional processes. Here, we set out to assess whether theanine would cause modulation of anticipatory alpha activity during selective attentional deployments to stimuli in different sensory modalities, a paradigm in which robust alpha attention effects have previously been established. : Electrophysiological data from 168 scalp electrode channels were recorded while participants performed a standard intersensory attentional cuing task. : As in previous studies, significantly greater alpha band activity was measured over parieto-occipital scalp for attentional deployments to the auditory modality than to the visual modality. Theanine ingestion resulted in a substantial overall decrease in background alpha levels relative to placebo while subjects were actively performing this demanding attention task. Despite this decrease in background alpha activity, attention-related alpha effects were significantly greater for the theanine condition. : This increase of attention-related anticipatory alpha over the right parieto-occipital scalp suggests that theanine may have a specific effect on the brain's attention circuitry. We conclude that theanine has clear psychoactive properties, and that it represents a potentially interesting, naturally occurring compound for further study, as it relates to the brain's attentional system.

  1. Review: Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Ja'fari

    2003-01-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depression, and hyper acute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of the sound of a miracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  2. Widespread auditory deficits in tune deafness.

    Science.gov (United States)

    Jones, Jennifer L; Zalewski, Christopher; Brewer, Carmen; Lucker, Jay; Drayna, Dennis

    2009-02-01

    The goal of this study was to investigate auditory function in individuals with deficits in musical pitch perception. We hypothesized that such individuals have deficits in nonspeech areas of auditory processing. We screened 865 randomly selected individuals to identify those who scored poorly on the Distorted Tunes test (DTT), a measure of musical pitch recognition ability. Those who scored poorly were given a comprehensive audiologic examination, and those with hearing loss or other confounding audiologic factors were excluded from further testing. Thirty-five individuals with tune deafness constituted the experimental group. Thirty-four individuals with normal hearing and normal DTT scores, matched for age, gender, handedness, and education, and without overt or reported psychiatric disorders made up the normal control group. Individual and group performance for pure-tone frequency discrimination at 1000 Hz was determined by measuring the difference limen for frequency (DLF). Auditory processing abilities were assessed using tests of pitch pattern recognition, duration pattern recognition, and auditory gap detection. In addition, we evaluated both attention and short- and long-term memory as variables that might influence performance on our experimental measures. Differences between groups were evaluated statistically using Wilcoxon nonparametric tests and t-tests as appropriate. The DLF at 1000 Hz in the group with tune deafness was significantly larger than that of the normal control group. However, approximately one-third of participants with tune deafness had DLFs within the range of performance observed in the control group. Many individuals with tune deafness also displayed a high degree of variability in their intertrial frequency discrimination performance that could not be explained by deficits in memory or attention. Pitch and duration pattern discrimination and auditory gap-detection ability were significantly poorer in the group with tune deafness

  3. Preconditioning of Spatial and Auditory Cues: Roles of the Hippocampus, Frontal Cortex, and Cue-Directed Attention

    Directory of Open Access Journals (Sweden)

    Andrew C. Talk

    2016-12-01

    Full Text Available Loss of function of the hippocampus or frontal cortex is associated with reduced performance on memory tasks, in which subjects are incidentally exposed to cues at specific places in the environment and are subsequently asked to recollect the location at which the cue was experienced. Here, we examined the roles of the rodent hippocampus and frontal cortex in cue-directed attention during encoding of memory for the location of a single incidentally experienced cue. During a spatial sensory preconditioning task, rats explored an elevated platform while an auditory cue was incidentally presented at one corner. The opposite corner acted as an unpaired control location. The rats demonstrated recollection of location by avoiding the paired corner after the auditory cue was in turn paired with shock. Damage to either the dorsal hippocampus or the frontal cortex impaired this memory ability. However, we also found that hippocampal lesions enhanced attention directed towards the cue during the encoding phase, while frontal cortical lesions reduced cue-directed attention. These results suggest that the deficit in spatial sensory preconditioning caused by frontal cortical damage may be mediated by inattention to the location of cues during the latent encoding phase, while deficits following hippocampal damage must be related to other mechanisms such as generation of neural plasticity.

  4. Preconditioning of Spatial and Auditory Cues: Roles of the Hippocampus, Frontal Cortex, and Cue-Directed Attention

    Science.gov (United States)

    Talk, Andrew C.; Grasby, Katrina L.; Rawson, Tim; Ebejer, Jane L.

    2016-01-01

    Loss of function of the hippocampus or frontal cortex is associated with reduced performance on memory tasks, in which subjects are incidentally exposed to cues at specific places in the environment and are subsequently asked to recollect the location at which the cue was experienced. Here, we examined the roles of the rodent hippocampus and frontal cortex in cue-directed attention during encoding of memory for the location of a single incidentally experienced cue. During a spatial sensory preconditioning task, rats explored an elevated platform while an auditory cue was incidentally presented at one corner. The opposite corner acted as an unpaired control location. The rats demonstrated recollection of location by avoiding the paired corner after the auditory cue was in turn paired with shock. Damage to either the dorsal hippocampus or the frontal cortex impaired this memory ability. However, we also found that hippocampal lesions enhanced attention directed towards the cue during the encoding phase, while frontal cortical lesions reduced cue-directed attention. These results suggest that the deficit in spatial sensory preconditioning caused by frontal cortical damage may be mediated by inattention to the location of cues during the latent encoding phase, while deficits following hippocampal damage must be related to other mechanisms such as generation of neural plasticity. PMID:27999366

  5. Abnormalities in auditory efferent activities in children with selective mutism.

    Science.gov (United States)

    Muchnik, Chava; Ari-Even Roth, Daphne; Hildesheimer, Minka; Arie, Miri; Bar-Haim, Yair; Henkin, Yael

    2013-01-01

    Two efferent feedback pathways to the auditory periphery may play a role in monitoring self-vocalization: the middle-ear acoustic reflex (MEAR) and the medial olivocochlear bundle (MOCB) reflex. Since most studies regarding the role of auditory efferent activity during self-vocalization were conducted in animals, human data are scarce. The working premise of the current study was that selective mutism (SM), a rare psychiatric disorder characterized by consistent failure to speak in specific social situations despite the ability to speak normally in other situations, may serve as a human model for studying the potential involvement of auditory efferent activity during self-vocalization. For this purpose, auditory efferent function was assessed in a group of 31 children with SM and compared to that of a group of 31 normally developing control children (mean age 8.9 and 8.8 years, respectively). All children exhibited normal hearing thresholds and type A tympanograms. MEAR and MOCB functions were evaluated by means of acoustic reflex thresholds and decay functions and the suppression of transient-evoked otoacoustic emissions, respectively. Auditory afferent function was tested by means of auditory brainstem responses (ABR). Results indicated a significantly higher proportion of children with abnormal MEAR and MOCB function in the SM group (58.6 and 38%, respectively) compared to controls (9.7 and 8%, respectively). The prevalence of abnormal MEAR and/or MOCB function was significantly higher in the SM group (71%) compared to controls (16%). Intact afferent function manifested in normal absolute and interpeak latencies of ABR components in all children. The finding of aberrant efferent auditory function in a large proportion of children with SM provides further support for the notion that MEAR and MOCB may play a significant role in the process of self-vocalization. © 2013 S. Karger AG, Basel.

  6. Early Auditory Evoked Potential Is Modulated by Selective Attention and Related to Individual Differences in Visual Working Memory Capacity

    OpenAIRE

    Giuliano, Ryan J.; Karns, Christina M.; Neville, Helen J.; Hillyard, Steven A.

    2014-01-01

    A growing body of research suggests that the predictive power of working memory (WM) capacity for measures of intellectual aptitude is due to the ability to control attention and select relevant information. Crucially, attentional mechanisms implicated in controlling access to WM are assumed to be domain-general, yet reports of enhanced attentional abilities in individuals with larger WM capacities are primarily within the visual domain. Here, we directly test the link between WM capacity and...

  7. Nicotine, auditory sensory memory and attention in a human ketamine model of schizophrenia: moderating influence of a hallucinatory trait

    Directory of Open Access Journals (Sweden)

    Verner eKnott

    2012-09-01

    Full Text Available Background: The procognitive actions of the nicotinic acetylcholine receptor (nAChR agonist nicotine are believed, in part, to motivate the excessive cigarette smoking in schizophrenia, a disorder associated with deficits in multiple cognitive domains, including low level auditory sensory processes and higher order attention-dependent operations. Objectives: As N-methyl-D-aspartate receptor (NMDAR hypofunction has been shown to contribute to these cognitive impairments, the primary aims of this healthy volunteer study were to: a to shed light on the separate and interactive roles of nAChR and NMDAR systems in the modulation of auditory sensory memory (and sustained attention, as indexed by the auditory event-related brain potential (ERP – mismatch negativity (MMN, and b to examine how these effects are moderated by a predisposition to auditory hallucinations/delusions (HD. Methods: In a randomized, double-blind, placebo controlled design involving a low intravenous dose of ketamine (.04 mg/kg and a 4 mg dose of nicotine gum, MMN and performance on a rapid visual information processing (RVIP task of sustained attention were examined in 24 healthy controls psychometrically stratified as being lower (L-HD, n = 12 or higher (H-HD for HD propensity. Results: Ketamine significantly slowed MMN, and reduced MMN in H-HD, with amplitude attenuation being blocked by the co-administration of nicotine. Nicotine significantly enhanced response speed (reaction time and accuracy (increased % hits and d΄ and reduced false alarms on the RIVIP, with improved performance accuracy being prevented when nicotine was administered with ketamine. Both % hits and d΄, as well as reaction time were poorer in H-HD (vs. L-HD and while hit rate and d΄ was increased by nicotine in H-HD, reaction time was slowed by ketamine in L-HD. Conclusions: Nicotine alleviated ketamine-induced sensory memory impairments and improved attention, particularly in individuals prone to HD.

  8. Space-based visual attention: a marker of immature selective attention in toddlers?

    Science.gov (United States)

    Rivière, James; Brisson, Julie

    2014-11-01

    Various studies suggested that attentional difficulties cause toddlers' failure in some spatial search tasks. However, attention is not a unitary construct and this study investigated two attentional mechanisms: location selection (space-based attention) and object selection (object-based attention). We investigated how toddlers' attention is distributed in the visual field during a manual search task for objects moving out of sight, namely the moving boxes task. Results show that 2.5-year-olds who failed this task allocated more attention to the location of the relevant object than to the object itself. These findings suggest that in some manual search tasks the primacy of space-based attention over object-based attention could be a marker of immature selective attention in toddlers. © 2014 Wiley Periodicals, Inc.

  9. Physiological and Selective Attention Demands during an International Rally Motor Sport Event

    Directory of Open Access Journals (Sweden)

    Anthony P. Turner

    2015-01-01

    Full Text Available Purpose. To monitor physiological and attention responses of drivers and codrivers during a World Rally Championship (WRC event. Methods. Observational data were collected from ten male drivers/codrivers on heart rate (HR, core body (Tcore and skin temperature (Tsk, hydration status (urine osmolality, fluid intake (self-report, and visual and auditory selective attention (performance tests. Measures were taken pre-, mid-, and postcompetition day and also during the precompetition reconnaissance. Results. In ambient temperatures of 20.1°C (in-car peak 33.9°C mean (SD peak HR and Tcore were significantly elevated (P<0.05 during rally compared to reconnaissance (166 (17 versus 111 (16 beats·min−1 and 38.5 (0.4 versus 37.6 (0.2°C, resp.. Values during competitive stages were substantially higher in drivers. High urine osmolality was indicated in some drivers within competition. Attention was maintained during the event but was significantly lower prerally, though with considerable individual variation. Conclusions. Environmental and physical demands during rally competition produced significant physiological responses. Challenges to thermoregulation, hydration status, and cognitive function need to be addressed to minimise potentially negative effects on performance and safety.

  10. Investigating attentional processes in depressive-like domestic horses (Equus caballus).

    Science.gov (United States)

    Rochais, C; Henry, S; Fureix, C; Hausberger, M

    2016-03-01

    Some captive/domestic animals respond to confinement by becoming inactive and unresponsive to external stimuli. Human inactivity is one of the behavioural markers of clinical depression, a mental disorder diagnosed by the co-occurrence of symptoms including deficit in selective attention. Some riding horses display 'withdrawn' states of inactivity and low responsiveness to stimuli that resemble the reduced engagement with their environment of some depressed patients. We hypothesized that 'withdrawn' horses experience a depressive-like state and evaluated their level of attention by confronting them with auditory stimuli. Five novel auditory stimuli were broadcasted to 27 horses, including 12 'withdrawn' horses, for 5 days. The horses' reactions and durations of attention were recorded. Non-withdrawn horses reacted more and their attention lasted longer than that of withdrawn horses on the first day, but their durations of attention decreased over days, but those of withdrawn horses remained stable. These results suggest that the withdrawn horses' selective attention is altered, adding to already evidenced common features between this horses' state and human depression. Copyright © 2016. Published by Elsevier B.V.

  11. Interactions between working memory and selective attention

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Event-related potential (ERP) was used to examine the interactions between working memory and selective attention. We combined two unrelated tasks, one requiring working memory and the other selective attention, which were performed by some undergraduates. The ERP results revealed that both congruent and incongruent stimuli in the selective attention task evoked an N400 component, reaching the peak point at around 500 ms. The N400 evoked by incongruent stimuli was more negative than that of congruent, which indicated the difference of semantic N400. Furthermore, working memory load had a significant influence on the N400 evoked by selective attention task in parietal region. And working memory load showed difference in the ERPs of working memory retrieval in central and parietal regions. The ERPs of probe under high working memory load were more positive from 350 to 550 ms post-stimulus; however, stimulus type of selective attention had no influence on working memory retrieval. The present study shows that working memory does not play a major role in the selective attention, especially in ignoring distracter, but it influences the performance of the selective attention as the background. The congruency of target and distracter in the selective attention task does not influence the working memory retrieval.

  12. Neural Mechanisms of Selective Visual Attention.

    Science.gov (United States)

    Moore, Tirin; Zirnsak, Marc

    2017-01-03

    Selective visual attention describes the tendency of visual processing to be confined largely to stimuli that are relevant to behavior. It is among the most fundamental of cognitive functions, particularly in humans and other primates for whom vision is the dominant sense. We review recent progress in identifying the neural mechanisms of selective visual attention. We discuss evidence from studies of different varieties of selective attention and examine how these varieties alter the processing of stimuli by neurons within the visual system, current knowledge of their causal basis, and methods for assessing attentional dysfunctions. In addition, we identify some key questions that remain in identifying the neural mechanisms that give rise to the selective processing of visual information.

  13. Selective Attention and Attention Switching: Towards a Unified Developmental Approach

    Science.gov (United States)

    Hanania, Rima; Smith, Linda B.

    2010-01-01

    We review and relate two literatures on the development of attention in children: one concerning flexible attention switching and the other concerning selective attention. The first is a growing literature on preschool children's performances in an attention-switching task indicating that children become more flexible in their attentional control…

  14. Auditory midbrain processing is differentially modulated by auditory and visual cortices: An auditory fMRI study.

    Science.gov (United States)

    Gao, Patrick P; Zhang, Jevin W; Fan, Shu-Juan; Sanes, Dan H; Wu, Ed X

    2015-12-01

    The cortex contains extensive descending projections, yet the impact of cortical input on brainstem processing remains poorly understood. In the central auditory system, the auditory cortex contains direct and indirect pathways (via brainstem cholinergic cells) to nuclei of the auditory midbrain, called the inferior colliculus (IC). While these projections modulate auditory processing throughout the IC, single neuron recordings have samples from only a small fraction of cells during stimulation of the corticofugal pathway. Furthermore, assessments of cortical feedback have not been extended to sensory modalities other than audition. To address these issues, we devised blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) paradigms to measure the sound-evoked responses throughout the rat IC and investigated the effects of bilateral ablation of either auditory or visual cortices. Auditory cortex ablation increased the gain of IC responses to noise stimuli (primarily in the central nucleus of the IC) and decreased response selectivity to forward species-specific vocalizations (versus temporally reversed ones, most prominently in the external cortex of the IC). In contrast, visual cortex ablation decreased the gain and induced a much smaller effect on response selectivity. The results suggest that auditory cortical projections normally exert a large-scale and net suppressive influence on specific IC subnuclei, while visual cortical projections provide a facilitatory influence. Meanwhile, auditory cortical projections enhance the midbrain response selectivity to species-specific vocalizations. We also probed the role of the indirect cholinergic projections in the auditory system in the descending modulation process by pharmacologically blocking muscarinic cholinergic receptors. This manipulation did not affect the gain of IC responses but significantly reduced the response selectivity to vocalizations. The results imply that auditory cortical

  15. The attention habit: how reward learning shapes attentional selection.

    Science.gov (United States)

    Anderson, Brian A

    2016-04-01

    There is growing consensus that reward plays an important role in the control of attention. Until recently, reward was thought to influence attention indirectly by modulating task-specific motivation and its effects on voluntary control over selection. Such an account was consistent with the goal-directed (endogenous) versus stimulus-driven (exogenous) framework that had long dominated the field of attention research. Now, a different perspective is emerging. Demonstrations that previously reward-associated stimuli can automatically capture attention even when physically inconspicuous and task-irrelevant challenge previously held assumptions about attentional control. The idea that attentional selection can be value driven, reflecting a distinct and previously unrecognized control mechanism, has gained traction. Since these early demonstrations, the influence of reward learning on attention has rapidly become an area of intense investigation, sparking many new insights. The result is an emerging picture of how the reward system of the brain automatically biases information processing. Here, I review the progress that has been made in this area, synthesizing a wealth of recent evidence to provide an integrated, up-to-date account of value-driven attention and some of its broader implications. © 2015 New York Academy of Sciences.

  16. Developmental Dyslexia: Exploring How Much Phonological and Visual Attention Span Disorders Are Linked to Simultaneous Auditory Processing Deficits

    Science.gov (United States)

    Lallier, Marie; Donnadieu, Sophie; Valdois, Sylviane

    2013-01-01

    The simultaneous auditory processing skills of 17 dyslexic children and 17 skilled readers were measured using a dichotic listening task. Results showed that the dyslexic children exhibited difficulties reporting syllabic material when presented simultaneously. As a measure of simultaneous visual processing, visual attention span skills were…

  17. Age-related differences in auditory evoked potentials as a function of task modulation during speech-nonspeech processing.

    Science.gov (United States)

    Rufener, Katharina Simone; Liem, Franziskus; Meyer, Martin

    2014-01-01

    Healthy aging is typically associated with impairment in various cognitive abilities such as memory, selective attention or executive functions. Less well observed is the fact that also language functions in general and speech processing in particular seems to be affected by age. This impairment is partly caused by pathologies of the peripheral auditory nervous system and central auditory decline and in some part also by a cognitive decay. This cross-sectional electroencephalography (EEG) study investigates temporally early electrophysiological correlates of auditory related selective attention in young (20-32 years) and older (60-74 years) healthy adults. In two independent tasks, we systematically modulate the subjects' focus of attention by presenting words and pseudowords as targets and white noise stimuli as distractors. Behavioral data showed no difference in task accuracy between the two age samples irrespective of the modulation of attention. However, our work is the first to show that the N1-and the P2 component evoked by speech and nonspeech stimuli are specifically modulated in older adults and young adults depending on the subjects' focus of attention. This finding is particularly interesting in that the age-related differences in AEPs may be reflecting levels of processing that are not mirrored by the behavioral measurements.

  18. Development of Selective Auditory Attention Skills in Children.

    Science.gov (United States)

    Cherry, Rochelle Silberzweig

    1981-01-01

    Fifty-three children (ages 5-9) were individually tested on their ability to select pictures of monosyllabic words presented diotically via headphones. Tasks were presented in quiet and under three noise (distractor) conditions: white noise, speech backwards, and speech forward. Age and type of distractor significantly influenced test scores.…

  19. Dose-dependent suppression by ethanol of transient auditory 40-Hz response.

    Science.gov (United States)

    Jääskeläinen, I P; Hirvonen, J; Saher, M; Pekkonen, E; Sillanaukee, P; Näätänen, R; Tiitinen, H

    2000-02-01

    Acute alcohol (ethanol) challenge is known to induce various cognitive disturbances, yet the neural basis of the effect is poorly known. The auditory transient evoked gamma-band (40-Hz) oscillatory responses have been suggested to be associated with various perceptual and cognitive functions in humans; however, alcohol effects on auditory 40-Hz responses have not been investigated to date. The objective of the study was to test the dose-related impact of alcohol on auditory transient evoked 40-Hz responses during a selective-attention task. Ten healthy social drinkers ingested, in four separate sessions, 0.00, 0. 25, 0.50, or 0.75 g/kg of 10% (v/v) alcohol solution. The order of the sessions was randomized and a double-blind procedure was employed. During a selective attention task, 300-Hz standard and 330-Hz deviant tones were presented to the left ear, and 1000-Hz standards and 1100-Hz deviants to the right ear of the subjects (P=0. 425 for each standard, P=0.075 for each deviant). The subjects attended to a designated ear, and were to detect the deviants therein while ignoring tones to the other ear. The auditory transient evoked 40-Hz responses elicited by both the attended and unattended standard tones were significantly suppressed by the 0.50 and 0.75 g/kg alcohol doses. Alcohol suppresses auditory transient evoked 40-Hz oscillations already with moderate blood alcohol concentrations. Given the putative role of gamma-band oscillations in cognition, this finding could be associated with certain alcohol-induced cognitive deficits.

  20. Effects of visual working memory on brain information processing of irrelevant auditory stimuli.

    Directory of Open Access Journals (Sweden)

    Jiagui Qu

    Full Text Available Selective attention has traditionally been viewed as a sensory processing modulator that promotes cognitive processing efficiency by favoring relevant stimuli while inhibiting irrelevant stimuli. However, the cross-modal processing of irrelevant information during working memory (WM has been rarely investigated. In this study, the modulation of irrelevant auditory information by the brain during a visual WM task was investigated. The N100 auditory evoked potential (N100-AEP following an auditory click was used to evaluate the selective attention to auditory stimulus during WM processing and at rest. N100-AEP amplitudes were found to be significantly affected in the left-prefrontal, mid-prefrontal, right-prefrontal, left-frontal, and mid-frontal regions while performing a high WM load task. In contrast, no significant differences were found between N100-AEP amplitudes in WM states and rest states under a low WM load task in all recorded brain regions. Furthermore, no differences were found between the time latencies of N100-AEP troughs in WM states and rest states while performing either the high or low WM load task. These findings suggested that the prefrontal cortex (PFC may integrate information from different sensory channels to protect perceptual integrity during cognitive processing.

  1. Effects of visual working memory on brain information processing of irrelevant auditory stimuli.

    Science.gov (United States)

    Qu, Jiagui; Rizak, Joshua D; Zhao, Lun; Li, Minghong; Ma, Yuanye

    2014-01-01

    Selective attention has traditionally been viewed as a sensory processing modulator that promotes cognitive processing efficiency by favoring relevant stimuli while inhibiting irrelevant stimuli. However, the cross-modal processing of irrelevant information during working memory (WM) has been rarely investigated. In this study, the modulation of irrelevant auditory information by the brain during a visual WM task was investigated. The N100 auditory evoked potential (N100-AEP) following an auditory click was used to evaluate the selective attention to auditory stimulus during WM processing and at rest. N100-AEP amplitudes were found to be significantly affected in the left-prefrontal, mid-prefrontal, right-prefrontal, left-frontal, and mid-frontal regions while performing a high WM load task. In contrast, no significant differences were found between N100-AEP amplitudes in WM states and rest states under a low WM load task in all recorded brain regions. Furthermore, no differences were found between the time latencies of N100-AEP troughs in WM states and rest states while performing either the high or low WM load task. These findings suggested that the prefrontal cortex (PFC) may integrate information from different sensory channels to protect perceptual integrity during cognitive processing.

  2. Validation of auditory detection response task method for assessing the attentional effects of cognitive load.

    Science.gov (United States)

    Stojmenova, Kristina; Sodnik, Jaka

    2018-07-04

    There are 3 standardized versions of the Detection Response Task (DRT), 2 using visual stimuli (remote DRT and head-mounted DRT) and one using tactile stimuli. In this article, we present a study that proposes and validates a type of auditory signal to be used as DRT stimulus and evaluate the proposed auditory version of this method by comparing it with the standardized visual and tactile version. This was a within-subject design study performed in a driving simulator with 24 participants. Each participant performed 8 2-min-long driving sessions in which they had to perform 3 different tasks: driving, answering to DRT stimuli, and performing a cognitive task (n-back task). Presence of additional cognitive load and type of DRT stimuli were defined as independent variables. DRT response times and hit rates, n-back task performance, and pupil size were observed as dependent variables. Significant changes in pupil size for trials with a cognitive task compared to trials without showed that cognitive load was induced properly. Each DRT version showed a significant increase in response times and a decrease in hit rates for trials with a secondary cognitive task compared to trials without. Similar and significantly better results in differences in response times and hit rates were obtained for the auditory and tactile version compared to the visual version. There were no significant differences in performance rate between the trials without DRT stimuli compared to trials with and among the trials with different DRT stimuli modalities. The results from this study show that the auditory DRT version, using the signal implementation suggested in this article, is sensitive to the effects of cognitive load on driver's attention and is significantly better than the remote visual and tactile version for auditory-vocal cognitive (n-back) secondary tasks.

  3. Reorganization of neural systems mediating peripheral visual selective attention in the deaf: An optical imaging study.

    Science.gov (United States)

    Seymour, Jenessa L; Low, Kathy A; Maclin, Edward L; Chiarelli, Antonio M; Mathewson, Kyle E; Fabiani, Monica; Gratton, Gabriele; Dye, Matthew W G

    2017-01-01

    Theories of brain plasticity propose that, in the absence of input from the preferred sensory modality, some specialized brain areas may be recruited when processing information from other modalities, which may result in improved performance. The Useful Field of View task has previously been used to demonstrate that early deafness positively impacts peripheral visual attention. The current study sought to determine the neural changes associated with those deafness-related enhancements in visual performance. Based on previous findings, we hypothesized that recruitment of posterior portions of Brodmann area 22, a brain region most commonly associated with auditory processing, would be correlated with peripheral selective attention as measured using the Useful Field of View task. We report data from severe to profoundly deaf adults and normal-hearing controls who performed the Useful Field of View task while cortical activity was recorded using the event-related optical signal. Behavioral performance, obtained in a separate session, showed that deaf subjects had lower thresholds (i.e., better performance) on the Useful Field of View task. The event-related optical data indicated greater activity for the deaf adults than for the normal-hearing controls during the task in the posterior portion of Brodmann area 22 in the right hemisphere. Furthermore, the behavioral thresholds correlated significantly with this neural activity. This work provides further support for the hypothesis that cross-modal plasticity in deaf individuals appears in higher-order auditory cortices, whereas no similar evidence was obtained for primary auditory areas. It is also the only neuroimaging study to date that has linked deaf-related changes in the right temporal lobe to visual task performance outside of the imaging environment. The event-related optical signal is a valuable technique for studying cross-modal plasticity in deaf humans. The non-invasive and relatively quiet characteristics of

  4. The Right Temporoparietal Junction Supports Speech Tracking During Selective Listening: Evidence from Concurrent EEG-fMRI.

    Science.gov (United States)

    Puschmann, Sebastian; Steinkamp, Simon; Gillich, Imke; Mirkovic, Bojana; Debener, Stefan; Thiel, Christiane M

    2017-11-22

    Listening selectively to one out of several competing speakers in a "cocktail party" situation is a highly demanding task. It relies on a widespread cortical network, including auditory sensory, but also frontal and parietal brain regions involved in controlling auditory attention. Previous work has shown that, during selective listening, ongoing neural activity in auditory sensory areas is dominated by the attended speech stream, whereas competing input is suppressed. The relationship between these attentional modulations in the sensory tracking of the attended speech stream and frontoparietal activity during selective listening is, however, not understood. We studied this question in young, healthy human participants (both sexes) using concurrent EEG-fMRI and a sustained selective listening task, in which one out of two competing speech streams had to be attended selectively. An EEG-based speech envelope reconstruction method was applied to assess the strength of the cortical tracking of the to-be-attended and the to-be-ignored stream during selective listening. Our results show that individual speech envelope reconstruction accuracies obtained for the to-be-attended speech stream were positively correlated with the amplitude of sustained BOLD responses in the right temporoparietal junction, a core region of the ventral attention network. This brain region further showed task-related functional connectivity to secondary auditory cortex and regions of the frontoparietal attention network, including the intraparietal sulcus and the inferior frontal gyrus. This suggests that the right temporoparietal junction is involved in controlling attention during selective listening, allowing for a better cortical tracking of the attended speech stream. SIGNIFICANCE STATEMENT Listening selectively to one out of several simultaneously talking speakers in a "cocktail party" situation is a highly demanding task. It activates a widespread network of auditory sensory and

  5. Selective Attention and Attention Switching: Toward a Unified Developmental Approach

    OpenAIRE

    Hanania, Rima; Smith, Linda B.

    2010-01-01

    We review and relate two literatures on the development of attention in children: one concerning flexible attention switching and the other concerning selective attention. The first is a growing literature on preschool children’s performances in an attention switching task indicating that children become more flexible in their attentional control during the preschool years. The second literature encompasses a large and robust set of phenomena for the same developmental period that indicate a ...

  6. Perceptual Load Influences Selective Attention across Development

    Science.gov (United States)

    Couperus, Jane W.

    2011-01-01

    Research suggests that visual selective attention develops across childhood. However, there is relatively little understanding of the neurological changes that accompany this development, particularly in the context of adult theories of selective attention, such as N. Lavie's (1995) perceptual load theory of attention. This study examined visual…

  7. Auditory memory function in expert chess players.

    Science.gov (United States)

    Fattahi, Fariba; Geshani, Ahmad; Jafari, Zahra; Jalaie, Shohreh; Salman Mahini, Mona

    2015-01-01

    Chess is a game that involves many aspects of high level cognition such as memory, attention, focus and problem solving. Long term practice of chess can improve cognition performances and behavioral skills. Auditory memory, as a kind of memory, can be influenced by strengthening processes following long term chess playing like other behavioral skills because of common processing pathways in the brain. The purpose of this study was to evaluate the auditory memory function of expert chess players using the Persian version of dichotic auditory-verbal memory test. The Persian version of dichotic auditory-verbal memory test was performed for 30 expert chess players aged 20-35 years and 30 non chess players who were matched by different conditions; the participants in both groups were randomly selected. The performance of the two groups was compared by independent samples t-test using SPSS version 21. The mean score of dichotic auditory-verbal memory test between the two groups, expert chess players and non-chess players, revealed a significant difference (p≤ 0.001). The difference between the ears scores for expert chess players (p= 0.023) and non-chess players (p= 0.013) was significant. Gender had no effect on the test results. Auditory memory function in expert chess players was significantly better compared to non-chess players. It seems that increased auditory memory function is related to strengthening cognitive performances due to playing chess for a long time.

  8. Deficient attention is hard to find: applying the perceptual load model of selective attention to attention deficit hyperactivity disorder subtypes.

    Science.gov (United States)

    Huang-Pollock, Cynthia L; Nigg, Joel T; Carr, Thomas H

    2005-11-01

    Whether selective attention is a primary deficit in childhood Attention Deficit Hyperactivity Disorder (ADHD) remains in active debate. We used the perceptual load paradigm to examine both early and late selective attention in children with the Primarily Inattentive (ADHD-I) and Combined subtypes (ADHD-C) of ADHD. No evidence emerged for selective attention deficits in either of the subtypes, but sluggish cognitive tempo was associated with abnormal early selection. At least some, and possibly most, children with DSM-IV ADHD have normal selective attention. Results support the move away from theories of attention dysfunction as primary in ADHD-C. In ADHD-I, this was one of the first formal tests of posterior attention network dysfunction, and results did not support that theory. However, ADHD children with sluggish cognitive tempo (SCT) warrant more study for possible early selective attention deficits.

  9. Predictive Power of Attention and Reading Readiness Variables on Auditory Reasoning and Processing Skills of Six-Year-Old Children

    Science.gov (United States)

    Erbay, Filiz

    2013-01-01

    The aim of present research was to describe the relation of six-year-old children's attention and reading readiness skills (general knowledge, word comprehension, sentences, and matching) with their auditory reasoning and processing skills. This was a quantitative study based on scanning model. Research sampling consisted of 204 kindergarten…

  10. Incorporating modern neuroscience findings to improve brain-computer interfaces: tracking auditory attention.

    Science.gov (United States)

    Wronkiewicz, Mark; Larson, Eric; Lee, Adrian Kc

    2016-10-01

    Brain-computer interface (BCI) technology allows users to generate actions based solely on their brain signals. However, current non-invasive BCIs generally classify brain activity recorded from surface electroencephalography (EEG) electrodes, which can hinder the application of findings from modern neuroscience research. In this study, we use source imaging-a neuroimaging technique that projects EEG signals onto the surface of the brain-in a BCI classification framework. This allowed us to incorporate prior research from functional neuroimaging to target activity from a cortical region involved in auditory attention. Classifiers trained to detect attention switches performed better with source imaging projections than with EEG sensor signals. Within source imaging, including subject-specific anatomical MRI information (instead of using a generic head model) further improved classification performance. This source-based strategy also reduced accuracy variability across three dimensionality reduction techniques-a major design choice in most BCIs. Our work shows that source imaging provides clear quantitative and qualitative advantages to BCIs and highlights the value of incorporating modern neuroscience knowledge and methods into BCI systems.

  11. Attentional Selection in a Cocktail Party Environment Can Be Decoded from Single-Trial EEG

    Science.gov (United States)

    O'Sullivan, James A.; Power, Alan J.; Mesgarani, Nima; Rajaram, Siddharth; Foxe, John J.; Shinn-Cunningham, Barbara G.; Slaney, Malcolm; Shamma, Shihab A.; Lalor, Edmund C.

    2015-01-01

    How humans solve the cocktail party problem remains unknown. However, progress has been made recently thanks to the realization that cortical activity tracks the amplitude envelope of speech. This has led to the development of regression methods for studying the neurophysiology of continuous speech. One such method, known as stimulus-reconstruction, has been successfully utilized with cortical surface recordings and magnetoencephalography (MEG). However, the former is invasive and gives a relatively restricted view of processing along the auditory hierarchy, whereas the latter is expensive and rare. Thus it would be extremely useful for research in many populations if stimulus-reconstruction was effective using electroencephalography (EEG), a widely available and inexpensive technology. Here we show that single-trial (≈60 s) unaveraged EEG data can be decoded to determine attentional selection in a naturalistic multispeaker environment. Furthermore, we show a significant correlation between our EEG-based measure of attention and performance on a high-level attention task. In addition, by attempting to decode attention at individual latencies, we identify neural processing at ∼200 ms as being critical for solving the cocktail party problem. These findings open up new avenues for studying the ongoing dynamics of cognition using EEG and for developing effective and natural brain–computer interfaces. PMID:24429136

  12. Visual-induced expectations modulate auditory cortical responses

    Directory of Open Access Journals (Sweden)

    Virginie evan Wassenhove

    2015-02-01

    Full Text Available Active sensing has important consequences on multisensory processing (Schroeder et al. 2010. Here, we asked whether in the absence of saccades, the position of the eyes and the timing of transient colour changes of visual stimuli could selectively affect the excitability of auditory cortex by predicting the where and the when of a sound, respectively. Human participants were recorded with magnetoencephalography (MEG while maintaining the position of their eyes on the left, right, or centre of the screen. Participants counted colour changes of the fixation cross while neglecting sounds which could be presented to the left, right or both ears. First, clear alpha power increases were observed in auditory cortices, consistent with participants’ attention directed to visual inputs. Second, colour changes elicited robust modulations of auditory cortex responses (when prediction seen as ramping activity, early alpha phase-locked responses, and enhanced high-gamma band responses in the contralateral side of sound presentation. Third, no modulations of auditory evoked or oscillatory activity were found to be specific to eye position. Altogether, our results suggest that visual transience can automatically elicit a prediction of when a sound will occur by changing the excitability of auditory cortices irrespective of the attended modality, eye position or spatial congruency of auditory and visual events. To the contrary, auditory cortical responses were not significantly affected by eye position suggesting that where predictions may require active sensing or saccadic reset to modulate auditory cortex responses, notably in the absence of spatial orientation to sounds.

  13. Auditory interfaces: The human perceiver

    Science.gov (United States)

    Colburn, H. Steven

    1991-01-01

    A brief introduction to the basic auditory abilities of the human perceiver with particular attention toward issues that may be important for the design of auditory interfaces is presented. The importance of appropriate auditory inputs to observers with normal hearing is probably related to the role of hearing as an omnidirectional, early warning system and to its role as the primary vehicle for communication of strong personal feelings.

  14. The effects of distraction and a brief intervention on auditory and visual-spatial working memory in college students with attention deficit hyperactivity disorder.

    Science.gov (United States)

    Lineweaver, Tara T; Kercood, Suneeta; O'Keeffe, Nicole B; O'Brien, Kathleen M; Massey, Eric J; Campbell, Samantha J; Pierce, Jenna N

    2012-01-01

    Two studies addressed how young adult college students with attention deficit hyperactivity disorder (ADHD) (n = 44) compare to their nonaffected peers (n = 42) on tests of auditory and visual-spatial working memory (WM), are vulnerable to auditory and visual distractions, and are affected by a simple intervention. Students with ADHD demonstrated worse auditory WM than did controls. A near significant trend indicated that auditory distractions interfered with the visual WM of both groups and that, whereas controls were also vulnerable to visual distractions, visual distractions improved visual WM in the ADHD group. The intervention was ineffective. Limited correlations emerged between self-reported ADHD symptoms and objective test performances; students with ADHD who perceived themselves as more symptomatic often had better WM and were less vulnerable to distractions than their ADHD peers.

  15. Neuronal Effects of Auditory Distraction on Visual Attention

    Science.gov (United States)

    Smucny, Jason; Rojas, Donald C.; Eichman, Lindsay C.; Tregellas, Jason R.

    2013-01-01

    Selective attention in the presence of distraction is a key aspect of healthy cognition. The underlying neurobiological processes, have not, however, been functionally well characterized. In the present study, we used functional magnetic resonance imaging to determine how ecologically relevant distracting noise affects cortical activity in 27…

  16. Comparison of auditory and visual oddball fMRI in schizophrenia.

    Science.gov (United States)

    Collier, Azurii K; Wolf, Daniel H; Valdez, Jeffrey N; Turetsky, Bruce I; Elliott, Mark A; Gur, Raquel E; Gur, Ruben C

    2014-09-01

    Individuals with schizophrenia often suffer from attentional deficits, both in focusing on task-relevant targets and in inhibiting responses to distractors. Schizophrenia also has a differential impact on attention depending on modality: auditory or visual. However, it remains unclear how abnormal activation of attentional circuitry differs between auditory and visual modalities, as these two modalities have not been directly compared in the same individuals with schizophrenia. We utilized event-related functional magnetic resonance imaging (fMRI) to compare patterns of brain activation during an auditory and visual oddball task in order to identify modality-specific attentional impairment. Healthy controls (n=22) and patients with schizophrenia (n=20) completed auditory and visual oddball tasks in separate sessions. For responses to targets, the auditory modality yielded greater activation than the visual modality (A-V) in auditory cortex, insula, and parietal operculum, but visual activation was greater than auditory (V-A) in visual cortex. For responses to novels, A-V differences were found in auditory cortex, insula, and supramarginal gyrus; and V-A differences in the visual cortex, inferior temporal gyrus, and superior parietal lobule. Group differences in modality-specific activation were found only for novel stimuli; controls showed larger A-V differences than patients in prefrontal cortex and the putamen. Furthermore, for patients, greater severity of negative symptoms was associated with greater divergence of A-V novel activation in the visual cortex. Our results demonstrate that patients have more pronounced activation abnormalities in auditory compared to visual attention, and link modality specific abnormalities to negative symptom severity. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli

    Science.gov (United States)

    Hill, N. J.; Schölkopf, B.

    2012-04-01

    We report on the development and online testing of an electroencephalogram-based brain-computer interface (BCI) that aims to be usable by completely paralysed users—for whom visual or motor-system-based BCIs may not be suitable, and among whom reports of successful BCI use have so far been very rare. The current approach exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus design. To compare the efficacy of event-related potentials (ERPs) and steady-state auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online, based on subjects' modulation of N1 and P3 ERP components measured during single 5 s stimulation intervals. All 13 healthy subjects were able to use the BCI, with performance in a binary left/right choice task ranging from 75% to 96% correct across subjects (mean 85%). BCI classification was based on the contrast between stimuli in the attended stream and stimuli in the unattended stream, making use of every stimulus, rather than contrasting frequent standard and rare ‘oddball’ stimuli. SSAEPs were assessed offline: for all subjects, spectral components at the two exactly known modulation frequencies allowed discrimination of pre-stimulus from stimulus intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic stimulus pair was muted. However, attention modulation of SSAEPs was not sufficient for single-trial BCI communication, even when the subject's attention was clearly focused well enough to allow classification of the same trials via ERPs. ERPs clearly provided a superior basis for BCI. The ERP results are a promising step towards the development of a simple-to-use, reliable yes/no communication system for users in the most severely paralysed states, as well as potential attention-monitoring and -training applications outside the context of assistive technology.

  18. An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli

    Science.gov (United States)

    Hill, N J; Schölkopf, B

    2012-01-01

    We report on the development and online testing of an EEG-based brain-computer interface (BCI) that aims to be usable by completely paralysed users—for whom visual or motor-system-based BCIs may not be suitable, and among whom reports of successful BCI use have so far been very rare. The current approach exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus design. To compare the efficacy of event-related potentials (ERPs) and steady-state auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online, based on subjects’ modulation of N1 and P3 ERP components measured during single 5-second stimulation intervals. All 13 healthy subjects were able to use the BCI, with performance in a binary left/right choice task ranging from 75% to 96% correct across subjects (mean 85%). BCI classification was based on the contrast between stimuli in the attended stream and stimuli in the unattended stream, making use of every stimulus, rather than contrasting frequent standard and rare “oddball” stimuli. SSAEPs were assessed offline: for all subjects, spectral components at the two exactly-known modulation frequencies allowed discrimination of pre-stimulus from stimulus intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic stimulus pair was muted. However, attention-modulation of SSAEPs was not sufficient for single-trial BCI communication, even when the subject’s attention was clearly focused well enough to allow classification of the same trials via ERPs. ERPs clearly provided a superior basis for BCI. The ERP results are a promising step towards the development of a simple-to-use, reliable yes/no communication system for users in the most severely paralysed states, as well as potential attention-monitoring and -training applications outside the context of assistive technology. PMID:22333135

  19. Simultaneous attentional guidance by working-memory and selection history reveals two distinct sources of attention.

    Science.gov (United States)

    Schwark, Jeremy D; Dolgov, Igor; Sandry, Joshua; Volkman, C Brooks

    2013-10-01

    Recent theories of attention have proposed that selection history is a separate, dissociable source of information that influences attention. The current study sought to investigate the simultaneous involvement of selection history and working-memory on attention during visual search. Experiments 1 and 2 used target feature probability to manipulate selection history and found significant effects of both working-memory and selection history, although working-memory dominated selection history when they cued different locations. Experiment 3 eliminated the contribution of voluntary refreshing of working-memory and replicated the main effects, although selection history became dominant. Using the same methodology, but with reduced probability cue validity, both effects were present in Experiment 4 and did not significantly differ in their contribution to attention. Effects of selection history and working-memory never interacted. These results suggest that selection history and working-memory are separate influences on attention and have little impact on each other. Theoretical implications for models of attention are discussed. © 2013.

  20. Beneficial auditory and cognitive effects of auditory brainstem implantation in children.

    Science.gov (United States)

    Colletti, Liliana

    2007-09-01

    This preliminary study demonstrates the development of hearing ability and shows that there is a significant improvement in some cognitive parameters related to selective visual/spatial attention and to fluid or multisensory reasoning, in children fitted with auditory brainstem implantation (ABI). The improvement in cognitive paramenters is due to several factors, among which there is certainly, as demonstrated in the literature on a cochlear implants (CIs), the activation of the auditory sensory canal, which was previously absent. The findings of the present study indicate that children with cochlear or cochlear nerve abnormalities with associated cognitive deficits should not be excluded from ABI implantation. The indications for ABI have been extended over the last 10 years to adults with non-tumoral (NT) cochlear or cochlear nerve abnormalities that cannot benefit from CI. We demonstrated that the ABI with surface electrodes may provide sufficient stimulation of the central auditory system in adults for open set speech recognition. These favourable results motivated us to extend ABI indications to children with profound hearing loss who were not candidates for a CI. This study investigated the performances of young deaf children undergoing ABI, in terms of their auditory perceptual development and their non-verbal cognitive abilities. In our department from 2000 to 2006, 24 children aged 14 months to 16 years received an ABI for different tumour and non-tumour diseases. Two children had NF2 tumours. Eighteen children had bilateral cochlear nerve aplasia. In this group, nine children had associated cochlear malformations, two had unilateral facial nerve agenesia and two had combined microtia, aural atresia and middle ear malformations. Four of these children had previously been fitted elsewhere with a CI with no auditory results. One child had bilateral incomplete cochlear partition (type II); one child, who had previously been fitted unsuccessfully elsewhere

  1. Prefrontal contributions to visual selective attention.

    Science.gov (United States)

    Squire, Ryan F; Noudoost, Behrad; Schafer, Robert J; Moore, Tirin

    2013-07-08

    The faculty of attention endows us with the capacity to process important sensory information selectively while disregarding information that is potentially distracting. Much of our understanding of the neural circuitry underlying this fundamental cognitive function comes from neurophysiological studies within the visual modality. Past evidence suggests that a principal function of the prefrontal cortex (PFC) is selective attention and that this function involves the modulation of sensory signals within posterior cortices. In this review, we discuss recent progress in identifying the specific prefrontal circuits controlling visual attention and its neural correlates within the primate visual system. In addition, we examine the persisting challenge of precisely defining how behavior should be affected when attentional function is lost.

  2. Visual attention spreads broadly but selects information locally.

    Science.gov (United States)

    Shioiri, Satoshi; Honjyo, Hajime; Kashiwase, Yoshiyuki; Matsumiya, Kazumichi; Kuriki, Ichiro

    2016-10-19

    Visual attention spreads over a range around the focus as the spotlight metaphor describes. Spatial spread of attentional enhancement and local selection/inhibition are crucial factors determining the profile of the spatial attention. Enhancement and ignorance/suppression are opposite effects of attention, and appeared to be mutually exclusive. Yet, no unified view of the factors has been provided despite their necessity for understanding the functions of spatial attention. This report provides electroencephalographic and behavioral evidence for the attentional spread at an early stage and selection/inhibition at a later stage of visual processing. Steady state visual evoked potential showed broad spatial tuning whereas the P3 component of the event related potential showed local selection or inhibition of the adjacent areas. Based on these results, we propose a two-stage model of spatial attention with broad spread at an early stage and local selection at a later stage.

  3. Aging increases distraction by auditory oddballs in visual, but not auditory tasks.

    Science.gov (United States)

    Leiva, Alicia; Parmentier, Fabrice B R; Andrés, Pilar

    2015-05-01

    Aging is typically considered to bring a reduction of the ability to resist distraction by task-irrelevant stimuli. Yet recent work suggests that this conclusion must be qualified and that the effect of aging is mitigated by whether irrelevant and target stimuli emanate from the same modalities or from distinct ones. Some studies suggest that aging is especially sensitive to distraction within-modality while others suggest it is greater across modalities. Here we report the first study to measure the effect of aging on deviance distraction in cross-modal (auditory-visual) and uni-modal (auditory-auditory) oddball tasks. Young and older adults were asked to judge the parity of target digits (auditory or visual in distinct blocks of trials), each preceded by a task-irrelevant sound (the same tone on most trials-the standard sound-or, on rare and unpredictable trials, a burst of white noise-the deviant sound). Deviant sounds yielded distraction (longer response times relative to standard sounds) in both tasks and age groups. However, an age-related increase in distraction was observed in the cross-modal task and not in the uni-modal task. We argue that aging might affect processes involved in the switching of attention across modalities and speculate that this may due to the slowing of this type of attentional shift or a reduction in cognitive control required to re-orient attention toward the target's modality.

  4. Musical minds: attentional blink reveals modality-specific restrictions.

    Directory of Open Access Journals (Sweden)

    Sander Martens

    Full Text Available Formal musical training is known to have positive effects on attentional and executive functioning, processing speed, and working memory. Consequently, one may expect to find differences in the dynamics of temporal attention between musicians and non-musicians. Here we address the question whether that is indeed the case, and whether any beneficial effects of musical training on temporal attention are modality specific or generalize across sensory modalities.When two targets are presented in close temporal succession, most people fail to report the second target, a phenomenon known as the attentional blink (AB. We measured and compared AB magnitude for musicians and non-musicians using auditory or visually presented letters and digits. Relative to non-musicians, the auditory AB was both attenuated and delayed in musicians, whereas the visual AB was larger. Non-musicians with a large auditory AB tended to show a large visual AB. However, neither a positive nor negative correlation was found in musicians, suggesting that at least in musicians, attentional restrictions within each modality are completely separate.AB magnitude within one modality can generalize to another modality, but this turns out not to be the case for every individual. Formal musical training seems to have a domain-general, but modality-specific beneficial effect on selective attention. The results fit with the idea that a major source of attentional restriction as reflected in the AB lies in modality-specific, independent sensory systems rather than a central amodal system. The findings demonstrate that individual differences in AB magnitude can provide important information about the modular structure of human cognition.

  5. Musical minds: attentional blink reveals modality-specific restrictions.

    Science.gov (United States)

    Martens, Sander; Wierda, Stefan M; Dun, Mathijs; de Vries, Michal; Smid, Henderikus G O M

    2015-01-01

    Formal musical training is known to have positive effects on attentional and executive functioning, processing speed, and working memory. Consequently, one may expect to find differences in the dynamics of temporal attention between musicians and non-musicians. Here we address the question whether that is indeed the case, and whether any beneficial effects of musical training on temporal attention are modality specific or generalize across sensory modalities. When two targets are presented in close temporal succession, most people fail to report the second target, a phenomenon known as the attentional blink (AB). We measured and compared AB magnitude for musicians and non-musicians using auditory or visually presented letters and digits. Relative to non-musicians, the auditory AB was both attenuated and delayed in musicians, whereas the visual AB was larger. Non-musicians with a large auditory AB tended to show a large visual AB. However, neither a positive nor negative correlation was found in musicians, suggesting that at least in musicians, attentional restrictions within each modality are completely separate. AB magnitude within one modality can generalize to another modality, but this turns out not to be the case for every individual. Formal musical training seems to have a domain-general, but modality-specific beneficial effect on selective attention. The results fit with the idea that a major source of attentional restriction as reflected in the AB lies in modality-specific, independent sensory systems rather than a central amodal system. The findings demonstrate that individual differences in AB magnitude can provide important information about the modular structure of human cognition.

  6. Dissociation of face-selective cortical responses by attention.

    Science.gov (United States)

    Furey, Maura L; Tanskanen, Topi; Beauchamp, Michael S; Avikainen, Sari; Uutela, Kimmo; Hari, Riitta; Haxby, James V

    2006-01-24

    We studied attentional modulation of cortical processing of faces and houses with functional MRI and magnetoencephalography (MEG). MEG detected an early, transient face-selective response. Directing attention to houses in "double-exposure" pictures of superimposed faces and houses strongly suppressed the characteristic, face-selective functional MRI response in the fusiform gyrus. By contrast, attention had no effect on the M170, the early, face-selective response detected with MEG. Late (>190 ms) category-related MEG responses elicited by faces and houses, however, were strongly modulated by attention. These results indicate that hemodynamic and electrophysiological measures of face-selective cortical processing complement each other. The hemodynamic signals reflect primarily late responses that can be modulated by feedback connections. By contrast, the early, face-specific M170 that was not modulated by attention likely reflects a rapid, feed-forward phase of face-selective processing.

  7. Psychometric validation of a music-based attention assessment: revised for patients with traumatic brain injury.

    Science.gov (United States)

    Jeong, Eunju

    2013-01-01

    An estimated 1.5 to 2 million people sustain a traumatic brain injury (TBI) each year in the United States. Impairments in attention following TBI severely limit everyday functioning in a multifaceted manner. A precise assessment is critical in identifying the types of attention impairments and in recommending appropriate tasks to aid in attention rehabilitation. A Music-based Attention Assessment (MAA) was developed to fill this need and revised to reflect variations of attention ability that exist in the general population. The purpose of the study was to investigate the theoretically-based constructs of the Music-based Attention Assessment-Revised (MAA-R) using a factorial approach and to examine item properties and test reliability in relation to the exploratively-derived factor constructs. The MAA-R is a 54-item multiple-choice, melodic contour identification test, designed to assess three different types of auditory attention including sustained, selective, and divided attention. The psychometric validation of the MAA-R was conducted with healthy adults (n = 165) and patients diagnosed with a moderate to severe TBI (n = 22). Exploratory factor analysis identified five factor constructs, including Sustained-Short, Sustained-Med to Long, Selective-Noise, Selective & Divided, and Divided-Long. After item elimination, the final 45-item MAA-R provided evidence of high internal consistency as computed by split-half reliability coefficients (r = .836) and Cronbach's alpha (alpha = .940). The aggregate findings suggest that the MAA-R is a valid and reliable measure that provides assessment information in regards to the different types of auditory attention deficits frequently observed in patients with TBI. Development and revision issues as well as the use of melodic contours in auditory attention assessment are discussed along with suggestions for future research.

  8. Attention-like processes in insects.

    Science.gov (United States)

    Nityananda, Vivek

    2016-11-16

    Attention is fundamentally important for sensory systems to focus on behaviourally relevant stimuli. It has therefore been an important field of study in human psychology and neuroscience. Primates, however, are not the only animals that might benefit from attention-like processes. Other animals, including insects, also have to use their senses and select one among many stimuli to forage, avoid predators and find mates. They have evolved different mechanisms to reduce the information processed by their brains to focus on only relevant stimuli. What are the mechanisms used by insects to selectively attend to visual and auditory stimuli? Do these attention-like mechanisms achieve the same functions as they do in primates? To investigate these questions, I use an established framework for investigating attention in non-human animals that proposes four fundamental components of attention: salience filters, competitive selection, top-down sensitivity control and working memory. I discuss evidence for each of these component processes in insects and compare the characteristics of these processes in insects to what we know from primates. Finally, I highlight important outstanding questions about insect attention that need to be addressed for us to understand the differences and similarities between vertebrate and insect attention. © 2016 The Author(s).

  9. Probing the limits of alpha power lateralisation as a neural marker of selective attention in middle-aged and older listeners.

    Science.gov (United States)

    Tune, Sarah; Wöstmann, Malte; Obleser, Jonas

    2018-02-11

    In recent years, hemispheric lateralisation of alpha power has emerged as a neural mechanism thought to underpin spatial attention across sensory modalities. Yet, how healthy ageing, beginning in middle adulthood, impacts the modulation of lateralised alpha power supporting auditory attention remains poorly understood. In the current electroencephalography study, middle-aged and older adults (N = 29; ~40-70 years) performed a dichotic listening task that simulates a challenging, multitalker scenario. We examined the extent to which the modulation of 8-12 Hz alpha power would serve as neural marker of listening success across age. With respect to the increase in interindividual variability with age, we examined an extensive battery of behavioural, perceptual and neural measures. Similar to findings on younger adults, middle-aged and older listeners' auditory spatial attention induced robust lateralisation of alpha power, which synchronised with the speech rate. Notably, the observed relationship between this alpha lateralisation and task performance did not co-vary with age. Instead, task performance was strongly related to an individual's attentional and working memory capacity. Multivariate analyses revealed a separation of neural and behavioural variables independent of age. Our results suggest that in age-varying samples as the present one, the lateralisation of alpha power is neither a sufficient nor necessary neural strategy for an individual's auditory spatial attention, as higher age might come with increased use of alternative, compensatory mechanisms. Our findings emphasise that explaining interindividual variability will be key to understanding the role of alpha oscillations in auditory attention in the ageing listener. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. Cortical Response Variability as a Developmental Index of Selective Auditory Attention

    Science.gov (United States)

    Strait, Dana L.; Slater, Jessica; Abecassis, Victor; Kraus, Nina

    2014-01-01

    Attention induces synchronicity in neuronal firing for the encoding of a given stimulus at the exclusion of others. Recently, we reported decreased variability in scalp-recorded cortical evoked potentials to attended compared with ignored speech in adults. Here we aimed to determine the developmental time course for this neural index of auditory…

  11. Sustained Attention in Auditory and Visual Monitoring Tasks: Evaluation of the Administration of a Rest Break or Exogenous Vibrotactile Signals.

    Science.gov (United States)

    Arrabito, G Robert; Ho, Geoffrey; Aghaei, Behzad; Burns, Catherine; Hou, Ming

    2015-12-01

    Performance and mental workload were observed for the administration of a rest break or exogenous vibrotactile signals in auditory and visual monitoring tasks. Sustained attention is mentally demanding. Techniques are required to improve observer performance in vigilance tasks. Participants (N = 150) monitored an auditory or a visual display for changes in signal duration in a 40-min watch. During the watch, participants were administered a rest break or exogenous vibrotactile signals. Detection accuracy was significantly greater in the auditory than in the visual modality. A short rest break restored detection accuracy in both sensory modalities following deterioration in performance. Participants experienced significantly lower mental workload when monitoring auditory than visual signals, and a rest break significantly reduced mental workload in both sensory modalities. Exogenous vibrotactile signals had no beneficial effects on performance, or mental workload. A rest break can restore performance in auditory and visual vigilance tasks. Although sensory differences in vigilance tasks have been studied, this study is the initial effort to investigate the effects of a rest break countermeasure in both auditory and visual vigilance tasks, and it is also the initial effort to explore the effects of the intervention of a rest break on the perceived mental workload of auditory and visual vigilance tasks. Further research is warranted to determine exact characteristics of effective exogenous vibrotactile signals in vigilance tasks. Potential applications of this research include procedures for decreasing the temporal decline in observer performance and the high mental workload imposed by vigilance tasks. © 2015, Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence.

  12. Influence of auditory spatial attention on cross-modal semantic priming effect: evidence from N400 effect.

    Science.gov (United States)

    Wang, Hongyan; Zhang, Gaoyan; Liu, Baolin

    2017-01-01

    Semantic priming is an important research topic in the field of cognitive neuroscience. Previous studies have shown that the uni-modal semantic priming effect can be modulated by attention. However, the influence of attention on cross-modal semantic priming is unclear. To investigate this issue, the present study combined a cross-modal semantic priming paradigm with an auditory spatial attention paradigm, presenting the visual pictures as the prime stimuli and the semantically related or unrelated sounds as the target stimuli. Event-related potentials results showed that when the target sound was attended to, the N400 effect was evoked. The N400 effect was also observed when the target sound was not attended to, demonstrating that the cross-modal semantic priming effect persists even though the target stimulus is not focused on. Further analyses revealed that the N400 effect evoked by the unattended sound was significantly lower than the effect evoked by the attended sound. This contrast provides new evidence that the cross-modal semantic priming effect can be modulated by attention.

  13. Effectiveness of auditory and tactile crossmodal cues in a dual-task visual and auditory scenario.

    Science.gov (United States)

    Hopkins, Kevin; Kass, Steven J; Blalock, Lisa Durrance; Brill, J Christopher

    2017-05-01

    In this study, we examined how spatially informative auditory and tactile cues affected participants' performance on a visual search task while they simultaneously performed a secondary auditory task. Visual search task performance was assessed via reaction time and accuracy. Tactile and auditory cues provided the approximate location of the visual target within the search display. The inclusion of tactile and auditory cues improved performance in comparison to the no-cue baseline conditions. In comparison to the no-cue conditions, both tactile and auditory cues resulted in faster response times in the visual search only (single task) and visual-auditory (dual-task) conditions. However, the effectiveness of auditory and tactile cueing for visual task accuracy was shown to be dependent on task-type condition. Crossmodal cueing remains a viable strategy for improving task performance without increasing attentional load within a singular sensory modality. Practitioner Summary: Crossmodal cueing with dual-task performance has not been widely explored, yet has practical applications. We examined the effects of auditory and tactile crossmodal cues on visual search performance, with and without a secondary auditory task. Tactile cues aided visual search accuracy when also engaged in a secondary auditory task, whereas auditory cues did not.

  14. Comorbidity of Auditory Processing, Language, and Reading Disorders

    Science.gov (United States)

    Sharma, Mridula; Purdy, Suzanne C.; Kelly, Andrea S.

    2009-01-01

    Purpose: The authors assessed comorbidity of auditory processing disorder (APD), language impairment (LI), and reading disorder (RD) in school-age children. Method: Children (N = 68) with suspected APD and nonverbal IQ standard scores of 80 or more were assessed using auditory, language, reading, attention, and memory measures. Auditory processing…

  15. Assessment of children with suspected auditory processing disorder: a factor analysis study.

    Science.gov (United States)

    Ahmmed, Ansar U; Ahmmed, Afsara A; Bath, Julie R; Ferguson, Melanie A; Plack, Christopher J; Moore, David R

    2014-01-01

    To identify the factors that may underlie the deficits in children with listening difficulties, despite normal pure-tone audiograms. These children may have auditory processing disorder (APD), but there is no universally agreed consensus as to what constitutes APD. The authors therefore refer to these children as children with suspected APD (susAPD) and aim to clarify the role of attention, cognition, memory, sensorimotor processing speed, speech, and nonspeech auditory processing in susAPD. It was expected that a factor analysis would show how nonauditory and supramodal factors relate to auditory behavioral measures in such children with susAPD. This would facilitate greater understanding of the nature of listening difficulties, thus further helping with characterizing APD and designing multimodal test batteries to diagnose APD. Factor analysis of outcomes from 110 children (68 male, 42 female; aged 6 to 11 years) with susAPD on a widely used clinical test battery (SCAN-C) and a research test battery (MRC Institute of Hearing Research Multi-center Auditory Processing "IMAP"), that have age-based normative data. The IMAP included backward masking, simultaneous masking, frequency discrimination, nonverbal intelligence, working memory, reading, alerting attention and motor reaction times to auditory and visual stimuli. SCAN-C included monaural low-redundancy speech (auditory closure and speech in noise) and dichotic listening tests (competing words and competing sentences) that assess divided auditory attention and hence executive attention. Three factors were extracted: "general auditory processing," "working memory and executive attention," and "processing speed and alerting attention." Frequency discrimination, backward masking, simultaneous masking, and monaural low-redundancy speech tests represented the "general auditory processing" factor. Dichotic listening and the IMAP cognitive tests (apart from nonverbal intelligence) were represented in the "working

  16. Brain activity during auditory and visual phonological, spatial and simple discrimination tasks.

    Science.gov (United States)

    Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo

    2013-02-16

    We used functional magnetic resonance imaging to measure human brain activity during tasks demanding selective attention to auditory or visual stimuli delivered in concurrent streams. Auditory stimuli were syllables spoken by different voices and occurring in central or peripheral space. Visual stimuli were centrally or more peripherally presented letters in darker or lighter fonts. The participants performed a phonological, spatial or "simple" (speaker-gender or font-shade) discrimination task in either modality. Within each modality, we expected a clear distinction between brain activations related to nonspatial and spatial processing, as reported in previous studies. However, within each modality, different tasks activated largely overlapping areas in modality-specific (auditory and visual) cortices, as well as in the parietal and frontal brain regions. These overlaps may be due to effects of attention common for all three tasks within each modality or interaction of processing task-relevant features and varying task-irrelevant features in the attended-modality stimuli. Nevertheless, brain activations caused by auditory and visual phonological tasks overlapped in the left mid-lateral prefrontal cortex, while those caused by the auditory and visual spatial tasks overlapped in the inferior parietal cortex. These overlapping activations reveal areas of multimodal phonological and spatial processing. There was also some evidence for intermodal attention-related interaction. Most importantly, activity in the superior temporal sulcus elicited by unattended speech sounds was attenuated during the visual phonological task in comparison with the other visual tasks. This effect might be related to suppression of processing irrelevant speech presumably distracting the phonological task involving the letters. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Effects of perceptual load and socially meaningful stimuli on crossmodal selective attention in Autism Spectrum Disorder and neurotypical samples.

    Science.gov (United States)

    Tyndall, Ian; Ragless, Liam; O'Hora, Denis

    2018-04-01

    The present study examined whether increasing visual perceptual load differentially affected both Socially Meaningful and Non-socially Meaningful auditory stimulus awareness in neurotypical (NT, n = 59) adults and Autism Spectrum Disorder (ASD, n = 57) adults. On a target trial, an unexpected critical auditory stimulus (CAS), either a Non-socially Meaningful ('beep' sound) or Socially Meaningful ('hi') stimulus, was played concurrently with the presentation of the visual task. Under conditions of low visual perceptual load both NT and ASD samples reliably noticed the CAS at similar rates (77-81%), whether the CAS was Socially Meaningful or Non-socially Meaningful. However, during high visual perceptual load NT and ASD participants reliably noticed the meaningful CAS (NT = 71%, ASD = 67%), but NT participants were unlikely to notice the Non-meaningful CAS (20%), whereas ASD participants reliably noticed it (80%), suggesting an inability to engage selective attention to ignore non-salient irrelevant distractor stimuli in ASD. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Abnormal Spatial Asymmetry of Selective Attention in ADHD

    Science.gov (United States)

    Chan, Edgar; Mattingley, Jason B.; Huang-Pollock, Cynthia; English, Therese; Hester, Robert; Vance, Alasdair; Bellgrove, Mark A.

    2009-01-01

    Background: Evidence for a selective attention abnormality in children with attention deficit hyperactivity disorder (ADHD) has been hard to identify using conventional methods from cognitive science. This study tested whether the presence of selective attention abnormalities in ADHD may vary as a function of perceptual load and target…

  19. Components of working memory and visual selective attention.

    Science.gov (United States)

    Burnham, Bryan R; Sabia, Matthew; Langan, Catherine

    2014-02-01

    Load theory (Lavie, N., Hirst, A., De Fockert, J. W., & Viding, E. [2004]. Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133, 339-354.) proposes that control of attention depends on the amount and type of load that is imposed by current processing. Specifically, perceptual load should lead to efficient distractor rejection, whereas working memory load (dual-task coordination) should hinder distractor rejection. Studies support load theory's prediction that working memory load will lead to larger distractor effects; however, these studies used secondary tasks that required only verbal working memory and the central executive. The present study examined which other working memory components (visual, spatial, and phonological) influence visual selective attention. Subjects completed an attentional capture task alone (single-task) or while engaged in a working memory task (dual-task). Results showed that along with the central executive, visual and spatial working memory influenced selective attention, but phonological working memory did not. Specifically, attentional capture was larger when visual or spatial working memory was loaded, but phonological working memory load did not affect attentional capture. The results are consistent with load theory and suggest specific components of working memory influence visual selective attention. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  20. Selective Attention and Audiovisual Integration: Is Attending to Both Modalities a Prerequisite for Early Integration?

    NARCIS (Netherlands)

    Talsma, D.; Doty, Tracy J.; Woldorff, Marty G.

    2007-01-01

    Interactions between multisensory integration and attention were studied using a combined audiovisual streaming design and a rapid serial visual presentation paradigm. Event-related potentials (ERPs) following audiovisual objects (AV) were compared with the sum of the ERPs following auditory (A) and

  1. Pilot feasibility study of binaural auditory beats for reducing symptoms of inattention in children and adolescents with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Kennel, Susan; Taylor, Ann Gill; Lyon, Debra; Bourguignon, Cheryl

    2010-02-01

    The purpose of this pilot study was to explore the potential for the use of binaural auditory beat stimulation to reduce the symptom of inattention in children and adolescents with attention-deficit/hyperactivity disorder. This pilot study had a randomized, double-blind, placebo-controlled design. Twenty participants were randomly assigned to listen to either an audio program on compact disk that contained binaural auditory beats or a sham audio program that did not have binaural beats for 20 minutes, three times a week for 3 weeks. The Children's Color Trails Test, the Color Trails Test, the Test of Variables of Attention (TOVA), and the Homework Problem Checklist were used to measure changes in inattention pre- and postintervention. Repeated measures analysis of variance was used to analyze pre- and postintervention scores on the Color Trails Tests, Homework Problem Checklist, and the TOVA. The effect of time was significant on the Color Trails Test. However, there were no significant group differences on the Color Trails Test or the TOVA scores postintervention. Parents reported that the study participants had fewer homework problems postintervention. The results from this study indicate that binaural auditory beat stimulation did not significantly reduce the symptom of inattention in the experimental group. However, parents and adolescents stated that homework problems due to inattention improved during the 3-week study. Parents and participants stated that the modality was easy to use and helpful. Therefore, this modality should be studied over a longer time frame in a larger sample to further its effectiveness to reduce the symptom of inattention in those diagnosed with attention-deficit/hyperactivity disorder. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Selective attention within the foveola.

    Science.gov (United States)

    Poletti, Martina; Rucci, Michele; Carrasco, Marisa

    2017-10-01

    Efficient control of attentional resources and high-acuity vision are both fundamental for survival. Shifts in visual attention are known to covertly enhance processing at locations away from the center of gaze, where visual resolution is low. It is unknown, however, whether selective spatial attention operates where the observer is already looking-that is, within the high-acuity foveola, the small yet disproportionally important rod-free region of the retina. Using new methods for precisely controlling retinal stimulation, here we show that covert attention flexibly improves and speeds up both detection and discrimination at loci only a fraction of a degree apart within the foveola. These findings reveal a surprisingly precise control of attention and its involvement in fine spatial vision. They show that the commonly studied covert shifts of attention away from the fovea are the expression of a global mechanism that exerts its action across the entire visual field.

  3. Attention Cueing and Activity Equally Reduce False Alarm Rate in Visual-Auditory Associative Learning through Improving Memory.

    Science.gov (United States)

    Nikouei Mahani, Mohammad-Ali; Haghgoo, Hojjat Allah; Azizi, Solmaz; Nili Ahmadabadi, Majid

    2016-01-01

    In our daily life, we continually exploit already learned multisensory associations and form new ones when facing novel situations. Improving our associative learning results in higher cognitive capabilities. We experimentally and computationally studied the learning performance of healthy subjects in a visual-auditory sensory associative learning task across active learning, attention cueing learning, and passive learning modes. According to our results, the learning mode had no significant effect on learning association of congruent pairs. In addition, subjects' performance in learning congruent samples was not correlated with their vigilance score. Nevertheless, vigilance score was significantly correlated with the learning performance of the non-congruent pairs. Moreover, in the last block of the passive learning mode, subjects significantly made more mistakes in taking non-congruent pairs as associated and consciously reported lower confidence. These results indicate that attention and activity equally enhanced visual-auditory associative learning for non-congruent pairs, while false alarm rate in the passive learning mode did not decrease after the second block. We investigated the cause of higher false alarm rate in the passive learning mode by using a computational model, composed of a reinforcement learning module and a memory-decay module. The results suggest that the higher rate of memory decay is the source of making more mistakes and reporting lower confidence in non-congruent pairs in the passive learning mode.

  4. Listening to polyphonic music recruits domain-general attention and working memory circuits.

    Science.gov (United States)

    Janata, Petr; Tillmann, Barbara; Bharucha, Jamshed J

    2002-06-01

    Polyphonic music combines multiple auditory streams to create complex auditory scenes, thus providing a tool for investigating the neural mechanisms that orient attention in natural auditory contexts. Across two fMRI experiments, we varied stimuli and task demands in order to identify the cortical areas that are activated during attentive listening to real music. In individual experiments and in a conjunction analysis of the two experiments, we found bilateral blood oxygen level dependent (BOLD) signal increases in temporal (the superior temporal gyrus), parietal (the intraparietal sulcus), and frontal (the precentral sulcus, the inferior frontal sulcus and gyrus, and the frontal operculum) areas during selective and global listening, as compared with passive rest without musical stimulation. Direct comparisons of the listening conditions showed significant differences between attending to single timbres (instruments) and attending across multiple instruments, although the patterns that were observed depended on the relative demands of the tasks being compared. The overall pattern of BOLD signal increases indicated that attentive listening to music recruits neural circuits underlying multiple forms of working memory, attention, semantic processing, target detection, and motor imagery. Thus, attentive listening to music appears to be enabled by areas that serve general functions, rather than by music-specific cortical modules.

  5. Effect of attentional load on audiovisual speech perception: Evidence from ERPs

    Directory of Open Access Journals (Sweden)

    Agnès eAlsius

    2014-07-01

    Full Text Available Seeing articulatory movements influences perception of auditory speech. This is often reflected in a shortened latency of auditory event-related potentials (ERPs generated in the auditory cortex. The present study addressed whether this early neural correlate of audiovisual interaction is modulated by attention. We recorded ERPs in 15 subjects while they were presented with auditory, visual and audiovisual spoken syllables. Audiovisual stimuli consisted of incongruent auditory and visual components known to elicit a McGurk effect, i.e. a visually driven alteration in the auditory speech percept. In a Dual task condition, participants were asked to identify spoken syllables whilst monitoring a rapid visual stream of pictures for targets, i.e., they had to divide their attention. In a Single task condition, participants identified the syllables without any other tasks, i.e., they were asked to ignore the pictures and focus their attention fully on the spoken syllables. The McGurk effect was weaker in the Dual task than in the Single task condition, indicating an effect of attentional load on audiovisual speech perception. Early auditory ERP components, N1 and P2, peaked earlier to audiovisual stimuli than to auditory stimuli when attention was fully focused on syllables, indicating neurophysiological audiovisual interaction. This latency decrement was reduced when attention was loaded, suggesting that attention influences early neural processing of audiovisual speech. We conclude that reduced attention weakens the interaction between vision and audition in speech.

  6. Effect of attentional load on audiovisual speech perception: evidence from ERPs.

    Science.gov (United States)

    Alsius, Agnès; Möttönen, Riikka; Sams, Mikko E; Soto-Faraco, Salvador; Tiippana, Kaisa

    2014-01-01

    Seeing articulatory movements influences perception of auditory speech. This is often reflected in a shortened latency of auditory event-related potentials (ERPs) generated in the auditory cortex. The present study addressed whether this early neural correlate of audiovisual interaction is modulated by attention. We recorded ERPs in 15 subjects while they were presented with auditory, visual, and audiovisual spoken syllables. Audiovisual stimuli consisted of incongruent auditory and visual components known to elicit a McGurk effect, i.e., a visually driven alteration in the auditory speech percept. In a Dual task condition, participants were asked to identify spoken syllables whilst monitoring a rapid visual stream of pictures for targets, i.e., they had to divide their attention. In a Single task condition, participants identified the syllables without any other tasks, i.e., they were asked to ignore the pictures and focus their attention fully on the spoken syllables. The McGurk effect was weaker in the Dual task than in the Single task condition, indicating an effect of attentional load on audiovisual speech perception. Early auditory ERP components, N1 and P2, peaked earlier to audiovisual stimuli than to auditory stimuli when attention was fully focused on syllables, indicating neurophysiological audiovisual interaction. This latency decrement was reduced when attention was loaded, suggesting that attention influences early neural processing of audiovisual speech. We conclude that reduced attention weakens the interaction between vision and audition in speech.

  7. Unimodal and crossmodal gradients of spatial attention

    DEFF Research Database (Denmark)

    Föcker, J.; Hötting, K.; Gondan, Matthias

    2010-01-01

    Behavioral and event-related potential (ERP) studies have shown that spatial attention is gradually distributed around the center of the attentional focus. The present study compared uni- and crossmodal gradients of spatial attention to investigate whether the orienting of auditory and visual...... spatial attention is based on modality specific or supramodal representations of space. Auditory and visual stimuli were presented from five speaker locations positioned in the right hemifield. Participants had to attend to the innermost or outmost right position in order to detect either visual...... or auditory deviant stimuli. Detection rates and event-related potentials (ERPs) indicated that spatial attention is distributed as a gradient. Unimodal spatial ERP gradients correlated with the spatial resolution of the modality. Crossmodal spatial gradients were always broader than the corresponding...

  8. Development of the auditory system

    Science.gov (United States)

    Litovsky, Ruth

    2015-01-01

    Auditory development involves changes in the peripheral and central nervous system along the auditory pathways, and these occur naturally, and in response to stimulation. Human development occurs along a trajectory that can last decades, and is studied using behavioral psychophysics, as well as physiologic measurements with neural imaging. The auditory system constructs a perceptual space that takes information from objects and groups, segregates sounds, and provides meaning and access to communication tools such as language. Auditory signals are processed in a series of analysis stages, from peripheral to central. Coding of information has been studied for features of sound, including frequency, intensity, loudness, and location, in quiet and in the presence of maskers. In the latter case, the ability of the auditory system to perform an analysis of the scene becomes highly relevant. While some basic abilities are well developed at birth, there is a clear prolonged maturation of auditory development well into the teenage years. Maturation involves auditory pathways. However, non-auditory changes (attention, memory, cognition) play an important role in auditory development. The ability of the auditory system to adapt in response to novel stimuli is a key feature of development throughout the nervous system, known as neural plasticity. PMID:25726262

  9. Sustained selective attention predicts flexible switching in preschoolers.

    Science.gov (United States)

    Benitez, Viridiana L; Vales, Catarina; Hanania, Rima; Smith, Linda B

    2017-04-01

    Stability and flexibility are fundamental to an intelligent cognitive system. Here, we examined the relationship between stability in selective attention and explicit control of flexible attention. Preschoolers were tested on the Dimension Preference (DP) task, which measures the stability of selective attention to an implicitly primed dimension, and the Dimension Change Card Sort (DCCS) task, which measures flexible attention switching between dimensions. Children who successfully switched on the DCCS task were more likely than those who perseverated to sustain attention to the primed dimension on the DP task across trials. We propose that perseverators have less stable attention and distribute their attention between dimensions, whereas switchers can successfully stabilize attention to individual dimensions and, thus, show more enduring priming effects. Flexible attention may emerge, in part, from implicit processes that stabilize attention even in tasks not requiring switching. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Deficient Attention Is Hard to Find: Applying the Perceptual Load Model of Selective Attention to Attention Deficit Hyperactivity Disorder Subtypes

    Science.gov (United States)

    Huang-Pollock, Cynthia L.; Nigg, Joel T.; Carr, Thomas H.

    2005-01-01

    Background: Whether selective attention is a primary deficit in childhood Attention Deficit Hyperactivity Disorder (ADHD) remains in active debate. Methods: We used the "perceptual load" paradigm to examine both early and late selective attention in children with the Primarily Inattentive (ADHD-I) and Combined subtypes (ADHD-C) of ADHD. Results:…

  11. Adaptive and Selective Time Averaging of Auditory Scenes

    DEFF Research Database (Denmark)

    McWalter, Richard Ian; McDermott, Josh H.

    2018-01-01

    longer than previously reported integration times in the auditory system. Integration also showed signs of being restricted to sound elements attributed to a common source. The results suggest an integration process that depends on stimulus characteristics, integrating over longer extents when......To overcome variability, estimate scene characteristics, and compress sensory input, perceptual systems pool data into statistical summaries. Despite growing evidence for statistical representations in perception, the underlying mechanisms remain poorly understood. One example...... it benefits statistical estimation of variable signals and selectively integrating stimulus components likely to have a common cause in the world. Our methodology could be naturally extended to examine statistical representations of other types of sensory signals. Sound texture perception is thought...

  12. Selective effects of cholinergic modulation on task performance during selective attention.

    Science.gov (United States)

    Furey, Maura L; Pietrini, Pietro; Haxby, James V; Drevets, Wayne C

    2008-03-01

    The cholinergic neurotransmitter system is critically linked to cognitive functions including attention. The current studies were designed to evaluate the effect of a cholinergic agonist and an antagonist on performance during a selective visual attention task where the inherent salience of attended/unattended stimuli was modulated. Two randomized, placebo-controlled, crossover studies were performed, one (n=9) with the anticholinesterase physostigmine (1.0 mg/h), and the other (n=30) with the anticholinergic scopolamine (0.4 mc/kg). During the task, two double-exposure pictures of faces and houses were presented side by side. Subjects were cued to attend to either the face or the house component of the stimuli, and were instructed to perform a matching task with the two exemplars from the attended category. The cue changed every 4-7 trials to instruct subjects to shift attention from one stimulus component to the other. During placebo in both studies, reaction time (RT) associated with the first trial following a cued shift in attention was longer than RT associated with later trials (pattention to houses condition (pattention to faces. Scopolamine increased RT relative to placebo selectively during trials greater than one (pattention to faces condition (pselective attention (ie trials greater than 1). Moreover, effects of cholinergic manipulation depend on the selective attention condition (ie faces vs houses), which may suggest that cholinergic activity interacts with stimulus salience. The findings are discussed within the context of the role of acetylcholine both in stimulus processing and stimulus salience, and in establishing attention biases through top-down and bottom-up mechanisms of attention.

  13. Perception of parents about the auditory attention skills of his kid with cleft lip and palate: retrospective study

    Directory of Open Access Journals (Sweden)

    Mondelli, Maria Fernanda Capoani Garcia

    2012-01-01

    Full Text Available Introduction: To process and decode the acoustic stimulation are necessary cognitive and neurophysiological mechanisms. The hearing stimulation is influenced by cognitive factor from the highest levels, such as the memory, attention and learning. The sensory deprivation caused by hearing loss from the conductive type, frequently in population with cleft lip and palate, can affect many cognitive functions - among them the attention, besides harm the school performance, linguistic and interpersonal. Objective: Verify the perception of the parents of children with cleft lip and palate about the hearing attention of their kids. Method: Retrospective study of infants with any type of cleft lip and palate, without any genetic syndrome associate which parents answered a relevant questionnaire about the auditory attention skills. Results: 44 are from the male kind and 26 from the female kind, 35,71% of the answers were affirmative for the hearing loss and 71,43% to otologic infections. Conclusion: Most of the interviewed parents pointed at least one of the behaviors related to attention contained in the questionnaire, indicating that the presence of cleft lip and palate can be related to difficulties in hearing attention.

  14. Rendering visual events as sounds: Spatial attention capture by auditory augmented reality.

    Science.gov (United States)

    Stone, Scott A; Tata, Matthew S

    2017-01-01

    Many salient visual events tend to coincide with auditory events, such as seeing and hearing a car pass by. Information from the visual and auditory senses can be used to create a stable percept of the stimulus. Having access to related coincident visual and auditory information can help for spatial tasks such as localization. However not all visual information has analogous auditory percepts, such as viewing a computer monitor. Here, we describe a system capable of detecting and augmenting visual salient events into localizable auditory events. The system uses a neuromorphic camera (DAVIS 240B) to detect logarithmic changes of brightness intensity in the scene, which can be interpreted as salient visual events. Participants were blindfolded and asked to use the device to detect new objects in the scene, as well as determine direction of motion for a moving visual object. Results suggest the system is robust enough to allow for the simple detection of new salient stimuli, as well accurately encoding direction of visual motion. Future successes are probable as neuromorphic devices are likely to become faster and smaller in the future, making this system much more feasible.

  15. Rendering visual events as sounds: Spatial attention capture by auditory augmented reality.

    Directory of Open Access Journals (Sweden)

    Scott A Stone

    Full Text Available Many salient visual events tend to coincide with auditory events, such as seeing and hearing a car pass by. Information from the visual and auditory senses can be used to create a stable percept of the stimulus. Having access to related coincident visual and auditory information can help for spatial tasks such as localization. However not all visual information has analogous auditory percepts, such as viewing a computer monitor. Here, we describe a system capable of detecting and augmenting visual salient events into localizable auditory events. The system uses a neuromorphic camera (DAVIS 240B to detect logarithmic changes of brightness intensity in the scene, which can be interpreted as salient visual events. Participants were blindfolded and asked to use the device to detect new objects in the scene, as well as determine direction of motion for a moving visual object. Results suggest the system is robust enough to allow for the simple detection of new salient stimuli, as well accurately encoding direction of visual motion. Future successes are probable as neuromorphic devices are likely to become faster and smaller in the future, making this system much more feasible.

  16. The role of selective attention on academic foundations: A cognitive neuroscience perspective

    Science.gov (United States)

    Stevens, Courtney; Bavelier, Daphne

    2011-01-01

    To the extent that selective attention skills are relevant for academic foundations and amenable to training, they represent an important focus for the field of education. Here, drawing on research on the neurobiology of attention, we review hypothesized links between selective attention and processing across three domains important to early academic skills. First, we provide a brief review of the neural bases of selective attention, emphasizing the effects of selective attention on neural processing, as well as the neural systems important to deploying selective attention and managing response conflict. Second, we examine the developmental time course of selective attention. It is argued that developmental differences in selective attention are related to the neural systems important for deploying selective attention and managing response conflict. In contrast, once effectively deployed, selective attention acts through very similar neural mechanisms across ages. In the third section, we relate the processes of selective attention to three domains important to academic foundations: language, literacy, and mathematics. Fourth, drawing on recent literatures on the effects of video-game play and mind-brain training on selective attention, we discuss the possibility of training selective attention. The final section examines the application of these principles to educationally-focused attention-training programs for children. PMID:22682909

  17. The role of selective attention on academic foundations: a cognitive neuroscience perspective.

    Science.gov (United States)

    Stevens, Courtney; Bavelier, Daphne

    2012-02-15

    To the extent that selective attention skills are relevant for academic foundations and amenable to training, they represent an important focus for the field of education. Here, drawing on research on the neurobiology of attention, we review hypothesized links between selective attention and processing across three domains important to early academic skills. First, we provide a brief review of the neural bases of selective attention, emphasizing the effects of selective attention on neural processing, as well as the neural systems important to deploying selective attention and managing response conflict. Second, we examine the developmental time course of selective attention. It is argued that developmental differences in selective attention are related to the neural systems important for deploying selective attention and managing response conflict. In contrast, once effectively deployed, selective attention acts through very similar neural mechanisms across ages. In the third section, we relate the processes of selective attention to three domains important to academic foundations: language, literacy, and mathematics. Fourth, drawing on recent literatures on the effects of video-game play and mind-brain training on selective attention, we discuss the possibility of training selective attention. The final section examines the application of these principles to educationally-focused attention-training programs for children. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Nonspatial intermodal selective attention is mediated by sensory brain areas: Evidence from event-related potentials

    NARCIS (Netherlands)

    Talsma, D.; Kok, Albert

    2001-01-01

    The present study focuses on the question of whether inter- and intramodal forms of attention are reflected in activation of the same or different brain areas. ERPs were recorded while subjects were presented a random sequence of visual and auditory stimuli. They were instructed to attend to

  19. Selective Attention to Perceptual Dimensions and Switching between Dimensions

    Science.gov (United States)

    Meiran, Nachshon; Dimov, Eduard; Ganel, Tzvi

    2013-01-01

    In the present experiments, the question being addressed was whether switching attention between perceptual dimensions and selective attention to dimensions are processes that compete over a common resource? Attention to perceptual dimensions is usually studied by requiring participants to ignore a never-relevant dimension. Selection failure…

  20. Endogenous attention modulates early selective attention in psychopathy: An ERP investigation.

    Science.gov (United States)

    Krusemark, Elizabeth A; Kiehl, Kent A; Newman, Joseph P

    2016-10-01

    Psychopathic individuals are prone to act on urges without adequate consideration of future consequences or the rights of other individuals. One interpretation of this behavior is that it reflects abnormal selective attention (i.e., a failure to process information that is incongruent with their primary focus of attention; Hiatt, Schmitt, & Newman, Neuropsychology, 18, 50-59, 2004). Unfortunately, it is unclear whether this selective attention abnormality reflects top-down endogenous influences, such as the strength or specificity of attention focus (i.e., top-down set) apart from other, more exogenous (bottom-up), effects on attention. To explore this question, we used an early visual event-related potential (N2pc) in combination with a modified visual search task designed to assess the effect of early endogenous (i.e., top-down) attention on the processing of set-congruent information. The task was administered to a sample of 70 incarcerated adult males, who were assigned to high, intermediate, and low psychopathy groups using Hare's Psychopathy Checklist-Revised (Hare, 2003). Based on the assumption that their failure to process set-incongruent information reflects the exaggerated effects of endogenous attention, we predicted that participants with high psychopathy scores would show an exaggerated N2pc response to set-congruent information. The results supported the hypothesis and provide novel electrophysiological evidence that psychopathy is associated with exaggerated endogenous attention effects during early stages of processing. Further research is needed to examine the implications of this finding for the well-established failure of psychopathic individuals to process set-incongruent information and inhibit inappropriate responses.

  1. Effect of mental fatigue caused by mobile 3D viewing on selective attention: an ERP study.

    Science.gov (United States)

    Mun, Sungchul; Kim, Eun-Soo; Park, Min-Chul

    2014-12-01

    This study investigated behavioral responses to and auditory event-related potential (ERP) correlates of mental fatigue caused by mobile three-dimensional (3D) viewing. Twenty-six participants (14 women) performed a selective attention task in which they were asked to respond to the sounds presented at the attended side while ignoring sounds at the ignored side before and after mobile 3D viewing. Considering different individual susceptibilities to 3D, participants' subjective fatigue data were used to categorize them into two groups: fatigued and unfatigued. The amplitudes of d-ERP components were defined as differences in amplitudes between time-locked brain oscillations of the attended and ignored sounds, and these values were used to calculate the degree to which spatial selective attention was impaired by 3D mental fatigue. The fatigued group showed significantly longer response times after mobile 3D viewing compared to before the viewing. However, response accuracy did not significantly change between the two conditions, implying that the participants used a behavioral strategy to cope with their performance accuracy decrement by increasing their response times. No significant differences were observed for the unfatigued group. Analysis of covariance revealed group differences with significant and trends toward significant decreases in the d-P200 and d-late positive potential (LPP) amplitudes at the occipital electrodes of the fatigued and unfatigued groups. Our findings indicate that mentally fatigued participants did not effectively block out distractors in their information processing mechanism, providing support for the hypothesis that 3D mental fatigue impairs spatial selective attention and is characterized by changes in d-P200 and d-LPP amplitudes. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Neurophysiological evidence for context-dependent encoding of sensory input in human auditory cortex.

    Science.gov (United States)

    Sussman, Elyse; Steinschneider, Mitchell

    2006-02-23

    Attention biases the way in which sound information is stored in auditory memory. Little is known, however, about the contribution of stimulus-driven processes in forming and storing coherent sound events. An electrophysiological index of cortical auditory change detection (mismatch negativity [MMN]) was used to assess whether sensory memory representations could be biased toward one organization over another (one or two auditory streams) without attentional control. Results revealed that sound representations held in sensory memory biased the organization of subsequent auditory input. The results demonstrate that context-dependent sound representations modulate stimulus-dependent neural encoding at early stages of auditory cortical processing.

  3. Predictive coding of visual-auditory and motor-auditory events: An electrophysiological study.

    Science.gov (United States)

    Stekelenburg, Jeroen J; Vroomen, Jean

    2015-11-11

    The amplitude of auditory components of the event-related potential (ERP) is attenuated when sounds are self-generated compared to externally generated sounds. This effect has been ascribed to internal forward modals predicting the sensory consequences of one's own motor actions. Auditory potentials are also attenuated when a sound is accompanied by a video of anticipatory visual motion that reliably predicts the sound. Here, we investigated whether the neural underpinnings of prediction of upcoming auditory stimuli are similar for motor-auditory (MA) and visual-auditory (VA) events using a stimulus omission paradigm. In the MA condition, a finger tap triggered the sound of a handclap whereas in the VA condition the same sound was accompanied by a video showing the handclap. In both conditions, the auditory stimulus was omitted in either 50% or 12% of the trials. These auditory omissions induced early and mid-latency ERP components (oN1 and oN2, presumably reflecting prediction and prediction error), and subsequent higher-order error evaluation processes. The oN1 and oN2 of MA and VA were alike in amplitude, topography, and neural sources despite that the origin of the prediction stems from different brain areas (motor versus visual cortex). This suggests that MA and VA predictions activate a sensory template of the sound in auditory cortex. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The importance of ignoring: Alpha oscillations protect selectivity

    OpenAIRE

    Payne, Lisa; Sekuler, Robert

    2014-01-01

    Selective attention is often thought to entail an enhancement of some task-relevant stimulus or attribute. We discuss the perspective that ignoring irrelevant, distracting information plays a complementary role in information processing. Cortical oscillations within the alpha (8–14 Hz) frequency band have emerged as a marker of sensory suppression. This suppression is linked to selective attention for visual, auditory, somatic, and verbal stimuli. Inhibiting processing of irrelevant input mak...

  5. Nonspatial intermodal selective attention is mediated by sensory brain areas: Evidence from event-related potential.

    NARCIS (Netherlands)

    Talsma, D.; Kok, A.

    2001-01-01

    Focuses on the question of whether inter-and intramodal forms of attention are reflected in activation of the same or different brain areas. ERPs were recorded while Ss (aged 18-41 yrs) were presented a random sequence of visual and auditory stimuli. They were instructed to attend to nonspatial

  6. Distractor Inhibition: Principles of Operation during Selective Attention

    Science.gov (United States)

    Wyatt, Natalie; Machado, Liana

    2013-01-01

    Research suggests that although target amplification acts as the main determinant of the efficacy of selective attention, distractor inhibition contributes under some circumstances. Here we aimed to gain insight into the operating principles that regulate the use of distractor inhibition during selective attention. The results suggest that, in…

  7. Moving attention - Evidence for time-invariant shifts of visual selective attention

    Science.gov (United States)

    Remington, R.; Pierce, L.

    1984-01-01

    Two experiments measured the time to shift spatial selective attention across the visual field to targets 2 or 10 deg from central fixation. A central arrow cued the most likely target location. The direction of attention was inferred from reaction times to expected, unexpected, and neutral locations. The development of a spatial attentional set with time was examined by presenting target probes at varying times after the cue. There were no effects of distance on the time course of the attentional set. Reaction times for far locations were slower than for near, but the effects of attention were evident by 150 msec in both cases. Spatial attention does not shift with a characteristic, fixed velocity. Rather, velocity is proportional to distance, resulting in a movement time that is invariant over the distances tested.

  8. Threat-related selective attention predicts treatment success in childhood anxiety disorders.

    Science.gov (United States)

    Legerstee, Jeroen S; Tulen, Joke H M; Kallen, Victor L; Dieleman, Gwen C; Treffers, Philip D A; Verhulst, Frank C; Utens, Elisabeth M W J

    2009-02-01

    The present study examined whether threat-related selective attention was predictive of treatment success in children with anxiety disorders and whether age moderated this association. Specific components of selective attention were examined in treatment responders and nonresponders. Participants consisted of 131 children with anxiety disorders (aged 8-16 years), who received standardized cognitive-behavioral therapy. At pretreatment, a pictorial dot-probe task was administered to assess selective attention. Both at pretreatment and posttreatment, diagnostic status of the children was evaluated with a semistructured clinical interview (the Anxiety Disorders Interview Schedule for Children). Selective attention for severely threatening pictures at pretreatment assessment was predictive of treatment success. Examination of the specific components of selective attention revealed that nonresponders showed difficulties to disengage their attention away from severe threat. Treatment responders showed a tendency not to engage their attention toward severe threat. Age was not associated with selective attention and treatment success. Threat-related selective attention is a significant predictor of treatment success in children with anxiety disorders. Clinically anxious children with difficulties disengaging their attention away from severe threat profit less from cognitive-behavioral therapy. For these children, additional training focused on learning to disengage attention away from anxiety-arousing stimuli may be beneficial.

  9. How motivation and reward learning modulate selective attention.

    Science.gov (United States)

    Bourgeois, A; Chelazzi, L; Vuilleumier, P

    2016-01-01

    Motivational stimuli such as rewards elicit adaptive responses and influence various cognitive functions. Notably, increasing evidence suggests that stimuli with particular motivational values can strongly shape perception and attention. These effects resemble both selective top-down and stimulus-driven attentional orienting, as they depend on internal states but arise without conscious will, yet they seem to reflect attentional systems that are functionally and anatomically distinct from those classically associated with frontoparietal cortical networks in the brain. Recent research in human and nonhuman primates has begun to reveal how reward can bias attentional selection, and where within the cognitive system the signals providing attentional priority are generated. This review aims at describing the different mechanisms sustaining motivational attention, their impact on different behavioral tasks, and current knowledge concerning the neural networks governing the integration of motivational influences on attentional behavior. © 2016 Elsevier B.V. All rights reserved.

  10. Level of Intrauterine Cocaine Exposure and Neuropsychological Test Scores in Preadolescence: Subtle Effects on Auditory Attention and Narrative Memory

    Science.gov (United States)

    Beeghly, Marjorie; Rose-Jacobs, Ruth; Martin, Brett M.; Cabral, Howard J.; Heeren, Timothy C.; Frank, Deborah A.

    2014-01-01

    Neuropsychological processes such as attention and memory contribute to children's higher-level cognitive and language functioning and predict academic achievement. The goal of this analysis was to evaluate whether level of intrauterine cocaine exposure (IUCE) alters multiple aspects of preadolescents' neuropsychological functioning assessed using a single age-referenced instrument, the NEPSY: A Developmental Neuropsychological Assessment (NEPSY) [71], after controlling for relevant covariates. Participants included 137 term 9.5-year-old children from low-income urban backgrounds (51% male, 90% African American/Caribbean) from an ongoing prospective longitudinal study. Level of IUCE was assessed in the newborn period using infant meconium and maternal report. 52% of the children had IUCE (65% with lighter IUCE, and 35% with heavier IUCE), and 48% were unexposed. Infants with Fetal Alcohol Syndrome, HIV seropositivity, or intrauterine exposure to illicit substances other than cocaine and marijuana were excluded. At the 9.5-year follow-up visit, trained examiners masked to IUCE and background variables evaluated children's neuropsychological functioning using the NEPSY. The association between level of IUCE and NEPSY outcomes was evaluated in a series of linear regressions controlling for intrauterine exposure to other substances and relevant child, caregiver, and demographic variables. Results indicated that level of IUCE was associated with lower scores on the Auditory Attention and Narrative Memory tasks, both of which require auditory information processing and sustained attention for successful performance. However, results did not follow the expected ordinal, dose-dependent pattern. Children's neuropsychological test scores were also altered by a variety of other biological and psychosocial factors. PMID:24978115

  11. Further Evidence of Auditory Extinction in Aphasia

    Science.gov (United States)

    Marshall, Rebecca Shisler; Basilakos, Alexandra; Love-Myers, Kim

    2013-01-01

    Purpose: Preliminary research ( Shisler, 2005) suggests that auditory extinction in individuals with aphasia (IWA) may be connected to binding and attention. In this study, the authors expanded on previous findings on auditory extinction to determine the source of extinction deficits in IWA. Method: Seventeen IWA (M[subscript age] = 53.19 years)…

  12. A Review of Auditory Prediction and Its Potential Role in Tinnitus Perception.

    Science.gov (United States)

    Durai, Mithila; O'Keeffe, Mary G; Searchfield, Grant D

    2018-06-01

    The precise mechanisms underlying tinnitus perception and distress are still not fully understood. A recent proposition is that auditory prediction errors and related memory representations may play a role in driving tinnitus perception. It is of interest to further explore this. To obtain a comprehensive narrative synthesis of current research in relation to auditory prediction and its potential role in tinnitus perception and severity. A narrative review methodological framework was followed. The key words Prediction Auditory, Memory Prediction Auditory, Tinnitus AND Memory, Tinnitus AND Prediction in Article Title, Abstract, and Keywords were extensively searched on four databases: PubMed, Scopus, SpringerLink, and PsychINFO. All study types were selected from 2000-2016 (end of 2016) and had the following exclusion criteria applied: minimum age of participants article not available in English. Reference lists of articles were reviewed to identify any further relevant studies. Articles were short listed based on title relevance. After reading the abstracts and with consensus made between coauthors, a total of 114 studies were selected for charting data. The hierarchical predictive coding model based on the Bayesian brain hypothesis, attentional modulation and top-down feedback serves as the fundamental framework in current literature for how auditory prediction may occur. Predictions are integral to speech and music processing, as well as in sequential processing and identification of auditory objects during auditory streaming. Although deviant responses are observable from middle latency time ranges, the mismatch negativity (MMN) waveform is the most commonly studied electrophysiological index of auditory irregularity detection. However, limitations may apply when interpreting findings because of the debatable origin of the MMN and its restricted ability to model real-life, more complex auditory phenomenon. Cortical oscillatory band activity may act as

  13. Category-selective attention modulates unconscious processes in the middle occipital gyrus.

    Science.gov (United States)

    Tu, Shen; Qiu, Jiang; Martens, Ulla; Zhang, Qinglin

    2013-06-01

    Many studies have revealed the top-down modulation (spatial attention, attentional load, etc.) on unconscious processing. However, there is little research about how category-selective attention could modulate the unconscious processing. In the present study, using functional magnetic resonance imaging (fMRI), the results showed that category-selective attention modulated unconscious face/tool processing in the middle occipital gyrus (MOG). Interestingly, MOG effects were of opposed direction for face and tool processes. During unconscious face processing, activation in MOG decreased under the face-selective attention compared with tool-selective attention. This result was in line with the predictive coding theory. During unconscious tool processing, however, activation in MOG increased under the tool-selective attention compared with face-selective attention. The different effects might be ascribed to an interaction between top-down category-selective processes and bottom-up processes in the partial awareness level as proposed by Kouider, De Gardelle, Sackur, and Dupoux (2010). Specifically, we suppose an "excessive activation" hypothesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Enhancing Auditory Selective Attention Using a Visually Guided Hearing Aid

    Science.gov (United States)

    Kidd, Gerald, Jr.

    2017-01-01

    Purpose: Listeners with hearing loss, as well as many listeners with clinically normal hearing, often experience great difficulty segregating talkers in a multiple-talker sound field and selectively attending to the desired "target" talker while ignoring the speech from unwanted "masker" talkers and other sources of sound. This…

  15. Attentional Selection of Feature Conjunctions Is Accomplished by Parallel and Independent Selection of Single Features.

    Science.gov (United States)

    Andersen, Søren K; Müller, Matthias M; Hillyard, Steven A

    2015-07-08

    Experiments that study feature-based attention have often examined situations in which selection is based on a single feature (e.g., the color red). However, in more complex situations relevant stimuli may not be set apart from other stimuli by a single defining property but by a specific combination of features. Here, we examined sustained attentional selection of stimuli defined by conjunctions of color and orientation. Human observers attended to one out of four concurrently presented superimposed fields of randomly moving horizontal or vertical bars of red or blue color to detect brief intervals of coherent motion. Selective stimulus processing in early visual cortex was assessed by recordings of steady-state visual evoked potentials (SSVEPs) elicited by each of the flickering fields of stimuli. We directly contrasted attentional selection of single features and feature conjunctions and found that SSVEP amplitudes on conditions in which selection was based on a single feature only (color or orientation) exactly predicted the magnitude of attentional enhancement of SSVEPs when attending to a conjunction of both features. Furthermore, enhanced SSVEP amplitudes elicited by attended stimuli were accompanied by equivalent reductions of SSVEP amplitudes elicited by unattended stimuli in all cases. We conclude that attentional selection of a feature-conjunction stimulus is accomplished by the parallel and independent facilitation of its constituent feature dimensions in early visual cortex. The ability to perceive the world is limited by the brain's processing capacity. Attention affords adaptive behavior by selectively prioritizing processing of relevant stimuli based on their features (location, color, orientation, etc.). We found that attentional mechanisms for selection of different features belonging to the same object operate independently and in parallel: concurrent attentional selection of two stimulus features is simply the sum of attending to each of those

  16. Cognitive mechanisms associated with auditory sensory gating

    Science.gov (United States)

    Jones, L.A.; Hills, P.J.; Dick, K.M.; Jones, S.P.; Bright, P.

    2016-01-01

    Sensory gating is a neurophysiological measure of inhibition that is characterised by a reduction in the P50 event-related potential to a repeated identical stimulus. The objective of this work was to determine the cognitive mechanisms that relate to the neurological phenomenon of auditory sensory gating. Sixty participants underwent a battery of 10 cognitive tasks, including qualitatively different measures of attentional inhibition, working memory, and fluid intelligence. Participants additionally completed a paired-stimulus paradigm as a measure of auditory sensory gating. A correlational analysis revealed that several tasks correlated significantly with sensory gating. However once fluid intelligence and working memory were accounted for, only a measure of latent inhibition and accuracy scores on the continuous performance task showed significant sensitivity to sensory gating. We conclude that sensory gating reflects the identification of goal-irrelevant information at the encoding (input) stage and the subsequent ability to selectively attend to goal-relevant information based on that previous identification. PMID:26716891

  17. Contextual control over selective attention: evidence from a two-target method.

    Science.gov (United States)

    MacLellan, Ellen; Shore, David I; Milliken, Bruce

    2015-07-01

    Selective attention is generally studied with conflict tasks, using response time as the dependent measure. Here, we study the impact of selective attention to a first target, T1, presented simultaneously with a distractor, on the accuracy of subsequent encoding of a second target item, T2. This procedure produces an "attentional blink" (AB) effect much like that reported in other studies, and allowed us to study the influence of context on cognitive control with a novel method. In particular, we examined whether preparation to attend selectively to T1 had an impact on the selective encoding of T1 that would translate to report of T2. Preparation to attend selectively was manipulated by varying whether difficult selective attention T1 trials were presented in the context of other difficult selective attention T1 trials. The results revealed strong context effects of this nature, with smaller AB effects when difficult selective attention T1 trials were embedded in a context with many, rather than few, other difficult selective attention T1 trials. Further, the results suggest that both the trial-to-trial local context and the block-wide global context modulate performance in this task.

  18. Frequency-specific modulation of population-level frequency tuning in human auditory cortex

    Directory of Open Access Journals (Sweden)

    Roberts Larry E

    2009-01-01

    Full Text Available Abstract Background Under natural circumstances, attention plays an important role in extracting relevant auditory signals from simultaneously present, irrelevant noises. Excitatory and inhibitory neural activity, enhanced by attentional processes, seems to sharpen frequency tuning, contributing to improved auditory performance especially in noisy environments. In the present study, we investigated auditory magnetic fields in humans that were evoked by pure tones embedded in band-eliminated noises during two different stimulus sequencing conditions (constant vs. random under auditory focused attention by means of magnetoencephalography (MEG. Results In total, we used identical auditory stimuli between conditions, but presented them in a different order, thereby manipulating the neural processing and the auditory performance of the listeners. Constant stimulus sequencing blocks were characterized by the simultaneous presentation of pure tones of identical frequency with band-eliminated noises, whereas random sequencing blocks were characterized by the simultaneous presentation of pure tones of random frequencies and band-eliminated noises. We demonstrated that auditory evoked neural responses were larger in the constant sequencing compared to the random sequencing condition, particularly when the simultaneously presented noises contained narrow stop-bands. Conclusion The present study confirmed that population-level frequency tuning in human auditory cortex can be sharpened in a frequency-specific manner. This frequency-specific sharpening may contribute to improved auditory performance during detection and processing of relevant sound inputs characterized by specific frequency distributions in noisy environments.

  19. Neural mechanisms of selective attention in the somatosensory system.

    Science.gov (United States)

    Gomez-Ramirez, Manuel; Hysaj, Kristjana; Niebur, Ernst

    2016-09-01

    Selective attention allows organisms to extract behaviorally relevant information while ignoring distracting stimuli that compete for the limited resources of their central nervous systems. Attention is highly flexible, and it can be harnessed to select information based on sensory modality, within-modality feature(s), spatial location, object identity, and/or temporal properties. In this review, we discuss the body of work devoted to understanding mechanisms of selective attention in the somatosensory system. In particular, we describe the effects of attention on tactile behavior and corresponding neural activity in somatosensory cortex. Our focus is on neural mechanisms that select tactile stimuli based on their location on the body (somatotopic-based attention) or their sensory feature (feature-based attention). We highlight parallels between selection mechanisms in touch and other sensory systems and discuss several putative neural coding schemes employed by cortical populations to signal the behavioral relevance of sensory inputs. Specifically, we contrast the advantages and disadvantages of using a gain vs. spike-spike correlation code for representing attended sensory stimuli. We favor a neural network model of tactile attention that is composed of frontal, parietal, and subcortical areas that controls somatosensory cells encoding the relevant stimulus features to enable preferential processing throughout the somatosensory hierarchy. Our review is based on data from noninvasive electrophysiological and imaging data in humans as well as single-unit recordings in nonhuman primates. Copyright © 2016 the American Physiological Society.

  20. Individual Differences in Neural Mechanisms of Selective Auditory Attention in Preschoolers from Lower Socioeconomic Status Backgrounds: An Event-Related Potentials Study

    Science.gov (United States)

    Isbell, Elif; Wray, Amanda Hampton; Neville, Helen J.

    2016-01-01

    Selective attention, the ability to enhance the processing of particular input while suppressing the information from other concurrent sources, has been postulated to be a foundational skill for learning and academic achievement. The neural mechanisms of this foundational ability are both vulnerable and enhanceable in children from lower…

  1. Attentional Selection and Suppression in Children With Attention-Deficit/Hyperactivity Disorder.

    Science.gov (United States)

    Wang, Encong; Sun, Li; Sun, Meirong; Huang, Jing; Tao, Ye; Zhao, Xixi; Wu, Zhanliang; Ding, Yulong; Newman, Daniel P; Bellgrove, Mark A; Wang, Yufeng; Song, Yan

    2016-07-01

    Attention-deficit/hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder with prominent impairments in directing and sustaining attention. The aim of this study was to identify the neurophysiologic bases of attention deficits in ADHD, focusing on electroencephalography markers of attentional selection (posterior contralateral N2 [N2pc]) and suppression (distractor positivity [P D ]). The electroencephalography data were collected from 135 children 9-15 years old with and without ADHD while they searched for a shape target in either the absence (experiment 1) or the presence (experiment 2) of a salient but irrelevant color distractor. In experiment 1, the shape target elicited a smaller N2pc in children with ADHD (n = 38) compared with typically developing children (n = 36). The smaller N2pc amplitude predicted higher levels of inattentive symptoms in children with ADHD. Moreover, the target-elicited N2pc was followed by a positivity in typically developing children but not in children with ADHD. In experiment 2, the salient but irrelevant color distractor elicited a smaller P D component in children with ADHD (n = 32) compared with typically developing children (n = 29). The smaller P D predicted higher inattentive symptom severity as well as lower behavioral accuracy in children with ADHD. The correlation between N2pc/P D amplitudes and ADHD symptom severity suggests that these signals of attentional selection and suppression may serve as potential candidates for neurophysiologic markers of ADHD. Our findings provide a neurophysiologic basis for the subjective reports of attention deficits in children with ADHD and highlight the importance of spatial attention impairments in ADHD. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  2. Auditory distraction and serial memory: The avoidable and the ineluctable

    Directory of Open Access Journals (Sweden)

    Dylan M Jones

    2010-01-01

    Full Text Available One mental activity that is very vulnerable to auditory distraction is serial recall. This review of the contemporary findings relating to serial recall charts the key determinants of distraction. It is evident that there is one form of distraction that is a joint product of the cognitive characteristics of the task and of the obligatory cognitive processing of the sound. For sequences of sound, distraction appears to be an ineluctable product of similarity-of-process, specifically, the serial order processing of the visually presented items and the serial order coding that is the by-product of the streaming of the sound. However, recently emerging work shows that the distraction from a single sound (one deviating from a prevailing sequence results in attentional capture and is qualitatively distinct from that of a sequence in being restricted in its action to encoding, not to rehearsal of list members. Capture is also sensitive to the sensory task load, suggesting that it is subject to top-down control and therefore avoidable. These two forms of distraction-conflict of process and attentional capture-may be two consequences of auditory perceptual organization processes that serve to strike the optimal balance between attentional selectivity and distractability.

  3. The role of temporal coherence in auditory stream segregation

    DEFF Research Database (Denmark)

    Christiansen, Simon Krogholt

    The ability to perceptually segregate concurrent sound sources and focus one’s attention on a single source at a time is essential for the ability to use acoustic information. While perceptual experiments have determined a range of acoustic cues that help facilitate auditory stream segregation......, it is not clear how the auditory system realizes the task. This thesis presents a study of the mechanisms involved in auditory stream segregation. Through a combination of psychoacoustic experiments, designed to characterize the influence of acoustic cues on auditory stream formation, and computational models...... of auditory processing, the role of auditory preprocessing and temporal coherence in auditory stream formation was evaluated. The computational model presented in this study assumes that auditory stream segregation occurs when sounds stimulate non-overlapping neural populations in a temporally incoherent...

  4. Attentional flexibility and memory capacity in conductors and pianists.

    Science.gov (United States)

    Wöllner, Clemens; Halpern, Andrea R

    2016-01-01

    Individuals with high working memory (WM) capacity also tend to have better selective and divided attention. Although both capacities are essential for skilled performance in many areas, evidence for potential training and expertise effects is scarce. We investigated the attentional flexibility of musical conductors by comparing them to equivalently trained pianists. Conductors must focus their attention both on individual instruments and on larger sections of different instruments. We studied students and professionals in both domains to assess the contributions of age and training to these skills. Participants completed WM span tests for auditory and visual (notated) pitches and timing durations, as well as long-term memory tests. In three dichotic attention tasks, they were asked to detect small pitch and timing deviations from two melodic streams presented in baseline (separate streams), selective-attention (concentrating on only one stream), and divided-attention (concentrating on targets in both streams simultaneously) conditions. Conductors were better than pianists in detecting timing deviations in divided attention, and experts detected more targets than students. We found no group differences for WM capacity or for pitch deviations in the attention tasks, even after controlling for the older age of the experts. Musicians' WM spans across multimodal conditions were positively related to selective and divided attention. High-WM participants also had shorter reaction times in selective attention. Taken together, conductors showed higher attentional flexibility in successfully switching between different foci of attention.

  5. Selective Attention in Multi-Chip Address-Event Systems

    Directory of Open Access Journals (Sweden)

    Giacomo Indiveri

    2009-06-01

    Full Text Available Selective attention is the strategy used by biological systems to cope with the inherent limits in their available computational resources, in order to efficiently process sensory information. The same strategy can be used in artificial systems that have to process vast amounts of sensory data with limited resources. In this paper we present a neuromorphic VLSI device, the “Selective Attention Chip” (SAC, which can be used to implement these models in multi-chip address-event systems. We also describe a real-time sensory-motor system, which integrates the SAC with a dynamic vision sensor and a robotic actuator. We present experimental results from each component in the system, and demonstrate how the complete system implements a real-time stimulus-driven selective attention model.

  6. Selective attention in multi-chip address-event systems.

    Science.gov (United States)

    Bartolozzi, Chiara; Indiveri, Giacomo

    2009-01-01

    Selective attention is the strategy used by biological systems to cope with the inherent limits in their available computational resources, in order to efficiently process sensory information. The same strategy can be used in artificial systems that have to process vast amounts of sensory data with limited resources. In this paper we present a neuromorphic VLSI device, the "Selective Attention Chip" (SAC), which can be used to implement these models in multi-chip address-event systems. We also describe a real-time sensory-motor system, which integrates the SAC with a dynamic vision sensor and a robotic actuator. We present experimental results from each component in the system, and demonstrate how the complete system implements a real-time stimulus-driven selective attention model.

  7. Tai Chi practitioners have better postural control and selective attention in stepping down with and without a concurrent auditory response task.

    Science.gov (United States)

    Lu, Xi; Siu, Ka-Chun; Fu, Siu N; Hui-Chan, Christina W Y; Tsang, William W N

    2013-08-01

    To compare the performance of older experienced Tai Chi practitioners and healthy controls in dual-task versus single-task paradigms, namely stepping down with and without performing an auditory response task, a cross-sectional study was conducted in the Center for East-meets-West in Rehabilitation Sciences at The Hong Kong Polytechnic University, Hong Kong. Twenty-eight Tai Chi practitioners (73.6 ± 4.2 years) and 30 healthy control subjects (72.4 ± 6.1 years) were recruited. Participants were asked to step down from a 19-cm-high platform and maintain a single-leg stance for 10 s with and without a concurrent cognitive task. The cognitive task was an auditory Stroop test in which the participants were required to respond to different tones of voices regardless of their word meanings. Postural stability after stepping down under single- and dual-task paradigms, in terms of excursion of the subject's center of pressure (COP) and cognitive performance, was measured for comparison between the two groups. Our findings demonstrated significant between-group differences in more outcome measures during dual-task than single-task performance. Thus, the auditory Stroop test showed that Tai Chi practitioners achieved not only significantly less error rate in single-task, but also significantly faster reaction time in dual-task, when compared with healthy controls similar in age and other relevant demographics. Similarly, the stepping-down task showed that Tai Chi practitioners not only displayed significantly less COP sway area in single-task, but also significantly less COP sway path than healthy controls in dual-task. These results showed that Tai Chi practitioners achieved better postural stability after stepping down as well as better performance in auditory response task than healthy controls. The improved performance that was magnified by dual motor-cognitive task performance may point to the benefits of Tai Chi being a mind-and-body exercise.

  8. Nonspatial intermodal selective attention is mediated by sensory brain brain areas: Evidence from event-related potential.

    NARCIS (Netherlands)

    Talsma, D.; Kok, A.

    2001-01-01

    Focuses on the question of whether inter-and intramodal forms of attention are reflected in activation of the same or different brain areas. ERPs were recorded while Ss (aged 18-41 yrs) were presented a random sequence of visual and auditory stimuli. They were instructed to attend to nonspatial

  9. Response terminated displays unload selective attention.

    Science.gov (United States)

    Roper, Zachary J J; Vecera, Shaun P

    2013-01-01

    Perceptual load theory successfully replaced the early vs. late selection debate by appealing to adaptive control over the efficiency of selective attention. Early selection is observed unless perceptual load (p-Load) is sufficiently low to grant attentional "spill-over" to task-irrelevant stimuli. Many studies exploring load theory have used limited display durations that perhaps impose artificial limits on encoding processes. We extended the exposure duration in a classic p-Load task to alleviate temporal encoding demands that may otherwise tax mnemonic consolidation processes. If the load effect arises from perceptual demands alone, then freeing-up available mnemonic resources by extending the exposure duration should have little effect. The results of Experiment 1 falsify this prediction. We observed a reliable flanker effect under high p-Load, response-terminated displays. Next, we orthogonally manipulated exposure duration and task-relevance. Counter-intuitively, we found that the likelihood of observing the flanker effect under high p-Load resides with the duration of the task-relevant array, not the flanker itself. We propose that stimulus and encoding demands interact to produce the load effect. Our account clarifies how task parameters differentially impinge upon cognitive processes to produce attentional "spill-over" by appealing to visual short-term memory as an additional processing bottleneck when stimuli are briefly presented.

  10. The influence of executive capacity on selective attention and subsequent processing

    Directory of Open Access Journals (Sweden)

    Kirk R. Daffner

    2012-06-01

    Full Text Available Recent investigations that suggest selective attention is dependent on top-down control mechanisms lead to the expectation that individuals with high executive capacity would exhibit more robust neural indices of selective attention. This prediction was tested by using event-related potentials (ERPs to examine differences in markers of information processing across 25 subjects divided into 2 groups based on high vs. average executive capacity, as defined by neuropsychological test scores. Subjects performed an experimental task requiring selective attention to a specified color. In contrast to expectation, individuals with high and average executive capacity did not differ in the size of ERP indices of selective attention: the anterior Selection Positivity (SP and posterior Selection Negativity (SN. However, there were substantial differences between groups in markers of subsequent processing, including the anterior N2 (a measure of attentional control and the P3a (an index of the orienting of attention. Executive capacity predicted speed of processing at both early and late attentional stages. Individuals with lower executive capacity exhibited prolonged SN, P3a, and P3b latencies. However, the delays in carrying out selective attention operations did not account for subsequent delays in decision making, or explain excessive orienting and reduced attentional control mechanisms in response to stimuli that should have been ignored. SN latency, P3 latency, and the size of the anterior N2 made independent contributions to the variance of executive capacity. In summary, our findings suggest that current views regarding the relationship between top-down control mechanisms and selective attention may need refinement.

  11. Attention failures versus misplaced diligence: separating attention lapses from speed-accuracy trade-offs.

    Science.gov (United States)

    Seli, Paul; Cheyne, James Allan; Smilek, Daniel

    2012-03-01

    In two studies of a GO-NOGO task assessing sustained attention, we examined the effects of (1) altering speed-accuracy trade-offs through instructions (emphasizing both speed and accuracy or accuracy only) and (2) auditory alerts distributed throughout the task. Instructions emphasizing accuracy reduced errors and changed the distribution of GO trial RTs. Additionally, correlations between errors and increasing RTs produced a U-function; excessively fast and slow RTs accounted for much of the variance of errors. Contrary to previous reports, alerts increased errors and RT variability. The results suggest that (1) standard instructions for sustained attention tasks, emphasizing speed and accuracy equally, produce errors arising from attempts to conform to the misleading requirement for speed, which become conflated with attention-lapse produced errors and (2) auditory alerts have complex, and sometimes deleterious, effects on attention. We argue that instructions emphasizing accuracy provide a more precise assessment of attention lapses in sustained attention tasks. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Auditory cortical function during verbal episodic memory encoding in Alzheimer's disease.

    Science.gov (United States)

    Dhanjal, Novraj S; Warren, Jane E; Patel, Maneesh C; Wise, Richard J S

    2013-02-01

    Episodic memory encoding of a verbal message depends upon initial registration, which requires sustained auditory attention followed by deep semantic processing of the message. Motivated by previous data demonstrating modulation of auditory cortical activity during sustained attention to auditory stimuli, we investigated the response of the human auditory cortex during encoding of sentences to episodic memory. Subsequently, we investigated this response in patients with mild cognitive impairment (MCI) and probable Alzheimer's disease (pAD). Using functional magnetic resonance imaging, 31 healthy participants were studied. The response in 18 MCI and 18 pAD patients was then determined, and compared to 18 matched healthy controls. Subjects heard factual sentences, and subsequent retrieval performance indicated successful registration and episodic encoding. The healthy subjects demonstrated that suppression of auditory cortical responses was related to greater success in encoding heard sentences; and that this was also associated with greater activity in the semantic system. In contrast, there was reduced auditory cortical suppression in patients with MCI, and absence of suppression in pAD. Administration of a central cholinesterase inhibitor (ChI) partially restored the suppression in patients with pAD, and this was associated with an improvement in verbal memory. Verbal episodic memory impairment in AD is associated with altered auditory cortical function, reversible with a ChI. Although these results may indicate the direct influence of pathology in auditory cortex, they are also likely to indicate a partially reversible impairment of feedback from neocortical systems responsible for sustained attention and semantic processing. Copyright © 2012 American Neurological Association.

  13. Object width modulates object-based attentional selection.

    Science.gov (United States)

    Nah, Joseph C; Neppi-Modona, Marco; Strother, Lars; Behrmann, Marlene; Shomstein, Sarah

    2018-04-24

    Visual input typically includes a myriad of objects, some of which are selected for further processing. While these objects vary in shape and size, most evidence supporting object-based guidance of attention is drawn from paradigms employing two identical objects. Importantly, object size is a readily perceived stimulus dimension, and whether it modulates the distribution of attention remains an open question. Across four experiments, the size of the objects in the display was manipulated in a modified version of the two-rectangle paradigm. In Experiment 1, two identical parallel rectangles of two sizes (thin or thick) were presented. Experiments 2-4 employed identical trapezoids (each having a thin and thick end), inverted in orientation. In the experiments, one end of an object was cued and participants performed either a T/L discrimination or a simple target-detection task. Combined results show that, in addition to the standard object-based attentional advantage, there was a further attentional benefit for processing information contained in the thick versus thin end of objects. Additionally, eye-tracking measures demonstrated increased saccade precision towards thick object ends, suggesting that Fitts's Law may play a role in object-based attentional shifts. Taken together, these results suggest that object-based attentional selection is modulated by object width.

  14. Auditory hallucinations: A review of the ERC "VOICE" project.

    Science.gov (United States)

    Hugdahl, Kenneth

    2015-06-22

    In this invited review I provide a selective overview of recent research on brain mechanisms and cognitive processes involved in auditory hallucinations. The review is focused on research carried out in the "VOICE" ERC Advanced Grant Project, funded by the European Research Council, but I also review and discuss the literature in general. Auditory hallucinations are suggested to be perceptual phenomena, with a neuronal origin in the speech perception areas in the temporal lobe. The phenomenology of auditory hallucinations is conceptualized along three domains, or dimensions; a perceptual dimension, experienced as someone speaking to the patient; a cognitive dimension, experienced as an inability to inhibit, or ignore the voices, and an emotional dimension, experienced as the "voices" having primarily a negative, or sinister, emotional tone. I will review cognitive, imaging, and neurochemistry data related to these dimensions, primarily the first two. The reviewed data are summarized in a model that sees auditory hallucinations as initiated from temporal lobe neuronal hyper-activation that draws attentional focus inward, and which is not inhibited due to frontal lobe hypo-activation. It is further suggested that this is maintained through abnormal glutamate and possibly gamma-amino-butyric-acid transmitter mediation, which could point towards new pathways for pharmacological treatment. A final section discusses new methods of acquiring quantitative data on the phenomenology and subjective experience of auditory hallucination that goes beyond standard interview questionnaires, by suggesting an iPhone/iPod app.

  15. Divided versus selective attention: evidence for common processing mechanisms.

    Science.gov (United States)

    Hahn, Britta; Wolkenberg, Frank A; Ross, Thomas J; Myers, Carol S; Heishman, Stephen J; Stein, Dan J; Kurup, Pradeep K; Stein, Elliot A

    2008-06-18

    The current study revisited the question of whether there are brain mechanisms specific to divided attention that differ from those used in selective attention. Increased neuronal activity required to simultaneously process two stimulus dimensions as compared with each separate dimension has often been observed, but rarely has activity induced by a divided attention condition exceeded the sum of activity induced by the component tasks. Healthy participants performed a selective-divided attention paradigm while undergoing functional Magnetic Resonance Imaging (fMRI). The task required participants to make a same-different judgment about either one of two simultaneously presented stimulus dimensions, or about both dimensions. Performance accuracy was equated between tasks by dynamically adjusting the stimulus display time. Blood Oxygenation Level Dependent (BOLD) signal differences between tasks were identified by whole-brain voxel-wise comparisons and by region-specific analyses of all areas modulated by the divided attention task (DIV). No region displayed greater activation or deactivation by DIV than the sum of signal change by the two selective attention tasks. Instead, regional activity followed the tasks' processing demands as reflected by reaction time. Only a left cerebellar region displayed a correlation between participants' BOLD signal intensity and reaction time that was selective for DIV. The correlation was positive, reflecting slower responding with greater activation. Overall, the findings do not support the existence of functional brain activity specific to DIV. Increased activity appears to reflect additional processing demands by introducing a secondary task, but those demands do not appear to qualitatively differ from processes of selective attention.

  16. Assessing attentional systems in children with Attention Deficit Hyperactivity Disorder.

    Science.gov (United States)

    Casagrande, Maria; Martella, Diana; Ruggiero, Maria Cleonice; Maccari, Lisa; Paloscia, Claudio; Rosa, Caterina; Pasini, Augusto

    2012-01-01

    The aim of this study was to evaluate the efficiency and interactions of attentional systems in children with Attention Deficit Hyperactivity Disorder (ADHD) by considering the effects of reinforcement and auditory warning on each component of attention. Thirty-six drug-naïve children (18 children with ADHD/18 typically developing children) performed two revised versions of the Attentional Network Test, which assess the efficiency of alerting, orienting, and executive systems. In feedback trials, children received feedback about their accuracy, whereas in the no-feedback trials, feedback was not given. In both conditions, children with ADHD performed more slowly than did typically developing children. They also showed impairments in the ability to disengage attention and in executive functioning, which improved when alertness was increased by administering the auditory warning. The performance of the attentional networks appeared to be modulated by the absence or the presence of reinforcement. We suggest that the observed executive system deficit in children with ADHD could depend on their low level of arousal rather than being an independent disorder. © The Author 2011. Published by Oxford University Press. All rights reserved.

  17. Level of intrauterine cocaine exposure and neuropsychological test scores in preadolescence: subtle effects on auditory attention and narrative memory.

    Science.gov (United States)

    Beeghly, Marjorie; Rose-Jacobs, Ruth; Martin, Brett M; Cabral, Howard J; Heeren, Timothy C; Frank, Deborah A

    2014-01-01

    Neuropsychological processes such as attention and memory contribute to children's higher-level cognitive and language functioning and predict academic achievement. The goal of this analysis was to evaluate whether level of intrauterine cocaine exposure (IUCE) alters multiple aspects of preadolescents' neuropsychological functioning assessed using a single age-referenced instrument, the NEPSY: A Developmental Neuropsychological Assessment (NEPSY) (Korkman et al., 1998), after controlling for relevant covariates. Participants included 137 term 9.5-year-old children from low-income urban backgrounds (51% male, 90% African American/Caribbean) from an ongoing prospective longitudinal study. Level of IUCE was assessed in the newborn period using infant meconium and maternal report. 52% of the children had IUCE (65% with lighter IUCE, and 35% with heavier IUCE), and 48% were unexposed. Infants with Fetal Alcohol Syndrome, HIV seropositivity, or intrauterine exposure to illicit substances other than cocaine and marijuana were excluded. At the 9.5-year follow-up visit, trained examiners masked to IUCE and background variables evaluated children's neuropsychological functioning using the NEPSY. The association between level of IUCE and NEPSY outcomes was evaluated in a series of linear regressions controlling for intrauterine exposure to other substances and relevant child, caregiver, and demographic variables. Results indicated that level of IUCE was associated with lower scores on the Auditory Attention and Narrative Memory tasks, both of which require auditory information processing and sustained attention for successful performance. However, results did not follow the expected ordinal, dose-dependent pattern. Children's neuropsychological test scores were also altered by a variety of other biological and psychosocial factors. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. A new perspective on the perceptual selectivity of attention under load

    DEFF Research Database (Denmark)

    Giesbrecht, Barry; Sy, Jocelyn; Bundesen, Claus

    2014-01-01

    The human attention system helps us cope with a complex environment by supporting the selective processing of information relevant to our current goals. Understanding the perceptual, cognitive, and neural mechanisms that mediate selective attention is a core issue in cognitive neuroscience. One...... prominent model of selective attention, known as load theory, offers an account of how task demands determine when information is selected and an account of the efficiency of the selection process. However, load theory has several critical weaknesses that suggest that it is time for a new perspective. Here...... is integrated to provide efficient attentional selection and allocation of perceptual processing resources....

  19. Age effects on preattentive and early attentive auditory processing of redundant stimuli: is sensory gating affected by physiological aging?

    Science.gov (United States)

    Gmehlin, Dennis; Kreisel, Stefan H; Bachmann, Silke; Weisbrod, Matthias; Thomas, Christine

    2011-10-01

    The frontal hypothesis of aging predicts an age-related decline in cognitive functions requiring inhibitory or attentional regulation. In Alzheimer's disease, preattentive gating out of redundant information is impaired. Our study aimed to examine changes associated with physiological aging in both pre- and early attentive inhibition of recurrent acoustic information. Using a passive double-click paradigm, we recorded mid-latency (P30-P50) and late-latency (N100 and P200) evoked potentials in healthy young (26 ± 5 years) and healthy elderly subjects (72 ± 5 years). Physiological aging did not affect auditory gating in amplitude measures. Both age groups exhibited clear inhibition in preattentive P50 and attention-modulated (N100) components, whereas P30 was not attenuated. Irrespective of age, the magnitude of inhibition differed significantly, being most pronounced for N100 gating. Inhibition of redundant information seems to be preserved with physiological aging. Early attentive N100 gating showed the maximum effect. Further studies are warranted to evaluate sensory gating as a suitable biomarker of underlying neurodegenerative disease.

  20. Real-Time Tracking of Selective Auditory Attention From M/EEG: A Bayesian Filtering Approach

    Science.gov (United States)

    Miran, Sina; Akram, Sahar; Sheikhattar, Alireza; Simon, Jonathan Z.; Zhang, Tao; Babadi, Behtash

    2018-01-01

    Humans are able to identify and track a target speaker amid a cacophony of acoustic interference, an ability which is often referred to as the cocktail party phenomenon. Results from several decades of studying this phenomenon have culminated in recent years in various promising attempts to decode the attentional state of a listener in a competing-speaker environment from non-invasive neuroimaging recordings such as magnetoencephalography (MEG) and electroencephalography (EEG). To this end, most existing approaches compute correlation-based measures by either regressing the features of each speech stream to the M/EEG channels (the decoding approach) or vice versa (the encoding approach). To produce robust results, these procedures require multiple trials for training purposes. Also, their decoding accuracy drops significantly when operating at high temporal resolutions. Thus, they are not well-suited for emerging real-time applications such as smart hearing aid devices or brain-computer interface systems, where training data might be limited and high temporal resolutions are desired. In this paper, we close this gap by developing an algorithmic pipeline for real-time decoding of the attentional state. Our proposed framework consists of three main modules: (1) Real-time and robust estimation of encoding or decoding coefficients, achieved by sparse adaptive filtering, (2) Extracting reliable markers of the attentional state, and thereby generalizing the widely-used correlation-based measures thereof, and (3) Devising a near real-time state-space estimator that translates the noisy and variable attention markers to robust and statistically interpretable estimates of the attentional state with minimal delay. Our proposed algorithms integrate various techniques including forgetting factor-based adaptive filtering, ℓ1-regularization, forward-backward splitting algorithms, fixed-lag smoothing, and Expectation Maximization. We validate the performance of our proposed

  1. Real-Time Tracking of Selective Auditory Attention From M/EEG: A Bayesian Filtering Approach

    Directory of Open Access Journals (Sweden)

    Sina Miran

    2018-05-01

    Full Text Available Humans are able to identify and track a target speaker amid a cacophony of acoustic interference, an ability which is often referred to as the cocktail party phenomenon. Results from several decades of studying this phenomenon have culminated in recent years in various promising attempts to decode the attentional state of a listener in a competing-speaker environment from non-invasive neuroimaging recordings such as magnetoencephalography (MEG and electroencephalography (EEG. To this end, most existing approaches compute correlation-based measures by either regressing the features of each speech stream to the M/EEG channels (the decoding approach or vice versa (the encoding approach. To produce robust results, these procedures require multiple trials for training purposes. Also, their decoding accuracy drops significantly when operating at high temporal resolutions. Thus, they are not well-suited for emerging real-time applications such as smart hearing aid devices or brain-computer interface systems, where training data might be limited and high temporal resolutions are desired. In this paper, we close this gap by developing an algorithmic pipeline for real-time decoding of the attentional state. Our proposed framework consists of three main modules: (1 Real-time and robust estimation of encoding or decoding coefficients, achieved by sparse adaptive filtering, (2 Extracting reliable markers of the attentional state, and thereby generalizing the widely-used correlation-based measures thereof, and (3 Devising a near real-time state-space estimator that translates the noisy and variable attention markers to robust and statistically interpretable estimates of the attentional state with minimal delay. Our proposed algorithms integrate various techniques including forgetting factor-based adaptive filtering, ℓ1-regularization, forward-backward splitting algorithms, fixed-lag smoothing, and Expectation Maximization. We validate the performance of our

  2. Influence of auditory attention on sentence recognition captured by the neural phase.

    Science.gov (United States)

    Müller, Jana Annina; Kollmeier, Birger; Debener, Stefan; Brand, Thomas

    2018-03-07

    The aim of this study was to investigate whether attentional influences on speech recognition are reflected in the neural phase entrained by an external modulator. Sentences were presented in 7 Hz sinusoidally modulated noise while the neural response to that modulation frequency was monitored by electroencephalogram (EEG) recordings in 21 participants. We implemented a selective attention paradigm including three different attention conditions while keeping physical stimulus parameters constant. The participants' task was either to repeat the sentence as accurately as possible (speech recognition task), to count the number of decrements implemented in modulated noise (decrement detection task), or to do both (dual task), while the EEG was recorded. Behavioural analysis revealed reduced performance in the dual task condition for decrement detection, possibly reflecting limited cognitive resources. EEG analysis revealed no significant differences in power for the 7 Hz modulation frequency, but an attention-dependent phase difference between tasks. Further phase analysis revealed a significant difference 500 ms after sentence onset between trials with correct and incorrect responses for speech recognition, indicating that speech recognition performance and the neural phase are linked via selective attention mechanisms, at least shortly after sentence onset. However, the neural phase effects identified were small and await further investigation. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Time-resolved neuroimaging of visual short term memory consolidation by post-perceptual attention shifts.

    Science.gov (United States)

    Hecht, Marcus; Thiemann, Ulf; Freitag, Christine M; Bender, Stephan

    2016-01-15

    Post-perceptual cues can enhance visual short term memory encoding even after the offset of the visual stimulus. However, both the mechanisms by which the sensory stimulus characteristics are buffered as well as the mechanisms by which post-perceptual selective attention enhances short term memory encoding remain unclear. We analyzed late post-perceptual event-related potentials (ERPs) in visual change detection tasks (100ms stimulus duration) by high-resolution ERP analysis to elucidate these mechanisms. The effects of early and late auditory post-cues (300ms or 850ms after visual stimulus onset) as well as the effects of a visual interference stimulus were examined in 27 healthy right-handed adults. Focusing attention with post-perceptual cues at both latencies significantly improved memory performance, i.e. sensory stimulus characteristics were available for up to 850ms after stimulus presentation. Passive watching of the visual stimuli without auditory cue presentation evoked a slow negative wave (N700) over occipito-temporal visual areas. N700 was strongly reduced by a visual interference stimulus which impeded memory maintenance. In contrast, contralateral delay activity (CDA) still developed in this condition after the application of auditory post-cues and was thereby dissociated from N700. CDA and N700 seem to represent two different processes involved in short term memory encoding. While N700 could reflect visual post processing by automatic attention attraction, CDA may reflect the top-down process of searching selectively for the required information through post-perceptual attention. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Selectively Distracted: Divided Attention and Memory for Important Information.

    Science.gov (United States)

    Middlebrooks, Catherine D; Kerr, Tyson; Castel, Alan D

    2017-08-01

    Distractions and multitasking are generally detrimental to learning and memory. Nevertheless, people often study while listening to music, sitting in noisy coffee shops, or intermittently checking their e-mail. The current experiments examined how distractions and divided attention influence one's ability to selectively remember valuable information. Participants studied lists of words that ranged in value from 1 to 10 points while completing a digit-detection task, while listening to music, or without distractions. Though participants recalled fewer words following digit detection than in the other conditions, there were no significant differences between conditions in terms of selectively remembering the most valuable words. Similar results were obtained across a variety of divided-attention tasks that stressed attention and working memory to different degrees, which suggests that people may compensate for divided-attention costs by selectively attending to the most valuable items and that factors that worsen memory do not necessarily impair the ability to selectively remember important information.

  5. The role of selective attention on academic foundations: A cognitive neuroscience perspective

    OpenAIRE

    Stevens, Courtney; Bavelier, Daphné

    2012-01-01

    To the extent that selective attention skills are relevant for academic foundations and amenable to training, they represent an important focus for the field of education. Here, drawing on research on the neurobiology of attention, we review hypothesized links between selective attention and processing across three domains important to early academic skills. First, we provide a brief review of the neural bases of selective attention, emphasizing the effects of selective attention on neural pr...

  6. A selective review of selective attention research from the past century.

    Science.gov (United States)

    Driver, J

    2001-02-01

    Research on attention is concerned with selective processing of incoming sensory information. To some extent, our awareness of the world depends on what we choose to attend, not merely on the stimulation entering our senses. British psychologists have made substantial contributions to this topic in the past century. Celebrated examples include Donald Broadbent's filter theory of attention, which set the agenda for most subsequent work; and Anne Treisman's revisions of this account, and her later feature-integration theory. More recent contributions include Alan Allport's prescient emphasis on the relevance of neuroscience data, and John Duncan's integration of such data with psychological theory. An idiosyncratic but roughly chronological review of developments is presented, some practical and clinical implications are briefly sketched, and future directions suggested. One of the biggest changes in the field has been the increasing interplay between psychology and neuroscience, which promises much for the future. A related change has been the realization that selection attention is best thought of as a broad topic, encompassing a range of selective issues, rather than as a single explanatory process.

  7. Adaptation in the auditory system: an overview

    Directory of Open Access Journals (Sweden)

    David ePérez-González

    2014-02-01

    Full Text Available The early stages of the auditory system need to preserve the timing information of sounds in order to extract the basic features of acoustic stimuli. At the same time, different processes of neuronal adaptation occur at several levels to further process the auditory information. For instance, auditory nerve fiber responses already experience adaptation of their firing rates, a type of response that can be found in many other auditory nuclei and may be useful for emphasizing the onset of the stimuli. However, it is at higher levels in the auditory hierarchy where more sophisticated types of neuronal processing take place. For example, stimulus-specific adaptation, where neurons show adaptation to frequent, repetitive stimuli, but maintain their responsiveness to stimuli with different physical characteristics, thus representing a distinct kind of processing that may play a role in change and deviance detection. In the auditory cortex, adaptation takes more elaborate forms, and contributes to the processing of complex sequences, auditory scene analysis and attention. Here we review the multiple types of adaptation that occur in the auditory system, which are part of the pool of resources that the neurons employ to process the auditory scene, and are critical to a proper understanding of the neuronal mechanisms that govern auditory perception.

  8. The modality effect of ego depletion: Auditory task modality reduces ego depletion.

    Science.gov (United States)

    Li, Qiong; Wang, Zhenhong

    2016-08-01

    An initial act of self-control that impairs subsequent acts of self-control is called ego depletion. The ego depletion phenomenon has been observed consistently. The modality effect refers to the effect of the presentation modality on the processing of stimuli. The modality effect was also robustly found in a large body of research. However, no study to date has examined the modality effects of ego depletion. This issue was addressed in the current study. In Experiment 1, after all participants completed a handgrip task, one group's participants completed a visual attention regulation task and the other group's participants completed an auditory attention regulation task, and then all participants again completed a handgrip task. The ego depletion phenomenon was observed in both the visual and the auditory attention regulation task. Moreover, participants who completed the visual task performed worse on the handgrip task than participants who completed the auditory task, which indicated that there was high ego depletion in the visual task condition. In Experiment 2, participants completed an initial task that either did or did not deplete self-control resources, and then they completed a second visual or auditory attention control task. The results indicated that depleted participants performed better on the auditory attention control task than the visual attention control task. These findings suggest that altering task modality may reduce ego depletion. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  9. Response terminated displays unload selective attention

    Directory of Open Access Journals (Sweden)

    Zachary Joseph Jackson Roper

    2013-12-01

    Full Text Available Perceptual load theory successfully replaced the early versus late selection debate by appealing to adaptive control over the efficiency of selective attention. Early selection is observed unless perceptual load (p-Load is sufficiently low to grant attentional ‘spill-over‘ to task-irrelevant stimuli. Many studies exploring load theory have used limited display durations that perhaps impose artificial limits on encoding processes. We extended the exposure duration in a classic p-Load task to alleviate temporal encoding demands that may otherwise tax mnemonic consolidation processes. If the load effect arises from perceptual demands alone, then freeing-up available mnemonic resources by extending the exposure duration should have little effect. The results of Experiment 1 falsify this prediction. We observed a reliable flanker effect under high p-Load, response-terminated displays. Next, we orthogonally manipulated exposure duration and task-relevance. Counter-intuitively, we found that the likelihood of observing the flanker effect under high p-Load resides with the duration of the task-relevant array, not the flanker itself. We propose that stimulus and encoding demands interact to produce the load effect. Our account clarifies how task parameters differentially impinge upon cognitive processes to produce attentional ‘spill-over’ by appealing to visual short-term memory as an additional processing bottleneck when stimuli are briefly presented.

  10. Dividing time: Concurrent timing of auditory and visual events by young and elderly adults

    OpenAIRE

    McAuley, J. Devin; Miller, Jonathan P.; Wang, Mo; Pang, Kevin C. H.

    2010-01-01

    This article examines age differences in individual’s ability to produce the durations of learned auditory and visual target events either in isolation (focused attention) or concurrently (divided attention). Young adults produced learned target durations equally well in focused and divided attention conditions. Older adults in contrast showed an age-related increase in timing variability in divided attention conditions that tended to be more pronounced for visual targets than for auditory ta...

  11. Concentrated pitch discrimination modulates auditory brainstem responses during contralateral noise exposure.

    Science.gov (United States)

    Ikeda, Kazunari; Sekiguchi, Takahiro; Hayashi, Akiko

    2010-03-31

    This study examined a notion that auditory discrimination is a requisite for attention-related modulation of the auditory brainstem response (ABR) during contralateral noise exposure. Given that the right ear was exposed continuously with white noise at an intensity of 60-80 dB sound pressure level, tone pips at 80 dB sound pressure level were delivered to the left ear through either single-stimulus or oddball procedures. Participants conducted reading (ignoring task) and counting target tones (attentive task) during stimulation. The oddball but not the single-stimulus procedures elicited task-related modulations in both early (ABR) and late (processing negativity) event-related potentials simultaneously. The elicitation of the attention-related ABR modulation during contralateral noise exposure is thus considered to require auditory discrimination and have the corticofugal nature evidently.

  12. Reduced object related negativity response indicates impaired auditory scene analysis in adults with autistic spectrum disorder

    Directory of Open Access Journals (Sweden)

    Veema Lodhia

    2014-02-01

    Full Text Available Auditory Scene Analysis provides a useful framework for understanding atypical auditory perception in autism. Specifically, a failure to segregate the incoming acoustic energy into distinct auditory objects might explain the aversive reaction autistic individuals have to certain auditory stimuli or environments. Previous research with non-autistic participants has demonstrated the presence of an Object Related Negativity (ORN in the auditory event related potential that indexes pre-attentive processes associated with auditory scene analysis. Also evident is a later P400 component that is attention dependent and thought to be related to decision-making about auditory objects. We sought to determine whether there are differences between individuals with and without autism in the levels of processing indexed by these components. Electroencephalography (EEG was used to measure brain responses from a group of 16 autistic adults, and 16 age- and verbal-IQ-matched typically-developing adults. Auditory responses were elicited using lateralized dichotic pitch stimuli in which inter-aural timing differences create the illusory perception of a pitch that is spatially separated from a carrier noise stimulus. As in previous studies, control participants produced an ORN in response to the pitch stimuli. However, this component was significantly reduced in the participants with autism. In contrast, processing differences were not observed between the groups at the attention-dependent level (P400. These findings suggest that autistic individuals have difficulty segregating auditory stimuli into distinct auditory objects, and that this difficulty arises at an early pre-attentive level of processing.

  13. What determines auditory distraction? On the roles of local auditory changes and expectation violations.

    Directory of Open Access Journals (Sweden)

    Jan P Röer

    Full Text Available Both the acoustic variability of a distractor sequence and the degree to which it violates expectations are important determinants of auditory distraction. In four experiments we examined the relative contribution of local auditory changes on the one hand and expectation violations on the other hand in the disruption of serial recall by irrelevant sound. We present evidence for a greater disruption by auditory sequences ending in unexpected steady state distractor repetitions compared to auditory sequences with expected changing state endings even though the former contained fewer local changes. This effect was demonstrated with piano melodies (Experiment 1 and speech distractors (Experiment 2. Furthermore, it was replicated when the expectation violation occurred after the encoding of the target items (Experiment 3, indicating that the items' maintenance in short-term memory was disrupted by attentional capture and not their encoding. This seems to be primarily due to the violation of a model of the specific auditory distractor sequences because the effect vanishes and even reverses when the experiment provides no opportunity to build up a specific neural model about the distractor sequence (Experiment 4. Nevertheless, the violation of abstract long-term knowledge about auditory regularities seems to cause a small and transient capture effect: Disruption decreased markedly over the course of the experiments indicating that participants habituated to the unexpected distractor repetitions across trials. The overall pattern of results adds to the growing literature that the degree to which auditory distractors violate situation-specific expectations is a more important determinant of auditory distraction than the degree to which a distractor sequence contains local auditory changes.

  14. Effects of attention on dichotic listening: an 15O-PET study

    DEFF Research Database (Denmark)

    Hugdahl, K; Law, I; Kyllingsbæk, Søren

    2000-01-01

    The present study investigated the effect of attention on brain activation in a dichotic listening situation. Dichotic listening is a technique to study laterality effects in the auditory sensory modality. Two different stimuli were presented simultaneously, one in each ear. Twelve subjects...... areas of Broca and Wernicke. The musical instrument stimuli mainly activated areas in visual association cortex, cerebellum, and the hippocampus. An interpretation of the findings is that attention has a facilitating effect for auditory processing, causing reduced activation in the primary auditory...... cortex when attention is explicitly recruited. The observed activations in the parietal lobe during the focused attention conditions could be part of a modality non-specific "attentional network"....

  15. Modulation of selective attention by polarity-specific tDCS effects.

    Science.gov (United States)

    Pecchinenda, Anna; Ferlazzo, Fabio; Lavidor, Michal

    2015-02-01

    Selective attention relies on working memory to maintain an attention set of task priorities. Consequently, selective attention is more efficient when working memory resources are not depleted. However, there is some evidence that distractors are processed even when working memory load is low. We used tDCS to assess whether boosting the activity of the Dorsolateral Prefrontal Cortex (DLPFC), involved in selective attention and working memory, would reduce interference from emotional distractors. Findings showed that anodal tDCS over the DLPFC was not sufficient to reduce interference from angry distractors. In contrast, cathodal tDCS over the DLPFC reduced interference from happy distractors. These findings show that altering the DLPFC activity is not sufficient to establish top-down control and increase selective attention efficiency. Although, when the neural signal in the DLPFC is altered by cathodal tDCS, interference from emotional distractors is reduced, leading to an improved performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Selective attentional enhancement and inhibition of fronto-posterior connectivity by the basal ganglia during attention switching.

    Science.gov (United States)

    van Schouwenburg, Martine R; den Ouden, Hanneke E M; Cools, Roshan

    2015-06-01

    The prefrontal cortex and the basal ganglia interact to selectively gate a desired action. Recent studies have shown that this selective gating mechanism of the basal ganglia extends to the domain of attention. Here, we investigate the nature of this action-like gating mechanism for attention using a spatial attention-switching paradigm in combination with functional neuroimaging and dynamic causal modeling. We show that the basal ganglia guide attention by focally releasing inhibition of task-relevant representations, while simultaneously inhibiting task-irrelevant representations by selectively modulating prefrontal top-down connections. These results strengthen and specify the role of the basal ganglia in attention. Moreover, our findings have implications for psychological theorizing by suggesting that inhibition of unattended sensory regions is not only a consequence of mutual suppression, but is an active process, subserved by the basal ganglia. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. An auditory-neuroscience perspective on the development of selective mutism

    Directory of Open Access Journals (Sweden)

    Yael Henkin

    2015-04-01

    Full Text Available Selective mutism (SM is a relatively rare psychiatric disorder of childhood characterized by consistent inability to speak in specific social situations despite the ability to speak normally in others. SM typically involves severe impairments in social and academic functioning. Common complications include school failure, social difficulties in the peer group, and aggravated intra-familial relationships. Although SM has been described in the medical and psychological literatures for many years, the potential underlying neural basis of the disorder has only recently been explored. Here we explore the potential role of specific auditory neural mechanisms in the psychopathology of SM and discuss possible implications for treatment.

  18. What we expect is not always what we get: evidence for both the direction-of-change and the specific-stimulus hypotheses of auditory attentional capture.

    Science.gov (United States)

    Nöstl, Anatole; Marsh, John E; Sörqvist, Patrik

    2014-01-01

    Participants were requested to respond to a sequence of visual targets while listening to a well-known lullaby. One of the notes in the lullaby was occasionally exchanged with a pattern deviant. Experiment 1 found that deviants capture attention as a function of the pitch difference between the deviant and the replaced/expected tone. However, when the pitch difference between the expected tone and the deviant tone is held constant, a violation to the direction-of-pitch change across tones can also capture attention (Experiment 2). Moreover, in more complex auditory environments, wherein it is difficult to build a coherent neural model of the sound environment from which expectations are formed, deviations can capture attention but it appears to matter less whether this is a violation from a specific stimulus or a violation of the current direction-of-change (Experiment 3). The results support the expectation violation account of auditory distraction and suggest that there are at least two different expectations that can be violated: One appears to be bound to a specific stimulus and the other would seem to be bound to a more global cross-stimulus rule such as the direction-of-change based on a sequence of preceding sound events. Factors like base-rate probability of tones within the sound environment might become the driving mechanism of attentional capture--rather than violated expectations--in complex sound environments.

  19. A new perspective on the perceptual selectivity of attention under load.

    Science.gov (United States)

    Giesbrecht, Barry; Sy, Jocelyn; Bundesen, Claus; Kyllingsbaek, Søren

    2014-05-01

    The human attention system helps us cope with a complex environment by supporting the selective processing of information relevant to our current goals. Understanding the perceptual, cognitive, and neural mechanisms that mediate selective attention is a core issue in cognitive neuroscience. One prominent model of selective attention, known as load theory, offers an account of how task demands determine when information is selected and an account of the efficiency of the selection process. However, load theory has several critical weaknesses that suggest that it is time for a new perspective. Here we review the strengths and weaknesses of load theory and offer an alternative biologically plausible computational account that is based on the neural theory of visual attention. We argue that this new perspective provides a detailed computational account of how bottom-up and top-down information is integrated to provide efficient attentional selection and allocation of perceptual processing resources. © 2014 New York Academy of Sciences.

  20. Characterizing the roles of alpha and theta oscillations in multisensory attention.

    Science.gov (United States)

    Keller, Arielle S; Payne, Lisa; Sekuler, Robert

    2017-05-01

    Cortical alpha oscillations (8-13Hz) appear to play a role in suppressing distractions when just one sensory modality is being attended, but do they also contribute when attention is distributed over multiple sensory modalities? For an answer, we examined cortical oscillations in human subjects who were dividing attention between auditory and visual sequences. In Experiment 1, subjects performed an oddball task with auditory, visual, or simultaneous audiovisual sequences in separate blocks, while the electroencephalogram was recorded using high-density scalp electrodes. Alpha oscillations were present continuously over posterior regions while subjects were attending to auditory sequences. This supports the idea that the brain suppresses processing of visual input in order to advantage auditory processing. During a divided-attention audiovisual condition, an oddball (a rare, unusual stimulus) occurred in either the auditory or the visual domain, requiring that attention be divided between the two modalities. Fronto-central theta band (4-7Hz) activity was strongest in this audiovisual condition, when subjects monitored auditory and visual sequences simultaneously. Theta oscillations have been associated with both attention and with short-term memory. Experiment 2 sought to distinguish these possible roles of fronto-central theta activity during multisensory divided attention. Using a modified version of the oddball task from Experiment 1, Experiment 2 showed that differences in theta power among conditions were independent of short-term memory load. Ruling out theta's association with short-term memory, we conclude that fronto-central theta activity is likely a marker of multisensory divided attention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Attentional Selection for Object Recognition - A Gentle Way

    National Research Council Canada - National Science Library

    Walther, Dirk; Itti, Laurent; Riesenhuber, Maximilian; Poggio, Tomaso; Koch, Christof

    2002-01-01

    ...% at a high level is sufficient to recognize multiple objects. To determine the size and shape of the region to be modulated, a rough segmentation is performed, based on pre-attentive features already computed to guide attention. Testing with synthetic and natural stimuli demonstrates that our new approach to attentional selection for recognition yields encouraging results in addition to being biologically plausible.

  2. Focusing on Attention: The Effects of Working Memory Capacity and Load on Selective Attention.

    OpenAIRE

    Ahmed, Lubna; de Fockert, Jan

    2012-01-01

    Background\\ud \\ud Working memory (WM) is imperative for effective selective attention. Distractibility is greater under conditions of high (vs. low) concurrent working memory load (WML), and in individuals with low (vs. high) working memory capacity (WMC). In the current experiments, we recorded the flanker task performance of individuals with high and low WMC during low and high WML, to investigate the combined effect of WML and WMC on selective attention.\\ud \\ud Methodology/Principal Findin...

  3. Comprehensive evaluation of a child with an auditory brainstem implant.

    Science.gov (United States)

    Eisenberg, Laurie S; Johnson, Karen C; Martinez, Amy S; DesJardin, Jean L; Stika, Carren J; Dzubak, Danielle; Mahalak, Mandy Lutz; Rector, Emily P

    2008-02-01

    We had an opportunity to evaluate an American child whose family traveled to Italy to receive an auditory brainstem implant (ABI). The goal of this evaluation was to obtain insight into possible benefits derived from the ABI and to begin developing assessment protocols for pediatric clinical trials. Case study. Tertiary referral center. Pediatric ABI Patient 1 was born with auditory nerve agenesis. Auditory brainstem implant surgery was performed in December, 2005, in Verona, Italy. The child was assessed at the House Ear Institute, Los Angeles, in July 2006 at the age of 3 years 11 months. Follow-up assessment has continued at the HEAR Center in Birmingham, Alabama. Auditory brainstem implant. Performance was assessed for the domains of audition, speech and language, intelligence and behavior, quality of life, and parental factors. Patient 1 demonstrated detection of sound, speech pattern perception with visual cues, and inconsistent auditory-only vowel discrimination. Language age with signs was approximately 2 years, and vocalizations were increasing. Of normal intelligence, he exhibited attention deficits with difficulty completing structured tasks. Twelve months later, this child was able to identify speech patterns consistently; closed-set word identification was emerging. These results were within the range of performance for a small sample of similarly aged pediatric cochlear implant users. Pediatric ABI assessment with a group of well-selected children is needed to examine risk versus benefit in this population and to analyze whether open-set speech recognition is achievable.

  4. Performance effects of nicotine during selective attention, divided attention, and simple stimulus detection: an fMRI study.

    Science.gov (United States)

    Hahn, Britta; Ross, Thomas J; Wolkenberg, Frank A; Shakleya, Diaa M; Huestis, Marilyn A; Stein, Elliot A

    2009-09-01

    Attention-enhancing effects of nicotine appear to depend on the nature of the attentional function. Underlying neuroanatomical mechanisms, too, may vary depending on the function modulated. This functional magnetic resonance imaging study recorded blood oxygen level-dependent (BOLD) activity in minimally deprived smokers during tasks of simple stimulus detection, selective attention, or divided attention after single-blind application of a transdermal nicotine (21 mg) or placebo patch. Smokers' performance in the placebo condition was unimpaired as compared with matched nonsmokers. Nicotine reduced reaction time (RT) in the stimulus detection and selective attention but not divided attention condition. Across all task conditions, nicotine reduced activation in frontal, temporal, thalamic, and visual regions and enhanced deactivation in so-called "default" regions. Thalamic effects correlated with RT reduction selectively during stimulus detection. An interaction with task condition was observed in middle and superior frontal gyri, where nicotine reduced activation only during stimulus detection. A visuomotor control experiment provided evidence against nonspecific effects of nicotine. In conclusion, although prefrontal activity partly displayed differential modulation by nicotine, most BOLD effects were identical across tasks, despite differential performance effects, suggesting that common neuronal mechanisms can selectively benefit different attentional functions. Overall, the effects of nicotine may be explained by increased functional efficiency and downregulated task-independent "default" functions.

  5. For Better or Worse: The Effect of Prismatic Adaptation on Auditory Neglect

    Directory of Open Access Journals (Sweden)

    Isabel Tissieres

    2017-01-01

    Full Text Available Patients with auditory neglect attend less to auditory stimuli on their left and/or make systematic directional errors when indicating sound positions. Rightward prismatic adaptation (R-PA was repeatedly shown to alleviate symptoms of visuospatial neglect and once to restore partially spatial bias in dichotic listening. It is currently unknown whether R-PA affects only this ear-related symptom or also other aspects of auditory neglect. We have investigated the effect of R-PA on left ear extinction in dichotic listening, space-related inattention assessed by diotic listening, and directional errors in auditory localization in patients with auditory neglect. The most striking effect of R-PA was the alleviation of left ear extinction in dichotic listening, which occurred in half of the patients with initial deficit. In contrast to nonresponders, their lesions spared the right dorsal attentional system and posterior temporal cortex. The beneficial effect of R-PA on an ear-related performance contrasted with detrimental effects on diotic listening and auditory localization. The former can be parsimoniously explained by the SHD-VAS model (shift in hemispheric dominance within the ventral attentional system; Clarke and Crottaz-Herbette 2016, which is based on the R-PA-induced shift of the right-dominant ventral attentional system to the left hemisphere. The negative effects in space-related tasks may be due to the complex nature of auditory space encoding at a cortical level.

  6. Selective attentional deficit in essential tremor: Evidence from the attention network test.

    Science.gov (United States)

    Pauletti, Caterina; Mannarelli, Daniela; De Lucia, Maria Caterina; Locuratolo, Nicoletta; Currà, Antonio; Missori, Paolo; Marinelli, Lucio; Fattapposta, Francesco

    2015-11-01

    The traditional view of essential tremor (ET) as a monosymptomatic and benign disorder has been reconsidered after patients with ET have been shown to experience cognitive deficits that are also related to attention. The Attention Network Test (ANT) is a rapid, widely used test to measure the efficiency of three attentional networks, i.e. alerting, orienting and executive, by evaluating reaction times (RTs) in response to visual stimuli. The aim of this study was to investigate attentional functioning in ET patients by means of the ANT. 21 non-demented patients with ET and 21 age- and sex-matched healthy controls performed the ANT. RT was significantly longer in ET patients than in controls (p attention in ET patients, probably owing to a dysfunction in the cerebello-thalamo-cortical loop. These selective attentional deficits are not related to clinical motor symptoms, contributing to shed further light on the clinical picture of ET. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Functional Connectivity of the Dorsal Attention Network Predicts Selective Attention in 4-7 year-old Girls.

    Science.gov (United States)

    Rohr, Christiane S; Vinette, Sarah A; Parsons, Kari A L; Cho, Ivy Y K; Dimond, Dennis; Benischek, Alina; Lebel, Catherine; Dewey, Deborah; Bray, Signe

    2017-09-01

    Early childhood is a period of profound neural development and remodeling during which attention skills undergo rapid maturation. Attention networks have been extensively studied in the adult brain, yet relatively little is known about changes in early childhood, and their relation to cognitive development. We investigated the association between age and functional connectivity (FC) within the dorsal attention network (DAN) and the association between FC and attention skills in early childhood. Functional magnetic resonance imaging data was collected during passive viewing in 44 typically developing female children between 4 and 7 years whose sustained, selective, and executive attention skills were assessed. FC of the intraparietal sulcus (IPS) and the frontal eye fields (FEF) was computed across the entire brain and regressed against age. Age was positively associated with FC between core nodes of the DAN, the IPS and the FEF, and negatively associated with FC between the DAN and regions of the default-mode network. Further, controlling for age, FC between the IPS and FEF was significantly associated with selective attention. These findings add to our understanding of early childhood development of attention networks and suggest that greater FC within the DAN is associated with better selective attention skills. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Two different mechanisms support selective attention at different phases of training.

    Science.gov (United States)

    Itthipuripat, Sirawaj; Cha, Kexin; Byers, Anna; Serences, John T

    2017-06-01

    Selective attention supports the prioritized processing of relevant sensory information to facilitate goal-directed behavior. Studies in human subjects demonstrate that attentional gain of cortical responses can sufficiently account for attention-related improvements in behavior. On the other hand, studies using highly trained nonhuman primates suggest that reductions in neural noise can better explain attentional facilitation of behavior. Given the importance of selective information processing in nearly all domains of cognition, we sought to reconcile these competing accounts by testing the hypothesis that extensive behavioral training alters the neural mechanisms that support selective attention. We tested this hypothesis using electroencephalography (EEG) to measure stimulus-evoked visual responses from human subjects while they performed a selective spatial attention task over the course of ~1 month. Early in training, spatial attention led to an increase in the gain of stimulus-evoked visual responses. Gain was apparent within ~100 ms of stimulus onset, and a quantitative model based on signal detection theory (SDT) successfully linked the magnitude of this gain modulation to attention-related improvements in behavior. However, after extensive training, this early attentional gain was eliminated even though there were still substantial attention-related improvements in behavior. Accordingly, the SDT-based model required noise reduction to account for the link between the stimulus-evoked visual responses and attentional modulations of behavior. These findings suggest that training can lead to fundamental changes in the way attention alters the early cortical responses that support selective information processing. Moreover, these data facilitate the translation of results across different species and across experimental procedures that employ different behavioral training regimes.

  9. Two different mechanisms support selective attention at different phases of training

    Science.gov (United States)

    Cha, Kexin; Byers, Anna; Serences, John T.

    2017-01-01

    Selective attention supports the prioritized processing of relevant sensory information to facilitate goal-directed behavior. Studies in human subjects demonstrate that attentional gain of cortical responses can sufficiently account for attention-related improvements in behavior. On the other hand, studies using highly trained nonhuman primates suggest that reductions in neural noise can better explain attentional facilitation of behavior. Given the importance of selective information processing in nearly all domains of cognition, we sought to reconcile these competing accounts by testing the hypothesis that extensive behavioral training alters the neural mechanisms that support selective attention. We tested this hypothesis using electroencephalography (EEG) to measure stimulus-evoked visual responses from human subjects while they performed a selective spatial attention task over the course of ~1 month. Early in training, spatial attention led to an increase in the gain of stimulus-evoked visual responses. Gain was apparent within ~100 ms of stimulus onset, and a quantitative model based on signal detection theory (SDT) successfully linked the magnitude of this gain modulation to attention-related improvements in behavior. However, after extensive training, this early attentional gain was eliminated even though there were still substantial attention-related improvements in behavior. Accordingly, the SDT-based model required noise reduction to account for the link between the stimulus-evoked visual responses and attentional modulations of behavior. These findings suggest that training can lead to fundamental changes in the way attention alters the early cortical responses that support selective information processing. Moreover, these data facilitate the translation of results across different species and across experimental procedures that employ different behavioral training regimes. PMID:28654635

  10. Through their eyes: selective attention in peahens during courtship.

    Science.gov (United States)

    Yorzinski, Jessica L; Patricelli, Gail L; Babcock, Jason S; Pearson, John M; Platt, Michael L

    2013-08-15

    Conspicuous, multicomponent ornamentation in male animals can be favored by female mate choice but we know little about the cognitive processes females use to evaluate these traits. Sexual selection may favor attention mechanisms allowing the choosing females to selectively and efficiently acquire relevant information from complex male display traits and, in turn, may favor male display traits that effectively capture and hold female attention. Using a miniaturized telemetric gaze-tracker, we show that peahens (Pavo cristatus) selectively attend to specific components of peacock courtship displays and virtually ignore other, highly conspicuous components. Females gazed at the lower train but largely ignored the head, crest and upper train. When the lower train was obscured, however, females spent more time gazing at the upper train and approached the upper train from a distance. Our results suggest that peahens mainly evaluate the lower train during close-up courtship but use the upper train as a long-distance attraction signal. Furthermore, we found that behavioral display components (train rattling and wing shaking) captured and maintained female attention, indicating that interactions between display components may promote the evolution of multicomponent displays. Taken together, these findings suggest that selective attention plays a crucial role in sexual selection and likely influences the evolution of male display traits.

  11. Visual-auditory integration for visual search: a behavioral study in barn owls

    Directory of Open Access Journals (Sweden)

    Yael eHazan

    2015-02-01

    Full Text Available Barn owls are nocturnal predators that rely on both vision and hearing for survival. The optic tectum of barn owls, a midbrain structure involved in selective attention, has been used as a model for studying visual- auditory integration at the neuronal level. However, behavioral data on visual- auditory integration in barn owls are lacking. The goal of this study was to examine if the integration of visual and auditory signals contributes to the process of guiding attention towards salient stimuli. We attached miniature wireless video cameras on barn owls' heads (OwlCam to track their target of gaze. We first provide evidence that the area centralis (a retinal area with a maximal density of photoreceptors is used as a functional fovea in barn owls. Thus, by mapping the projection of the area centralis on the OwlCam's video frame, it is possible to extract the target of gaze. For the experiment, owls were positioned on a high perch and four food items were scattered in a large arena on the floor. In addition, a hidden loudspeaker was positioned in the arena. The positions of the food items and speaker were changed every session. Video sequences from the OwlCam were saved for offline analysis while the owls spontaneously scanned the room and the food items with abrupt gaze shifts (head saccades. From time to time during the experiment, a brief sound was emitted from the speaker. The fixation points immediately following the sounds were extracted and the distances between the gaze position and the nearest items and loudspeaker were measured. The head saccades were rarely towards the location of the sound source but to salient visual features in the room, such as the door knob or the food items. However, among the food items, the one closest to the loudspeaker had the highest probability of attracting a gaze shift. This result supports the notion that auditory signals are integrated with visual information for the selection of the next visual search

  12. Bilingualism increases neural response consistency and attentional control: evidence for sensory and cognitive coupling.

    Science.gov (United States)

    Krizman, Jennifer; Skoe, Erika; Marian, Viorica; Kraus, Nina

    2014-01-01

    Auditory processing is presumed to be influenced by cognitive processes - including attentional control - in a top-down manner. In bilinguals, activation of both languages during daily communication hones inhibitory skills, which subsequently bolster attentional control. We hypothesize that the heightened attentional demands of bilingual communication strengthens connections between cognitive (i.e., attentional control) and auditory processing, leading to greater across-trial consistency in the auditory evoked response (i.e., neural consistency) in bilinguals. To assess this, we collected passively-elicited auditory evoked responses to the syllable [da] in adolescent Spanish-English bilinguals and English monolinguals and separately obtained measures of attentional control and language ability. Bilinguals demonstrated enhanced attentional control and more consistent brainstem and cortical responses. In bilinguals, but not monolinguals, brainstem consistency tracked with language proficiency and attentional control. We interpret these enhancements in neural consistency as the outcome of strengthened attentional control that emerged from experience communicating in two languages. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Beyond time and space: The effect of a lateralized sustained attention task and brain stimulation on spatial and selective attention.

    Science.gov (United States)

    Shalev, Nir; De Wandel, Linde; Dockree, Paul; Demeyere, Nele; Chechlacz, Magdalena

    2017-10-03

    The Theory of Visual Attention (TVA) provides a mathematical formalisation of the "biased competition" account of visual attention. Applying this model to individual performance in a free recall task allows the estimation of 5 independent attentional parameters: visual short-term memory (VSTM) capacity, speed of information processing, perceptual threshold of visual detection; attentional weights representing spatial distribution of attention (spatial bias), and the top-down selectivity index. While the TVA focuses on selection in space, complementary accounts of attention describe how attention is maintained over time, and how temporal processes interact with selection. A growing body of evidence indicates that different facets of attention interact and share common neural substrates. The aim of the current study was to modulate a spatial attentional bias via transfer effects, based on a mechanistic understanding of the interplay between spatial, selective and temporal aspects of attention. Specifically, we examined here: (i) whether a single administration of a lateralized sustained attention task could prime spatial orienting and lead to transferable changes in attentional weights (assigned to the left vs right hemi-field) and/or other attentional parameters assessed within the framework of TVA (Experiment 1); (ii) whether the effects of such spatial-priming on TVA parameters could be further enhanced by bi-parietal high frequency transcranial random noise stimulation (tRNS) (Experiment 2). Our results demonstrate that spatial attentional bias, as assessed within the TVA framework, was primed by sustaining attention towards the right hemi-field, but this spatial-priming effect did not occur when sustaining attention towards the left. Furthermore, we show that bi-parietal high-frequency tRNS combined with the rightward spatial-priming resulted in an increased attentional selectivity. To conclude, we present a novel, theory-driven method for attentional modulation

  14. Acquisition, Analyses and Interpretation of fMRI Data: A Study on the Effective Connectivity in Human Primary Auditory Cortices

    International Nuclear Information System (INIS)

    Ahmad Nazlim Yusoff; Mazlyfarina Mohamad; Khairiah Abdul Hamid

    2011-01-01

    A study on the effective connectivity characteristics in auditory cortices was conducted on five healthy Malay male subjects with the age of 20 to 40 years old using functional magnetic resonance imaging (fMRI), statistical parametric mapping (SPM5) and dynamic causal modelling (DCM). A silent imaging paradigm was used to reduce the scanner sound artefacts on functional images. The subjects were instructed to pay attention to the white noise stimulus binaurally given at intensity level of 70 dB higher than the hearing level for normal people. Functional specialisation was studied using Matlab-based SPM5 software by means of fixed effects (FFX), random effects (RFX) and conjunction analyses. Individual analyses on all subjects indicate asymmetrical bilateral activation between the left and right auditory cortices in Brodmann areas (BA)22, 41 and 42 involving the primary and secondary auditory cortices. The three auditory areas in the right and left auditory cortices are selected for the determination of the effective connectivity by constructing 9 network models. The effective connectivity is determined on four out of five subjects with the exception of one subject who has the BA22 coordinates located too far from BA22 coordinates obtained from group analysis. DCM results showed the existence of effective connectivity between the three selected auditory areas in both auditory cortices. In the right auditory cortex, BA42 is identified as input centre with unidirectional parallel effective connectivities of BA42→BA41and BA42→BA22. However, for the left auditory cortex, the input is BA41 with unidirectional parallel effective connectivities of BA41→BA42 and BA41→BA22. The connectivity between the activated auditory areas suggests the existence of signal pathway in the auditory cortices even when the subject is listening to noise. (author)

  15. A habilidade de atenção auditiva sustentada em crianças com fissura labiopalatina e transtorno fonológico Sustained auditory attention ability in children with cleft lip and palate and phonological disorders

    Directory of Open Access Journals (Sweden)

    Tâmyne Ferreira Duarte de Moraes

    2011-12-01

    Full Text Available OBJETIVO: Verificar a habilidade de atenção auditiva sustentada em crianças com fissura labiopalatina e transtorno fonológico, comparando o desempenho com crianças com fissura labiopalatina e ausência de transtorno fonológico. MÉTODOS: Dezessete crianças com idade entre 6 e 11 anos, com fissura labiopalatina transforame unilateral operada e ausência de queixa e/ou alteração auditiva, separadas em dois grupos: GI (com transtorno fonológico e GII (com auŝencia de transtorno fonológico. Para detecção de alteração auditiva foram realizadas audiometria e timpanometria. Para avaliação fonológica foram utilizados os seguintes instrumentos: Teste de Linguagem Infantil e Consciência Fonológica: Instrumento de Avaliação Sequencial. Para avaliar a habilidade de atenção auditiva foi aplicado o Teste da Habilidade de Atenção Auditiva Sustentada. RESULTADOS: Das sete crianças com transtorno fonológico (41%, duas (29% apresentaram alteração nos resultados do Teste da Habilidade de Atenção Auditiva Sustentada. Não houve diferença entre as crianças com fissura labiopalatina e transtorno fonológico e as crianças com fissura labiopalatina e ausência de transtorno fonológico quanto aos resultados do Teste de Habilidade de Atenção Auditiva Sustentada. CONCLUSÃO: A habilidade de atenção auditiva sustentada nas crianças com fissura labiopalatina e transtorno fonológico não difere da habilidade de atenção auditiva sustentada de crianças com fissura labiopalatina sem transtorno fonológico.PURPOSE: To verify the ability of sustained auditory attention in children with cleft lip and palate and phonological disorder, in comparison with the performance of children with cleft lip and palate and absence of phonological disorder. METHODS: Seventeen children with ages between 6 and 11 years, with repaired unilateral complete cleft lip and palate and absence of auditory complaints or hearing problems, were divided into two

  16. Auditory display as feedback for a novel eye-tracking system for sterile operating room interaction.

    Science.gov (United States)

    Black, David; Unger, Michael; Fischer, Nele; Kikinis, Ron; Hahn, Horst; Neumuth, Thomas; Glaser, Bernhard

    2018-01-01

    The growing number of technical systems in the operating room has increased attention on developing touchless interaction methods for sterile conditions. However, touchless interaction paradigms lack the tactile feedback found in common input devices such as mice and keyboards. We propose a novel touchless eye-tracking interaction system with auditory display as a feedback method for completing typical operating room tasks. Auditory display provides feedback concerning the selected input into the eye-tracking system as well as a confirmation of the system response. An eye-tracking system with a novel auditory display using both earcons and parameter-mapping sonification was developed to allow touchless interaction for six typical scrub nurse tasks. An evaluation with novice participants compared auditory display with visual display with respect to reaction time and a series of subjective measures. When using auditory display to substitute for the lost tactile feedback during eye-tracking interaction, participants exhibit reduced reaction time compared to using visual-only display. In addition, the auditory feedback led to lower subjective workload and higher usefulness and system acceptance ratings. Due to the absence of tactile feedback for eye-tracking and other touchless interaction methods, auditory display is shown to be a useful and necessary addition to new interaction concepts for the sterile operating room, reducing reaction times while improving subjective measures, including usefulness, user satisfaction, and cognitive workload.

  17. A novel test for evaluating horses' spontaneous visual attention is predictive of attention in operant learning tasks

    Science.gov (United States)

    Rochais, C.; Sébilleau, M.; Houdebine, M.; Bec, P.; Hausberger, M.; Henry, S.

    2017-08-01

    Attention is described as the ability to process selectively one aspect of the environment over others. In this study, we characterized horses' spontaneous attention by designing a novel visual attention test (VAT) that is easy to apply in the animal's home environment. The test was repeated over three consecutive days and repeated again 6 months later in order to assess inter-individual variations and intra-individual stability. Different patterns of attention have been revealed: `overall' attention when the horse merely gazed at the stimulus and `fixed' attention characterized by fixity and orientation of at least the visual and auditory organs towards the stimulus. The individual attention characteristics remained consistent over time (after 6 months, Spearman correlation test, P work situation (lunge working context). Our results revealed that (i) individual variations remained consistent across tests and (ii) the VAT attention measures were not only predictive of attentional skills but also of learning abilities. Differences appeared however between the first day of testing and the following test days: attention structure on the second day was predictive of learning abilities, attention performances in the 5-CSRRT and at work. The VAT appears as a promising easy-to-use tool to assess animals' attention characteristics and the impact of different factors of variation on attention.

  18. Arousal and attention re-orienting in autism spectrum disorders: evidence from auditory event-related potentials

    Directory of Open Access Journals (Sweden)

    Elena V Orekhova

    2014-02-01

    Full Text Available The extended phenotype of autism spectrum disorders (ASD includes a combination of arousal regulation problems, sensory modulation difficulties, and attention re-orienting deficit. A slow and inefficient re-orienting to stimuli that appear outside of the attended sensory stream is thought to be especially detrimental for social functioning. Event-related potentials (ERPs and magnetic fields (ERFs may help to reveal which processing stages underlying brain response to unattended but salient sensory event are affected in individuals with ASD. Previous research focusing on two sequential stages of the brain response - automatic detection of physical changes in auditory stream, indexed by mismatch negativity (MMN, and evaluation of stimulus novelty, indexed by P3a component, - found in individuals with ASD either increased, decreased or normal processing of deviance and novelty. The review examines these apparently conflicting results, notes gaps in previous findings, and suggests a potentially unifying hypothesis relating the dampened responses to unattended sensory events to the deficit in rapid arousal process. Specifically, ‘sensory gating’ studies focused on pre-attentive arousal consistently demonstrated that brain response to unattended and temporally novel sound in ASD is already affected at around 100 ms after stimulus onset. We hypothesize that abnormalities in nicotinic cholinergic arousal pathways, previously reported in individuals with ASD, may contribute to these ERP/ERF aberrations and result in attention re-orienting deficit. Such cholinergic dysfunction may be present in individuals with ASD early in life and can influence both sensory processing and attention re-orienting behavior. Identification of early neurophysiological biomarkers for cholinergic deficit would help to detect infants at risk who can potentially benefit from particular types of therapies or interventions.

  19. Gender effect on pre-attentive change detection in major depressive disorder patients revealed by auditory MMN.

    Science.gov (United States)

    Qiao, Zhengxue; Yang, Aiying; Qiu, Xiaohui; Yang, Xiuxian; Zhang, Congpei; Zhu, Xiongzhao; He, Jincai; Wang, Lin; Bai, Bing; Sun, Hailian; Zhao, Lun; Yang, Yanjie

    2015-10-30

    Gender differences in rates of major depressive disorder (MDD) are well established, but gender differences in cognitive function have been little studied. Auditory mismatch negativity (MMN) was used to investigate gender differences in pre-attentive information processing in first episode MDD. In the deviant-standard reverse oddball paradigm, duration auditory MMN was obtained in 30 patients (15 males) and 30 age-/education-matched controls. Over frontal-central areas, mean amplitude of increment MMN (to a 150-ms deviant tone) was smaller in female than male patients; there was no sex difference in decrement MMN (to a 50-ms deviant tone). Neither increment nor decrement MMN differed between female and male patients over temporal areas. Frontal-central MMN and temporal MMN did not differ between male and female controls in any condition. Over frontal-central areas, mean amplitude of increment MMN was smaller in female patients than female controls; there was no difference in decrement MMN. Neither increment nor decrement MMN differed between female patients and female controls over temporal areas. Frontal-central MMN and temporal MMN did not differ between male patients and male controls. Mean amplitude of increment MMN in female patients did not correlate with symptoms, suggesting this sex-specific deficit is a trait- not a state-dependent phenomenon. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Visual Task Demands and the Auditory Mismatch Negativity: An Empirical Study and a Meta-Analysis.

    Science.gov (United States)

    Wiens, Stefan; Szychowska, Malina; Nilsson, Mats E

    2016-01-01

    Because the auditory system is particularly useful in monitoring the environment, previous research has examined whether task-irrelevant, auditory distracters are processed even if subjects focus their attention on visual stimuli. This research suggests that attentionally demanding visual tasks decrease the auditory mismatch negativity (MMN) to simultaneously presented auditory distractors. Because a recent behavioral study found that high visual perceptual load decreased detection sensitivity of simultaneous tones, we used a similar task (n = 28) to determine if high visual perceptual load would reduce the auditory MMN. Results suggested that perceptual load did not decrease the MMN. At face value, these nonsignificant findings may suggest that effects of perceptual load on the MMN are smaller than those of other demanding visual tasks. If so, effect sizes should differ systematically between the present and previous studies. We conducted a selective meta-analysis of published studies in which the MMN was derived from the EEG, the visual task demands were continuous and varied between high and low within the same task, and the task-irrelevant tones were presented in a typical oddball paradigm simultaneously with the visual stimuli. Because the meta-analysis suggested that the present (null) findings did not differ systematically from previous findings, the available evidence was combined. Results of this meta-analysis confirmed that demanding visual tasks reduce the MMN to auditory distracters. However, because the meta-analysis was based on small studies and because of the risk for publication biases, future studies should be preregistered with large samples (n > 150) to provide confirmatory evidence for the results of the present meta-analysis. These future studies should also use control conditions that reduce confounding effects of neural adaptation, and use load manipulations that are defined independently from their effects on the MMN.

  1. Visual Task Demands and the Auditory Mismatch Negativity: An Empirical Study and a Meta-Analysis

    Science.gov (United States)

    Wiens, Stefan; Szychowska, Malina; Nilsson, Mats E.

    2016-01-01

    Because the auditory system is particularly useful in monitoring the environment, previous research has examined whether task-irrelevant, auditory distracters are processed even if subjects focus their attention on visual stimuli. This research suggests that attentionally demanding visual tasks decrease the auditory mismatch negativity (MMN) to simultaneously presented auditory distractors. Because a recent behavioral study found that high visual perceptual load decreased detection sensitivity of simultaneous tones, we used a similar task (n = 28) to determine if high visual perceptual load would reduce the auditory MMN. Results suggested that perceptual load did not decrease the MMN. At face value, these nonsignificant findings may suggest that effects of perceptual load on the MMN are smaller than those of other demanding visual tasks. If so, effect sizes should differ systematically between the present and previous studies. We conducted a selective meta-analysis of published studies in which the MMN was derived from the EEG, the visual task demands were continuous and varied between high and low within the same task, and the task-irrelevant tones were presented in a typical oddball paradigm simultaneously with the visual stimuli. Because the meta-analysis suggested that the present (null) findings did not differ systematically from previous findings, the available evidence was combined. Results of this meta-analysis confirmed that demanding visual tasks reduce the MMN to auditory distracters. However, because the meta-analysis was based on small studies and because of the risk for publication biases, future studies should be preregistered with large samples (n > 150) to provide confirmatory evidence for the results of the present meta-analysis. These future studies should also use control conditions that reduce confounding effects of neural adaptation, and use load manipulations that are defined independently from their effects on the MMN. PMID:26741815

  2. Auditory Pattern Memory and Group Signal Detection

    National Research Council Canada - National Science Library

    Sorkin, Robert

    1997-01-01

    .... The experiments with temporally-coded auditory patterns showed how listeners' attention is influenced by the position and the amount of information carried by different segments of the pattern...

  3. Aging, selective attention, and feature integration.

    Science.gov (United States)

    Plude, D J; Doussard-Roosevelt, J A

    1989-03-01

    This study used feature-integration theory as a means of determining the point in processing at which selective attention deficits originate. The theory posits an initial stage of processing in which features are registered in parallel and then a serial process in which features are conjoined to form complex stimuli. Performance of young and older adults on feature versus conjunction search is compared. Analyses of reaction times and error rates suggest that elderly adults in addition to young adults, can capitalize on the early parallel processing stage of visual information processing, and that age decrements in visual search arise as a result of the later, serial stage of processing. Analyses of a third, unconfounded, conjunction search condition reveal qualitatively similar modes of conjunction search in young and older adults. The contribution of age-related data limitations is found to be secondary to the contribution of age decrements in selective attention.

  4. Spatial Scaling of the Profile of Selective Attention in the Visual Field.

    Science.gov (United States)

    Gannon, Matthew A; Knapp, Ashley A; Adams, Thomas G; Long, Stephanie M; Parks, Nathan A

    2016-01-01

    Neural mechanisms of selective attention must be capable of adapting to variation in the absolute size of an attended stimulus in the ever-changing visual environment. To date, little is known regarding how attentional selection interacts with fluctuations in the spatial expanse of an attended object. Here, we use event-related potentials (ERPs) to investigate the scaling of attentional enhancement and suppression across the visual field. We measured ERPs while participants performed a task at fixation that varied in its attentional demands (attentional load) and visual angle (1.0° or 2.5°). Observers were presented with a stream of task-relevant stimuli while foveal, parafoveal, and peripheral visual locations were probed by irrelevant distractor stimuli. We found two important effects in the N1 component of visual ERPs. First, N1 modulations to task-relevant stimuli indexed attentional selection of stimuli during the load task and further correlated with task performance. Second, with increased task size, attentional modulation of the N1 to distractor stimuli showed a differential pattern that was consistent with a scaling of attentional selection. Together, these results demonstrate that the size of an attended stimulus scales the profile of attentional selection across the visual field and provides insights into the attentional mechanisms associated with such spatial scaling.

  5. Supramodal Executive Control of Attention

    Directory of Open Access Journals (Sweden)

    ALFREDO eSPAGNA

    2015-02-01

    Full Text Available The human attentional system can be subdivided into three functional networks of alerting, orienting, and executive control. Although these networks have been extensively studied in the visuospatial modality, whether the same mechanisms are deployed across different sensory modalities remains unclear. In this study we used the attention network test for visuospatial modality, in addition to two auditory variants with spatial and frequency manipulations to examine cross-modal correlations between network functions. Results showed that among the visual and auditory tasks the effects of executive control, but not effects of alerting and orienting were significantly correlated. These findings suggest that while alerting and orienting functions rely more upon modality specific processes, the executive control of attention coordinates complex behavior via supramodal mechanisms.

  6. Selecting for memory? The influence of selective attention on the mnemonic binding of contextual information.

    Science.gov (United States)

    Uncapher, Melina R; Rugg, Michael D

    2009-06-24

    Not all of what is experienced is remembered later. Behavioral evidence suggests that the manner in which an event is processed influences which aspects of the event will later be remembered. The present experiment investigated the neural correlates of "selective encoding," or the mechanisms that support the encoding of some elements of an event in preference to others. Event-related MRI data were acquired while volunteers selectively attended to one of two different contextual features of study items (color or location). A surprise memory test for the items and both contextual features was subsequently administered to determine the influence of selective attention on the neural correlates of contextual encoding. Activity in several cortical regions indexed later memory success selectively for color or location information, and this encoding-related activity was enhanced by selective attention to the relevant feature. Critically, a region in the hippocampus responded selectively to attended source information (whether color or location), demonstrating encoding-related activity for attended but not for nonattended source features. Together, the findings suggest that selective attention modulates the magnitude of activity in cortical regions engaged by different aspects of an event, and hippocampal encoding mechanisms seem to be sensitive to this modulation. Thus, the information that is encoded into a memory representation is biased by selective attention, and this bias is mediated by cortical-hippocampal interactions.

  7. Selecting for memory? The influence of selective attention on the mnemonic binding of contextual information

    Science.gov (United States)

    Uncapher, Melina R.; Rugg, Michael D.

    2009-01-01

    Not all of what is experienced is remembered later. Behavioral evidence suggests that the manner in which an event is processed influences which aspects of the event will later be remembered. The present experiment investigated the neural correlates of ‘selective encoding’, or the mechanisms that support the encoding of some elements of an event in preference to others. Event-related functional magnetic resonance imaging (fMRI) data were acquired while volunteers selectively attended to one of two different contextual features of study items (color or location). A surprise memory test for the items and both contextual features was subsequently administered to determine the influence of selective attention on the neural correlates of contextual encoding. Activity in several cortical regions indexed later memory success selectively for color or location information, and this encoding-related activity was enhanced by selective attention to the relevant feature. Critically, a region in the hippocampus responded selectively to attended source information (whether color or location), demonstrating encoding-related activity for attended but not for nonattended source features. Together, the findings suggest that selective attention modulates the magnitude of activity in cortical regions engaged by different aspects of an event, and hippocampal encoding mechanisms seem to be sensitive to this modulation. Thus, the information that is encoded into a memory representation is biased by selective attention, and this bias is mediated by cortico-hippocampal interactions. PMID:19553466

  8. Effect of feature-selective attention on neuronal responses in macaque area MT

    Science.gov (United States)

    Chen, X.; Hoffmann, K.-P.; Albright, T. D.

    2012-01-01

    Attention influences visual processing in striate and extrastriate cortex, which has been extensively studied for spatial-, object-, and feature-based attention. Most studies exploring neural signatures of feature-based attention have trained animals to attend to an object identified by a certain feature and ignore objects/displays identified by a different feature. Little is known about the effects of feature-selective attention, where subjects attend to one stimulus feature domain (e.g., color) of an object while features from different domains (e.g., direction of motion) of the same object are ignored. To study this type of feature-selective attention in area MT in the middle temporal sulcus, we trained macaque monkeys to either attend to and report the direction of motion of a moving sine wave grating (a feature for which MT neurons display strong selectivity) or attend to and report its color (a feature for which MT neurons have very limited selectivity). We hypothesized that neurons would upregulate their firing rate during attend-direction conditions compared with attend-color conditions. We found that feature-selective attention significantly affected 22% of MT neurons. Contrary to our hypothesis, these neurons did not necessarily increase firing rate when animals attended to direction of motion but fell into one of two classes. In one class, attention to color increased the gain of stimulus-induced responses compared with attend-direction conditions. The other class displayed the opposite effects. Feature-selective activity modulations occurred earlier in neurons modulated by attention to color compared with neurons modulated by attention to motion direction. Thus feature-selective attention influences neuronal processing in macaque area MT but often exhibited a mismatch between the preferred stimulus dimension (direction of motion) and the preferred attention dimension (attention to color). PMID:22170961

  9. An auditory-neuroscience perspective on the development of selective mutism.

    Science.gov (United States)

    Henkin, Yael; Bar-Haim, Yair

    2015-04-01

    Selective mutism (SM) is a relatively rare psychiatric disorder of childhood characterized by consistent inability to speak in specific social situations despite the ability to speak normally in others. SM typically involves severe impairments in social and academic functioning. Common complications include school failure, social difficulties in the peer group, and aggravated intra-familial relationships. Although SM has been described in the medical and psychological literatures for many years, the potential underlying neural basis of the disorder has only recently been explored. Here we explore the potential role of specific auditory neural mechanisms in the psychopathology of SM and discuss possible implications for treatment. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Visual short-term memory load strengthens selective attention.

    Science.gov (United States)

    Roper, Zachary J J; Vecera, Shaun P

    2014-04-01

    Perceptual load theory accounts for many attentional phenomena; however, its mechanism remains elusive because it invokes underspecified attentional resources. Recent dual-task evidence has revealed that a concurrent visual short-term memory (VSTM) load slows visual search and reduces contrast sensitivity, but it is unknown whether a VSTM load also constricts attention in a canonical perceptual load task. If attentional selection draws upon VSTM resources, then distraction effects-which measure attentional "spill-over"-will be reduced as competition for resources increases. Observers performed a low perceptual load flanker task during the delay period of a VSTM change detection task. We observed a reduction of the flanker effect in the perceptual load task as a function of increasing concurrent VSTM load. These findings were not due to perceptual-level interactions between the physical displays of the two tasks. Our findings suggest that perceptual representations of distractor stimuli compete with the maintenance of visual representations held in memory. We conclude that access to VSTM determines the degree of attentional selectivity; when VSTM is not completely taxed, it is more likely for task-irrelevant items to be consolidated and, consequently, affect responses. The "resources" hypothesized by load theory are at least partly mnemonic in nature, due to the strong correspondence they share with VSTM capacity.

  11. The effects of advertisement location and familiarity on selective attention.

    Science.gov (United States)

    Jessen, Tanja Lund; Rodway, Paul

    2010-06-01

    This study comprised two experiments to examine the distracting effects of advertisement familiarity, location, and onset on the performance of a selective attention task. In Exp. 1, familiar advertisements presented in peripheral vision disrupted selective attention when the attention task was more demanding, suggesting that the distracting effect of advertisements is a product of task demands and advertisement familiarity and location. In Exp. 2, the onset of the advertisement shortly before, or after, the attention task captured attention and disrupted attentional performance. The onset of the advertisement before the attention task reduced target response time without an increase in errors and therefore facilitated performance. Despite being instructed to ignore the advertisements, the participants were able to recall a substantial proportion of the familiar advertisements. Implications for the presentation of advertisements during human-computer interaction were discussed.

  12. Acute physical exercise affected processing efficiency in an auditory attention task more than processing effectiveness.

    Science.gov (United States)

    Dutke, Stephan; Jaitner, Thomas; Berse, Timo; Barenberg, Jonathan

    2014-02-01

    Research on effects of acute physical exercise on performance in a concurrent cognitive task has generated equivocal evidence. Processing efficiency theory predicts that concurrent physical exercise can increase resource requirements for sustaining cognitive performance even when the level of performance is unaffected. This hypothesis was tested in a dual-task experiment. Sixty young adults worked on a primary auditory attention task and a secondary interval production task while cycling on a bicycle ergometer. Physical load (cycling) and cognitive load of the primary task were manipulated. Neither physical nor cognitive load affected primary task performance, but both factors interacted on secondary task performance. Sustaining primary task performance under increased physical and/or cognitive load increased resource consumption as indicated by decreased secondary task performance. Results demonstrated that physical exercise effects on cognition might be underestimated when only single task performance is the focus.

  13. A psychophysiological evaluation of the perceived urgency of auditory warning signals

    Science.gov (United States)

    Burt, J. L.; Bartolome, D. S.; Burdette, D. W.; Comstock, J. R. Jr

    1995-01-01

    One significant concern that pilots have about cockpit auditory warnings is that the signals presently used lack a sense of priority. The relationship between auditory warning sound parameters and perceived urgency is, therefore, an important topic of enquiry in aviation psychology. The present investigation examined the relationship among subjective assessments of urgency, reaction time, and brainwave activity with three auditory warning signals. Subjects performed a tracking task involving automated and manual conditions, and were presented with auditory warnings having various levels of perceived and situational urgency. Subjective assessments revealed that subjects were able to rank warnings on an urgency scale, but rankings were altered after warnings were mapped to a situational urgency scale. Reaction times differed between automated and manual tracking task conditions, and physiological data showed attentional differences in response to perceived and situational warning urgency levels. This study shows that the use of physiological measures sensitive to attention and arousal, in conjunction with behavioural and subjective measures, may lead to the design of auditory warnings that produce a sense of urgency in an operator that matches the urgency of the situation.

  14. What we expect is not always what we get: evidence for both the direction-of-change and the specific-stimulus hypotheses of auditory attentional capture.

    Directory of Open Access Journals (Sweden)

    Anatole Nöstl

    Full Text Available Participants were requested to respond to a sequence of visual targets while listening to a well-known lullaby. One of the notes in the lullaby was occasionally exchanged with a pattern deviant. Experiment 1 found that deviants capture attention as a function of the pitch difference between the deviant and the replaced/expected tone. However, when the pitch difference between the expected tone and the deviant tone is held constant, a violation to the direction-of-pitch change across tones can also capture attention (Experiment 2. Moreover, in more complex auditory environments, wherein it is difficult to build a coherent neural model of the sound environment from which expectations are formed, deviations can capture attention but it appears to matter less whether this is a violation from a specific stimulus or a violation of the current direction-of-change (Experiment 3. The results support the expectation violation account of auditory distraction and suggest that there are at least two different expectations that can be violated: One appears to be bound to a specific stimulus and the other would seem to be bound to a more global cross-stimulus rule such as the direction-of-change based on a sequence of preceding sound events. Factors like base-rate probability of tones within the sound environment might become the driving mechanism of attentional capture--rather than violated expectations--in complex sound environments.

  15. The attenuation of auditory neglect by implicit cues.

    Science.gov (United States)

    Coleman, A Rand; Williams, J Michael

    2006-09-01

    This study examined implicit semantic and rhyming cues on perception of auditory stimuli among nonaphasic participants who suffered a lesion of the right cerebral hemisphere and auditory neglect of sound perceived by the left ear. Because language represents an elaborate processing of auditory stimuli and the language centers were intact among these patients, it was hypothesized that interactive verbal stimuli presented in a dichotic manner would attenuate neglect. The selected participants were administered an experimental dichotic listening test composed of six types of word pairs: unrelated words, synonyms, antonyms, categorically related words, compound words, and rhyming words. Presentation of word pairs that were semantically related resulted in a dramatic reduction of auditory neglect. Dichotic presentations of rhyming words exacerbated auditory neglect. These findings suggest that the perception of auditory information is strongly affected by the specific content conveyed by the auditory system. Language centers will process a degraded stimulus that contains salient language content. A degraded auditory stimulus is neglected if it is devoid of content that activates the language centers or other cognitive systems. In general, these findings suggest that auditory neglect involves a complex interaction of intact and impaired cerebral processing centers with content that is selectively processed by these centers.

  16. Attentional selection and suppression in children and adults.

    Science.gov (United States)

    Sun, Meirong; Wang, Encong; Huang, Jing; Zhao, Chenguang; Guo, Jialiang; Li, Dongwei; Sun, Li; Du, Boqi; Ding, Yulong; Song, Yan

    2018-05-15

    The fundamental role of covert spatial attention is to enhance the processing of attended items while simultaneously ignoring irrelevant items. However, relatively little is known about how brain electrophysiological activities associated with target selection and distractor suppression are involved as they develop and become fully functional. The current study aimed to identify the neurophysiological bases of the development of covert spatial attention, focusing on electroencephalographic (EEG) markers of attentional selection (N2pc) and suppression (P D ). EEG data were collected from healthy young adults and typically developing children (9-15 years old) as they searched for a shape singleton target in either the absence or the presence of a salient-but-irrelevant color singleton distractor. The ERP results showed that a lateral shape target elicited a smaller N2pc in children compared with adults regardless of whether a distractor was present or not. Moreover, the target-elicited N2pc was always followed by a similar positivity in both age groups. Counterintuitively, a lateral salient-but-irrelevant distractor elicited a large P D in children with low behavioral accuracy, whereas high-accuracy children exhibited a small and "adult-like" P D . More importantly, we found no evidence for a correlation between the target-elicited N2pc and the distractor-elicited P D in either age group. Our results provide neurophysiological evidence for the developmental differences between target selection and distractor suppression. Compared with adults, 9-15-year-old children deploy insufficient attentional selection resources to targets but use "adult-like" or even more attentional suppression resources to resist irrelevant distractors. A video abstract of this article can be viewed at: https://www.youtube.com/watch?v=NhWapx0d75I. © 2018 John Wiley & Sons Ltd.

  17. Dividing time: concurrent timing of auditory and visual events by young and elderly adults.

    Science.gov (United States)

    McAuley, J Devin; Miller, Jonathan P; Wang, Mo; Pang, Kevin C H

    2010-07-01

    This article examines age differences in individual's ability to produce the durations of learned auditory and visual target events either in isolation (focused attention) or concurrently (divided attention). Young adults produced learned target durations equally well in focused and divided attention conditions. Older adults, in contrast, showed an age-related increase in timing variability in divided attention conditions that tended to be more pronounced for visual targets than for auditory targets. Age-related impairments were associated with a decrease in working memory span; moreover, the relationship between working memory and timing performance was largest for visual targets in divided attention conditions.

  18. An impaired attentional dwell time after parietal and frontal lesions related to impaired selective attention not unilateral neglect.

    Science.gov (United States)

    Correani, Alessia; Humphreys, Glyn W

    2011-07-01

    The attentional blink, a measure of the temporal dynamics of visual processing, has been documented to be more pronounced following brain lesions that are associated with visual neglect. This suggests that, in addition to their spatial bias in attention, neglect patients may have a prolonged dwell time for attention. Here the attentional dwell time was examined in patients with damage focused on either posterior parietal or frontal cortices. In three experiments, we show that there is an abnormally pronounced attentional dwell time, which does not differ in patients with posterior parietal and with frontal lobe lesions, and this is associated with a measure of selective attention but not with measures of spatial bias in selection. These data occurred both when we attempted to match patients and controls for overall differences in performance and when a single set stimulus exposure was used across participants. In Experiments 1 and 2, requiring report of colour-form conjunctions, there was evidence that the patients were also impaired at temporal binding, showing errors in feature combination across stimuli and in reporting in the correct temporal order. In Experiment 3, requiring only the report of features but introducing task switching led to similar results. The data suggest that damage to a frontoparietal network can compromise temporal selection of visual stimuli; however, this is not necessarily related to a deficit in hemispatial visual attention but it is to impaired target selection. We discuss the implications for understanding visual selection.

  19. Selective attention modulates the direction of audio-visual temporal recalibration.

    Science.gov (United States)

    Ikumi, Nara; Soto-Faraco, Salvador

    2014-01-01

    Temporal recalibration of cross-modal synchrony has been proposed as a mechanism to compensate for timing differences between sensory modalities. However, far from the rich complexity of everyday life sensory environments, most studies to date have examined recalibration on isolated cross-modal pairings. Here, we hypothesize that selective attention might provide an effective filter to help resolve which stimuli are selected when multiple events compete for recalibration. We addressed this question by testing audio-visual recalibration following an adaptation phase where two opposing audio-visual asynchronies were present. The direction of voluntary visual attention, and therefore to one of the two possible asynchronies (flash leading or flash lagging), was manipulated using colour as a selection criterion. We found a shift in the point of subjective audio-visual simultaneity as a function of whether the observer had focused attention to audio-then-flash or to flash-then-audio groupings during the adaptation phase. A baseline adaptation condition revealed that this effect of endogenous attention was only effective toward the lagging flash. This hints at the role of exogenous capture and/or additional endogenous effects producing an asymmetry toward the leading flash. We conclude that selective attention helps promote selected audio-visual pairings to be combined and subsequently adjusted in time but, stimulus organization exerts a strong impact on recalibration. We tentatively hypothesize that the resolution of recalibration in complex scenarios involves the orchestration of top-down selection mechanisms and stimulus-driven processes.

  20. Selective attention modulates the direction of audio-visual temporal recalibration.

    Directory of Open Access Journals (Sweden)

    Nara Ikumi

    Full Text Available Temporal recalibration of cross-modal synchrony has been proposed as a mechanism to compensate for timing differences between sensory modalities. However, far from the rich complexity of everyday life sensory environments, most studies to date have examined recalibration on isolated cross-modal pairings. Here, we hypothesize that selective attention might provide an effective filter to help resolve which stimuli are selected when multiple events compete for recalibration. We addressed this question by testing audio-visual recalibration following an adaptation phase where two opposing audio-visual asynchronies were present. The direction of voluntary visual attention, and therefore to one of the two possible asynchronies (flash leading or flash lagging, was manipulated using colour as a selection criterion. We found a shift in the point of subjective audio-visual simultaneity as a function of whether the observer had focused attention to audio-then-flash or to flash-then-audio groupings during the adaptation phase. A baseline adaptation condition revealed that this effect of endogenous attention was only effective toward the lagging flash. This hints at the role of exogenous capture and/or additional endogenous effects producing an asymmetry toward the leading flash. We conclude that selective attention helps promote selected audio-visual pairings to be combined and subsequently adjusted in time but, stimulus organization exerts a strong impact on recalibration. We tentatively hypothesize that the resolution of recalibration in complex scenarios involves the orchestration of top-down selection mechanisms and stimulus-driven processes.

  1. Differences in Speech Recognition Between Children with Attention Deficits and Typically Developed Children Disappear When Exposed to 65 dB of Auditory Noise.

    Science.gov (United States)

    Söderlund, Göran B W; Jobs, Elisabeth Nilsson

    2016-01-01

    The most common neuropsychiatric condition in the in children is attention deficit hyperactivity disorder (ADHD), affecting ∼6-9% of the population. ADHD is distinguished by inattention and hyperactive, impulsive behaviors as well as poor performance in various cognitive tasks often leading to failures at school. Sensory and perceptual dysfunctions have also been noticed. Prior research has mainly focused on limitations in executive functioning where differences are often explained by deficits in pre-frontal cortex activation. Less notice has been given to sensory perception and subcortical functioning in ADHD. Recent research has shown that children with ADHD diagnosis have a deviant auditory brain stem response compared to healthy controls. The aim of the present study was to investigate if the speech recognition threshold differs between attentive and children with ADHD symptoms in two environmental sound conditions, with and without external noise. Previous research has namely shown that children with attention deficits can benefit from white noise exposure during cognitive tasks and here we investigate if noise benefit is present during an auditory perceptual task. For this purpose we used a modified Hagerman's speech recognition test where children with and without attention deficits performed a binaural speech recognition task to assess the speech recognition threshold in no noise and noise conditions (65 dB). Results showed that the inattentive group displayed a higher speech recognition threshold than typically developed children and that the difference in speech recognition threshold disappeared when exposed to noise at supra threshold level. From this we conclude that inattention can partly be explained by sensory perceptual limitations that can possibly be ameliorated through noise exposure.

  2. Differences in Speech Recognition Between Children with Attention Deficits and Typically Developed Children Disappear when Exposed to 65 dB of Auditory Noise

    Directory of Open Access Journals (Sweden)

    Göran B W Söderlund

    2016-01-01

    Full Text Available The most common neuropsychiatric condition in the in children is attention deficit hyperactivity disorder (ADHD, affecting approximately 6-9 % of the population. ADHD is distinguished by inattention and hyperactive, impulsive behaviors as well as poor performance in various cognitive tasks often leading to failures at school. Sensory and perceptual dysfunctions have also been noticed. Prior research has mainly focused on limitations in executive functioning where differences are often explained by deficits in pre-frontal cortex activation. Less notice has been given to sensory perception and subcortical functioning in ADHD. Recent research has shown that children with ADHD diagnosis have a deviant auditory brain stem response compared to healthy controls. The aim of the present study was to investigate if the speech recognition threshold differs between attentive and children with ADHD symptoms in two environmental sound conditions, with and without external noise. Previous research has namely shown that children with attention deficits can benefit from white noise exposure during cognitive tasks and here we investigate if noise benefit is present during an auditory perceptual task. For this purpose we used a modified Hagerman’s speech recognition test where children with and without attention deficits performed a binaural speech recognition task to assess the speech recognition threshold in no noise and noise conditions (65 dB. Results showed that the inattentive group displayed a higher speech recognition threshold than typically developed children (TDC and that the difference in speech recognition threshold disappeared when exposed to noise at supra threshold level. From this we conclude that inattention can partly be explained by sensory perceptual limitations that can possibly be ameliorated through noise exposure.

  3. Spatial Scaling of the Profile of Selective Attention in the Visual Field.

    Directory of Open Access Journals (Sweden)

    Matthew A Gannon

    Full Text Available Neural mechanisms of selective attention must be capable of adapting to variation in the absolute size of an attended stimulus in the ever-changing visual environment. To date, little is known regarding how attentional selection interacts with fluctuations in the spatial expanse of an attended object. Here, we use event-related potentials (ERPs to investigate the scaling of attentional enhancement and suppression across the visual field. We measured ERPs while participants performed a task at fixation that varied in its attentional demands (attentional load and visual angle (1.0° or 2.5°. Observers were presented with a stream of task-relevant stimuli while foveal, parafoveal, and peripheral visual locations were probed by irrelevant distractor stimuli. We found two important effects in the N1 component of visual ERPs. First, N1 modulations to task-relevant stimuli indexed attentional selection of stimuli during the load task and further correlated with task performance. Second, with increased task size, attentional modulation of the N1 to distractor stimuli showed a differential pattern that was consistent with a scaling of attentional selection. Together, these results demonstrate that the size of an attended stimulus scales the profile of attentional selection across the visual field and provides insights into the attentional mechanisms associated with such spatial scaling.

  4. Neural biomarkers for dyslexia, ADHD and ADD in the auditory cortex of children

    OpenAIRE

    Bettina Serrallach; Christine Gross; Valdis Bernhofs; Dorte Engelmann; Jan Benner; Jan Benner; Nadine Gündert; Maria Blatow; Martina Wengenroth; Angelika Seitz; Monika Brunner; Stefan Seither; Stefan Seither; Richard Parncutt; Peter Schneider

    2016-01-01

    Dyslexia, attention deficit hyperactivity disorder (ADHD), and attention deficit disorder (ADD) show distinct clinical profiles that may include auditory and language-related impairments. Currently, an objective brain-based diagnosis of these developmental disorders is still unavailable. We investigated the neuro-auditory systems of dyslexic, ADHD, ADD, and age-matched control children (N=147) using neuroimaging, magnet-encephalography and psychoacoustics. All disorder subgroups exhibited an ...

  5. Topography of sound level representation in the FM sweep selective region of the pallid bat auditory cortex.

    Science.gov (United States)

    Measor, Kevin; Yarrow, Stuart; Razak, Khaleel A

    2018-05-26

    Sound level processing is a fundamental function of the auditory system. To determine how the cortex represents sound level, it is important to quantify how changes in level alter the spatiotemporal structure of cortical ensemble activity. This is particularly true for echolocating bats that have control over, and often rapidly adjust, call level to actively change echo level. To understand how cortical activity may change with sound level, here we mapped response rate and latency changes with sound level in the auditory cortex of the pallid bat. The pallid bat uses a 60-30 kHz downward frequency modulated (FM) sweep for echolocation. Neurons tuned to frequencies between 30 and 70 kHz in the auditory cortex are selective for the properties of FM sweeps used in echolocation forming the FM sweep selective region (FMSR). The FMSR is strongly selective for sound level between 30 and 50 dB SPL. Here we mapped the topography of level selectivity in the FMSR using downward FM sweeps and show that neurons with more monotonic rate level functions are located in caudomedial regions of the FMSR overlapping with high frequency (50-60 kHz) neurons. Non-monotonic neurons dominate the FMSR, and are distributed across the entire region, but there is no evidence for amplitopy. We also examined how first spike latency of FMSR neurons change with sound level. The majority of FMSR neurons exhibit paradoxical latency shift wherein the latency increases with sound level. Moreover, neurons with paradoxical latency shifts are more strongly level selective and are tuned to lower sound level than neurons in which latencies decrease with level. These data indicate a clustered arrangement of neurons according to monotonicity, with no strong evidence for finer scale topography, in the FMSR. The latency analysis suggests mechanisms for strong level selectivity that is based on relative timing of excitatory and inhibitory inputs. Taken together, these data suggest how the spatiotemporal

  6. Visual perceptual load reduces auditory detection in typically developing individuals but not in individuals with autism spectrum disorders.

    Science.gov (United States)

    Tillmann, Julian; Swettenham, John

    2017-02-01

    Previous studies examining selective attention in individuals with autism spectrum disorder (ASD) have yielded conflicting results, some suggesting superior focused attention (e.g., on visual search tasks), others demonstrating greater distractibility. This pattern could be accounted for by the proposal (derived by applying the Load theory of attention, e.g., Lavie, 2005) that ASD is characterized by an increased perceptual capacity (Remington, Swettenham, Campbell, & Coleman, 2009). Recent studies in the visual domain support this proposal. Here we hypothesize that ASD involves an enhanced perceptual capacity that also operates across sensory modalities, and test this prediction, for the first time using a signal detection paradigm. Seventeen neurotypical (NT) and 15 ASD adolescents performed a visual search task under varying levels of visual perceptual load while simultaneously detecting presence/absence of an auditory tone embedded in noise. Detection sensitivity (d') for the auditory stimulus was similarly high for both groups in the low visual perceptual load condition (e.g., 2 items: p = .391, d = 0.31, 95% confidence interval [CI] [-0.39, 1.00]). However, at a higher level of visual load, auditory d' reduced for the NT group but not the ASD group, leading to a group difference (p = .002, d = 1.2, 95% CI [0.44, 1.96]). As predicted, when visual perceptual load was highest, both groups then showed a similarly low auditory d' (p = .9, d = 0.05, 95% CI [-0.65, 0.74]). These findings demonstrate that increased perceptual capacity in ASD operates across modalities. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. Endogenously and exogenously driven selective sustained attention: Contributions to learning in kindergarten children.

    Science.gov (United States)

    Erickson, Lucy C; Thiessen, Erik D; Godwin, Karrie E; Dickerson, John P; Fisher, Anna V

    2015-10-01

    Selective sustained attention is vital for higher order cognition. Although endogenous and exogenous factors influence selective sustained attention, assessment of the degree to which these factors influence performance and learning is often challenging. We report findings from the Track-It task, a paradigm that aims to assess the contribution of endogenous and exogenous factors to selective sustained attention within the same task. Behavioral accuracy and eye-tracking data on the Track-It task were correlated with performance on an explicit learning task. Behavioral accuracy and fixations to distractors during the Track-It task did not predict learning when exogenous factors supported selective sustained attention. In contrast, when endogenous factors supported selective sustained attention, fixations to distractors were negatively correlated with learning. Similarly, when endogenous factors supported selective sustained attention, higher behavioral accuracy was correlated with greater learning. These findings suggest that endogenously and exogenously driven selective sustained attention, as measured through different conditions of the Track-It task, may support different kinds of learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Auditory processing in autism spectrum disorder

    DEFF Research Database (Denmark)

    Vlaskamp, Chantal; Oranje, Bob; Madsen, Gitte Falcher

    2017-01-01

    Children with autism spectrum disorders (ASD) often show changes in (automatic) auditory processing. Electrophysiology provides a method to study auditory processing, by investigating event-related potentials such as mismatch negativity (MMN) and P3a-amplitude. However, findings on MMN in autism...... a hyper-responsivity at the attentional level. In addition, as similar MMN deficits are found in schizophrenia, these MMN results may explain some of the frequently reported increased risk of children with ASD to develop schizophrenia later in life. Autism Res 2017, 10: 1857–1865....

  9. Threat-Related Selective Attention Predicts Treatment Success in Childhood Anxiety Disorders

    NARCIS (Netherlands)

    J.S. Legerstee (Jeroen); J.H.M. Tulen (Joke); V.L. Kallen (Victor); G.C. Dieleman (Gwen); P.D.A. Treffers (Philip); F.C. Verhulst (Frank); E.M.W.J. Utens (Elisabeth)

    2009-01-01

    textabstractAbstract OBJECTIVE: The present study examined whether threat-related selective attention was predictive of treatment success in children with anxiety disorders and whether age moderated this association. Specific components of selective attention were examined in treatment responders

  10. Threat-related selective attention predicts treatment success in childhood anxiety disorders

    NARCIS (Netherlands)

    Legerstee, Jeroen S.; Tulen, Joke H. M.; Kallen, Victor L.; Dieleman, Gwen C.; Treffers, Philip D. A.; Verhulst, Frank C.; Utens, Elisabeth M. W. J.

    2009-01-01

    The present study examined whether threat-related selective attention was predictive of treatment success in children with anxiety disorders and whether age moderated this association. Specific components of selective attention were examined in treatment responders and nonresponders. Participants

  11. Auditory processing during deep propofol sedation and recovery from unconsciousness.

    Science.gov (United States)

    Koelsch, Stefan; Heinke, Wolfgang; Sammler, Daniela; Olthoff, Derk

    2006-08-01

    Using evoked potentials, this study investigated effects of deep propofol sedation, and effects of recovery from unconsciousness, on the processing of auditory information with stimuli suited to elicit a physical MMN, and a (music-syntactic) ERAN. Levels of sedation were assessed using the Bispectral Index (BIS) and the Modified Observer's Assessment of Alertness and Sedation Scale (MOAAS). EEG-measurements were performed during wakefulness, deep propofol sedation (MOAAS 2-3, mean BIS=68), and a recovery period. Between deep sedation and recovery period, the infusion rate of propofol was increased to achieve unconsciousness (MOAAS 0-1, mean BIS=35); EEG measurements of recovery period were performed after subjects regained consciousness. During deep sedation, the physical MMN was markedly reduced, but still significant. No ERAN was observed in this level. A clear P3a was elicited during deep sedation by those deviants, which were task-relevant during the awake state. As soon as subjects regained consciousness during the recovery period, a normal MMN was elicited. By contrast, the P3a was absent in the recovery period, and the P3b was markedly reduced. Results indicate that the auditory sensory memory (as indexed by the physical MMN) is still active, although strongly reduced, during deep sedation (MOAAS 2-3). The presence of the P3a indicates that attention-related processes are still operating during this level. Processes of syntactic analysis appear to be abolished during deep sedation. After propofol-induced anesthesia, the auditory sensory memory appears to operate normal as soon as subjects regain consciousness, whereas the attention-related processes indexed by P3a and P3b are markedly impaired. Results inform about effects of sedative drugs on auditory and attention-related mechanisms. The findings are important because these mechanisms are prerequisites for auditory awareness, auditory learning and memory, as well as language perception during anesthesia.

  12. Minimal effects of visual memory training on the auditory performance of adult cochlear implant users

    Science.gov (United States)

    Oba, Sandra I.; Galvin, John J.; Fu, Qian-Jie

    2014-01-01

    Auditory training has been shown to significantly improve cochlear implant (CI) users’ speech and music perception. However, it is unclear whether post-training gains in performance were due to improved auditory perception or to generally improved attention, memory and/or cognitive processing. In this study, speech and music perception, as well as auditory and visual memory were assessed in ten CI users before, during, and after training with a non-auditory task. A visual digit span (VDS) task was used for training, in which subjects recalled sequences of digits presented visually. After the VDS training, VDS performance significantly improved. However, there were no significant improvements for most auditory outcome measures (auditory digit span, phoneme recognition, sentence recognition in noise, digit recognition in noise), except for small (but significant) improvements in vocal emotion recognition and melodic contour identification. Post-training gains were much smaller with the non-auditory VDS training than observed in previous auditory training studies with CI users. The results suggest that post-training gains observed in previous studies were not solely attributable to improved attention or memory, and were more likely due to improved auditory perception. The results also suggest that CI users may require targeted auditory training to improve speech and music perception. PMID:23516087

  13. Focusing on attention: the effects of working memory capacity and load on selective attention.

    Science.gov (United States)

    Ahmed, Lubna; de Fockert, Jan W

    2012-01-01

    Working memory (WM) is imperative for effective selective attention. Distractibility is greater under conditions of high (vs. low) concurrent working memory load (WML), and in individuals with low (vs. high) working memory capacity (WMC). In the current experiments, we recorded the flanker task performance of individuals with high and low WMC during low and high WML, to investigate the combined effect of WML and WMC on selective attention. In Experiment 1, distractibility from a distractor at a fixed distance from the target was greater when either WML was high or WMC was low, but surprisingly smaller when both WML was high and WMC low. Thus we observed an inverted-U relationship between reductions in WM resources and distractibility. In Experiment 2, we mapped the distribution of spatial attention as a function of WMC and WML, by recording distractibility across several target-to-distractor distances. The pattern of distractor effects across the target-to-distractor distances demonstrated that the distribution of the attentional window becomes dispersed as WM resources are limited. The attentional window was more spread out under high compared to low WML, and for low compared to high WMC individuals, and even more so when the two factors co-occurred (i.e., under high WML in low WMC individuals). The inverted-U pattern of distractibility effects in Experiment 1, replicated in Experiment 2, can thus be explained by differences in the spread of the attentional window as a function of WM resource availability. The current findings show that limitations in WM resources, due to either WML or individual differences in WMC, affect the spatial distribution of attention. The difference in attentional constraining between high and low WMC individuals demonstrated in the current experiments helps characterise the nature of previously established associations between WMC and controlled attention.

  14. Focusing on attention: the effects of working memory capacity and load on selective attention.

    Directory of Open Access Journals (Sweden)

    Lubna Ahmed

    Full Text Available BACKGROUND: Working memory (WM is imperative for effective selective attention. Distractibility is greater under conditions of high (vs. low concurrent working memory load (WML, and in individuals with low (vs. high working memory capacity (WMC. In the current experiments, we recorded the flanker task performance of individuals with high and low WMC during low and high WML, to investigate the combined effect of WML and WMC on selective attention. METHODOLOGY/PRINCIPAL FINDINGS: In Experiment 1, distractibility from a distractor at a fixed distance from the target was greater when either WML was high or WMC was low, but surprisingly smaller when both WML was high and WMC low. Thus we observed an inverted-U relationship between reductions in WM resources and distractibility. In Experiment 2, we mapped the distribution of spatial attention as a function of WMC and WML, by recording distractibility across several target-to-distractor distances. The pattern of distractor effects across the target-to-distractor distances demonstrated that the distribution of the attentional window becomes dispersed as WM resources are limited. The attentional window was more spread out under high compared to low WML, and for low compared to high WMC individuals, and even more so when the two factors co-occurred (i.e., under high WML in low WMC individuals. The inverted-U pattern of distractibility effects in Experiment 1, replicated in Experiment 2, can thus be explained by differences in the spread of the attentional window as a function of WM resource availability. CONCLUSIONS/SIGNIFICANCE: The current findings show that limitations in WM resources, due to either WML or individual differences in WMC, affect the spatial distribution of attention. The difference in attentional constraining between high and low WMC individuals demonstrated in the current experiments helps characterise the nature of previously established associations between WMC and controlled

  15. Selective attention of students suffering from primary headaches in a ...

    African Journals Online (AJOL)

    Background: Headache patients frequently complain about difficulties in attention and concentration, even when they are headache-free and psychometric studies concerning attentional deficits in headache patients between attacks are scarce. Objective: To evaluate selective attention of headache patients in a pain free ...

  16. A Dual-Stage Two-Phase Model of Selective Attention

    Science.gov (United States)

    Hubner, Ronald; Steinhauser, Marco; Lehle, Carola

    2010-01-01

    The dual-stage two-phase (DSTP) model is introduced as a formal and general model of selective attention that includes both an early and a late stage of stimulus selection. Whereas at the early stage information is selected by perceptual filters whose selectivity is relatively limited, at the late stage stimuli are selected more efficiently on a…

  17. Effects of smoking history on selective attention in schizophrenia.

    Science.gov (United States)

    Hahn, Constanze; Hahn, Eric; Dettling, Michael; Güntürkün, Onur; Ta, Thi Minh Tam; Neuhaus, Andres H

    2012-03-01

    Smoking prevalence is highly elevated in schizophrenia compared to the general population and to other psychiatric populations. Evidence suggests that smoking may lead to improvements of schizophrenia-associated attention deficits; however, large-scale studies on this important issue are scarce. We examined whether sustained, selective, and executive attention processes are differentially modulated by long-term nicotine consumption in 104 schizophrenia patients and 104 carefully matched healthy controls. A significant interaction of 'smoking status' × 'diagnostic group' was obtained for the domain of selective attention. Smoking was significantly associated with a detrimental conflict effect in controls, while the opposite effect was revealed for schizophrenia patients. Likewise, a positive correlation between a cumulative measure of nicotine consumption and conflict effect in controls and a negative correlation in patients were found. These results provide evidence for specific directional effects of smoking on conflict processing that critically dissociate with diagnosis. The data supports the self-medication hypothesis of smoking in schizophrenia and suggests selective attention as a specific cognitive domain targeted by nicotine consumption. A potential mechanistic model explaining these findings is discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Effects of spatial and selective attention on basic multisensory integration

    DEFF Research Database (Denmark)

    Gondan, Matthias; Blurton, Steven Paul; Hughes, F.

    2011-01-01

    underlying the RSE. We investigated the role of spatial and selective attention on the RSE in audiovisual redundant signals tasks. In Experiment 1, stimuli were presented either centrally (narrow attentional focus) or at 1 of 3 unpredictable locations (wide focus). The RSE was accurately described...... task) or to central stimuli only (selective attention task). The RSE was consistent with task-specific coactivation models; accumulation of evidence, however, differed between the 2 tasks....... by a coactivation model assuming linear superposition of modality-specific activation. Effects of spatial attention were explained by a shift of the evidence criterion. In Experiment 2, stimuli were presented at 3 locations; participants had to respond either to all signals regardless of location (simple response...

  19. Biological impact of music and software-based auditory training

    Science.gov (United States)

    Kraus, Nina

    2012-01-01

    Auditory-based communication skills are developed at a young age and are maintained throughout our lives. However, some individuals – both young and old – encounter difficulties in achieving or maintaining communication proficiency. Biological signals arising from hearing sounds relate to real-life communication skills such as listening to speech in noisy environments and reading, pointing to an intersection between hearing and cognition. Musical experience, amplification, and software-based training can improve these biological signals. These findings of biological plasticity, in a variety of subject populations, relate to attention and auditory memory, and represent an integrated auditory system influenced by both sensation and cognition. Learning outcomes The reader will (1) understand that the auditory system is malleable to experience and training, (2) learn the ingredients necessary for auditory learning to successfully be applied to communication, (3) learn that the auditory brainstem response to complex sounds (cABR) is a window into the integrated auditory system, and (4) see examples of how cABR can be used to track the outcome of experience and training. PMID:22789822

  20. Selective attention on representations in working memory: cognitive and neural mechanisms.

    Science.gov (United States)

    Ku, Yixuan

    2018-01-01

    Selective attention and working memory are inter-dependent core cognitive functions. It is critical to allocate attention on selected targets during the capacity-limited working memory processes to fulfill the goal-directed behavior. The trends of research on both topics are increasing exponentially in recent years, and it is considered that selective attention and working memory share similar underlying neural mechanisms. Different types of attention orientation in working memory are introduced by distinctive cues, and the means using retrospective cues are strengthened currently as it is manipulating the representation in memory, instead of the perceptual representation. The cognitive and neural mechanisms of the retro-cue effects are further reviewed, as well as the potential molecular mechanism. The frontal-parietal network that is involved in both attention and working memory is also the neural candidate for attention orientation during working memory. Neural oscillations in the gamma and alpha/beta oscillations may respectively be employed for the feedforward and feedback information transfer between the sensory cortices and the association cortices. Dopamine and serotonin systems might interact with each other subserving the communication between memory and attention. In conclusion, representations which attention shifts towards are strengthened, while representations which attention moves away from are degraded. Studies on attention orientation during working memory indicates the flexibility of the processes of working memory, and the beneficial way that overcome the limited capacity of working memory.

  1. Sensation seeking and visual selective attention in adults with HIV/AIDS.

    Science.gov (United States)

    Hardy, David J; Castellon, Steven A; Hinkin, Charles H; Levine, Andrew J; Lam, Mona N

    2008-11-01

    The association between sensation seeking and visual selective attention was examined in 31 adults with the Human Immunodeficiency Virus (HIV). Sensation seeking was measured with Zuckerman's Sensation Seeking Scale Form V (SSS-V). Selective attention was assessed with a perceptual span task, where a target letter-character must be identified in a quickly presented array of nontarget letter-characters. As predicted, sensation seeking was strongly associated (R(2) = .229) with perceptual span performance in the array size 12 condition, where selective attention demands were greatest, but not in the easier conditions. The Disinhibition, Boredom Susceptibility, and Experience Seeking subscales of the SSS-V were associated with span performance. It is argued that personality factors such as sensation seeking may play a significant role in selective attention and related cognitive abilities in HIV positive adults. Furthermore, sensation seeking differences might explain certain inconsistencies in the HIV neuropsychology literature.

  2. Failure of the extended contingent attentional capture account in multimodal settings

    Directory of Open Access Journals (Sweden)

    Rob H.J. Van der Lubbe

    2006-01-01

    Full Text Available Sudden changes in our environment like sound bursts or light flashes are thought to automatically attract our attention thereby affecting responses to subsequent targets, although an alternative view (the contingent attentional capture account holds that stimuli only capture our attention when they match target features. In the current study, we examined whether an extended version of the latter view can explain exogenous cuing effects on speed and accuracy of performance to targets (uncued-cued in multimodal settings, in which auditory and visual stimuli co-occur. To this end, we determined whether observed effects of visual and auditory cues, which were always intermixed, depend on top-down settings in "pure" blocks, in which only one target modality occurred, as compared to "mixed" blocks, in which targets were either visual or auditory. Results revealed that unimodal and crossmodal cuing effects depend on top-down settings. However, our findingswerenot in accordance with predictions derived from the extended contingent attentional capture account. Specifically,visual cues showed comparable effects for visual targets in pure and mixed blocks, but also a comparable effect for auditory targets in pure blocks, and most surprisingly, an opposite effect in mixed blocks. The latter result suggests that visual stimuli may distract attention from the auditory modality in case when the modality of the forthcoming target is unknown. The results additionally revealed that the Simon effect, the influence of correspondence or not between stimulus and response side, is modulated by exogenous cues in unimodal settings, but not in crossmodal settings. These findings accord with the view that attention plays an important role for the Simon effect, and additionally questions the directness of links between maps of visual and auditory space.

  3. Neural biomarkers for dyslexia, ADHD and ADD in the auditory cortex of children

    Directory of Open Access Journals (Sweden)

    Bettina Serrallach

    2016-07-01

    Full Text Available Dyslexia, attention deficit hyperactivity disorder (ADHD, and attention deficit disorder (ADD show distinct clinical profiles that may include auditory and language-related impairments. Currently, an objective brain-based diagnosis of these developmental disorders is still unavailable. We investigated the neuro-auditory systems of dyslexic, ADHD, ADD, and age-matched control children (N=147 using neuroimaging, magnet-encephalography and psychoacoustics. All disorder subgroups exhibited an oversized left planum temporale and an abnormal interhemispheric asynchrony (10-40 ms of the primary auditory evoked P1-response. Considering right auditory cortex morphology, bilateral P1 source waveform shapes, and auditory performance, the three disorder subgroups could be reliably differentiated with outstanding accuracies of 89-98%. We therefore for the first time provide differential biomarkers for a brain-based diagnosis of dyslexia, ADHD, and ADD. The method allowed not only a clear discrimination between two subtypes of attentional disorders (ADHD and ADD, a topic controversially discussed for decades in the scientific community, but also revealed the potential for objectively identifying comorbid cases. Noteworthy, in children playing a musical instrument, after three and a half years of training the observed interhemispheric asynchronies were reduced by about 2/3, thus suggesting a strong beneficial influence of music experience on brain development. These findings might have far-reaching implications for both research and practice and enable a profound understanding of the brain-related etiology, diagnosis, and musically based therapy of common auditory-related developmental disorders and learning disabilities.

  4. Minimal effects of visual memory training on auditory performance of adult cochlear implant users.

    Science.gov (United States)

    Oba, Sandra I; Galvin, John J; Fu, Qian-Jie

    2013-01-01

    Auditory training has been shown to significantly improve cochlear implant (CI) users' speech and music perception. However, it is unclear whether posttraining gains in performance were due to improved auditory perception or to generally improved attention, memory, and/or cognitive processing. In this study, speech and music perception, as well as auditory and visual memory, were assessed in 10 CI users before, during, and after training with a nonauditory task. A visual digit span (VDS) task was used for training, in which subjects recalled sequences of digits presented visually. After the VDS training, VDS performance significantly improved. However, there were no significant improvements for most auditory outcome measures (auditory digit span, phoneme recognition, sentence recognition in noise, digit recognition in noise), except for small (but significant) improvements in vocal emotion recognition and melodic contour identification. Posttraining gains were much smaller with the nonauditory VDS training than observed in previous auditory training studies with CI users. The results suggest that posttraining gains observed in previous studies were not solely attributable to improved attention or memory and were more likely due to improved auditory perception. The results also suggest that CI users may require targeted auditory training to improve speech and music perception.

  5. Selective and Sustained Attention as Predictors of Social Problems in Children with Typical and Disordered Attention Abilities

    Science.gov (United States)

    Andrade, Brendan F.; Brodeur, Darlene A.; Waschbusch, Daniel A.; Stewart, Sherry H.; McGee, Robin

    2009-01-01

    Objective: Investigated the relationship between selective and sustained attention and social behavior in children with different degrees of attentional disturbance. Method: Participants were 101 6- to 12-year-old children, including 18 who were diagnosed with Attention Deficit Hyperactivity Disorder (AD/HD), 61 who were clinically referred for…

  6. Spatial attention enhances the selective integration of activity from area MT.

    Science.gov (United States)

    Masse, Nicolas Y; Herrington, Todd M; Cook, Erik P

    2012-09-01

    Distinguishing which of the many proposed neural mechanisms of spatial attention actually underlies behavioral improvements in visually guided tasks has been difficult. One attractive hypothesis is that attention allows downstream neural circuits to selectively integrate responses from the most informative sensory neurons. This would allow behavioral performance to be based on the highest-quality signals available in visual cortex. We examined this hypothesis by asking how spatial attention affects both the stimulus sensitivity of middle temporal (MT) neurons and their corresponding correlation with behavior. Analyzing a data set pooled from two experiments involving four monkeys, we found that spatial attention did not appreciably affect either the stimulus sensitivity of the neurons or the correlation between their activity and behavior. However, for those sessions in which there was a robust behavioral effect of attention, focusing attention inside the neuron's receptive field significantly increased the correlation between these two metrics, an indication of selective integration. These results suggest that, similar to mechanisms proposed for the neural basis of perceptual learning, the behavioral benefits of focusing spatial attention are attributable to selective integration of neural activity from visual cortical areas by their downstream targets.

  7. Odors Bias Time Perception in Visual and Auditory Modalities.

    Science.gov (United States)

    Yue, Zhenzhu; Gao, Tianyu; Chen, Lihan; Wu, Jiashuang

    2016-01-01

    Previous studies have shown that emotional states alter our perception of time. However, attention, which is modulated by a number of factors, such as emotional events, also influences time perception. To exclude potential attentional effects associated with emotional events, various types of odors (inducing different levels of emotional arousal) were used to explore whether olfactory events modulated time perception differently in visual and auditory modalities. Participants were shown either a visual dot or heard a continuous tone for 1000 or 4000 ms while they were exposed to odors of jasmine, lavender, or garlic. Participants then reproduced the temporal durations of the preceding visual or auditory stimuli by pressing the spacebar twice. Their reproduced durations were compared to those in the control condition (without odor). The results showed that participants produced significantly longer time intervals in the lavender condition than in the jasmine or garlic conditions. The overall influence of odor on time perception was equivalent for both visual and auditory modalities. The analysis of the interaction effect showed that participants produced longer durations than the actual duration in the short interval condition, but they produced shorter durations in the long interval condition. The effect sizes were larger for the auditory modality than those for the visual modality. Moreover, by comparing performance across the initial and the final blocks of the experiment, we found odor adaptation effects were mainly manifested as longer reproductions for the short time interval later in the adaptation phase, and there was a larger effect size in the auditory modality. In summary, the present results indicate that odors imposed differential impacts on reproduced time durations, and they were constrained by different sensory modalities, valence of the emotional events, and target durations. Biases in time perception could be accounted for by a framework of

  8. Emergence of auditory-visual relations from a visual-visual baseline with auditory-specific consequences in individuals with autism.

    Science.gov (United States)

    Varella, André A B; de Souza, Deisy G

    2014-07-01

    Empirical studies have demonstrated that class-specific contingencies may engender stimulus-reinforcer relations. In these studies, crossmodal relations emerged when crossmodal relations comprised the baseline, and intramodal relations emerged when intramodal relations were taught during baseline. This study investigated whether auditory-visual relations (crossmodal) would emerge after participants learned a visual-visual baseline (intramodal) with auditory stimuli presented as specific consequences. Four individuals with autism learned AB and CD relations with class-specific reinforcers. When A1 and C1 were presented as samples, the selections of B1 and D1, respectively, were followed by an edible (R1) and a sound (S1). Selections of B2 and D2 under the control of A2 and C2, respectively, were followed by R2 and S2. Probe trials tested for visual-visual AC, CA, AD, DA, BC, CB, BD, and DB emergent relations and auditory-visual SA, SB, SC, and SD emergent relations. All of the participants demonstrated the emergence of all auditory-visual relations, and three of four participants showed emergence of all visual-visual relations. Thus, the emergence of auditory-visual relations from specific auditory consequences suggests that these relations do not depend on crossmodal baseline training. The procedure has great potential for applied technology to generate auditory-visual discriminations and stimulus classes in the context of behavior-analytic interventions for autism. © Society for the Experimental Analysis of Behavior.

  9. Growth hormone and selective attention : A review

    NARCIS (Netherlands)

    Quik, Elise H.; van Dam, P. Sytze; Kenemans, J. Leon

    Introduction: The relation between growth hormone (GH) secretion and general cognitive function has been established. General cognitive functioning depends on core functions including selective attention, which have not been addressed specifically in relation to GH. The present review addresses

  10. Generalization of Auditory Sensory and Cognitive Learning in Typically Developing Children.

    Directory of Open Access Journals (Sweden)

    Cristina F B Murphy

    Full Text Available Despite the well-established involvement of both sensory ("bottom-up" and cognitive ("top-down" processes in literacy, the extent to which auditory or cognitive (memory or attention learning transfers to phonological and reading skills remains unclear. Most research has demonstrated learning of the trained task or even learning transfer to a closely related task. However, few studies have reported "far-transfer" to a different domain, such as the improvement of phonological and reading skills following auditory or cognitive training. This study assessed the effectiveness of auditory, memory or attention training on far-transfer measures involving phonological and reading skills in typically developing children. Mid-transfer was also assessed through untrained auditory, attention and memory tasks. Sixty 5- to 8-year-old children with normal hearing were quasi-randomly assigned to one of five training groups: attention group (AG, memory group (MG, auditory sensory group (SG, placebo group (PG; drawing, painting, and a control, untrained group (CG. Compliance, mid-transfer and far-transfer measures were evaluated before and after training. All trained groups received 12 x 45-min training sessions over 12 weeks. The CG did not receive any intervention. All trained groups, especially older children, exhibited significant learning of the trained task. On pre- to post-training measures (test-retest, most groups exhibited improvements on most tasks. There was significant mid-transfer for a visual digit span task, with highest span in the MG, relative to other groups. These results show that both sensory and cognitive (memory or attention training can lead to learning in the trained task and to mid-transfer learning on a task (visual digit span within the same domain as the trained tasks. However, learning did not transfer to measures of language (reading and phonological awareness, as the PG and CG improved as much as the other trained groups. Further

  11. Generalization of Auditory Sensory and Cognitive Learning in Typically Developing Children.

    Science.gov (United States)

    Murphy, Cristina F B; Moore, David R; Schochat, Eliane

    2015-01-01

    Despite the well-established involvement of both sensory ("bottom-up") and cognitive ("top-down") processes in literacy, the extent to which auditory or cognitive (memory or attention) learning transfers to phonological and reading skills remains unclear. Most research has demonstrated learning of the trained task or even learning transfer to a closely related task. However, few studies have reported "far-transfer" to a different domain, such as the improvement of phonological and reading skills following auditory or cognitive training. This study assessed the effectiveness of auditory, memory or attention training on far-transfer measures involving phonological and reading skills in typically developing children. Mid-transfer was also assessed through untrained auditory, attention and memory tasks. Sixty 5- to 8-year-old children with normal hearing were quasi-randomly assigned to one of five training groups: attention group (AG), memory group (MG), auditory sensory group (SG), placebo group (PG; drawing, painting), and a control, untrained group (CG). Compliance, mid-transfer and far-transfer measures were evaluated before and after training. All trained groups received 12 x 45-min training sessions over 12 weeks. The CG did not receive any intervention. All trained groups, especially older children, exhibited significant learning of the trained task. On pre- to post-training measures (test-retest), most groups exhibited improvements on most tasks. There was significant mid-transfer for a visual digit span task, with highest span in the MG, relative to other groups. These results show that both sensory and cognitive (memory or attention) training can lead to learning in the trained task and to mid-transfer learning on a task (visual digit span) within the same domain as the trained tasks. However, learning did not transfer to measures of language (reading and phonological awareness), as the PG and CG improved as much as the other trained groups. Further research

  12. Cognitive training and selective attention in the aging brain: an electrophysiological study.

    Science.gov (United States)

    O'Brien, Jennifer L; Edwards, Jerri D; Maxfield, Nathan D; Peronto, Carol L; Williams, Victoria A; Lister, Jennifer J

    2013-11-01

    Age-related deficits in selective attention are hypothesized to result from decrements in inhibition of task-irrelevant information. Speed of processing (SOP) training is an adaptive cognitive intervention designed to enhance processing speed for attention tasks. The effectiveness of SOP training to improve cognitive and everyday functional performance is well documented. However, underlying mechanisms of these training benefits are unknown. Participants completed a visual search task evaluated using event-related potentials (ERPs) before and after 10 weeks of SOP training or no contact. N2pc and P3b components were evaluated to determine SOP training effects on attentional resource allocation and capacity. Selective attention to a target was enhanced after SOP training compared to no training. N2pc and P3b amplitudes increased after training, reflecting attentional allocation and capacity enhancement, consistent with previous studies demonstrating behavioral improvements in selective attention following SOP training. Changes in ERPs related to attention allocation and capacity following SOP training support the idea that training leads to cognitive enhancement. Specifically, we provide electrophysiological evidence that SOP training may be successful in counteracting age-related declines in selective attention. This study provides important evidence of the underlying mechanisms by which SOP training improves cognitive function in older adults. Published by Elsevier Ireland Ltd.

  13. Electrophysiological Evidence of Developmental Changes in the Duration of Auditory Sensory Memory.

    Science.gov (United States)

    Gomes, Hilary; And Others

    1999-01-01

    Investigated developmental change in duration of auditory sensory memory for tonal frequency by measuring mismatch negativity, an electrophysiological component of the auditory event-related potential that is relatively insensitive to attention and does not require a behavioral response. Findings among children and adults suggest that there are…

  14. Selective control of attention supports the positivity effect in aging.

    Science.gov (United States)

    Sasse, Laura K; Gamer, Matthias; Büchel, Christian; Brassen, Stefanie

    2014-01-01

    There is emerging evidence for a positivity effect in healthy aging, which describes an age-specific increased focus on positive compared to negative information. Life-span researchers have attributed this effect to the selective allocation of cognitive resources in the service of prioritized emotional goals. We explored the basic principles of this assumption by assessing selective attention and memory for visual stimuli, differing in emotional content and self-relevance, in young and old participants. To specifically address the impact of cognitive control, voluntary attentional selection during the presentation of multiple-item displays was analyzed and linked to participants' general ability of cognitive control. Results revealed a positivity effect in older adults' selective attention and memory, which was particularly pronounced for self-relevant stimuli. Focusing on positive and ignoring negative information was most evident in older participants with a generally higher ability to exert top-down control during visual search. Our findings highlight the role of controlled selectivity in the occurrence of a positivity effect in aging. Since the effect has been related to well-being in later life, we suggest that the ability to selectively allocate top-down control might represent a resilience factor for emotional health in aging.

  15. Selective attention on representations in working memory: cognitive and neural mechanisms

    Directory of Open Access Journals (Sweden)

    Yixuan Ku

    2018-04-01

    Full Text Available Selective attention and working memory are inter-dependent core cognitive functions. It is critical to allocate attention on selected targets during the capacity-limited working memory processes to fulfill the goal-directed behavior. The trends of research on both topics are increasing exponentially in recent years, and it is considered that selective attention and working memory share similar underlying neural mechanisms. Different types of attention orientation in working memory are introduced by distinctive cues, and the means using retrospective cues are strengthened currently as it is manipulating the representation in memory, instead of the perceptual representation. The cognitive and neural mechanisms of the retro-cue effects are further reviewed, as well as the potential molecular mechanism. The frontal-parietal network that is involved in both attention and working memory is also the neural candidate for attention orientation during working memory. Neural oscillations in the gamma and alpha/beta oscillations may respectively be employed for the feedforward and feedback information transfer between the sensory cortices and the association cortices. Dopamine and serotonin systems might interact with each other subserving the communication between memory and attention. In conclusion, representations which attention shifts towards are strengthened, while representations which attention moves away from are degraded. Studies on attention orientation during working memory indicates the flexibility of the processes of working memory, and the beneficial way that overcome the limited capacity of working memory.

  16. Evidence of Reliability and Validity for a Children’s Auditory Continuous Performance Test

    Directory of Open Access Journals (Sweden)

    Michael J. Lasee

    2013-11-01

    Full Text Available Continuous Performance Tests (CPTs are commonly utilized clinical measures of attention and response inhibition. While there have been many studies of CPTs that utilize a visual format, there is considerably less research employing auditory CPTs. The current study provides initial reliability and validity evidence for the Auditory Vigilance Screening Measure (AVSM, a newly developed CPT. Participants included 105 five- to nine-year-old children selected from two rural Midwestern school districts. Reliability data for the AVSM was collected through retesting of 42 participants. Validity was evaluated through correlation of AVSM scales with subscales from the ADHD Rating Scale–IV. Test–retest reliability coefficients ranged from .62 to .74 for AVSM subscales. A significant (r = .31 correlation was obtained between the AVSM Impulsivity Scale and teacher ratings of inattention. Limitations and implications for future study are discussed.

  17. Auditory-motor learning influences auditory memory for music.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  18. Decoding auditory attention to instruments in polyphonic music using single-trial EEG classification

    DEFF Research Database (Denmark)

    Treder, Matthias S.; Purwins, Hendrik; Miklody, Daniel

    2014-01-01

    . Here, we explore polyphonic music as a novel stimulation approach for future use in a brain-computer interface. In a musical oddball experiment, we had participants shift selective attention to one out of three different instruments in music audio clips, with each instrument occasionally playing one...... 11 participants. This is a proof of concept that attention paid to a particular instrument in polyphonic music can be inferred from ongoing EEG, a finding that is potentially relevant for both brain-computer interface and music research....

  19. A novel test for evaluating horses' spontaneous visual attention is predictive of attention in operant learning tasks.

    Science.gov (United States)

    Rochais, C; Sébilleau, M; Houdebine, M; Bec, P; Hausberger, M; Henry, S

    2017-08-01

    Attention is described as the ability to process selectively one aspect of the environment over others. In this study, we characterized horses' spontaneous attention by designing a novel visual attention test (VAT) that is easy to apply in the animal's home environment. The test was repeated over three consecutive days and repeated again 6 months later in order to assess inter-individual variations and intra-individual stability. Different patterns of attention have been revealed: 'overall' attention when the horse merely gazed at the stimulus and 'fixed' attention characterized by fixity and orientation of at least the visual and auditory organs towards the stimulus. The individual attention characteristics remained consistent over time (after 6 months, Spearman correlation test, P attentional skills was assessed by comparing the results, for the same horses, with those obtained in both a 'classical' experimental attention test the 'five-choice serial reaction time task' (5-CSRTT) and a work situation (lunge working context). Our results revealed that (i) individual variations remained consistent across tests and (ii) the VAT attention measures were not only predictive of attentional skills but also of learning abilities. Differences appeared however between the first day of testing and the following test days: attention structure on the second day was predictive of learning abilities, attention performances in the 5-CSRRT and at work. The VAT appears as a promising easy-to-use tool to assess animals' attention characteristics and the impact of different factors of variation on attention.

  20. ERP Correlates of Encoding Success and Encoding Selectivity in Attention Switching

    Science.gov (United States)

    Yeung, Nick

    2016-01-01

    Long-term memory encoding depends critically on effective processing of incoming information. The degree to which participants engage in effective encoding can be indexed in electroencephalographic (EEG) data by studying event-related potential (ERP) subsequent memory effects. The current study investigated ERP correlates of memory success operationalised with two different measures—memory selectivity and global memory—to assess whether previously observed ERP subsequent memory effects reflect focused encoding of task-relevant information (memory selectivity), general encoding success (global memory), or both. Building on previous work, the present study combined an attention switching paradigm—in which participants were presented with compound object-word stimuli and switched between attending to the object or the word across trials—with a later recognition memory test for those stimuli, while recording their EEG. Our results provided clear evidence that subsequent memory effects resulted from selective attentional focusing and effective top-down control (memory selectivity) in contrast to more general encoding success effects (global memory). Further analyses addressed the question of whether successful encoding depended on similar control mechanisms to those involved in attention switching. Interestingly, differences in the ERP correlates of attention switching and successful encoding, particularly during the poststimulus period, indicated that variability in encoding success occurred independently of prestimulus demands for top-down cognitive control. These results suggest that while effects of selective attention and selective encoding co-occur behaviourally their ERP correlates are at least partly dissociable. PMID:27907075

  1. [Selective attention and schizophrenia before the administration of neuroleptics].

    Science.gov (United States)

    Lussier, I; Stip, E

    1999-01-01

    In recent years, the presence of attention deficits has been recognized as a key feature of schizophrenia. Past studies reveal that selective attention, or the ability to select relevant information while ignoring simultaneously irrelevant information, is disturbed in schizophrenic patients. According to Treisman feature-integration theory of selective attention, visual search for conjunctive targets (e.g., shape and color) requires controlled processes, that necessitate attention and operate in a serial manner. Reaction times (RTs) are therefore function of the number of stimuli in the display. When subjects are asked to detect the presence or absence of a target in an array of a variable number of stimuli, different performance patterns are expected for positive (present target) and negative trials (absent target). For positive trials, a self-terminating search is triggered, that is, the search is ended when the target is encountered. For negative trials, an exhaustive search strategy is displayed, where each stimulus is examined before the search can end; the RT slope pattern is thus double that of the positive trials. To assess the integrity of these processes, thirteen drug naive schizophrenic patients were compared to twenty normal control subjects. Neuroleptic naive patients were chosen as subjects to avoid the potential influence of medication and chronicity-related factors on performance. The subjects had to specify as fast as possible the presence or absence of the target in an array of a variable number of stimuli presented in a circular display, and comprising or not the target. Results showed that the patients can use self-terminating search strategies as well as normal control subjects. However, their ability to trigger exhaustive search strategies is impaired. Not only were patients slower than controls, but their pattern of RT results was different. These results argue in favor of an early impairment in selective attention capacities in

  2. Selective population rate coding: a possible computational role of gamma oscillations in selective attention.

    Science.gov (United States)

    Masuda, Naoki

    2009-12-01

    Selective attention is often accompanied by gamma oscillations in local field potentials and spike field coherence in brain areas related to visual, motor, and cognitive information processing. Gamma oscillations are implicated to play an important role in, for example, visual tasks including object search, shape perception, and speed detection. However, the mechanism by which gamma oscillations enhance cognitive and behavioral performance of attentive subjects is still elusive. Using feedforward fan-in networks composed of spiking neurons, we examine a possible role for gamma oscillations in selective attention and population rate coding of external stimuli. We implement the concept proposed by Fries ( 2005 ) that under dynamic stimuli, neural populations effectively communicate with each other only when there is a good phase relationship among associated gamma oscillations. We show that the downstream neural population selects a specific dynamic stimulus received by an upstream population and represents it by population rate coding. The encoded stimulus is the one for which gamma rhythm in the corresponding upstream population is resonant with the downstream gamma rhythm. The proposed role for gamma oscillations in stimulus selection is to enable top-down control, a neural version of time division multiple access used in communication engineering.

  3. Figure-ground mechanisms provide structure for selective attention.

    Science.gov (United States)

    Qiu, Fangtu T; Sugihara, Tadashi; von der Heydt, Rüdiger

    2007-11-01

    Attention depends on figure-ground organization: figures draw attention, whereas shapes of the ground tend to be ignored. Recent research has revealed mechanisms for figure-ground organization in the visual cortex, but how these mechanisms relate to the attention process remains unclear. Here we show that the influences of figure-ground organization and volitional (top-down) attention converge in single neurons of area V2 in Macaca mulatta. Although we found assignment of border ownership for attended and for ignored figures, attentional modulation was stronger when the attended figure was located on the neuron's preferred side of border ownership. When the border between two overlapping figures was placed in the receptive field, responses depended on the side of attention, and enhancement was generally found on the neuron's preferred side of border ownership. This correlation suggests that the neural network that creates figure-ground organization also provides the interface for the top-down selection process.

  4. Adaptive attunement of selective covert attention to evolutionary-relevant emotional visual scenes.

    Science.gov (United States)

    Fernández-Martín, Andrés; Gutiérrez-García, Aída; Capafons, Juan; Calvo, Manuel G

    2017-05-01

    We investigated selective attention to emotional scenes in peripheral vision, as a function of adaptive relevance of scene affective content for male and female observers. Pairs of emotional-neutral images appeared peripherally-with perceptual stimulus differences controlled-while viewers were fixating on a different stimulus in central vision. Early selective orienting was assessed by the probability of directing the first fixation towards either scene, and the time until first fixation. Emotional scenes selectively captured covert attention even when they were task-irrelevant, thus revealing involuntary, automatic processing. Sex of observers and specific emotional scene content (e.g., male-to-female-aggression, families and babies, etc.) interactively modulated covert attention, depending on adaptive priorities and goals for each sex, both for pleasant and unpleasant content. The attentional system exhibits domain-specific and sex-specific biases and attunements, probably rooted in evolutionary pressures to enhance reproductive and protective success. Emotional cues selectively capture covert attention based on their bio-social significance. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Feature-selective attention: evidence for a decline in old age.

    Science.gov (United States)

    Quigley, Cliodhna; Andersen, Søren K; Schulze, Lars; Grunwald, Martin; Müller, Matthias M

    2010-04-19

    Although attention in older adults is an active research area, feature-selective aspects have not yet been explicitly studied. Here we report the results of an exploratory study involving directed changes in feature-selective attention. The stimuli used were two random dot kinematograms (RDKs) of different colours, superimposed and centrally presented. A colour cue with random onset after the beginning of each trial instructed young and older subjects to attend to one of the RDKs and detect short intervals of coherent motion while ignoring analogous motion events in the non-cued RDK. Behavioural data show that older adults could detect motion, but discriminated target from distracter motion less reliably than young adults. The method of frequency tagging allowed us to separate the EEG responses to the attended and ignored stimuli and directly compare steady-state visual evoked potential (SSVEP) amplitudes elicited by each stimulus before and after cue onset. We found that younger adults show a clear attentional enhancement of SSVEP amplitude in the post-cue interval, while older adults' SSVEP responses to attended and ignored stimuli do not differ. Thus, in situations where attentional selection cannot be spatially resolved, older adults show a deficit in selection that is not shared by young adults. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  6. Selective Attention Enhances Beta-Band Cortical Oscillation to Speech under "Cocktail-Party" Listening Conditions.

    Science.gov (United States)

    Gao, Yayue; Wang, Qian; Ding, Yu; Wang, Changming; Li, Haifeng; Wu, Xihong; Qu, Tianshu; Li, Liang

    2017-01-01

    Human listeners are able to selectively attend to target speech in a noisy environment with multiple-people talking. Using recordings of scalp electroencephalogram (EEG), this study investigated how selective attention facilitates the cortical representation of target speech under a simulated "cocktail-party" listening condition with speech-on-speech masking. The result shows that the cortical representation of target-speech signals under the multiple-people talking condition was specifically improved by selective attention relative to the non-selective-attention listening condition, and the beta-band activity was most strongly modulated by selective attention. Moreover, measured with the Granger Causality value, selective attention to the single target speech in the mixed-speech complex enhanced the following four causal connectivities for the beta-band oscillation: the ones (1) from site FT7 to the right motor area, (2) from the left frontal area to the right motor area, (3) from the central frontal area to the right motor area, and (4) from the central frontal area to the right frontal area. However, the selective-attention-induced change in beta-band causal connectivity from the central frontal area to the right motor area, but not other beta-band causal connectivities, was significantly correlated with the selective-attention-induced change in the cortical beta-band representation of target speech. These findings suggest that under the "cocktail-party" listening condition, the beta-band oscillation in EEGs to target speech is specifically facilitated by selective attention to the target speech that is embedded in the mixed-speech complex. The selective attention-induced unmasking of target speech may be associated with the improved beta-band functional connectivity from the central frontal area to the right motor area, suggesting a top-down attentional modulation of the speech-motor process.

  7. Sustained and selective attention deficits as vulnerability markers to psychosis.

    Science.gov (United States)

    Mulet, B; Valero, J; Gutiérrez-Zotes, A; Montserrat, C; Cortés, M J; Jariod, M; Martorell, L; Vilella, E; Labad, A

    2007-04-01

    The first descriptions of schizophrenia emphasized attention problems patients with schizophrenia have but recent results evidence that other psychotic disorders share them. We compared the performance in sustained and selective attention between psychotic patients (P), their healthy first degree relatives (R) and healthy volunteers (C) to prove whether these alterations could be an endophenotype of vulnerability to psychosis. We also compared the performance of schizophrenic patients (SZP) and that of patients with other functional psychoses (OP) in order to prove whether these alterations are specific of any psychotic disorder. Seventy-six P, 70 R and 39 C were included in the study. A selective attention index, comprising TMT A and B and Stroop Test, and a sustained attention index comprising the Continuous Performance Test were calculated. We conducted an univariant general linear model to compare three group performances in these indexes, with age, sex and years of education as a covariables. We found significant differences between the indexes when we compared P, R and C. No differences in performance were found between SZP and OP. Our data showed that sustained and selective attention alterations could be a vulnerability factor to psychotic disorders in general, but they were not specific of schizophrenia.

  8. A crossmodal crossover: opposite effects of visual and auditory perceptual load on steady-state evoked potentials to irrelevant visual stimuli.

    Science.gov (United States)

    Jacoby, Oscar; Hall, Sarah E; Mattingley, Jason B

    2012-07-16

    Mechanisms of attention are required to prioritise goal-relevant sensory events under conditions of stimulus competition. According to the perceptual load model of attention, the extent to which task-irrelevant inputs are processed is determined by the relative demands of discriminating the target: the more perceptually demanding the target task, the less unattended stimuli will be processed. Although much evidence supports the perceptual load model for competing stimuli within a single sensory modality, the effects of perceptual load in one modality on distractor processing in another is less clear. Here we used steady-state evoked potentials (SSEPs) to measure neural responses to irrelevant visual checkerboard stimuli while participants performed either a visual or auditory task that varied in perceptual load. Consistent with perceptual load theory, increasing visual task load suppressed SSEPs to the ignored visual checkerboards. In contrast, increasing auditory task load enhanced SSEPs to the ignored visual checkerboards. This enhanced neural response to irrelevant visual stimuli under auditory load suggests that exhausting capacity within one modality selectively compromises inhibitory processes required for filtering stimuli in another. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. The effects of caffeine and directed attention on acoustic startle habituation.

    Science.gov (United States)

    Schicatano, E J; Blumenthal, T D

    1998-01-01

    The present experiment tested the effects of caffeine on acoustic startle habituation during different attention tasks in which subjects either (a) attended to the acoustic startle stimulus (auditory attention; n = 9) (b) attended to a visual search task during presentation of acoustic startle stimuli (visual attention; n = 10), or (c) were given no specific instructions during acoustic startle testing (no attention; n = 9). Startle eyeblink responses were measured after subjects received either caffeine (1 mg/kg) or placebo. Caffeine significantly delayed response habituation in the no attention group and in the auditory attention group, but had no effect on habituation in the visual attention group. These data show that startle habituation can occur with minimal attention being directed to the acoustic startle stimulus, and that visual attention cancels the effects of caffeine on startle habituation.

  10. Neural evidence reveals the rapid effects of reward history on selective attention.

    Science.gov (United States)

    MacLean, Mary H; Giesbrecht, Barry

    2015-05-05

    Selective attention is often framed as being primarily driven by two factors: task-relevance and physical salience. However, factors like selection and reward history, which are neither currently task-relevant nor physically salient, can reliably and persistently influence visual selective attention. The current study investigated the nature of the persistent effects of irrelevant, physically non-salient, reward-associated features. These features affected one of the earliest reliable neural indicators of visual selective attention in humans, the P1 event-related potential, measured one week after the reward associations were learned. However, the effects of reward history were moderated by current task demands. The modulation of visually evoked activity supports the hypothesis that reward history influences the innate salience of reward associated features, such that even when no longer relevant, nor physically salient, these features have a rapid, persistent, and robust effect on early visual selective attention. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Auditory Figure-Ground Segregation is Impaired by High Visual Load

    OpenAIRE

    Lavie, Nilli; Chait, Maria; Molloy, Katharine

    2017-01-01

    Figure-ground segregation is fundamental to listening in complex acoustic environments. An ongoing debate pertains to whether segregation requires attention or is 'automatic' and pre-attentive. In this magnetoencephalography (MEG) study we tested a prediction derived from Load Theory of attention (1) that segregation requires attention, but can benefit from the automatic allocation of any 'leftover' capacity under low load. Complex auditory scenes were modelled with Stochastic Figure Ground s...

  12. Selective attention in peacocks during assessment of rival males.

    Science.gov (United States)

    Yorzinski, Jessica L; Patricelli, Gail L; Bykau, Siarhei; Platt, Michael L

    2017-03-15

    Males in many species compete intensely for access to females. In order to minimize costly interactions, they can assess their rivals' competitive abilities by evaluating traits and behaviors. We know little about how males selectively direct their attention to make these assessments. Using Indian peafowl ( Pavo cristatus ) as a model system, we examined how males visually assess their competitors by continuously tracking the gaze of freely moving peacocks during the mating season. When assessing rivals, peacocks selectively gazed toward the lower display regions of their rivals, including the lower eyespot and fishtail feathers, dense feathers, body and wings. Their attention was modified based on the rivals' behavior such that they spent more time looking at rivals when rivals were shaking their wings and moving. The results indicate that peacocks selectively allocate their attention during rival assessment. The gaze patterns of males assessing rivals were largely similar to those of females evaluating mates, suggesting that some male traits serve a dual function in both intra- and intersexual selection. However, males spent more time than females looking at the upper eyespots and this could indicate that the upper eyespots function more in close-up rival assessment than mate choice. © 2017. Published by The Company of Biologists Ltd.

  13. Evaluation of induced and evoked changes in EEG during selective attention to verbal stimuli.

    Science.gov (United States)

    Horki, P; Bauernfeind, G; Schippinger, W; Pichler, G; Müller-Putz, G R

    2016-09-01

    Two challenges need to be addressed before bringing non-motor mental tasks for brain-computer interface (BCI) control to persons in a minimally conscious state (MCS), who can be behaviorally unresponsive even when proven to be consciously aware: first, keeping the cognitive demands as low as possible so that they could be fulfilled by persons with MCS. Second, increasing the control of experimental protocol (i.e. type and timing of the task performance). The goal of this study is twofold: first goal is to develop an experimental paradigm that can facilitate the performance of brain-teasers (e.g. mental subtraction and word generation) on the one hand, and can increase the control of experimental protocol on the other hand. The second goal of this study is to exploit the similar findings for mentally attending to someone else's verbal performance of brain-teaser tasks and self-performing the same tasks to setup an online BCI, and to compare it in healthy participants to the current "state-of-the-art" motor imagery (MI, sports). The response accuracies for the best performing healthy participants indicate that selective attention to verbal performance of mental subtraction (SUB) is a viable alternative to the MI. Time-frequency analysis of the SUB task in one participant with MCS did not reveal any significant (pselective attention task (i.e. mentally attending to someone else's verbal performance of mental subtraction) can modulate both induced and evoked changes in EEG, and be used for yes/no communication in an auditory scanning paradigm. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The importance of ignoring: Alpha oscillations protect selectivity.

    Science.gov (United States)

    Payne, Lisa; Sekuler, Robert

    2014-06-01

    Selective attention is often thought to entail an enhancement of some task-relevant stimulus or attribute. We discuss the perspective that ignoring irrelevant, distracting information plays a complementary role in information processing. Cortical oscillations within the alpha (8-14 Hz) frequency band have emerged as a marker of sensory suppression. This suppression is linked to selective attention for visual, auditory, somatic, and verbal stimuli. Inhibiting processing of irrelevant input makes responses more accurate and timely. It also helps protect material held in short-term memory against disruption. Furthermore, this selective process keeps irrelevant information from distorting the fidelity of memories. Memory is only as good as the perceptual representations on which it is based, and on whose maintenance it depends. Modulation of alpha oscillations can be exploited as an active, purposeful mechanism to help people pay attention and remember the things that matter.

  15. Selective control of attention supports the positivity effect in aging.

    Directory of Open Access Journals (Sweden)

    Laura K Sasse

    Full Text Available There is emerging evidence for a positivity effect in healthy aging, which describes an age-specific increased focus on positive compared to negative information. Life-span researchers have attributed this effect to the selective allocation of cognitive resources in the service of prioritized emotional goals. We explored the basic principles of this assumption by assessing selective attention and memory for visual stimuli, differing in emotional content and self-relevance, in young and old participants. To specifically address the impact of cognitive control, voluntary attentional selection during the presentation of multiple-item displays was analyzed and linked to participants' general ability of cognitive control. Results revealed a positivity effect in older adults' selective attention and memory, which was particularly pronounced for self-relevant stimuli. Focusing on positive and ignoring negative information was most evident in older participants with a generally higher ability to exert top-down control during visual search. Our findings highlight the role of controlled selectivity in the occurrence of a positivity effect in aging. Since the effect has been related to well-being in later life, we suggest that the ability to selectively allocate top-down control might represent a resilience factor for emotional health in aging.

  16. Auditory and visual spatial impression: Recent studies of three auditoria

    Science.gov (United States)

    Nguyen, Andy; Cabrera, Densil

    2004-10-01

    Auditory spatial impression is widely studied for its contribution to auditorium acoustical quality. By contrast, visual spatial impression in auditoria has received relatively little attention in formal studies. This paper reports results from a series of experiments investigating the auditory and visual spatial impression of concert auditoria. For auditory stimuli, a fragment of an anechoic recording of orchestral music was convolved with calibrated binaural impulse responses, which had been made with the dummy head microphone at a wide range of positions in three auditoria and the sound source on the stage. For visual stimuli, greyscale photographs were used, taken at the same positions in the three auditoria, with a visual target on the stage. Subjective experiments were conducted with auditory stimuli alone, visual stimuli alone, and visual and auditory stimuli combined. In these experiments, subjects rated apparent source width, listener envelopment, intimacy and source distance (auditory stimuli), and spaciousness, envelopment, stage dominance, intimacy and target distance (visual stimuli). Results show target distance to be of primary importance in auditory and visual spatial impression-thereby providing a basis for covariance between some attributes of auditory and visual spatial impression. Nevertheless, some attributes of spatial impression diverge between the senses.

  17. Symbiosis of Executive and Selective Attention in Working Memory

    Directory of Open Access Journals (Sweden)

    André eVandierendonck

    2014-08-01

    Full Text Available The notion of working memory was introduced to account for the usage of short-term memory resources by other cognitive tasks such as reasoning, mental arithmetic, language comprehension, and many others. This collaboration between memory and other cognitive tasks can only be achieved by a dedicated working memory system that controls task coordination. To that end, working memory models include executive control. Nevertheless, other attention control systems may be involved in coordination of memory and cognitive tasks calling on memory resources. The present paper briefly reviews the evidence concerning the role of selective attention in working memory activities. A model is proposed in which selective attention control is directly linked to the executive control part of the working memory system. The model assumes that apart from storage of declarative information, the system also includes an executive working memory module that represents the current task set. Control processes are automatically triggered when particular conditions in these modules are met.. As each task set represents the parameter settings and the actions needed to achieve the task goal, it will depend on the specific settings and actions whether selective attention control will have to be shared among the active tasks. Only when such sharing is required, task performance will be affected by the capacity limits of the control system involved.

  18. Using auditory pre-information to solve the cocktail-party problem: electrophysiological evidence for age-specific differences.

    Science.gov (United States)

    Getzmann, Stephan; Lewald, Jörg; Falkenstein, Michael

    2014-01-01

    Speech understanding in complex and dynamic listening environments requires (a) auditory scene analysis, namely auditory object formation and segregation, and (b) allocation of the attentional focus to the talker of interest. There is evidence that pre-information is actively used to facilitate these two aspects of the so-called "cocktail-party" problem. Here, a simulated multi-talker scenario was combined with electroencephalography to study scene analysis and allocation of attention in young and middle-aged adults. Sequences of short words (combinations of brief company names and stock-price values) from four talkers at different locations were simultaneously presented, and the detection of target names and the discrimination between critical target values were assessed. Immediately prior to speech sequences, auditory pre-information was provided via cues that either prepared auditory scene analysis or attentional focusing, or non-specific pre-information was given. While performance was generally better in younger than older participants, both age groups benefited from auditory pre-information. The analysis of the cue-related event-related potentials revealed age-specific differences in the use of pre-cues: Younger adults showed a pronounced N2 component, suggesting early inhibition of concurrent speech stimuli; older adults exhibited a stronger late P3 component, suggesting increased resource allocation to process the pre-information. In sum, the results argue for an age-specific utilization of auditory pre-information to improve listening in complex dynamic auditory environments.

  19. Using auditory pre-information to solve the cocktail-party problem: electrophysiological evidence for age-specific differences

    Directory of Open Access Journals (Sweden)

    Stephan eGetzmann

    2014-12-01

    Full Text Available Speech understanding in complex and dynamic listening environments requires (a auditory scene analysis, namely auditory object formation and segregation, and (b allocation of the attentional focus to the talker of interest. There is evidence that pre-information is actively used to facilitate these two aspects of the so-called cocktail-party problem. Here, a simulated multi-talker scenario was combined with electroencephalography to study scene analysis and allocation of attention in young and middle-aged adults. Sequences of short words (combinations of brief company names and stock-price values from four talkers at different locations were simultaneously presented, and the detection of target names and the discrimination between critical target values were assessed. Immediately prior to speech sequences, auditory pre-information was provided via cues that either prepared auditory scene analysis or attentional focusing, or non-specific pre-information was given. While performance was generally better in younger than older participants, both age groups benefited from auditory pre-information. The analysis of the cue-related event-related potentials revealed age-specific differences in the use of pre-cues: Younger adults showed a pronounced N2 component, suggesting early inhibition of concurrent speech stimuli; older adults exhibited a stronger late P3 component, suggesting increased resource allocation to process the pre-information. In sum, the results argue for an age-specific utilization of auditory pre-information to improve listening in complex dynamic auditory environments.

  20. Comparison of Selective Attention and Intelligence Profile in Bilingual and Monolingual Adolescents

    Directory of Open Access Journals (Sweden)

    Rahim Yousefi

    2018-01-01

    Conclusion Learning a foreign language (e.g. English may be an effective factor in selective attention and intelligence profile of adolescents. Therefore, the role of learning a foreign language should be considered in selective attention and intelligence profile of adolescents.