WorldWideScience

Sample records for selective adsorption material

  1. First-Principles Integrated Adsorption Modeling for Selective Capture of Uranium from Seawater by Polyamidoxime Sorbent Materials.

    Science.gov (United States)

    Ladshaw, Austin P; Ivanov, Alexander S; Das, Sadananda; Bryantsev, Vyacheslav S; Tsouris, Costas; Yiacoumi, Sotira

    2018-04-18

    Nuclear power is a relatively carbon-free energy source that has the capacity to be utilized today in an effort to stem the tides of global warming. The growing demand for nuclear energy, however, could put significant strain on our uranium ore resources, and the mining activities utilized to extract that ore can leave behind long-term environmental damage. A potential solution to enhance the supply of uranium fuel is to recover uranium from seawater using amidoximated adsorbent fibers. This technology has been studied for decades but is currently plagued by the material's relatively poor selectivity of uranium over its main competitor vanadium. In this work, we investigate the binding schemes between uranium, vanadium, and the amidoxime functional groups on the adsorbent surface. Using quantum chemical methods, binding strengths are approximated for a set of complexation reactions between uranium and vanadium with amidoxime functionalities. Those approximations are then coupled with a comprehensive aqueous adsorption model developed in this work to simulate the adsorption of uranium and vanadium under laboratory conditions. Experimental adsorption studies with uranium and vanadium over a wide pH range are performed, and the data collected are compared against simulation results to validate the model. It was found that coupling ab initio calculations with process level adsorption modeling provides accurate predictions of the adsorption capacity and selectivity of the sorbent materials. Furthermore, this work demonstrates that this multiscale modeling paradigm could be utilized to aid in the selection of superior ligands or ligand compositions for the selective capture of metal ions. Therefore, this first-principles integrated modeling approach opens the door to the in silico design of next-generation adsorbents with potentially superior efficiency and selectivity for uranium over vanadium in seawater.

  2. Hierarchically porous silicon–carbon–nitrogen hybrid materials towards highly efficient and selective adsorption of organic dyes

    Science.gov (United States)

    Meng, Lala; Zhang, Xiaofei; Tang, Yusheng; Su, Kehe; Kong, Jie

    2015-01-01

    The hierarchically macro/micro-porous silicon–carbon–nitrogen (Si–C–N) hybrid material was presented with novel functionalities of totally selective and highly efficient adsorption for organic dyes. The hybrid material was conveniently generated by the pyrolysis of commercial polysilazane precursors using polydivinylbenzene microspheres as sacrificial templates. Owing to the Van der Waals force between sp2-hybridized carbon domains and triphenyl structure of dyes, and electrostatic interaction between dyes and Si-C-N matrix, it exhibites high adsorption capacity and good regeneration and recycling ability for the dyes with triphenyl structure, such as methyl blue (MB), acid fuchsin (AF), basic fuchsin and malachite green. The adsorption process is determined by both surface adsorption and intraparticle diffusion. According to the Langmuir model, the adsorption capacity is 1327.7 mg·g−1 and 1084.5 mg·g−1 for MB and AF, respectively, which is much higher than that of many other adsorbents. On the contrary, the hybrid materials do not adsorb the dyes with azo benzene structures, such as methyl orange, methyl red and congro red. Thus, the hierarchically porous Si–C–N hybrid material from a facile and low cost polymer-derived strategy provides a new perspective and possesses a significant potential in the treatment of wastewater with complex organic pollutants. PMID:25604334

  3. Selective Adsorption of Nano-bio materials and nanostructure fabrication on Molecular Resists Modified by proton beam irradiation

    International Nuclear Information System (INIS)

    Lee, H. W.; Kim, H. S.; Kim, S. M.

    2008-04-01

    The purpose of this research is the fabrication of nanostructures on silicon substrate using proton beam and selectively adsorption of bio-nano materials on the patterned substrate. Recently, the miniaturization of the integrated devices with fine functional structures was intensively investigated, based on combination of nanotechnology (NT), biotechnology (BT) and information technology (IT). Because of the inherent limitation in optical lithography, large variety of novel patterning technologies were evolved to construct nano-structures onto a substrate. Atomic force microscope-based nanolithography has readily formed sub-50 nm patterns by the local modification of a substrate using a probe with a curvature of 10 nm. The surface property was regarded as one of the most important factors for AFM-based nanolithography as well as for other novel nanolithographies. The molecular thin films such as a self-assembled monolayer or a polymer resist layer have been used as an alternative to modifying the surface property. Although proton or ion beam irradiation has been used as an efficient tool to modify the physical, chemical and electrical properties of a surface, the nano-patterning on the substrate or the molecular film modified with the beam irradiation has hardly been studied at both home and abroad. The selective adsorption of nano-bio materials such as carbon nanotubes and proteins on the patterns would contribute to developing the integrated devices. The polystyrene nanoparticles (400 nm) were arrayed on al silicon surface using nanosphere lithography and the various nanopatterns were fabricated by proton beam irradiation on the polystyrene nanoparticles arrayed silicon surface. We obtained the two different nanopatterns such as polymer nanoring patterns and silicon oxide patterns on the same silicon substrate. The polymer nanoring patterns formed by the crosslinkage of polystyrene when proton beam was irradiated at the triangular void spaces that are enclosed by

  4. Efficiently mapping structure-property relationships of gas adsorption in porous materials: application to Xe adsorption.

    Science.gov (United States)

    Kaija, A R; Wilmer, C E

    2017-09-08

    Designing better porous materials for gas storage or separations applications frequently leverages known structure-property relationships. Reliable structure-property relationships, however, only reveal themselves when adsorption data on many porous materials are aggregated and compared. Gathering enough data experimentally is prohibitively time consuming, and even approaches based on large-scale computer simulations face challenges. Brute force computational screening approaches that do not efficiently sample the space of porous materials may be ineffective when the number of possible materials is too large. Here we describe a general and efficient computational method for mapping structure-property spaces of porous materials that can be useful for adsorption related applications. We describe an algorithm that generates random porous "pseudomaterials", for which we calculate structural characteristics (e.g., surface area, pore size and void fraction) and also gas adsorption properties via molecular simulations. Here we chose to focus on void fraction and Xe adsorption at 1 bar, 5 bar, and 10 bar. The algorithm then identifies pseudomaterials with rare combinations of void fraction and Xe adsorption and mutates them to generate new pseudomaterials, thereby selectively adding data only to those parts of the structure-property map that are the least explored. Use of this method can help guide the design of new porous materials for gas storage and separations applications in the future.

  5. Strong Selective Adsorption of Polymers.

    Science.gov (United States)

    Ge, Ting; Rubinstein, Michael

    2015-06-09

    A scaling theory is developed for selective adsorption of polymers induced by the strong binding between specific monomers and complementary surface adsorption sites. By "selective" we mean specific attraction between a subset of all monomers, called "sticky", and a subset of surface sites, called "adsorption sites". We demonstrate that, in addition to the expected dependence on the polymer volume fraction ϕ bulk in the bulk solution, selective adsorption strongly depends on the ratio between two characteristic length scales, the root-mean-square distance l between neighboring sticky monomers along the polymer, and the average distance d between neighboring surface adsorption sites. The role of the ratio l / d arises from the fact that a polymer needs to deform to enable the spatial commensurability between its sticky monomers and the surface adsorption sites for selective adsorption. We study strong selective adsorption of both telechelic polymers with two end monomers being sticky and multisticker polymers with many sticky monomers between sticky ends. For telechelic polymers, we identify four adsorption regimes at l / d 1, we expect that the adsorption layer at exponentially low ϕ bulk consists of separated unstretched loops, while as ϕ bulk increases the layer crosses over to a brush of extended loops with a second layer of weakly overlapping tails. For multisticker chains, in the limit of exponentially low ϕ bulk , adsorbed polymers are well separated from each other. As l / d increases, the conformation of an individual polymer changes from a single-end-adsorbed "mushroom" to a random walk of loops. For high ϕ bulk , adsorbed polymers at small l / d are mushrooms that cover all the adsorption sites. At sufficiently large l / d , adsorbed multisticker polymers strongly overlap. We anticipate the formation of a self-similar carpet and with increasing l / d a two-layer structure with a brush of loops covered by a self-similar carpet. As l / d exceeds the

  6. Microporous carbonaceous adsorbents for CO2 separation via selective adsorption

    KAUST Repository

    Zhao, Yunfeng

    2015-01-01

    Selective adsorption of CO2 has important implications for many energy and environment-related processes, which require the separation of CO2 from other gases (e.g. N2 and CH4) with high uptakes and selectivity. The development of high-performance adsorbents is one of the most promising solutions to the success of these processes. The present review is focused on the state-of-the-art of carbon-based (carbonaceous) adsorbents, covering microporous inorganic carbons and microporous organic polymers, with emphasis on the correlation between their textural and compositional properties and their CO2 adsorption/separation performance. Special attention is given to the most recently developed materials that were not covered in previous reviews. We summarize various effective strategies (N-doping, surface functionalization, extra-framework ions, molecular design, and pore size engineering) for enhancing the CO2 adsorption capacity and selectivity of carbonaceous adsorbents. Our discussion focuses on CO2/N2 separation and CO2/CH4 separation, while including an introduction to the methods and criteria used for evaluating the performance of the adsorbents. Critical issues and challenges regarding the development of high-performance adsorbents as well as some overlooked facts and misconceptions are also discussed, with the aim of providing important insights into the design of novel carbonaceous porous materials for various selective adsorption based applications. This journal is © The Royal Society of Chemistry.

  7. Measurements of VOC adsorption/desorption characteristics of typical interior building materials

    Energy Technology Data Exchange (ETDEWEB)

    An, Y.; Zhang, J.S.; Shaw, C.Y.

    2000-07-01

    The adsorption/desorption of volatile organic compounds (VOCs) on interior building material surfaces (i.e., the sink effect) can affect the VOC concentrations in a building, and thus need to be accounted for an indoor air quality (IAQ) prediction model. In this study, the VOC adsorption/desorption characteristics (sink effect) were measured for four typical interior building materials including carpet, vinyl floor tile, painted drywall, and ceiling tile. The VOCs tested were ethylbenzene, cyclohexanone, 1,4-dichlorobenzene, benzaldehyde, and dodecane. These five VOCs were selected because they are representative of hydrocarbons, aromatics, ketones, aldehydes, and chlorine substituted compounds. The first order reversible adsorption/desorption model was based on the Langmuir isotherm was used to analyze the data and to determine the equilibrium constant of each VOC-material combination. It was found that the adsorption/desorption equilibrium constant, which is a measure of the sink capacity, increased linearly with the inverse of the VOC vapor pressure. For each compound, the adsorption/desorption equilibrium constant, and the adsorption rate constant differed significantly among the four materials tested. A detailed characterization of the material structure in the micro-scale would improve the understanding and modeling of the sink effect in the future. The results of this study can be used to estimate the impact of sink effect on the VOC concentrations in buildings.

  8. The studies on gas adsorption properties of MIL-53 series MOFs materials

    Directory of Open Access Journals (Sweden)

    Yuqiu Jiao

    2017-08-01

    Full Text Available Molecular dynamics (MD, grand canonical Monte Carlo (GCMC and ideal adsorbed solution theory (IAST were used to study the structures and gas adsorption properties of MIL-53(M[M=Cr, Fe, Sc, Al] metal organic framework (MOF materials. The results show that the volumes of those MOF materials increase significantly at high temperature. By analyzing the adsorption isotherms, we found that the temperature had a paramount effect on the gas adsorption behaviors of these MOF materials. For MIL-53(Cr, the orders of the quantities of adsorbed gases were CH4>N2>CO2>H2S, CH4>H2S>CO2>N2 and CH4>CO2>H2S>N2 at 100K, 293K and 623K, respectively. We also calculated the adsorption of several combinations of two gases by MIL-53(Cr at 293K, the results indicate that the material had selective adsorption of CH4 over CO2, H2S and N2. Our calculations provide microscopic insights into the gas adsorption performances of these MOFs and may further guide the practice of gas separation.

  9. The studies on gas adsorption properties of MIL-53 series MOFs materials

    Science.gov (United States)

    Jiao, Yuqiu; Li, Zhenyu; Ma, Yue; Zhou, Guanggang; Wang, Shuangxi; Lu, Guiwu

    2017-08-01

    Molecular dynamics (MD), grand canonical Monte Carlo (GCMC) and ideal adsorbed solution theory (IAST) were used to study the structures and gas adsorption properties of MIL-53(M)[M=Cr, Fe, Sc, Al] metal organic framework (MOF) materials. The results show that the volumes of those MOF materials increase significantly at high temperature. By analyzing the adsorption isotherms, we found that the temperature had a paramount effect on the gas adsorption behaviors of these MOF materials. For MIL-53(Cr), the orders of the quantities of adsorbed gases were CH4>N2>CO2>H2S, CH4>H2S>CO2>N2 and CH4>CO2>H2S>N2 at 100K, 293K and 623K, respectively. We also calculated the adsorption of several combinations of two gases by MIL-53(Cr) at 293K, the results indicate that the material had selective adsorption of CH4 over CO2, H2S and N2. Our calculations provide microscopic insights into the gas adsorption performances of these MOFs and may further guide the practice of gas separation.

  10. Functionalized SBA-15 materials for bilirubin adsorption

    Science.gov (United States)

    Tang, Tao; Zhao, Yanling; Xu, Yao; Wu, Dong; Xu, Jun; Deng, Feng

    2011-05-01

    To investigate the driving force for bilirubin adsorption on mesoporous materials, a comparative study was carried out between pure siliceous SBA-15 and three functionalized SBA-15 mesoporous materials: CH 3-SBA-15 (MS), NH 2-SBA-15 (AS), and CH 3/NH 2-SBA-15 (AMS) that were synthesized by one-pot method. The obtained materials exhibited large surface areas (553-810 m 2/g) and pore size (6.6-7.1 nm) demonstrated by XRD and N 2-ad/desorption analysis. The SEM images showed that the materials had similar fiberlike morphology. The functionalization extent was calculated according to 29Si MAS NMR spectra and it was close to the designed value (10%). The synthesized mesoporous materials were used as bilirubin adsorbents and showed higher bilirubin adsorption capacities than the commercial active carbon. The adsorption capacities of amine functionalized samples AMS and AS were larger than those of pure siliceous SBA-15 and MS, indicating that electrostatic interaction was the dominant driving force for bilirubin adsorption on mesoporous materials. Increasing the ionic strength of bilirubin solution by adding NaCl would decrease the bilirubin adsorption capacity of mesoporous material, which further demonstrated that the electrostatic interaction was the dominant driving force for bilirubin adsorption. In addition, the hydrophobic interaction provided by methyl groups could promote the bilirubin adsorption.

  11. Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15

    International Nuclear Information System (INIS)

    Bui, Tung Xuan; Choi, Heechul

    2009-01-01

    The removal of five selected pharmaceuticals, viz., carbamazepine, clofibric acid, diclofenac, ibuprofen, and ketoprofen was examined by batch sorption experiments onto a synthesized mesoporous silica SBA-15. SBA-15 was synthesized and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N 2 adsorption-desorption measurement, and point of zero charge (PZC) measurement. Pharmaceutical adsorption kinetics was rapid and occurred on a scale of minutes, following a pseudo-second-order rate expression. Adsorption isotherms were best fitted by the Freundlich isotherm model. High removal rates of individual pharmaceuticals were achieved in acidic media (pH 3-5) and reached 85.2% for carbamazepine, 88.3% for diclofenac, 93.0% for ibuprofen, 94.3% for ketoprofen, and 49.0% for clofibric acid at pH 3 but decreased with increase in pH. SBA-15 also showed high efficiency for removal of a mixture of 5 pharmaceuticals. Except for clofibric acid (35.6%), the removal of pharmaceuticals in the mixture ranged from 75.2 to 89.3%. Based on adsorption and desorption results, the mechanism of the selected pharmaceuticals was found to be a hydrophilic interaction, providing valuable information for further studies to design materials for the purpose. The results of this study suggest that mesoporous-silica-based materials are promising adsorbents for removing pharmaceuticals from not only surface water but also wastewater of pharmaceutical industrial manufactures.

  12. Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Bui, Tung Xuan, E-mail: bxtung@gist.ac.kr [Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Choi, Heechul, E-mail: hcchoi@gist.ac.kr [Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2009-09-15

    The removal of five selected pharmaceuticals, viz., carbamazepine, clofibric acid, diclofenac, ibuprofen, and ketoprofen was examined by batch sorption experiments onto a synthesized mesoporous silica SBA-15. SBA-15 was synthesized and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N{sub 2} adsorption-desorption measurement, and point of zero charge (PZC) measurement. Pharmaceutical adsorption kinetics was rapid and occurred on a scale of minutes, following a pseudo-second-order rate expression. Adsorption isotherms were best fitted by the Freundlich isotherm model. High removal rates of individual pharmaceuticals were achieved in acidic media (pH 3-5) and reached 85.2% for carbamazepine, 88.3% for diclofenac, 93.0% for ibuprofen, 94.3% for ketoprofen, and 49.0% for clofibric acid at pH 3 but decreased with increase in pH. SBA-15 also showed high efficiency for removal of a mixture of 5 pharmaceuticals. Except for clofibric acid (35.6%), the removal of pharmaceuticals in the mixture ranged from 75.2 to 89.3%. Based on adsorption and desorption results, the mechanism of the selected pharmaceuticals was found to be a hydrophilic interaction, providing valuable information for further studies to design materials for the purpose. The results of this study suggest that mesoporous-silica-based materials are promising adsorbents for removing pharmaceuticals from not only surface water but also wastewater of pharmaceutical industrial manufactures.

  13. Functionalized mesoporous silica materials for molsidomine adsorption: Thermodynamic study

    International Nuclear Information System (INIS)

    Alyoshina, Nonna A.; Parfenyuk, Elena V.

    2013-01-01

    A series of unmodified and organically modified mesoporous silica materials was prepared. The unmodified mesoporous silica was synthesized via sol–gel synthesis in the presence of D-glucose as pore-forming agent. The functionalized by phenyl, aminopropyl and mercaptopropyl groups silica materials were prepared via grafting. The fabricated adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR) analysis, N 2 adsorption/desorption and elemental analysis methods. Then their adsorption properties for mesoionic dug molsidomine were investigated at 290–313 K and physiological pH value. Thermodynamic parameters of molsidomine adsorption on the synthesized materials have been calculated. The obtained results showed that the adsorption process of molsidomine on the phenyl modified silica is the most quantitatively and energetically favorable. The unmodified and mercaptopropyl modified silica materials exhibit significantly higher adsorption capacities and energies for molsidomine than the aminopropyl modified sample. The effects are discussed from the viewpoint of nature of specific interactions responsible for the adsorption. - Graphical abstract: Comparative analysis of the thermodynamic characteristics of molsidomine adsorption showed that the adsorption process on mesoporous silica materials is controlled by chemical nature of surface functional groups. Molsidomine adsorption on the phenyl modified silica is the most quantitatively and energetically favorable. Taking into account ambiguous nature of mesoionic compounds, it was found that molsidomine is rather aromatic than dipolar. Display Omitted - Highlights: • Unmodified and organically modified mesoporous silica materials were prepared. • Molsidomine adsorption on the silica materials was studied. • Phenyl modified silica shows the highest adsorption capacity and favorable energy. • Molsidomine exhibits the lowest affinity to aminopropyl modified silica

  14. Adsorption Of Water And Benzene Vapour In Mesoporous Materials

    Directory of Open Access Journals (Sweden)

    Paulina Taba

    2008-11-01

    Full Text Available Mesoporous materials have attracted the attention of many researchers due to the potential applications promised by the materials. This article discusses adsorption of water and benzene vapour in mesoporous materials (mesoporous silica: MCM-41, MCM-48 and their modification. MCM-41 and MCM-48 were synthesized hydrothermally at 100 oC using cethyltrimethylammonium chloride or dodecyltrimethylammonium bromide for MCM-41 (C16 or MCM-41 (C12 respectively and a mixture of cethyltrimethylammonium bromide and Triton X-100 for MCM-48 as templates. Their modifications were conducted by silylation of MCM-41 (C16 and MCM-48 with trimethylchloro silane (MCM16-TMCS and MCM48-TMCS and t-butyldimethylchloro silane (MCM16-TBDMCS and MCM48-TBDMCS. Results showed that MCM-41 and MCM-48 materials had hydrophobic features which were shown in the small amount of water adsorption at low P/P0. The hydrophobicity of samples used in this study decrease in the sequence: MCM-41 (C16 > MCM-48 > MCM-41 (C12. The hydrophobicity increased when MCM-41 and MCM-48 were silylated with TMCS or TBDMCS. All unsilylated MCM materials show higher affinity to benzene at low P/P0 than the silylated samples. The results of water and benzene adsorption showed that silylated samples are promising candidates as selective adsorbents for organic compounds.

  15. Functionalized mesoporous silica materials for molsidomine adsorption: Thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Alyoshina, Nonna A.; Parfenyuk, Elena V., E-mail: evp@iscras.ru

    2013-09-15

    A series of unmodified and organically modified mesoporous silica materials was prepared. The unmodified mesoporous silica was synthesized via sol–gel synthesis in the presence of D-glucose as pore-forming agent. The functionalized by phenyl, aminopropyl and mercaptopropyl groups silica materials were prepared via grafting. The fabricated adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR) analysis, N{sub 2} adsorption/desorption and elemental analysis methods. Then their adsorption properties for mesoionic dug molsidomine were investigated at 290–313 K and physiological pH value. Thermodynamic parameters of molsidomine adsorption on the synthesized materials have been calculated. The obtained results showed that the adsorption process of molsidomine on the phenyl modified silica is the most quantitatively and energetically favorable. The unmodified and mercaptopropyl modified silica materials exhibit significantly higher adsorption capacities and energies for molsidomine than the aminopropyl modified sample. The effects are discussed from the viewpoint of nature of specific interactions responsible for the adsorption. - Graphical abstract: Comparative analysis of the thermodynamic characteristics of molsidomine adsorption showed that the adsorption process on mesoporous silica materials is controlled by chemical nature of surface functional groups. Molsidomine adsorption on the phenyl modified silica is the most quantitatively and energetically favorable. Taking into account ambiguous nature of mesoionic compounds, it was found that molsidomine is rather aromatic than dipolar. Display Omitted - Highlights: • Unmodified and organically modified mesoporous silica materials were prepared. • Molsidomine adsorption on the silica materials was studied. • Phenyl modified silica shows the highest adsorption capacity and favorable energy. • Molsidomine exhibits the lowest affinity to aminopropyl modified silica.

  16. Preparation and evaluation of molecularly imprinted polymer for selective recognition and adsorption of gossypol.

    Science.gov (United States)

    Zhi, Keke; Wang, Lulu; Zhang, Yagang; Zhang, Xuemin; Zhang, Letao; Liu, Li; Yao, Jun; Xiang, Wei

    2018-03-01

    Molecularly imprinted polymers (MIPs) were designed and prepared via bulk thermal polymerization with gossypol as the template molecule and dimethylaminoethyl methacrylate as the functional monomer. The morphology and microstructures of MIPs were characterized by scanning electron microscope and Brunauer-Emmett-Teller surface areas. Static adsorption tests were performed to evaluate adsorption behavior of gossypol by the MIPs. It was found that adsorption kinetics and adsorption isotherms data of MIPs for gossypol were fit well with the pseudo-second-order model and Freundlich model, respectively. Scatchard analysis showed that heterogeneous binding sites were formed in the MIPs, including lower-affinity binding sites with the maximum adsorption of 252 mg/g and higher-affinity binding sites with the maximum adsorption of 632 mg/g. Binding studies also revealed that MIPs had favorable selectivity towards gossypol compared with non-imprinted polymers. Furthermore, adsorption capacity of MIPs maintained above 90% after 5 regeneration cycles, indicating MIPs were recyclable and could be used multiple times. These results demonstrated that prepared MIPs could be a promising functional material for selective adsorption of gossypol. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Preparing activated carbon from charcoal and investigation of the selective uranium adsorption

    International Nuclear Information System (INIS)

    Kuetahyali, C.; Eral, M.

    2001-01-01

    Preconcentration and separation procedures based on adsorption phenomena are important in nuclear and especially radiation chemistry, industry, medicine and daily life. Adsorption of uranium onto various solids is important from purification, environmental and radioactive waste disposal points of view . The treatment of aqueous nuclear waste solutions containing soluble metal ions requires concentration of the metal ions into smaller volume followed by recovery or secure disposal. For this purpose, many processes are being utilized such as precipitation, ion-exchange, solvent extraction and adsorption on solids etc. Interest in the adsorption of metal ions for recovery purposes has increased manyfold in recent years, because of its simplicity, selectivity and efficiency . The main advantage of adsorption is the separation of trace amount of elements from large volumes of solutions. In recent years, several studies have been made to recover radionuclides by adsorption using natural and synthetic adsorbents. Adsorption on charcoal is one of the most efficient techniques used in water treatment processes for the removal of organics and micropollutants from wastes and drinking waters. Adsorption processes have long been used in the removal of color, odor, and organic pollution. These processes are usually based on the use of activated carbon . Activated carbon consists mainly of carbon and is produced from every carbonaceous material. Activated carbon characterized by its high surface area and its wide distribution of porosity. The textural properties (surface area and porosity) of activated carbons play an important role in determining the capacity of the material in adsorption from aqueous solution. Chemistry of the surface is also important . Generally, activated carbons are mainly microporous, but in addition to micropores they contain meso- and macropores, which are very important in facilitating acces of the adsorbate molecules to the interior of carbon particles

  18. On thermodynamics of methane+carbonaceous materials adsorption

    KAUST Repository

    Rahman, Kazi Afzalur; Chakraborty, Anutosh; Saha, Bidyut Baran; Ng, Kim Choon

    2012-01-01

    This study presents the theoretical frameworks for the thermodynamic quantities namely the heat of adsorption, specific heat capacity, entropy, and enthalpy for the adsorption of methane onto various carbonaceous materials. The proposed theoretical

  19. Rapid and selective adsorption of cationic dyes by a unique metal-organic framework with decorated pore surface

    Science.gov (United States)

    Zhang, Jie; Li, Fan; Sun, Qian

    2018-05-01

    Organic dye pollutants become a big headache due to their toxic nature to the environment, and it should be one of the best solutions if we can remove and separate them. Here, a metal-organic framework (MOF) (denoted as Zn-MOF) with carbonyl group based on fluorenone-2,7-dicarboxylate ligand, was directly synthesized without post-synthesis method and applied to selectively absorb cationic dyes such as MB, CV, RhB from aqueous solution, while anionic or neutral dyes were excluded. Characterization of the Zn-MOF was achieved by X-ray diffraction, scanning electron microscope, Fourier transform infrared spectrometry and elemental analysis. The Zn-MOF mainly possesses open pore channels, high surface area, big pore volume, and most important, the pore surface is furnished with carbonyl groups arising from the ligand and pointing toward the centers of the large chambers of the framework, which are benefit for the adsorption of the cationic dyes. The MB maximum adsorption capacities can attain 326 mg g-1, which is probably due to the suitable pore size, higher solvent-accessible void, and the prominent adsorption capacity of the mesoporous material. The dye adsorption process for the material is proven to be charge-selective and size-selective, and the adsorption isotherms, as well as kinetics characteristic of dye adsorption onto the Zn-MOF were also investigated.

  20. Selective adsorption and release of cationic organic dye molecules on mesoporous borosilicates

    International Nuclear Information System (INIS)

    Paul, Manidipa; Pal, Nabanita; Bhaumik, Asim

    2012-01-01

    Mesoporous materials can play a pivotal role as a host material for delivery application to a specific part of a system. In this work we explore the selective adsorption and release of cationic organic dye molecules such as safranine T (ST) and malachite green (MG) on mesoporous borosilicate materials. The mesoporous silica SBA-15 and borosilicate materials (MBS) were prepared using non-ionic surfactant Pluronic P123 as template via evaporation induced self-assembly (EISA) method. After template removal the materials show high surface areas and in some cases ordered mesopores of dimensions ca. 6–7 nm. High surface area, mesoporosity and the presence of heteroatom (boron) help this mesoporous borosilicate material to adsorb high amount of cationic dye molecules at its surface from the respective aqueous solutions. Furthermore, the mesoporous borosilicate samples containing higher percentage adsorbed dyes show excellent release of ST or MG dye in simulated body fluid (SBF) solution at physiological pH = 7.4 and temperature 310 K. The adsorption and release efficiency of mesoporous borosilicate samples are compared with reference boron-free mesoporous pure silica material to understand the nature of adsorbate–adsorbent interaction at the surfaces. - Graphical abstract: Highly ordered 2D-hexagonal mesoporous borosilicate materials have been synthesized by using Pluronic P123 as template. The materials show very good adsorption and release of organic cationic dye molecules under physiological conditions. Highlights: ► Highly ordered 2D-hexagonal mesoporous borosilicate. ► Nonionic Pluoronic P123 templated mesoporous material. ► Adsorption of organic dyes at the mesopore surface. ► Controlled release of dyes under physiological pH and temperature. ► Release of safranine T (ST) and malachite green (MG) dyes in simulated body fluids.

  1. Topotactic growth, selective adsorption, and adsorption-driven photocatalysis of protonated layered titanate nanosheets.

    Science.gov (United States)

    Wu, Qili; Yang, Xianfeng; Liu, Jia; Nie, Xin; Huang, Yongliang; Wen, Yuping; Khan, Javid; Khan, Wasim U; Wu, Mingmei; An, Taicheng

    2014-10-22

    Layered titanates with selective adsorption ability and adsorption-driven photocatalytic property can be quite attractive due to their potential applications in water purification. In this work, lepidocrocite-like layered protonated titanate (H2Ti2O5·H2O, denoted as HTO) nanosheets were successfully synthesized by an ion-exchange process. It turns out that this layered structure displays an abundant and selective adsorption toward the fluoroquinolone pharmaceutical compared with some large dye molecules due to a size selectivity of the interlayer spacing of HTO and the molecular horizontal size, as well as their electrostatic interaction. The uptake ability of HTO could be readily controlled through adjusting the pH values of adsorbate solution, and the maximum uptake capacity was achieved at the pH value of about 5.5 for ciprofloxacin (CIP) and 6.5 for moxifloxacin (MOX). The adsorption amount of smaller nalidixic acid (NAL) showed an increasing tendency as the pH value decreased. Moreover, the two-dimensional layered crystal structure also permits such HTO nanosheets to have a large percentage of (010) faces exposed, which is considerably provided by the interlayer surfaces of these nanosheets. The (010) surface has a similar Ti and O atomic arrangement as to the highly reactive anatase TiO2(001) one. Due to these specific characteristics, these HTO nanosheets show excellent photocatalytic activity in degrading CIP under UV light irradiation as well as possess a superior adsorption ability to remove CIP from aqueous solution selectively and efficiently. The photocatalytic reaction is believed to be mainly conducted on the active anatase (001)-like interlayer (010) surfaces of the layered structures since the as-prepared HTO performs an adsorption-driven molecular recognitive photocatalytic reaction.

  2. Selective adsorption of volatile organic compounds in micropore aluminum methylphosphonate-alpha: a combined molecular simulation-experimental approach.

    Science.gov (United States)

    Herdes, Carmelo; Valente, Anabela; Lin, Zhi; Rocha, João; Coutinho, João A P; Medina, Francisco; Vega, Lourdes F

    2007-06-19

    Results concerning the adsorption capacity of aluminum methylphosphonate polymorph alpha (AlMePO-alpha) for pure ethyl chloride and vinyl chloride by measured individual adsorption isotherms of these pure compounds are presented and discussed here. The experimental data supports the idea of using these materials as selective adsorbents for separating these compounds in mixtures. To explore this possibility further, we have performed grand canonical Monte Carlo simulations using a recently proposed molecular simulation framework for gas adsorption on AlMePO, and the results are presented here. The molecular model of the material was used in a purely transferable manner from a previous work (Herdes, C.; Lin, Z.; Valente, A.; Coutinho, J. A. P.; Vega, L. F. Langmuir 2006, 22, 3097). Regarding the molecular model of the fluids, an existing model for ethyl chloride was improved to capture the experimental dipole value better; an equivalent force field for the vinyl chloride molecule was also developed for simulation purposes. Simulations of the pure compounds were found to be in excellent agreement with the measured experimental data at the three studied temperatures. Simulations were also carried out in a purely predictive manner as a tool to find the optimal conditions for the selective adsorption of these compounds prior experimental measurements are carried out. The influence of the temperature and the bulk composition on the adsorption selectivity was also investigated. Results support the use of AlMePO-alpha as an appropriate adsorbent for the purification process of vinyl chloride, upholding the selective adsorption of ethyl chloride.

  3. Hydrogen adsorption in new carbon materials

    International Nuclear Information System (INIS)

    Zubizarreta, L.; Arenillas, A.; Rubiera, F.; Pis, J.J.

    2006-01-01

    Hydrogen physi-sorption on porous carbon materials is one among the different technologies which could be used for hydrogen storage. In addition hydrogen spillover on a carbon supports can enhance the hydrogen adsorption capacities obtained by physi-sorption. In this study two different carbon supports were synthesised: carbon gels and carbon microspheres. Carbon microspheres were doped with Ni(NO 3 ) 2 to study the hydrogen spillover on carbon support. The texture of the materials was characterised by CO 2 adsorption at 0 C and their hydrogen storage capacity was evaluated at -196 and 10 C with a Micromeritics Tristar 3000, and at room temperature with a high pressure gravimetric analyser. (authors)

  4. Hydrogen adsorption in new carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Zubizarreta, L.; Arenillas, A.; Rubiera, F.; Pis, J.J. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

    2006-07-01

    Hydrogen physi-sorption on porous carbon materials is one among the different technologies which could be used for hydrogen storage. In addition hydrogen spillover on a carbon supports can enhance the hydrogen adsorption capacities obtained by physi-sorption. In this study two different carbon supports were synthesised: carbon gels and carbon microspheres. Carbon microspheres were doped with Ni(NO{sub 3}){sub 2} to study the hydrogen spillover on carbon support. The texture of the materials was characterised by CO{sub 2} adsorption at 0 C and their hydrogen storage capacity was evaluated at -196 and 10 C with a Micromeritics Tristar 3000, and at room temperature with a high pressure gravimetric analyser. (authors)

  5. Phosphorene as a Superior Gas Sensor: Selective Adsorption and Distinct I-V Response.

    Science.gov (United States)

    Kou, Liangzhi; Frauenheim, Thomas; Chen, Changfeng

    2014-08-07

    Recent reports on the fabrication of phosphorene, that is, mono- or few-layer black phosphorus, have raised exciting prospects of an outstanding two-dimensional (2D) material that exhibits excellent properties for nanodevice applications. Here, we study by first-principles calculations the adsorption of CO, CO2, NH3, NO, and NO2 gas molecules on a monolayer phosphorene. Our results predict superior sensing performance of phosphorene that rivals or even surpasses that of other 2D materials such as graphene and MoS2. We determine the optimal adsorption positions of these molecules on the phosphorene and identify molecular doping, that is, charge transfer between the molecules and phosphorene, as the driving mechanism for the high adsorption strength. We further calculated the current-voltage (I-V) relation using the nonequilibrium Green's function (NEGF) formalism. The transport features show large (1-2 orders of magnitude) anisotropy along different (armchair or zigzag) directions, which is consistent with the anisotropic electronic band structure of phosphorene. Remarkably, the I-V relation exhibits distinct responses with a marked change of the I-V relation along either the armchair or the zigzag directions depending on the type of molecules. Such selectivity and sensitivity to adsorption makes phosphorene a superior gas sensor that promises wide-ranging applications.

  6. Preparation of lysine-decorated polymer-brush-grafted magnetic nanocomposite for the efficient and selective adsorption of organic dye

    Science.gov (United States)

    Jing, Shiyao; Wang, Xin; Tan, Yebang

    2018-05-01

    A novel magnetic nanocomposite (Lys-PGMA@Fe3O4) containing amphoteric polymer brushes was synthesized by combining surface-initiated atom-transfer radical polymerization and lysine modification. The chemical structure of Lys-PGMA@Fe3O4 was confirmed by multiple methods, such as FT-IR, TGA, elemental analysis. The core-brush morphology was clearly observed by transmission electron microscopy. Lys-PGMA@Fe3O4 was then used to selectively and efficiently adsorb hazardous dyes. Adsorption results showed that Lys-PGMA@Fe3O4 had considerable adsorption capacity (0.54 and 0.85 mmol·g-1 for LY and MEB, respectively) and rapid adsorption rate (within 10 min), which can be attributed to the nanosize and abundant adsorptive polymer brushes. The selective adsorption of a mixture of lemon yellow (pH = 4.0) and methylene blue (pH = 10.0) was achieved through the amphoteric polymer brushes. Similar to traditional adsorbent materials, Lys-PGMA@Fe3O4 also showed easy magnet-assisted separation property. Lys-PGMA@Fe3O4 adsorbent can also be regenerated to reduce application cost. Overall, results demonstrated that Lys-PGMA@Fe3O4 nanocomposite was an excellent adsorbent material for removing dye pollutants from wastewater.

  7. Selective Hg(II) adsorption from aqueous solutions of Hg(II) and Pb(II) by hydrolyzed acrylamide-grafted PET films.

    Science.gov (United States)

    Rahman, Nazia; Sato, Nobuhiro; Sugiyama, Masaaki; Hidaka, Yoshiki; Okabe, Hirotaka; Hara, Kazuhiro

    2014-01-01

    Selective Hg(II) adsorption from aqueous solutions of Hg(II) and Pb(II) using hydrolyzed acrylamide (AAm)-grafted polyethylene terephthalate (PET) films was examined to explore the potential reuse of waste PET materials. Selective recovery of Hg(II) from a mixture of soft acids with similar structure, such as Hg(II) and Pb(II), is important to allow the reuse of recovered Hg(II). An adsorbent for selective Hg(II) adsorption was prepared by γ-ray-induced grafting of AAm onto PET films followed by partial hydrolysis through KOH treatment. The adsorption capacity of the AAm-grafted PET films for Hg(II) ions increased from 15 to 70 mg/g after partial hydrolysis because of the reduction of hydrogen bonding between -CONH2 groups and the corresponding improved access of metal ions to the amide groups. The prepared adsorbent was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The absorbent film showed high selectivity for the adsorption of Hg(II) over Pb(II) throughout the entire initial metal concentration range (100-500 mg/L) and pH range (2.2-5.6) studied. The high selectivity is attributed to the ability of Hg(II) ions to form covalent bonds with the amide groups. The calculated selectivity coefficient for the adsorbent binding Hg(II) over Pb(II) was 19.2 at pH 4.5 with an initial metal concentration of 100 mg/L. Selective Hg(II) adsorption equilibrium data followed the Langmuir model and kinetic data were well fitted by a pseudo-second-order equation. The adsorbed Hg(II) and Pb(II) ions were effectively desorbed from the adsorbent film by acid treatment, and the regenerated film showed no marked loss of adsorption capacity upon reuse for selective Hg(II) adsorption.

  8. Design and cost estimate for the SRL integrated hot off gas facility using selective adsorption

    International Nuclear Information System (INIS)

    Pence, D.T.; Kirstein, B.E.

    1981-07-01

    Based on the results of an engineering-scale demonstration program, a design and cost estimate were performed for a 25-m 3 /h (15-ft 3 /min) capacity pilot plant demonstration system using selective adsorption technology for installation at the Integrated Hot Off Gas Facility at the Savannah River Plant. The design includes provisions for the destruction of NO/sub x/ and the concentration and removal of radioisotopes of ruthenium, iodine-129, tritiated water vapor, carbon-14 contaminated carbon dioxide, and krypton-85. The nobel gases are separated by the use of selective adsorption on mordenite-type zeolites. The theory of noble gas adsorption on zeolites is essentially the same as that for the adsorption of noble gases on activated charcoals. Considerable detail is provided regarding the application of the theory to adsorbent bed designs and operation. The design is based on a comprehensive material balance and appropriate heat transfer calculations. Details are provided on techniques and procedures used for heating, cooling, and desorbing the adsorbent columns. Analyses are also given regarding component and arrangement selection and includes discussions on alternative arrangements. The estimated equipment costs for the described treatment system is about $1,400,000. The cost estimate includes a detailed equipment list of all the major component items in the design. Related technical issues and estimated system performance are also discussed

  9. Design and cost estimate for the SRL integrated hot off gas facility using selective adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Pence, D T; Kirstein, B E

    1981-07-01

    Based on the results of an engineering-scale demonstration program, a design and cost estimate were performed for a 25-m/sup 3//h (15-ft/sup 3//min) capacity pilot plant demonstration system using selective adsorption technology for installation at the Integrated Hot Off Gas Facility at the Savannah River Plant. The design includes provisions for the destruction of NO/sub x/ and the concentration and removal of radioisotopes of ruthenium, iodine-129, tritiated water vapor, carbon-14 contaminated carbon dioxide, and krypton-85. The nobel gases are separated by the use of selective adsorption on mordenite-type zeolites. The theory of noble gas adsorption on zeolites is essentially the same as that for the adsorption of noble gases on activated charcoals. Considerable detail is provided regarding the application of the theory to adsorbent bed designs and operation. The design is based on a comprehensive material balance and appropriate heat transfer calculations. Details are provided on techniques and procedures used for heating, cooling, and desorbing the adsorbent columns. Analyses are also given regarding component and arrangement selection and includes discussions on alternative arrangements. The estimated equipment costs for the described treatment system is about $1,400,000. The cost estimate includes a detailed equipment list of all the major component items in the design. Related technical issues and estimated system performance are also discussed.

  10. Zirconium-modified materials for selective adsorption and removal of aqueous arsenic

    Science.gov (United States)

    Zhao, Hongting; Moore, Robert C.

    2004-11-30

    A method, composition, and apparatus for removing contaminant species from an aqueous medium comprising: providing a material to which zirconium has been added, the material selected from one or more of zeolites, cation-exchangeable clay minerals, fly ash, mesostructured materials, activated carbons, cellulose acetate, and like porous and/or fibrous materials; and contacting the aqueous medium with the material to which zirconium has been added. The invention operates on all arsenic species in the form of arsenate, arsenite and organometallic arsenic, with no pretreatment necessary (e.g., oxidative conversion of arsenite to arsenate).

  11. Optimising carbon electrode materials for adsorptive stripping voltammetry

    OpenAIRE

    Chaisiwamongkhol, K; Batchelor-McAuley, C; Sokolov, S; Holter, J; Young, N; Compton, R

    2017-01-01

    Different types of carbon electrode materials for adsorptive stripping voltammetry are studied through the use of cyclic voltammetry. Capsaicin is utilised as a model compound for adsorptive stripping voltammetry using unmodified and modified basal plane pyrolytic graphite (BPPG) electrodes modified with multi-walled carbon nanotubes, carbon black or graphene nanoplatelets, screen printed carbon electrodes (SPE), carbon nanotube modified screen printed electrodes, and carbon paste electrodes....

  12. Molecular simulation of adsorption and transport in hierarchical porous materials.

    Science.gov (United States)

    Coasne, Benoit; Galarneau, Anne; Gerardin, Corine; Fajula, François; Villemot, François

    2013-06-25

    Adsorption and transport in hierarchical porous solids with micro- (~1 nm) and mesoporosities (>2 nm) are investigated by molecular simulation. Two models of hierarchical solids are considered: microporous materials in which mesopores are carved out (model A) and mesoporous materials in which microporous nanoparticles are inserted (model B). Adsorption isotherms for model A can be described as a linear combination of the adsorption isotherms for pure mesoporous and microporous solids. In contrast, adsorption in model B departs from adsorption in pure microporous and mesoporous solids; the inserted microporous particles act as defects, which help nucleate the liquid phase within the mesopore and shift capillary condensation toward lower pressures. As far as transport under a pressure gradient is concerned, the flux in hierarchical materials consisting of microporous solids in which mesopores are carved out obeys the Navier-Stokes equation so that Darcy's law is verified within the mesopore. Moreover, the flow in such materials is larger than in a single mesopore, due to the transfer between micropores and mesopores. This nonzero velocity at the mesopore surface implies that transport in such hierarchical materials involves slippage at the mesopore surface, although the adsorbate has a strong affinity for the surface. In contrast to model A, flux in model B is smaller than in a single mesopore, as the nanoparticles act as constrictions that hinder transport. By a subtle effect arising from fast transport in the mesopores, the presence of mesopores increases the number of molecules in the microporosity in hierarchical materials and, hence, decreases the flow in the micropores (due to mass conservation). As a result, we do not observe faster diffusion in the micropores of hierarchical materials upon flow but slower diffusion, which increases the contact time between the adsorbate and the surface of the microporosity.

  13. Cell adsorption and selective desorption for separation of microbial cells by using chitosan-immobilized silica.

    Science.gov (United States)

    Kubota, Munehiro; Matsui, Masayoshi; Chiku, Hiroyuki; Kasashima, Nobuyuki; Shimojoh, Manabu; Sakaguchi, Kengo

    2005-12-01

    Cell adsorption and selective desorption for separation of microbial cells were conducted by using chitosan-immobilized silica (CIS). When chitosan was immobilized onto silica surfaces with glutaraldehyde, bacterial cells adsorbed well and retained viability. Testing of the adsorption and desorption ability of CIS using various microbes such as Escherichia coli, Aeromonas hydrophila, Pseudomonas aeruginosa, Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Staphylococcus epidermidis, Lactobacillus casei, Streptococcus mutans, Streptococcus sobrinus, Streptococcus salivarius, Saccharomyces cerevisiae, Saccharomyces ludwigii, and Schizosaccharomyces pombe revealed that most microbes could be adsorbed and selectively desorbed under different conditions. In particular, recovery was improved when L-cysteine was added. A mixture of two bacterial strains adsorbed onto CIS could also be successfully separated by use of specific solutions for each strain. Most of the desorbed cells were alive. Thus, quantitative and selective fractionation of cells is readily achievable by employing chitosan, a known antibacterial material.

  14. Selective Adsorption of Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent.

    Science.gov (United States)

    Lv, Daofei; Shi, Renfeng; Chen, Yongwei; Wu, Ying; Wu, Houxiao; Xi, Hongxia; Xia, Qibin; Li, Zhong

    2018-03-07

    The separation of ethane from ethylene using cryogenic distillation is an energy-intensive process in the industry. With lower energetic consumption, the adsorption technology provides the opportunities for developing the industry with economic sustainability. We report an iron-based metal-organic framework PCN-245 with interpenetrated structures as an ethane-selective adsorbent for ethylene/ethane separation. The material maintains stability up to 625 K, even after exposure to 80% humid atmosphere for 20 days. Adsorptive separation experiments on PCN-245 at 100 kPa and 298 K indicated that ethane and ethylene uptakes of PCN-245 were 3.27 and 2.39 mmol, respectively, and the selectivity of ethane over ethylene was up to 1.9. Metropolis Monte Carlo calculations suggested that the interpenetrated structure of PCN-245 created greater interaction affinity for ethane than ethylene through the crossing organic linkers, which is consistent with the experimental results. This work highlights the potential application of adsorbents with the interpenetrated structure for ethane separation from ethylene.

  15. Use of selective adsorbents for adsorption and concentration of radioactive isotopes difficult measurement; Empleo de materials adsorbentes selectivos para la adsorcion y contration de isotopos radiactivos de dificil medida

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, L.; Medina, F.

    2011-07-01

    The work are focused on obtaining a selective adsorbent material to separate from the effluent of nuclear energy plants the radioactive isotopes with high average lifetimes that are in very low concentrations in order to treat them separately from the rest of waste. For this target we have worked with different materials, focusing on the utilization of the adsorptive capacity of layered double hydroxides, which can be reconstructed after being burned hosting anions in the interlayers space. (Author)

  16. Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane

    KAUST Repository

    Li, Baiyan

    2014-06-18

    In this work, we demonstrate for the first time the introduction of π-complexation into a porous aromatic framework (PAF), affording significant increase in ethylene uptake capacity, as illustrated in the context of Ag(I) ion functionalized PAF-1, PAF-1-SO3Ag. IAST calculations using single-component-isotherm data and an equimolar ethylene/ethane ratio at 296 K reveal that PAF-1-SO3Ag shows exceptionally high ethylene/ethane adsorption selectivity (Sads: 27 to 125), far surpassing benchmark zeolite and any other MOF reported in literature. The formation of π-complexation between ethylene molecules and Ag(I) ions in PAF-1-SO 3Ag has been evidenced by the high isosteric heats of adsorption of C2H4 and also proved by in situ IR spectroscopy studies. Transient breakthrough experiments, supported by simulations, indicate the feasibility of PAF-1-SO3Ag for producing 99.95%+ pure C 2H4 in a Pressure Swing Adsorption operation. Our work herein thus suggests a new perspective to functionalizing PAFs and other types of advanced porous materials for highly selective adsorption of ethylene over ethane. © 2014 American Chemical Society.

  17. Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane

    KAUST Repository

    Li, Baiyan; Zhang, Yiming; Krishna, Rajamani; Yao, Kexin; Han, Yu; Wu, Zili; Ma, Dingxuan; Shi, Zhan; Pham, Tony T.; Space, Brian; Liu, Jian; Thallapally, Praveen K.; Liu, Jun; Chrzanowski, Matthew; Ma, Shengqian

    2014-01-01

    In this work, we demonstrate for the first time the introduction of π-complexation into a porous aromatic framework (PAF), affording significant increase in ethylene uptake capacity, as illustrated in the context of Ag(I) ion functionalized PAF-1, PAF-1-SO3Ag. IAST calculations using single-component-isotherm data and an equimolar ethylene/ethane ratio at 296 K reveal that PAF-1-SO3Ag shows exceptionally high ethylene/ethane adsorption selectivity (Sads: 27 to 125), far surpassing benchmark zeolite and any other MOF reported in literature. The formation of π-complexation between ethylene molecules and Ag(I) ions in PAF-1-SO 3Ag has been evidenced by the high isosteric heats of adsorption of C2H4 and also proved by in situ IR spectroscopy studies. Transient breakthrough experiments, supported by simulations, indicate the feasibility of PAF-1-SO3Ag for producing 99.95%+ pure C 2H4 in a Pressure Swing Adsorption operation. Our work herein thus suggests a new perspective to functionalizing PAFs and other types of advanced porous materials for highly selective adsorption of ethylene over ethane. © 2014 American Chemical Society.

  18. Functionalized mesoporous materials for adsorption and release of different drug molecules: A comparative study

    International Nuclear Information System (INIS)

    Wang Gang; Otuonye, Amy N.; Blair, Elizabeth A.; Denton, Kelley; Tao Zhimin; Asefa, Tewodros

    2009-01-01

    The adsorption capacity and release properties of mesoporous materials for drug molecules can be improved by functionalizing their surfaces with judiciously chosen organic groups. Functionalized ordered mesoporous materials containing various types of organic groups via a co-condensation synthetic method from 15% organosilane and by post-grafting organosilanes onto a pre-made mesoporous silica were synthesized. Comparative studies of their adsorption and release properties for various model drug molecules were then conducted. Functional groups including 3-aminopropyl, 3-mercaptopropyl, vinyl, and secondary amine groups were used to functionalize the mesoporous materials while rhodamine 6G and ibuprofen were utilized to investigate the materials' relative adsorption and release properties. The self-assembly of the mesoporous materials was carried out in the presence of cetyltrimethylammonium bromide (CTAB) surfactant, which produced MCM-41 type materials with pore diameters of ∼2.7-3.3 nm and moderate to high surface areas up to ∼1000 m 2 /g. The different functional groups introduced into the materials dictated their adsorption capacity and release properties. While mercaptopropyl and vinyl functionalized samples showed high adsorption capacity for rhodamine 6G, amine functionalized samples exhibited higher adsorption capacity for ibuprofen. While the diffusional release of ibuprofen was fitted on the Fickian diffusion model, the release of rhodamine 6G followed Super Case-II transport model. - Graphical abstract: The adsorption capacity and release properties of mesoporous materials for various drug molecules are tuned by functionalizing the surfaces of the materials with judiciously chosen organic groups. This work reports comparative studies of the adsorption and release properties of functionalized ordered mesoporous materials containing different hydrophobic and hydrophilic groups that are synthesized via a co-condensation and post-grafting methods for

  19. Novel porous carbon materials with ultrahigh nitrogen contents for selective CO 2 capture

    KAUST Repository

    Zhao, Yunfeng; Zhao, Lan; Yao, Kexin; Yang, Yang; Zhang, Qiang; Han, Yu

    2012-01-01

    Nitrogen-doped carbon materials were prepared by a nanocasting route using tri-continuous mesoporous silica IBN-9 as a hard template. Rationally choosing carbon precursors and carefully controlling activation conditions result in an optimized material denoted as IBN9-NC1-A, which possesses a very high nitrogen doping concentration (∼13 wt%) and a large surface area of 890 m 2 g -1 arising from micropores (<1 nm). It exhibits an excellent performance for CO 2 adsorption over a wide range of CO 2 pressures. Specifically, its equilibrium CO 2 adsorption capacity at 25 °C reaches up to 4.50 mmol g -1 at 1 bar and 10.53 mmol g -1 at 8 bar. In particular, it shows a much higher CO 2 uptake at low pressure (e.g. 1.75 mmol g -1 at 25 °C and 0.2 bar) than any reported carbon-based materials, owing to its unprecedented nitrogen doping level. The high nitrogen contents also give rise to significantly enhanced CO 2/N 2 selectivities (up to 42), which combined with the high adsorption capacities, make these new carbon materials promising sorbents for selective CO 2 capture from power plant flue gas and other relevant applications. © 2012 The Royal Society of Chemistry.

  20. Selective adsorption-desorption method for the enrichment of krypton

    International Nuclear Information System (INIS)

    Yuasa, Y.; Ohta, M.; Watanabe, A.; Tani, A.; Takashima, N.

    1975-01-01

    Selective adsorption-desorption method has been developed as an effective means of enriching krypton and xenon gases. A seriesof laboratory-scale tests were performed to provide some basic data of the method when applied to off-gas streams of nuclear power plants. For the first step of the enrichment process of the experiments, krypton was adsorbed on solid adsorbents from dilute mixtures with air at temperatures ranging from -50 0 C to -170 0 C. After the complete breakthrough was obtained, the adsorption bed was evacuated at low temperature by a vacuum pump. By combining these two steps krypton was highly enriched on the adsorbents, and the enrichment factor for krypton was calculated as the product of individual enrichment factors of each step. Two types of adsorbents, coconut charcoal and molecular sieves 5A, were used. Experimental results showed that the present method gave the greater enrichment factor than the conventional method which used selective adsorption step only. (U.S.)

  1. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 µg/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests

  2. Facile and green preparation of novel adsorption materials by combining sol-gel with ion imprinting technology for selective removal of Cu(II) ions from aqueous solution

    Science.gov (United States)

    Ren, Zhongqi; Zhu, Xinyan; Du, Jian; Kong, Delong; Wang, Nian; Wang, Zhuo; Wang, Qi; Liu, Wei; Li, Qunsheng; Zhou, Zhiyong

    2018-03-01

    A novel green adsorption polymer was prepared by ion imprinted technology in conjunction with sol-gel process under mild conditions for the selective removal of Cu(II) ions from aqueous solution. Effects of preparation conditions on adsorption performance of prepared polymers were studied. The ion-imprinted polymer was prepared using Cu(II) ion as template, N-[3-(2-aminoethylamino) propyl] trimethoxysilane (AAPTMS) as functional monomer and tetraethyl orthosilicate (TEOS) as cross-linker. Water was used as solvent in the whole preparation process. The imprinted and non-imprinted polymers were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscope (AFM), Brunauer, Emmett and Teller (BET) and zeta potential. Three-dimensional network structure was formed and functional monomer was successfully cross-linked into the network structure of polymers. Effects of adsorption conditions on adsorption performance of prepared polymers were studied too. The pH value is of great influence on adsorption behavior. Adsorption by ion-imprinted polymer was fast (adsorption equilibrium was reached within 60 min). The adsorption capacity of Cu(II) ion-imprinted polymer was always larger than that of non-imprinted polymer. Pseudo-second-order kinetics model and Freundlich isotherm model fitted well with adsorption data. The maximum adsorption capacity of Cu(II) ion-imprinted polymer was 39.82 mg·g-1. However, the preparation conditions used in this work are much milder than those reported in literatures. The Cu(II) ion-imprinted polymer showed high selectivity and relative selectivity coefficients for Pb(II), Ni(II), Cd(II) and Co(II). In addition, the prepared ion-imprinted polymer could be reused several times without significant loss of adsorption capacity.

  3. Adsorption of iodine and cesium onto some cement materials

    Energy Technology Data Exchange (ETDEWEB)

    Mine, Tatsuya [Mitsui Shipbuilding and Engineering Co. Ltd., Tokyo (Japan); Mihara, Morihiro; Ito, Masaru [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works; Kato, Hiroshige [IDC, Tokai, Ibaraki (Japan)

    1997-06-01

    Cement materials, being expected to be used in structural materials in underground disposals of radioactive wastes, may adsorb nuclides resulting in retardation of their migration in environment. In this report adsorption behaviors of cement pastes toward iodine (as anion) and cesium (as cation) were studied. Adsorption of iodine was remarkable for OPC and MHP pastes that are known to have high molar ratio CaO/SiO{sub 2}, partition coefficient being 100 ml/g for initial tracer concentration of 10{sup -5} mol/l. Partition coefficient for cesium for PFA paste was found to be 5 ml/g on average. (S. Ohno)

  4. Adsorption of iodine and cesium onto some cement materials

    International Nuclear Information System (INIS)

    Mine, Tatsuya; Mihara, Morihiro; Ito, Masaru

    1997-06-01

    Cement materials, being expected to be used in structural materials in underground disposals of radioactive wastes, may adsorb nuclides resulting in retardation of their migration in environment. In this report adsorption behaviors of cement pastes toward iodine (as anion) and cesium (as cation) were studied. Adsorption of iodine was remarkable for OPC and MHP pastes that are known to have high molar ratio CaO/SiO 2 , partition coefficient being 100 ml/g for initial tracer concentration of 10 -5 mol/l. Partition coefficient for cesium for PFA paste was found to be 5 ml/g on average. (S. Ohno)

  5. Selective adsorption behavior of Cd(II) ion imprinted polymers synthesized by microwave-assisted inverse emulsion polymerization: Adsorption performance and mechanism

    International Nuclear Information System (INIS)

    Zhu, Fang; Li, Luwei; Xing, Junde

    2017-01-01

    Highlights: • Microwave assisted inverse emulsion polymerization was applied to prepare Cd(II) imprinted polymers. • The adsorption capacity was evaluated by static adsorption experiments. • Pseudo-second-order model and Langmuir adsorption isotherm model had the best agreement with the experimental data. • The adsorption was a spontaneous and endothermic process. • Cd(II) imprinted polymers have specific identification for Cd(II). - Abstract: Microwave-assisted inverse emulsion polymerization method was used to prepare Cd(II) imprinted polymer (IIP) by using β-cyclodextrin (β-CD) and acrylamide (AM) as functional monomer, epichlorohydrin (ECH) as crossing-linking agent, ammonium persulfate as initiator. The Cd(II) imprinted polymer was characterized by SEM, FTIR and TGA. The influences of initial concentration of Cd(II), pH values, temperature, time and competitive ions on adsorption capacity and recognition properties are investigated. Under the optimal conditions, the adsorption capacity could reach 107 mg/g. Furthermore, pseudo first order kinetic model, pseudo second order kinetic model and intra-particular diffusion model were used to describe the adsorption kinetic behavior. Results showed that the pseudo-second-order model (R"2 0.9928–0.9961) had the best agreement with the experimental data. Langmuir adsorption isotherm model described the experimental data well, which indicated that adsorption was mainly monolayer absorption. Moreover, the study of adsorption thermodynamics (ΔG"0 0, ΔS"0 > 0) suggested that the adsorption process was a spontaneous and endothermic process. Competitive selectivity experiment revealed that imprinted polymer could selectively recognize Cd(II). It provides a new idea for removing Cd(II) from aqueous solution.

  6. Selective adsorption of cationic dyes from aqueous solution by polyoxometalate-based metal–organic framework composite

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoxia; Gong, Wenpeng; Luo, Jing; Zou, Chentao; Yang, Yun; Yang, Shuijin, E-mail: yangshuijin@163.com

    2016-01-30

    Graphical abstract: Selective adsorption ability of H{sub 6}P{sub 2}W{sub 18}O{sub 62}/MOF-5 toward MO (a), Rhb (b) and the removal rate of Rhb, MO and MB (c). - Highlights: • Using metal–organic framework (MOF) composite as an adsorbent was investigated. • Selective adsorption ability of the composite towards cationic dyes was proposed. • The removal rate of MOF was raised greatly by the modification of polyoxometalate. • The adsorption kinetic and isotherm were used to describe the adsorption process. • The thermodynamic parameters of the composite were investigated in detail. - Abstract: A novel environmental friendly adsorbent H{sub 6}P{sub 2}W{sub 18}O{sub 62}/MOF-5 was synthesized by a simple one-step reaction under solvothermal conditions and characterized by XRD, FTIR, thermogravimetric analyses (TGA) and N{sub 2} adsorption–desorption isotherms. The removal rate of H{sub 6}P{sub 2}W{sub 18}O{sub 62}/MOF-5 was quite greater (85%) than that of MOF-5 (almost zero), showing that the adsorption performance of porous MOF-5 can be improved through the modification of H{sub 6}P{sub 2}W{sub 18}O{sub 62}. Further study revealed that H{sub 6}P{sub 2}W{sub 18}O{sub 62}/MOF-5 exhibited a fast adsorption rate and selective adsorption ability towards the cationic dyes in aqueous solution. The removal rate was up to 97% for cationic dyes methylene blue (MB) and 68% for rhodamine B(Rhb) within 10 min. However, anionicdye methyl orange(MO) can only reach to 10%. The influences including initial concentration, contact time, initial solution pH and temperature of MB adsorption onto H{sub 6}P{sub 2}W{sub 18}O{sub 62}/MOF-5 were investigated in detail. The kinetic study indicated that the adsorption of MB onto H{sub 6}P{sub 2}W{sub 18}O{sub 62}/MOF-5 followed the pseudo second-order model well. The isotherm obtained from experimental data fitted the Langmuir model, yielding maximum adsorption capacity of 51.81 mg/g. The thermodynamic parameters analysis

  7. Selective adsorption of bovine hemoglobin on functional TiO2 nano-adsorbents: surface physic-chemical properties determined adsorption activity

    Science.gov (United States)

    Guo, Shiguang; Zhang, Jianghua; Shao, Mingxue; Zhang, Xia; Liu, Yufeng; Xu, Junli; Meng, Hao; Han, Yide

    2015-04-01

    Surface functionalized nanoparticles are efficient adsorbents which have shown good potential for protein separation. In this work, we chose two different types of organic molecules, oleic acid (OA) and 3-glycidoxypropyltrimethoxy silane (GPTMS), to functionalize the surface of TiO2 nanoparticles, and we studied the effects of this modification on their surface physicochemical properties in correlation with their selective adsorption of proteins. The results showed that the surface zeta potential and the surface water wettability of the modified TiO2 were significantly changed in comparison with the original TiO2 nanoparticles. The adsorption activities of bovine hemoglobin (BHb) and bovine serum albumin (BSA) on these functionalized TiO2 samples were investigated under different conditions, including pH values, contact time, ion strength, and initial protein concentration. In comparison with the non-specific adsorption of original TiO2, however, both the OA-TiO2 and GPTMS-TiO2 exhibited increased BHb adsorption and decreased BSA adsorption at the same time. Using a binary protein mixture as the adsorption object, a higher separation factor (SF) was obtained for OA-TiO2 under optimum conditions. The different adsorption activities of BHb and BSA on the modified TiO2 were correlated with different interactions at the protein/solid interface, and the chemical force as well as the electrostatic force played an important role in the selective adsorption process.

  8. On thermodynamics of methane+carbonaceous materials adsorption

    KAUST Repository

    Rahman, Kazi Afzalur

    2012-01-01

    This study presents the theoretical frameworks for the thermodynamic quantities namely the heat of adsorption, specific heat capacity, entropy, and enthalpy for the adsorption of methane onto various carbonaceous materials. The proposed theoretical frameworks are developed from the rigor of thermodynamic property surfaces of a single component adsorbate-adsorbent system and by incorporating the micropore filling theory approach, where the effect of adsorbed phase volume is considered. The abovementioned thermodynamic properties are quantitatively evaluated from the experimental uptake data for methane adsorption onto activated carbons such as Maxsorb III at temperatures ranging from 120 to 350 K and pressures up to 25 bar. Employing the proposed thermodynamic approaches, this paper shows the thermodynamic maps of the charge and discharge processes of adsorbed natural gas (ANG) storage system for understanding the behaviors of natural gas in ANG vessel. © 2011 Elsevier Ltd. All rights reserved.

  9. Cs+ and Sr2+ adsorption selectivity of zeolites in relation to radioactive decontamination

    Directory of Open Access Journals (Sweden)

    M.W. Munthali

    2015-09-01

    Full Text Available Zeolites are used as adsorbents of cationic elements in the radioactive decontamination process of water, soil and others. We determined Cs+ and Sr2+ adsorption selectivity of some zeolites to know effective zeolite species for the decontamination of radioactive Cs and Sr. A 30 mL mixed solution containing up to 15 mg L−1 of non-radioactive Cs+ or Sr+ and up to 0.50 M of Na+ or K+ was mixed with 0.5 g of Linde-type A, Na-P1, faujasite X, faujasite Y and mordenite. Among the zeolites, mordenite had the highest Cs+ adsorption selectivity, and the selectivity had no correlation to the cation exchange capacity (CEC of the zeolites. In contrast, Sr2+ adsorption selectivity of the zeolites positively correlated with the CEC of the zeolites; Linde-type A with the highest CEC showed the highest adsorption selectivity, and its adsorption rate was more than 99.9% even in the presence of 0.5 M K+. A simulated soil decontamination experiment of Cs from a Cs-retaining vermiculite by using mordenite and that of Sr from a Sr-retaining vermiculite by using Linde-type A showed decontamination rates of more than 90%.

  10. Graphitic Carbon Materials Tailored for the Rapid Adsorption of Biomolecules

    Science.gov (United States)

    Pescatore, Nicholas A.

    Sepsis is an overactive inflammatory response to an infection, with 19 million cases estimated worldwide and causing organ dysfunction if left untreated. Three pro-inflammatory cytokines are seen from literature review as vital biomarkers for sepsis and are interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-alpha), which have the potential to be removed by hemoperfusion. This thesis examines carbon nanomaterials for their adsorption capabilities in the search for an optimal material for blood cleansing hemoperfusion application, such as mediating the effects of sepsis. Non-porous and porous carbon polymorphs and their properties are investigated in this thesis for their protein adsorption capabilities. Polymer-derived mesoporous carbons were compared to non-porous graphene nanoplatelets (GNP's) to observe changes in adsorption capacity for cytokines between porous and non-porous materials. GNP's were functionalized via high temperature vacuum annealing, air oxidation, acid oxidation and amination treatments to understand the effect of surface chemistry on adsorption. For practical use in a hemoperfusion column, polymer-derived carbon beads and composite materials such as cryogel and PTFE-GNP composites were designed and tested for their adsorption capacity. At concentrations of IL-6, IL-8, and TNF-alpha seen in septic patients, these cytokines were completely removed from the blood after 5 minutes of incubation with GNP's. Overall, a low-cost, scalable carbon adsorbent was found to provide a novel approach of rapidly removing pro-inflammatory cytokines from septic patients.

  11. A pressure-amplifying framework material with negative gas adsorption transitions.

    Science.gov (United States)

    Krause, Simon; Bon, Volodymyr; Senkovska, Irena; Stoeck, Ulrich; Wallacher, Dirk; Többens, Daniel M; Zander, Stefan; Pillai, Renjith S; Maurin, Guillaume; Coudert, François-Xavier; Kaskel, Stefan

    2016-04-21

    Adsorption-based phenomena are important in gas separations, such as the treatment of greenhouse-gas and toxic-gas pollutants, and in water-adsorption-based heat pumps for solar cooling systems. The ability to tune the pore size, shape and functionality of crystalline porous coordination polymers--or metal-organic frameworks (MOFs)--has made them attractive materials for such adsorption-based applications. The flexibility and guest-molecule-dependent response of MOFs give rise to unexpected and often desirable adsorption phenomena. Common to all isothermal gas adsorption phenomena, however, is increased gas uptake with increased pressure. Here we report adsorption transitions in the isotherms of a MOF (DUT-49) that exhibits a negative gas adsorption; that is, spontaneous desorption of gas (methane and n-butane) occurs during pressure increase in a defined temperature and pressure range. A combination of in situ powder X-ray diffraction, gas adsorption experiments and simulations shows that this adsorption behaviour is controlled by a sudden hysteretic structural deformation and pore contraction of the MOF, which releases guest molecules. These findings may enable technologies using frameworks capable of negative gas adsorption for pressure amplification in micro- and macroscopic system engineering. Negative gas adsorption extends the series of counterintuitive phenomena such as negative thermal expansion and negative refractive indices and may be interpreted as an adsorptive analogue of force-amplifying negative compressibility transitions proposed for metamaterials.

  12. Heavy metals adsorption by novel EDTA-modified chitosan-silica hybrid materials.

    Science.gov (United States)

    Repo, Eveliina; Warchoł, Jolanta K; Bhatnagar, Amit; Sillanpää, Mika

    2011-06-01

    Novel adsorbents were synthesized by functionalizing chitosan-silica hybrid materials with (ethylenediaminetetraacetic acid) EDTA ligands. The synthesized adsorbents were found to combine the advantages of both silica gel (high surface area, porosity, rigid structure) and chitosan (surface functionality). The Adsorption potential of hybrid materials was investigated using Co(II), Ni(II), Cd(II), and Pb(II) as target metals by varying experimental conditions such as pH, contact time, and initial metal concentration. The kinetic results revealed that the pore diffusion process played a key role in adsorption kinetics, which might be attributed to the porous structure of synthesized adsorbents. The obtained maximum adsorption capacities of the hybrid materials for the metal ions ranged from 0.25 to 0.63 mmol/g under the studied experimental conditions. The adsorbent with the highest chitosan content showed the best adsorption efficiency. Bi-Langmuir and Sips isotherm model fitting to experimental data suggested the surface heterogeneity of the prepared adsorbents. In multimetal solutions, the hybrid adsorbents showed the highest affinity toward Pb(II). Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Nanoporous spongy graphene: Potential applications for hydrogen adsorption and selective gas separation

    Energy Technology Data Exchange (ETDEWEB)

    Kostoglou, Nikolaos, E-mail: nikolaos.kostoglou@stud.unileoben.ac.at [Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia (Cyprus); Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, 8700 Leoben (Austria); Constantinides, Georgios [Research Unit for Nanostructured Materials Systems, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, 3036 Lemesos (Cyprus); Charalambopoulou, Georgia; Steriotis, Theodore [National Center for Scientific Research Demokritos, Agia Paraskevi Attikis, 15310 Athens (Greece); Polychronopoulou, Kyriaki [Department of Mechanical Engineering, Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates); Li, Yuanqing; Liao, Kin [Department of Aerospace Engineering, Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates); Ryzhkov, Vladislav [Nanotube Production Department, Fibrtec Incorporation, TX, 75551 Atlanta (United States); Mitterer, Christian [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, 8700 Leoben (Austria); Rebholz, Claus, E-mail: claus@ucy.ac.cy [Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia (Cyprus)

    2015-12-01

    In the present work, a nanoporous (pore width ~ 0.7 nm) graphene-based sponge-like material with large surface area (~ 350 m{sup 2}/g) was synthesized by wet chemical reduction of graphene oxide in combination with freeze-drying. Surface morphology and elemental composition were studied by scanning and transmission electron microscopy combined with energy dispersive X-ray spectroscopy. Surface chemistry was qualitatively examined by Fourier-transform infrared spectroscopy, while the respective structure was investigated by X-ray diffraction analysis. Textural properties, including Brunauer–Emmet–Teller (BET) surface area, micropore volume and surface area as well as pore size distribution, were deduced from nitrogen gas adsorption/desorption data obtained at 77 K and up to 1 bar. Potential use of the spongy graphene for gas storage and separation applications was preliminarily assessed by low-pressure (0–1 bar) H{sub 2}, CO{sub 2} and CH{sub 4} sorption measurements at different temperatures (77, 273 and 298 K). The adsorption capacities for each gas were evaluated up to ~ 1 bar, the isosteric enthalpies of adsorption for CO{sub 2} (28–33 kJ/mol) and CH{sub 4} (30–38 kJ/mol) were calculated using the Clausius–Clapeyron equation, while the CO{sub 2}/CH{sub 4} gas selectivity (up to 95:1) was estimated using the Ideal Adsorbed Solution Theory (IAST). - Highlights: • Nanoporous sponge produced by chemical reduction of graphene oxide and freeze-drying • Characterization performed using SEM, EDS, TEM, FT-IR, BET and XRD methods • Gas storage performance evaluated towards H{sub 2}, CO{sub 2} and CH{sub 4} adsorption up to 1 bar • CO{sub 2} over CH{sub 4} gas selectivity estimated between 45 and 95 at 273 K using the IAST model.

  14. Nanoporous spongy graphene: Potential applications for hydrogen adsorption and selective gas separation

    International Nuclear Information System (INIS)

    Kostoglou, Nikolaos; Constantinides, Georgios; Charalambopoulou, Georgia; Steriotis, Theodore; Polychronopoulou, Kyriaki; Li, Yuanqing; Liao, Kin; Ryzhkov, Vladislav; Mitterer, Christian; Rebholz, Claus

    2015-01-01

    In the present work, a nanoporous (pore width ~ 0.7 nm) graphene-based sponge-like material with large surface area (~ 350 m"2/g) was synthesized by wet chemical reduction of graphene oxide in combination with freeze-drying. Surface morphology and elemental composition were studied by scanning and transmission electron microscopy combined with energy dispersive X-ray spectroscopy. Surface chemistry was qualitatively examined by Fourier-transform infrared spectroscopy, while the respective structure was investigated by X-ray diffraction analysis. Textural properties, including Brunauer–Emmet–Teller (BET) surface area, micropore volume and surface area as well as pore size distribution, were deduced from nitrogen gas adsorption/desorption data obtained at 77 K and up to 1 bar. Potential use of the spongy graphene for gas storage and separation applications was preliminarily assessed by low-pressure (0–1 bar) H_2, CO_2 and CH_4 sorption measurements at different temperatures (77, 273 and 298 K). The adsorption capacities for each gas were evaluated up to ~ 1 bar, the isosteric enthalpies of adsorption for CO_2 (28–33 kJ/mol) and CH_4 (30–38 kJ/mol) were calculated using the Clausius–Clapeyron equation, while the CO_2/CH_4 gas selectivity (up to 95:1) was estimated using the Ideal Adsorbed Solution Theory (IAST). - Highlights: • Nanoporous sponge produced by chemical reduction of graphene oxide and freeze-drying • Characterization performed using SEM, EDS, TEM, FT-IR, BET and XRD methods • Gas storage performance evaluated towards H_2, CO_2 and CH_4 adsorption up to 1 bar • CO_2 over CH_4 gas selectivity estimated between 45 and 95 at 273 K using the IAST model

  15. Selective adsorption behavior of Cd(II) ion imprinted polymers synthesized by microwave-assisted inverse emulsion polymerization: Adsorption performance and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Fang, E-mail: zhufang@tyut.edu.cn [College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024 (China); Li, Luwei [College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024 (China); Xing, Junde [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024 (China)

    2017-01-05

    Highlights: • Microwave assisted inverse emulsion polymerization was applied to prepare Cd(II) imprinted polymers. • The adsorption capacity was evaluated by static adsorption experiments. • Pseudo-second-order model and Langmuir adsorption isotherm model had the best agreement with the experimental data. • The adsorption was a spontaneous and endothermic process. • Cd(II) imprinted polymers have specific identification for Cd(II). - Abstract: Microwave-assisted inverse emulsion polymerization method was used to prepare Cd(II) imprinted polymer (IIP) by using β-cyclodextrin (β-CD) and acrylamide (AM) as functional monomer, epichlorohydrin (ECH) as crossing-linking agent, ammonium persulfate as initiator. The Cd(II) imprinted polymer was characterized by SEM, FTIR and TGA. The influences of initial concentration of Cd(II), pH values, temperature, time and competitive ions on adsorption capacity and recognition properties are investigated. Under the optimal conditions, the adsorption capacity could reach 107 mg/g. Furthermore, pseudo first order kinetic model, pseudo second order kinetic model and intra-particular diffusion model were used to describe the adsorption kinetic behavior. Results showed that the pseudo-second-order model (R{sup 2} 0.9928–0.9961) had the best agreement with the experimental data. Langmuir adsorption isotherm model described the experimental data well, which indicated that adsorption was mainly monolayer absorption. Moreover, the study of adsorption thermodynamics (ΔG{sup 0} < 0, ΔH{sup 0} > 0, ΔS{sup 0} > 0) suggested that the adsorption process was a spontaneous and endothermic process. Competitive selectivity experiment revealed that imprinted polymer could selectively recognize Cd(II). It provides a new idea for removing Cd(II) from aqueous solution.

  16. Binary boronic acid-functionalized attapulgite with high adsorption capacity for selective capture of nucleosides at acidic pH values

    International Nuclear Information System (INIS)

    Li, Huihui; Zhu, Shuqiang; Cheng, Ting; Wang, Shuxia; Zhu, Bin; Liu, Xiaoyan; Zhang, Haixia

    2016-01-01

    Boronate affinity materials have been widely used for selective capture of cis-diols such as nucleosides. Adsorbents with features of low binding pH and high adsorption capacity are highly desired. However, most reported materials only possess one of the two features. We have synthesized a 1,3,5-triazine-containing binary boronic acid by reacting cyanuric chloride with 3-amino phenylboronic acid, and the product was then grafted onto attapulgite (a fibrous aluminum-magnesium silicate). The resulting functionalized attapulgite exhibit low binding pH (5.0) and display high adsorption capacity (19.5 ± 1.1 mg⋅g"−"1 for adenosine). The material exhibits high selectivity for cis-diols even in the presence of a 1000-fold excess of interferences. It was applied to the selective extraction of nucleosides from human urine. Typical features of the method include (a) limits of detection in the range from 4 to 17 ng⋅mL"−"1, (b) limits of quantification between 13 and 57 ng⋅mL"−"1, (c) relative standard deviations of ≤9.1 %, and (d) recoveries of nucleosides from spiked human urine between 85.0 and 112.9 %. In our perception, the material and method offer a promising strategy for selective capture of cis-diols in the areas of proteomics, metabolomics and glycomics. (author)

  17. A coordination polymer based magnetic adsorbent material for hemoglobin isolation from human whole blood, highly selective and recoverable

    Science.gov (United States)

    Zhang, Xiaoxing; Tan, Jipeng; Xu, Xinxin; Shi, Fanian; Li, Guanglu; Yang, Yiqiao

    2017-09-01

    A composite material has been obtained successfully through the loading of nanoscale coordination polymer on magnetic Fe3O4@SiO2 core-shell particle. In this composite material, coordination polymer nanoparticles distribute uniformly on Fe3O4@SiO2 and these two components are "tied" together firmly with chemical bonds. Adsorption experiments suggest this composite material exhibits very excellent selectivity to hemoglobin. But under the same condition, its adsorption to bovine serum albumin can almost be ignored. This selectivity can be attributed to the existence of hydrophobic interactions between coordination polymer nanoparticle and hemoglobin. For composite material, the hemoglobin adsorption process follows Langmuir model perfectly with high speed. The adsorbed hemoglobin can be eluted easily by sodium dodecyl sulfate stripping reagent with structure and biological activity of hemoglobin keeps well. The composite material was also employed to separate hemoglobin from human whole blood, which receives a very satisfactory result. Furthermore, magnetic measurement reveals ferromagnetic character of this composite material with magnetization saturation 3.56 emu g-1 and this guarantees its excellent magnetic separation performance from the treated solution.

  18. Selective adsorption resonances: Quantum and stochastic approaches

    International Nuclear Information System (INIS)

    Sanz, A.S.; Miret-Artes, S.

    2007-01-01

    In this review we cover recent advances in the theory of the selective adsorption phenomenon that appears in light atom/molecule scattering off solid surfaces. Due to the universal van der Waals attractive interaction incoming gas particles can get trapped by the surface, this giving rise to the formation of quasi-bound states or resonances. The knowledge of the position and width of these resonances provides relevant direct information about the nature of the gas-surface interaction as well as about the evaporation and desorption mechanisms. This information can be obtained by means of a plethora of theoretical methods developed in both the energy and time domains, which we analyze and discuss here in detail. In particular, special emphasis is given to close-coupling, wave-packet, and trajectory-based formalisms. Furthermore, a novel description of selective adsorption resonances from a stochastic quantum perspective within the density matrix and Langevin formalisms, when correlations and fluctuations of the surface (considered as a thermal bath) are taken into account, is also proposed and discussed

  19. Adsorption Properties of MFM-400 and MFM-401 with CO2 and Hydrocarbons: Selectivity Derived from Directed Supramolecular Interactions.

    Science.gov (United States)

    Ibarra, Ilich A; Mace, Amber; Yang, Sihai; Sun, Junliang; Lee, Sukyung; Chang, Jong-San; Laaksonen, Aatto; Schröder, Martin; Zou, Xiaodong

    2016-08-01

    ([Sc2(OH)2(BPTC)]) (H4BPTC = biphenyl-3,3',5,5'-tetracarboxylic acid), MFM-400 (MFM = Manchester Framework Material, previously designated NOTT), and ([Sc(OH)(TDA)]) (H2TDA = thiophene-2,5-dicarboxylic acid), MFM-401, both show selective and reversible capture of CO2. In particular, MFM-400 exhibits a reasonably high CO2 uptake at low pressures and competitive CO2/N2 selectivity coupled to a moderate isosteric heat of adsorption (Qst) for CO2 (29.5 kJ mol(-1)) at zero coverage, thus affording a facile uptake-release process. Grand canonical Monte Carlo (GCMC) and density functional theory (DFT) computational analyses of CO2 uptake in both materials confirmed preferential adsorption sites consistent with the higher CO2 uptake observed experimentally for MFM-400 over MFM-401 at low pressures. For MFM-400, the Sc-OH group participates in moderate interactions with CO2 (Qst = 33.5 kJ mol(-1)), and these are complemented by weak hydrogen-bonding interactions (O···H-C = 3.10-3.22 Å) from four surrounding aromatic -CH groups. In the case of MFM-401, adsorption is provided by cooperative interactions of CO2 with the Sc-OH group and one C-H group. The binding energies obtained by DFT analysis for the adsorption sites for both materials correlate well with the observed moderate isosteric heats of adsorption for CO2. GCMC simulations for both materials confirmed higher uptake of EtOH compared with nonpolar vapors of toluene and cyclohexane. This is in good correlation with the experimental data, and DFT analysis confirmed the formation of a strong hydrogen bond between EtOH and the hydrogen atom of the hydroxyl group of the MFM-400 and MFM-401 framework (FW) with H-OEtOH···H-OFW distances of 1.77 and 1.75 Å, respectively. In addition, the accessible regeneration of MFM-400 and MFM-401 and release of CO2 potentially provide minimal economic and environmental penalties.

  20. Rapid and tunable selective adsorption of dyes using thermally oxidized nanodiamond.

    Science.gov (United States)

    Molavi, Hossein; Shojaei, Akbar; Pourghaderi, Alireza

    2018-03-27

    In the present study, capability of nanodiamond (ND) for the adsorption of anionic (methyl orange, MO) and cationic (methylene blue, MB) dyes from aqueous solution was investigated. Employing fourier transform infrared (FTIR) spectroscopy, Boehm titration method and zeta potential, it was found that the simple thermal oxidation of ND at 425 °C, increased the content of carboxylic acid of ND and accordingly the zeta potential of ND decreased considerably. Therefore, a series of oxidized NDs (OND) at various oxidation times and as-received untreated ND (UND) was used as adsorbents of MO and MB. The adsorption experiments exhibited that UND had large adsorption capacity, very fast adsorption kinetics and excellent selectivity for MO over MB. These results suggested that the adsorption tendency of UND toward anionic MO dye followed not only by electrostatic interactions but also via the chemical interaction caused by the strong hydrogen bond between the sulfonate groups of MO and the oxygen containing groups on the surface of UND. In contrast, ONDs exhibited higher adsorption capacity for cationic MB whose tendency toward MB increased by increasing the thermal oxidation time due to the promotion of the negative charge on the surface of OND leading to the higher electrostatic attraction. The adsorption rate of MB on ONDs was also very high. Kinetics data was well fitted with the pseudo- second-order model for most of the adsorbents. The adsorption selectivity analysis revealed that ONDs displayed more adsorption capacity for MB compared with MO which was also attributed to high electrostatic interactions of cationic dye with negative charges of ONDs. Finally, the release behavior of NDs was also demonstrated after soaking in ethanol and acetone. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Study of adsorption properties on lithium doped activated carbon materials

    International Nuclear Information System (INIS)

    Los, S.; Daclaux, L.; Letellier, M.; Azais, P.

    2005-01-01

    A volumetric method was applied to study an adsorption coefficient of hydrogen molecules in a gas phase on super activated carbon surface. The investigations were focused on getting the best possible materials for the energy storage. Several treatments on raw samples were used to improve adsorption properties. The biggest capacities were obtain after high temperature treatment at reduced atmosphere. The adsorption coefficient at 77 K and 2 MPa amounts to 3.158 wt.%. The charge transfer between lithium and carbon surface groups via the doping reaction enhanced the energy of adsorption. It was also found that is a gradual decrease in the adsorbed amount of H 2 molecules due to occupation active sites by lithium ions. (author)

  2. Microporous carbonaceous adsorbents for CO2 separation via selective adsorption

    KAUST Repository

    Zhao, Yunfeng; Liu, Xin; Han, Yu

    2015-01-01

    Selective adsorption of CO2 has important implications for many energy and environment-related processes, which require the separation of CO2 from other gases (e.g. N2 and CH4) with high uptakes and selectivity. The development of high

  3. Adsorption and desorption of Am(III) on calcareous soil and its parent material

    International Nuclear Information System (INIS)

    Li Weijuan; Zhang Fuming; Tao Zuyi

    2005-01-01

    The adsorption and desorption of Am(III) on a calcareous soil (sierozem) and its parent material (loess) were studied by batch technique. The molarities of the Am(III) aqueous solutions were less than 5 x 10 -9 mol/l. High adsorbability was found of Am(III) on the calcareous soil and its parent material. In order to decrease the adsorption and, hence, to investigate the adsorption characteristics properly, stable Eu 3+ as hold back carrier and analogue was added to the aqueous solution. The relative contributions of CaCO 3 , organic matter (OM) to the Am(III) adsorption on calcareous soil and its parent material were investigated. The adsorption and desorption isotherms of Am(III) on untreated soil and loess and the three kinds of treated soils and three kinds of treated loesses to remove CaCO 3 , OM and both CaCO 3 and OM were determined, respectively. It was found that all isotherms were linear, the average distribution coefficients (K d ) for the untreated soil and for the untreated loess were almost equal, while there was an obvious difference between the values of the average distribution coefficients (K d ) for the treated soil and the treated loess to remove CaCO 3 or OM. The adsorption-desorption hysteresis on the untreated and treated soils and loesses actually occurred and there was an obvious difference between the hysteresis coefficients on both the corresponding treated soil and loess. It can be concluded that the adsorbability of Am(III) on calcareous soil is similar to that on its parent material, and that the contributions of CaCO 3 and OM to the Am(III) adsorption by the untreated soil are different from those by the untreated parent material. (author)

  4. Selective adsorption of cationic dyes by UiO-66-NH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qi; He, Qinqin; Lv, Mengmeng; Xu, Yanli; Yang, Hanbiao; Liu, Xueting, E-mail: wmlxt@163.com; Wei, Fengyu, E-mail: weifyliuj@163.com

    2015-02-01

    Graphical abstract: - Highlights: • Two Zr(IV)-based MOFs can remove cationic dyes more effectively than anionic dyes. • UiO-66 has higher selectivity for cationic dyes after modification with NH{sub 2}. • The mechanism for adsorption selectivity is rationally proposed. - Abstract: Herein, two zirconium(IV)-based MOFs UiO-66 and UiO-66-NH{sub 2} had been successfully prepared by a facile solvothermal method and were characterized by X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM), N{sub 2} adsorption–desorption (BET), X-ray photoelectron spectroscopy (XPS), and zeta potential. They exhibit small size, large surface area, and can remove cationic dyes from aqueous solution more effectively than anionic dyes. This adsorption selectivity is due to the favorable electrostatic interactions between the adsorbents and cationic dyes. Furthermore, owing to the individual micropore structure of UiO-66-NH{sub 2} and its more negative zeta potential resulted from the charge balance for the protonation of –NH{sub 2}, UiO-66-NH{sub 2} displays much higher adsorption capacity for cationic dyes and lower adsorption capacity for anionic dyes than UiO-66.

  5. Selective Preparation of trans-Carveol over Ceria Supported Mesoporous Materials MCM-41 and SBA-15

    Directory of Open Access Journals (Sweden)

    Nariman F. Salakhutdinov

    2013-05-01

    Full Text Available Ce-modified mesoporous silica materials MCM-41 and SBA-15, namely 32 wt % Ce–Si–MCM-41, 16 wt % Ce–H–MCM-41 and 20 wt % Ce–Si–SBA-15, were prepared, characterized and studied in the selective preparation of trans-carveol by α-pinene oxide isomerization. The characterizations of these catalysts were performed using scanning electron microscopy, X-ray photoelectron spectroscopy, nitrogen adsorption and FTIR pyridine adsorption. Selective preparation of trans-carveol was carried out in the liquid phase in a batch reactor. The activity and the selectivity of catalyst were observed to be influenced by their acidity, basicity and morphology of the mesoporous materials. The formation of trans-carveol is moreover strongly influenced by the basicity of the used solvent and in order to achieve high yields of this desired alcohol it is necessary to use polar basic solvent.

  6. Carbon nanomaterials for gas adsorption

    CERN Document Server

    Terranova, Maria Letizia

    2012-01-01

    Research in adsorption of gases by carbon nanomaterials has experienced considerable growth in recent years, with increasing interest for practical applications. Many research groups are now producing or using such materials for gas adsorption, storage, purification, and sensing. This book provides a selected overview of some of the most interesting scientific results regarding the outstanding properties of carbon nanomaterials for gas adsorption and of interest both for basic research and technological applications. Topics receiving special attention in this book include storage of H, purific

  7. Synthesis of N-doped microporous carbon via chemical activation of polyindole-modified graphene oxide sheets for selective carbon dioxide adsorption

    International Nuclear Information System (INIS)

    Saleh, Muhammad; Chandra, Vimlesh; Christian Kemp, K; Kim, Kwang S

    2013-01-01

    A polyindole-reduced graphene oxide (PIG) hybrid was synthesized by reducing graphene oxide sheets in the presence of polyindole. We have shown PIG as a material for capturing carbon dioxide (CO 2 ). The PIG hybrid was chemically activated at temperatures of 400–800 ° C, which resulted in nitrogen (N)-doped graphene sheets. The N-doped graphene sheets are microporous with an adsorption pore size of 0.6 nm for CO 2 and show a maximum (Brunauer, Emmet and Teller) surface area of 936 m 2 g −1 . The hybrid activated at 600 ° C (PIG6) possesses a surface area of 534 m 2 g −1 and a micropore volume of 0.29 cm 3 g −1 . PIG6 shows a maximum CO 2 adsorption capacity of 3.0 mmol g −1 at 25 ° C and 1 atm. This high CO 2 uptake is due to the highly microporous character of the material and its N content. The material retains its original adsorption capacity on recycling even after 10 cycles (within experimental error). PIG6 also shows high adsorption selectivity ratios for CO 2 over N 2 , CH 4 and H 2 of 23, 4 and 85 at 25 ° C, respectively. (paper)

  8. A new perspective of particle adsorption: Dispersed oil and granular materials interactions in simulated coastal environment.

    Science.gov (United States)

    Meng, Long; Bao, Mutai; Sun, Peiyan

    2017-09-15

    This study, adsorption behaviors of dispersed oil in seawaters by granular materials were explored in simulation environment. We quantitatively demonstrated the dispersed oil adsorbed by granular materials were both dissolved petroleum hydrocarbons (DPHs) and oil droplets. Furthermore, DPHs were accounted for 42.5%, 63.4%, and 85.2% (35.5% was emulsion adsorption) in the adsorption of dispersed oil by coastal rocks, sediments, and bacterial strain particles respectively. Effects of controlling parameters, such as temperature, particle size and concentration on adsorption of petroleum hydrocarbons were described in detail. Most strikingly, adsorption concentration was followed a decreasing order of bacterial strain (0.5-2μm)>sediments (0.005-0.625mm)>coastal rocks (0.2-1cm). With particle concentration or temperature increased, adsorption concentration increased for coastal rocks particle but decreased for sediments particle. Besides, particle adsorption rate of petroleum hydrocarbons (n-alkanes and PAHs) was different among granular materials during 60 days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Adsorption properties of regenerative materials for removal of low concentration of toluene.

    Science.gov (United States)

    Xie, Zhen-Zhen; Wang, Lin; Cheng, Ge; Shi, Lei; Zhang, Yi-Bo

    2016-12-01

    A specific type of material, activated carbon fiber (ACF), was modified by SiO 2 , and the final products ACF-x were obtained as ACF-12.5, ACF-20, ACF-40, and ACF-80 according to different dosages of tetraethoxysilane (TEOS). The modified material on the ACF surface had a significant and smooth cover layer with low content of silica from scanning electron microscope (SEM) image. The modified ACF-x showed the stronger hydrophobicity, thermal stability, and adsorption capacity, which had almost no effect in the presence of water vapor and no destruction in multiple cycles. ACF-20 was proven as the most efficient adsorbent in humid conditions. The dual-function system composed of the regenerative adsorbents and the combustion catalyst would be efficient in consecutive toluene adsorption/oxidation cycles, in which the combustion catalyst was prepared by the displacement reaction of H 2 PtCl 6 with foam Ni. Therefore, the adsorption/catalytic oxidation could be a promising technique in the indoor air purification, especially in the case of very low volatile organic compound (VOC; toluene) concentration levels. Exploring highly effective adsorptive materials with less expensive costs becomes an urgent issue in the indoor air protection. ACF-20 modified by SiO 2 with Pt/Ni catalysts shows stronger hydrophobicity, thermal stability, and adsorption capacity. This dual-function system composed of the regenerative materials and the combustion catalyst would be a promising technique in the indoor air purification, especially in the case of removal of very low concentration of toluene.

  10. Adsorption of dyes onto carbonaceous materials produced from coffee grounds by microwave treatment.

    Science.gov (United States)

    Hirata, Mizuho; Kawasaki, Naohito; Nakamura, Takeo; Matsumoto, Kazuoki; Kabayama, Mineaki; Tamura, Takamichi; Tanada, Seiki

    2002-10-01

    Organic wastes have been burned for reclamation. However, they have to be recycled and reused for industrial sustainable development. Carbonaceous materials were produced from coffee grounds by microwave treatment. There are many phenolic hydroxyl and carboxyl groups on the surface of carbonaceous materials. The base consumption of the carbonaceous materials was larger than that of the commercially activated carbon. The carbonaceous materials produced from coffee grounds were applied to the adsorbates for the removal of basic dyes (methylene blue and gentian violet) in wastewater. This result indicated that the adsorption of dyes depended upon the surface polar groups on the carbonaceous materials. Moreover, the Freundlich constants of isotherms for the adsorption of methylene blue and gentian violet onto the carbonaceous materials produced from coffee grounds were greater than those for adsorption onto activated carbon or ceramic activated carbon. The interaction was greatest between the surface or porosity of the carbonaceous materials and methylene blue and gentian violet. The microwave treatment would be useful for the carbonization of organic wastes to save energy.

  11. Selective adsorption of thiophenic compounds from fuel over TiO2/SiO2 under UV-irradiation.

    Science.gov (United States)

    Miao, Guang; Ye, Feiyan; Wu, Luoming; Ren, Xiaoling; Xiao, Jing; Li, Zhong; Wang, Haihui

    2015-12-30

    This study investigates selective adsorption of thiophenic compounds from fuel over TiO2/SiO2 under UV-irradiation. The TiO2/SiO2 adsorbents were prepared and then characterized by N2 adsorption, X-ray diffraction and X-ray photoelectron spectroscopy. Adsorption isotherms, selectivity and kinetics of TiO2/SiO2 were measured in a UV built-in batch reactor. It was concluded that (a) with the employment of UV-irradiation, high organosulfur uptake of 5.12 mg/g was achieved on the optimized 0.3TiO2/0.7SiO2 adsorbent at low sulfur concentration of 15 ppmw-S, and its adsorption selectivity over naphthalene was up to 325.5; (b) highly dispersed TiO2 served as the photocatalytic sites for DBT oxidation, while SiO2 acted as the selective adsorption sites for the corresponding oxidized DBT using TiO2 as a promoter, the two types of active sites worked cooperatively to achieve the high adsorption selectivity of TiO2/SiO2; (c) The kinetic rate-determining step for the UV photocatalysis-assisted adsorptive desulfurization (PADS) over TiO2/SiO2 was DBT oxidation; (d) consecutive adsorption-regeneration cycles suggested that the 0.3TiO2/0.7SiO2 adsorbent can be regenerated by acetonitrile washing followed with oxidative air treatment. This work demonstrated an effective PADS approach to greatly enhance adsorption capacity and selectivity of thiophenic compounds at low concentrations for deep desulfurization under ambient conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Selective adsorption of thiophenic compounds from fuel over TiO{sub 2}/SiO{sub 2} under UV-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Guang [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China); Ye, Feiyan [Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education South China University of Technology, Guangzhou 510640 (China); Wu, Luoming; Ren, Xiaoling [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China); Xiao, Jing, E-mail: cejingxiao@scut.edu.cn [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China); Li, Zhong, E-mail: cezhli@scut.edu.cn [Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education South China University of Technology, Guangzhou 510640 (China); Wang, Haihui [Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education South China University of Technology, Guangzhou 510640 (China)

    2015-12-30

    Highlights: • TiO{sub 2}/SiO{sub 2} was developed for selective adsorption of DBTs under UV irradiation. • Remarkable adsorption uptake and selectivity were achieved for deep desulfurization. • Introduction of TiO{sub 2} into SiO{sub 2} enhanced its adsorption for DBTO{sub 2}. • Adsorption mechanism using TiO{sub 2}/SiO{sub 2} under UV irradiation was elucidated. - Abstract: This study investigates selective adsorption of thiophenic compounds from fuel over TiO{sub 2}/SiO{sub 2} under UV-irradiation. The TiO{sub 2}/SiO{sub 2} adsorbents were prepared and then characterized by N{sub 2} adsorption, X-ray diffraction and X-ray photoelectron spectroscopy. Adsorption isotherms, selectivity and kinetics of TiO{sub 2}/SiO{sub 2} were measured in a UV built-in batch reactor. It was concluded that (a) with the employment of UV-irradiation, high organosulfur uptake of 5.12 mg/g was achieved on the optimized 0.3TiO{sub 2}/0.7SiO{sub 2} adsorbent at low sulfur concentration of 15 ppmw-S, and its adsorption selectivity over naphthalene was up to 325.5; (b) highly dispersed TiO{sub 2} served as the photocatalytic sites for DBT oxidation, while SiO{sub 2} acted as the selective adsorption sites for the corresponding oxidized DBT using TiO{sub 2} as a promoter, the two types of active sites worked cooperatively to achieve the high adsorption selectivity of TiO{sub 2}/SiO{sub 2}; (c) The kinetic rate-determining step for the UV photocatalysis-assisted adsorptive desulfurization (PADS) over TiO{sub 2}/SiO{sub 2} was DBT oxidation; (d) consecutive adsorption-regeneration cycles suggested that the 0.3TiO{sub 2}/0.7SiO{sub 2} adsorbent can be regenerated by acetonitrile washing followed with oxidative air treatment. This work demonstrated an effective PADS approach to greatly enhance adsorption capacity and selectivity of thiophenic compounds at low concentrations for deep desulfurization under ambient conditions.

  13. Removal of nitrobenzene from aqueous solution by a novel lipoid adsorption material (LAM)

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Qinxue [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090 (China); Chen, Zhiqiang, E-mail: czq0521@tom.com [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090 (China); Lian, Jiaxiang; Feng, Yujie; Ren, Nanqi [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090 (China)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer We synthesized a novel adsorbent-lipoid adsorption material (LAM). Black-Right-Pointing-Pointer We investigate the adsorption behavior isotherms of nitrobenzene on LAM. Black-Right-Pointing-Pointer We investigate the adsorption kinetics of nitrobenzene on LAM. Black-Right-Pointing-Pointer We proved that the reaction is spontaneous and is an exothermic reaction. Black-Right-Pointing-Pointer The removal efficiency of LAM was higher than that of GAC. - Abstract: In this study, a novel adsorbent referred to as a lipoid adsorption material (LAM) was synthesized with a hydrophobic nucleolus (triolein) and hydrophilic membrane structure (polyamide). The LAM was applied to the adsorption and removal of nitrobenzene from aqueous systems. Experiments were carried out to investigate the adsorption behavior of nitrobenzene on LAM, including the development of adsorption isotherms, the determination of adsorption kinetics, and to explore the influence of adsorbent dosage, contact time, temperature and the initial concentration of nitrobenzene on adsorption. The performance of LAM was compared with equal amounts of granular activated carbon (GAC) for adsorption. The adsorption isotherms for LAM were found to be described by the Linear equation, while the adsorption isotherms for granular activated carbon (GAC) were described by the Freundlich equation. Results indicated that the adsorption of nitrobenzene by LAM occurred mainly due to the partition function caused by the triolein nucleolus. Two kinetics models, pseudo-first-order and pseudo-second-order models were used to fit the experimental data for LAM adsorption. By comparing the correlation coefficients, it was found that the pseudo-first-order model was most suitable to describe the adsorption of nitrobenzene on LAM. The results also indicated that the factors that affect the adsorption rate would be either the nitrobenzene concentration or the character of the adsorbent

  14. Removal of nitrobenzene from aqueous solution by a novel lipoid adsorption material (LAM)

    International Nuclear Information System (INIS)

    Wen, Qinxue; Chen, Zhiqiang; Lian, Jiaxiang; Feng, Yujie; Ren, Nanqi

    2012-01-01

    Highlights: ► We synthesized a novel adsorbent-lipoid adsorption material (LAM). ► We investigate the adsorption behavior isotherms of nitrobenzene on LAM. ► We investigate the adsorption kinetics of nitrobenzene on LAM. ► We proved that the reaction is spontaneous and is an exothermic reaction. ► The removal efficiency of LAM was higher than that of GAC. - Abstract: In this study, a novel adsorbent referred to as a lipoid adsorption material (LAM) was synthesized with a hydrophobic nucleolus (triolein) and hydrophilic membrane structure (polyamide). The LAM was applied to the adsorption and removal of nitrobenzene from aqueous systems. Experiments were carried out to investigate the adsorption behavior of nitrobenzene on LAM, including the development of adsorption isotherms, the determination of adsorption kinetics, and to explore the influence of adsorbent dosage, contact time, temperature and the initial concentration of nitrobenzene on adsorption. The performance of LAM was compared with equal amounts of granular activated carbon (GAC) for adsorption. The adsorption isotherms for LAM were found to be described by the Linear equation, while the adsorption isotherms for granular activated carbon (GAC) were described by the Freundlich equation. Results indicated that the adsorption of nitrobenzene by LAM occurred mainly due to the partition function caused by the triolein nucleolus. Two kinetics models, pseudo-first-order and pseudo-second-order models were used to fit the experimental data for LAM adsorption. By comparing the correlation coefficients, it was found that the pseudo-first-order model was most suitable to describe the adsorption of nitrobenzene on LAM. The results also indicated that the factors that affect the adsorption rate would be either the nitrobenzene concentration or the character of the adsorbent. Thermodynamic calculations indicated that the adsorption of nitrobenzene on LAM was spontaneous and was an exothermic reaction. With

  15. Capillary condensation and adsorption of binary mixtures.

    Science.gov (United States)

    Weinberger, B; Darkrim-Lamari, F; Levesque, D

    2006-06-21

    The adsorption of equimolar binary mixtures of hydrogen-carbon dioxide, hydrogen-methane, and methane-carbon dioxide in porous material models is determined by grand canonical Monte Carlo simulations. The material models have an adsorbent surface similar to that of nanofibers with a herringbone structure. Our main result, which is relevant for hydrogen purification and carbon dioxide capture, is that the adsorption selectivities calculated for the mixtures can differ significantly from those deduced from simulations of the adsorption of pure gases, in particular, when one of the adsorbed gases presents a capillary condensation induced by confinement within the pore network. A comparison of our data is also made with theoretical models used in the literature for predicting the properties of the mixture adsorption.

  16. Improving catalytic selectivity through control of adsorption orientation

    Science.gov (United States)

    Pang, Simon H.

    In this thesis, we present an investigation, starting from surface science experiments, leading to design of supported catalysts, of how adsorption orientation can be used to affect reaction selectivity of highly functional molecules. The surface chemistry of furfuryl alcohol and benzyl alcohol and their respective aldehydes was studied on a Pd(111) single-crystal surface under ultra-high vacuum conditions. Temperature-programmed desorption experiments showed that synergistic chemistry existed between the aromatic ring and the oxygen-containing functional group, each allowing the other to participate in reaction pathways that a monofunctional molecule could not. Most important of these was a deoxygenation reaction that occurred more readily when the surface was crowded by the highest exposures. High-resolution electron energy loss spectroscopy revealed that at these high exposures, molecules were oriented upright on the surface, with the aromatic function extending into vacuum. In contrast, at low exposures, molecules were oriented flat on the surface. The upright adsorption geometry was correlated with deoxygenation, whereas the flat-lying geometry was correlated with decarbonylation. The insight gained from surface science experiments was utilized in catalyst design. Self-assembled monolayers of alkanethiolates were used to systematically reduce the average surface ensemble size, and the reaction selectivity was tracked. When a sparsely-packed monolayer was used, such as one formed by 1-adamantanethiol, the reactant furfural was still able to lie flat on the surface and the reaction selectivity was similar to that of the uncoated catalyst. However, when a densely-packed monolayer, formed by 1-octadecanethiol, was used, furfural was not able to adsorb flat on the surface and instead adopted an upright conformation, leading to a drastic increase in aldehyde hydrogenation and hydrodeoxygenation reaction selectivity. Using an even higher sulfur coverage from a

  17. Highly selective and stable carbon dioxide uptake in polyindole-derived microporous carbon materials.

    Science.gov (United States)

    Saleh, Muhammad; Tiwari, Jitendra N; Kemp, K Christain; Yousuf, Muhammad; Kim, Kwang S

    2013-05-21

    Adsorption with solid sorbents is considered to be one of the most promising methods for the capture of carbon dioxide (CO₂) from power plant flue gases. In this study, microporous carbon materials used for CO₂ capture were synthesized by the chemical activation of polyindole nanofibers (PIF) at temperatures from 500 to 800 °C using KOH, which resulted in nitrogen (N)-doped carbon materials. The N-doped carbon materials were found to be microporous with an optimal adsorption pore size for CO₂ of 0.6 nm and a maximum (Brunauer-Emmett-Teller) BET surface area of 1185 m(2) g(-1). The PIF activated at 600 °C (PIF6) has a surface area of 527 m(2) g(-1) and a maximum CO₂ storage capacity of 3.2 mmol g(-1) at 25 °C and 1 bar. This high CO₂ uptake is attributed to its highly microporous character and optimum N content. Additionally, PIF6 material displays a high CO₂ uptake at low pressure (1.81 mmol g(-1) at 0.2 bar and 25 °C), which is the best low pressure CO₂ uptake reported for carbon-based materials. The adsorption capacity of this material remained remarkably stable even after 10 cycles. The isosteric heat of adsorption was calculated to be in the range of 42.7-24.1 kJ mol(-1). Besides the excellent CO₂ uptake and stability, PIF6 also exhibits high selectivity values for CO₂ over N₂, CH₄, and H₂ of 58.9, 12.3, and 101.1 at 25 °C, respectively, and these values are significantly higher than reported values.

  18. The application of prepared porous carbon materials: Effect of different components on the heavy metal adsorption.

    Science.gov (United States)

    Song, Min; Wei, Yuexing; Yu, Lei; Tang, Xinhong

    2016-06-01

    In this study, five typical municipal solid waste (MSW) components (tyres, cardboard, polyvinyl chloride (PVC), acrylic textile, toilet paper) were used as raw materials to prepare four kinds of MSW-based carbon materials (paperboard-based carbon materials (AC1); the tyres and paperboard-based carbon materials (AC2); the tyres, paperboard and PVC-based carbon materials (AC3); the tyres, paperboard, toilet paper, PVC and acrylic textile-based carbon materials (AC4)) by the KOH activation method. The characteristic results illustrate that the prepared carbon adsorbents exhibited a large pore volume, high surface area and sufficient oxygen functional groups. Furthermore, the application of AC1, AC2, AC3, AC4 on different heavy metal (Cu(2+), Zn(2+), Pb(2+), Cr(3+)) removals was explored to investigate their adsorption properties. The effects of reaction time, pH, temperature and adsorbent dosage on the adsorption capability of heavy metals were investigated. Comparisons of heavy metal adsorption on carbon of different components were carried out. Among the four samples, AC1 exhibits the highest adsorption capacity for Cu(2+); the highest adsorption capacities of Pb(2+) and Zn(2+) are obtained for AC2; that of Cr(3+) are obtained for AC4. In addition, the carbon materials exhibit better adsorption capability of Cu(2+) and Pb(2+) than the other two kind of metal ions (Zn(2+) and Cr(3+)). © The Author(s) 2016.

  19. A high surface area Zr(IV)-based metal–organic framework showing stepwise gas adsorption and selective dye uptake

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Xiu-Liang [Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124 (China); Tong, Minman; Huang, Hongliang [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Wang, Bin; Gan, Lei [Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124 (China); Yang, Qingyuan [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zhong, Chongli [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Li, Jian-Rong, E-mail: jrli@bjut.edu.cn [Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124 (China); State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China)

    2015-03-15

    Exploitation of new metal–organic framework (MOF) materials with high surface areas has been attracting great attention in related research communities due to their broad potential applications. In this work, a new Zr(IV)-based MOF, [Zr{sub 6}O{sub 4}(OH){sub 4}(eddb){sub 6}] (BUT-30, H{sub 2}eddb=4,4′-(ethyne-1,2-diyl)dibenzoic acid) has been solvothermally synthesized, characterized, and explored for gases and dyes adsorptions. Single-crystal X-ray diffraction analysis demonstrates a three-dimensional cubic framework structure of this MOF, in which each Zr{sub 6}O{sub 4}(OH){sub 4} building unit is linked by 12 linear eddb ligands. BUT-30 has been found stable up to 400 °C and has a Brunauer–Emmett–Teller (BET) surface area as high as 3940.6 m{sup 2} g{sup −1} (based on the N{sub 2} adsorption at 77 K) and total pore volume of 1.55 cm{sup 3} g{sup −1}. It is more interesting that this MOF exhibits stepwise adsorption behaviors for Ar, N{sub 2}, and CO{sub 2} at low temperatures, and selective uptakes towards different ionic dyes. - Graphical abstract: A new Zr(IV)-based MOF with high surface area has been synthesized and structurally characterized, which shows stepwise gas adsorption at low temperature and selective dye uptake from solution. - Highlights: • A new Zr-based MOF was synthesized and structurally characterized. • This MOF shows a higher surface area compared with its analogous UiO-67 and 68. • This MOF shows a rare stepwise adsorption towards light gases at low temperature. • This MOF performs selective uptakes towards cationic dyes over anionic ones. • Using triple-bond spacer is confirmed feasible in enhancing MOF surface areas.

  20. Programming MIL-101Cr for selective and enhanced CO2 adsorption at low pressure by postsynthetic amine functionalization.

    Science.gov (United States)

    Khutia, Anupam; Janiak, Christoph

    2014-01-21

    MIL-101Cr fully or partially (p) postsynthetically modified with nitro (-NO2) or amino (-NH2) groups was shown to be a robust, water stable, selective and enhanced carbon dioxide (CO2) adsorption material with the amine-functionality. The highly microporous amine-modified frameworks (up to 1.6 cm(3) g(-1) total pore volume) exhibit excellent thermal stability (>300 °C) with BET surface areas up to 2680 m(2) g(-1). At 1 bar (at 273 K) the gases CO2, CH4 and N2 are adsorbed up to 22.2 wt%, 1.67 wt% and 2.27 wt%, respectively. The two amine-modified MIL-101Cr-NH2 (4) and MIL-101Cr-pNH2 (5) showed the highest gas uptake capacities in the series with high ratios for the CO2 : N2 and CO2 : CH4 selectivities (up to 119 : 1 and 75 : 1, respectively, at 273 K). Comparison with non-modified MIL-101Cr traces the favorable CO2 adsorption properties of MIL-101Cr-NH2 (4) and MIL-101Cr-pNH2 (5) to the presence of the Lewis-basic amine groups. MIL-101Cr-NH2 (4) has a high isosteric heat of adsorption of 43 kJ mol(-1) at zero surface coverage and also >23 kJ mol(-1) over the entire adsorption range, which is well above the heat of liquefaction of bulk CO2. Large CO2 uptake capacities of amine-functionalized 4 and 5, coupled with high adsorption enthalpy, high selectivities and proven long-term water stability, make them suitable candidates for capturing CO2 at low pressure from gas mixtures including the use as a CO2 sorbent from moist air.

  1. Novel SiO2-C composite adsorptive material

    Directory of Open Access Journals (Sweden)

    Volzone, C.

    2001-08-01

    Full Text Available The present work is about the development of a Novel Composite that has several properties in only one material. This material is composed by a silica network with a sharpened pore size distribution - diameter near 1000 Å - intercrossed with another carbon network that has carbonaceous microdomains of high activity. The first network facilitates the entrance of big molecules to the interior of the material grains so they quickly reach the active sites of the carbonous network, minimizing the diffusional resistance observed when high performance activated carbons are used in adsorption processes or catalytic applications. These two intercrossed structures are self-supporting and independent among them, so one from the other can be isolated without losing the original shape and volume of the starting composite, then, their possible uses may be multiplied. The Novel Composite is stable with respect to other support or adsorbent materials due to its high obtention temperature (1550 ºC. The obtention methods of the composite and its isolated structures are described. The material was characterized by different techniques (XRD, IR, Loss on ignition, pore size distribution, specific surface area, adsorption desorption isotherms, methylene blue adsorption and SEM.En el presente trabajo se describe el desarrollo de un nuevo material compuesto que reúne distintas propiedades en un solo material. Dicho material está formado por una red de sílice con distribución de tamaño de poro estrecha - diámetro cercano a los 1000 Å - entrecruzada con otra red de carbón pseudografítica donde los microdominios carbonosos son de alta actividad. La primer red facilita la entrada de grandes moléculas al interior de los granos del material permitiendo su rápido acceso a los sitios activos de la red carbonosa, esto minimiza la resistencia difusional observada cuando se utilizan carbones activados de alto rendimiento en los procesos de adsorción o aplicaciones

  2. Grafting of activated carbon cloths for selective adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Gineys, M.; Benoit, R.; Cohaut, N.; Béguin, F.; Delpeux-Ouldriane, S., E-mail: delpeux@cnrs-orleans.fr

    2016-05-01

    Graphical abstract: - Highlights: • A controlled grafting of carboxylic functions on activated carbon fibers. • The carbon material nanotextural properties preservation after grafting. • An identification of the grafting mechanism through ToF SIMS analysis. • A chemical mapping of the grafted surface using ToF SIMS technique and imaging. - Abstract: Chemical functionalization of an activated carbon cloth with 3-aminophthalic acid and 4-aminobenzoic acid groups by the in situ formation of the corresponding diazonium salt in aqueous acidic solution is reported. The nature and amount of selected functions on an activated carbon surface, in particular the grafted density, were determined by potentiometric titration, elemental analysis and X-ray photoelectron spectroscopy (XPS). The nanotextural properties of the modified carbon were explored by gas adsorption. Functionalized activated carbon cloth was obtained at a discrete grafting level while preserving interesting textural properties and a large porous volume. Finally, the grafting homogeneity of the carbon surface and the nature of the chemical bonding were investigated using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) technique.

  3. Functionalized mesoporous silicas with crown ether moieties for selective adsorption of lithium ions in artificial sea water.

    Science.gov (United States)

    Sung, Soo Park; Moorthy, Madhappan Santha; Song, Hyun-Jin; Ha, Chang-Sik

    2014-11-01

    Lithium ion has been increasingly recognized in a wide range of industrial applications. In this work, we studied on the adsorption of Li+ in the artificial seawater with high selectivity using methyl-crown ether (AC-SBA-15) and aza-crown ether (HMC-SBA-15) moieties-functionalized mesoporous silica materials. First, methyl-crown ether and aza-crown ether moieties-functionalized mesoporous silica materials were synthesized via two-step post-synthesis process using a grafting method. The functionalized materials were employed to the metal ion adsorption from aqueous solution (artificial seawater) containing Li+, Co2+, Cr3+ and Hg2+. The prepared hybrid material showed high selectivity for Li+ ion in the artificial seawater at pH 8.0. The absorbed amount of Li+ was 73 times higher than Cr3+ for aza-crown ether containing AC-SBA-15 as an absorbent. The absorbed amount of Co2+ (4.5 x 10(-5) mol/g), Cr3+ (1.5 x 10(-5) mol/g) and Hg2+ (2.25 x 10(-4) mol/g) were remarkably lower than the case of Li+. On the other hand, the absorbed amount of various metal ions of HMC-SBA-15 with amine groups in alky chains and crown ether moieties were 1.1 x 10(-3) mol/g for Li+, 5.0 x 10(-5) mol/g for Co2+, 2.9 x 10(-4) mol/g for Cr3+, 2.8 x 10(-4) mol/g for Hg2+ mol/g, respectively.

  4. Carbon dioxide capture from exhaust gases by selective adsorption on porous solids

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, M.; Ernst, S. [Technische Univ. Kaiserslautern (Germany). Dept. of Chemistry

    2007-07-01

    The metal-organic frameworks Cu{sub 3}(BTC){sub 2}, MIL-53 and MIL-96 were synthesized and characterized by powder X-ray diffraction, scanning electron microscopy and nitrogenphysisorption. The adsorption isotherms for carbon dioxide at temperatures of 20, 40 and 60 C and pressures up to 1000 mbar on this new type of microporous solids were measured by a static volumetric method. For comparison, experiments with zeolite NaX (13X) were also included. High adsorption capacities for carbon dioxide were found for the adsorbents investigated in this study. The breakthrough curves for the adsorption of a mixture of nitrogen and carbon dioxide on Cu{sub 3}(BTC){sub 2} reveal a high affinity of this material for the adsorption of carbon dioxide in the presence of nitrogen. (orig.)

  5. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  6. Amine–mixed oxide hybrid materials for carbon dioxide adsorption from CO2/H2 mixture

    Science.gov (United States)

    Ravi, Navin; Aishah Anuar, Siti; Yusuf, Nur Yusra Mt; Isahak, Wan Nor Roslam Wan; Shahbudin Masdar, Mohd

    2018-05-01

    Bio-hydrogen mainly contains hydrogen and high level of carbon dioxide (CO2). High concentration of CO2 lead to a limitation especially in fuel cell application. In this study, the amine-mixed oxide hybrid materials for CO2 separation from bio-hydrogen model (50% CO2:50% H2) have been studied. Fourier-transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) characterizations showed that the amine–mixed oxide hybrid materials successfully adsorbed CO2 physically with no chemical adsorption evidence. The dry gas of CO2/H2 mixture adsorbed physically on amine–CuO–MgO hybrid material. No carbonates were detected after several times of adsorption, which indicated the good recyclability of adsorbents. The adsorbent system of diethanolamine (DEA)/15% CuO–75% MgO showed the highest CO2 adsorption capacity of 21.2 wt% due to the presence of polar substance on MgO surface, which can adsorb CO2 at ambient condition. The alcohol group of DEA can enhance the CO2 solubility on the adsorbent surface. In the 20% CuO–50% MgO adsorbent system, DEA as amine type showed a high CO2 adsorption of 19.4 wt%. The 10% amine loading system showed that the DEA adsorption system provided high CO2 adsorption. The BET analysis confirmed that a high amine loading contributed to the decrease in CO2 adsorption due to the low surface area of the adsorbent system.

  7. Evaluation of dyes adsorption properties of TiO2-alginate biohybrid material

    International Nuclear Information System (INIS)

    Barrón Zambrano, J A; Ávila Ortega, A; Muñoz Rodríguez, D; Carrera Figueiras, C; Sánchez Morales, G

    2013-01-01

    In this study a TiO 2 -alginate biohybrid material was obtained by the sol gel method and its adsorption properties were compared to those of its precursors using eosin B (anionic) as model dye. The results showed that the TiO 2 and biohybrid have a greater affinity for eosine B than alginate. The maximum adsorption capacity for the eosin B was obtained at pH = 10. Kinetic studies showed that the biohybrid has greater rate and adsorption capacity than its precursors. Kinetic data were fitted to a pseudo-second order kinetic model. The experimental isotherms were fitted to the Langmuir model.

  8. Selective adsorption of oppositely charged PNIPAAM on halloysite surfaces: a route to thermo-responsive nanocarriers.

    Science.gov (United States)

    Cavallaro, Giuseppe; Lazzara, Giuseppe; Lisuzzo, Lorenzo; Milioto, Stefana; Parisi, Filippo

    2018-05-17

    Halloysite nanotubes were functionalized with stimuli-responsive macromolecules to generate smart nanohybrids. Poly(N-isopropylacrylamide)-co-methacrylic acid (PNIPAAM-co-MA) was selectively adsorbed into halloysite lumen by exploiting electrostatic interactions. Amine-terminated PNIPAAM polymer was also investigated that selectively interacts with the outer surface of the nanotubes. The adsorption site has a profound effect on the thermodynamic behavior and therefore temperature responsive features of the hybrid material. The drug release kinetics was investigated by using Diclofenac as a non-steroidal anti-inflammatory drug model. The release kinetics depends on the nanoarchitecture of the PNIPAAM/Halloysite based material. In particular, diclofenac release was slowed down above the LCST for PNIPAAM-co-MA/Halloysite. Opposite trends occurred for Halloysite functionalized with PNIPAAM at the outer surface. This work represents a further step toward the opportunity to extend and control the delivery conditions of active species, which represent a key point in technological applications. © 2018 IOP Publishing Ltd.

  9. Selective adsorption of molybdenum(VI) from Mo-Re bearing effluent by chemically modified astringent persimmon

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Ying, E-mail: xiongying_1977@hotmail.com [School of Chemistry, Key Laboratory of Rare-scattered Elements of Liaoning Province, Liaoning University, Shenyang 110036 (China); Wang Haitao; Lou Zhenning; Shan Weijun; Xing Zhiqiang; Deng Guichun [School of Chemistry, Key Laboratory of Rare-scattered Elements of Liaoning Province, Liaoning University, Shenyang 110036 (China); Wu Dongbei [Department of Chemistry, Tongji University, 200092 (China); Fang Dawei [School of Chemistry, Key Laboratory of Rare-scattered Elements of Liaoning Province, Liaoning University, Shenyang 110036 (China); Biswas, Biplob Kumar [Department of Applied Chemistry, Saga University, Honjo 1, Saga 840-8502 (Japan); Department of Applied Chemistry and Chemical Engineering, Jessore Science and Technology University, Jessore (Bangladesh)

    2011-02-28

    Graphical abstract: The use of persimmon for the recovery of Mo(VI) from aqueous chloride medium was investigated. The excellent adsorption characteristics for Mo(VI) were confirmed by adsorption and elution tests using a column packed with the APF gel. Research highlights: {yields} Astringent persimmon was chemically cross-linked by formaldehyde to obtain a novel kind of adsorption gel. By comparing with the adsorption of some other metal ions, especially for Re(VII), this new gel exhibited selectivity only for molybdenum with a remarkably high capacity for Mo(VI) (1.05 mol/kg dry gel). {yields} The adsorption mechanisms of molybdenum on the astringent persimmon gel have been determined for deferent molybdenum species. And, the endothermic adsorption process followed pseudo-second order kinetics, and the adsorption behavior obeys the Langmuir mode. {yields} The excellent adsorption characteristics for Mo(VI) were confirmed by adsorption and elution tests using a column packed with the APF gel, especially from an actual industrial waste effluent. - Abstract: Astringent persimmon was chemically cross-linked by formaldehyde to obtain a novel kind of adsorption gel, which was named as APF gel. The adsorption behaviors of Mo(VI) and Re(VII) along with other coexisting metals onto the APF gel were studied in the present paper. The APF gel was found to be effective for the adsorption of Mo(VI) while the gel is almost completely inert toward rhenium and calcium over the whole hydrochloric acid concentration region. The APF gel has a low affinity for iron, copper, lead, nickel, manganese and zinc ions when the concentration of HCl is higher than 1 mol/L. The gel exhibited selectivity only for Mo(VI) with a remarkably high adsorption capacity 1.05 mol/kg, and the adsorption behavior obeys the Langmuir model. According to the thermodynamic and kinetic studies, the endothermic adsorption process followed pseudo-second order kinetics. Also, its excellent adsorption

  10. Selective adsorption of ions in charged slit-systems

    Directory of Open Access Journals (Sweden)

    M.Valiskó

    2013-01-01

    Full Text Available We study the selective adsorption of various cations into a layered slit system using grand canonical Monte Carlo simulations. The slit system is formed by a series of negatively charged membranes. The electrolyte contains two kinds of cations with different sizes and valences modeled by charged hard spheres immersed in a continuum dielectric solvent. We present results for various cases depending on the combinations of the properties of the competing cations. We concentrate to the case when the divalent cations are larger than the monovalent cations. In this case, size and charge have counterbalancing effects, which results in interesting selectivity phenomena.

  11. Significance, evolution and recent advances in adsorption technology, materials and processes for desalination, water softening and salt removal.

    Science.gov (United States)

    Alaei Shahmirzadi, Mohammad Amin; Hosseini, Seyed Saeid; Luo, Jianquan; Ortiz, Inmaculada

    2018-06-01

    Desalination and softening of sea, brackish, and ground water are becoming increasingly important solutions to overcome water shortage challenges. Various technologies have been developed for salt removal from water resources including multi-stage flash, multi-effect distillation, ion exchange, reverse osmosis, nanofiltration, electrodialysis, as well as adsorption. Recently, removal of solutes by adsorption onto selective adsorbents has shown promising perspectives. Different types of adsorbents such as zeolites, carbon nanotubes (CNTs), activated carbons, graphenes, magnetic adsorbents, and low-cost adsorbents (natural materials, industrial by-products and wastes, bio-sorbents, and biopolymer) have been synthesized and examined for salt removal from aqueous solutions. It is obvious from literature that the existing adsorbents have good potentials for desalination and water softening. Besides, nano-adsorbents have desirable surface area and adsorption capacity, though are not found at economically viable prices and still have challenges in recovery and reuse. On the other hand, natural and modified adsorbents seem to be efficient alternatives for this application compared to other types of adsorbents due to their availability and low cost. Some novel adsorbents are also emerging. Generally, there are a few issues such as low selectivity and adsorption capacity, process efficiency, complexity in preparation or synthesis, and problems associated to recovery and reuse that require considerable improvements in research and process development. Moreover, large-scale applications of sorbents and their practical utility need to be evaluated for possible commercialization and scale up. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Textural development and hydrogen adsorption of carbon materials from PET waste

    International Nuclear Information System (INIS)

    Parra, J.B.; Ania, C.O.; Arenillas, A.; Rubiera, F.; Palacios, J.M.; Pis, J.J.

    2004-01-01

    Polyethyleneterephthalate (PET) has become one of the major post-consumer plastic wastes. PET products present a problem of considerable concern due to the huge amount of solid waste produced. The disposal of this waste, together with its low bio- and photo-degradability represents a serious challenge for industrial countries all over the world. Pyrolysis could provide an alternative and economically viable route for processing PET waste due to the potential uses of different by-products: energy from the pyrolysis gases (58% yield in this work), recovery of terephthalic acid and other subproducts (20%), and a solid residue (22%), which has shown a high textural development after activation. The pyrolysis of PET waste was performed in a quartz reactor (i.d. 35 mm) under an inert atmosphere. Further activation was carried out at a temperature of 925 deg. C, with a flow rate of 10 ml min -1 of CO 2 . A series of carbon materials with different burn-off degrees was obtained. Textural characterisation of the samples was carried out by performing N 2 adsorption isotherms at -196 deg. C. Changes in the morphological and structural properties of chars were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The carbons obtained were isotropic and highly microporous materials with apparent BET surface areas of up to 2500 m 2 g -1 . The suitability of the samples for hydrogen storage was studied by performing H 2 adsorption measurements in the 0-1 bar pressure range. Adsorption-desorption experiments showed that reversible physisorption takes place in all the samples. The hydrogen adsorption capacities of the activated PET waste compare favourably well with those attained with high-value carbon materials

  13. Adsorption/desorption properties of vacuum materials for the 6 GeV synchrotron

    International Nuclear Information System (INIS)

    Krauss, A.R.

    1985-01-01

    Considerable attention must be paid to the vacuum and adsorption/desorption properties of all materials installed inside the vacuum envelope if the design goals of the 6 GeV synchrotron are to be met. Unfortunately, the data is very sparse in several key areas. Additionally, some procedures normally associated with good vacuum practice, such as air baking, may prove to be totally unsuitable on the basis of desorption properties. We present here a brief discussion of the adsorption, outgassing, electron-stimulated desorption (ESD), and photon-stimulated desorption (PSD) properties of vacuum materials as they relate to the design of a 6 GeV synchrotron

  14. A family of uranium-carboxylic acid hybrid materials: synthesis, structure and mixed-dye selective adsorption

    International Nuclear Information System (INIS)

    Xue Gao; Jian Song; Yong Heng Xing; Feng Ying Bai; Li Xian Sun; Zhan Shi

    2016-01-01

    Four uranyl complexes (UO_2)_2(pht)_2(Hpac)_2(H_2O)_2 (pht = phthalic acid and Hpac = nicotinic acid) (1), (UO_2)(pac)_2(H_2O)_2 (2), [(UO_2)(CMA)_3][H_2N(CH_3)_2] (CMA = cinnamic acid) (3) and (UO_2)_2(C_2O_4)(μ_2- OH)_2(H_2O)_2H_2O (4) were synthesized by the reaction of UO_2(CH_3COO)_2.2H_2O as the metal source with phthalic acid, nicotinic acid, cinnamic acid or oxalic acid as the ligand. They were characterized by elemental analysis, IR, UV-vis, XRD, single crystal X-ray diffraction and thermal gravimetric analysis. The structural analysis showed that complexes 1, 2 and 3 were discrete structures, and by hydrogen bonding interactions, the adjacent molecular units are connected to form a three-dimensional (3D) supramolecular network structure for complex 1 and one-dimensional (1D) chains for complexes 2 and 3. Meanwhile, in the structure of complex 4, a tetrameric SBU (UO_2)_4(μ_2-OH)_4(H_2O)_4 is linked to a 2D layer through a bridging oxalic acid ligand, and furthermore extends the 2D layer into a 3D supramolecular architecture by hydrogen bonding interactions. In order to extend their functional properties, their photoluminescence, surface photovoltage and mixed-dye selective adsorption properties have been studied for the first time. Through experiments, we found that the adsorption performance of complex 3 was better than others, and the amount of adsorbed RhB was 4.22 mg.g"-"1. (authors)

  15. Molecular origin of the selectivity differences between palladium and gold-palladium in benzyl alcohol oxidation: Different oxygen adsorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Savara, Aditya Ashi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chan-Thaw, Carine E. [Univ. degli Studi di Milano, Milano (Italy); Sutton, Jonathan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Di [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Prati, Laura [Univ. degli Studi di Milano, Milano (Italy); Villa, Alberto [Univ. degli Studi di Milano, Milano (Italy)

    2016-12-22

    The same mechanism and microkinetic model used for benzyl alcohol oxidation over Pd/C was shown to apply to benzyl alcohol oxidation over AuPd/C. Almost all of the selectivity differences could be explained by a decrease in oxygen adsorption on AuPd. After isolating oxygen adsorption as being the origin of the selectivity differences, density functional theory was used to investigate the oxygen adsorption properties of a pure Pd surface, a pure Au surface, and an alloyed AuPd surface. Finally, the calculations showed that Au–Pd alloying decreased the oxygen adsorption properties relative to pure Pd, which explained the selectivity differences, consistent with the microkinetic modeling.

  16. Final Report: Characterization of Hydrogen Adsorption in Carbon-Based Materials by NMR

    International Nuclear Information System (INIS)

    Wu, Yue; Kleinhammes, Alfred

    2011-01-01

    In support of DOE/EERE's Fuel Cell Technologies Program Hydrogen Sorption Center of Excellence (HSCoE), UNC conducted Nuclear Magnetic Resonance (NMR) measurements that contributed spectroscopic information as well as quantitative analysis of adsorption processes. While NMR based Langmuir isotherms produce reliable H2 capacity measurements, the most astute contribution to the center is provided by information on dihydrogen adsorption on the scale of nanometers, including the molecular dynamics of hydrogen in micropores, and the diffusion of dihydrogen between macro and micro pores. A new method to assess the pore width using H2 as probe of the pore geometry was developed and is based on the variation of the observed chemical shift of adsorbed dihydrogen as function of H2 pressure. Adsorbents designed and synthesized by the Center were assessed for their H2 capacity, the binding energy of the adsorption site, their pore structure and their ability to release H2. Feedback to the materials groups was provided to improve the materials properties. To enable in situ NMR measurements as a function of H2 pressure and temperature, a unique, specialized NMR system was designed and built. Pressure can be varied between 10-4 and 107 Pa while the temperature can be controlled between 77K and room temperature. In addition to the 1H investigation of the H2 adsorption process, NMR was implemented to measure the atomic content of substituted elements, e.g. boron in boron substituted graphitic material as well as to determine the local environment and symmetry of these substituted nuclei. The primary findings by UNC are the following: (1) Boron substituted for carbon in graphitic material in the planar BC3 configuration enhances the binding energy for adsorbed hydrogen; (2) Arrested kinetics of H2 was observed below 130K in the same boron substituted carbon samples that combine enhanced binding energy with micropore structure; (3) Hydrogen storage material made from activated PEEK

  17. Evaluation of adsorption of uranium from aqueous solution using biochar materials

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Wagner Clayton; Guilhen, Sabine Neusatz; Ortiz, Nilce; Fungaro, Denise Alves, E-mail: wcorrea@ipen.br, E-mail: snguilhen@ipen.br, E-mail: notriz@ipen.br, E-mail: dfungaro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Uranium is present in the environment as a result of leaching from natural deposits and activities associated with nuclear fuel, copper mining, uranium mining, milling industry, etc. For the purpose of protecting ecosystem stability and public health, it is crucial to eliminate uranium from aqueous solutions before they are discharged into the environment. Various technologies have been used for removing U(VI) ions from aqueous systems. Among these methods, adsorption has been applied in wastewater because of simple operation procedure and high removal efficiency. Brazil is the largest producer of charcoal in the world, with nearly half of the woody biomass harvested for energy in Brazil being transformed into charcoal. Biochar exhibits a great potential as an adsorbent because of favorable physical/chemical surface characteristics. The objective of this work was to evaluate the adsorption potential of biochar materials prepared from pyrolysis of Bamboo (CBM), Eucalyptus (CEM) and Macauba (CMA) nuts for the removal of uranium from solutions. Adsorption experiments were carried out by a batch technique. Equilibrium adsorption experiments were performed by shaking a known amount of biochar material with 100 mL of U(VI) solution in Erlenmeyer flasks in a shaker at 120 rpm and room temperature (25 deg C) for 24 h. The adsorbent was separated by centrifugation from the solution. The U(VI) concentration remaining in the supernatant solution was determined using inductively coupled plasma optical emission spectrometry (ICP-OES). The influences of different experimental parameters such as solution pH and bioadsorbent dose on adsorption were investigated. The highest uranium adsorption capacity were obtained at pH 3.0 and 16 g/L biomass dosage for CMA, pH 3.0 and 12 g/L biomass dosage for CBM and pH 2.0 and 10 g/L biomass dosage for CEM. The results demonstrated that the biomass derived char can be used as a low-cost adsorbent for removal of uranium from wastewater. (author)

  18. Evaluation of adsorption of uranium from aqueous solution using biochar materials

    International Nuclear Information System (INIS)

    Correa, Wagner Clayton; Guilhen, Sabine Neusatz; Ortiz, Nilce; Fungaro, Denise Alves

    2015-01-01

    Uranium is present in the environment as a result of leaching from natural deposits and activities associated with nuclear fuel, copper mining, uranium mining, milling industry, etc. For the purpose of protecting ecosystem stability and public health, it is crucial to eliminate uranium from aqueous solutions before they are discharged into the environment. Various technologies have been used for removing U(VI) ions from aqueous systems. Among these methods, adsorption has been applied in wastewater because of simple operation procedure and high removal efficiency. Brazil is the largest producer of charcoal in the world, with nearly half of the woody biomass harvested for energy in Brazil being transformed into charcoal. Biochar exhibits a great potential as an adsorbent because of favorable physical/chemical surface characteristics. The objective of this work was to evaluate the adsorption potential of biochar materials prepared from pyrolysis of Bamboo (CBM), Eucalyptus (CEM) and Macauba (CMA) nuts for the removal of uranium from solutions. Adsorption experiments were carried out by a batch technique. Equilibrium adsorption experiments were performed by shaking a known amount of biochar material with 100 mL of U(VI) solution in Erlenmeyer flasks in a shaker at 120 rpm and room temperature (25 deg C) for 24 h. The adsorbent was separated by centrifugation from the solution. The U(VI) concentration remaining in the supernatant solution was determined using inductively coupled plasma optical emission spectrometry (ICP-OES). The influences of different experimental parameters such as solution pH and bioadsorbent dose on adsorption were investigated. The highest uranium adsorption capacity were obtained at pH 3.0 and 16 g/L biomass dosage for CMA, pH 3.0 and 12 g/L biomass dosage for CBM and pH 2.0 and 10 g/L biomass dosage for CEM. The results demonstrated that the biomass derived char can be used as a low-cost adsorbent for removal of uranium from wastewater. (author)

  19. Textural development and hydrogen adsorption of carbon materials from PET waste

    Energy Technology Data Exchange (ETDEWEB)

    Parra, J.B.; Ania, C.O.; Arenillas, A.; Rubiera, F.; Palacios, J.M.; Pis, J.J

    2004-10-06

    Polyethyleneterephthalate (PET) has become one of the major post-consumer plastic wastes. PET products present a problem of considerable concern due to the huge amount of solid waste produced. The disposal of this waste, together with its low bio- and photo-degradability represents a serious challenge for industrial countries all over the world. Pyrolysis could provide an alternative and economically viable route for processing PET waste due to the potential uses of different by-products: energy from the pyrolysis gases (58% yield in this work), recovery of terephthalic acid and other subproducts (20%), and a solid residue (22%), which has shown a high textural development after activation. The pyrolysis of PET waste was performed in a quartz reactor (i.d. 35 mm) under an inert atmosphere. Further activation was carried out at a temperature of 925 deg. C, with a flow rate of 10 ml min{sup -1} of CO{sub 2}. A series of carbon materials with different burn-off degrees was obtained. Textural characterisation of the samples was carried out by performing N{sub 2} adsorption isotherms at -196 deg. C. Changes in the morphological and structural properties of chars were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The carbons obtained were isotropic and highly microporous materials with apparent BET surface areas of up to 2500 m{sup 2} g{sup -1}. The suitability of the samples for hydrogen storage was studied by performing H{sub 2} adsorption measurements in the 0-1 bar pressure range. Adsorption-desorption experiments showed that reversible physisorption takes place in all the samples. The hydrogen adsorption capacities of the activated PET waste compare favourably well with those attained with high-value carbon materials.

  20. Selective recovery of Pd(II) from extremely acidic solution using ion-imprinted chitosan fiber: Adsorption performance and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shuo [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Wei, Wei [School of Chemical Engineering, Chonbuk National University, Jeonbuk 561-756 (Korea, Republic of); Wu, Xiaohui; Zhou, Tao [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Mao, Juan, E-mail: monicamao45@hust.edu.cn [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yun, Yeoung-Sang, E-mail: ysyun@jbnu.ac.kr [School of Chemical Engineering, Chonbuk National University, Jeonbuk 561-756 (Korea, Republic of)

    2015-12-15

    Highlights: • An acid-resisting chitosan fiber was prepared by ion-imprinting technique. • Pd(II) and ECH were as template and two-step crosslinking agent, respectively. • IIF showed a good adsorption and selectivity performance on Pd(II) solutions. • Selectivity was due to the electrostatic attraction between −NH{sub 3}{sup +} and [PdCl{sub 4}]{sup 2−}. • Stable sorption/desorption performance shows a potential in further application. - Abstract: A novel, selective and acid-resisting chitosan fiber adsorbent was prepared by the ion-imprinting technique using Pd(II) and epichlorohydrin as the template and two-step crosslinking agent, respectively. The resulting ion-imprinted chitosan fibers (IIF) were used to selectively adsorb Pd(II) under extremely acidic synthetic metal solutions. The adsorption and selectivity performances of IIF including kinetics, isotherms, pH effects, and regeneration were investigated. Pd(II) rapidly adsorbed on the IIF within 100 min, achieving the adsorption equilibrium. The isotherm results showed that the maximum Pd(II) uptake on the IIF was maintained as 324.6–326.4 mg g{sup −1} in solutions containing single and multiple metals, whereas the Pd(II) uptake on non-imprinted fibers (NIF) decreased from 313.7 to 235.3 mg g{sup −1} in solution containing multiple metals. Higher selectivity coefficients values were obtained from the adsorption on the IIF, indicating a better Pd(II) selectivity. The amine group, supposedly the predominant adsorption site for Pd(II), was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The pH value played a significant role on the mechanism of the selective adsorption in the extremely acidic conditions. Furthermore, the stabilized performance for three cycles of sorption/desorption shows a potential for further large-scale applications.

  1. Selective recovery of Pd(II) from extremely acidic solution using ion-imprinted chitosan fiber: Adsorption performance and mechanisms

    International Nuclear Information System (INIS)

    Lin, Shuo; Wei, Wei; Wu, Xiaohui; Zhou, Tao; Mao, Juan; Yun, Yeoung-Sang

    2015-01-01

    Highlights: • An acid-resisting chitosan fiber was prepared by ion-imprinting technique. • Pd(II) and ECH were as template and two-step crosslinking agent, respectively. • IIF showed a good adsorption and selectivity performance on Pd(II) solutions. • Selectivity was due to the electrostatic attraction between −NH_3"+ and [PdCl_4]"2"−. • Stable sorption/desorption performance shows a potential in further application. - Abstract: A novel, selective and acid-resisting chitosan fiber adsorbent was prepared by the ion-imprinting technique using Pd(II) and epichlorohydrin as the template and two-step crosslinking agent, respectively. The resulting ion-imprinted chitosan fibers (IIF) were used to selectively adsorb Pd(II) under extremely acidic synthetic metal solutions. The adsorption and selectivity performances of IIF including kinetics, isotherms, pH effects, and regeneration were investigated. Pd(II) rapidly adsorbed on the IIF within 100 min, achieving the adsorption equilibrium. The isotherm results showed that the maximum Pd(II) uptake on the IIF was maintained as 324.6–326.4 mg g"−"1 in solutions containing single and multiple metals, whereas the Pd(II) uptake on non-imprinted fibers (NIF) decreased from 313.7 to 235.3 mg g"−"1 in solution containing multiple metals. Higher selectivity coefficients values were obtained from the adsorption on the IIF, indicating a better Pd(II) selectivity. The amine group, supposedly the predominant adsorption site for Pd(II), was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The pH value played a significant role on the mechanism of the selective adsorption in the extremely acidic conditions. Furthermore, the stabilized performance for three cycles of sorption/desorption shows a potential for further large-scale applications.

  2. Molecular Simulation of Adsorption in Microporous Materials

    Directory of Open Access Journals (Sweden)

    Yiannourakou M.

    2013-11-01

    Full Text Available The development of industrial software, the decreasing cost of computing time, and the availability of well-tested forcefields make molecular simulation increasingly attractive for chemical engineers. We present here several applications of Monte-Carlo simulation techniques, applied to the adsorption of fluids in microporous solids such as zeolites and model carbons (pores < 2 nm. Adsorption was computed in the Grand Canonical ensemble with the MedeA®-GIBBS software, using energy grids to decrease computing time. MedeA®-GIBBS has been used for simulations in the NVT or NPT ensembles to obtain the density and fugacities of fluid phases. Simulation results are compared with experimental pure component isotherms in zeolites (hydrocarbon gases, water, alkanes, aromatics, ethanethiol, etc., and mixtures (methane-ethane, n-hexane-benzene, over a large range of temperatures. Hexane/benzene selectivity inversions between silicalite and Na-faujasites are well predicted with published forcefields, providing an insight on the underlying mechanisms. Also, the adsorption isotherms in Na-faujasites for light gases or ethane-thiol are well described. Regarding organic adsorbents, models of mature kerogen or coal were built in agreement with known chemistry of these systems. Obtaining realistic kerogen densities with the simple relaxation approach considered here is encouraging for the investigation of other organic systems. Computing excess sorption curves in qualitative agreement with those recently measured on dry samples of gas shale is also favorable. Although still preliminary, such applications illustrate the strength of molecular modeling in understanding complex systems in conditions where experiments are difficult.

  3. Adsorption Studies of Lead by Enteromorpha Algae and Its Silicates Bonded Material

    Directory of Open Access Journals (Sweden)

    Hassan H. Hammud

    2014-01-01

    Full Text Available Lead adsorption by green Enteromorpha algae was studied. Adsorption capacity was 83.8 mg/g at pH 3.0 with algae (E and 1433.5 mg/g for silicates modified algae (EM. FTIR and thermal analysis of algae materials were studied. Thomas and Yoon-Nelson column model were best for adsorbent (E and algae after reflux (ER and Yan model for (EM with capacity 76.2, 71.1, and 982.5 mg/g, respectively. (ER and (EM show less swelling and better flow rate control than (E. Nonlinear methods are more appropriate technique. Error function calculations proved valuable for predicting the best adsorption isotherms, kinetics, and column models.

  4. Influence of adsorption thermodynamics on guest diffusivities in nanoporous crystalline materials

    NARCIS (Netherlands)

    Krishna, R.; van Baten, J.M.

    2013-01-01

    Published experimental data, underpinned by molecular simulations, are used to highlight the strong influence of adsorption thermodynamics on diffusivities of guest molecules inside ordered nanoporous crystalline materials such as zeolites, metal-organic frameworks (MOFs), and zeolitic imidazolate

  5. Final Report: Characterization of Hydrogen Adsorption in Carbon-Based Materials by NMR

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yue; Kleinhammes, Alfred

    2011-07-11

    In support of DOE/EERE's Fuel Cell Technologies Program Hydrogen Sorption Center of Excellence (HSCoE), UNC conducted Nuclear Magnetic Resonance (NMR) measurements that contributed spectroscopic information as well as quantitative analysis of adsorption processes. While NMR based Langmuir isotherms produce reliable H2 capacity measurements, the most astute contribution to the center is provided by information on dihydrogen adsorption on the scale of nanometers, including the molecular dynamics of hydrogen in micropores, and the diffusion of dihydrogen between macro and micro pores. A new method to assess the pore width using H2 as probe of the pore geometry was developed and is based on the variation of the observed chemical shift of adsorbed dihydrogen as function of H2 pressure. Adsorbents designed and synthesized by the Center were assessed for their H2 capacity, the binding energy of the adsorption site, their pore structure and their ability to release H2. Feedback to the materials groups was provided to improve the materials’ properties. To enable in situ NMR measurements as a function of H2 pressure and temperature, a unique, specialized NMR system was designed and built. Pressure can be varied between 10-4 and 107 Pa while the temperature can be controlled between 77K and room temperature. In addition to the 1H investigation of the H2 adsorption process, NMR was implemented to measure the atomic content of substituted elements, e.g. boron in boron substituted graphitic material as well as to determine the local environment and symmetry of these substituted nuclei. The primary findings by UNC are the following: • Boron substituted for carbon in graphitic material in the planar BC3 configuration enhances the binding energy for adsorbed hydrogen. • Arrested kinetics of H2 was observed below 130K in the same boron substituted carbon samples that combine enhanced binding energy with micropore structure. • Hydrogen storage material made from

  6. Adsorption of metals by immobilized tannins

    Energy Technology Data Exchange (ETDEWEB)

    Santana, J L; Olivares, S; De La Rosa, D; Martinez, F; Vargas, L M [Centro de Estudios Aplicados al Desarrollo Nuclear (CEADEN), La Habana (Cuba)

    1996-05-01

    Simultaneous adsorption of thorium, europium, cerium, and neodymium by immobilized tannic was studied at different ph values. Tannic materials have excellent ability to adsorb selectively thorium at pH 5. The rest of the elements could be isolated in group at pH 7.

  7. Adsorption of metals by immobilized tannins

    International Nuclear Information System (INIS)

    Santana, J.L.; Olivares, S.; De La Rosa, D.; Martinez, F.; Vargas, L.M.

    1996-01-01

    Simultaneous adsorption of thorium, europium, cerium, and neodymium by immobilized tannic was studied at different ph values. Tannic materials have excellent ability to adsorb selectively thorium at pH 5. The rest of the elements could be isolated in group at pH 7

  8. Facile synthesis of surface-functionalized magnetic nanocomposites for effectively selective adsorption of cationic dyes

    Science.gov (United States)

    Hua, Yani; Xiao, Juan; Zhang, Qinqin; Cui, Chang; Wang, Chuan

    2018-04-01

    A new magnetic nano-adsorbent, polycatechol modified Fe3O4 magnetic nanoparticles (Fe3O4/PCC MNPs) were prepared by a facile chemical coprecipitation method using iron salts and catechol solution as precursors. Fe3O4/PCC MNPs owned negatively charged surface with oxygen-containing groups and showed a strong adsorption capacity and fast adsorption rates for the removal of cationic dyes in water. The adsorption capacity of methylene blue (MB), cationic turquoise blue GB (GB), malachite green (MG), crystal violet (CV) and cationic pink FG (FG) were 60.06 mg g- 1, 70.97 mg g- 1, 66.84 mg g- 1, 66.01 mg g- 1 and 50.27 mg g- 1, respectively. The adsorption mechanism was proposed by the analyses of the adsorption isotherms and adsorption kinetics of cationic dyes on Fe3O4/PCC MNPs. Moreover, the cationic dyes adsorbed on the MNPs as a function of contact time, pH value, temperature, coexisting cationic ions and ion strength were also investigated. These results suggested that the Fe3O4/PCC MNPs is promising to be used as a magnetic adsorbent for selective adsorption of cationic dyes in wastewater treatment.

  9. Alcohol molecules adsorption on graphane nanosheets - A first-principles investigation

    Science.gov (United States)

    Nagarajan, V.; Chandiramouli, R.

    2018-05-01

    The geometric structure, electronic and adsorption properties of methanol, ethanol and 1-propanol molecules on hydrogenated graphene (graphane) were investigated using first-principles calculations. The stability of graphane base material is confirmed using formation energy and phonon band structures. The adsorption of alcohol molecules on bare graphane and hydrogen vacant graphane nanosheet is found to be prominent and the selectivity of alcohol molecules can be achieved using bare or hydrogen vacant graphane nanosheet. Moreover, the interaction of alcohol molecules on bare and hydrogen vacant graphane nanosheets is studied using the adsorption energy, energy band gap variation, Bader charge transfer and average energy band gap variation. The adsorption energy ranges from -0.149 to -0.383 eV upon alcohol adsorption. The energy gap varies from 4.71 to 2.62 eV for bare graphane and from 4.02 to 3.60 eV for hydrogen vacant graphane nanosheets upon adsorption of alcohol molecules. The adsorption properties of alcohol molecules provide useful information for the possible application of graphane nanosheet as a base material for the detection of alcohol molecules.

  10. Synthesis, characterization, and application of Zn(NH 3)(CO3) for selective adsorptive separation of CO2

    Science.gov (United States)

    Khazeni, Naasser

    This study explores the potential of Zn(NH3)(CO3) for selective CO2 separation. It develops a novel, highly controllable, single-pot synthesis approach based on urea hydrolysis and solvothermal aging to increase the feasibility of synthesizing Zn(NH3)(CO3), determines the structure of Zn(NH3)(CO3) in detail through single crystal X-ray diffraction and powder X-ray diffraction analyses, and performs adsorption analyses for the compound using CO2, N 2, H2, O2, and CH4 as adsorptives. Through adsorptive characterization, a systematic adsorbent selection screening is performed to assess the potential application of Zn(NH3)(CO 3) for adsorptive separation of CO2 from an upstream gas mixture of power generation, hydrogen production, and natural gas industries. Structural analysis shows Zn(NH3)(CO3) to have an inorganic helical framework that consists of a small helix of (ZnOCO) 2 and a large helix of (ZnOCO)4 with two ammines (NH 3) pendant from every other zinc. In terms of adsorption capacity and CO2 selectivity, Zn(NH3)(CO3) adsorbed 0.550 mmole/g CO2 at 293 K and 4500 mmHg, but only 0.047 mmole/g N 2, 0.084 mmole/g H2, 0.207 mmole/g 02, and 0.060 mmole/g CH4 at the same temperature and pressure. This behavior demonstrates considerable equilibrium selectivities - 36, 31, 63, and 11 - for separating CO2 from CH4, CO2 from H 2, CO2 from N2, and CO2 from 02, respectively. During adsorption, the pendant ammines act as the gates of check-valves: applied pressure opens the gates for adsorption; and during desorption, the gates are closed, trapping the adsorbates, until a reduction of pressure to near-atmospheric levels. Therefore, Zn(NH3)(CO3) exhibits low-pressure H3 or H4 hysteresis, indicating that the Zn(NH3)(CO3) framework can achieve gas storage at near-atmospheric pressures. Additionally, the compound proves structurally stable, with an adsorption decrease of 0.8% after 20 adsorption/desorption cycles - a factor that, considered with the other characteristics of Zn

  11. Adsorption. What else?

    OpenAIRE

    Rodrigues, Alirio E.

    2012-01-01

    [EN] Chemical Engineering today combines Molecular and Materials Engineerig and Process and Product Engineering (ChE=M2P2). Cyclic adsorptive processes (Simulated Moving Bed –SMB and Pressure Swing Adsorption-PSA) will be discussed for “old” and “new” applications making use of “old” and “new” (MOFs) adsorbent materials. After revisiting my memory as PhD student and the First Brazilian Adsorption meeting I will review the basic concepts involved in adsorption processes and then...

  12. Adsorption of N-tallow 1,3-propanediamine-dioleate collector on albite and quartz minerals, and selective flotation of albite from greek stefania feldspar ore.

    Science.gov (United States)

    Vidyadhar, A; Hanumantha Rao, K; Forssberg, K S E

    2002-04-01

    The adsorption behavior of tallow 1,3-propanediamine-dioleate (Duomeen TDO) collector on albite and quartz minerals is assessed through Hallimond flotation, zeta potential, and diffuse reflectance FTIR investigations, together with the species distribution of the collector. The collector performance on albite separation from a natural feldspar material is evaluated in bench scale flotation tests. The Hallimond flotation responses of the minerals as a function of pH and collector concentration indicate that albite can be selectively floated from quartz at pH 2 where the doubly positively charged collector species adsorb on albite but not on quartz. However, the zeta potential and infrared spectra reveal that the adsorption behavior of the collector is similar on both minerals. The discrepancy in the flotation and adsorption results is attributed to the coarse and fine particle size fractions, and the shorter and longer equilibration periods employed in these studies respectively. The comparable adsorption on fine particles of albite and quartz at pH 2 is explained by the interaction of ammonium ions on silanol groups by hydrogen bonding as well as electrostatic interactions. The changes in zeta potentials are in good agreement with the formation of ionic species and free molecular forms of the collector. The IR spectra show the coexistence of neutral oleic acid together with charged amine species at low pH values in accordance with the species distribution diagram. Selective flotation of albite is accomplished from a natural feldspar material with tallow diamine-dioleate collector at pH 2 using sulfuric acid, only when the feed is deslimed prior to the bench scale flotation tests. An albite recovery exceeding 85% is achieved from a feed material containing about 50% albite.

  13. Adsorption of Safranin-T from wastewater using waste materials- activated carbon and activated rice husks.

    Science.gov (United States)

    Gupta, Vinod K; Mittal, Alok; Jain, Rajeev; Mathur, Megha; Sikarwar, Shalini

    2006-11-01

    Textile effluents are major industrial polluters because of high color content, about 15% unfixed dyes and salts. The present paper is aimed to investigate and develop cheap adsorption methods for color removal from wastewater using waste materials activated carbon and activated rice husk-as adsorbents. The method was employed for the removal of Safranin-T and the influence of various factors such as adsorbent dose, adsorbate concentration, particle size, temperature, contact time, and pH was studied. The adsorption of the dye over both the adsorbents was found to follow Langmuir and Freundlich adsorption isotherm models. Based on these models, different useful thermodynamic parameters have been evaluated for both the adsorption processes. The adsorption of Safranin-T over activated carbon and activated rice husks follows first-order kinetics and the rate constants for the adsorption processes decrease with increase in temperature.

  14. Ethane selective IRMOF-8 and its significance in ethane-ethylene separation by adsorption.

    Science.gov (United States)

    Pires, João; Pinto, Moisés L; Saini, Vipin K

    2014-08-13

    The separation of ethylene from ethane is one of the most energy-intensive single distillations practiced. This separation could be alternatively made by an adsorption process if the adsorbent would preferentially adsorb ethane over ethylene. Materials that exhibit this feature are scarce. Here, we report the case of a metal-organic framework, the IRMOF-8, for which the adsorption isotherms of ethane and ethylene were measured at 298 and 318 K up to pressures of 1000 kPa. Separation of ethane/ethylene mixtures was achieved in flow experiments using a IRMOF-8 filled column. The interaction of gas molecules with the surface of IRMOF-8 was explored using density functional theory (DFT) methods. We show both experimentally and computationally that, as a result of the difference in the interaction energies of ethane and ethylene in IRMOF-8, this material presents the preferential adsorption of ethane over ethylene. The results obtained in this study suggest that MOFs with ligands exhibiting high aromaticity character are prone to adsorb ethane preferably over ethylene.

  15. Experimental investigation of H2/D2 isotope separation by cryo-adsorption in metal-organic frameworks

    International Nuclear Information System (INIS)

    Teufel, Julia Sonja

    2012-01-01

    Light-gas isotopes differ in their adsorption behavior under cryogenic conditions in nanoporous materials due to their difference in zero-point energy. However, the applicability of these cryo-effects for the separation of isotope mixtures is still lacking an experimental proof. The current work describes the first experimentally obtained H 2 /D 2 selectivity values of nanoporous materials measured by applying isotope mixtures in low-temperature thermal desorption spectroscopy (TDS). The dissertation contains the following key points: 1) A proof of the experimental method, i.e. it is shown that TDS leads to reasonable selectivity values. 2) A series of small-pore MFU-4 derivatives (MOFs) is shown to separate isotope mixtures by quantum sieving, i.e. by the difference in the adsorption kinetics. The influence of the pore size on the selectivity is studied systematically for this series. 3) Two MOFs with pores much larger than the kinetic diameter of H 2 do not exhibit kinetic quantum sieving. However, if the MOFs are exposed to an isotope mixture, deuterium adsorbs preferentially at the adsorption sites with high heats of adsorption. According to the experimental results, these strong adsorption sites can be every selective for deuterium. On the basis of the experimentally obtained selectivity values, technical implementations for H 2 /D 2 light-gas isotope separation by cryo-adsorption are described.

  16. Screening metal-organic frameworks for selective noble gas adsorption in air: effect of pore size and framework topology.

    Science.gov (United States)

    Parkes, Marie V; Staiger, Chad L; Perry, John J; Allendorf, Mark D; Greathouse, Jeffery A

    2013-06-21

    The adsorption of noble gases and nitrogen by sixteen metal-organic frameworks (MOFs) was investigated using grand canonical Monte Carlo simulation. The MOFs were chosen to represent a variety of net topologies, pore dimensions, and metal centers. Three commercially available MOFs (HKUST-1, AlMIL-53, and ZIF-8) and PCN-14 were also included for comparison. Experimental adsorption isotherms, obtained from volumetric and gravimetric methods, were used to compare krypton, argon, and nitrogen uptake with the simulation results. Simulated trends in gas adsorption and predicted selectivities among the commercially available MOFs are in good agreement with experiment. In the low pressure regime, the expected trend of increasing adsorption with increasing noble gas polarizabilty is seen. For each noble gas, low pressure adsorption correlates with several MOF properties, including free volume, topology, and metal center. Additionally, a strong correlation exists between the Henry's constant and the isosteric heat of adsorption for all gases and MOFs considered. Finally, we note that the simulated and experimental gas selectivities demonstrated by this small set of MOFs show improved performance compared to similar values reported for zeolites.

  17. The Impact of Template Types on Polyeugenol to the Adsorption Selectivity of Ionic Imprinted Polymer (IIP) Fe Metal Ion

    Science.gov (United States)

    Djunaidi, M. C.; Haris, A.; Pardoyo; Rosdiana, K.

    2018-04-01

    The synthesis of IIP was carried out by variation of Fe(III) ion templates from Fe(NO3)3, K3[Fe(CN)6] and NH4Fe(SO4)2 compounds which then tested IIP selectivity to the Fe metal ions through adsorption process. Ionic Imprinted Polymer (IIP) is a method of printing metal ions bound in a polymer, subsequently released from the polymer matrix to produce a suitable imprint for the target ion. The purposes of this study were to produce IIP from Fe(NO3)3, K3[Fe(CN)6] and NH4Fe(SO4)2 templates, to know the effect of templates on adsorption selectivity of IIP involving imprint cavity, and to know the impact of metal competitor on the selectivity adsorption of IIP to the Fe metals. The results obtained showed that IIP synthesized by variations of Fe(NO3)3, K3[Fe(CN)6] and NH4Fe(SO4)2 templates were successfully synthesized. The adsorption selectivity of Fe (III) metal ion in the Fe(NO3)3 template was greater than that of in the K3[Fe(CN)6] and NH4Fe(SO4)2 templates. The adsorption selectivity of Fe was greater on Fe-Cr compared to on Fe-Cd and Fe-Pb.

  18. Preparation of 1D Hierarchical Material Mesosilica/Pal Composite and Its Performance in the Adsorption of Methyl Orange.

    Science.gov (United States)

    Wu, Mei; Han, Haifeng; Ni, Lingli; Song, Daiyun; Li, Shuang; Hu, Tao; Jiang, Jinlong; Chen, Jing

    2018-01-20

    This paper highlights the synthesis of a one-dimensional (1D) hierarchical material mesosilica/palygorskite (Pal) composite and evaluates its adsorption performance for anionic dye methyl orange (MO) in comparison with Pal and Mobile crystalline material-41 (MCM-41). The Mesosilica/Pal composite is consisted of mesosilica coated Pal nanorods and prepared through a dual template approach using cetyltrimethyl ammonium bromide (CTAB) and Pal as soft and hard templates, respectively. The composition and structure of the resultant material was characterized by a scanning electron microscope (SEM), transmissionelectron microscopy (TEM), N₂ adsorption-desorption analysis, small-angle X-Ray powder diffraction (XRD), and zeta potential measurement. Adsorption experiments were carried out with different absorbents at different contact times and pH levels. Compared with Pal and MCM-41, the mesosilica/Pal composite exhibited the best efficiency for MO adsorption. Its adsorption ratio is as high as 70.4%. Its adsorption equilibrium time is as short as 30 min. Results testify that the MO retention is promoted for the micro-mesoporous hierarchical structure and positive surface charge electrostatic interactions of the mesosilica/Pal composite. The regenerability of the mesosilica/Pal composite absorbent was also assessed. 1D morphology makes it facile to separate from aqueous solutions. It can be effortlessly recovered and reused for up to nine cycles.

  19. Iodine-labelling of albumin and fibrinogen and application in selecting implantable material-titanium oxide

    International Nuclear Information System (INIS)

    Liu Fangyan; Zhou Meiying; Zhang Feng

    1998-01-01

    Human serum albumin and fibrinogen were successfully labelled with 125 I. The labelled proteins were further applied to carry out a background study on the selection of the blood-compatible materials. The protein adsorption of four kinds of titanium oxide film was determined and compared. It was found that Sample B can adsorb more albumin and less fibrinogen than other three samples and hold the adsorbed albumin most stably

  20. Selectivity of the adsorption process of modified zeolite rock with hexadecyl trimethylammonium bromide in front to chromates and dichromates

    International Nuclear Information System (INIS)

    Salgado G, N.

    2011-01-01

    In the present investigation natural zeolite (clinoptilolite) from the Chihuahua state, which was conditioned with sodium chloride solution and subsequently modified with a hexadecyl trimethylammonium bromide solution was used to evaluate the removal of Cr (Vi) from chromate or dichromate solutions. The zeolite materials were characterized by scanning electron microscopy and X-ray diffraction. The surface area was also determined. The experiments were performed in a batch system, the influence of ph, contact time between phases were investigated and during the adsorption process was calculated the concentration of chromium ion present in aqueous solution (CrO 4 2- , Cr 2 O 7 2- ). The quantification of chromium removed from the aqueous solution by atomic absorption spectrometry technique was done. In order to understand the behaviour of the adsorption kinetics the pseudo first and pseudo second order models were applied, and to determine the adsorption capacity of the zeolite materials for Cr the Langmuir, Freundlich and Langmuir-Freundlich models were chosen. It was found that the removal efficiency of chromium ion is influenced by ph and the chemical species present: chromate or dichromate. The chromate and dichromate sorption kinetic data were best fitted to the pseudo-second and pseudo-first order models, respectively; and the Langmuir and Langmuir-Freundlich models described adequately the isotherms data considering a mono component system. In a mixture of Cr (Vi) ad CrO 4 2- and Cr 2 O 7 2- , the surfactant modified zeolite has a greater selectivity for Cr 2 O 7 2- ion than CrO 4 2- . In this case the Langmuir-Freundlich model described the adsorption isotherm behavior. (Author)

  1. Selective adsorption of benzhydroxamic acid on fluorite rendering selective separation of fluorite/calcite

    Science.gov (United States)

    Jiang, Wei; Gao, Zhiyong; Khoso, Sultan Ahmed; Gao, Jiande; Sun, Wei; Pu, Wei; Hu, Yuehua

    2018-03-01

    Fluorite, a chief source of fluorine in the nature, usually coexists with calcite mineral in ore deposits. Worldwide, flotation techniques with a selective collector and/or a selective depressant are commonly preferred for the separation of fluorite from calcite. In the present study, an attempt was made to use benzhydroxamic acid (BHA) as a collector for the selective separation of fluorite from calcite without using any depressant. Results obtained from the flotation experiments for single mineral and mixed binary minerals revealed that the BHA has a good selective collecting ability for the fluorite when 50 mg/L of BHA was used at pH of 9. The results from the zeta potential and X-ray photoelectron spectroscopy (XPS) indicated that the BHA easily chemisorbs onto the fluorite as compared to calcite. Crystal chemistry calculations showed the larger Ca density and the higher Ca activity on fluorite surface mainly account for the selective adsorption of BHA on fluorite, leading to the selective separation of fluorite from calcite. Moreover, a stronger hydrogen bonding with BHA and the weaker electrostatic repulsion with BHA- also contribute to the stronger interaction of BHA species with fluorite surface.

  2. Adsorption affinity and selectivity of 3-ureidopropyltriethoxysilane grafted oil palm empty fruit bunches towards mercury ions.

    Science.gov (United States)

    Kunjirama, Magendran; Saman, Norasikin; Johari, Khairiraihanna; Song, Shiow-Tien; Kong, Helen; Cheu, Siew-Chin; Lye, Jimmy Wei Ping; Mat, Hanapi

    2017-06-01

    This study was conducted to investigate the potential application of oil palm empty fruit branches (OPEFB) as adsorbents to remove organic methylmercurry, MeHg(II), and inorganic Hg(II) from aqueous solution. The OPEFB was functionalized with amine containing ligand namely 3-ureidopropyltriethoxysilane (UPTES) aiming for better adsorption performance towards both mercury ions. The adsorption was found to be dependent on initial pH, initial concentraton, temperatures, and contact time. The maximum adsorption capacities (Q m.exp ) of Hg(II) adsorption onto OPEFB and UPTES-OPEFB were 0.226 and 0.773 mmol/g, respectively. The Q m.exp of MeHg(II) onto OPEFB, however, was higher than UPTES-OPEFB. The adsorption kinetic data obeyed the Elovich model and the adsorption was controlled by the film-diffusion step. The calculated thermodynamic parameters indicate an endothermic adsorption process. Adsorption data analysis indicates that the adsorption mechanism may include ion-exchange, complexation, and physisorption interactions. The potential applications of adsorbents were demonstrated using oilfield produced water and natural gas condensate. The UPTES-OPEFB offered higher selectivity towards both mercury ions than OPEFB. The regenerability studies indicated that the adsorbent could be reused for multiple cycles.

  3. Preparation of new nano magnetic material Fe3O4@g-C3N4 and good adsorption performance on uranium ion

    Science.gov (United States)

    Long, Wei; Liu, Huijun; Yan, Xueming; Fu, Li

    2018-03-01

    A new nano magnetic material Fe3O4@g-C3N4 was prepared by deposition reduction method, which performed good adsorption performance to uranium ion. Characterization results showed that the g-C3N4 particles were wrapped around the nano magnetic Fe3O4 particles, and the textural properties of this material was improved, so the adsorption performance to uranium ion was good. Adsorption experiments of this material demonstrated that the optimum pH value was 10, the optimum mass of adsorbent was 6.5 mg and the optimum adsorption time was 150 min in the initial concentration of 140 mg/L uranium ion solution system, and the maximum adsorption capacity was up to 352.1 mg/g and the maximum adsorption rate was more than 90%.

  4. Study on the adsorption of 233Pa in glass

    International Nuclear Information System (INIS)

    Natsumi, R.R.; Saiki, M.; Lima, F.W. de.

    1982-08-01

    It is intended to examine the adsorption of protactinium on glass in relation to pH, presence of complexing agents concentration and type of electrolytes. The study was made by using carrier-free 233 Pa solution and Pyrex glass tube was selected as adsorbent glass material surface. The adsorption curve of protactinium on glass surface as a function of the pH of the tracer solution showed the existence of two pronounced adsorption regions. It was found that this adsorption can be reduced by using electrolytes or complexing agents. Desorption of protactinium previously adsorbed on the Pyrex glass tube was also studied. Hidrochloric, oxalic and hydrofluoric acid solutions were used for the desorption experiments. (Author) [pt

  5. A metal ion charged mixed matrix membrane for selective adsorption of hemoglobin

    NARCIS (Netherlands)

    Tetala, K.K.R.; Skrzypek, K.; Levisson, M.; Stamatialis, D.F.

    2013-01-01

    In this work, we developed a mixed matrix membrane by incorporating 20–40 µm size iminodiacetic acid modified immobeads within porous Ethylene vinyl alcohol (EVAL) polymer matrix. The MMM were charged with copper ions for selective adsorption of bovine hemoglobin in presence of bovine serum albumin.

  6. Accurate van der Waals force field for gas adsorption in porous materials.

    Science.gov (United States)

    Sun, Lei; Yang, Li; Zhang, Ya-Dong; Shi, Qi; Lu, Rui-Feng; Deng, Wei-Qiao

    2017-09-05

    An accurate van der Waals force field (VDW FF) was derived from highly precise quantum mechanical (QM) calculations. Small molecular clusters were used to explore van der Waals interactions between gas molecules and porous materials. The parameters of the accurate van der Waals force field were determined by QM calculations. To validate the force field, the prediction results from the VDW FF were compared with standard FFs, such as UFF, Dreiding, Pcff, and Compass. The results from the VDW FF were in excellent agreement with the experimental measurements. This force field can be applied to the prediction of the gas density (H 2 , CO 2 , C 2 H 4 , CH 4 , N 2 , O 2 ) and adsorption performance inside porous materials, such as covalent organic frameworks (COFs), zeolites and metal organic frameworks (MOFs), consisting of H, B, N, C, O, S, Si, Al, Zn, Mg, Ni, and Co. This work provides a solid basis for studying gas adsorption in porous materials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Preparation of 1D Hierarchical Material Mesosilica/Pal Composite and Its Performance in the Adsorption of Methyl Orange

    Directory of Open Access Journals (Sweden)

    Mei Wu

    2018-01-01

    Full Text Available This paper highlights the synthesis of a one-dimensional (1D hierarchical material mesosilica/palygorskite (Pal composite and evaluates its adsorption performance for anionic dye methyl orange (MO in comparison with Pal and Mobile crystalline material-41 (MCM-41. The Mesosilica/Pal composite is consisted of mesosilica coated Pal nanorods and prepared through a dual template approach using cetyltrimethyl ammonium bromide (CTAB and Pal as soft and hard templates, respectively. The composition and structure of the resultant material was characterized by a scanning electron microscope (SEM, transmissionelectron microscopy (TEM, N2 adsorption-desorption analysis, small-angle X-Ray powder diffraction (XRD, and zeta potential measurement. Adsorption experiments were carried out with different absorbents at different contact times and pH levels. Compared with Pal and MCM-41, the mesosilica/Pal composite exhibited the best efficiency for MO adsorption. Its adsorption ratio is as high as 70.4%. Its adsorption equilibrium time is as short as 30 min. Results testify that the MO retention is promoted for the micro-mesoporous hierarchical structure and positive surface charge electrostatic interactions of the mesosilica/Pal composite. The regenerability of the mesosilica/Pal composite absorbent was also assessed. 1D morphology makes it facile to separate from aqueous solutions. It can be effortlessly recovered and reused for up to nine cycles.

  8. RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials

    NARCIS (Netherlands)

    Dubbeldam, D.; Calero, S.; Ellis, D.E.; Snurr, R.Q.

    2016-01-01

    A new software package, RASPA, for simulating adsorption and diffusion of molecules in flexible nanoporous materials is presented. The code implements the latest state-of-the-art algorithms for molecular dynamics and Monte Carlo (MC) in various ensembles including symplectic/measure-preserving

  9. A metal ion charged mixed matrix membrane for selective adsorption of hemoglobin

    NARCIS (Netherlands)

    Tetala, K.K.R.; Skrzypek, Katarzyna; Levisson, M.; Stamatialis, Dimitrios

    2013-01-01

    In this work, we developed a mixed matrix membrane by incorporating 20–40 μm size iminodiacetic acid modified immobeads within porous Ethylene vinyl alcohol (EVAL) polymer matrix. The MMM were charged with copper ions for selective adsorption of bovine hemoglobin in presence of bovine serum albumin.

  10. Production of ultrapure D-T gas by removal of molecular tritium by selective adsorption

    International Nuclear Information System (INIS)

    Maienschein, J.L.; Hudson, R.S.; Tsugawa, R.T.; Fearon, E.M.; Souers, P.C.; Collins, G.W.

    1991-07-01

    The application of selective adsorption to purification of D-T gas by removal of T 2 has been demonstrated for small quantities of gas typical in research applications. This represents a variation on the production of pure spin isomers of deuterium and hydrogen. The use of an adsorption column offers several advantages over conventional separation techniques, such as low tritium inventory, rapid delivery to prevent radiation damage of the accumulated product, compact size, simplicity of design, construction, and operation, and operation without carrier gas. Because a column can have several thousand equilibrium stages, the purity of the product can be very high. The adsorption column has been shown to be an attractive separation tool for small quantities of hydrogen isotopes

  11. Predicting Multicomponent Adsorption Isotherms in Open-Metal Site Materials Using Force Field Calculations Based on Energy Decomposed Density Functional Theory

    NARCIS (Netherlands)

    Heinen, J.; Burtch, N.; Walton, K.; Fonseca Guerra, C.; Dubbeldam, D.

    2016-01-01

    For the design of adsorptive-separation units, knowledge is required of the multicomponent adsorption behavior. Ideal adsorbed solution theory (IAST) breaks down for olefin adsorption in open-metal site (OMS) materials due to non-ideal donor–acceptor interactions. Using a

  12. A hygroscopic method to measure the adsorption isotherm of porous construction materials

    NARCIS (Netherlands)

    Taher, A.; Zanden, van der A.J.J.; Brouwers, H.J.H.; Stephan, D.; Daake, von H.; Markl, V.; Land, G.

    2013-01-01

    A sorption isotherm is the relationship between the moisture content in a material and the relative humidity of the surrounding atmosphere in an equilibrium situation. Most often, the sorption isotherm is measured with a gravitational method. This work presents a method to measure the adsorption

  13. Selective adsorption of refractory sulfur species on active carbons and carbon based CoMo catalyst.

    Science.gov (United States)

    Farag, Hamdy

    2007-03-01

    Adsorption technique could be a reliable alternative in removing to a certain remarkable extent the sulfur species from the feedstock of petroleum oil. The performance of various carbons on adsorption of model sulfur compounds in a simulated feed solution and the sulfur containing compounds in the real gas oil was evaluated. The adsorption experiments have been carried out in a batch scale at ambient temperature and under the atmospheric pressure. In general, the most refractory sulfur compounds in the hydrotreatment reactions were selectively removed and adsorbed. It was found that the adsorbents affinities to dibenzothiophene and 4,6-dimethyldibenzothiophene were much more favored and pronounced than the aromatic matrices like fluorene, 1-methylnaphthalene and 9-methylanthracene. Among the sulfur species, 4,6-dimethyldibenzothiophene was the highest to be removed in terms of both selectivity and capacity over all the present adsorbents. The studied adsorbents showed significant capacities for the polyaromatic thiophenes. The electronic characteristics seem to play a certain role in such behavior. Regeneration of the used adsorbent was successfully attained either by washing it with toluene or by the release of the adsorbates through heat treatment. A suggested adsorptive removal process of sulfur compounds from petroleum distillate over carbon supported CoMo catalyst was discussed.

  14. Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 1. Adsorption capacity and kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Z.; Peldszus, S.; Huck, P.M. [University of Waterloo, Waterloo, ON (Canada). NSERC Chair in Water Treatment

    2009-03-01

    The adsorption of two representative PhACs (naproxen and carbamazepine) and one EDC (nonylphenol) were evaluated on two granular activated carbons (GAC) namely coal-based Calgon Filtrasorb 400 and coconut shell-based PICA CTIF TE. The primary objective was to investigate preloading effects by natural organic matter (NOM) on adsorption capacity and kinetics under conditions and concentrations (i.e., ng/L) relevant for drinking water treatment. Isotherms demonstrated that all compounds were significantly negatively impacted by NOM fouling. Adsorption capacity reduction was most severe for the acidic naproxen, followed by the neutral carbamazepine and then the more hydrophobic nonylphenol. The GAC with the wider pore size distribution had considerably greater NOM loading, resulting in lower adsorption capacity. Different patterns for the change in Freundlich KF and 1/n with time revealed different competitive mechanisms for the different compounds. Mass transport coefficients determined by short fixed-bed (SFB) tests with virgin and preloaded GAC demonstrated that film diffusion primarily controls mass transfer on virgin and preloaded carbon. Naproxen suffered the greatest deteriorative effect on kinetic parameters due to preloading, followed by carbamazepine, and then nonylphenol. A type of surface NOM/biofilm, which appeared to add an additional mass transfer resistance layer and thus reduce film diffusion, was observed. In addition, electrostatic interactions between NOM/biofilm and the investigated compounds are proposed to contribute to the reduction of film diffusion. A companion paper building on this work describes treatability studies in pilot-scale GAC adsorbers and the effectiveness of a selected fixed-bed model. 32 refs., 3 figs., 2 tabs.

  15. Adsorption characteristics of Cs"+ onto artificial zeolites synthesized from coal fly ash and diatomite

    International Nuclear Information System (INIS)

    Johan, Erni; Yoshida, Kohei; Itagaki, Yoshiteru; Aono, Hiromichi; Munthali, Moses Wazingwa; Matsue, Naoto

    2015-01-01

    The radioactive decontamination of water, soil and other materials requires cheap and effective adsorbents. Artificial zeolites synthesized from an industrial waste (coal fly ash: Na-P1 type zeolite) and a natural material (diatomite: mordenite type zeolite) have a high Cs"+ adsorptivity in the adsorption experiments using 0.1 g of the zeolite and 50 mL of up to 7.5 mM CsCl. The coexisting cation suppressed the Cs"+ adsorption onto the zeolites, and the effect of the suppression was in the order, K"+ > Na"+ > Ca"2"+ > Mg"2"+. A thermodynamic analysis proved that the Cs"+ adsorption onto the two zeolites was exothermic favoring a lower temperature. The artificial mordenite showed a greater Cs"+ adsorption strength, higher distribution coefficient and lower ΔG°, especially at low Cs"+ concentrations. Adsorption isotherm analysis by the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models showed a greater Cs"+ adsorption selectivity for the artificial mordenite even at a low pH. (author)

  16. Adsorption and diffusion of fluids in well-characterized adsorbent materials. Renewal progress report, August 1, 1995 to January 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Gubbins, Keith E.; Cracknell, R.F.; Maddox, M.; Nicholson, D.

    1999-08-01

    This is an invited review paper describing recent advances in molecular simulation and theory of fluids confined within well-characterized porous materials. Methods and intermolecular potential models are described. This is followed by showing results for several examples, including supercritical methane adsorption in carbons, adsorption and diffusion of argon in VPI-5, adsorption of argon in silicalite-1, nitrogen adsorption in MCM-41, and adsorption of argon and nitrogen in carbon nanotubes.

  17. Adsorption of mixtures of nutrients and heavy metals in simulated urban stormwater by different filter materials.

    Science.gov (United States)

    Reddy, Krishna R; Xie, Tao; Dastgheibi, Sara

    2014-01-01

    In recent years, several best management practices have been developed for the removal of different types of pollutants from stormwater runoff that lead to effective stormwater management. Filter materials that remove a wide range of contaminants have great potential for extensive use in filtration systems. In this study, four filter materials (calcite, zeolite, sand, and iron filings) were investigated for their adsorption and efficiency in the removal of nutrients and heavy metals when they exist individually versus when they co-exist. Laboratory batch experiments were conducted separately under individual and mixed contaminants conditions at different initial concentrations. Adsorption capacities varied under the individual and mixed contaminant conditions due to different removal mechanisms. Most filter materials showed lower removal efficiency under mixed contaminant conditions. In general, iron filings were found effective in the removal of nutrients and heavy metals simultaneously to the maximum levels. Freundlich and Langmuir isotherms were used to model the batch adsorption results and the former better fitted the experimental results. Overall, the results indicate that the filter materials used in this study have the potential to be effective media for the treatment of nutrients and heavy metals commonly found in urban stormwater runoff.

  18. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review.

    Science.gov (United States)

    Burakov, Alexander E; Galunin, Evgeny V; Burakova, Irina V; Kucherova, Anastassia E; Agarwal, Shilpi; Tkachev, Alexey G; Gupta, Vinod K

    2018-02-01

    The problem of water pollution is of a great concern. Adsorption is one of the most efficient techniques for removing noxious heavy metals from the solvent phase. This paper presents a detailed information and review on the adsorption of noxious heavy metal ions from wastewater effluents using various adsorbents - i.e., conventional (activated carbons, zeolites, clays, biosorbents, and industrial by-products) and nanostructured (fullerenes, carbon nanotubes, graphenes). In addition to this, the efficiency of developed materials for adsorption of the heavy metals is discussed in detail along with the comparison of their maximum adsorption capacity in tabular form. A special focus is made on the perspectives of further wider applications of nanostructured adsorbents (especially, carbon nanotubes and graphenes) in wastewater treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Synthesis of novel inorganic-organic hybrid materials for simultaneous adsorption of metal ions and organic molecules in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xinliang [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China); Li, Yanfeng, E-mail: liyf@lzu.edu.cn [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China); Yu, Cui; Ma, Yingxia; Yang, Liuqing; Hu, Huaiyuan [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer Novel hybrid materials were synthesized and employed in the absorption of heavy metal and organic pollutants. Black-Right-Pointing-Pointer A novel method for amphiphilic adsorbent material synthesis was first reported in this paper. Black-Right-Pointing-Pointer The adsorbent material showed excellent adsorption capacity to Pb(II) and phenol. - Abstract: In this paper, atom transfer radical polymerization (ATRP) and radical grafting polymerization were combined to synthesize a novel amphiphilic hybrid material, meanwhile, the amphiphilic hybrid material was employed in the absorption of heavy metal and organic pollutants. After the formation of attapulgite (ATP) ATRP initiator, ATRP block copolymers of styrene (St) and divinylbenzene (DVB) were grafted from it as ATP-P(S-b-DVB). Then radical polymerization of acrylonitrile (AN) was carried out with pendent double bonds in the DVD units successfully, finally we got the inorganic-organic hybrid materials ATP-P(S-b-DVB-g-AN). A novel amphiphilic hybrid material ATP-P(S-b-DVB-g-AO) (ASDO) was obtained after transforming acrylonitrile (AN) units into acrylamide oxime (AO) as hydrophilic segment. The adsorption capacity of ASDO for Pb(II) could achieve 131.6 mg/g, and the maximum removal capacity of ASDO towards phenol was found to be 18.18 mg/g in the case of monolayer adsorption at 30 Degree-Sign C. The optimum pH was 5 for both lead and phenol adsorption. The adsorption kinetic suited pseudo-second-order equation and the equilibrium fitted the Freundlich model very well under optimal conditions. At the same time FT-IR, TEM and TGA were also used to study its structure and property.

  20. Adsorption of Selected Pharmaceutical Compounds onto Activated Carbon in Dilute Aqueous Solutions Exemplified by Acetaminophen, Diclofenac, and Sulfamethoxazole

    Science.gov (United States)

    Chang, E.-E.; Wan, Jan-Chi; Liang, Chung-Huei; Dai, Yung-Dun; Chiang, Pen-Chi

    2015-01-01

    The adsorption of three pharmaceuticals, namely, acetaminophen, diclofenac, and sulfamethoxazole onto granular activated carbon (GAC), was investigated. To study competitive adsorption, both dynamic and steady-state adsorption experiments were conducted by careful selection of pharmaceuticals with various affinities and molecular size. The effective diffusion coefficient of the adsorbate was increased with decease in particle size of GAC. The adsorption affinity represented as Langmuir was consistent with the ranking of the octanol-water partition coefficient, K ow. The adsorption behavior in binary or tertiary systems could be described by competition adsorption. In the binary system adsorption replacement occurred, under which the adsorbate with the smaller K ow was replaced by the one with larger K ow. Results also indicated that portion of the micropores could be occupied only by the small target compound, but not the larger adsorbates. In multiple-component systems the competition adsorption might significantly be affected by the macropores and less by the meso- or micropores. PMID:26078989

  1. Ship-in-a-bottle CMPO in MIL-101(Cr) for selective uranium recovery from aqueous streams through adsorption

    Energy Technology Data Exchange (ETDEWEB)

    De Decker, Jeroen [Department of Inorganic and Physical Chemistry, Center for Ordered Materials, Organometallics, and Catalysis (COMOC), Ghent University, Krijgslaan 281-S3, 9000 Ghent (Belgium); Folens, Karel [Laboratory of Analytical Chemistry and Applied Ecochemistry, Ghent University, Coupure Links 653, 9000 Ghent (Belgium); De Clercq, Jeriffa [Department of Materials, Textiles, and Chemical Engineering, Industrial Catalysis and Adsorption Technology (INCAT), Ghent University, Valentin, Vaerwyckweg 1, 9000 Ghent (Belgium); Meledina, Maria; Van Tendeloo, Gustaaf [EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Du Laing, Gijs [Laboratory of Analytical Chemistry and Applied Ecochemistry, Ghent University, Coupure Links 653, 9000 Ghent (Belgium); Van Der Voort, Pascal, E-mail: pascal.vandervoort@ugent.be [Department of Inorganic and Physical Chemistry, Center for Ordered Materials, Organometallics, and Catalysis (COMOC), Ghent University, Krijgslaan 281-S3, 9000 Ghent (Belgium)

    2017-08-05

    Highlights: • Highly stable metal-organic framework, MIL-101(Cr), for uses in aqueous, acidic adsorption. • Uranium recovery from low concentration acidic solutions. • One-step ship-around-the-bottle synthetic approach to incorporate CMPO in MIL-101(Cr). • Highly selective U(VI) adsorbent in competition with a high variety of metals, incl. rare earths and transition metals. • Regenerable and reusable adsorbent via 0.1 M nitric acid stripping. - Abstract: Mesoporous MIL-101(Cr) is used as host for a ship-in-a-bottle type adsorbent for selective U(VI) recovery from aqueous environments. The acid-resistant cage-type MOF is built in-situ around N,N-Diisobutyl-2-(octylphenylphosphoryl)acetamide (CMPO), a sterically demanding ligand with high U(VI) affinity. This one-step procedure yields an adsorbent which is an ideal compromise between homogeneous and heterogeneous systems, where the ligand can act freely within the pores of MIL-101, without leaching, while the adsorbent is easy separable and reusable. The adsorbent was characterized by XRD, FTIR spectroscopy, nitrogen adsorption, XRF, ADF-STEM and EDX, to confirm and quantify the successful encapsulation of the CMPO in MIL-101, and the preservation of the host. Adsorption experiments with a central focus on U(VI) recovery were performed. Very high selectivity for U(VI) was observed, while competitive metal adsorption (rare earths, transition metals...) was almost negligible. The adsorption capacity was calculated at 5.32 mg U/g (pH 3) and 27.99 mg U/g (pH 4), by fitting equilibrium data to the Langmuir model. Adsorption kinetics correlated to the pseudo-second-order model, where more than 95% of maximum uptake is achieved within 375 min. The adsorbed U(VI) is easily recovered by desorption in 0.1 M HNO{sub 3}. Three adsorption/desorption cycles were performed.

  2. Ship-in-a-bottle CMPO in MIL-101(Cr) for selective uranium recovery from aqueous streams through adsorption

    International Nuclear Information System (INIS)

    De Decker, Jeroen; Folens, Karel; De Clercq, Jeriffa; Meledina, Maria; Van Tendeloo, Gustaaf; Du Laing, Gijs; Van Der Voort, Pascal

    2017-01-01

    Highlights: • Highly stable metal-organic framework, MIL-101(Cr), for uses in aqueous, acidic adsorption. • Uranium recovery from low concentration acidic solutions. • One-step ship-around-the-bottle synthetic approach to incorporate CMPO in MIL-101(Cr). • Highly selective U(VI) adsorbent in competition with a high variety of metals, incl. rare earths and transition metals. • Regenerable and reusable adsorbent via 0.1 M nitric acid stripping. - Abstract: Mesoporous MIL-101(Cr) is used as host for a ship-in-a-bottle type adsorbent for selective U(VI) recovery from aqueous environments. The acid-resistant cage-type MOF is built in-situ around N,N-Diisobutyl-2-(octylphenylphosphoryl)acetamide (CMPO), a sterically demanding ligand with high U(VI) affinity. This one-step procedure yields an adsorbent which is an ideal compromise between homogeneous and heterogeneous systems, where the ligand can act freely within the pores of MIL-101, without leaching, while the adsorbent is easy separable and reusable. The adsorbent was characterized by XRD, FTIR spectroscopy, nitrogen adsorption, XRF, ADF-STEM and EDX, to confirm and quantify the successful encapsulation of the CMPO in MIL-101, and the preservation of the host. Adsorption experiments with a central focus on U(VI) recovery were performed. Very high selectivity for U(VI) was observed, while competitive metal adsorption (rare earths, transition metals...) was almost negligible. The adsorption capacity was calculated at 5.32 mg U/g (pH 3) and 27.99 mg U/g (pH 4), by fitting equilibrium data to the Langmuir model. Adsorption kinetics correlated to the pseudo-second-order model, where more than 95% of maximum uptake is achieved within 375 min. The adsorbed U(VI) is easily recovered by desorption in 0.1 M HNO 3 . Three adsorption/desorption cycles were performed.

  3. Study of the adsorption of mercury (II) on lignocellulosic materials under static and dynamic conditions.

    Science.gov (United States)

    Arias Arias, Fabian E; Beneduci, Amerigo; Chidichimo, Francesco; Furia, Emilia; Straface, Salvatore

    2017-08-01

    WHO has declared mercury as one of the most dangerous pollutants for human health. Unfortunately, several cases of rivers and aquifers contaminated by mercury inevitably poses the problem on how to remediate them. Considerable efforts are being addressed to develop cost-effective methodologies, among which the use of low-cost adsorbing materials. In this paper, the adsorption performances of an alternative lignocellulosic material derived from the Spanish broom plant, are presented. This plant is widely diffused in the world and its usage for Hg(II) removal from water in real working conditions requires only minimal pretreatment steps. A thoroughly investigation on the kinetics and thermodynamics of Hg(II) adsorption on Spanish broom is presented, by using Hg(II) polluted aqueous solutions specifically prepared in order to simulate typical groundwater conditions. Several batch experiments, under static conditions, were carried out in order to evaluate the effect of pH, contact time, adsorbent dosage, initial concentration, temperature. A maximum adsorption capacity of 20 mg L -1 can be obtained at pH 5, following a pseudo second order kinetics. Moreover, adsorption experiments in dynamic conditions were carried out using Spanish broom filters. Interestingly, a systematic, unconventional double S-shape breakthrough curve was observed under different experimental conditions, revealing the occurrence of two adsorption processes with different time scales. This behavior has been fitted by a bimodal Thomas model which, unlike the single Thomas fitting, gives satisfactory results with the introduction of a new parameter related to the fraction of surface active sites involved in the adsorption processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Selective Adsorption on Fluorinated Plastic Enables the Optical Detection of Molecular Pollutants in Water

    Science.gov (United States)

    Lanfranco, R.; Giavazzi, F.; Salina, M.; Tagliabue, G.; Di Nicolò, E.; Bellini, T.; Buscaglia, M.

    2016-05-01

    Amorphous fluorinated plastic can be produced with a refractive index similar to that of water, a condition that makes it essentially invisible when immersed in aqueous solutions. Because of this property, even a small amount of adsorbed molecules on the plastic-water interface provides a detectable optical signal. We investigate two distinct substrates made of this material, characterized by different interface areas: a prism and a microporous membrane. We demonstrate that both substrates enable the label-free detection of molecular compounds in water even without any surface functionalization. The adsorption of molecules on the planar surface of the prism provides an increase of optical reflectivity, whereas the adsorption on the internal surface of the microporous membrane yields an increase of scattered light. Despite the different mechanisms, we find a similar optical response upon adsorption. We confirm this result by a theoretical model accounting for both reflection and scattering. We investigate the spontaneous adsorption process for different kinds of molecules: surfactants with different charges, a protein (lysozyme), and a constituent of gasoline (hexane). The measured equilibrium and kinetic constants for adsorption differ by orders of magnitudes among the different classes of molecules. By suitable analytical models, accounting for the effects of mass limitation and transport, we find a simple and general scaling of the adsorption parameters with the molecular size.

  5. Design lithium storage materials by lithium adatoms adsorption at the edges of zigzag silicene nanoribbon: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Gang [Hunan Key Laboratory for Micro–Nano Energy Materials and Devices, School of Physics and Optoelectronic Engineering, Xiangtan University, Hunan, 411105 (China); Mao, Yuliang, E-mail: ylmao@xtu.edu.cn [Hunan Key Laboratory for Micro–Nano Energy Materials and Devices, School of Physics and Optoelectronic Engineering, Xiangtan University, Hunan, 411105 (China); Zhong, Jianxin [Hunan Key Laboratory for Micro–Nano Energy Materials and Devices, School of Physics and Optoelectronic Engineering, Xiangtan University, Hunan, 411105 (China); Yuan, Jianmei [Hunan Key Laboratory for Computation and Simulation in Science and Engineering, School of Mathematics and Computational Science, Xiangtan University, Hunan, 411105 (China); Zhao, Hongquan, E-mail: hqzhao@cigit.ac.cn [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 401120 (China)

    2017-06-01

    Highlights: • Edge-adsorption of Li adatoms on zigzag silicene nanoribbon is preferred in energy to form new type lithium storage materials. • Significant charge transfer from Li adatoms to Si atoms is found, indicating the main ionic interactions. • The band structures of zigzag silicene nanoribbon are sensitive with the variation of sites of Li adatoms at the two edges. • The local magnetic moments at the two edges of zigzag silicene nanoribbon are suppressed by the adsorptions of Li adatoms. - Abstract: First-principles spin-polarized calculations are performed to design lithium storage materials using the active edges of zigzag silicene nanoribbon (ZSiNR). We predict that edge-adsorption of Li adatoms on zigzag silicene nanoribbon is preferred in energy to form new type lithium storage materials. Significant charge transfer from Li adatoms to Si atoms at the edges of ZSiNR is found, indicating the main ionic interactions. It is found that the band structures of ZSiNR with Li adsorptions are sensitive with the variation of sites of adatoms at the two edges. Ferro-magnetic to antiferro-magnetic change is found in ZSiNR with symmetrical adsorption of Li adatoms at its two edges. Other unsymmetrical Li adsorptions at the edges of ZSiNR prefer to stay in ferro-magnetic state as that in narrow pristine ZSiNR.

  6. Design lithium storage materials by lithium adatoms adsorption at the edges of zigzag silicene nanoribbon: A first principle study

    International Nuclear Information System (INIS)

    Guo, Gang; Mao, Yuliang; Zhong, Jianxin; Yuan, Jianmei; Zhao, Hongquan

    2017-01-01

    Highlights: • Edge-adsorption of Li adatoms on zigzag silicene nanoribbon is preferred in energy to form new type lithium storage materials. • Significant charge transfer from Li adatoms to Si atoms is found, indicating the main ionic interactions. • The band structures of zigzag silicene nanoribbon are sensitive with the variation of sites of Li adatoms at the two edges. • The local magnetic moments at the two edges of zigzag silicene nanoribbon are suppressed by the adsorptions of Li adatoms. - Abstract: First-principles spin-polarized calculations are performed to design lithium storage materials using the active edges of zigzag silicene nanoribbon (ZSiNR). We predict that edge-adsorption of Li adatoms on zigzag silicene nanoribbon is preferred in energy to form new type lithium storage materials. Significant charge transfer from Li adatoms to Si atoms at the edges of ZSiNR is found, indicating the main ionic interactions. It is found that the band structures of ZSiNR with Li adsorptions are sensitive with the variation of sites of adatoms at the two edges. Ferro-magnetic to antiferro-magnetic change is found in ZSiNR with symmetrical adsorption of Li adatoms at its two edges. Other unsymmetrical Li adsorptions at the edges of ZSiNR prefer to stay in ferro-magnetic state as that in narrow pristine ZSiNR.

  7. Adsorption on insulator materials enhanced by D implantation

    International Nuclear Information System (INIS)

    Ibarra, A.; Climent-Font, A.; Munoz-Martin, A.

    2005-01-01

    Many insulator materials used in ITER are exposed to a gas phase composed of D, T and a plasma with hydrocarbons, Fe and other particles combined with the presence of an intense neutron and gamma radiation field. Some of these materials (Al 2 O 3 and SiO 2 ) are implanted at room temperature with low energy D and H ions in order to simulate some of the DT gas effects. The implantation is characterized using optical absorption and elastic recoil detection analysis (ERDA) techniques. It is observed that ion implantation as well as electron or gamma irradiation increases the surface scattering and the concentration of C and H adsorbed at the surface, suggesting that a radiation-induced surface degradation process is taking place and an increase of the surface adsorption capability. The effect is higher for higher dose implantation and for lower energy

  8. Adsorption of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-metylphenoxyacetic acid onto activated carbons derived from various lignocellulosic materials.

    Science.gov (United States)

    Doczekalska, Beata; Kuśmierek, Krzysztof; Świątkowski, Andrzej; Bartkowiak, Monika

    2018-05-04

    Adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-metylphenoxyacetic acid (MCPA) from aqueous solution onto activated carbons derived from various lignocellulosic materials including willow, miscanthus, flax, and hemp shives was investigated. The adsorption kinetic data were analyzed using two kinetic models: the pseudo-first order and pseudo-second order equations. The adsorption kinetics of both herbicides was better represented by the pseudo-second order model. The adsorption isotherms of 2,4-D and MCPA on the activated carbons were analyzed using the Freundlich and Langmuir isotherm models. The equilibrium data followed the Langmuir isotherm. The effect of pH on the adsorption was also studied. The results showed that the activated carbons prepared from the lignocellulosic materials are efficient adsorbents for the removal of 2,4-D and MCPA from aqueous solutions.

  9. Selective passive adsorption of nitrate with surfactant treated porous electrode and electrostatic regeneration

    Science.gov (United States)

    Oyarzun, Diego I.; Hemmatifar, Ali; Palko, James W.; Stadermann, Michael; Santiago, Juan G.; Stanford microfluidics lab Team; Lawrence Livermore National Lab Team

    2017-11-01

    Nitrate is an important pollutant in drinking water worldwide, and a number of methods exist for the removal of nitrate from water including ion exchange and reverse osmosis. However, these approaches suffer from a variety of disadvantages including the need for a regenerating brine supply and disposal of used brine for ion exchange and low water recovery ratio for reverse osmosis. We are researching and developing a form of capacitive deionization (CDI) for energy efficient desalination and selective removal of ionic toxins from water. In CDI an electrode is used to electrostatically trap ions in a pair of porous electrodes. Here, we demonstrate the use of high surface area activated carbon electrodes functionalized with ion exchange moieties for adsorption of nitrate from aqueous solution. Unlike a traditional ion exchanger, the functionalized surfaces can be repeatedly regenerated by the application of an electrostatic potential which displaces the bound NO3- while leaving an excess of electronic charge on the electrode. Trimethylammonium has an intrinsic selectivity, we are using this moiety to selectively remove nitrate over chloride. We performed adsorption/desorption cycles under several desorption voltages and ratios of concentrations.

  10. Studies of iodine adsorption and desorption on HTGR coolant circuit materials

    International Nuclear Information System (INIS)

    Osborne, M.F.; Compere, E.L.; de Nordwall, H.J.

    1976-04-01

    Safety studies of the HTGR system indicate that radioactive iodine, released from the fuel to the helium coolant, may pose a problem of concern if no attenuation of the amount of iodine released occurs in the coolant circuit. Since information on iodine behavior in this system was incomplete, iodine adsorption on HTGR materials was studied in vacuum as a function of iodine pressure and of adsorber temperature. Iodine coverages on Fe 3 O 4 and Cr 2 O 3 approached maxima of about 2 x 10 14 and 1 x 10 14 atoms/cm 2 , respectively, whereas the iodine coverage on graphite under similar conditions was found to be less by a factor of about 100. Iodine desorption from the same materials into vacuum or flowing helium was investigated, on a limited basis, as a function of iodine coverage, of adsorber temperature, and of dry vs wet helium. The rate of vacuum desorption from Fe 3 O 4 was related to the spectrum of energies of the adsorption sites. A small amount of water vapor in the helium enhanced desorption from iron powder but appeared to have less effect on desorption from the metal oxides

  11. Sb(III)-Imprinted Organic-Inorganic Hybrid Sorbent Prepared by Hydrothermal-Assisted Surface Imprinting Technique for Selective Adsorption of Sb(III)

    Science.gov (United States)

    Zhang, Dan; Zhao, Yue; Xu, Hong-Bo

    2018-03-01

    Sb(III)-imprinted organic-inorganic hybrid sorbent was prepared by hydrothermal-assisted surface imprinting technique and was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy coupled to an energy dispersive spectrometer and N2 adsorption/desorption isotherms. Hydrothermal-assisted process can improve the selectivity of the Sb(III)-imprinted hybrid sorbent for Sb(III) due to stable control of temperature and pressure. The Sb(III)-imprinted hybrid sorbent IIS indicated higher selectivity for Sb(III), had high static adsorption capacity of 37.3 mg g-1 for Sb(III), displayed stable adsorption capacity in pH range from 4 to 8, reached an rapid adsorption equilibrium within 30 min. According to the correlation coefficient ( r 2 > 0.99), the experimental data fitted better the pseudo-second-order kinetic model and Langmuir equilibrium isotherm.

  12. Li-adsorption on doped Mo2C monolayer: A novel electrode material for Li-ion batteries

    Science.gov (United States)

    Mehta, Veenu; Tankeshwar, K.; Saini, Hardev S.

    2018-04-01

    A first principle calculation has been used to study the electronic and magnetic properties of pristine and N/Mn-doped Mo2C with and without Li-adsorption. The pseudopotential method implemented in SIESTA code based on density functional theory with generalized gradient approximation (GGA) as exchange-correlation (XC) potential has been employed. Our calculated results revealed that the Li gets favorably adsorbed on the hexagonal centre in pristine Mo2C and at the top of C-atom in case of N/Mn-doped Mo2C. The doping of Mn and N atom increases the adsorption of Li in Mo2C monolayer which may results in enhancement of storage capacity in Li-ion batteries. The metallic nature of Li-adsorbed pristine and N/Mn-doped Mo2C monolayer implies a good electronic conduction which is crucial for anode materials for its applications in rechargeable batteries. Also, the open circuit voltage for single Li-adsorption in doped Mo2C monolayer comes in the range of 0.4-1.0 eV which is the optimal range for any material to be used as an anode material. Our result emphasized the enhanced performance of doped Mo2C as an anode material in Li-ion batteries.

  13. Formaldehyde Adsorption into Clinoptilolite Zeolite Modified with the Addition of Rich Materials and Desorption Performance Using Microwave Heating

    Directory of Open Access Journals (Sweden)

    Amin Kalantarifard

    2016-01-01

    Full Text Available Granite, bentonite, and starch were mixed with clinoptilolite zeolite to produce a modified zeolite. The modified zeolite was tested for its ability to absorb formaldehyde from air. The modified sample formaldehyde adsorption capacity was then compared with those of commercially available clinoptilolite, faujasite (Y, mordenite, and zeolite type A. Studies were focused on the relationships between the physical characteristics of the selected zeolites (crystal structure, surface porosity, pore volume, pore size and their formaldehyde adsorption capacity. The removal of starch at high temperature (1100°C and addition of bentonite during modified clinoptilolite zeolite (M-CLZ preparation generated large pores and a higher pore distribution on the sample surface, which resulted in higher adsorption capacity. The formaldehyde adsorption capacities of M-CLZ, clinoptilolite, faujasite (Y, zeolite type A, and mordenite were determined to be 300.5, 194.5, 123.7, 106.7, and 70 mg per gram of zeolite, respectively. The M-CLZ, clinoptilolite, and faujasite (Y crystals contained both mesoporous and microporous structures, which resulted in greater adsorption, while the zeolite type A crystal showed a layered structure and lower surface porosity, which was less advantageous for formaldehyde adsorption. Furthermore, zeolite regeneration using microwave heating was investigated focusing on formaldehyde removal by desorption from the zeolite samples. XRD, XRF, N2 adsorption/desorption, and FE-SEM experiments were performed to characterize the surface structure and textural properties the zeolites selected in this study.

  14. Rapeseed and Raspberry Seed Cakes as Inexpensive Raw Materials in the Production of Activated Carbon by Physical Activation: Effect of Activation Conditions on Textural and Phenol Adsorption Characteristics

    Directory of Open Access Journals (Sweden)

    Koen Smets

    2016-07-01

    Full Text Available The production of activated carbons (ACs from rapeseed cake and raspberry seed cake using slow pyrolysis followed by physical activation of the obtained solid residues is the topic of this study. The effect of activation temperature (850, 900 and 950 °C, activation time (30, 60, 90 and 120 min and agent (steam and CO2 on the textural characteristics of the ACs is investigated by N2 adsorption. In general, higher activation temperatures and longer activation times increase the BET specific surface area and the porosity of the ACs, regardless of the activation agent or raw material. Steam is more reactive than CO2 in terms of pore development, especially in the case of raspberry seed cake. The performance of the ACs in liquid adsorption is evaluated by batch phenol adsorption tests. Experimental data are best fitted by the Freundlich isotherm model. Based on total yield, textural characteristics and phenol adsorption, steam activation at 900 °C for 90 min and CO2 activation at 900 °C for 120 min are found as the best activation conditions. Raspberry seed cake turns out to be a better raw material than rapeseed cake. Moreover, AC from raspberry seed cake produced by steam activation at 900 °C for 90 min performs as well as commercial AC (Norit GAC 1240 in phenol adsorption. The adsorption kinetics of the selected ACs are best fitted by the pseudo-second-order model.

  15. Investigation of the adsorption properties and structures of porous materials for adsorptive removal of pollutants from water

    OpenAIRE

    ZAHRA ABBASI

    2017-01-01

    Adsorption is a low cost and effective method for the removal of non-biodegradable and harmful pollutants from water which has been widely used in industry. Porous and nanoporous materials such as metal organic frameworks (MOFs) and fly ash wastes were used as adsorbents for the removal of pollutants from water. The study showed MOF adsorbent could be fabricated as beads for easy handling and recycling due to the very low buoyancy. Temperature of heat treatment had significant effect on adsor...

  16. Melt Adsorption as a Manufacturing Method for Fine Particles of Wax Matrices without Any Agglomerates.

    Science.gov (United States)

    Shiino, Kai; Fujinami, Yukari; Kimura, Shin-Ichiro; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2017-01-01

    We have focused on melt adsorption as manufacture method of wax matrices to control particles size of granules more easily than melt granulation. The purpose of present study was to investigate the possibility of identifying a hydrophobic material with a low melting point, currently used as a meltable binder of melt granulation, to apply as a novel carrier in melt adsorption. Glyceryl monostearate (GM) and stearic acid (SA) were selected as candidate hydrophobic materials with low melting points. Neusilin US2 (US2), with a particle diameter of around 100 µm was selected as a surface adsorbent, while dibasic calcium phosphate dihydrate (DCPD), was used as a non-adsorbent control to prepare melting granules as a standard for comparison. We prepared granules containing ibuprofen (IBU) by melt adsorption or melt granulation and evaluated the particle size, physical properties and crystallinity of granules. Compared with melt granulation using DCPD, melt adsorption can be performed over a wide range of 14 to 70% for the ratio of molten components. Moreover, the particle size; d50 of obtained granules was 100-200 µm, and these physical properties showed good flowability and roundness. The process of melt adsorption did not affect the crystalline form of IBU. Therefore, the present study has demonstrated for the first time that melt adsorption using a hydrophobic material, GM or SA, has the potential capability to control the particle size of granules and offers the possibility of application as a novel controlled release technique.

  17. Materials selection in mechanical design

    International Nuclear Information System (INIS)

    Ashby, M.F.; Cebon, D.

    1993-01-01

    A novel materials-selection procedure has been developed and implemented in software. The procedure makes use of Materials Selection Charts: a new way of displaying material property data; and performance indices: combinations of material properties which govern performance. Optimisation methods are employed for simultaneous selection of both material and shape. (orig.)

  18. Materials selection in mechanical design

    OpenAIRE

    Ashby , M.; Cebon , D.

    1993-01-01

    A novel materials-selection procedure has been developed and implemented in software. The procedure makes use of Materials Selection Charts: a new way of displaying material property data; and performance indices: combinations of material properties which govern performance. Optimisation methods are employed for simultaneous selection of both material and shape.

  19. Interface chemistry of nanostructured materials: ion adsorption on mesoporous alumina.

    Science.gov (United States)

    Wang, Yifeng; Bryan, Charles; Xu, Huifang; Pohl, Phil; Yang, Yi; Brinker, C Jeffrey

    2002-10-01

    This paper presents a part of our work on understanding the effect of nanoscale pore space confinement on ion sorption by mesoporous materials. Acid-base titration experiments were performed on both mesoporous alumina and alumina particles under various ionic strengths. The point of zero charge (PZC) for mesoporous alumina was measured to be approximately 9.1, similar to that for nonmesoporous alumina materials, indicating that nanoscale pore space confinement does not have a significant effect on the PZC of pore surfaces. However, for a given pH deviation from the PZC, (pH-PZC), the surface charge per mass on mesoporous alumina was as much as 45 times higher than that on alumina particles. This difference cannot be fully explained by the surface area difference between the two materials. Our titration data have demonstrated that nanoscale confinement has a significant effect, most likely via the overlap of the electric double layer (EDL), on ion sorption onto mesopore surfaces. This effect cannot be adequately modeled by existing surface complexation models, which were developed mostly for an unconfined solid-water interface. Our titration data have also indicated that the rate of ion uptake by mesoporous alumina is relatively slow, probably due to diffusion into mesopores, and complete equilibration for sorption could take 4-5 min. A molecular simulation using a density functional theory was performed to calculate ion adsorption coefficients as a function of pore size. The calculation has shown that as pore size is reduced to nanoscales (<10 nm), the adsorption coefficients of ions can vary by more than two orders of magnitude relative to those for unconfined interfaces. The prediction is supported by our experimental data on Zn sorption onto mesoporous alumina. Owing to their unique surface chemistry, mesoporous materials can potentially be used as effective ion adsorbents for separation processes and environmental cleanup.

  20. Factors affecting the removal of ammonia from air on carbonaceous materials: Investigation of reactive adsorption mechanism

    Science.gov (United States)

    Petit, Camille

    Air pollution related to the release of industrial toxic gases, represents one of the main concerns of our modern world owing to its detrimental effect on the environment. To tackle this growing issue, efficient ways to reduce/control the release of pollutants are required. Adsorption of gases on porous materials appears as a potential solution. However, the physisorption of small molecules of gases such as ammonia is limited at ambient conditions. For their removal, adsorbents providing strong adsorption forces must be used/developed. In this study, new carbon-based materials are prepared and tested for ammonia adsorption at ambient conditions. Characterization of the adsorbents' texture and surface chemistry is performed before and after exposure to ammonia to identify the features responsible for high adsorption capacity and for controlling the mechanisms of retention. The characterization techniques include: nitrogen adsorption, thermal analysis, potentiometric titration, FT-IR spectroscopy, X-ray diffraction, Energy Dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and Electron Microscopy. The results obtained indicate that ammonia removal is governed by the adsorbent's surface chemistry. On the contrary, porosity (and thus physisorption) plays a secondary role in this process, unless strong dispersive forces are provided by the adsorbent. The surface chemistry features responsible for the enhanced ammonia adsorption include the presence of oxygen-(carboxyl, hydroxyl, epoxy) and sulfur- (sulfonic) containing groups. Metallic species improve the breakthrough capacity as well as they lead to the formation of Lewis acid-base interactions, hydrogen-bonding or complexation. In addition to the latter three mechanisms, ammonia is retained on the adsorbent surface via Bronsted acid-base interactions or via specific reactions with the adsorbent's functionalities leading to the incorporation of ammonia into the adsorbent's matrix. Another mechanism

  1. Effective Monte Carlo scheme for multicomponent gas adsorption and enantioselectivity in nanoporous materials

    NARCIS (Netherlands)

    van Erp, T.S.; Dubbeldam, D.; Caremans, T.P.; Calero, S.; Martens, J.A.

    2010-01-01

    We devise an efficient Monte Carlo scheme to study the adsorption of a multicomponent gas in a nanoporous material. The configurational bias move is extended by a novel replica exchange procedure where the configurations of the different simulations describing one particular gas content are being

  2. Design lithium storage materials by lithium adatoms adsorption at the edges of zigzag silicene nanoribbon: A first principle study

    Science.gov (United States)

    Guo, Gang; Mao, Yuliang; Zhong, Jianxin; Yuan, Jianmei; Zhao, Hongquan

    2017-06-01

    First-principles spin-polarized calculations are performed to design lithium storage materials using the active edges of zigzag silicene nanoribbon (ZSiNR). We predict that edge-adsorption of Li adatoms on zigzag silicene nanoribbon is preferred in energy to form new type lithium storage materials. Significant charge transfer from Li adatoms to Si atoms at the edges of ZSiNR is found, indicating the main ionic interactions. It is found that the band structures of ZSiNR with Li adsorptions are sensitive with the variation of sites of adatoms at the two edges. Ferro-magnetic to antiferro-magnetic change is found in ZSiNR with symmetrical adsorption of Li adatoms at its two edges. Other unsymmetrical Li adsorptions at the edges of ZSiNR prefer to stay in ferro-magnetic state as that in narrow pristine ZSiNR.

  3. Kinetic studies of potassium permanganate adsorption by activated carbon and its ability as ethylene oxidation material

    Science.gov (United States)

    Aprilliani, F.; Warsiki, E.; Iskandar, A.

    2018-03-01

    Generally, ethylene production in many horticultural products has been seen to be detrimental to the quality during storage and distribution process. For this reason, removing ethylene from storage or distribution atmosphere is needed to maintain the quality. One of the technologies that can be applied is the use of potassium permanganate (KMnO4). KMnO4 is an active compound that can be used as an oxidizing agent on ethylene removal process. KMnO4 is not recommended for direct used application. As the result, additional material is required to impregnate the potassium permanganate. The inert materials used are commercial activated carbon. Activated carbon is chosen because it has high surface area. The purpose of this research is to determine kinetics adsorption and oxidation model of ethylene removal material. The kinetics adsorption was determined using the pseudo-first and second-order kinetic models. The data on adsorption process show that the second-order equation is more suitable to express the adsorption process on this research. The analyzing of the ethylene oxidation capacity increased with time until it reaches an optimal value. The ethylene oxidation rate is able to be estimated by the formula r = 0.1967 [C2H4]0.99 [KMnO4]0.01; MSE = 0.44 %. The actual and estimation data of ethylene oxidation show that the model is fitted to describe the actual ethylene oxidation under same experimental conditions.

  4. Molecular Simulation of Adsorption in Microporous Materials

    OpenAIRE

    Yiannourakou M.; Ungerer P.; Leblanc B.; Rozanska X.; Saxe P.; Vidal-Gilbert S.; Gouth F.; Montel F.

    2013-01-01

    The development of industrial software, the decreasing cost of computing time, and the availability of well-tested forcefields make molecular simulation increasingly attractive for chemical engineers. We present here several applications of Monte-Carlo simulation techniques, applied to the adsorption of fluids in microporous solids such as zeolites and model carbons (pores < 2 nm). Adsorption was computed in the Grand Canonical ensemble ...

  5. Adsorption of selected emerging contaminants onto PAC and GAC: Equilibrium isotherms, kinetics, and effect of the water matrix.

    Science.gov (United States)

    Real, Francisco J; Benitez, F Javier; Acero, Juan L; Casas, Francisco

    2017-07-03

    The removal of three emerging contaminants (ECs) (amitriptyline hydrochloride (AH), methyl salicylate (MS) and 2-phenoxyethanol (PE)) dissolved in several water matrices by means of their adsorption onto powdered activated carbon (PAC) and granular activated carbon (GAC) has been investigated. When dissolved in ultrapure water, adsorption of the ECs followed the trend of AH > MS > PE, with a positive effect of the adsorbent dose. According to the analysis of the adsorption isotherms and adsorption kinetics, PAC showed strongly higher adsorption efficiency in both capacity and velocity of the adsorption, in agreement with its higher mesoporosity. Equilibrium isotherm data were fitted by Langmuir and Freundlich models. Pseudo-second order kinetics modeled very successfully the adsorption process. Finally, the effect of the presence of dissolved organic matter (DOM) in the water matrices (ultrapure water, surface water and two effluents from wastewater treatment plants) on the adsorption of the selected ECs onto PAC was established, as well as its performance on the removal of water quality parameters. Results show a negative effect of the DOM content on the adsorption efficiency. Over 50% of organic matter was removed with high PAC doses, revealing that adsorption onto PAC is an effective technology to remove both micro-pollutants and DOM from water matrices.

  6. Highly selective adsorption of organic dyes containing sulphonic groups using Cu{sub 2}(OH){sub 3}NO{sub 3} nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Jincan; Wang, Honghong; Niu, Helin, E-mail: niuhelin@ahu.edu.cn; Chen, Jingshuai; Song, Jiming; Mao, Changjie; Zhang, Shengyi [Anhui University, College of Chemistry and Chemical Engineering (China); Gao, Yuanhao [Xuchang University, Institute of Surface Micro and Nano Materials (China); Chen, Changle [University of Science and Technology of China, CAS Key Laboratory of Soft Matter Chemistry (China)

    2016-09-15

    In this study, we report a facile approach to synthesize Cu{sub 2}(OH){sub 3}NO{sub 3} nanosheets via simply sonochemical method, which showed high efficiency and selectivity towards the adsorption of organic dyes containing sulphonic groups. The structure and morphology of the nanosheets were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, N{sub 2} adsorption–desorption isotherms, particle size and zeta potential analysis. The adsorption results indicated that the equilibrium data coincide very well with Langmuir isotherm, and the maximum adsorption capacities for Congo red, methyl blue and methyl orange were 1864, 1270 and 959 mg g{sup −1}, respectively. The kinetic data can be explained by pseudo-second-order model. The Cu{sub 2}(OH){sub 3}NO{sub 3} nanosheets also demonstrated high selectivity towards the adsorption of dyes containing sulphonic groups from mixed dye solutions. The rational mechanism of adsorption was attributed to hydrogen bonding, electrostatic attractions and ion exchanges between the dye molecules and Cu{sub 2}(OH){sub 3}NO{sub 3} in the adsorption process.

  7. Adsorption of lead onto smectite from aqueous solution.

    Science.gov (United States)

    Mhamdi, M; Galai, H; Mnasri, N; Elaloui, E; Trabelsi-Ayadi, M

    2013-03-01

    The purpose of this research is to study the effect of a new method of adsorption using membrane filtration to determine the maximum amount of lead adsorbed by clay and investigate the behavior of the clay after adsorption of the said metal. Treatment of wastewater contaminated with heavy metals depends on the characteristics of the effluent, the amount of final discharge, the cost of treatment, and the compatibility of the treatment process. The process of adsorption of heavy metals by clays may be a simple, selective, and economically viable alternative to the conventional physical-chemical treatment. This is justified by the importance of the surface developed by this material, the presence of negative charges on the said surface, the possibility of ion exchange taking place, and its wide availability in nature. The removal of lead from wastewater was studied by using the adsorption technique and using clay as the adsorbent. A method was optimized for adsorption through a membrane approaching natural adsorption. This new method is simple, selective, and the lead adsorption time is about 3 days. The various properties of clay were determined. It was observed that the cation exchange capacity of the clay was 56 meq/100 g of hydrated clay for the raw sample and 82 meq/100 g for the purified sample. The total surface area determined by the methylene blue method was equal to 556 and 783 m(2)/g for the raw and purified samples, respectively. The adsorption kinetics depends on several parameters. The Pb(II) clay, obeys the Langmuir, Freundlich, and the Elovich adsorption isotherms with high regression coefficients. The use of this adsorbent notably decreases the cost of treatment. It was concluded that clay shows a strong adsorption capacity on Pb(II), the maximum interaction occurring with purified clay treated at high concentration of lead. It is proposed that this adsorption through a membrane be extended for the treatment of effluents containing other metals.

  8. Adsorption properties of thermally sputtered calcein film

    Science.gov (United States)

    Kruglenko, I.; Burlachenko, J.; Kravchenko, S.; Savchenko, A.; Slabkovska, M.; Shirshov, Yu.

    2014-05-01

    High humidity environments are often found in such areas as biotechnology, food chemistry, plant physiology etc. The controlling of parameters of such ambiences is vitally important. Thermally deposited calcein films have extremely high adsorptivity at exposure to water vapor of high concentration. This feature makes calcein a promising material for humidity sensing applications. The aim of this work is to explain high sensitivity and selectivity of calcein film to high humidity. Quartz crystal microbalance sensor, AFM and ellipsometry were used for calcein film characterization and adsorption properties investigation. The proposed model takes into account both the molecular properties of calcein (the presence of several functional groups capable of forming hydrogen bonds, and their arrangement) and the features of structure of thermally deposited calcein film (film restructuring due to the switching of bonds "calcein-calcein" to "calcein-water" in the course of water adsorption).

  9. Ship-in-a-bottle CMPO in MIL-101(Cr) for selective uranium recovery from aqueous streams through adsorption.

    Science.gov (United States)

    De Decker, Jeroen; Folens, Karel; De Clercq, Jeriffa; Meledina, Maria; Van Tendeloo, Gustaaf; Du Laing, Gijs; Van Der Voort, Pascal

    2017-08-05

    Mesoporous MIL-101(Cr) is used as host for a ship-in-a-bottle type adsorbent for selective U(VI) recovery from aqueous environments. The acid-resistant cage-type MOF is built in-situ around N,N-Diisobutyl-2-(octylphenylphosphoryl)acetamide (CMPO), a sterically demanding ligand with high U(VI) affinity. This one-step procedure yields an adsorbent which is an ideal compromise between homogeneous and heterogeneous systems, where the ligand can act freely within the pores of MIL-101, without leaching, while the adsorbent is easy separable and reusable. The adsorbent was characterized by XRD, FTIR spectroscopy, nitrogen adsorption, XRF, ADF-STEM and EDX, to confirm and quantify the successful encapsulation of the CMPO in MIL-101, and the preservation of the host. Adsorption experiments with a central focus on U(VI) recovery were performed. Very high selectivity for U(VI) was observed, while competitive metal adsorption (rare earths, transition metals...) was almost negligible. The adsorption capacity was calculated at 5.32mg U/g (pH 3) and 27.99mg U/g (pH 4), by fitting equilibrium data to the Langmuir model. Adsorption kinetics correlated to the pseudo-second-order model, where more than 95% of maximum uptake is achieved within 375min. The adsorbed U(VI) is easily recovered by desorption in 0.1M HNO 3 . Three adsorption/desorption cycles were performed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Treatment of aqueous diethyl phthalate by adsorption using a functional polymer resin.

    Science.gov (United States)

    Xu, Zhengwen; Zhang, Weiming; Pan, Bingcai; Lv, Lu; Jiang, Zhengmao

    2011-01-01

    To study the adsorptive separation efficiency, adsorption and desorption performances of diethyl phthalate (DEP) were investigated with a functional polymer resin (NDA-702). A macroporous polymer resin (XAD-4) and a coal-based granular activated carbon (AC-750) were chosen for comparison. The kinetic adsorption data obeyed the pseudo-second-order rate model, and the adsorption processes were limited by both film and intraparticle diffusions. Adsorption equilibrium data were well fitted by the Freundlich equation, and the larger uptake and higher selection of NDA-702 than AC-750 and XAD-4 was probably due to the microporous structure, phenyl rings and polar groups on NDA-702. Thermodynamic adsorption studies indicated that the test adsorbents spontaneously adsorbed DEP, driven mainly by enthalpy change. Continuous fixed-bed runs demonstrated that there no significant loss of the resin's adsorption capacity and there was complete regeneration of NDA-702. The results suggest that NDA-702 has excellent potential as an adsorption material for water treatment.

  11. Preparation of new diatomite-chitosan composite materials and their adsorption properties and mechanism of Hg(II).

    Science.gov (United States)

    Fu, Yong; Xu, Xiaoxu; Huang, Yue; Hu, Jianshe; Chen, Qifan; Wu, Yaoqing

    2017-12-01

    A new composite absorbent with multifunctional and environmental-friendly structures was prepared using chitosan, diatomite and polyvinyl alcohol as the raw materials, and glutaraldehyde as a cross-linking agent. The structure and morphology of the composite absorbent, and its adsorption properties of Hg(II) in water were characterized with Fourier transform infrared (FT-IR) spectra, scanning electron microscope (SEM), X-ray diffraction (XRD), Brunauer Emmett Teller (BET) measurements and ultraviolet-visible (UV-Vis) spectra. The effect of the pH value and contact time on the removal rate and absorbance of Hg(II) was discussed. The adsorption kinetic model and static adsorption isotherm and regeneration of the obtained composite absorbent were investigated. The results indicated that the removal of Hg(II) on the composite absorbent followed a rapid adsorption for 50 min, and was close to the adsorption saturation after 1 h, which is in accord with the Langmuir adsorption isotherm model and the pseudo-second-order kinetic model. When the pH value, contact time and the mass of the composite absorbent was 3, 1 h and 100 mg, respectively, the removal rate of Hg(II) on the composite absorbent reached 77%, and the maximum adsorption capacity of Hg(II) reached 195.7 mg g -1 .

  12. Preparation of new diatomite–chitosan composite materials and their adsorption properties and mechanism of Hg(II)

    Science.gov (United States)

    Fu, Yong; Xu, Xiaoxu; Huang, Yue; Hu, Jianshe; Chen, Qifan; Wu, Yaoqing

    2017-01-01

    A new composite absorbent with multifunctional and environmental-friendly structures was prepared using chitosan, diatomite and polyvinyl alcohol as the raw materials, and glutaraldehyde as a cross-linking agent. The structure and morphology of the composite absorbent, and its adsorption properties of Hg(II) in water were characterized with Fourier transform infrared (FT-IR) spectra, scanning electron microscope (SEM), X-ray diffraction (XRD), Brunauer Emmett Teller (BET) measurements and ultraviolet–visible (UV–Vis) spectra. The effect of the pH value and contact time on the removal rate and absorbance of Hg(II) was discussed. The adsorption kinetic model and static adsorption isotherm and regeneration of the obtained composite absorbent were investigated. The results indicated that the removal of Hg(II) on the composite absorbent followed a rapid adsorption for 50 min, and was close to the adsorption saturation after 1 h, which is in accord with the Langmuir adsorption isotherm model and the pseudo-second-order kinetic model. When the pH value, contact time and the mass of the composite absorbent was 3, 1 h and 100 mg, respectively, the removal rate of Hg(II) on the composite absorbent reached 77%, and the maximum adsorption capacity of Hg(II) reached 195.7 mg g−1. PMID:29308226

  13. Multifunctional PMMA@Fe3O4@DR Magnetic Materials for Efficient Adsorption of Dyes

    Directory of Open Access Journals (Sweden)

    Bing Yu

    2017-10-01

    Full Text Available Magnetic porous microspheres are widely used in modern wastewater treatment technology due to their simple and quick dye adsorption and separation functions. In this article, we prepared porous polymethylmethacrylate (PMMA microspheres by the seed-swelling method, followed by in situ formation of iron oxide (Fe3O4 nanoparticles within the pore. Then, we used diazo-resin (DR to encapsulate the porous magnetic microspheres and achieve PMMA@Fe3O4@DR magnetic material. We studied the different properties of magnetic microspheres by different dye adsorption experiments before and after the encapsulation and demonstrated that the PMMA@Fe3O4@DR microspheres can be successfully used as a reusable absorbent for fast and easy removal of anionic and aromatic dyes from wastewater and can maintain excellent magnetic and adsorption properties in harsh environments.

  14. Determination of Adsorption Capacity and Kinetics of Amidoxime-Based Uranium Adsorbent Braided Material in Unfiltered Seawater Using a Flume Exposure System

    International Nuclear Information System (INIS)

    Gill, Gary A.; Kuo, Li-Jung; Strivens, Jonathan E.; Park, Jiyeon; Bonheyo, George T.; Jeters, Robert T.; Schlafer, Nicholas J.; Wood, Jordana R.

    2015-01-01

    PNNL has developed a recirculating flume system for exposing braided adsorbent material to natural seawater under realistic temperature and flow-rate exposure conditions. The flumes are constructed of transparent acrylic material; they allow external light to pass into the flumes and permit photosynthetic growth of naturally present marine organisms (biofouling). Because the system consists of two flumes, replicate experiments can be conducted in which one of the flumes can be manipulated relative to the other. For example, one flume can be darkened to eliminate light exposure by placing a black tarp over the flume such that dark/light experiments can be conducted. Alternatively, two different braided adsorbents can be exposed simultaneously with no potential cross contamination issues. This report describes the first use of the PNNL flume system to study the impact of biofouling on adsorbent capacity. Experiments were conducted with the ORNL AI8 braided adsorbent material in light-exposed and darkened flumes for a 42-day exposure experiment. The major objective of this effort is to develop a system for the exposure of braided adsorbent material to unfiltered seawater, and to demonstrate the system by evaluating the performance of adsorption material when it is exposed to natural marine biofouling as it would be when the technology is used in the marine environment. Exposures of amidoxime-based polymeric braid adsorbents prepared by Oak Ridge Natural Laboratory (ORNL) were exposed to ambient seawater at 20°C in a flume system. Adsorption kinetics and adsorption capacity were assessed using time series determinations of uranium adsorption and one-site ligand saturation modeling. Biofouling in sunlight surface seawater has the potential to significantly add substantial biogenic mass to adsorption material when it is exposed for periods greater than 21 days. The observed biomass increase in the light flume was approximately 80% of the adsorbent mass after 42 days

  15. Determination of Adsorption Capacity and Kinetics of Amidoxime-Based Uranium Adsorbent Braided Material in Unfiltered Seawater Using a Flume Exposure System

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Gary A. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Strivens, Jonathan E. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Park, Jiyeon [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Bonheyo, George T. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Jeters, Robert T. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Schlafer, Nicholas J. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Wood, Jordana R. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.

    2015-08-31

    PNNL has developed a recirculating flume system for exposing braided adsorbent material to natural seawater under realistic temperature and flow-rate exposure conditions. The flumes are constructed of transparent acrylic material; they allow external light to pass into the flumes and permit photosynthetic growth of naturally present marine organisms (biofouling). Because the system consists of two flumes, replicate experiments can be conducted in which one of the flumes can be manipulated relative to the other. For example, one flume can be darkened to eliminate light exposure by placing a black tarp over the flume such that dark/light experiments can be conducted. Alternatively, two different braided adsorbents can be exposed simultaneously with no potential cross contamination issues. This report describes the first use of the PNNL flume system to study the impact of biofouling on adsorbent capacity. Experiments were conducted with the ORNL AI8 braided adsorbent material in light-exposed and darkened flumes for a 42-day exposure experiment. The major objective of this effort is to develop a system for the exposure of braided adsorbent material to unfiltered seawater, and to demonstrate the system by evaluating the performance of adsorption material when it is exposed to natural marine biofouling as it would be when the technology is used in the marine environment. Exposures of amidoxime-based polymeric braid adsorbents prepared by Oak Ridge Natural Laboratory (ORNL) were exposed to ambient seawater at 20°C in a flume system. Adsorption kinetics and adsorption capacity were assessed using time series determinations of uranium adsorption and one-site ligand saturation modeling. Biofouling in sunlight surface seawater has the potential to significantly add substantial biogenic mass to adsorption material when it is exposed for periods greater than 21 days. The observed biomass increase in the light flume was approximately 80% of the adsorbent mass after 42 days

  16. Molecular simulation of methane adsorption characteristics on coal macromolecule

    Science.gov (United States)

    Yang, Zhiyuan; He, Xiaoxiao; Meng, Zhuoyue; Xue, Wenying

    2018-02-01

    In this paper, the molecular model of anthracite named Wender2 was selected to study the adsorption behaviour of single component CH4 and the competitive adsorption of CH4/CO2, CH4/H2O and CH4/N2. The molecular model of anthracite was established by molecular simulation software (Materials Studio 8.0), and Grand Canonical Monte Carlo (GCMC) simulations were carried out to investigate the single and binary component adsorption. The effects of pressure and temperature on the adsorption position, adsorption energy and adsorption capacity were mainly discussed. The results show that for the single component adsorption, the adsorption capacity of CH4 increases rapidly with the pressure ascending, and then tends to be stable after the first step. The low temperature is favourable for the adsorption of CH4, and the high temperature promotes desorption quantity of CH4 from the coal. Adsorbent molecules are preferentially adsorbed on the edge of coal macromolecules. The order of adsorption capacity of CH4/CO2, CH4/H2O and CH4/N2 in the binary component is H2O>CO2>CH4>N2. The change of pressure has little effect on the adsorption capacity of the adsorbent in the competitive adsorption, but it has a great influence on the adsorption capacity of the adsorbent, and there is a positive correlation between them.

  17. Pb(II) adsorption by a novel activated carbon - alginate composite material. A kinetic and equilibrium study.

    Science.gov (United States)

    Cataldo, Salvatore; Gianguzza, Antonio; Milea, Demetrio; Muratore, Nicola; Pettignano, Alberto

    2016-11-01

    The adsorption capacity of an activated carbon - calcium alginate composite material (ACAA-Ca) has been tested with the aim of developing a new and more efficient adsorbent material to remove Pb(II) ion from aqueous solution. The study was carried out at pH=5, in NaCl medium and in the ionic strength range 0.1-0.75molL -1 . Differential Pulse Anodic Stripping Voltammetry (DP-ASV) technique was used to check the amount of Pb(II) ion removed during kinetic and equilibrium experiments. Different kinetic (pseudo first order, pseudo second order and Vermuelen) and equilibrium (Langmuir and Freundlich) models were used to fit experimental data, and were statistically compared. Calcium alginate (AA-Ca) improves the adsorption capacity (q m ) of active carbon (AC) in the ACAA-Ca adsorbent material (e.g., q m =15.7 and 10.5mgg -1 at I=0.25molL -1 , for ACAA-Ca and AC, respectively). SEM-EDX and thermogravimetric (TGA) measurements were carried out in order to characterize the composite material. The results of the speciation study on the Pb(II) solution and of the characterization of the ACAA-Ca and of the pristine AA-Ca and AC were evaluated in order to explain the specific contribution of AC and AA-Ca to the adsorption of the metal ion. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A New Adsorbent Composite Material Based on Metal Fiber Technology and Its Application in Adsorption Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Ursula Wittstadt

    2015-08-01

    Full Text Available In order to achieve process intensification for adsorption chillers and heat pumps, a new composite material was developed based on sintered aluminum fibers from a melt-extraction process and a dense layer of silico-aluminophosphate (SAPO-34 on the fiber surfaces. The SAPO-34 layer was obtained through a partial support transformation (PST process. Preparation of a composite sample is described and its characteristic pore size distribution and heat conductivity are presented. Water adsorption data obtained under conditions of a large pressure jump are given. In the next step, preparation of the composite was scaled up to larger samples which were fixed on a small adsorption heat exchanger. Adsorption measurements on this heat exchanger element that confirm the achieved process intensification are presented. The specific cooling power for the adsorption step per volume of composite is found to exceed 500 kW/m3 under specified conditions.

  19. Manipulating Adsorption-Insertion Mechanisms in Nanostructured Carbon Materials for High-Efficiency Sodium Ion Storage

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Shen [College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072 China; Xiao, Lifen [College of Chemistry, Central China Normal University, Wuhan 430079 China; Pacific Northwest National Laboratory, Richland WA 99352 USA; Sushko, Maria L. [Pacific Northwest National Laboratory, Richland WA 99352 USA; Han, Kee Sung [Pacific Northwest National Laboratory, Richland WA 99352 USA; Shao, Yuyan [Pacific Northwest National Laboratory, Richland WA 99352 USA; Yan, Mengyu [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 China; Liang, Xinmiao [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Science, Wuhan 430071 China; Mai, Liqiang [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 China; Feng, Jiwen [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Science, Wuhan 430071 China; Cao, Yuliang [College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072 China; Ai, Xinping [College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072 China; Yang, Hanxi [College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072 China; Liu, Jun [Pacific Northwest National Laboratory, Richland WA 99352 USA

    2017-05-12

    Hard carbon is one of the most promising anode materials for sodium-ion batteries, but the low coulombic efficiency is still a key barrier. In this paper we synthesized a series of nanostructured hard carbon materials with controlled architectures. Using a combination of in-situ XRD mapping, ex-situ NMR, EPR, electrochemical techniques and simulations, an “adsorption-intercalation” (A-I) mechanism is established for Na ion storage. During the initial stages of Na insertion, Na ions adsorb on the defect sites of hard carbon with a wide adsorption energy distribution, producing a sloping voltage profile. In the second stage, Na ions intercalate into graphitic layers with suitable spacing to form NaCx compounds similar to the Li ion intercalation process in graphite, producing a flat low voltage plateau. The cation intercalation with a flat voltage plateau should be enhanced and the sloping region should be avoided. Guided by this knowledge, non-porous hard carbon material has been developed which has achieved high reversible capacity and coulombic efficiency to fulfill practical application.

  20. Relationship between carbon microstructure, adsorption energy and hydrogen adsorption capacity at different temperatures

    International Nuclear Information System (INIS)

    Jacek Jagiello; Matthias Thommes

    2005-01-01

    Various microporous materials such as activated carbons, nano-tubes, synthetic microporous carbons as well as metal organic framework materials are being considered for hydrogen storage applications by means of physical adsorption. To develop materials of practical significance for hydrogen storage it is important to understand the relationships between pore sizes, adsorption energies and adsorption capacities. The pore size distribution (PSD) characterization is traditionally obtained from the analysis of nitrogen adsorption isotherms measured at 77 K. However, a portion of the pores accessible to H 2 may not be accessible to N 2 at this temperature. Therefore, it was recently proposed to use the DFT analysis of H 2 adsorption isotherms to characterize pore structure of materials considered for hydrogen storage applications. In present work, adsorption isotherms of H 2 and N 2 at cryogenic temperatures are used for the characterization of carbon materials. Adsorption measurements were performed with Autosorb 1 MP (Quantachrome Instruments, Boynton Beach, Florida, USA). As an example, Fig 1 compares PSDs calculated for the activated carbon sample (F400, Calgon Carbon) using combined H 2 and N 2 data, and using N 2 isotherm only. The nitrogen derived PSD does not include certain amount of micropores which are accessible to H 2 but not to N 2 molecules. Obviously, the difference in the calculated PSDs by the two methods will depend on the actual content of small micropores in a given sample. Carbon adsorption properties can also be characterized by the isosteric heat of adsorption, Qst, related to the adsorption energy and dependent on the carbon pore/surface structure. Fig 2 shows Qst data calculated using the Clausius-Clapeyron equation from H 2 isotherms measured at 77 K and 87 K for the carbon molecular sieve CMS 5A (Takeda), oxidized single wall nano-tubes (SWNT), and graphitized carbon black (Supelco). The Qst values decrease with increasing pore sizes. The

  1. Carbon dioxide selective adsorption within a highly stable mixed-ligand Zeolitic Imidazolate Framework

    KAUST Repository

    Huang, Lin

    2014-08-01

    A new mixed-ligand Zeolitic Imidazolate Framework Zn4(2-mbIm) 3(bIm)5·4H2O (named JUC-160, 2-mbIm = 2-methylbenzimidazole, bIm = benzimidazole and JUC = Jilin University China) was synthesized with a solvothermal reaction of Zn(NO3) 2·6H2O, bIm and 2-mbIm in DMF solution at 180 °C. Topological analysis indicated that JUC-160 has a zeolite GIS (gismondine) topology. Study of the gas adsorption and thermal and chemical stability of JUC-160 demonstrated its selective adsorption property for carbon dioxide, high thermal stability, and remarkable chemical resistance to boiling alkaline water and organic solvent for up to one week. © 2014 Elsevier B.V.

  2. Selection of design parameters of diffusion barrier in a passive 222Rn sampler based on activated charcoal adsorption

    International Nuclear Information System (INIS)

    Wei Suxia

    1992-01-01

    A method concerning selection of design parameters of diffusion barrier in a passive 222 Rn sampler based on activated charcoal adsorption. The proper parameter value of diffusion barrier is obtained by means of linearization of 222 Rn adsorption versus the exposure time. Thus, the influence of temperature on measured results may be greatly decreased, and higher sensitivity of the detector may be maintained

  3. Fixed-bed adsorption separation of xylene isomers over sio2/silicallite-1 core-shell adsorbents

    KAUST Repository

    Khan, Easir A.

    2013-12-29

    SiO2/Silicalite-1 core-shell material has been demonstrated as potential shape selective adsorbent in gas phase separation of p-xylene from a mixture of p/o-xylene isomers. The core-shell composite comprised of large silica core and thin polycrystalline silicalite-1 shell which was synthesized via a self-assembly of silicalite-1 nanocrystals on core silica surface followed by a secondary seeded growth method. The core materials, SiO2 used in this study has mesoporosity with an average pore diameter of 60Å and hence offers no shape selectivity for xylene isomers. However, the shell, silicalite-1 contains rigid pore structures and preferentially adsorbs p-xylene from their isomers mixtures. A series of adsorption fixed bed breakthrough adsorption/desorption experiment was performed to obtain the equilibrium isotherms and adsorption isotherm parameters of xylene isomers. The equilibrium isotherms of xylene isomers follow the Langmuir\\'s model. A chromatographic adsorption model has been used to describe the fixed-bed breakthrough profiles of xylene isomers. The model has successfully predicted the responses of the binary mixtures of p/o-xylene isomers. The SiO2/silicalite-1 core-shell adsorbents have shown para-selectivity as high as 15. © Bangladesh Uni. of Engg. & Tech.

  4. Improvement of pesticide adsorption capacity of cellulose fibre by high-energy irradiation-initiated grafting of glycidyl methacrylate

    International Nuclear Information System (INIS)

    Takacs, E.; Wojnarovits, L.; Borsa, J.

    2011-01-01

    Complete text of publication follows. Sustainable development needs renewable raw materials applied wherever possible. Cellulose is the most abundant biopolymer on earth; various modifications of its properties for special uses are important issues of the research. Some contaminations in wastewaters, e.g. pesticides, are hydrophobic materials; their adsorption on hydrophilic cellulose substrates is very limited. Cotton cellulose was grafted by glycidyl methacrylate in simultaneous grafting using gamma irradiation initiation. Water uptake of cellulose significantly decreased while adsorption of phenol and a pesticide molecule (2,4-dichlorophenoxyacetic acid: 2,4-D) increased upon grafting. As the figure shows on untreated sample even negative 2,4-D adsorption occurred, due to the selective adsorption of water from the solution; the adsorption did not approach its saturation value even in a 30 hours time period investigated. Saturation of phenol adsorption was achieved after 5-6 hours; adsorption equilibrium data of phenol fitted the Langmuir isotherm.

  5. High performance of phosphate-functionalized graphene oxide for the selective adsorption of U(VI) from acidic solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xia [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); University of Science and Technology of China, Hefei, 230026 (China); Li, Jiaxing, E-mail: lijx@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions (China); School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 215123, Suzhou (China); Wang, Xiangxue; Chen, Changlun [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); Wang, Xiangke [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions (China); School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 215123, Suzhou (China); Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2015-11-15

    In this study, phosphate-functionalized graphene oxide (PGO) was prepared by grafting triethyl phosphite onto the surface of GO using Arbuzov reaction. The as-prepared PGO was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transformed infrared spectroscopy and Zeta potential. The application of the PGO to remove U(VI) from aqueous solution was investigated with a maximum adsorption capacity of 251.7 mg/g at pH = 4.0 ± 0.1 and T = 303 K. The adsorption mechanism was also investigated by X-ray photoelectron spectroscopy analysis, indicating a chemical adsorption of U(VI) on PGO surface. Moreover, experimental results gave a better removal efficiency toward U(VI) on PGO surface than other heavy metal ions at acidic solution, indicating the selective extraction of U(VI) from environmental pollutants. - Highlights: • The successful grafting phosphonate to graphene oxide by the Arbuzov reaction. • Selective adsorption of U(VI) on PGO surface over other heavy metal ions from acidic solution. • Electrostatic interactions of U(VI) with phosphonate and oxygen-containing functional groups on PGO surface. • Higher sorption capacity on PGO surface than GO surface for the U(VI) removal.

  6. The effect of multi-component adsorption on selectivity in ion exchange displacement systems.

    Science.gov (United States)

    Tugcu, N; Cramer, S M

    2005-01-21

    This paper examines chemically selective displacement chromatography using affinity ranking plots, batch displacer screening experiments, column displacements, multi-component adsorption isotherms and spectroscopy. The affinity ranking plot indicated that the displacers, sucrose octasulfate (SOS) and tatrazine, should possess sufficient affinity to displace the proteins amyloglucosidase and apoferritin over a wide range of operating conditions. In addition, the plots indicated that the separation of these proteins by displacement chromatography would be extremely difficult. Further, the two proteins were shown to have very similar retention times under shallow linear gradient conditions. When batch displacement experiments were carried out, both tartrazine and SOS exhibited significant selectivity differences with respect to their ability to displace these two proteins, in contrast to the affinity ranking plot results. Column displacement experiments carried out with sucrose octasulfate agreed with the predictions of the affinity ranking plots, with both proteins being displaced but poorly resolved under several column displacement conditions. On the other hand, column displacement with tartrazine as the displacer resulted in the selective displacement and partial purification of apoferritin. Single- and multi-component isotherms of the proteins with or without the presence of displacers were determined and were used to help explain the selectivity reversals observed in the column and batch displacement experiments. In addition, fluorescence and CD spectra suggested that the displacers did not induce any structural changes to either of the proteins. The results in this paper indicate that multi-component adsorption behavior can be exploited for creating chemically selective displacement separations.

  7. Methylene blue adsorption by algal biomass based materials: biosorbents characterization and process behaviour.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-08-17

    Dead algal biomass is a natural material that serves as a basis for developing a new family of sorbent materials potentially suitable for many industrial applications. In this work an algal industrial waste from agar extraction process, algae Gelidium and a composite material obtained by immobilization of the algal waste with polyacrylonitrile (PAN) were physical characterized and used as biosorbents for dyes removal using methylene blue as model. The apparent and real densities and the porosity of biosorbents particles were determined by mercury porosimetry and helium picnometry. The methylene blue adsorption in the liquid phase was the method chosen to calculate the specific surface area of biosorbent particles as it seems to reproduce better the surface area accessible to metal ions in the biosorption process than the N2 adsorption-desorption dry method. The porous texture of the biosorbents particles was also studied. Equilibrium isotherms are well described by the Langmuir equation, giving maximum uptake capacities of 171, 104 and 74 mg g(-1), respectively for algae, algal waste and composite material. Kinetic experiments at different initial methylene blue concentrations were performed to evaluate the equilibrium time and the importance of the driving force to overcome mass transfer resistances. The pseudo-first-order and pseudo-second-order kinetic models adequately describe the kinetic data. The biosorbents used in this work proved to be promising materials for removing methylene blue from aqueous solutions.

  8. Decolorization of a textile vat dye by adsorption on waste ash

    Directory of Open Access Journals (Sweden)

    MIODRAG ŠMELCEROVIĆ

    2010-06-01

    Full Text Available An adsorption process using cheap adsorbents could be described as a simple, selective and low cost alternative for the treatment of colored waste water compared to conventional physical and chemical processes. In this study the use of a natural waste adsorbent–ash was investigated for the removal of a textile vat dye Ostanthren blue GCD remaining after the dyeing of cotton textile. The ash obtained as a waste material during the burning of brown coal in the heating station of Leskovac (Serbia was used for the treatment of waste waters from the textile industry, i.e., waste water after the dyeing process. The effect of ash quantity, initial dye concentration, pH and agitation time on adsorption was studied. The Langmuir model was used to describe the adsorption isotherm. Based on the analytical expression of the Langmuir model, the adsorption constants, such as adsorption capacity and adsorption energy, were found. Pseudo first and second order kinetic models were studied to evaluate the kinetic data.

  9. Electrical swing adsorption gas storage and delivery system

    Science.gov (United States)

    Judkins, Roddie R.; Burchell, Timothy D.

    1999-01-01

    Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided.

  10. Evaluation of procedures for estimation of the isosteric heat of adsorption in microporous materials

    NARCIS (Netherlands)

    Krishna, R.

    2014-01-01

    The major objective of this communication is to evaluate procedures for estn. of the isosteric heat of adsorption, Qst, in microporous materials such as zeolites, metal org. frameworks (MOFs)​, and zeolitic imidazolate frameworks (ZIFs)​. For this purpose we have carefully analyzed published exptl.

  11. Method for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    Science.gov (United States)

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2003-10-07

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  12. Apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    Science.gov (United States)

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2005-12-13

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  13. Evaluation of adsorption selectivity of immunoglobulins M, A and G and purification of immunoglobulin M with mixed-mode resins.

    Science.gov (United States)

    Luo, Ying-Di; Zhang, Qi-Lei; Yao, Shan-Jing; Lin, Dong-Qiang

    2018-01-19

    This study investigated adsorption selectivity of immunoglobulin M (IgM), immunoglobulin A (IgA) and immunoglobulin (IgG) on four mixed-mode resins with the functional ligands of 4-mercatoethyl-pyridine (MEP), 2-mercapto-1-methylimidazole (MMI), 5-aminobenzimidazole (ABI) and tryptophan-5-aminobenzimidazole (W-ABI), respectively. IgM purification processes with mixed-mode resins were also proposed. All resins showed typical pH-dependent adsorption, and high adsorption capacity was found at pH 5.0-8.0 with low adsorption capacity under acidic conditions. Meanwhile, high selectivity of IgM/IgA and IgM/IgG was obtained with ABI-4FF and MMI-4FF resins at pH 4.0-5.0, which was used to develop a method for IgM, IgA and IgG separation by controlling loading and elution pH. Capture of monoclonal IgM from cell culture supernatant with ABI-4FF resins was studied and high purity (∼99%) and good recovery (80.8%) were obtained. Moreover, IgM direct separation from human serum with combined two-step chromatography (ABI-4FF and MMI-4FF) was investigated, and IgM purity of 65.2% and a purification factor of 28.3 were obtained after optimization. The antibody activity of IgM was maintained after purification. The results demonstrated that mixed-mode chromatography with specially-designed ligands is a promising way to improve adsorption selectivity and process efficiency of IgM purification from complex feedstock. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Super-resolution fluorescence imaging of nanoimprinted polymer patterns by selective fluorophore adsorption combined with redox switching

    KAUST Repository

    Yabiku, Y.; Kubo, S.; Nakagawa, M.; Vacha, M.; Habuchi, Satoshi

    2013-01-01

    We applied a super-resolution fluorescence imaging based on selective adsorption and redox switching of the fluorescent dye molecules for studying polymer nanostructures. We demonstrate that nano-scale structures of polymer thin films can

  15. Biogas pre-upgrading by adsorption of trace compounds onto granular activated carbons and an activated carbon fiber-cloth.

    Science.gov (United States)

    Boulinguiez, B; Le Cloirec, P

    2009-01-01

    The study assesses the adsorption onto activated carbon materials of selected volatile organic compounds -VOCs- (dichloromethane, 2-propanol, toluene, siloxane D4) in a biogas matrix composed of methane and carbon dioxide (55:45 v/v). Three different adsorbents are tested, two of them are granular activated carbon (GAC), and the last is an activated carbon fiber-cloth (ACFC). The adsorption isotherm data are fitted by different models by nonlinear regression. The Langmuir-Freundlich model appears to be the adequate one to describe the adsorption phenomena independently of the VOC considered or the adsorbent. The adsorbents present attractive adsorption capacity of the undesirable compounds in biogas atmosphere though the maximum adsorption capacities for a VOC are quite different from each other. The adsorption kinetics are characterized through three coefficients: the initial adsorption coefficient, the external film mass transfer coefficient and the internal diffusion coefficient of Weber. The ACFC demonstrates advanced kinetic yields compared to the granular activated carbon materials whatever VOC is considered. Therefore, pre-upgrading of biogas produced from wastewater sludge or co-digestion system by adsorption onto activated carbon appears worth investigating. Especially with ACFC material that presents correct adsorption capacities toward VOCs and concrete regeneration process opportunity to realize such process.

  16. Selectivity of β-Sitosterol Imprinted Polymers as Adsorbent

    Science.gov (United States)

    Fauziah, St.; Hariani Soekamto, Nunuk; Taba, Paulina; Bachri Amran, Muh

    2018-03-01

    Molecularly Imprinted Polymers (MIPs) are smart materials that have been used as adsorbents in separation processes of compounds because they have a memorial effect to a certain compound. In this research, MIP synthesized was used as adsorbent for β-sitosterol. The objective of the research was to know the selectivity of MIP in adsorbing β-sitosterol. The concentrations of β-sitosterol after adsorption and desorption were analyzed by a UV-Vis spectrophotometer and the selectivity test was analyzed by HPLC. Result showed that the MIP had high adsorption ability ( qe ). The recovery of β-sitosterol from MIP for the adsorption-desorption process was 68.48%. The MIP was very selective to β-sitosterol compared to cholesterol because it can adsorb β-sitosterol as many as 100%, whereas the adsorption of cholesterol was only 30.27 %.

  17. Exploiting Framework Flexibility of a Metal-Organic Framework for Selective Adsorption of Styrene over Ethylbenzene

    NARCIS (Netherlands)

    Mukherjee, S.; Joarder, B.; Desai, A.V.; Manna, B.; Krishna, R.; Ghosh, S.K.

    2015-01-01

    The separation of styrene and ethylbenzene mixtures is industrially important and is currently performed in highly energy-intensive vacuum distillation columns. The primary objective of our investigation is to offer an energy-efficient alternative for selective adsorption of styrene by a flexible

  18. Materials Selection for Aerospace Systems

    Science.gov (United States)

    Arnold, Steven M.; Cebon, David; Ashby, Mike

    2012-01-01

    A systematic design-oriented, five-step approach to material selection is described: 1) establishing design requirements, 2) material screening, 3) ranking, 4) researching specific candidates and 5) applying specific cultural constraints to the selection process. At the core of this approach is the definition performance indices (i.e., particular combinations of material properties that embody the performance of a given component) in conjunction with material property charts. These material selection charts, which plot one property against another, are introduced and shown to provide a powerful graphical environment wherein one can apply and analyze quantitative selection criteria, such as those captured in performance indices, and make trade-offs between conflicting objectives. Finding a material with a high value of these indices maximizes the performance of the component. Two specific examples pertaining to aerospace (engine blades and pressure vessels) are examined, both at room temperature and elevated temperature (where time-dependent effects are important) to demonstrate the methodology. The discussion then turns to engineered/hybrid materials and how these can be effectively tailored to fill in holes in the material property space, so as to enable innovation and increases in performance as compared to monolithic materials. Finally, a brief discussion is presented on managing the data needed for materials selection, including collection, analysis, deployment, and maintenance issues.

  19. Cadmium adsorption by coal combustion ashes-based sorbents-Relationship between sorbent properties and adsorption capacity

    Energy Technology Data Exchange (ETDEWEB)

    Balsamo, Marco; Di Natale, Francesco; Erto, Alessandro; Lancia, Amedeo [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy); Montagnaro, Fabio, E-mail: fabio.montagnaro@unina.it [Dipartimento di Chimica, Universita degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant' Angelo, 80126 Napoli (Italy); Santoro, Luciano [Dipartimento di Chimica, Universita degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant' Angelo, 80126 Napoli (Italy)

    2011-03-15

    A very interesting possibility of coal combustion ashes reutilization is their use as adsorbent materials, that can also take advantage from proper beneficiation techniques. In this work, adsorption of cadmium from aqueous solutions was taken into consideration, with the emphasis on the intertwining among waste properties, beneficiation treatments, properties of the beneficiated materials and adsorption capacity. The characterization of three solid materials used as cadmium sorbents (as-received ash, ash sieved through a 25 {mu}m-size sieve and demineralized ash) was carried out by chemical analysis, infrared spectroscopy, laser granulometry and mercury porosimetry. Cadmium adsorption thermodynamic and kinetic tests were conducted at room temperature, and test solutions were analyzed by atomic absorption spectrophotometry. Maximum specific adsorption capacities resulted in the range 0.5-4.3 mg g{sup -1}. Different existing models were critically considered to find out an interpretation of the controlling mechanism for adsorption kinetics. In particular, it was observed that for lower surface coverage the adsorption rate is governed by a linear driving force while, once surface coverage becomes significant, mechanisms such as the intraparticle micropore diffusion may come into play. Moreover, it was shown that both external fluid-to-particle mass transfer and macropore diffusion hardly affect the adsorption process, which was instead regulated by intraparticle micropore diffusion: characteristic times for this process ranged from 4.1 to 6.1 d, and were fully consistent with the experimentally observed equilibrium times. Results were discussed in terms of the relationship among properties of beneficiated materials and cadmium adsorption capacity. Results shed light on interesting correlations among solid properties, cadmium capture rate and maximum cadmium uptake.

  20. Light Hydrocarbons Adsorption Mechanisms in Two Calcium-based Microporous Metal Organic Frameworks

    KAUST Repository

    Plonka, Anna M.

    2016-01-25

    The adsorption mechanism of ethane, ethylene and acetylene (C2Hn; n=2, 4, 6) on two microporous metal organic frameworks (MOFs) is described here that is consistent with observations from single crystal and powder X-ray diffraction, calorimetric measurments and gas adsorption isotherm measurements. Two calcium-based MOFs, designated as SBMOF-1 and SBMOF-2 (SB: Stony Brook), form three-dimensional frameworks with one-dimensional open channels. As determined form single crystal diffraction experiments channel geometries of both SBMOF-1 and SBMOF-2 provide multiple adsorption sites for hydrocarbon molecules trough C-H…π and C-H…O interactions, similarly to interactions in the molecular and protein crystals. Both materials selectively adsorb C2 hydrocarbon gases over methane as determined with IAST and breakthrough calculations, with C2H6/CH4 selectivity as high as 74 in SBMOF-1.

  1. Study on the adsorption of heavy metal ions from aqueous solution on modified SBA-15

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2013-01-01

    Full Text Available Amino-functionalized SBA-15 mesoporous silica was prepared, characterized, and used as an adsorbent for heavy metal ions. The organic - inorganic hybrid material was obtained by a grafting procedure using SBA-15 silica with 3-aminopropyl-triethoxysilane and bis(2,4,4-trimethylpentyl phosphinic acid (Cyanex 272, respectively. The structure and physicochemical properties of the materials were characterized by means of elemental analysis, X-ray diffraction (XRD, nitrogen adsorption - desorption, thermogravimetric analysis, FTIR spectroscopy and immersion calorimetry. The organic functional groups were successfully grafted onto the SBA-15 surface and the ordering of the support was not affected by the chemical modification. The behavior of the grafted solids was investigated for the adsorption of heavy metal ions from aqueous solutions. The hybrid materials showed high adsorption capacity and high selectivity for zinc ions. Other ions, such as cooper and cobalt were absorbed by the modified SBA-15 material.

  2. Solid amine sorbents for CO2 capture by chemical adsorption: A review

    Directory of Open Access Journals (Sweden)

    Elif Erdal Ünveren

    2017-03-01

    Full Text Available Amines are well-known for their reversible reactions with CO2, which make them ideal for CO2 capture from several gas streams, including flue gas. In this respect, selective CO2 absorption by aqueous alkanolamines is the most mature technology but the process is energy intensive and has also corrosion problems. Both disadvantages can be diminished to a certain extent by chemical adsorption of CO2 selectively. The most important element of the chemical adsorption of CO2 involves the design and development of a suitable adsorbent which consist of a porous support onto which an amine is attached or immobilized. Such an adsorbent is often called as solid amine sorbent. This review covers solid amine-based studies which are developed and published in recent years. First, the review examines several different types of porous support materials, namely, three mesoporous silica (MCM-41, SBA-15 and KIT-6 and two polymeric supports (PMMA and PS for CO2 adsorption. Emphasis is given to the synthesis, modifications and characterizations -such as BET and PXRD data-of them. Amination of these supports to obtain a solid amine sorbent through impregnation or grafting is reviewed comparatively. Focus is given to the adsorption mechanisms, material characteristics, and synthesis methods which are discussed in detail. Significant amount of original data are also presented which makes this review unique. Finally, relevant CO2 adsorption (or equilibrium capacity data, and cyclic adsorption/desorption performance and stability of important classes of solid amine sorbents are critically reviewed. These include severa PEI or TEPA impregnated adsorbents and APTES-grafted systems.

  3. Selective Adsorption of Pb(II from Aqueous Solution by Triethylenetetramine-Grafted Polyacrylamide/Vermiculite

    Directory of Open Access Journals (Sweden)

    Shiqing Gu

    2018-03-01

    Full Text Available Amine groups play significant roles in polymeric composites for heavy metals removal. However, generating a composite with a large number of functional and stable amine groups based on clay is still a challenge. In this work, a new amine-functionalized adsorbent based on acid-activated vermiculite (a-Verm was prepared by organic modification of silane coupling agent as bridge, followed by in situ polymerization of acrylamide (AM and further grafting of triethylene tetramine (TETA. The obtained polymeric composite g-PAM/OVerm was characterized by scanning electron microscope (SEM, energy dispersive spectrometer (EDS, Fourier transform infrared (FTIR, thermal analysis (TG/DTG, X-ray photoelectron spectroscopy (XPS and Brunauer–Emmett–Teller (BET analyses, confirming that amine groups were successfully grafted onto the surface of Verm. The efficacy g-PAM/OVerm for removing Pb(II was tested. The adsorption equilibrium data on g-PAM/OVerm was in good accordance with the Langmuir adsorption isotherms, and the adsorption maximal value of Pb(II was 219.4 mg·g−1. The adsorption kinetic data fit the pseudo-second-order kinetic model well. Additionally, g-PAM/OVerm has better selectivity for Pb(II ion in comparison with Zn(II, Cd(II and Cu(II ions. The present work shows that g-PAM/OVerm holds great potential for removing Pb(II from wastewater, and provides a new and efficient method for the removal of heavy metal ions from industrial wastewater.

  4. Selective Adsorption of Pb(II) from Aqueous Solution by Triethylenetetramine-Grafted Polyacrylamide/Vermiculite

    Science.gov (United States)

    Gu, Shiqing; Wang, Lan; Mao, Xinyou; Yang, Liping; Wang, Chuanyi

    2018-01-01

    Amine groups play significant roles in polymeric composites for heavy metals removal. However, generating a composite with a large number of functional and stable amine groups based on clay is still a challenge. In this work, a new amine-functionalized adsorbent based on acid-activated vermiculite (a-Verm) was prepared by organic modification of silane coupling agent as bridge, followed by in situ polymerization of acrylamide (AM) and further grafting of triethylene tetramine (TETA). The obtained polymeric composite g-PAM/OVerm was characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS), Fourier transform infrared (FTIR), thermal analysis (TG/DTG), X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) analyses, confirming that amine groups were successfully grafted onto the surface of Verm. The efficacy g-PAM/OVerm for removing Pb(II) was tested. The adsorption equilibrium data on g-PAM/OVerm was in good accordance with the Langmuir adsorption isotherms, and the adsorption maximal value of Pb(II) was 219.4 mg·g−1. The adsorption kinetic data fit the pseudo-second-order kinetic model well. Additionally, g-PAM/OVerm has better selectivity for Pb(II) ion in comparison with Zn(II), Cd(II) and Cu(II) ions. The present work shows that g-PAM/OVerm holds great potential for removing Pb(II) from wastewater, and provides a new and efficient method for the removal of heavy metal ions from industrial wastewater. PMID:29597288

  5. Characterization of sorption properties of selected soils from Lublin region by using water vapour adsorption method

    Science.gov (United States)

    Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia

    2016-04-01

    *The studies were carried out within the framework of a research project. The project was financed from funds of National Science Center on the base of decision number DEC-2013/11/D/NZ9/02545 Among many methods proposed to study sorption properties of soils an analysis of adsorption/ desorption isotherm is probably the easiest and most convenient one. It characterizes both quantity and quality of mineral and organic components and also their physical and physicochemical properties. The main aim of this study is comparison of sorption properties of selected Polish soils by using water vapour adsorption method. Samples were taken from the depth of 0-20 cm, from the Lublin region, eastern Poland. Soils were selected on the basis of their different physicochemical properties and were classified as: Haplic Fluvisol, Haplic Chernozem, Mollic Gleysol, Rendzic Phaeozem, Stagnic Luvisol, Haplic Cambisol (WG WRB 2006). Data taken from experimental adsorption isotherms were used to determine parameters of monolayer capacity, specific surface area and the total amount of vapour adsorbed at relative pressure of 0.974. Obtained adsorption and desorption isotherms reviled that adsorbate molecules interacted with the soil particles in different extent. Similar monolayer capacity was observed for Haplic Fluvisol, Haplic Chernozem and Stagnic Luvisol, while for Mollic Gleysol was more than 4 times higher. Mollic Gleysol was also characterized by highest values of specific surface area as well as quantity of adsorbed vapour at relative pressure of 0.974. Higher sorption was caused by presence of soil colloids which contains functional groups of a polar nature (mainly hydroxyls, phenolic and carboxyls). These groups similarly to silicates, oxides, hydratable cations as well as electric charge form adsorption centres for water vapour molecules.

  6. Fate and transport with material response characterization of green sorption media for copper removal via adsorption process.

    Science.gov (United States)

    Chang, Ni-Bin; Houmann, Cameron; Lin, Kuen-Song; Wanielista, Martin

    2016-02-01

    Green adsorption media with the inclusion of renewable and recycled materials can be applied as a stormwater best management practice for copper removal. A green adsorption media mixture composed of recycled tire chunk, expanded clay aggregate, and coconut coir was physicochemically evaluated for its potential use in an upflow media filter. A suite of tests were conducted on the media mixture and the individual media components including studies of particle size distribution, isotherms, column adsorption and reaction kinetics. Isotherm test results revealed that the coconut coir had the highest affinity for copper (q(max) = 71.1 mg g(-1)), and that adsorption was maximized at a pH of 7.0. The coconut coir also performed the best under dynamic conditions, having an equilibrium uptake of 1.63 mg g(-1). FE-SEM imaging found a strong correlation between the porosity of the micro pore structure and the adsorptive capacity. The use of the green adsorption media mixture in isolation or the coconut coir with an expanded clay filtration chamber could be an effective and reliable stormwater best management practice for copper removal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Alcohol and water adsorption in zeolitic imidazolate frameworks

    KAUST Repository

    Zhang, Ke; Lively, Ryan P.; Dose, Michelle E.; Brown, Andrew J.; Zhang, Chen; Chung, Jaeyub; Nair, Sankar; Koros, William J.; Chance, Ronald R.

    2013-01-01

    Alcohol (methanol, ethanol, 1-propanol, 2-propanol and 1-butanol) and water vapor adsorption in zeolitic imidazolate frameworks (ZIF-8, ZIF-71 and ZIF-90) with similar crystal sizes was systematically studied. The feasibility of applying these ZIF materials to the recovery of bio-alcohols is evaluated by estimating the vapor-phase alcohol-water sorption selectivity. © 2013 The Royal Society of Chemistry.

  8. A biological oil adsorption filter

    International Nuclear Information System (INIS)

    Pasila, A.

    2005-01-01

    A new oil adsorption method called adsorption filtration (AF) has been developed. It is a technology where by oil residues can be cleaned from water by running it through a simple filter made from freeze treated, dried, milled and then fragmented plant material. By choosing suitable plants and fragmentation sizes it is possible to produce filters, which pass water but adsorb oil. The aim of this study was to investigate the possibilities of manufacturing oil adsorbing filter materials from reed canary grass (Phalaris arundinacea), flax (Linum usitatissimum L.) or hemp fibre (Cannabis sativa L.). The oil (80 ml) was mixed with de-ionised water (200 ml) and this mixture was filtered through 10 or 20 g adsorption filters. Fine spring harvested hemp fibre (diameter less than 1 mm) and reed canary grass fragments adsorb 2-4 g of oil per gram of adsorption material compared to 1-3 g of water. Adsorption filtration is thus a novel way of gathering spilled oil in shallow coastal waters before the oil reaches the shore. (author)

  9. A biological oil adsorption filter

    Energy Technology Data Exchange (ETDEWEB)

    Pasila, A [University of Helsinki (Finland). Dept. of Agricultural Engineering and Household Technology

    2005-12-01

    A new oil adsorption method called adsorption filtration (AF) has been developed. It is a technology where by oil residues can be cleaned from water by running it through a simple filter made from freeze treated, dried, milled and then fragmented plant material. By choosing suitable plants and fragmentation sizes it is possible to produce filters, which pass water but adsorb oil. The aim of this study was to investigate the possibilities of manufacturing oil adsorbing filter materials from reed canary grass (Phalaris arundinacea), flax (Linum usitatissimum L.) or hemp fibre (Cannabis sativa L.). The oil (80 ml) was mixed with de-ionised water (200 ml) and this mixture was filtered through 10 or 20 g adsorption filters. Fine spring harvested hemp fibre (diameter less than 1 mm) and reed canary grass fragments adsorb 2-4 g of oil per gram of adsorption material compared to 1-3 g of water. Adsorption filtration is thus a novel way of gathering spilled oil in shallow coastal waters before the oil reaches the shore. (author)

  10. Experimental screening of porous materials for high pressure gas adsorption and evaluation in gas separations: application to MOFs (MIL-100 and CAU-10).

    Science.gov (United States)

    Wiersum, Andrew D; Giovannangeli, Christophe; Vincent, Dominique; Bloch, Emily; Reinsch, Helge; Stock, Norbert; Lee, Ji Sun; Chang, Jong-San; Llewellyn, Philip L

    2013-02-11

    A high-throughput gas adsorption apparatus is presented for the evaluation of adsorbents of interest in gas storage and separation applications. This instrument is capable of measuring complete adsorption isotherms up to 40 bar on six samples in parallel using as little as 60 mg of material. Multiple adsorption cycles can be carried out and four gases can be used sequentially, giving as many as 24 adsorption isotherms in 24 h. The apparatus has been used to investigate the effect of metal center (MIL-100) and functional groups (CAU-10) on the adsorption of N(2), CO(2), and light hydrocarbons on MOFs. This demonstrates how it can serve to evaluate sample quality and adsorption reversibility, to determine optimum activation conditions and to estimate separation properties. As such it is a useful tool for the screening of novel adsorbents for different applications in gas separation, providing significant time savings in identifying potentially interesting materials.

  11. Adsorption of Pb(II) from fish sauce using carboxylated cellulose nanocrystal: Isotherm, kinetics, and thermodynamic studies.

    Science.gov (United States)

    Wang, Nan; Jin, Ru-Na; Omer, A M; Ouyang, Xiao-Kun

    2017-09-01

    In the present study, a new adsorbent based on carboxylated cellulose nanocrystal (CCN) was developed for the adsorption of Pb(II) from fish sauce. The prepared adsorbent material was characterized by zeta potential, FT-IR, XRD, and XPS tools. The changes in the morphological structure of the developed CCN surface were evidenced by SEM and TEM. The favorable adsorption conditions were selected by studying the contact time, initial concentration, temperature, and concentration of the used glutamic acid and NaCl. The results indicated that the Langmuir isotherm model agrees very well with experimental adsorption data (R 2 =0.9962) with a maximum adsorption capacity 232.56mg/g of Pb(II) at 293.2K. Additionally, data of the adsorption kinetics follow the pseudo-second-order kinetics (R 2 >0.9990). On the other hand, the thermodynamics studies show that the adsorption process is spontaneous and endothermic. Furthermore, the developed CCN could be regenerated using acid treatment with a good reusability for Pb(II) adsorption. The results clearly indicated that the synthesized CCN could be effectively applied as a new material for Pb(II) adsorption from fish sauce solutions. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Selective Adsorption and Separation of Organic Dyes with Spherical Polyelectrolyte Brushes and Compressed Carbon Dioxide.

    Science.gov (United States)

    Zhang, Rui; Yu, Zhenchuan; Wang, Lei; Shen, Qizhe; Hou, Xiaoyan; Guo, Xuhong; Wang, Junwei; Zhu, Xuedong; Yao, Yuan

    2017-10-04

    Dye-containing wastewater has caused serious environmental pollution. Herein, rationally designed spherical polyelectrolyte brushes (SPBs) with cationic charges, polystyrene-poly(2-aminoethylmethacrylate hydrochloride) (PS-PAEMH) as the absorbent, and compressed carbon dioxide as the antisolvent are proposed for the separation of the anionic dye eosin Y (EY) from a solution of mixed dyes. The adsorption behavior of EY onto PS-PAEMH was highly dependent on CO 2 pressure, contact time, and initial concentration. The maximum adsorption capacity of PS-PAEMH was 335.20 mg g -1 . FTIR and UV/Vis measurements proved that the electrostatic interactions between EY and PS-PAEMH played an important role in the absorbance process. The adsorption process fitted the pseudo-second-order kinetic model and Freundlich isotherm model very well. The combined dye and polymer brush could be easily separated through ion exchange by adding an aqueous solution of NaCl. Recovered PS-PAEMH retained a high adsorption capacity even after ten cycles of regeneration. This method provides a simple and effective way to separate ionic materials for environmental engineering. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine.

    Science.gov (United States)

    Sun, Ming-Hui; Huang, Shao-Zhuan; Chen, Li-Hua; Li, Yu; Yang, Xiao-Yu; Yuan, Zhong-Yong; Su, Bao-Lian

    2016-06-13

    Over the last decade, significant effort has been devoted to the applications of hierarchically structured porous materials owing to their outstanding properties such as high surface area, excellent accessibility to active sites, and enhanced mass transport and diffusion. The hierarchy of porosity, structural, morphological and component levels in these materials is key for their high performance in all kinds of applications. The introduction of hierarchical porosity into materials has led to a significant improvement in the performance of materials. Herein, recent progress in the applications of hierarchically structured porous materials from energy conversion and storage, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine is reviewed. Their potential future applications are also highlighted. We particularly dwell on the relationship between hierarchically porous structures and properties, with examples of each type of hierarchically structured porous material according to its chemical composition and physical characteristics. The present review aims to open up a new avenue to guide the readers to quickly obtain in-depth knowledge of applications of hierarchically porous materials and to have a good idea about selecting and designing suitable hierarchically porous materials for a specific application. In addition to focusing on the applications of hierarchically porous materials, this comprehensive review could stimulate researchers to synthesize new advanced hierarchically porous solids.

  14. Humidity adsorption and transfer in hygroscopic materials. Percolation-type approach and experimentation

    International Nuclear Information System (INIS)

    Quenard, Daniel

    1989-01-01

    Water vapor adsorption and transfer in microporous media are studied by using a 3 level hierarchical approach. At the microscopic level (pore size), we describe the basic phenomena (adsorption/desorption, capillary condensation, molecular and Knudsen diffusion, Hagen-Poiseuille flow) that occur during the isotherm water vapor transport in a single cylindrical pore, at the steady state. The transport through a condensed pore is taken into account by its 'vapor equivalent flow' and we underline that capillary condensation may cause vapor flow amplification of several orders of magnitude. We suggest to use an electrical analogy between a cylindrical pore and a Zener diode. Then at the mesoscopic level (material size), we introduce pore networks to provide use with a simplified description of the microstructure. Three types of networks are studied: square, triangular and honeycomb. By using a random distribution of the single cylindrical pores on the 2D networks, we are able to estimate the sorption isotherms and the water vapor permeability which are the two essential characteristics to understand the behaviour of materials towards humidity. To develop this approach we refer to the percolation concept and we use most of its principal results. To estimate the adsorption isotherms we introduce a surface adsorption model and we use the KELVIN-LAPLACE equation. Hysteresis appears naturally thanks to the 'ink-bottle' phenomenon and it is all the more important since the network is ill-connected. The water vapor permeability is calculated thanks to the electrical analogy (cylindrical pore-Zener diode). We emphasize an important amplification of the equivalent permeability when the relative humidity reaches a threshold value. This phenomenon provides use with a possible explanation of numerous experimental results. The respective effects of pore size distribution and temperature, on sorption isotherms and permeability, are presented. We present several

  15. Comparison of linear and non-linear models for the adsorption of fluoride onto geo-material: limonite.

    Science.gov (United States)

    Sahin, Rubina; Tapadia, Kavita

    2015-01-01

    The three widely used isotherms Langmuir, Freundlich and Temkin were examined in an experiment using fluoride (F⁻) ion adsorption on a geo-material (limonite) at four different temperatures by linear and non-linear models. Comparison of linear and non-linear regression models were given in selecting the optimum isotherm for the experimental results. The coefficient of determination, r², was used to select the best theoretical isotherm. The four Langmuir linear equations (1, 2, 3, and 4) are discussed. Langmuir isotherm parameters obtained from the four Langmuir linear equations using the linear model differed but they were the same when using the nonlinear model. Langmuir-2 isotherm is one of the linear forms, and it had the highest coefficient of determination (r² = 0.99) compared to the other Langmuir linear equations (1, 3 and 4) in linear form, whereas, for non-linear, Langmuir-4 fitted best among all the isotherms because it had the highest coefficient of determination (r² = 0.99). The results showed that the non-linear model may be a better way to obtain the parameters. In the present work, the thermodynamic parameters show that the absorption of fluoride onto limonite is both spontaneous (ΔG 0). Scanning electron microscope and X-ray diffraction images also confirm the adsorption of F⁻ ion onto limonite. The isotherm and kinetic study reveals that limonite can be used as an adsorbent for fluoride removal. In future we can develop new technology for fluoride removal in large scale by using limonite which is cost-effective, eco-friendly and is easily available in the study area.

  16. Influencing the selectivity of zeolite Y for triglycine adsorption

    NARCIS (Netherlands)

    Wijntje, R.; Bosch, H.; Haan, A.B. de; Bussmann, P.J.T.

    2007-01-01

    In prior work we studied the adsorption of triglycine on zeolite Y under reference conditions. This study aims to solve the question of which adsorbent properties and process conditions influence the adsorption triglycine from an aqueous solution by zeolite Y. Relevant zeolite parameters to study

  17. A porous Cd(II) metal-organic framework with high adsorption selectivity for CO2 over CH4

    Science.gov (United States)

    Zhu, Chunlan

    2017-05-01

    Metal-organic frameworks (MOFs) have attracted a lot of attention in recent decades. We applied a semi-rigid four-carboxylic acid linker to assemble with Cd(II) ions to generate a novel microporous Cd(II) MOF material. Single crystal X-ray diffraction study reveals the different two dimension (2D) layers can be further packed together with an AB fashion by hydrogen bonds (O4sbnd H4⋯O7 = 1.863 Å) to construct a three dimension (3D) supermolecular architecture. The resulting sample can be synthesized under solvothermal reactions successfully, which exhibits high selectivity adsorption of CO2 over CH4 at room temperature. In addition, the obtained sample was characterized by thermal gravimetric analyses (TGA), Fourier-transform infrared spectra (FT-IR), elemental analysis (CHN) and powder X-ray diffraction (PXRD).

  18. Novel sponge-like molecularly imprinted mesoporous silica material for selective isolation of bisphenol A and its analogues from sediment extracts

    International Nuclear Information System (INIS)

    Yang, Jiajia; Li, Yun; Wang, Jincheng; Sun, Xiaoli; Shah, Syed Mazhar; Cao, Rong; Chen, Jiping

    2015-01-01

    Highlights: • Novel sponge-like molecularly imprinted mesoporous silica was synthesized. • Extraordinarily large specific surface area and highly interconnected 3-D porous network. • High specific adsorption capacity and fast adsorption kinetics for BPA. • Good class-selectivity and clean-up effect for bisphenols in sediment under SPE mode. • Good recoveries and sensitivity for bisphenols using the MISMS–SPE coupled with HPLC–DAD method. - Abstract: Bisphenol A (BPA) imprinted sponge mesoporous silica was synthesized using a combination of semi-covalent molecular imprinting and simple self-assembly process. The molecularly imprinted sponge mesoporous silica (MISMS) material obtained was characterized by FT-IR, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption–desorption measurements. The results show that the MISMS possessed a large specific surface area (850.55 m 2 g −1 ) and a highly interconnected 3-D porous network. As a result, the MISMS demonstrated a superior specific adsorption capacity of 169.22 μmol g −1 and fast adsorption kinetics (reaching equilibrium within 3 min) for BPA. Good class selectivity for BPA and its analogues (bisphenol F, bisphenol B, bisphenol E and bisphenol AF) was also demonstrated by the sorption experiment. The MISMS as solid-phase extraction (SPE) material was then evaluated for isolation and clean-up of these bisphenols (BPs) from sediment samples. An accurate and sensitive analytical method based on the MISMS–SPE coupled with HPLC–DAD has been successfully established for simultaneous determination of five BPs in river sediments with detection limits of 0.43–0.71 ng g −1 dry weight (dw). The recoveries of BPs for lyophilizated sediment samples at two spiking levels (50 and 500 ng g −1 dw for each BP) were in the range of 75.5–105.5% with RSD values below 7.5%

  19. Novel sponge-like molecularly imprinted mesoporous silica material for selective isolation of bisphenol A and its analogues from sediment extracts

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jiajia [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Yun; Wang, Jincheng [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Sun, Xiaoli [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Shah, Syed Mazhar [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Cao, Rong [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Jiping, E-mail: chenjp@dicp.ac.cn [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China)

    2015-01-01

    Highlights: • Novel sponge-like molecularly imprinted mesoporous silica was synthesized. • Extraordinarily large specific surface area and highly interconnected 3-D porous network. • High specific adsorption capacity and fast adsorption kinetics for BPA. • Good class-selectivity and clean-up effect for bisphenols in sediment under SPE mode. • Good recoveries and sensitivity for bisphenols using the MISMS–SPE coupled with HPLC–DAD method. - Abstract: Bisphenol A (BPA) imprinted sponge mesoporous silica was synthesized using a combination of semi-covalent molecular imprinting and simple self-assembly process. The molecularly imprinted sponge mesoporous silica (MISMS) material obtained was characterized by FT-IR, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption–desorption measurements. The results show that the MISMS possessed a large specific surface area (850.55 m{sup 2} g{sup −1}) and a highly interconnected 3-D porous network. As a result, the MISMS demonstrated a superior specific adsorption capacity of 169.22 μmol g{sup −1} and fast adsorption kinetics (reaching equilibrium within 3 min) for BPA. Good class selectivity for BPA and its analogues (bisphenol F, bisphenol B, bisphenol E and bisphenol AF) was also demonstrated by the sorption experiment. The MISMS as solid-phase extraction (SPE) material was then evaluated for isolation and clean-up of these bisphenols (BPs) from sediment samples. An accurate and sensitive analytical method based on the MISMS–SPE coupled with HPLC–DAD has been successfully established for simultaneous determination of five BPs in river sediments with detection limits of 0.43–0.71 ng g{sup −1} dry weight (dw). The recoveries of BPs for lyophilizated sediment samples at two spiking levels (50 and 500 ng g{sup −1} dw for each BP) were in the range of 75.5–105.5% with RSD values below 7.5%.

  20. Production of ultrapure D-T gas by removal of molecular tritium by selective adsorption

    International Nuclear Information System (INIS)

    Maienschein, J.L.; Hudson, R.S.; Tsugawa, R.T.; Fearon, E.M.; Souers, P.C.; Collins, G.W.

    1992-01-01

    Production of molecular deuterium-tritium (D-T) with very low molecular tritium (T 2 ) is necessary for application as a nuclear spin polarized fuel. Selective adsorption of hydrogen isotopes on zeolites or alumina can provide the separation needed to produce D-T with very low T 2 . Use of an absorption column at 20-25 K offers low inventory, compact size, and rapid operation, in comparison with conventional separation techniques such as cryogenic distillation or thermal diffusion. In this paper, the authors discuss principles of absorption, and describe a calculational model of the absorption column and operational implications revealed by it. The authors show experimental proof-of-principle data for removal of T 2 from D-T with an adsorption column operated at 23 K

  1. Relationship between carbon microstructure, adsorption energy and hydrogen adsorption capacity at different temperatures

    International Nuclear Information System (INIS)

    Jagiello, J.; Thommes, M.

    2005-01-01

    Various microporous materials such as activated carbons, nano-tubes, synthetic micro-porous carbons as well as metal organic framework materials are being considered for hydrogen storage applications by means of physical adsorption. To develop materials of practical significance for hydrogen storage it is important to understand the relationships between pore sizes, adsorption energies and adsorption capacities. The pore size distribution (PSD) characterization is traditionally obtained from the analysis of nitrogen adsorption isotherms measured at 77 K. However, a portion of the pores accessible to H 2 may not be accessible to N 2 at this temperature. Therefore, it was recently proposed to use the DFT analysis of H 2 adsorption isotherms to characterize pore structure of materials considered for hydrogen storage applications [1]. In present work, adsorption isotherms of H 2 and N 2 at cryogenic temperatures are used for the characterization of carbon materials. Adsorption measurements were performed with Autosorb 1 MP [Quantachrome Instruments, Boynton Beach, Florida, USA]. As an example, Fig 1 compares PSDs calculated for the activated carbon sample (F400, Calgon Carbon) using combined H 2 and N 2 data, and using N 2 isotherm only. The nitrogen derived PSD does not include certain amount of micro-pores which are accessible to H 2 but not to N 2 molecules. Obviously, the difference in the calculated PSDs by the two methods will depend on the actual content of small micro-pores in a given sample. Carbon adsorption properties can also be characterized by the isosteric heat of adsorption, Qst, related to the adsorption energy and dependent on the carbon pore/surface structure. Fig 2 shows Qst data calculated using the Clausius-Clapeyron equation from H 2 isotherms measured at 77 K and 87 K for the carbon molecular sieve CMS 5A (Takeda), oxidized single wall nano-tubes (SWNT) [2], and graphitized carbon black (Supelco). The Qst values decrease with increasing pore

  2. Nitrogen-Doped Carbonaceous Materials for Removal of Phenol from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Magdalena Hofman

    2012-01-01

    Full Text Available Carbonaceous material (brown coal modified by pyrolysis, activation, and enrichment in nitrogen, with two different factor reagents, have been used as adsorbent of phenol from liquid phase. Changes in the phenol content in the test solutions were monitored after subsequent intervals of adsorption with selected adsorbents prepared from organic materials. Significant effect of nitrogen present in the adsorbent material on its adsorption capacity was noted. Sorption capacity of these selected materials was found to depend on the time of use, their surface area, and pore distribution. A conformation to the most well-known adsorption isotherm models, Langmuir, and Freundlich ones, confirms the formation of mono- and heterolayer solute (phenol coverage on the surface of the adsorbent applied herein. The materials proposed as adsorbents of the aqueous solution contaminants were proved effective, which means that the waste materials considered are promising activated carbon precursors for liquid phase adsorbents for the environmental protection.

  3. Microwave-assisted synthesis of HKUST-1 and functionalized HKUST-1-@H3PW12O40: selective adsorption of heavy metal ions in water analyzed with synchrotron radiation.

    Science.gov (United States)

    Zou, Fang; Yu, Runhan; Li, Rongguan; Li, Wei

    2013-08-26

    A simple, rapid and efficient synthesis of the metal-organic framework (MOF) HKUST-1 [Cu3(1,3,5-benzene-tri-carboxilic-acid)2] by microwave irradiation is described, which afforded a homogeneous and highly selective material. The unusually short time to complete the synthesis by microwave irradiation is mainly attributable to rapid nucleation rather than to crystal growth rate. Using this method, HKUST-1-MW (MW=microwave) could be prepared within 20 min, whereas by hydrothermal synthesis, involving conventional heating, the preparation time is 8 h. Work efficiency was improved by the good performance of the obtained HKUST-1-MW which exhibited good selective adsorption of heavy metal ions, as well as a remarkably high adsorption affinity and adsorption capacity, but no adsorption of Hg(2+) under the same experimental conditions. Of particular importance is the preservation of the structure after metal-ion adsorption, which remained virtually intact, with only a few changes in X-ray diffraction intensity and a moderate decline in surface area. Synthesis of the polyoxometalate-containing HKUST-1-MW@H3PW12O40 afforded a MOF with enhanced stability in water, due to the introduced Keggin-type phosphotungstate, which systematically occluded in the cavities constituting the walls between the mesopores. Different Cu/W ratios were investigated according to the extrusion rate of cooper ions concentration, without significant structural changes after adsorption. The MOFs obtained feature particle sizes between 10-20 μm and their structures were determined using synchrotron-based X-ray diffraction. The results of this study can be considered important for potentially wider future applications of MOFs, especially to attend environmental issues. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. g-C{sub 3}N{sub 4} Modified biochar as an adsorptive and photocatalytic material for decontamination of aqueous organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Pi, Liu, E-mail: 626956077@qq.com; Jiang, Rui, E-mail: jumrychem@163.com; Zhou, Wangchi, E-mail: 931860337@qq.com; Zhu, Hua, E-mail: zhuhua333@126.com; Xiao, Wei, E-mail: gabrielxiao@whu.edu.cn; Wang, Dihua, E-mail: wangdh@whu.edu.cn; Mao, Xuhui, E-mail: clab@whu.edu.cn

    2015-12-15

    Graphical abstract: - Highlights: • Composite material consisting of photo-responsive C{sub 3}N{sub 4} and biochar was studied. • Interconnection of C{sub 3}N{sub 4} and biochar was fulfilled via a condensation reaction. • The adsorption properties of composite were governed by the biochar. • The composite exhibited decontamination capability even after saturated. • Adsorption and photo-induced regeneration were mutual beneficial in composite. - Abstract: Converting the waste biomasses with high-carbon content into value-added materials is an environmental-friendly way for their utilization. In this study, a leaf-derived biochar is modified with graphitic C{sub 3}N{sub 4} to fulfill an affordable composite material capable of removing organic pollutants via adsorptive and photocatalytic processes simultaneously. The preparation process includes a carbonization process of chestnut leaf biomass and a followed condensation reaction of melamine at 520 °C. The characterization shows that biochar and C{sub 3}N{sub 4} existed in the composites in their pristine status, and the effective connection of C{sub 3}N{sub 4} and biochar was established. The adsorptive performance of the composites is governed by the biochar content in the composite, thus showing favorable performance for the removal of cationic dye methylene blue (MB). The condensation reaction of the melamine precursor has a coalescing effect on the dispersed biochar, resulting in the growth of particle size of composite. The composites prepared at different biochar/melamine ratios all show a photocatalytic activity on decolorization of MB. In terms of the specific photocatalytic activity of C{sub 3}N{sub 4} in the composite, biochar/melamine ratio of 0.5:1 is the best. Unlike the conventional adsorptive carbon materials which have saturated adsorption capacity, the composite in this study retain a sustaining decontamination capability due to the photocatalytic degradation of adsorbed organic

  5. Design and synthesis of vanadium hydrazide gels for Kubas-type hydrogen adsorption: a new class of hydrogen storage materials.

    Science.gov (United States)

    Hoang, Tuan K A; Webb, Michael I; Mai, Hung V; Hamaed, Ahmad; Walsby, Charles J; Trudeau, Michel; Antonelli, David M

    2010-08-25

    In this paper we demonstrate that the Kubas interaction, a nondissociative form of weak hydrogen chemisorption with binding enthalpies in the ideal 20-30 kJ/mol range for room-temperature hydrogen storage, can be exploited in the design of a new class of hydrogen storage materials which avoid the shortcomings of hydrides and physisorpion materials. This was accomplished through the synthesis of novel vanadium hydrazide gels that use low-coordinate V centers as the principal Kubas H(2) binding sites with only a negligible contribution from physisorption. Materials were synthesized at vanadium-to-hydrazine ratios of 4:3, 1:1, 1:1.5, and 1:2 and characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, nitrogen adsorption, elemental analysis, infrared spectroscopy, and electron paramagnetic resonance spectroscopy. The material with the highest capacity possesses an excess reversible storage of 4.04 wt % at 77 K and 85 bar, corresponding to a true volumetric adsorption of 80 kg H(2)/m(3) and an excess volumetric adsorption of 60.01 kg/m(3). These values are in the range of the ultimate U.S. Department of Energy goal for volumetric density (70 kg/m(3)) as well as the best physisorption material studied to date (49 kg H(2)/m(3) for MOF-177). This material also displays a surprisingly high volumetric density of 23.2 kg H(2)/m(3) at room temperature and 85 bar--roughly 3 times higher than that of compressed gas and approaching the DOE 2010 goal of 28 kg H(2)/m(3). These materials possess linear isotherms and enthalpies that rise on coverage and have little or no kinetic barrier to adsorption or desorption. In a practical system these materials would use pressure instead of temperature as a toggle and can thus be used in compressed gas tanks, currently employed in many hydrogen test vehicles, to dramatically increase the amount of hydrogen stored and therefore the range of any vehicle.

  6. Plasma exhaust purification by thermal swing adsorption: Experimental results and modeling

    International Nuclear Information System (INIS)

    Ricapito, I.; Malara, R.C.

    1996-01-01

    For several years at the Joint Research Centre-Ispra laboratories, cyclic adsorption processes have been developed for the purification of the plasma exhaust stream of a deuterium-tritium fusion reactor. A purification process consisting of two coupled thermal swing adsorption systems seemed to be the most convenient process. In this context, a screening study was carried out to select the most suitable adsorbent materials and appropriate working temperatures. This was mainly done by experimental measurements of adsorption isotherms of the single components of the plasma exhaust stream and by a careful evaluation of the multicomponent adsorption equilibria. Experiments on adsorption dynamics were carried out in a pilot plant to demonstrate the feasibility and to evaluate the performance of the process. The experimental apparatus was designed to treat gas mixture flow rates up to 20 to 30 standard temperature and pressure l/h. A mathematical model was developed and tested against the experimental results to describe the adsorption process and, in particular, to evaluate and to optimize the process cycle time. 27 refs., 4 figs., 9 tabs

  7. Carbon dioxide adsorption over zeolite-like metal organic frameworks (ZMOFs) having a sod topology: Structure and ion-exchange effect

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.; Kim, J.; Yang, D.A.; Ahn, W.S. [Inha University, Inchon (Republic of Korea). Dept. of Chemical Engineering

    2011-04-15

    Zeolite-like metal organic framework (ZMOF) materials having rho and sod topologies were experimentally investigated as CO{sub 2} adsorbents for the first time. As-prepared ZMOF materials showed reasonably high CO{sub 2} adsorption capacities (ca. 51 and 53 mg/g(adsorbent) for rho- and sod-ZMOF, respectively) and high CO{sub 2}/N{sub 2} selectivity (> 20) at 298 K and 1 bar. The latter showed a higher heat of adsorption (27-45 kJ/mol). These ZMOFs exhibited better CO{sub 2} adsorption than ZIF-8, a commonly investigated zeolitic imidazolate framework (ZIF) material having the same sod topology but in a neutral framework. Partially ion-exchanged sod-ZMOFs by alkali-metals resulted in improved CO{sub 2} adsorption performance compared with the as-prepared ZMOF. The highest CO{sub 2} adsorption was obtained with K{sup +}-exchanged sod-ZMOF (61 mg/g(adsorbent)), representing a ca. 15% increase in adsorption capacity. Complete desorption of CO{sub 2} in the K{sup +}-sod-ZMOF was attained at mild conditions (40{sup o}C, He purging), and reversible and sustainable CO{sub 2} adsorption performance was demonstrated in 5 sets of recycling runs.

  8. Physical Adsorption: Experiment, Theory and Application

    DEFF Research Database (Denmark)

    Marcussen, Lis; Kjær, Ulla Dorte; Nielsen, Peter A.

    .ADSORPTION/DESORPTION IN BUILDING MATERIALS: Short description of our research project which deals with lab size and full scale experiments, mathematical modelling and development of a standard test method for characterization of the sorption properties of indoor materials.STUDIES OF ADSORPTION/DESORPTION IN DUST...

  9. Cu(1+) in HKUST-1: selective gas adsorption in the presence of water.

    Science.gov (United States)

    Nijem, Nour; Bluhm, Hendrik; Ng, May L; Kunz, Martin; Leone, Stephen R; Gilles, Mary K

    2014-09-11

    Spectroscopic evidence for an enhanced binding of Nitric Oxide (NO) to metal centers with lower oxidation states (open Cu(1+) sites) in Cu3(btc)2 (HKUST-1) is presented. The Cu(1+) sites created by thermal treatment or X-ray exposure exhibit a preferential adsorption of NO compared to H2O. This phenomenon demonstrates the potential use of MOFs with lower oxidation state metal centers for selective gas separation.

  10. Adsorption-regeneration by heterogeneous Fenton process using modified carbon and clay materials for removal of indigo blue.

    Science.gov (United States)

    Almazán-Sánchez, Perla Tatiana; Solache-Ríos, Marcos J; Linares-Hernández, Ivonne; Martínez-Miranda, Verónica

    2016-01-01

    Indigo blue dye is mainly used in dyeing of denim clothes and its presence in water bodies could have adverse effects on the aquatic system; for this reason, the objective of this study was to promote the removal of indigo blue dye from aqueous solutions by iron and copper electrochemically modified clay and activated carbon and the saturated materials were regenerated by a Fenton-like process. Montmorillonite clay was modified at pH 2 and 7; activated carbon at pH 2 and pH of the system. The elemental X-ray dispersive spectroscopy analysis showed that the optimum pH for modification of montmorillonite with iron and copper was 7 and for activated carbon was 2. The dye used in this work was characterized by infrared. Unmodified and modified clay samples showed the highest removal efficiencies of the dye (90-100%) in the pH interval from 2 to 10 whereas the removal efficiencies decrease as pH increases for samples modified at pH 2. Unmodified clay and copper-modified activated carbon at pH 2 were the most efficient activated materials for the removal of the dye. The adsorption kinetics data of all materials were best adjusted to the pseudo-second-order model, indicating a chemisorption mechanism and the adsorption isotherms data showed that the materials have a heterogeneous surface. The iron-modified clay could be regenerated by a photo-Fenton-like process through four adsorption-regeneration cycles, with 90% removal efficiency.

  11. Correlation between the Microstructure of Porous Materials and the Adsorption Properties of H2 and D2

    International Nuclear Information System (INIS)

    Krkljus, Ivana Biljana

    2011-01-01

    One of the most challenging tasks toward the full implementation of the hydrogen based economy is the reversible storage of hydrogen for portable applications. Three main approaches have been investigated to store the hydrogen, storage as a compressed gas or a liquid, or through a direct chemical bond between the hydrogen atom and the material. The alternative approach, the most recently investigated, is the storage of hydrogen at cryogenic conditions. Storage by physisorption within porous adsorbents has particular advantages of complete reversibility, the fast refueling time, the low heat evolution, and above all increased safety. The nature of interaction of hydrogen, deuterium, and gas mixtures with porous adsorbents was exploited by performing thermal desorption spectroscopy (TDS) measurements. This sensitive experimental technique gives qualitative information about the different adsorption sites, which show different desorption temperatures depending on the interaction energy. After an appropriate calibration the amount of gas desorbed may be quantified. To gain a more fundamental insight into the available adsorption sites multiple TDS spectra were recorded, corresponding to different surface coverages (in the pressure range of 1 to 700 mbar), and different heating regimes. Different kind of porous adsorbents, conventional carbon-based materials and novel Metal Organic Framework Materials (MOFs), were used to investigate the hydrogen/deuterium physisorption mechanism. For carbon materials an increase in the hydrogen interaction potential was observed for adsorbents with narrow pore size. The confined geometry, where hydrogen simultaneously interacts with all the surrounding adsorbent walls, strengthens the interaction potential with the adsorbate molecule, thus, maximizing the total van der Waals force on the adsorbate. Crystalline MOFs are a new class of porous materials assembled from discrete metal centers, which act as framework nodes, and organic

  12. Materials selection for cutting tools

    International Nuclear Information System (INIS)

    Burkhis, Adel M.

    2008-01-01

    The selection of proper tool steel for a given application is a difficult task. So; the most important selection factors in choosing cutting tool materials are based on their tool material requirements, cutting tool design and service conditions which is mainly considered as functional requirements. The processability requirements concerns in heat treat ability of the material tool. The classification of these tool materials were discussed with their properties requirement and percent of alloying element which is added to give best properties with a little increase in cost that highly appear in comparison of the selection. The cutting tool materials were evaluated based on two cases; The first was in case of rough surface; the high speed steels is the best material and the other was the ceramic material is the highest performance in cutting of soft or high rate of metal removal. (author)

  13. Rare Earth Chalcogels NaLnSnS4 (Ln = Y, Gd, Tb) for Selective Adsorption of Volatile Hydrocarbons and Gases

    KAUST Repository

    Edhaim, Fatimah; Rothenberger, Alexander

    2017-01-01

    that the new materials have pores in the macro (above 50 nm) and meso (2–50 nm) regions. These aerogels show higher adsorption of toluene vapor over cyclohexane vapor and CO2 over CH4 or H2. The notable adsorption capacity for toluene (NaYSnS4: 1108 mg·g–1; NaGdSn

  14. Different effects of surface heterogeneous atoms of porous and non-porous carbonaceous materials on adsorption of 1,1,2,2-tetrachloroethane in aqueous environment.

    Science.gov (United States)

    Chen, Weifeng; Ni, Jinzhi

    2017-05-01

    The surface heterogeneous atoms of carbonaceous materials (CMs) play an important role in adsorption of organic pollutants. However, little is known about the surface heterogeneous atoms of CMs might generate different effect on adsorption of hydrophobic organic compounds by porous carbonaceous materials - activated carbons (ACs) and non-porous carbonaceous materials (NPCMs). In this study, we observed that the surface oxygen and nitrogen atoms could decrease the adsorption affinity of both ACs and NPCMs for 1,1,2,2-tetrachloroethane (TeCA), but the degree of decreasing effects were very different. The increasing content of surface oxygen and nitrogen ([O + N]) caused a sharper decrease in adsorption affinity of ACs (slope of lg (k d /SA) vs [O + N]: -0.098∼-0.16) than that of NPCMs (slope of lg (k d /SA) vs [O + N]: -0.025∼-0.059) for TeCA. It was due to the water cluster formed by the surface hydrophilic atoms that could block the micropores and generate massive invalid adsorption sites in the micropores of ACs, while the water cluster only occupied the surface adsorption sites of NPCMs. Furthermore, with the increasing concentration of dissolved TeCA, the effect of surface area on adsorption affinity of NPCMs for TeCA kept constant while the effect of [O + N] decreased due to the competitive adsorption between water molecule and TeCA on the surface of NPCMs, meanwhile, both the effects of micropore volume and [O + N] on adsorption affinity of ACs for TeCA were decreased due to the mechanism of micropore volume filling. These findings are valuable for providing a deep insight into the adsorption mechanisms of CMs for TeCA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Environmentally benign working pairs for adsorption refrigeration

    International Nuclear Information System (INIS)

    Cui Qun; Tao Gang; Chen Haijun; Guo Xinyue; Yao Huqing

    2005-01-01

    This paper begins from adsorption working pairs: water and ethanol were selected as refrigerants; 13x molecular sieve, silica gel, activated carbon, adsorbent NA and NB, proposed by authors, were selected as adsorbents, and the performance of adsorption working pairs in adsorption refrigeration cycle was studied. The adsorption isotherms of adsorbents (NA and NB) were obtained by high-vacuum gravimetric method. Desorption properties of adsorbents were analyzed and compared by thermal analysis method. The performance of adsorption refrigeration was studied on simulation device of adsorption refrigeration cycle. After presentation of adsorption isotherms, the thermodynamic performance for their use in adsorption refrigeration system was calculated. The results show: (1) the maximum adsorption capacity of water on adsorbent NA reaches 0.7 kg/kg, and the maximum adsorption capacity of ethanol on adsorbent NB is 0.68 kg/kg, which is three times that of ethanol on activated carbon, (2) the refrigeration capacity of NA-water working pair is 922 kJ/kg, the refrigeration capacity of NB-ethanol is 2.4 times that of activated carbon-methanol, (3) as environmental friendly and no public hazard adsorption working pair, NA-H 2 O and NB-ethanol can substitute activated carbon-methanol in adsorption refrigeration system using low-grade heat source

  16. Competitive adsorption of dyes and heavy metals on zeolitic structures.

    Science.gov (United States)

    Hernández-Montoya, V; Pérez-Cruz, M A; Mendoza-Castillo, D I; Moreno-Virgen, M R; Bonilla-Petriciolet, A

    2013-02-15

    The adsorption of Acid blue 25, basic blue 9, basic violet 3, Pb(2+), Ni(2+), Zn(2+) and Cd(2+) ions has been studied in single and dye-metal binary solutions using two mineral materials: Clinoptilolite (CL) and ER (Erionite). These zeolites were characterized by FT-IR spectroscopy; potentiometric titration and nitrogen adsorption isotherms at 77 K to obtain their textural parameters. Results indicated that ER has an acidic character and a high specific surface (401 m(2) g(-1)) in contrast with the zeolite CL (21 m(2) g(-1)). Surprisingly, the removal of dyes was very similar for the two zeolites and they showed a considerable selectivity by the basic dyes in comparison with the acid dyes. In the case of heavy metals, ER was more effective in the adsorption process showing a selectivity of: Pb(2+) > Ni(2+) > Zn(2+) > Cd(2+). In the multicomponent adsorption experiments an antagonistic effect was observed in the removal of basic dyes and heavy metals. Particularly, the adsorbed amount of basic violet 3 decreased more significantly when the heavy metals are presents in contrast with the basic blue 9. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Cadmium Adsorption on HDTMA Modified Montmorillionite

    Directory of Open Access Journals (Sweden)

    Mohd. Elmuntasir I. Ahmed

    2009-06-01

    Full Text Available In this paper the possibility of cadmium removal from aqueous solutions by adsorption onto modified montmorillonite clay is investigated. Batch adsorption experiments performed revealed an enhanced removal of cadmium using HDTMA modified montmorillonite to 100% of its exchange capacity. Modified montmorillonite adsorption capacity increases at higher pHs suggesting adsorption occurs as a result of surface precipitation and HDTMA complex formation due to the fact that the original negatively charged montmorillonite is now covered by a cationic layer of HDTMA. Adsorption isotherms generated followed a Langmuir isotherm equation possibly indicating a monolayer coverage. Adsorption capacities of up to 49 mg/g and removals greater than 90% were achieved. Anionic selectivity of the HDTMA modified monmorillonite is particularly advantageous in water treatment applications where high concentrations of less adsorbable species are present, and the lack of organoclay affinity for these species may allow the available capacity to be utilized selectively by the targeted species.

  18. The cianimetalatos as model materials for studying the adsorption of H2 and interactions that determine

    International Nuclear Information System (INIS)

    Reguera, E.; Reguera, L.; Rodríguez, C.

    2015-01-01

    An overview of the work done in recent years in the IMRE and the Faculties of Chemistry and Physics at the University of Havana, in collaboration with the Applied Research Center for Advanced Science and Technology at the National Polytechnic Institute of Mexico is presented; on the synthesis, physico-chemical characterization, assessment and modeling of potentially usable as nanoporous materials cianometalatos model to study the adsorption of H2 at high densities, and interactions that determine it. The mechanisms of interaction of the hydrogen molecule with the crystal lattice and its consequences for the adsorption and diffusion of hydrogen in these materials are discussed. The results have been reported in dozens of articles, published in international journals, they were presented at numerous scientific events and contributed to the preparation of several thesis, master's and Ph.D. (full text)

  19. Synthesis and characterization of a new material based on porous silica-Chemically immobilized C,N-pyridylpyrazole for heavy metals adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Radi, Smaail [Laboratoire de Chimie Organique, Macromoleculaire et Produits Naturels, Departement de Chimie, Faculte des Sciences, Universite Mohamed 1er, BP 524, 60 000 Oujda (Morocco)], E-mail: radi_smaail@yahoo.fr; Attayibat, Ahmed [Laboratoire de Chimie Organique, Macromoleculaire et Produits Naturels, Departement de Chimie, Faculte des Sciences, Universite Mohamed 1er, BP 524, 60 000 Oujda (Morocco); Lekchiri, Yahya [Laboratoire de Biochimie, Departement de Biologie, Faculte des Sciences, Universite Mohamed 1er, BP 524, 60 000 Oujda (Morocco); Ramdani, Abdelkrim [Laboratoire de Chimie Organique, Macromoleculaire et Produits Naturels, Departement de Chimie, Faculte des Sciences, Universite Mohamed 1er, BP 524, 60 000 Oujda (Morocco); Bacquet, Maryse [Laboratoire de Chimie Macromoleculaire, Universite des Sciences et Technologies de Lille, 59655 Villeneuve d' Ascq (France)

    2008-10-15

    The immobilization of C,N-pyridylpyrazole on the surface of epoxy group containing silica gel phase for the formation of a newly synthesized material based on porous silica-bound C,N-pyridylpyrazole (SGPP) is described. The surface modification was characterized by {sup 13}C NMR of solid sample, elemental analysis and infrared spectra and was studied and evaluated by determination of the surface area using the BET equation, the adsorption and desorption capability using the isotherm of nitrogen and BJH pore sizes, respectively. The new material exhibits good thermal stability determined by thermogravimetry curves. The synthesized material was utilised in column and batch methods for separation and trace extraction of (Hg{sup 2+}, Cd{sup 2+}, Pb{sup 2+}, Cu{sup 2+}, Zn{sup 2+}, K{sup +}, Na{sup +} and Li{sup +}) and compared to results of classical liquid-liquid extraction with the unbound C,N-pyridylpyrazole compound. The grafting at the surface of silica does not affect complexing properties of the ligand and the material exhibits a high selectivity toward Hg(II)

  20. Direct observation and modelling of ordered hydrogen adsorption and catalyzed ortho-para conversion on ETS-10 titanosilicate material.

    Science.gov (United States)

    Ricchiardi, Gabriele; Vitillo, Jenny G; Cocina, Donato; Gribov, Evgueni N; Zecchina, Adriano

    2007-06-07

    Hydrogen physisorption on porous high surface materials is investigated for the purpose of hydrogen storage and hydrogen separation, because of its simplicity and intrinsic reversibility. For these purposes, the understanding of the binding of dihydrogen to materials, of the structure of the adsorbed phase and of the ortho-para conversion during thermal and pressure cycles are crucial for the development of new hydrogen adsorbents. We report the direct observation by IR spectroscopic methods of structured hydrogen adsorption on a porous titanosilicate (ETS-10), with resolution of the kinetics of the ortho-para transition, and an interpretation of the structure of the adsorbed phase based on classical atomistic simulations. Distinct infrared signals of o- and p-H2 in different adsorbed states are measured, and the conversion of o- to p-H2 is monitored over a timescale of hours, indicating the presence of a catalyzed reaction. Hydrogen adsorption occurs in three different regimes characterized by well separated IR manifestations: at low pressures ordered 1:1 adducts with Na and K ions exposed in the channels of the material are formed, which gradually convert into ordered 2:1 adducts. Further addition of H2 occurs only through the formation of a disordered condensed phase. The binding enthalpy of the Na+-H2 1:1 adduct is of -8.7+/-0.1 kJ mol(-1), as measured spectroscopically. Modeling of the weak interaction of H2 with the materials requires an accurate force field with a precise description of both dispersion and electrostatics. A novel three body force field for molecular hydrogen is presented, based on the fitting of an accurate PES for the H2-H2 interaction to the experimental dipole polarizability and quadrupole moment. Molecular mechanics simulations of hydrogen adsorption at different coverages confirm the three regimes of adsorption and the structure of the adsorbed phase.

  1. In vitro adsorption study of fluoxetine in activated carbons and activated carbon fibres

    Energy Technology Data Exchange (ETDEWEB)

    Nabais, J.M. Valente; Mouquinho, A.; Galacho, C.; Carrott, P.J.M.; Ribeiro Carrott, M.M.L. [Centro de Quimica de Evora e Departamento de Quimica da Universidade de Evora, Rua Romao Ramalho no. 59, 7000-671 Evora (Portugal)

    2008-05-15

    We study the in vitro adsorption of fluoxetine hydrochloride by different adsorbents in simulated gastric and intestinal fluid, pH 1.2 and 7.5, respectively. The tested materials were two commercial activated carbons, carbomix and maxsorb MSC30, one activated carbon fibre produced in our laboratory and also three MCM-41 samples, also produced by us. Selected samples were modified by liquid phase oxidation and thermal treatment in order to change the surface chemistry without significant modifications to the porous characteristics. The fluoxetine adsorption follows the Langmuir model. The calculated Q{sub 0} values range from 54 to 1112 mg/g. A different adsorption mechanism was found for the adsorption of fluoxetine in activated carbon fibres and activated carbons. In the first case the most relevant factors are the molecular sieving effect and the dispersive interactions whereas in the activated carbons the mechanism seams to be based on the electrostatic interactions between the fluoxetine molecules and the charged carbon surface. Despite the different behaviours most of the materials tested have potential for treating potential fluoxetine intoxications. (author)

  2. Henna wood as an adsorptive material for bentazon | Mounaouer ...

    African Journals Online (AJOL)

    In this study, the efficiency of activated carbon produced from Henna wood was studied to remove herbicide from aqueous solutions by adsorption. The parameters that affect the adsorption such as contact time, activated carbon dosage, initial concentration of adsorbate, stirring rate, temperature, and pH on bentazon ...

  3. Noble gas separation from nuclear reactor effluents using selective adsorption with inorganic adsorbents

    International Nuclear Information System (INIS)

    Pence, D.T.; Paplawsky, W.J.

    1981-01-01

    A radioactive waste gas treatment system utilizing selective adsorption on inorganic adsorbents is described for application to PWRs. The system operates at near ambient pressure, does not require a hydrogen recombiner, has low radioactive gas inventories, and is cost competitive with existing treatment systems. The proposed technique is also applicable for recovery of noble gases from the containment building of a nuclear reactor after an accident. A system design for this application is also presented

  4. Adsorption Properties of Chalk Reservoir Materials

    DEFF Research Database (Denmark)

    Okhrimenko, Denis

    /gas adsorption properties of synthetic calcium carbonate phases (calcite, vaterite and aragonite) with chalk, which is composed of biogenic calcite (>98%). In combination with data from nanotechniques, the results demonstrate the complexity of chalk behavior and the role of nanoscale clay particles. The results...

  5. Selective adsorption of volatile hydrocarbons and gases in high surface area chalcogels containing [ES3]3- anions (E = As, Sb)

    KAUST Repository

    Ahmed, Ejaz; Khanderi, Jayaprakash; Anjum, Dalaver H.; Rothenberger, Alexander

    2014-01-01

    We describe the sol-gel synthesis of the two new chalcogels KFeSbS3 and NaFeAsS3, which demonstrate excellent adsorption selectivity for volatile hydrocarbons and gases. These predominantly mesoporous materials have been synthesized by reacting Fe(OAc)2 with K3SbS3 or Na3AsS3 in a formamide/water mixture at room temperature. Aerogels obtained after supercritical drying have BET surface areas of 636 m2/g and 505 m2/g for KFeSbS3 and NaFeAsS3, respectively, with pore sizes in the micro- (below 2 nm), meso- (2-50 nm), and macro- (above 50 nm) regions.

  6. Selective adsorption of volatile hydrocarbons and gases in high surface area chalcogels containing [ES3]3- anions (E = As, Sb)

    KAUST Repository

    Ahmed, Ejaz

    2014-11-25

    We describe the sol-gel synthesis of the two new chalcogels KFeSbS3 and NaFeAsS3, which demonstrate excellent adsorption selectivity for volatile hydrocarbons and gases. These predominantly mesoporous materials have been synthesized by reacting Fe(OAc)2 with K3SbS3 or Na3AsS3 in a formamide/water mixture at room temperature. Aerogels obtained after supercritical drying have BET surface areas of 636 m2/g and 505 m2/g for KFeSbS3 and NaFeAsS3, respectively, with pore sizes in the micro- (below 2 nm), meso- (2-50 nm), and macro- (above 50 nm) regions.

  7. Activated carbon-supported CuO nanoparticles: a hybrid material for carbon dioxide adsorption

    Science.gov (United States)

    Boruban, Cansu; Esenturk, Emren Nalbant

    2018-03-01

    Activated carbon-supported copper(II) oxide (CuO) nanoparticles were synthesized by simple impregnation method to improve carbon dioxide (CO2) adsorption capacity of the support. The structural and chemical properties of the hybrid material were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0CCsQFjAC&url=http%3A%2F%2Fwww.intertek.com%2Fanalytical-laboratories%2Fxrd%2F&ei=-5WZVYSCHISz7Aatqq-IAw&usg=AFQjCNFBlk-9wqy49foh8tskmbD-GGbG9g&sig2=eKrhYjO75rl_Id2sLGpq4w&bvm=bv.96952980,d.bGg) (XRD), X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS), and Brunauer-Emmett-Teller (BET) analyses. The analyses showed that CuO nanoparticles are well-distributed on the activated carbon surface. The CO2 adsorption behavior of the activated carbon-supported CuO nanoparticles was observed by thermogravimetric analysis (TGA), temperature programmed desorption (TPD), Fourier transform infrared (FTIR), and BET analyses. The results showed that CuO nanoparticle loading on activated carbon led to about 70% increase in CO2 adsorption capacity of activated carbon under standard conditions (1 atm and 298 K). The main contributor to the observed increase is an improvement in chemical adsorption of CO2 due to the presence of CuO nanoparticles on activated carbon.

  8. Phenolic resin-based porous carbons for adsorption and energy storage applications

    Science.gov (United States)

    Wickramaratne, Nilantha P.

    view. So far, carbons with high surface area and nitrogen content have been vastly studied. Also, there are several reports showing the importance of pore size towards CO2 adsorption at ambient conditions. In the case of nitrogen containing carbons, it was shown that the incorporation of nitrogen into carbon matrix is a challenging task. In chapter 3, we discussed how to improve the surface area and pore size distribution of phenolic resin-based carbons to obtain optimum CO 2 adsorption capacities at ambient conditions. The chemical and physical activation of polymer/carbon particles is used to generate necessary physical properties of the final carbons, which display unprecedented CO2 adsorption capacities at ambient conditions. Moreover, the modified Stober-like methods are used for the synthesis of nitrogen containing carbon particles. These facile synthesis methods afford highly porous nitrogen containing carbons with comparatively high CO2 adsorption capacities at ambient conditions. Chapter 4 begins with synthesis of ultra large mesoporous carbons using (ethylene oxide)38 (butylene oxide)46 (ethylene oxide) 38 triblock copolymer as a soft template and phenolic resins as the carbon precursors. Even though, there are many reports dealing with the synthesis of mesoporous silica with large pores for bio-molucular adsorption their high cost discourage them to use in industrial applications. However, cheap mesoporous carbons with large pores (>15 nm) are potential materials for bio-molecular adsorption on large scale. The first part of chapter 4 is demonstrates the synthesis of mesoporous carbons with ultra large pores for bio-molecular adsorption. Lysozyme was selected as a model biomolecule for adsorption processes. The second part of Chapter 4 is focused on functionalized polymer spheres for heavy metal ions adsorption. It is shown that the synthesis of functionalized polymer spheres can be achieved by using modified Stober method; the reacting spheres show very

  9. Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chanil [Department of Civil and Environmental Engineering, University of South Carolina, Columbia, SC 29208 (United States); Park, Junyeong [Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695 (United States); Lim, Kwang Hun [Department of Chemistry, East Carolina University, Greenville, NC 27858 (United States); Park, Sunkyu [Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695 (United States); Heo, Jiyong [Department of Civil and Environmental Engineering, Korea Army Academy at Young-Cheon, PO Box 135-1, Changhari, Gogyeongmeon, Young-cheon 770-849, Gyeongbuk (Korea, Republic of); Her, Namguk [Department of Chemistry and Environmental Sciences, Korea Army Academy at Young-Cheon, PO Box 135-1, Changhari, Gogyeongmeon, Young-cheon 770-849, Gyeongbuk (Korea, Republic of); Oh, Jeill; Yun, Soyoung [Department of Civil and Environmental Engineering, Chung-Ang University, Dongjak-Ku, Seoul 156-756 (Korea, Republic of); Yoon, Yeomin, E-mail: yoony@cec.sc.edu [Department of Civil and Environmental Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2013-12-15

    Highlights: • Biochars were prepared at different gas environments. • The competitive adsorption among EDCs/PhACs were investigated. • Aromaticity of adsorbent plays a significant role for EDCs/PhACs adsorption. -- Abstract: Chemically activated biochar produced under oxygenated (O-biochar) and oxygen-free (N-biochar) conditions were characterized and the adsorption of endocrine disrupting compounds (EDCs): bisphenol A (BPA), atrazine (ATR), 17 α-ethinylestradiol (EE2), and pharmaceutical active compounds (PhACs); sulfamethoxazole (SMX), carbamazepine (CBM), diclofenac (DCF), ibuprofen (IBP) on both biochars and commercialized powdered activated carbon (PAC) were investigated. Characteristic analysis of adsorbents by solid-state nuclear magnetic resonance (NMR) was conducted to determine better understanding about the EDCs/PhACs adsorption. N-biochar consisted of higher polarity moieties with more alkyl (0–45 ppm), methoxyl (45–63 ppm), O-alkyl (63–108 ppm), and carboxyl carbon (165–187 ppm) content than other adsorbents, while aromaticity of O-biochar was higher than that of N-biochar. O-biochar was composed mostly of aromatic moieties, with low H/C and O/C ratios compared to the highly polarized N-biochar that contained diverse polar functional groups. The higher surface area and pore volume of N-biochar resulted in higher adsorption capacity toward EDCs/PhACs along with atomic-level molecular structural property than O-biochar and PAC. N-biochar had a highest adsorption capacity of all chemicals, suggesting that N-biochar derived from loblolly pine chip is a promising sorbent for agricultural and environmental applications. The adsorption of pH-sensitive dissociable SMX, DCF, IBP, and BPA varied and the order of adsorption capacity was correlated with the hydrophobicity (K{sub ow}) of adsorbates throughout the all adsorbents, whereas adsorption of non-ionizable CBM, ATR, and EE2 in varied pH allowed adsorbents to interact with hydrophobic property

  10. Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars

    International Nuclear Information System (INIS)

    Jung, Chanil; Park, Junyeong; Lim, Kwang Hun; Park, Sunkyu; Heo, Jiyong; Her, Namguk; Oh, Jeill; Yun, Soyoung; Yoon, Yeomin

    2013-01-01

    Highlights: • Biochars were prepared at different gas environments. • The competitive adsorption among EDCs/PhACs were investigated. • Aromaticity of adsorbent plays a significant role for EDCs/PhACs adsorption. -- Abstract: Chemically activated biochar produced under oxygenated (O-biochar) and oxygen-free (N-biochar) conditions were characterized and the adsorption of endocrine disrupting compounds (EDCs): bisphenol A (BPA), atrazine (ATR), 17 α-ethinylestradiol (EE2), and pharmaceutical active compounds (PhACs); sulfamethoxazole (SMX), carbamazepine (CBM), diclofenac (DCF), ibuprofen (IBP) on both biochars and commercialized powdered activated carbon (PAC) were investigated. Characteristic analysis of adsorbents by solid-state nuclear magnetic resonance (NMR) was conducted to determine better understanding about the EDCs/PhACs adsorption. N-biochar consisted of higher polarity moieties with more alkyl (0–45 ppm), methoxyl (45–63 ppm), O-alkyl (63–108 ppm), and carboxyl carbon (165–187 ppm) content than other adsorbents, while aromaticity of O-biochar was higher than that of N-biochar. O-biochar was composed mostly of aromatic moieties, with low H/C and O/C ratios compared to the highly polarized N-biochar that contained diverse polar functional groups. The higher surface area and pore volume of N-biochar resulted in higher adsorption capacity toward EDCs/PhACs along with atomic-level molecular structural property than O-biochar and PAC. N-biochar had a highest adsorption capacity of all chemicals, suggesting that N-biochar derived from loblolly pine chip is a promising sorbent for agricultural and environmental applications. The adsorption of pH-sensitive dissociable SMX, DCF, IBP, and BPA varied and the order of adsorption capacity was correlated with the hydrophobicity (K ow ) of adsorbates throughout the all adsorbents, whereas adsorption of non-ionizable CBM, ATR, and EE2 in varied pH allowed adsorbents to interact with hydrophobic property of

  11. High performance gas adsorption and separation of natural gas in two microporous metal-organic frameworks with ternary building units.

    Science.gov (United States)

    Wang, Dongmei; Zhao, Tingting; Cao, Yu; Yao, Shuo; Li, Guanghua; Huo, Qisheng; Liu, Yunling

    2014-08-14

    Two novel MMOFs, JLU-Liu5 and JLU-Liu6, are based on ternary building units and exhibit high adsorption selectivity for CO2, C2H6 and C3H8 over CH4, which is attributed to steric effects and host-guest interactions. These MMOFs are promising materials for gas adsorption and natural gas purification.

  12. Siloxane D4 capture by hydrophobic microporous materials

    OpenAIRE

    Mito-oka, Yasuko; Horike, Satoshi; Nishitani, Yusuke; Masumori, Tadao; Inukai, Munehiro; Hijikata, Yuh; Kitagawa, Susumu

    2013-01-01

    Porous substances, including crystalline coordination materials and an amorphous organic polymer, were studied for their selective adsorption of siloxane D4. The investigated materials demonstrated a level of uptake comparable to that of conventional activated carbon.

  13. A new mechanism for selective adsorption of rubber on carbon black surface caused by nano-confinement in SBR/NBR solution

    Science.gov (United States)

    Kawazoe, Masayuki

    A novel mechanism of selective adsorption of rubber molecules onto carbon black surface in a binary immiscible rubber blend solution has been proposed in this dissertation. The phenomenon leads to uneven distribution of carbon black to the specific polymer in the blend and the obtained electrically conductive composite showed drastic reduction of percolation threshold concentration (PTC). The mechanism and the feature of conductive network formation have much potential concerning both fundamental understanding and industrial application to improve conductive polymer composites. In chapter I, carbon black filled conductive polymer composites are briefly reviewed. Then, in chapter II, a mechanism of rubber molecular confinement into carbon black aggregate structure is introduced to explain the selective adsorption of a specific rubber onto carbon black surface in an immiscible rubber solution blend (styrene butadiene rubber (SBR) and acrylonitrile butadiene rubber (NBR) with toluene or chloroform). Next, in chapters III and IV, polymers with various radius of gyration (Rg) and carbon blacks with various aggregate structure are examined to verify the selective adsorption mechanism. Finally, in chapter V, the novel mechanism was applied to create unique meso-/micro-unit conductive network in carbon black dispersed SBR/NBR composites.

  14. Doping as a means to probe the potential dependence of dopamine adsorption on carbon-based surfaces: A first-principles study

    Science.gov (United States)

    Aarva, Anja; Laurila, Tomi; Caro, Miguel A.

    2017-06-01

    In this work, we study the adsorption characteristics of dopamine (DA), ascorbic acid (AA), and dopaminequinone (DAox) on carbonaceous electrodes. Our goal is to obtain a better understanding of the adsorption behavior of these analytes in order to promote the development of new carbon-based electrode materials for sensitive and selective detection of dopamine in vivo. Here we employ density functional theory-based simulations to reach a level of detail that cannot be achieved experimentally. To get a broader understanding of carbonaceous surfaces with different morphological characteristics, we compare three materials: graphene, diamond, and amorphous carbon (a-C). Effects of solvation on adsorption characteristics are taken into account via a continuum solvent model. Potential changes that take place during electrochemical measurements, such as cyclic voltammetry, can also alter the adsorption behavior. In this study, we have utilized doping as an indirect method to simulate these changes by shifting the work function of the electrode material. We demonstrate that sp2- and sp3-rich materials, as well as a-C, respond markedly different to doping. Also the adsorption behavior of the molecules studied here differs depending on the surface material and the change in the surface potential. In all cases, adsorption is spontaneous, but covalent bonding is not detected in vacuum. The aqueous medium has a large effect on the adsorption behavior of DAox, which reaches its highest adsorption energy on diamond when the potential is shifted to more negative values. In all cases, inclusion of the solvent enhances the charge transfer between the slab and DAox. Largest differences in adsorption energy between DA and AA are obtained on graphene. Gaining better understanding of the behavior of the different forms of carbon when used as electrode materials provides a means to rationalize the observed complex phenomena taking place at the electrodes during electrochemical oxidation

  15. Material selection for an aerospace component

    OpenAIRE

    Jönsson, Gustav

    2015-01-01

    In the world of today there is a drive for lighter and more effective products for various reasons e.g. reduced environmental impact, higher payload, fuel efficiency etc. There is also an expanding development of new materials for a large number of different applications. This makes it more and more difficult for engineers to make good material selections. This has led to the development of a large amount of material selection methods that require more or less effort to select material. An ef...

  16. Adsorption characteristics of benzene on biosolid adsorbent and commercial activated carbons.

    Science.gov (United States)

    Chiang, Hung-Lung; Lin, Kuo-Hsiung; Chen, Chih-Yu; Choa, Ching-Guan; Hwu, Ching-Shyung; Lai, Nina

    2006-05-01

    This study selected biosolids from a petrochemical waste-water treatment plant as the raw material. The sludge was immersed in 0.5-5 M of zinc chloride (ZnCl2) solutions and pyrolyzed at different temperatures and times. Results indicated that the 1-M ZnCl2-immersed biosolids pyrolyzed at 500 degrees C for 30 min could be reused and were optimal biosolid adsorbents for benzene adsorption. Pore volume distribution analysis indicated that the mesopore contributed more than the macropore and micropore in the biosolid adsorbent. The benzene adsorption capacity of the biosolid adsorbent was 65 and 55% of the G206 (granular-activated carbon) and BPL (coal-based activated carbon; Calgon, Carbon Corp.) activated carbons, respectively. Data from the adsorption and desorption cycles indicated that the benzene adsorption capacity of the biosolid adsorbent was insignificantly reduced compared with the first-run capacity of the adsorbent; therefore, the biosolid adsorbent could be reused as a commercial adsorbent, although its production cost is high.

  17. KFeSbTe3: A quaternary chalcogenide aerogel for preferential adsorption of polarizable hydrocarbons and gases

    KAUST Repository

    Ahmed, Ejaz

    2015-01-01

    The first telluride-based quaternary aerogel KFeSbTe3 is synthesized by a sol-gel metathesis reaction between Fe(OAc)2 and K3SbTe3 in dimethyl formamide. The aerogel has an exceptionally large surface area 652 m2 g-1 which is amongst the highest reported for chalcogenide-based aerogels. This predominantly mesoporous material shows preferential adsorption for toluene vapors over cyclohexane or cyclopentane and CO2 over CH4 or H2. The remarkably high adsorption capacity for toluene (9.31 mmol g-1) and high selectivity for gases (CO2/H2: 121 and CO2/CH4: 75) suggest a potential use of such materials in adsorption-based separation processes for the effective purification of hydrocarbons and gases. © The Royal Society of Chemistry 2015.

  18. Bentonite surface modification and characterization for high selective phosphate adsorption from aqueous media and its application for wastewater treatments

    Directory of Open Access Journals (Sweden)

    S. Yaghoobi-Rahni

    2017-06-01

    Full Text Available Raw and modified bentonite has been used to develop effective sorbents to remove phosphate from aqueous solution. Acid thermoactivation, Rewoquate, Irasoft, calcium, Fe and Al were employed to treat the bentonite. Results show that samples adsorption capacity for phosphate is in the order of, unmodified bentonite = acid thermoactivation < Rewoquate < calcium ≅ Irasoft < Fe < Al ≅ Fe-Al. The phosphate adsorption with Fe-Al-bentonite (FAB modification was more than 99% and the phosphate removal reached the peak value in the initial 30 min. The phosphate adsorption of FAB was pH independent in the range of 2–10. The common coexisting ions in wastewater have no effect on the phosphate adsorption. The phosphate adsorption results were very well fitted in the Freundlich and Langmuir isotherm model and the maximum adsorption capacity was 8.33 mg P/g at pH 6.5 for 1 hour, which was better than similar modified bentonite with low time and Fe-Al consumption. FAB was characterized by scanning electron microscopy, X-ray diffraction, X-ray fluorescence and Fourier transform infrared. Therefore, the results confirm that FAB is a selective phosphate sorbent and environmentally friendly for its potential application for phosphate removal from wastewater.

  19. Fundamentals of high pressure adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.P.; Zhou, L. [Tianjin University, Tianjin (China). High Pressure Adsorption Laboratory

    2009-12-15

    High-pressure adsorption attracts research interests following the world's attention to alternative fuels, and it exerts essential effect on the study of hydrogen/methane storage and the development of novel materials addressing to the storage. However, theoretical puzzles in high-pressure adsorption hindered the progress of application studies. Therefore, the present paper addresses the major theoretical problems that challenged researchers: i.e., how to model the isotherms with maximum observed in high-pressure adsorption; what is the adsorption mechanism at high pressures; how do we determine the quantity of absolute adsorption based on experimental data. Ideology and methods to tackle these problems are elucidated, which lead to new insights into the nature of high-pressure adsorption and progress in application studies, for example, in modeling multicomponent adsorption, hydrogen storage, natural gas storage, and coalbed methane enrichment, was achieved.

  20. Thermodynamic Property Surfaces for Adsorption of R507A, R134a, and n -Butane on Pitch-Based Carbonaceous Porous Materials

    KAUST Repository

    Chakraborty, Anutosh

    2010-10-01

    The thermodynamic property surfaces of R507A, R134a, and n-butane on pitch-based carbonaceous porous material (Maxsorb III) are developed from rigorous classical thermodynamics and experimentally measured adsorption isotherm data. These property fields enable us to compute the entropy, enthalpy, internal energy, and heat of adsorption as a function of pressure, temperature, and the amount of adsorbate. The entropy and enthalpy maps are necessary for the analysis of adsorption cooling cycle and gas storage. We have shown here that it is possible to plot an adsorption cooling cycle on the temperature-entropy (T-s) and enthalpy-uptake (h-x) maps. Copyright © Taylor and Francis Group, LLC 2010.

  1. Thermodynamic Property Surfaces for Adsorption of R507A, R134a, and n -Butane on Pitch-Based Carbonaceous Porous Materials

    KAUST Repository

    Chakraborty, Anutosh; Saha, Bidyut Baran; Ng, Kim Choon; El-Sharkawy, Ibrahim I.; Koyama, Shigeru

    2010-01-01

    The thermodynamic property surfaces of R507A, R134a, and n-butane on pitch-based carbonaceous porous material (Maxsorb III) are developed from rigorous classical thermodynamics and experimentally measured adsorption isotherm data. These property fields enable us to compute the entropy, enthalpy, internal energy, and heat of adsorption as a function of pressure, temperature, and the amount of adsorbate. The entropy and enthalpy maps are necessary for the analysis of adsorption cooling cycle and gas storage. We have shown here that it is possible to plot an adsorption cooling cycle on the temperature-entropy (T-s) and enthalpy-uptake (h-x) maps. Copyright © Taylor and Francis Group, LLC 2010.

  2. Synthesis of Microporous Materials and Their VSC Adsorption Properties

    Energy Technology Data Exchange (ETDEWEB)

    Yokogawa, Y; Morikawa, H; Sakanishi, M; Utaka, H; Nakamura, A; Kishida, I, E-mail: yokogawa@imat.eng.osaka-cu.ac.jp [Graduate School of Engineering, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585 (Japan)

    2011-10-29

    Oral malodor is caused by volatile sulfur compounds (VSC) such as hydrogen sulfide (H{sub 2}S), methyl mercaptan and dimethyl sulfide produced in mouth. VSC induces permeability of mucous membrane and oral malodor formation. Thus, the adsorbent which highly adsorbs VSC should be useful for health in mouth and may prevent teeth from decaying. The microporous material, hydrotalcite, was synthesized by a wet method, and the H{sub 2}S adsorption was studied. The samples, identified by powder X-ray diffraction method, were put into glass flask filled with H{sub 2}S gas. The initial concentration of H{sub 2}S was 30 ppm. The change in concentrations of H{sub 2}S was measured at rt, and the amount of H{sub 2}S absorbed on the hydrotalcite for 24 h was 300 micro L/g. The samples were taken out from the above glass flask and put into a pyrolysis plant attached to gas chromatography-mass spectrometry to determine the amount of H{sub 2}S desorbed from samples. Only 3% of H{sub 2}S was desorbed when heated at 500 deg. C. H{sub 2}S in water was also found to adsorb into hydrotalcite, which was confirmed by the headspace gas chromatography with flame photometric detector. The hydrotalcite material should be expected to be an adsorbent material, useful for health in mouth.

  3. Adsorption of binary gas mixtures in heterogeneous carbon predicted by density functional theory: on the formation of adsorption azeotropes.

    Science.gov (United States)

    Ritter, James A; Pan, Huanhua; Balbuena, Perla B

    2010-09-07

    Classical density functional theory (DFT) was used to predict the adsorption of nine different binary gas mixtures in a heterogeneous BPL activated carbon with a known pore size distribution (PSD) and in single, homogeneous, slit-shaped carbon pores of different sizes. By comparing the heterogeneous results with those obtained from the ideal adsorbed solution theory and with those obtained in the homogeneous carbon, it was determined that adsorption nonideality and adsorption azeotropes are caused by the coupled effects of differences in the molecular size of the components in a gas mixture and only slight differences in the pore sizes of a heterogeneous adsorbent. For many binary gas mixtures, selectivity was found to be a strong function of pore size. As the width of a homogeneous pore increases slightly, the selectivity for two different sized adsorbates may change from being greater than unity to less than unity. This change in selectivity can be accompanied by the formation of an adsorption azeotrope when this same binary mixture is adsorbed in a heterogeneous adsorbent with a PSD, like in BPL activated carbon. These results also showed that the selectivity exhibited by a heterogeneous adsorbent can be dominated by a small number of pores that are very selective toward one of the components in the gas mixture, leading to adsorption azeotrope formation in extreme cases.

  4. Adsorption Properties of Lignin-derived Activated Carbon Fibers (LACF)

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gallego, Nidia C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thibaud-Erkey, Catherine [United Technologies Research Center (UTRC), East Hartford, CT (United States); Karra, Reddy [United Technologies Research Center (UTRC), East Hartford, CT (United States)

    2016-04-01

    The object of this CRADA project between Oak Ridge National Laboratory (ORNL) and United Technologies Research Center (UTRC) is the characterization of lignin-derived activated carbon fibers (LACF) and determination of their adsorption properties for volatile organic compounds (VOC). Carbon fibers from lignin raw materials were manufactured at Oak Ridge National Laboratory (ORNL) using the technology previously developed at ORNL. These fibers were physically activated at ORNL using various activation conditions, and their surface area and pore-size distribution were characterized by gas adsorption. Based on these properties, ORNL did down-select five differently activated LACF materials that were delivered to UTRC for measurement of VOC adsorption properties. UTRC used standard techniques based on breakthrough curves to measure and determine the adsorption properties of indoor air pollutants (IAP) - namely formaldehyde and carbon dioxide - and to verify the extent of saturated fiber regenerability by thermal treatments. The results are summarized as follows: (1) ORNL demonstrated that physical activation of lignin-derived carbon fibers can be tailored to obtain LACF with surface areas and pore size distributions matching the properties of activated carbon fibers obtained from more expensive, fossil-fuel precursors; (2) UTRC investigated the LACF potential for use in air cleaning applications currently pursued by UTRC, such as building ventilation, and demonstrated their regenerability for CO2 and formaldehyde, (3) Both partners agree that LACF have potential for possible use in air cleaning applications.

  5. Predicting Multicomponent Adsorption Isotherms in Open-Metal Site Materials Using Force Field Calculations Based on Energy Decomposed Density Functional Theory.

    Science.gov (United States)

    Heinen, Jurn; Burtch, Nicholas C; Walton, Krista S; Fonseca Guerra, Célia; Dubbeldam, David

    2016-12-12

    For the design of adsorptive-separation units, knowledge is required of the multicomponent adsorption behavior. Ideal adsorbed solution theory (IAST) breaks down for olefin adsorption in open-metal site (OMS) materials due to non-ideal donor-acceptor interactions. Using a density-function-theory-based energy decomposition scheme, we develop a physically justifiable classical force field that incorporates the missing orbital interactions using an appropriate functional form. Our first-principles derived force field shows greatly improved quantitative agreement with the inflection points, initial uptake, saturation capacity, and enthalpies of adsorption obtained from our in-house adsorption experiments. While IAST fails to make accurate predictions, our improved force field model is able to correctly predict the multicomponent behavior. Our approach is also transferable to other OMS structures, allowing the accurate study of their separation performances for olefins/paraffins and further mixtures involving complex donor-acceptor interactions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Enhancement in CO2 Adsorption Capacity and Selectivity in the Chalcogenide Aerogel CuSb2S4 by Post-synthetic Modification with LiCl

    KAUST Repository

    Ahmed, Ejaz

    2015-09-11

    The new chalcogel CuSb2S4 was obtained by reacting Cu(OAc)2·H2O with KSbS2 in a water/formamide mixture at room temperature. In order to modify the gas adsorption capacity the synthesized CuSb2S4 aerogel was loaded with different amounts of LiCl. CO2 adsorption measurements on the CuSb2S4 aerogel before and after treatment with LiCl showed more than three times increased uptake of the LiCl-modified chalcogel. The selectivities of the gas pairs CO2/H2 and CO2/CH4 in the LiCl-treated chalcogel are 235 and 105 respectively and amongst the highest reported for chalcogenide-based aerogels. In comparison with other porous materials like zeolites, activated carbon and most of the Metal Organic Frameworks (MOFs) or Porous Organic Frameworks (POFs), our synthesized aerogels show good air and moisture stability. Although, the CO2 storage capacity of our aerogels is relatively low, however the selectivity of CO2 over H2 or CH4 in LiCl-loaded aerogels are higher than in zeolites, activated carbon as well as some MOFs like Cu-BTC and MOF-5 etc.

  7. Synthesis of Hydrophobic Mesoporous Material MFS and Its Adsorption Properties of Water Vapor

    Directory of Open Access Journals (Sweden)

    Guotao Zhao

    2014-01-01

    Full Text Available Fluorine-containing hydrophobic mesoporous material (MFS with high surface area is successfully synthesized with hydrothermal synthesis method by using a perfluorinated surfactant SURFLON S-386 template. The adsorption properties of water vapor on the synthesized MFS are also investigated by using gravimetric method. Results show that SEM image of the MFS depicted roundish morphology with the average crystal size of 1-2 μm. The BET surface area and total pore volume of the MFS are 865.4 m2 g−1 and 0.74 cm3 g−1 with a narrow pore size distribution at 4.9 nm. The amount of water vapor on the MFS is about 0.41 mmol g−1 at 303 K, which is only 52.6% and 55.4% of MCM-41 and SBA-15 under the similar conditions, separately. The isosteric adsorption heat of water on the MFS is gradually about 27.0–19.8 kJ mol−1, which decreases as the absorbed water vapor amount increases. The value is much smaller than that on MCM-41 and SBA-15. Therefore, the MFS shows more hydrophobic surface properties than the MCM-41 and SBA-15. It may be a kind of good candidate for adsorption of large molecule and catalyst carrier with high moisture resistance.

  8. Rare Earth Chalcogels NaLnSnS4 (Ln = Y, Gd, Tb) for Selective Adsorption of Volatile Hydrocarbons and Gases

    KAUST Repository

    Edhaim, Fatimah

    2017-06-28

    The synthesis and characterization of the rare earth chalcogenide aerogels NaYSnS4, NaGdSnS4, and NaTbSnS4 is reported. Rare earth metal ions like Y3+, Gd3+, and Tb3+ react with the chalcogenide clusters [SnS4]4– in aqueous formamide solution forming extended polymeric networks by gelation. Aerogels obtained after supercritical drying have BET surface areas of 649 m2·g–1 (NaYSnS4), 479 m2·g–1 (NaGdSnS4), and 354 m2·g–1 (NaTbSnS4). Electron microscopy and physisorption studies reveal that the new materials have pores in the macro (above 50 nm) and meso (2–50 nm) regions. These aerogels show higher adsorption of toluene vapor over cyclohexane vapor and CO2 over CH4 or H2. The notable adsorption capacity for toluene (NaYSnS4: 1108 mg·g–1; NaGdSnS4: 921 mg·g–1; and NaTbSnS4: 645 mg·g–1) and high selectivity for gases (CO2/H2: 172 and CO2/CH4: 50 for NaYSnS4, CO2/H2: 155 and CO2/CH4: 37 for NaGdSnS4, and CO2/H2: 75 and CO2/CH4: 28 for NaTbSnS4) indicate potential future use of chalcogels in adsorption-based gas or hydrocarbon separation processes.

  9. Theoretical evaluation on selective adsorption characteristics of alkali metal-based sorbents for gaseous oxidized mercury.

    Science.gov (United States)

    Tang, Hongjian; Duan, Yufeng; Zhu, Chun; Cai, Tianyi; Li, Chunfeng; Cai, Liang

    2017-10-01

    Alkali metal-based sorbents are potential for oxidized mercury (Hg 2+ ) selective adsorption but show hardly effect to elemental mercury (Hg 0 ) in flue gas. Density functional theory (DFT) was employed to investigate the Hg 0 and HgCl 2 adsorption mechanism over alkali metal-based sorbents, including calcium oxide (CaO), magnesium oxide (MgO), potassium chloride (KCl) and sodium chloride (NaCl). Hg 0 was found to weakly interact with CaO (001), MgO (001), KCl (001) and NaCl (001) surfaces while HgCl 2 was effectively adsorbed on top-O and top-Cl sites. Charge transfer and bond population were calculated to discuss the covalency and ionicity of HgCl 2 bonding with the adsorption sites. The partial density of states (PDOS) analysis manifests that HgCl 2 strongly interacts with surface sites through the orbital hybridizations between Hg and top O or Cl. Frontier molecular orbital (FMO) energy and Mulliken electronegativity are introduced as the quantitative criteria to evaluate the reactivity of mercury species and alkali metal-based sorbents. HgCl 2 is identified as a Lewis acid and more reactive than Hg 0 . The Lewis basicity of the four alkali metal-based sorbents is predicted as the increasing order: NaCl < MgO < KCl < CaO, in consistence with the trend of HgCl 2 adsorption energies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Batch and bulk removal of a triarylmethane dye, Fast Green FCF, from wastewater by adsorption over waste materials

    International Nuclear Information System (INIS)

    Mittal, Alok; Kaur, Dipika; Mittal, Jyoti

    2009-01-01

    De-Oiled Soya, an agricultural waste material and Bottom Ash a waste of power plants, have been used as adsorbents for the removal and recovery of a triarylmethane dye Fast Green FCF from wastewater. Batch studies have been carried by observing the effects of pH, temperature, concentration of the dye, amount of adsorbents, sieve size of adsorbent, contact time, etc. Graphical correlation of various adsorption isotherm models like, Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich have been carried out for both the adsorbents. The adsorption over both the materials has been found endothermic and feasible in nature. Various thermodynamic parameters, such as, Gibb's free energy, entropy and enthalpy of the on-going adsorption process have been calculated. The kinetic studies suggest the process following pseudo first order kinetics and involvement of particle diffusion mechanism. The bulk removal of the dye has been carried out by passing the dye solution through columns of Bottom Ash and De-Oiled Soya and saturation factor of each column has been calculated. Attempts have also been made to recover the dye by eluting dilute NaOH through the columns

  11. A spin transition mechanism for cooperative adsorption in metal-organic frameworks

    Science.gov (United States)

    Reed, Douglas A.; Keitz, Benjamin K.; Oktawiec, Julia; Mason, Jarad A.; Runčevski, Tomče; Xiao, Dianne J.; Darago, Lucy E.; Crocellà, Valentina; Bordiga, Silvia; Long, Jeffrey R.

    2017-10-01

    Cooperative binding, whereby an initial binding event facilitates the uptake of additional substrate molecules, is common in biological systems such as haemoglobin. It was recently shown that porous solids that exhibit cooperative binding have substantial energetic benefits over traditional adsorbents, but few guidelines currently exist for the design of such materials. In principle, metal-organic frameworks that contain coordinatively unsaturated metal centres could act as both selective and cooperative adsorbents if guest binding at one site were to trigger an electronic transformation that subsequently altered the binding properties at neighbouring metal sites. Here we illustrate this concept through the selective adsorption of carbon monoxide (CO) in a series of metal-organic frameworks featuring coordinatively unsaturated iron(II) sites. Functioning via a mechanism by which neighbouring iron(II) sites undergo a spin-state transition above a threshold CO pressure, these materials exhibit large CO separation capacities with only small changes in temperature. The very low regeneration energies that result may enable more efficient Fischer-Tropsch conversions and extraction of CO from industrial waste feeds, which currently underutilize this versatile carbon synthon. The electronic basis for the cooperative adsorption demonstrated here could provide a general strategy for designing efficient and selective adsorbents suitable for various separations.

  12. A new support material for IgG adsorption: Syntrichia papillosissima (Copp.) Loeske.

    Science.gov (United States)

    Demir, Mithat Evrim; Aktaş Uygun, Deniz; Erdağ, Adnan; Akgöl, Sinan

    2017-11-01

    In this presented work, Syntrichia papillosissima (Copp.) Loeske (S. papillosissima) was used as a natural phytosorbent for IgG purification. These moss species were collected for the natural habitat and prepared for IgG adsorption studies by cleaning, drying, and grinding to uniform size. Syntrichia papillosissima samples were characterized by using FTIR and SEM studies. Functional groups of S. papillosissima were identified by FTIR analysis, while surface characteristics were determined by SEM studies. A batch system was used for the adsorption of IgG onto S. papillosissima surface and physical conditions of the IgG adsorption medium were investigated by modifying the pH, IgG concentration and temperature. Maximum IgG adsorption onto S. papillosissima was found to be 68.01 mg/g moss by using pH 5.0 buffer system. Adsorption kinetic isotherms were also studied and it was found that, Langmuir adsorption model was appropriate for this adsorption study. Reusability profile of S. papillosissima was also investigated and IgG adsorption capacity did not decrease significantly after 5 reuse studies. Results indicated that S. papillosissima species have the capacity to be used as biosorbent for IgG purification, with its low cost, natural and biodegradable structure.

  13. In situ enzyme aided adsorption of soluble xylan biopolymers onto cellulosic material.

    Science.gov (United States)

    Chimphango, Annie F A; Görgens, J F; van Zyl, W H

    2016-06-05

    The functional properties of cellulose fibers can be modified by adsorption of xylan biopolymers. The adsorption is improved when the degree of biopolymers substitution with arabinose and 4-O-methyl-glucuronic acid (MeGlcA) side groups, is reduced. α-l-Arabinofuranosidase (AbfB) and α-d-glucuronidase (AguA) enzymes were applied for side group removal, to increase adsorption of xylan from sugarcane (Saccharum officinarum L) bagasse (BH), bamboo (Bambusa balcooa) (BM), Pinus patula (PP) and Eucalyptus grandis (EH) onto cotton lint. The AguA treatment increased the adsorption of all xylans by up to 334%, whereas, the AbfB increased the adsorption of the BM and PP by 31% and 44%, respectively. A combination of AguA and AbfB treatment increased the adsorption, but to a lesser extent than achieved with AguA treatment. This indicated that the removal of the glucuronic acid side groups provided the most significant increase in xylan adsorption to cellulose, in particular through enzymatic treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Adsorption and transformation of selected human-used macrolide antibacterial agents with iron(III) and manganese(IV) oxides

    International Nuclear Information System (INIS)

    Feitosa-Felizzola, Juliana; Hanna, Khalil; Chiron, Serge

    2009-01-01

    The adsorption/transformation of two members (clarithromycin and roxithromycin) of the macrolide (ML) antibacterial agents on the surface of three environmental subsurface sorbents (clay, iron(III) and manganese(IV) oxy-hydroxides) was investigated. The adsorption fitted well to the Freundlich model with a high sorption capacity. Adsorption probably occurred through a surface complexation mechanism and was accompanied by slow degradation of the selected MLs. Transformation proceeded through two parallel pathways: a major pathway was the hydrolysis of the cladinose sugar, and to a lesser extent the hydrolysis of the lactone ring. A minor pathway was the N-dealkylation of the amino sugar. This study indicates that Fe(III) and Mn(IV) oxy-hydroxides in aquatic sediments may play an important role in the natural attenuation of MLs. Such an attenuation route yields a range of intermediates that might retain some of their biological activity. - Iron(III) and manganese(IV) oxy-hydroxides in aquatic sediments may play an important role in the natural attenuation of macrolide antibacterial agents

  15. Adsorption and transformation of selected human-used macrolide antibacterial agents with iron(III) and manganese(IV) oxides

    Energy Technology Data Exchange (ETDEWEB)

    Feitosa-Felizzola, Juliana [Laboratoire Chimie Provence, Aix-Marseille Universites-CNRS (UMR 6264), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France); Hanna, Khalil [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement, CNRS-Universite Henri Poincare-Nancy 1 (UMR 7564), 405 rue de Vandoeuvre, 54600 Villers-les-Nancy (France); Chiron, Serge [Laboratoire Chimie Provence, Aix-Marseille Universites-CNRS (UMR 6264), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France)], E-mail: serge.chiron@univ-provence.fr

    2009-04-15

    The adsorption/transformation of two members (clarithromycin and roxithromycin) of the macrolide (ML) antibacterial agents on the surface of three environmental subsurface sorbents (clay, iron(III) and manganese(IV) oxy-hydroxides) was investigated. The adsorption fitted well to the Freundlich model with a high sorption capacity. Adsorption probably occurred through a surface complexation mechanism and was accompanied by slow degradation of the selected MLs. Transformation proceeded through two parallel pathways: a major pathway was the hydrolysis of the cladinose sugar, and to a lesser extent the hydrolysis of the lactone ring. A minor pathway was the N-dealkylation of the amino sugar. This study indicates that Fe(III) and Mn(IV) oxy-hydroxides in aquatic sediments may play an important role in the natural attenuation of MLs. Such an attenuation route yields a range of intermediates that might retain some of their biological activity. - Iron(III) and manganese(IV) oxy-hydroxides in aquatic sediments may play an important role in the natural attenuation of macrolide antibacterial agents.

  16. Eutrophication decrease: Phosphate adsorption processes in presence of nitrates.

    Science.gov (United States)

    Boeykens, Susana P; Piol, M Natalia; Samudio Legal, Lisa; Saralegui, Andrea B; Vázquez, Cristina

    2017-12-01

    Eutrophication causes aquatic environment degradation as well as serious problems for different purposes of water uses. Phosphorus and nitrogen, mainly as phosphate and nitrate respectively, are considered responsible for eutrophication degradation. The focus of this work was the study of adsorption processes for decreasing phosphate and nitrate concentrations in bi-component aqueous systems. Dolomite and hydroxyapatite were selected as low-cost adsorbents. Obtained results showed that both adsorbents have high capacity for phosphate adsorption which the presence of nitrate does not modify. Hydroxyapatite proved to be the most efficient adsorbent, however, it showed a low percentage of desorption and few possibilities of reuse. Dolomite, on the other hand, allows a desorption of the adsorbed material that favours its reuse. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Selection and Basic Properties of the Buffer Material for High-Level Radioactive Waste Repository in China

    Institute of Scientific and Technical Information of China (English)

    WEN Zhijian

    2008-01-01

    Radioactive wastes arising from a wide range of human activities are in many different physical and chemical forms, contaminated with varying radioactivity. Their common features are the potential hazard associated with their radioactivity and the need to manage them in such a way as to protect the human environment. The geological disposal is regarded as the most reasonable and effective way to safely disposing high-level radioactive wastes in the world. The conceptual model of geological disposal in China is based on a multi-barrier system that combines an isolating geological environment with an engineered barrier system. The buffer is one of the main engineered barriers for HLW repository. It is expected to maintain its low water permeability, self-sealing property, radio nuclides adsorption and retardation properties, thermal conductivity, chemical buffering property,canister supporting property, and stress buffering property over a long period of time. Bentonite is selected as the main content of buffer material that can satisfy the above requirements. The Gaomiaozi deposit is selected as the candidate supplier for China's buffer material of high level radioactive waste repository. This paper presents the geological features of the GMZ deposit and basic properties of the GMZ Na-bentonite. It is a super-large deposit with a high content of montmorillonite (about 75%), and GMZ-1, which is Na-bentonite produced from GMZ deposit is selected as the reference material for China's buffer material study.

  18. Ultrahigh and Selective SO2 Uptake in Inorganic Anion-Pillared Hybrid Porous Materials.

    Science.gov (United States)

    Cui, Xili; Yang, Qiwei; Yang, Lifeng; Krishna, Rajamani; Zhang, Zhiguo; Bao, Zongbi; Wu, Hui; Ren, Qilong; Zhou, Wei; Chen, Banglin; Xing, Huabin

    2017-07-01

    The efficient capture of SO 2 is of great significance in gas-purification processes including flue-gas desulfurization and natural-gas purification, but the design of porous materials with high adsorption capacity and selectivity of SO 2 remains very challenging. Herein, the selective recognition and dense packing of SO 2 clusters through multiple synergistic host-guest and guest-guest interactions by controlling the pore chemistry and size in inorganic anion (SiF 6 2- , SIFSIX) pillared metal-organic frameworks is reported. The binding sites of anions and aromatic rings in SIFSIX materials grasp every atom of SO 2 firmly via S δ+ ···F δ- electrostatic interactions and O δ- ···H δ+ dipole-dipole interactions, while the guest-guest interactions between SO 2 molecules further promote gas trapping within the pore space, which is elucidated by first-principles density functional theory calculations and powder X-ray diffraction experiments. These interactions afford new benchmarks for the highly efficient removal of SO 2 from other gases, even if at a very low SO 2 concentration. Exceptionally high SO 2 capacity of 11.01 mmol g -1 is achieved at atmosphere pressure by SIFSIX-1-Cu, and unprecedented low-pressure SO 2 capacity is obtained in SIFSIX-2-Cu-i (4.16 mmol g -1 SO 2 at 0.01 bar and 2.31 mmol g -1 at 0.002 bar). More importantly, record SO 2 /CO 2 selectivity (86-89) and excellent SO 2 /N 2 selectivity (1285-3145) are also achieved. Experimental breakthrough curves further demonstrate the excellent performance of these hybrid porous materials in removing low-concentration SO 2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Selective Adsorption of Tetrahydropalmatine by a Molecularly ...

    African Journals Online (AJOL)

    NICO

    ties. Cavities are complementary in shape, size and functionality to a specific target molecule, and can recognize and bind the target molecule with high ... ing the mechanical strength and chemical stability of MIPs. Developing alternative .... 2.7. Microcalorimetry. The energy evolution of adsorption was measured by a.

  20. Equilibrium Adsorption of heavy Metals from Aqueous Solutions onto Poly aniline Stannic(IV) Phosphate Composite

    International Nuclear Information System (INIS)

    El-Zahhar, A.A.; EI-Shourbagy, M.M.; Shady, S.A.

    2012-01-01

    An adsorbent material has been prepared by immobilization of stannic(IV) phosphate within poly aniline composite. The produced adsorbent exhibit a high adsorption potential for Pb(II), Cd(Il) and Zn(lI) from aqueous solutions. The influence of initial metal ion concentration, adsorbent dose, ph and temperature on metal ion removal has been studied. The process was found to follow a first order rate kinetics. Thc intra-particle diffusion of metal ions through pores in the adsorbent was to be the main rate limiting step. The equilibrium data fit well with Langmuir adsorption isotherm model. The selectivity order of the adsorbent towards the metal ions was Pb(Il) > Cd(Il) >Zn(II). The adsorption rate constant and thermodynamic parameters were also given to predict the nature of adsorption

  1. Thermal Adsorption Processing Of Hydrocarbon Residues

    Directory of Open Access Journals (Sweden)

    Sudad H. Al.

    2017-04-01

    Full Text Available The raw materials of secondary catalytic processes must be pre-refined. Among these refining processes are the deasphalting and demetallization including their thermo adsorption or thermo-contact adsorption variety. In oil processing four main processes of thermo-adsorption refining of hydrocarbon residues are used ART Asphalt Residual Treating - residues deasphaltizing 3D Discriminatory Destructive Distillation developed in the US ACT Adsorption-Contact Treatment and ETCC Express Thermo-Contact Cracking developed in Russia. ART and ACT are processes with absorbers of lift type reactor while 3D and ETCC processes are with an adsorbing reactor having ultra-short contact time of the raw material with the adsorbent. In all these processes refining of hydrocarbon residues is achieved by partial Thermo-destructive transformations of hydrocarbons and hetero-atomic compounds with simultaneous adsorption of the formed on the surface of the adsorbents resins asphaltene and carboids as well as metal- sulphur - and nitro-organic compounds. Demetallized and deasphalted light and heavy gas oils or their mixtures are a quality raw material for secondary deepening refining processes catalytic and hydrogenation cracking etc. since they are characterized by low coking ability and low content of organometallic compounds that lead to irreversible deactivation of the catalysts of these deepening processes.

  2. Adsorption of Azo-Dye Orange II from Aqueous Solutions Using a Metal-Organic Framework Material: Iron- Benzenetricarboxylate

    Science.gov (United States)

    Rojas García, Elizabeth; López Medina, Ricardo; May Lozano, Marcos; Hernández Pérez, Isaías; Valero, Maria J.; Maubert Franco, Ana M.

    2014-01-01

    A Metal-Organic Framework (MOF), iron-benzenetricarboxylate (Fe(BTC)), has been studied for the adsorptive removal of azo-dye Orange II from aqueous solutions, where the effect of various parameters was tested and isotherm and kinetic models were suggested. The adsorption capacities of Fe(BTC) were much higher than those of an activated carbon. The experimental data can be best described by the Langmuir isotherm model (R2 > 0.997) and revealed the ability of Fe(BTC) to adsorb 435 mg of Orange II per gram of adsorbent at the optimal conditions. The kinetics of Orange II adsorption followed a pseudo-second-order kinetic model, indicating the coexistence of physisorption and chemisorption, with intra-particle diffusion being the rate controlling step. The thermodynamic study revealed that the adsorption of Orange II was feasible, spontaneous and exothermic process (−25.53 kJ·mol−1). The high recovery of the dye showed that Fe(BTC) can be employed as an effective and reusable adsorbent for the removal of Orange II from aqueous solutions and showed the economic interest of this adsorbent material for environmental purposes. PMID:28788289

  3. Adsorption of Azo-Dye Orange II from Aqueous Solutions Using a Metal-Organic Framework Material: Iron- Benzenetricarboxylate

    Directory of Open Access Journals (Sweden)

    Elizabeth Rojas García

    2014-12-01

    Full Text Available A Metal-Organic Framework (MOF, iron-benzenetricarboxylate (Fe(BTC, has been studied for the adsorptive removal of azo-dye Orange II from aqueous solutions, where the effect of various parameters was tested and isotherm and kinetic models were suggested. The adsorption capacities of Fe(BTC were much higher than those of an activated carbon. The experimental data can be best described by the Langmuir isotherm model (R2 > 0.997 and revealed the ability of Fe(BTC to adsorb 435 mg of Orange II per gram of adsorbent at the optimal conditions. The kinetics of Orange II adsorption followed a pseudo-second-order kinetic model, indicating the coexistence of physisorption and chemisorption, with intra-particle diffusion being the rate controlling step. The thermodynamic study revealed that the adsorption of Orange II was feasible, spontaneous and exothermic process (−25.53 kJ·mol−1. The high recovery of the dye showed that Fe(BTC can be employed as an effective and reusable adsorbent for the removal of Orange II from aqueous solutions and showed the economic interest of this adsorbent material for environmental purposes.

  4. Caffeine adsorption of montmorillonite in coffee extracts.

    Science.gov (United States)

    Shiono, Takashi; Yamamoto, Kenichiro; Yotsumoto, Yuko; Yoshida, Aruto

    2017-08-01

    The growth in health-conscious consumers continues to drive the demand for a wide variety of decaffeinated beverages. We previously developed a new technology using montmorillonite (MMT) in selective decaffeination of tea extract. This study evaluated and compared decaffeination of coffee extract using MMT and activated carbon (AC). MMT adsorbed caffeine without significant adsorption of caffeoylquinic acids (CQAs), feruloylquinic acids (FQAs), dicaffeoylquinic acids (di-CQAs), or caffeoylquinic lactones (CQLs). AC adsorbed caffeine, chlorogenic acids (CGAs) and CQLs simultaneously. The results suggested that the adsorption selectivity for caffeine in coffee extract is higher in MMT than AC. The caffeine adsorption isotherms of MMT in coffee extract fitted well to the Langmuir adsorption model. The adsorption properties in coffee extracts from the same species were comparable, regardless of roasting level and locality of growth. Our findings suggest that MMT is a useful adsorbent in the decaffeination of a wide range of coffee extracts.

  5. Albumin adsorption onto surfaces of urine collection and analysis containers.

    Science.gov (United States)

    Robinson, Mary K; Caudill, Samuel P; Koch, David D; Ritchie, James; Hortin, Glen; Eckfeldt, John H; Sandberg, Sverre; Williams, Desmond; Myers, Gary; Miller, W Greg

    2014-04-20

    Adsorption of albumin onto urine collection and analysis containers may cause falsely low concentrations. We added (125)I-labeled human serum albumin to urine and to phosphate buffered solutions, incubated them with 22 plastic container materials and measured adsorption by liquid scintillation counting. Adsorption of urine albumin (UA) at 5-6 mg/l was containers, and to instrument sample cups and showed <1% change in concentration at 5 mg/l and <0.5% change at 20 mg/l or higher concentrations. Adsorption of albumin from phosphate buffered solutions (2-28%) was larger than that from urine. Albumin adsorption differed among urine samples and plastic materials, but the total influence of adsorption was <1% for all materials and urine samples tested. Adsorption of albumin from phosphate buffered solutions was larger than that from urine and could be a limitation for preparations used as calibrators. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Synthesis of Hierarchically Structured Hybrid Materials by Controlled Self-Assembly of Metal-Organic Framework with Mesoporous Silica for CO2 Adsorption.

    Science.gov (United States)

    Chen, Chong; Li, Bingxue; Zhou, Lijin; Xia, Zefeng; Feng, Nengjie; Ding, Jing; Wang, Lei; Wan, Hui; Guan, Guofeng

    2017-07-12

    The HKUST-1@SBA-15 composites with hierarchical pore structure were constructed by in situ self-assembly of metal-organic framework (MOF) with mesoporous silica. The structure directing role of SBA-15 had an obvious impact on the growth of MOF crystals, which in turn affected the morphologies and structural properties of the composites. The pristine HKUST-1 and the composites with different content of SBA-15 were characterized by XRD, N 2 adsorption-desorption, SEM, TEM, FT-IR, TG, XPS, and CO 2 -TPD techniques. It was found that the composites were assembled by oriented growth of MOF nanocrystals on the surfaces of SBA-15 matrix. The interactions between surface silanol groups and metal centers induced structural changes and resulted in the increases in surface areas as well as micropore volumes of hybrid materials. Besides, the additional constraints from SBA-15 also restrained the expansion of HKUST-1, contributing to their smaller crystal sizes in the composites. The adsorption isotherms of CO 2 on the materials were measured and applied to calculate the isosteric heats of adsorption. The HS-1 composite exhibited an increase of 15.9% in CO 2 uptake capacity compared with that of HKUST-1. Moreover, its higher isosteric heats of CO 2 adsorption indicated the stronger interactions between the surfaces and CO 2 molecules. The adsorption rate of the composite was also improved due to the introduction of mesopores. Ten cycles of CO 2 adsorption-desorption experiments implied that the HS-1 had excellent reversibility of CO 2 adsorption. This study was intended to provide the possibility of assembling new composites with tailored properties based on MOF and mesoporous silica to satisfy the requirements of various applications.

  7. Eco-Material Selection for Auto Bodies

    Energy Technology Data Exchange (ETDEWEB)

    Mayyas, Ahmad T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Omar, Mohammed [Masdar Institute of Science & Technology; Hayajneh, Mohammed T. [Jordan University of Science and Technology

    2017-09-25

    In the last decades, majority of automakers started to include lightweight materials in their vehicles to meet hard environmental regulations and to improve fuel efficiency of their vehicles. As a result, eco-material selection for vehicles emerged as a new discipline under design for environment. This chapter will summarize methods of eco-material selections for automotive applications with more emphasis into auto-bodies. A set of metrics for eco-material selection that takes into account all economic, environmental and social factors will be developed using numerical and qualitative methods. These metrics cover products' environmental impact, functionality and manufacturability, in addition to the economic and societal factors.

  8. Thermodynamic analysis of water vapor sorption isotherms and mechanical properties of selected paper-based food packaging materials.

    Science.gov (United States)

    Rhim, Jong-Whan; Lee, Jun Ho

    2009-01-01

    Adsorption isotherms of 3 selected paper-based packaging materials, that is, vegetable parchment (VP) paper, Kraft paper, and solid-bleached-sulfate (SBS) paperboard, were determined at 3 different temperatures (25, 40, and 50 degrees C). The GAB isotherm model was found to fit adequately for describing experimental adsorption isotherm data for the paper samples. The monolayer moisture content of the paper samples decreased with increase in temperature, which is in the range of 0.0345 to 0.0246, 0.0301 to 0.0238, and 0.0318 to 0.0243 g water/g solid for the MG paper, the Kraft paper, and the SBS paperboard, respectively. The net isosteric heats of sorption (q(st)) for the paper samples decreased exponentially with increase in moisture content after reaching the maximum values of 18.51, 27.39, and 26.80 kJ/mol for the VP paper, the Kraft paper, and the SBS paperboard, respectively, at low-moisture content. The differential enthalpy and entropy of 3 paper samples showed compensation phenomenon with the isokinetic temperature of 399.7 K indicating that water vapor had been adsorbed onto the paper samples with the same mechanism. Depending on the paper material, tensile strength of paper samples was affected by moisture content.

  9. Lithium adsorptive properties of a new selective adsorbent derived from Li1.33Mn1.67O4

    International Nuclear Information System (INIS)

    Miyai, Yoshitaka; Ooi, Kenta; Nishimura, Tomonobu; Kumamoto, Jyunji.

    1994-01-01

    A new selective adsorbent was prepared by the acid treatment of Li 1.33 Mn 1.67 O 4 with spinel structure, followed by granulation with PVC as a binder. The adsorbent showed the highest capacities for lithium from seawater ; the equilibrium lithium uptakes reached 25.5 mg·g -1 by the powdered adsorbent and 18 mg·g -1 by the granulated one at 25degC. The column adsorption study with the granulated adsorbent (diameter 0.7-1.4mm) showed that the lithium uptake reached about 14 mg·g -1 by passing seawater for 30 days. This lithium content is nearly equal to that of lithium ore. Although the lithium adsorption capacity of the granulated adsorbent decreased slightly by repeating the adsorption-desorption cycle, it kept a high capacity as well as a high strength abrasion during the repetition of 10 cycles. (author)

  10. Adsorption of CO₂, CH₄, and N₂ on ordered mesoporous carbon: approach for greenhouse gases capture and biogas upgrading.

    Science.gov (United States)

    Yuan, Bin; Wu, Xiaofei; Chen, Yingxi; Huang, Jianhan; Luo, Hongmei; Deng, Shuguang

    2013-05-21

    Separation of CO₂ and N₂ from CH₄ is significantly important in natural gas upgrading, and capture/removal of CO₂, CH₄ from air (N₂) is essential to greenhouse gas emission control. Adsorption equilibrium and kinetics of CO₂, CH₄, and N₂ on an ordered mesoporous carbon (OMC) sample were systematically investigated to evaluate its capability in the above two applications. The OMC was synthesized and characterized with TEM, TGA, small-angle XRD, and nitrogen adsorption/desorption measurements. Pure component adsorption isotherms of CO₂, CH₄, and N₂ were measured at 278, 298, and 318 K and pressures up to 100 kPa, and correlated with the Langmuir model. These data were used to estimate the separation selectivities for CO₂/CH₄, CH₄/N₂, and CO₂/N₂ binary mixtures at different compositions and pressures according to the ideal adsorbed solution theory (IAST) model. At 278 K and 100 kPa, the predicted selectivities for equimolar CO₂/CH₄, CH4/N₂, and CO₂/N₂ are 3.4, 3.7, and 12.8, respectively; and the adsorption capacities for CH₄ and CO₂ are 1.3 and 3.0 mmol/g, respectively. This is the first report of a versatile mesoporous material that displays both high selectivities and large adsorption capacities for separating CO₂/CH₄, CH₄/N₂, and CO₂/N₂ mixtures.

  11. Spectrally selective solar energy materials

    International Nuclear Information System (INIS)

    Sikkens, M.

    1981-01-01

    The performance and properties of spectrally selective materials are considered and, in particular, the selective absorption of solar radiation by free electrons is discussed, both in a homogeneous material in which these electrons are strongly scattered, and in a composite material consisting of small metal particles in a dielectric host. Such materials can be used as selective absorbers if they are deposited as a thin film onto a metal substrate, the latter providing the required low emittance. This type of selective surfaces is produced by reactive sputtering of Ni in an Ar/CH 4 gas mixture. This method can yield Ni films with a considerable carbon concentration. The carbon concentration can be varied over a wide range by adjusting the partial methane pressure. The associated experimental techniques are discussed. As the carbon concentration increases, the structure of the films changes from a Ni phase in which carbon is dissolved, via an intermediate Ni 3 C phase into an amorphous carbon phase with a high electrical resistivity in which small nickel particles are embedded. Both mechanisms of selective absorption by free electrons are observed and are found to be well described by rather simple models. The best selectivity is obtained at high carbon concentrations where the films consist of nickel particles in carbon. Depending on the film thickness and the substrate material, the solar absorptance varies between 0.78 and 0.90, while the thermal emittance varies between 0.025 and 0.04. Since the films are found to be stable at 400 0 C in vacuum, it appears that these films are good candidates for application in photothermal solar energy conversion at temperature levels around 200 0 C and higher. (Auth.)

  12. Hydrogen adsorption in metal-decorated silicon carbide nanotubes

    Science.gov (United States)

    Singh, Ram Sevak; Solanki, Ankit

    2016-09-01

    Hydrogen storage for fuel cell is an active area of research and appropriate materials with excellent hydrogen adsorption properties are highly demanded. Nanotubes, having high surface to volume ratio, are promising storage materials for hydrogen. Recently, silicon carbide nanotubes have been predicted as potential materials for future hydrogen storage application, and studies in this area are ongoing. Here, we report a systematic study on hydrogen adsorption properties in metal (Pt, Ni and Al) decorated silicon carbide nanotubes (SiCNTs) using first principles calculations based on density functional theory. The hydrogen adsorption properties are investigated by calculations of adsorption energy, electronic band structure, density of states (DOS) and Mulliken charge population analysis. Our findings show that hydrogen adsorptions on Pt, Ni and Al-decorated SiCNTs undergo spontaneous exothermic reactions with significant modulation of electronic structure of SiCNTs in all cases. Importantly, according to the Mulliken charge population analysis, dipole-dipole interaction causes chemisorptions of hydrogen in Pt, Ni and Al decorated SiCNTs with formation of chemical bonds. The study is a platform for the development of metal decorated SiCNTs for hydrogen adsorption or hydrogen storage application.

  13. Treatment of liquid waste containing alpha nuclides by adsorption

    International Nuclear Information System (INIS)

    Zeng Jishu; Su Xiguang; Xia Dejing; Fan Sianhua

    1997-01-01

    In this paper, experimental investigations on the removal of actinides from a decontaminating waste stream by using adsorption technique following the cementation of a resultant absorbent sludge are described. One kind of apatites was selected as an actinide absorbent from a number of indigenous materials by batch equilibrium tests. The influence of contact time, temperature, particle size and pH variables on the adsorption of actinides is given. The removal of total alpha activity is higher tan 97% by absorbent precipitation process when the absorbent addition percentage of the liquid waste is more than 3.25 wt%, making alpha-activity level of the primary waste stream below 3.7 x 10 3 Bq/L, which can meet the acceptance requirements of the Low Level Radwaste Treatment Plant. The studies on the cementation of the absorbent sludge included the selection of cements used for solidification, formulation and characterization of the selected cemented waste forms. The results obtained have shown that both 525 type Portland cement and 325 type Portland pozzolana cement were compatible with the absorbent sludge. The selected cemented waste forms meet the requirements of the Chinese National Standard (GB 14569.1-93): Characteristic Requirements for Solidified Waste of Low and Intermediate Level Radioactive Waste - Cement Solidified Waste. (author). 9 refs, 3 figs, 14 tabs

  14. CO 2 adsorption in mono-, di- and trivalent cation-exchanged metal-organic frameworks: A molecular simulation study

    KAUST Repository

    Chen, Yifei

    2012-02-28

    A molecular simulation study is reported for CO 2 adsorption in rho zeolite-like metal-organic framework (rho-ZMOF) exchanged with a series of cations (Na +, K +, Rb +, Cs +, Mg 2+, Ca 2+, and Al 3+). The isosteric heat and Henry\\'s constant at infinite dilution increase monotonically with increasing charge-to-diameter ratio of cation (Cs + < Rb + < K + < Na + < Ca 2+ < Mg 2+ < Al 3+). At low pressures, cations act as preferential adsorption sites for CO 2 and the capacity follows the charge-to-diameter ratio. However, the free volume of framework becomes predominant with increasing pressure and Mg-rho-ZMOF appears to possess the highest saturation capacity. The equilibrium locations of cations are observed to shift slightly upon CO 2 adsorption. Furthermore, the adsorption selectivity of CO 2/H 2 mixture increases as Cs + < Rb + < K + < Na + < Ca 2+ < Mg 2+ ≈ Al 3+. At ambient conditions, the selectivity is in the range of 800-3000 and significantly higher than in other nanoporous materials. In the presence of 0.1% H 2O, the selectivity decreases drastically because of the competitive adsorption between H 2O and CO 2, and shows a similar value in all of the cation-exchanged rho-ZMOFs. This simulation study provides microscopic insight into the important role of cations in governing gas adsorption and separation, and suggests that the performance of ionic rho-ZMOF can be tailored by cations. © 2012 American Chemical Society.

  15. Selective adsorption of Pb (II) over the zinc-based MOFs in aqueous solution-kinetics, isotherms, and the ion exchange mechanism.

    Science.gov (United States)

    Wang, Lei; Zhao, Xinhua; Zhang, Jinmiao; Xiong, Zhenhu

    2017-06-01

    Two series of metal-organic frameworks (MOFs) with similar formula units but different central metal ions (M) or organic linkers (L), M-BDC (BDC = terephthalate, M = Zn, Zr, Cr, or Fe), or Zn-L (L = imidazolate-2-methyl, BDC, BDC-NH 2 ), were prepared and employed as the receptors for adsorption lead ions. It was found that the Zn-BDC exhibited a much higher adsorption capacity than the other M-BDC series with various metal ions which have very closely low capacities at same conditions. Furthermore, the Zn-L (L = imidazolate-2-methyl, BDC, BDC-NH 2 ) still have highly efficient adsorption capacity of lead ions, although the adsorption capacity varies with different ligand, as well as the adsorption rate and the equilibrium pH of the solution. This significant high adsorption over Zn-L, different from other M-BDC series with various metal ions (Zr, Cr, or Fe), can be explained by ion exchange between the central metal ions of Zn-L and lead ion in solution. Based on the analysis of FT-IR, X-ray diffraction pattern, the nitrogen adsorption isotherms, the zeta potentials, and the results, a plausible adsorption mechanism is proposed. When equivalent Zn-L were added to equal volume of aqueous solution with different concentration of lead ion, the content of zinc ion in the solution increases with the increase of the initial concentration of lead ions. The new findings could provide a potential way to fabricate new metal organic frameworks with high and selective capacities of the heavy metal ions.

  16. Adsorption characteristics of benzene on biosolid adsorbent and commercial activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Hung-Lung Chiang; Kuo-Hsiung Lin; Chih-Yu Chen; Ching-Guan Choa; Ching-Shyung Hwu; Nina Lai [China Medical University, Taichung (Taiwan). Department of Risk Management

    2006-05-15

    This study selected biosolids from a petrochemical wastewater treatment plant as the raw material. The sludge was immersed in 0.5-5 M of zinc chloride (ZnCl{sub 2}) solutions and pyrolyzed at different temperatures and times. Results indicated that the 1-M ZnCl{sub 2}-immersed biosolids pyrolyzed at 500{sup o}C for 30 min could be reused and were optimal biosolid adsorbents for benzene adsorption. Pore volume distribution analysis indicated that the mesopore contributed more than the macropore and micropore in the biosolid adsorbent. The benzene adsorption capacity of the biosolid adsorbent was 65 and 55% of the G206 (granular-activated carbon) and BPL (coal-based activated carbon; Calgon, Carbon Corp.) activated carbons, respectively. Data from the adsorption and desorption cycles indicated that the benzene adsorption capacity of the biosolid adsorbent was insignificantly reduced compared with the first-run capacity of the adsorbent; therefore, the biosolid adsorbent could be reused as a commercial adsorbent, although its production cost is high. 18 refs., 9 figs., 3 tabs.

  17. Effect of the selective adsorption on the reactive scattering process of molecular beams from stepped surfaces

    International Nuclear Information System (INIS)

    Garcia, N.

    1977-01-01

    An indicative proposal which may explain the diffusion of incident atomic beams scattered by a crystal surface is made in terms of the selective adsorption mechanism. In this sense, the stepped metallic surfaces present characteristics which enhance the displacements and the lifetimes of the beams on the surface. This may be important for increasing the exchange reactive scattering of molecules from crystal surfaces

  18. U(VI) adsorption on natural iron-coated sands: comparison of approaches for modeling adsorption on heterogeneous environmental materials

    International Nuclear Information System (INIS)

    Logue, Brian A.; Smith, Robert W.; Westall, John C.

    2004-01-01

    Adsorption of U(VI) on 6 samples of natural Fe-rich sands from Oyster, VA was studied over a range of U(VI) concentrations (0.1-100 μM), pH values (3-7.6), and dithionite-citrate-bicarbonate (DCB) extractable amounts of Fe (3.1-12.3 μmol/g). Four modeling approaches were applied to represent the U(VI) adsorption data. Model I was a two-site, diffuse double layer, surface complexation model based on data for synthetic ferrihydrite [Geochim. Cosmochim. Acta 58 (1994) 5465-5478]. Considering the magnitude of approximations necessary for application of the laboratory-based model to natural sands, Model I was surprisingly accurate, as determined by the goodness of fit parameter, χ 2 /N of 53.1-22.2. Model II was based on the reactions and diffuse double layer treatment of Model I, but was calibrated to a portion of U(VI) adsorption data for each sand, and then used to predict adsorption data for the same sand under different experimental conditions. Model II did not increase the accuracy of the predictions made with Model I, χ 2 /N of 42.4-27.6. Models III and IV were four-site affinity spectrum models, without an explicit electric double layer model or explicit surface hydrolysis reactions. Model III was based on a discrete log K spectrum approach, and Model IV was obtained from adjusting all surface stability constants and site concentrations for all surface sites. Models III and IV represented the U(VI) adsorption data with the greatest accuracy, χ 2 /N ranged from 13.8 to 4.4. Model I provides evidence supporting the practice of using pure phase thermodynamic reaction constants for describing the adsorption characteristics of environmentally important sorbents in certain simple cases. Yet, affinity spectrum approaches (Models III and IV) become increasingly important as more accurate interpolation of adsorption data is necessary, the sorbent becomes increasingly complex, or the range of experimental conditions expands

  19. Behaviors and kinetics of toluene adsorption-desorption on activated carbons with varying pore structure.

    Science.gov (United States)

    Yang, Xi; Yi, Honghong; Tang, Xiaolong; Zhao, Shunzheng; Yang, Zhongyu; Ma, Yueqiang; Feng, Tiecheng; Cui, Xiaoxu

    2018-05-01

    This work was undertaken to investigate the behaviors and kinetics of toluene adsorption and desorption on activated carbons with varying pore structure. Five kinds of activated carbon from different raw materials were selected. Adsorption isotherms and breakthrough curves for toluene were measured. Langmuir and Freundlich equations were fitted to the equilibrium data, and the Freundlich equation was more suitable for simulating toluene adsorption. The process consisted of monolayer, multilayer and partial active site adsorption types. The effect of the pore structure of the activated carbons on toluene adsorption capacity was investigated. The quasi-first-order model was more suitable for describing the process than the quasi-second-order model. The adsorption data was also modeled by the internal particle diffusion model and it was found that the adsorption process could be divided into three stages. In the external surface adsorption process, the rate depended on the specific surface area. During the particle diffusion stage, pore structure and volume were the main factors affecting adsorption rate. In the final equilibrium stage, the rate was determined by the ratio of meso- and macro-pores to total pore volume. The rate over the whole adsorption process was dominated by the toluene concentration. The desorption behavior of toluene on activated carbons was investigated, and the process was divided into heat and mass transfer parts corresponding to emission and diffusion mechanisms, respectively. Physical adsorption played the main role during the adsorption process. Copyright © 2017. Published by Elsevier B.V.

  20. Kinetic studies of adsorption in the bioethanol dehydration using polyvinyl alcohol, zeolite and activated carbon as adsorbent

    Science.gov (United States)

    Laksmono, J. A.; Pratiwi, I. M.; Sudibandriyo, M.; Haryono, A.; Saputra, A. H.

    2017-11-01

    Bioethanol is considered as the most promising alternative fuel in the future due to its abundant renewable sources. However, the result of bioethanol production process using fermentation contains 70% v/v, and it still needs simultaneous purification process. One of the most energy-efficient purification methods is adsorption. Specifically, the rate of adsorption is an important factor for evaluating adsorption performance. In this work, we have conducted an adsorption using polyvinyl alcohol (PVA), zeolite and activated carbon as promising adsorbents in the bioethanol dehydration. This research aims to prove that PVA, zeolite, activated carbon is suitable to be used as adsorbent in bioethanol dehydration process through kinetics study and water adsorption selectivity performance. According to the results, PVA, zeolite and activated carbon are the potential materials as adsorbents in the bioethanol dehydration process. The kinetics study shows that 30°C temperature gave the optimum adsorption kinetics rate for PVA, zeolite, and activated carbon adsorbents which were 0.4911 min-1; 0.5 min-1; and 1.1272 min-1 respectively. In addition, it also shows that the activated carbon performed as a more potential adsorbent due to its higher pore volume and specific surface area properties. Based on the Arrhenius equation, the PVA works in the chemisorption mechanism, meanwhile zeolite and activated carbon work in the physisorption system as shown in the value of the activation energy which are 51.43 kJ/mole; 8.16 kJ/mole; and 20.30 kJ/mole. Whereas the water to ethanol selectivity study, we discover that zeolite is an impressive adsorbent compared to the others due to the molecular sieving characteristic of the material.

  1. Application of numerical modeling of selective NOx reduction by hydrocarbon under diesel transient conditions in consideration of hydrocarbon adsorption and desorption process

    International Nuclear Information System (INIS)

    Watanabe, Y.; Asano, A.; Banno, K.; Yokota, K.; Sugiura, M.

    2001-01-01

    A model of NO x selective reduction by hydrocarbon (HC) was developed, which takes into account the adsorption and desorption of HC. The model was applied for predicting the performance of a De-NO x catalytic reactor, working under transient conditions such as a legislative driving cycle. Diesel fuel was used as a supplemental reductant. The behavior of HC and NO x reactions and HC adsorption and desorption has been simulated successfully by our numerical approach under the transient conditions of the simulated Japanese 10-15 driving cycle. Our model is expected to optimize the design of selective diesel NO x reduction systems using a diesel fuel as a supplemental reductant

  2. Selective adsorption of thiophene and 1-benzothiophene on metal-ion-exchanged zeolites in organic medium.

    Science.gov (United States)

    Xue, Mei; Chitrakar, Ramesh; Sakane, Kohji; Hirotsu, Takahiro; Ooi, Kenta; Yoshimura, Yuji; Feng, Qi; Sumida, Naoto

    2005-05-15

    Adsorption of the organic sulfur compounds thiophene (TP) and 1-benzothiophene (1-BTP) in an organic model solution of hydrodesulfurizated gasoline (heptane with 1 wt% toluene and 0.156 mM (5 ppmw as sulfur) TP or 1-BTP) was studied by a batch method at 80 degrees C using metal-ion-exchanged Y-zeolites. Although NaY-zeolite or its acid-treated material rarely adsorbed the organic sulfur compounds, NaY-zeolites exchanged with Ag+, Cu2+, and Ce3+ ions and NH(4)Y-zeolites exchanged with Ce3+ ions showed markedly high adsorptive capacities for TP and 1-BTP. The sulfur uptake increased in the order CuY-zeolite(Na)adsorption isotherms for TP and 1-BTP followed the Langmuir's relationship and the saturation capacities by CeY-zeolite(Na) were calculated as 0.022 and 0.033 mmol/g, respectively. The mole ratios of TP/Ce and 1-BTP/Ce were 0.031 and 0.047, respectively. CeY-zeolite(NH4) which was prepared from NH4Y-zeolite showed less uptake of TP and 1-BTP than CeY-zeolite(Na), probably due to its lower cerium content.

  3. Assessing the adsorption selectivity of linker functionalized, moisture-stable metal-organic framework thin films by means of an environment-controlled quartz crystal microbalance.

    Science.gov (United States)

    Bétard, Angélique; Wannapaiboon, Suttipong; Fischer, Roland A

    2012-11-04

    The stepwise thin film deposition of the robust, hydrophobic [Zn(4)O(dmcapz)(3)](n) (dmcapz = 3,5-dimethyl-4-carboxy-pyrazolato) is reported. The adsorption of small organic probe molecules, including alkanols, toluene, aniline and xylenes, was monitored by an environment-controlled quartz crystal microbalance setup. The adsorption selectivity was tuned by introducing alkyl side chains in the dmcapz linker.

  4. Mechanics of adsorption-deformation coupling in porous media

    Science.gov (United States)

    Zhang, Yida

    2018-05-01

    This work extends Coussy's macroscale theory for porous materials interacting with adsorptive fluid mixtures. The solid-fluid interface is treated as an independent phase that obeys its own mass, momentum and energy balance laws. As a result, a surface strain energy term appears in the free energy balance equation of the solid phase, which further introduces the so-called adsorption stress in the constitutive equations of the porous skeleton. This establishes a fundamental link between the adsorption characteristics of the solid-fluid interface and the mechanical response of the porous media. The thermodynamic framework is quite general in that it recovers the coupled conduction laws, Gibbs isotherm and the Shuttleworth's equation for surface stress, and imposes no constraints on the magnitude of deformation and the functional form of the adsorption isotherms. A rich variety of coupling between adsorption and deformation is recovered as a result of combining different poroelastic models (isotropic vs. anisotropic, linear vs. nonlinear) and adsorption models (unary vs. mixture adsorption, uncoupled vs. stretch-dependent adsorption). These predictions are discussed against the backdrop of recent experimental data on coal swelling subjected to CO2 and CO2sbnd CH4 injections, showing the capability and versatility of the theory in capturing adsorption-induced deformation of porous materials.

  5. Structural and energetical studies of the adsorption of para and meta-isomers of xylene on pre-hydrated zeolite BaX. Characterization by neutron diffraction and temperature programmed desorption; Etude structurale et energetique de l'adsorption des isomeres para- et meta- du xylene dans la zeolithe BaX prehydratee. Caracterisation par diffraction des neutrons et thermodesorption programmee

    Energy Technology Data Exchange (ETDEWEB)

    Pichon, Ch.

    1999-10-19

    The separation of p-xylene from C{sub 8} aromatics is performed industrially by selective adsorption on zeolitic materials. FAU-type zeolites are currently used for this separation and especially the partially hydrated BaX. The aim of this work is to characterize from a structural (by low temperature neutron powder diffraction) and an energetical (by temperature programmed desorption) point of view, the adsorption of para- and meta- isomers of xylene, for different fillings, as pure substances as well as mixtures, on pre-hydrated zeolite BaX. The influence of the water pre-adsorption on xylene adsorption selectivity is carefully discussed. The crystalline structure of the zeolite BaX (framework and compensation of charge cations) and of the adsorbed phase (water, p- and m-xylene molecules) are completely characterized by neutron diffraction. The location and the distribution of water and xylene molecules on their adsorption sites is especially followed as a function of the filling of the zeolite and of the composition of the adsorbed phase. Microscopic measurements were correlated to the energetical analysis (at a macroscopic level) in order to obtain a consistent description of adsorption phenomenon and to propose a possible origin for adsorption selectivity.

  6. Selective recovery of molybdenum from spent HDS catalyst using oxidative soda ash leach/carbon adsorption method

    International Nuclear Information System (INIS)

    Park, Kyung Ho; Mohapatra, D.; Reddy, B. Ramachandra

    2006-01-01

    The petroleum refining industry makes extensive use of hydroprocessing catalysts. These catalysts contain environmentally critical and economically valuable metals such as Mo, V, Ni and Co. In the present study, a simple hydrometallurgical processing of spent hydrodesulphurization (HDS) catalyst for the recovery of molybdenum using sodium carbonate and hydrogen peroxide mixture was investigated. Recovery of molybdenum was largely dependent on the concentrations of Na 2 CO 3 and H 2 O 2 in the reaction medium, which in turn controls the pH of leach liquor and the presence of Al and Ni as impurities. Under the optimum leaching conditions (40 g L -1 Na 2 CO 3 , 6 vol.% H 2 O 2 , room temperature, 1 h) about 85% recovery of Mo was achieved. The leach liquor was processed by the carbon adsorption method, which selectively adsorbs Mo at pH around 0.75. Desorption of Mo was selective at 15 vol.% NH 4 OH. With a single stage contact, it was found possible to achieve >99%, adsorption and desorption efficiency. Using this method, recovery of molybdenum as MoO 3 product of 99.4% purity was achieved

  7. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    Science.gov (United States)

    Ghate, M.R.; Yang, R.T.

    1985-10-03

    Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high purity hydrogen from gaseous products of coal gasification and as an acid gas scrubber. 2 figs., 2 tabs.

  8. Improvement of gas-adsorption performances of Ag-functionalized monolayer MoS2 surfaces: A first-principles study

    Science.gov (United States)

    Song, Jian; Lou, Huan

    2018-05-01

    Investigations of the adsorptions of representative gases (NO2, NH3, H2S, SO2, CO, and HCHO) on different Ag-functionalized monolayer MoS2 surfaces were performed by first principles methods. The adsorption configurations, adsorption energies, electronic structure properties, and charge transfer were calculated, and the results show that the adsorption activities to gases of monolayer MoS2 are dramatically enhanced by the Ag-modification. The Ag-modified perfect MoS2 (Ag-P) and MoS2 with S-vacancy (Ag-Vs) substrates exhibit a more superior adsorption activity to NO2 than other gases, which is consistent with the experimental reports. The charge transfer processes of different molecules adsorbed on different surfaces exhibit various characteristics, with potential benefits to gas selectivity. For instance, the NO2 and SO2 obtain more electrons from both Ag-P and Ag-Vs substrates but the NH3 and H2S donate more electrons to materials than others. In addition, the CO and HCHO possess totally opposite charge transfer directs on both substrates, respectively. The BS and PDOS calculations show that semiconductor types of gas/Ag-MoS2 systems are more determined by the metal-functionalization of material, and the directs and numbers of charge transfer process between gases and adsorbents can cause the increase or decline of material resistance theoretically, which is helpful to gas detection and distinction. The further analysis indicates suitable co-operation between the gain-lost electron ability of gas and metallicity of featuring metal might adjust the resistivity of complex and contribute to new thought for metal-functionalization. Our works provide new valuable ideas and theoretical foundation for the potential improvement of MoS2-based gas sensor performances, such as sensitivity and selectivity.

  9. Methylene blue adsorption in clay mineral dealt with organic cation

    International Nuclear Information System (INIS)

    Silva, T.L.; Lemos, V.P.

    2011-01-01

    The interaction among organic cations, as the methylene blue (AM) and benzyltrimethylammonium (BTMA), and clay minerals of the group of the smectite they result in the formation of applied materials in the adsorption of organic pollutant presents in waters, soils and you cultivate. In this work they were prepared the adsorbents (organic-clays) smectite - AM and smectite-BTMA. The precursory sample of smectite was collected in Rio Branco-Acre. We were also used an smectite sample collected in Sena Madureira (SM)-Acre already characterized in previous work and a sample of standard smectite Swy-2-Na-Montmorillonite (SWy-2) of Wymong - USA. The organic agents selected for this study they were: Blue of Methylene, denominated AM and Benzyltrimethylammonium, denominated BTMA. They were appraised the capacities adsorptive of the treated samples with BTMA being used AM as adsorbate. The results of these evaluations detected that ran total adsorption of AM (concentrations varying from 1 to 10 ppm) for the treated samples with BTMA. The organic cation, BTMA, interacting with the surfaces of the natural clay was more efficient in the adsorption of AM than the clay without the previous treatment with this salt. (author)

  10. Skateboard deck materials selection

    Science.gov (United States)

    Liu, Haoyu; Coote, Tasha; Aiolos; Charlie

    2018-03-01

    The goal of this project was to identify the ideal material for a skateboard deck under 200 in price, minimizing the weight. The material must have a fracture toughness of 5 MPa/m2, have a minimum lifetime of 10, 000 cycles and must not experience brittle fracture. Both single material and hybrid solutions were explored. When further selecting to minimize weight, woods were found to be the best material. Titanium alloy-wood composites were explored to determine the optimal percentage composition of each material.A sandwich panel hybrid of 50% titanium alloy and 50% wood (Ti-Wood) was found to be the optimum material, performing better than the currently used plywood.

  11. Mathematical description of adsorption and transport of reactive solutes in soil: a review of selected literature

    International Nuclear Information System (INIS)

    Travis, C.C.

    1978-10-01

    This report reviews selected literature related to the mathematical description of the transport of reactive solutes through soil. The primary areas of the literature reviewed are (1) mathematical models in current use for description of the adsorption-desorption interaction between the soil solution and the soil matrix and (2) analytic solutions of the differential equations describing the convective-dispersive transport of reactive solutes through soil

  12. Surface analysis of selected hydrophobic materials

    Science.gov (United States)

    Wisniewska, Sylwia Katarzyna

    This dissertation contains a series of studies on hydrophobic surfaces by various surface sensitive techniques such as contact angle measurements, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Hydrophobic surfaces have been classified as mineral surfaces, organic synthetic surfaces, or natural biological surfaces. As a model hydrophobic mineral surface, elemental sulfur has been selected. The sulfur surface has been characterized for selected allotropic forms of sulfur such as rhombic, monoclinic, plastic, and cyclohexasulfur. Additionally, dextrin adsorption at the sulfur surface was measured. The structure of a dextrin molecule showing hydrophobic sites has been presented to support the proposed hydrophobic bonding nature of dextrin adsorption at the sulfur surface. As a model organic hydrophobic surface, primary fatty amines such as dodecylamine, hexadecylamine, and octadecylamine were chosen. An increase of hydrophobicity, significant changes of infrared bands, and surface topographical changes with time were observed for each amine. Based on the results it was concluded that hydrocarbon chain rearrangement associated with recrystallization took place at the surface during contact with air. A barley straw surface was selected as a model of biological hydrophobic surfaces. The differences in the contact angles for various straw surfaces were explained by the presence of a wax layer. SEM images confirmed the heterogeneity and complexity of the wax crystal structure. AFM measurements provided additional structural details including a measure of surface roughness. Additionally, straw degradation as a result of conditioning in an aqueous environment was studied. Significant contact angle changes were observed as soon as one day after conditioning. FTIR studies showed a gradual wax layer removal due to straw surface decomposition. SEM and AFM images revealed topographical changes and biological

  13. Advanced functional materials in solid phase extraction for ICP-MS determination of trace elements and their species - A review.

    Science.gov (United States)

    He, Man; Huang, Lijin; Zhao, Bingshan; Chen, Beibei; Hu, Bin

    2017-06-22

    For the determination of trace elements and their species in various real samples by inductively coupled plasma mass spectrometry (ICP-MS), solid phase extraction (SPE) is a commonly used sample pretreatment technique to remove complex matrix, pre-concentrate target analytes and make the samples suitable for subsequent sample introduction and measurements. The sensitivity, selectivity/anti-interference ability, sample throughput and application potential of the methodology of SPE-ICP-MS are greatly dependent on SPE adsorbents. This article presents a general overview of the use of advanced functional materials (AFMs) in SPE for ICP-MS determination of trace elements and their species in the past decade. Herein the AFMs refer to the materials featuring with high adsorption capacity, good selectivity, fast adsorption/desorption dynamics and satisfying special requirements in real sample analysis, including nanometer-sized materials, porous materials, ion imprinting polymers, restricted access materials and magnetic materials. Carbon/silica/metal/metal oxide nanometer-sized adsorbents with high surface area and plenty of adsorption sites exhibit high adsorption capacity, and porous adsorbents would provide more adsorption sites and faster adsorption dynamics. The selectivity of the materials for target elements/species can be improved by using physical/chemical modification, ion imprinting and restricted accessed technique. Magnetic adsorbents in conventional batch operation offer unique magnetic response and high surface area-volume ratio which provide a very easy phase separation, greater extraction capacity and efficiency over conventional adsorbents, and chip-based magnetic SPE provides a versatile platform for special requirement (e.g. cell analysis). The performance of these adsorbents for the determination of trace elements and their species in different matrices by ICP-MS is discussed in detail, along with perspectives and possible challenges in the future

  14. Tunable Impedance Spectroscopy Sensors via Selective Nanoporous Materials.

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Small, Leo J [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Impedance spectroscopy was leveraged to directly detect the sorption of I 2 by selective adsorption into nanoporous metal organic frameworks (MOF). Films of three different types of MOF frameworks, respectively, were drop cast onto platinum interdigitated electrodes, dried, and exposed to gaseous I 2 at 25, 40, or 70 C. The MOF frameworks varied in topology from small pores (equivalent to I 2 diameter) to large pore frameworks. The combination of the chemistry of the framework and pore size dictated quantity and kinetics of I 2 adsorption. Air, argon, methanol, and water were found to produce minimal changes in ZIF-8 impedance. Independent of MOF framework characteristics, all resultant sensors showed high response to I 2 in air. As an example of sensor output, I 2 was readily detected at 25 C in air within 720 s of exposure, using an un-optimized sensor geometry with a small pored MOF. Further optimization of sensor geometry, decreasing MOF film thicknesses and maximizing sensor capacitance, will enable faster detection of trace I 2 .

  15. Molecular studies of Cs adsorption sites in inorganic layered materials: the influence of solution concentration.

    Science.gov (United States)

    Sato, Kiminori; Hunger, Michael

    2017-07-19

    Radioactive Cs released into a soil environment migrates along with groundwater in a manner dependent on Cs concentration. Data on the variation of Cs adsorption as a function of solution concentration are an essential prerequisite to successful decontamination work in Fukushima. To aid the ongoing decontamination work, the adsorption of Cs in aqueous solution across a wide Cs + molarity range is studied for the case of saponite clay as adsorbent, an inorganic layered material that is an abundant mineral in the soil environment. The local molecular structures, i.e. nanosheet surfaces, nanosheet edges, and oncoming hexagonal cavities, participating in Cs adsorption are qualitatively highlighted by means of a recently developed analytical method using data from a conventional elution test, 133 Cs magic-angle-spinning nuclear magnetic resonance (MAS NMR), and the radiocesium interception potential (RIP) [K. Sato, et al., J. Phys. Chem. C, 2016, 120, 1270]. The concentrations of nanosheet edges amount to between 100 and 400 mmol kg -1 , which are not substantially different from those of the nanosheet surfaces, generally regarded as the main decontamination sites. This unambiguously implies that the nanosheet edges should be targeted as the molecular sites for decontaminating radioactive Cs, in addition to the nanosheet surfaces.

  16. Adsorption of La(III) onto GMZ bentonite. Effect of contact time, bentonite content, pH value and ionic strength

    International Nuclear Information System (INIS)

    Yonggui Chen; Changsha University of Science and Technology, Changsha; Chunming Zhu; Weimin Ye; Yanhong Sun; Huiying Duan; Dongbei Wu

    2012-01-01

    Bentonite has been studied extensively because of its strong adsorption capacity. A local Na-bentonite named GMZ bentonite, collected from Gaomiaozi County (Inner Mongolia, China), was selected as the first choice of buffer/backfill material for the high-level radioactive waste repository in China. In this research, the adsorption of La (III) onto GMZ bentonite was performed as a function of contact time, pH, solid content and metal ion concentrations by using the batch experiments. The results indicate that the adsorption of La (III) on GMZ bentonite achieves equilibration quickly and the kinetic adsorption follows the pseudo-second-order model; the adsorption of La (III) on the adsorbent is strongly dependent on pH and solid content, the adsorption process follows Langmuir isotherm. The equilibrium batch experiment data demonstrate that GMZ bentonite is effective adsorbent for the removal of La (III) from aqueous solution with the maximum adsorption capacity of 26.8 mg g -1 under the given experimental conditions. (author)

  17. Development of a thermal storage system based on the heat of adsorption of water in hygroscopic materials

    NARCIS (Netherlands)

    Wijsman, A.J.T.M.; Oosterhaven, R.; Ouden, C. den

    1979-01-01

    A thermal storage system based on the heat of adsorption of water in hygroscopic materials has been studied as a component of a solar space heating system. The aim of this project is to decrease the storage volume in comparison with a rock-bed storage system by increasing the stored energy density.

  18. Strong adsorption of chlorotetracycline on magnetite nanoparticles

    International Nuclear Information System (INIS)

    Zhang, Di; Niu, Hongyun; Zhang, Xiaole; Meng, Zhaofu; Cai, Yaqi

    2011-01-01

    Highlights: → Fe 3 O 4 MNPs selectively adsorb CTC through chelation between CTC and Fe atoms. → Fe 3 O 4 MNPs remain high adsorption ability to CTC in environmental water samples. → Fe 3 O 4 MNPs sorbed with CTC are easily collected from water under a magnetic field. → The collected Fe 3 O 4 MNPs are regenerated by treatment with H 2 O 2 or calcination. - Abstract: In this work, environmentally friendly magnetite nanoparticles (Fe 3 O 4 MNPs) were used to adsorb chlorotetracycline (CTC) from aqueous media. Fe 3 O 4 MNPs exhibit ultrahigh adsorption ability to this widely used antibiotic. The adsorption behavior of CTC on Fe 3 O 4 MNPs fitted the pseudo-second-order kinetics model, and the adsorption equilibrium was achieved within 10 h. The maximum Langmuir adsorption capacity of CTC on Fe 3 O 4 (476 mg g -1 ) was obtained at pH 6.5. Thermodynamic parameters calculated from the adsorption data at different temperature showed that the adsorption reaction was endothermic and spontaneous. Low concentration of NaCl and foreign divalent cations hardly affected the adsorption. Negative effect of coexisting humic acid (HA) on CTC adsorption was also observed when the concentration of HA was lower than 20 mg L -1 . But high concentration of HA (>20 mg L -1 ) increased the CTC adsorption on Fe 3 O 4 MNPs. The matrix effect of several environmental water samples on CTC adsorption was not evident. Fe 3 O 4 MNPs were regenerated by treatment with H 2 O 2 or calcination at 400 o C in N 2 atmosphere after separation from water solution by an external magnet. This research provided a high efficient and reusable adsorbent to remove CTC selectively from aqueous media.

  19. CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles exhibit fast and selective adsorption of arsenic with high adsorption capacity

    Science.gov (United States)

    Yang, Ji-Chun; Yin, Xue-Bo

    2017-01-01

    In this study, we report the synthesis and application of mesoporous CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles (MNPs) for the simultaneous removal of inorganic arsenic (iAs). The hybrid adsorbent had a core-shell and mesoporous structure with an average diameter of 260 nm. The nanoscale size and mesoporous character impart a fast adsorption rate and high adsorption capacity for iAs. In total, 0.1 mg L−1 As(V) and As(III) could be adsorbed within 2 min, and the maximum adsorption capacities were 114.8 mg g−1 for As(V) and 143.6 mg g−1 for As(III), higher than most previously reported adsorbents. The anti-interference capacity for iAs adsorption was improved by the electrostatic repulsion and size exclusion effects of the MIL-100(Fe) shell, which also decreased the zero-charge point of the hybrid absorbent for a broad pH adsorption range. The adsorption mechanisms of iAs on the MNPs are proposed. An Fe-O-As structure was formed on CoFe2O4@MIL-100(Fe) through hydroxyl substitution with the deprotonated iAs species. Monolayer adsorption of As(V) was observed, while hydrogen bonding led to the multi-layer adsorption of neutral As(III) for its high adsorption capacity. The high efficiency and the excellent pH- and interference-tolerance capacities of CoFe2O4@MIL-100(Fe) allowed effective iAs removal from natural water samples, as validated with batch magnetic separation mode and a portable filtration strategy. PMID:28102334

  20. Synthesis and characterization of a new activated carbon supported ammonium molybdophosphate composite and its cesium-selective adsorption properties

    International Nuclear Information System (INIS)

    Feng Miao; Wang Li; Zhao Yongsheng; Liu Chunxia; Chen Zhen; Yan Liang; Tian Gan; Wang Hang; Li Shoujian

    2010-01-01

    A new Cs + adsorbent, activated carbon loaded ammonium molybdophosphate (AMP-AC) was prepared by repeating batch reaction of H 3 PO 4 and (NH 4 ) 6 Mo 7 O 24 . The surface of the activated carbon particles was coated with AMP microcrystals through a controlled crystallization process. The X-ray diffraction (XRD) analysis identified the AMP loaded on AC with the formula of (NH 4 ) 3 PO 4 (MoO 3 ) 12 .4H 2 O. Scanning electron microscope images demonstrated that the fine AMP crystals was successfully immobilized and uniformly distributed on the porous carbon substrate. The effects of medium acidity, contact time, temperature and competing ions on Cs + uptake by the composite were investigated. The results show that the as-prepared adsorbent keeps high selectivity and adsorption capacity (∝0.75 mmol/g) for Cs + in acidic feed solution (0.1 M HNO 3 ). even in the presence of plentiful competing cations. Na + , Zn 2+ , Sr 2+ , Cr 3+ and La 3+ , while activated carbon itself has no specific affinity for Cs + . The adsorption process could be described by Langmuir adsorption equations. There is no significant difference (9.4%) on Cs + adsorption by the composite during system temperature changing from 298 to 348 K. (orig.)

  1. Process and device for the adsorptive separation of krypton from a krypton/nitrogen gas mixture

    International Nuclear Information System (INIS)

    Ringel, H.; Messler, M.

    1985-01-01

    The gas mixture flows through an adsorption column, which is filled with a means of adsorbing Krypton and nitrogen. The adsorption column is desorbed after adsorption of the gas components by a gaseous flushing material, which flows through the adsorption column in the same direction as the gas mixture. In order to achieve a high degree of separation, the adsorption material is loaded with nitrogen and Krypton from the gas inlet, where Krypton is only absorbed over part of the length of the whole column by the adsorption material. The part of the length is such that on desorption of the adsorption column with the flushing material at first only nitrogen and later only Krypton is obtained at the outlet of the adsorption column. (Waste gas system of a reprocession plant). (orig./HP) [de

  2. Improved Screening Method for the Selection of Wine Yeasts Based on Their Pigment Adsorption Activity

    Directory of Open Access Journals (Sweden)

    Andrea Caridi

    2013-01-01

    Full Text Available The aim of this research is to improve an existing low-cost and simple but consistent culturing technique for measuring the adsorption of grape skin pigments on yeasts, comprising: (i growing yeasts in Petri dishes on chromogenic grape-skin-based medium, (ii photographing the yeast biomass, (iii measuring its red, green, and blue colour components, and (iv performing the statistical analysis of the data. Twenty strains of Saccharomyces cerevisiae were grown on different lots of the chromogenic medium, prepared using grape skins from dark cultivars Greco Nero, Magliocco and Nero d’Avola. Microscale wine fermentation trials were also performed. Wide and significant differences among wine yeasts were observed. The chromogenic grape-skin-based medium can be prepared using any grape cultivar, thus allowing the specific selection of the most suitable strain of Saccharomyces cerevisiae for each grape must, mainly for red winemaking. The research provides a useful tool to characterize wine yeasts in relation to pigment adsorption, allowing the improvement of wine colour.

  3. [Synthesis and Study on Adsorption Property of Congo Red Molecularly Imprinted Polymer Nanospheres].

    Science.gov (United States)

    Chang, Zi-qiang; Chen, Fu-bin; Zhang, Yu; Shi, Zuo-long; Yang, Chun-yan; Zhang, Zhu-jun

    2015-07-01

    Molecularly imprinted polymer nanospheres (MIP) were prepared with Congo red as the template, methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross linker, azodiisobutyronitrile (AIBN) as an initiator, and acetonitrile as the porogen by precipitation polymerization. The morphology of MIP was characterized by SEM and TEM which showed that the diameter of MIP was nanometer grade (90 nm) and the shape was homogeneous. The specific surface area and pore volumes of MIP and NIP were examined through Brunauer-Emett-Teller method of nitrogen adsorption experiments. Then, the adsorption and selective recognition ability of MIPs were evaluated using the equilibrium rebinding experiments. The results indicated that the prepared MIP showed a good selectivity recognition ability to its template. It concluded that MIP could be employed as an effective material for removing Congo red from waste water.

  4. Core-shelled mesoporous CoFe2O4-SiO2 material with good adsorption and high-temperature magnetic recycling capabilities

    Science.gov (United States)

    Li, Zhi'ang; Wang, Jianlin; Liu, Min; Chen, Tong; Chen, Jifang; Ge, Wen; Fu, Zhengping; Peng, Ranran; Zhai, Xiaofang; Lu, Yalin

    2018-04-01

    Residues of organic dye in industrial effluents cause severe water system pollution. Although several methods, such as biodegradation and activated carbon adsorption, are available for treating these effluents before their discharge into waterbodies, secondary pollution by adsorbents and degrading products remains an issue. Therefore, new materials should be identified to solve this problem. In this work, CoFe2O4-SiO2 core-shell structures were synthesized using an improved Stöber method by coating mesoporous silica onto CoFe2O4 nanoparticles. The specific surface areas of the synthesized particles range from 30 m2/g to 150 m2/g and vary according to the dosage amount of tetraethoxysilane. Such core-shelled nanoparticles have the following advantages for treating industrial effluents mixed with dye: good adsorption capability, above-room-temperature magnetic recycling capability, and heat-enduring stability. Through adsorption of methylene blue, a typical dyeing material, the core-shell-structured particles show a good adsorption capability of approximately 33 mg/L. The particles are easily and completely collected by magnets, which is possible due to the magnetic property of core CoFe2O4. Heat treatment can burn out the adsorbed dyes and good adsorption performance is sustained even after several heat-treating loops. This property overcomes the common problem of particles with Fe3O4 as a core, by which Fe3O4 is oxidized to nonmagnetic α-Fe2O3 at the burning temperature. We also designed a miniature of effluent-treating pipeline, which demonstrates the potential of the application.

  5. Controlling surface adsorption to enhance the selectivity of porphyrin based gas sensors

    Energy Technology Data Exchange (ETDEWEB)

    Evyapan, M., E-mail: mevyapan@gmail.com [Department of Physics, University of Balikesir, Balikesir, 10145 (Turkey); Chemical and Biological Engineering, University of Sheffield, Mappin Building, S1 3JD (United Kingdom); Dunbar, A.D.F. [Chemical and Biological Engineering, University of Sheffield, Mappin Building, S1 3JD (United Kingdom)

    2016-01-30

    Graphical abstract: The enhancement in the selectivity of the vapor sensing properties of free base porphyrin by controlling the size of the pores in the surface structure was carried out. It can be used as a size selective surface layer which limits the diffusion of analyte molecules into the sensor and in extreme cases stopping the diffusion completely. - Highlights: • Surface of a thin film takes and important part for its sensing characteristics. • A systematic surface modification was carried out in order to control the vapor accessibility. • Size dependant surfaces were fabricated. • Vapor diffusion through into thin film was controlled by modifying the surface structure. • Remarkable quantitative results showed the control on selectivity of the sensor by controlling the surface. - Abstract: This study reports an enhancement in the selectivity of the vapor sensing properties of free base porphyrin 5,10,15,20-tetrakis[3,4-bis(2-ethylhexyloxy)phenyl]-21H,23H-porphine (EHO) Langmuir–Schaefer (LS) films. These sensors respond by changing color upon adsorption of the analyte gas to the sensor surface. The enhanced selectivity is achieved by adding selective barrier layers of 4-tert-Butylcalix[4]arene, 4-tert-Butylcalix[6]arene and 4-tert-Butylcalix[8]arene embedded in PMMA (Poly(methyl methacrylate)) on top of the porphyrin sensor films to control the gaseous adsorption onto the sensor surface. The Langmuir properties of EHO, PMMA and calix[n]arene monolayers were investigated by surface pressure–area (Π–A) isotherms in order to determine the most efficient transfer pressure. Six layer EHO films were transferred onto glass and silicon substrates to investigate their optical and structural characteristics. The three different calix[n]arenes were embedded within PMMA layers to act as the selective barrier layers which were deposited on top of the six layer EHO films. The different calix[n]arene molecules vary in size and each was mixed with PMMA in

  6. Enhanced competitive adsorption of CO2 and H2 on graphyne: A density functional theory study

    Directory of Open Access Journals (Sweden)

    Hyuk Jae Kwon

    2017-12-01

    Full Text Available Adsorption using carbon-based materials has been established to be a feasible method for separating carbon dioxide and hydrogen to mitigate the emission of carbon dioxide into the atmosphere and for the collection of fuel for energy sources, simultaneously. We carried out density functional theory calculation with dispersion correction to investigate the physisorption characteristics of carbon allotropes such as graphene and graphyne for the competitive adsorption of CO2 and H2. It is worth noting that the graphyne represented preferable adsorption energies, short bond lengths and energy charges for both gases, compared with the characteristics observed with graphene. We found that in graphyne, both the affinitive adsorption of CO2, and the competitive adsorption of CO2 and H2, took place at the hollow site between acetylene links, which do not exist in graphene. We demonstrate that in the presence of H2, the CO2 adsorption selectivity of graphyne is higher than that of graphene, because of the improved electronic properties resulting from the acetylene links.

  7. Carbon Dioxide Adsorption Behavior of Modified HKUST-1

    Science.gov (United States)

    Ma, Lan; Tang, Huamin; Zhou, Chaohua; Zhang, Hongpeng; Yan, Chunxiao; Hu, Xiaochun; Yang, Yang; Yang, Weiwei; Li, Yuming; He, Dehua

    2014-12-01

    A kind of typical metal-organic frameworks (MOFs) material, HKUST-1 was prepared by hydrothermal method and characterized by XRD and SEM. The results of characterizations manifested that HKUST-1 showed a regular octahedral crystal structure. The as-prepared HKUST-1 was modified by several kinds of organic base materials and the CO2 adsorption behaviors of modified HKUST-1 materials were evaluated. The CO2 adsorption capacities of different base modified HKUST-1 varied with the base intensity of modified organic base materials.

  8. Gas separation by pressure swing adsorption

    International Nuclear Information System (INIS)

    Martin, J.R.; Gottzman, C.F.; Notaro, F.; Stewart, H.A.

    1986-01-01

    Over the past twenty years separation processes based upon pressure swing adsorption have replaced cryogenic processes in a number of selected applications such as air separation for production of moderate quantities of nitrogen and oxygen and recovery of hydrogen from refinery and chemical plant gases. Key events contributing to the emergence of PSA as an important process option have been the development of synthetic zeolite molecular sieves by Union Carbide Corporation in the USA and of carbon molecular sieves by Bergbau-Forschung in Germany. Today PSA processes enjoy significant commercial use producing oxygen from 0.1 Nm 3 /h for medical application to 1500 Nm 3 /h for steel mill use, for making nitrogen up to 1000 Nm 3 /h for inerting and in purifying hydrogen streams of up to 100,000 Nm 3 /h for refinery use. In this paper some of the principles of adsorptive separations are reviewed. The history of the technology is traced briefly with emphasis on key material, process and application events. The major commercial processes in the application of adsorption to bulk separation of air and hydrogen purification are reviewed in more detail with comparisons made to cryogenic alternatives in terms of specific characteristics, advantages and disadvantages where appropriate. Information on performance, reliability and comparative economics are discussed where available

  9. Treatment of liquid waste containing alpha nuclides by adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Jishu, Zeng; Xiguang, Su; Dejing, Xia; Sianhua, Fan [China Inst. of Atomic Energy, Beijing (China). Radiochemistry Dept.

    1997-02-01

    In this paper, experimental investigations on the removal of actinides from a decontaminating waste stream by using adsorption technique following the cementation of a resultant absorbent sludge are described. One kind of apatites was selected as an actinide absorbent from a number of indigenous materials by batch equilibrium tests. The influence of contact time, temperature, particle size and pH variables on the adsorption of actinides is given. The removal of total alpha activity is higher tan 97% by absorbent precipitation process when the absorbent addition percentage of the liquid waste is more than 3.25 wt%, making alpha-activity level of the primary waste stream below 3.7 x 10{sup 3} Bq/L, which can meet the acceptance requirements of the Low Level Radwaste Treatment Plant. The studies on the cementation of the absorbent sludge included the selection of cements used for solidification, formulation and characterization of the selected cemented waste forms. The results obtained have shown that both 525 type Portland cement and 325 type Portland pozzolana cement were compatible with the absorbent sludge. The selected cemented waste forms meet the requirements of the Chinese National Standard (GB 14569.1-93): Characteristic Requirements for Solidified Waste of Low and Intermediate Level Radioactive Waste - Cement Solidified Waste. (author). 9 refs, 3 figs, 14 tabs.

  10. ADSORPTION AND RELEASING PROPERTIES OF BEAD CELLULOSE

    Institute of Scientific and Technical Information of China (English)

    A. Morales; E. Bordallo; V. Leon; J. Rieumont

    2004-01-01

    The adsorption of some dyes on samples of bead cellulose obtained in the Unit of Research-Production "Cuba 9"was studied. Methylene blue, alizarin red and congo red fitted the adsorption isotherm of Langmuir. Adsorption kinetics at pH = 6 was linear with the square root of time indicating the diffusion is the controlling step. At pH = 12 a non-Fickian trend was observed and adsorption was higher for the first two dyes. Experiments carried out to release the methylene blue occluded in the cellulose beads gave a kinetic behavior of zero order. The study of cytochrome C adsorption was included to test a proteinic material. Crosslinking of bead cellulose was performed with epichlorohydrin decreasing its adsorption capacity in acidic or alkaline solution.

  11. Adsorption of gentian violet dyes in aqueous solution on microporous AlPOs molecular sieves synthesized by ionothermal method

    Science.gov (United States)

    Fortas, W.; Djelad, A.; Hasnaoui, M. A.; Sassi, M.; Bengueddach, A.

    2018-02-01

    In this work, AlPO-34, like-chabazite (CHA) zeolite, was ionothermally prepared using the ionic liquid (IL), 1-ethyl-3-methylimidazolium chloride [EMIMCl], as solvent. The solids obtained were characterized by x-ray powder diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FTIR), thermal analysis (TG) and nitrogen adsorption/desorption at 77.3 K. The results show that the ionic liquid is occluded in the AlPO-34 framework and consequently it acts also as a structure-directing agent. The variation of chemical composition led to AlPO-34 materials with different crystal sizes and morphologies. The well crystallized AlPO-34 material was used as adsorbent for Crystal Violet (CV) dye removal from aqueous solutions. The effect of adsorption parameters such as pH and initial concentration were investigated. It was found that adsorption dyes is favorable at pH = 6. The adsorption isotherm data follow the Langmuir equation in which parameters are calculated. The selected AlPO-34 sample exhibited a high crystal violet dye removal of 46.08 mg g-1 at pH = 6.

  12. Adsorption of arsenite and selenite using an inorganic ion exchanger based on Fe–Mn hydrous oxide

    KAUST Repository

    Szlachta, Małgorzata; Gerda, Vasyl; Chubar, Natalia

    2012-01-01

    The adsorption behaviour and mechanism of As(III) and Se(IV) oxyanion uptake using a mixed inorganic adsorbent were studied. The novel adsorbent, based on Fe(III)-Mn(III) hydrous oxides and manganese(II) carbonate, was synthesised using a hydrothermal precipitation approach in the presence of urea. The inorganic ion exchanger exhibited a high selectivity and adsorptive capacity towards As(III) (up to 47.6mg/g) and Se(IV) (up to 29.0mg/g), even at low equilibrium concentration. Although pH effects were typical for anionic species (i.e., the adsorption decreased upon pH increase), Se(IV) was more sensitive to pH changes than As(III). The rates of adsorption of both oxyanions were high. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) studies showed that the ion exchange adsorption of both anions took place via OH - groups, mainly from Fe(III) but also Mn(III) hydrous oxides. MnCO 3 did not contribute directly to As(III) and Se(IV) removal. A higher adsorptive capacity of the developed material towards As(III) was partly due to partial As(III) oxidation during adsorption. © 2011 Elsevier Inc.

  13. Synthesis and application of ion imprinting polymer coated magnetic multi-walled carbon nanotubes for selective adsorption of nickel ion

    Science.gov (United States)

    He, Junnan; Shang, Hongzhou; Zhang, Xing; Sun, Xiaoran

    2018-01-01

    A novel nickel ion imprinted polymers (IIPs) based on multi-walled carbon nanotubes (MWCNTs) were synthesized inverse emulsion system, using chitosan(CS) and acrylic acid as the functional monomers, Ni (II) as the template, and N' N-methylene bis-acrylamide as the cross-linker. The chemical structure and morphological feature of the IIPs were characterized by scanning electron microscopy (SEM), Thermogravimetry (TG), X-ray diffraction (XRD), and Fourier transform infrared spectrometer (FTIR). The studies indicated that the gel layer was well grafted on the surface of MWCNTs. Studies on the adsorption ability of the IIPs, by atomic absorption spectrophotometry, demonstrated that IIPs possessed excellent adsorption and selective ability towards Ni (II), fitting to pseudo second-order kinetic isotherms and with a maximum capacity of 19.86 mg/g, and selectivity factor of 13.09 and 4.42. The electrochemical performance of ion imprinting carbon paste electrode (CPE/IIPs) was characterized by Cyclic voltammetry (CV). Studies have shown that CPE/IIPs showed excellent electrochemical performance.

  14. Modeling adsorption: Investigating adsorbate and adsorbent properties

    Science.gov (United States)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  15. Fibrinogen adsorption on blocked surface of albumin

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2011-01-01

    We have investigated the adsorption of albumin and fibrinogen onto PET (polyethylene terephthalate) and glass surfaces and how pre-adsorption of albumin onto these surfaces can affect the adsorption of later added fibrinogen. For materials and devices being exposed to blood, adsorption...... of fibrinogen is often a non-wanted event, since fibrinogen is part of the clotting cascade and unspecific adsorption of fibrinogen can have an influence on the activation of platelets. Albumin is often used as blocking agent for avoiding unspecific protein adsorption onto surfaces in devices designed to handle...... energies, the adsorption of both albumin and fibrinogen has been monitored simultaneously on the same sample. Information about topography and coverage of adsorbed protein layers has been obtained using AFM (Atomic Force Microscopy) analysis in liquid. Our studies show that albumin adsorbs in a multilayer...

  16. Chemical Detection Based on Adsorption-Induced and Photo-Induced Stresses in MEMS Devices

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, P.G.

    1999-04-05

    Recently there has been an increasing demand to perform real-time in-situ chemical detection of hazardous materials, contraband chemicals, and explosive chemicals. Currently, real-time chemical detection requires rather large analytical instrumentation that are expensive and complicated to use. The advent of inexpensive mass produced MEMS (micro-electromechanical systems) devices opened-up new possibilities for chemical detection. For example, microcantilevers were found to respond to chemical stimuli by undergoing changes in their bending and resonance frequency even when a small number of molecules adsorb on their surface. In our present studies, we extended this concept by studying changes in both the adsorption-induced stress and photo-induced stress as target chemicals adsorb on the surface of microcantilevers. For example, microcantilevers that have adsorbed molecules will undergo photo-induced bending that depends on the number of absorbed molecules on the surface. However, microcantilevers that have undergone photo-induced bending will adsorb molecules on their surfaces in a distinctly different way. Depending on the photon wavelength and microcantilever material, the microcantilever can be made to bend by expanding or contracting the irradiated surface. This is important in cases where the photo-induced stresses can be used to counter any adsorption-induced stresses and increase the dynamic range. Coating the surface of the microstructure with a different material can provide chemical specificity for the target chemicals. However, by selecting appropriate photon wavelengths we can change the chemical selectivity due to the introduction of new surface states in the MEMS device. We will present and discuss our results on the use of adsorption-induced and photo-induced bending of microcantilevers for chemical detection.

  17. Adsorption of ammonium dinitramide (ADN) from aqueous solutions. 1. Adsorption on powdered activated charcoal.

    Science.gov (United States)

    Santhosh, G; Venkatachalam, S; Ninan, K N; Sadhana, R; Alwan, S; Abarna, V; Joseph, M A

    2003-03-17

    Investigations on the adsorption of ammonium dinitramide (NH(4)N(NO(2))(2)) (ADN) from aqueous solutions on powdered activated charcoal (PAC) were carried out in order to find out an effective and easier method of separating ADN from aqueous solutions. The effectiveness of PAC in the selective adsorption of ADN from aqueous solutions of ADN (ADN-F) and ADN in presence of sulfate (SO(4)(2-)) and nitrate (NO(3)(-)) ions (ADN-PS) was examined and compared using batch and column methods. The adsorption process follows both Langmuir and Freundlich adsorption isotherms and the isotherm parameters for the models were determined. The observed data favor the formation of monolayer adsorption. The adsorption capacities were found to be 63.3, 119, 105.3 and 82 mg of ADN per g of PAC for ADN-F (batch), ADN-PS (batch), ADN-F (column) and ADN-PS (column), respectively. Break-through curves for ADN-F and ADN-PS were obtained for the optimization of separation of ADN from aqueous solutions. Elution curves were generated for the desorption of ADN from PAC using hot water as eluent. Copyright 2003 Elsevier Science B.V.

  18. [Treatment of organic waste gas by adsorption rotor].

    Science.gov (United States)

    Zhu, Run-Ye; Zheng, Liang-Wei; Mao, Yu-Bo; Wang, Jia-De

    2013-12-01

    The adsorption rotor is applicable to treating organic waste gases with low concentration and high air volume. The performance of adsorption rotor for purifying organic waste gases was investigated in this paper. Toluene was selected as the simulative gaseous pollutant and the adsorption rotor was packed with honeycomb modified 13X molecular sieves (M-13X). Experimental results of the fixed adsorption and the rotor adsorption were analyzed and compared. The results indicated that some information on the fixed adsorption was useful for the rotor adsorption. Integrating the characteristics of the adsorbents, waste gases and the structures of the rotor adsorption, the formulas on optimal rotor speed and cycle removal efficiency of the adsorption rotor were deduced, based on the mass and heat balances of the adsorbing process. The numerical results were in good agreement with the experimental data, which meant that the formulas on optimal rotor speed and cycle removal efficiency could be effectively applied in design and operation of the adsorption rotor.

  19. Direct measurements of adsorption heats of hydrogen on nano-porous carbons

    International Nuclear Information System (INIS)

    Akihiko Matsumoto; Kazumasa Yamamoto; Tomoyuki Miyata

    2005-01-01

    Since a exciting report of hydrogen storage in single-walled carbon nano-tubes by Dillon and his colleagues, nano-porous carbon materials, such as carbon nano-tubes, carbon nano-horns and micro-porous activated carbon, have attracted considerable attention as hydrogen storage materials. Adsorption plays a predominating role in the hydrogen storage process on solid surfaces. The adsorption is a spontaneous process, which is caused by interaction between gas molecules and surface, hence, it is always exothermic process and observed as adsorption heats. For this reason, direct measurement of the adsorption heats by adsorption micro-calorimetry would provide quantitative information on the strength of adsorption interaction and the adsorption mechanism. However, the adsorption amounts of hydrogen on carbon materials are far less than those of condensable vapors near room temperature due to low critical temperature of hydrogen (33.2 K), therefore, the adsorption heats can not be determined accurately at conventional measurement conditions near room temperature and the atmospheric pressure. This contribution reports the calorimetric characterization of hydrogen adsorption on nano-porous carbon materials at low temperature and high-pressure conditions. The high-pressure adsorption apparatus consists of a volumetric adsorption line connected to a twin-conduction type microcalorimeter. Activated carbon fibers (ACF, Ad'all Co.) of different micro-pore sizes (Table 1) were used as model adsorbents. Each ACF has slit-shaped micropores of uniform size. The adsorption isotherms and differential heats of adsorption at high-pressure region from 0 to 10 MPa were simultaneously measured at isothermal condition from 203 to 298 K. The adsorption isotherms on ACF were of Henry type regardless of adsorption temperature and pore width; the uptakes increased linearly with equilibrium pressure. The adsorption isotherm at lower sorption temperature tended to show higher sorptivity. The

  20. Hydrogen adsorption in doped porous carbons

    International Nuclear Information System (INIS)

    L Balan; L Duclaux; S Los

    2005-01-01

    Full text of publication follows: Hydrogen is a clean fuel that will be used in automotive transport when the problem of storage will be solved. The difficulties of H 2 storage (available space, security and performance, etc...) require a material that can store 5 weight % of hydrogen. Research is focused on new materials that can assume the constraints imposed by the automotive applications. Among these materials, the nano-structured carbons (nano-fibers and single walled carbon nano-tubes) were claimed to be promising by numerous authors [1-3]. The more promising carbon materials for hydrogen adsorption are those having micropores (i. e. single walled carbon nano-tubes and activated carbon), for which the energy of sorption of hydrogen molecules is theoretically higher [7-8]. Presently, the best performance of hydrogen adsorption was found in super-activated microporous carbons sorbing 5 weight % at 77 K, and almost 0.5 % at room temperature and 6 MPa [9]. Up to now, the performance of these materials can still be improved as the known mechanism of sorption in these carbon materials: physi-sorption controlled by Van der Waals attractive forces through London interaction is efficient at cryogenic temperatures (77 K) where the interaction between adsorbent and adsorbate becomes stronger. One way to improve the attractive interaction between adsorbent and molecule is to increase the forces due to the interaction of electrical field and induced dipole of the molecule. This can be theoretically tailored in carbon materials through the electron charge transfer by electron donors who can provide an increase in the electrical field at the surface of the adsorbent. Then, the doping of carbon substrates, appearing to be a promising method to increase the energy of adsorption has been proposed in recent papers as a solution to obtain good hydrogen adsorption properties at appropriate temperatures close to room temperatures [10-12]. Thus, we have studied the adsorption

  1. Hydrogen adsorption in doped porous carbons

    International Nuclear Information System (INIS)

    Balan, L.; Duchaux, L.; Los, S.

    2005-01-01

    Full text of publication follows: Hydrogen is a clean fuel that will be used in automotive transport when the problem of storage will be solved. The difficulties of H 2 storage (available space, security and performance, etc...) require a material that can store 5 weight % of hydrogen. Research is focused on new materials that can assume the constraints imposed by the automotive applications. Among these materials, the nano-structured carbons (nano-fibers and single walled carbon nano-tubes) were claimed to be promising by numerous authors [1-3]. The more promising carbon materials for hydrogen adsorption are those having micropores (i. e. single walled carbon nano-tubes and activated carbon), for which the energy of sorption of hydrogen molecules is theoretically higher [7- 8]. Presently, the best performance of hydrogen adsorption was found in super-activated micro-porous carbons sorbing 5 weight % at 77 K, and almost 0.5 % at room temperature and 6 MPa [9]. Up to now, the performance of these materials can still be improved as the known mechanism of sorption in these carbon materials: physisorption controlled by Van der Waals attractive forces through London interaction is efficient at cryogenic temperatures (77 K) where the interaction between adsorbent and adsorbate becomes stronger. One way to improve the attractive interaction between adsorbent and molecule is to increase the forces due to the interaction of electrical field and induced dipole of the molecule. This can be theoretically tailored in carbon materials through the electron charge transfer by electron donors who can provide an increase in the electrical field al the surface of the adsorbent. Then, the doping of carbon substrates, appearing to be a promising method to increase the energy of adsorption has been proposed in recent papers as a solution to obtain good hydrogen adsorption properties at appropriate temperatures close to room temperatures [10-12]. Thus, we have studied the adsorption

  2. A Copper(II)-Paddlewheel Metal-Organic Framework with Exceptional Hydrolytic Stability and Selective Adsorption and Detection Ability of Aniline in Water.

    Science.gov (United States)

    Chen, Ya; Wang, Bin; Wang, Xiaoqing; Xie, Lin-Hua; Li, Jinping; Xie, Yabo; Li, Jian-Rong

    2017-08-16

    Copper(II)-paddlewheel-based metal-organic frameworks (CP-MOFs) represent a unique subclass of MOFs with highly predictable porous structures, facile syntheses, and functional open metal sites. However, the lack of high hydrolytic stability is an obstacle for CP-MOFs in many practical applications. In this work, we report a new CP-MOF, [Cu 4 (tdhb)] (BUT-155), which is constructed from a judiciously designed carboxylate ligand with high coordination connectivity (octatopic), abundant hydrophobic substituents (six methyl groups), and substituent constrained geometry (tetrahedral backbone), tdhb 8- [H 8 tdhb = 3,3',5,5'-tetrakis(3,5-dicarboxyphenyl)-2,2',4,4',6,6'-hexamethylbiphenyl)]. BUT-155 shows high porosity with a Brunauer-Emmett-Teller surface area of 2070 m 2 /g. Quite interestingly, this CP-MOF retains its structural integrity after being treated in water for 10 days at room temperature or in boiling water for 24 h. To the best of our knowledge, BUT-155 represents the first CP-MOF that is demonstrated to retain its structural integrity in boiling water. The high hydrolytic stability of BUT-155 allowed us to carry out adsorption studies of water vapor and aqueous organic pollutants on it. Water-vapor adsorption reveals a sigmoidal isotherm and a high uptake (46.7 wt %), which is highly reversible and regenerable. In addition, because of the availability of soft-acid-type open Cu(II) sites, BUT-155 shows a high performance for selective adsorption of soft-base-type aniline over water or phenol, and a naked-eye detectable color change for the MOF sample accompanies this. The adsorption selectivity and high adsorption capacity of aniline in BUT-155 are also well-interpreted by single-crystal structures of the water- and aniline-included phases of BUT-155.

  3. Using mathematical models to understand the effect of nanoscale roughness on protein adsorption for improving medical devices

    Directory of Open Access Journals (Sweden)

    Ercan B

    2013-09-01

    Full Text Available Batur Ercan,1 Dongwoo Khang,2 Joseph Carpenter,3 Thomas J Webster1 1Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 2School of Materials Science and Engineering and Center for PRC and RIGET, Gyeongsang National University, Jinju, South Korea; 3School of Medicine, Stanford University, Stanford, CA, USA Abstract: Surface roughness and energy significantly influence protein adsorption on to biomaterials, which, in turn, controls select cellular adhesion to determine the success and longevity of an implant. To understand these relationships at a fundamental level, a model was originally proposed by Khang et al to correlate nanoscale surface properties (specifically, nanoscale roughness and energy to protein adsorption, which explained the greater cellular responses on nanostructured surfaces commonly reported in the literature today. To test this model for different surfaces from what was previously used to develop that model, in this study we synthesized highly ordered poly(lactic-co-glycolic acid surfaces of identical chemistry but altered nanoscale surface roughness and energy using poly(dimethylsiloxane molds of polystyrene beads. Fibronectin and collagen type IV adsorption studies showed a linear adsorption behavior as the surface nanoroughness increased. This supported the general trends observed by Khang et al. However, when fitting such data to the mathematical model established by Khang et al, a strong correlation did not result. Thus, this study demonstrated that the equation proposed by Khang et al to predict protein adsorption should be modified to accommodate for additional nanoscale surface property contributions (ie, surface charge to make the model more accurate. In summary, results from this study provided an important step in developing future mathematical models that can correlate surface properties (such as nanoscale roughness and surface energy to initial protein adsorption events important to

  4. Removal of acid red 88 from wastewater by adsorption on agrobased waste material. A case study of Iranian golden Sesamum indicum hull

    Directory of Open Access Journals (Sweden)

    Mahmoud Zarei

    2017-08-01

    Full Text Available Background: Colors are very useful in different industries such as textile and leather but when they enter water, can cause many biological and environmental problems. In the present research, a waste agricultural material which is freely available is employed to analyze its efficiency for removing acid dye from contaminated wastewaters. Methods: In this study, batch adsorption experiments were performed in the treatment process of acid red 88 (AR88 by Iranian golden Sesamum indicum (IGSI seeds hull which is produced abundantly in some countries and especially in Iran up to 1100 kg/ha. Also, the effect of operational parameters like adsorption time, pH, dye concentration and adsorbent dosage was studied on pollutant removing efficiency. The experimental data of AR88 adsorption was fitted to Langmuir, Freundlich and Temkin isotherm models. The scanning electron microscopy (SEM images for the IGSI were taken before and after adsorption process. Results: The efficiency of dye adsorption on adsorbent was found to be 98.2%. The optimum pH for treatment was 4.5 which is in the acidic range. Enhancing the adsorbent dosage from 0.5 to 2.5 g caused increasing in removal efficiency from 73.85% to 95.85%. Decreasing in dye concentration from 70 to 30 mg/L caused increasing in removal efficiency from 79.73% to 95.83%. The process of adsorption was best fitted to Langmuir model and the amount of dye adsorbed on adsorbent, qe, was found to be 25 mg/g. Comparison between SEM images before and after dye adsorption, showed the significant difference that was due to the dye loading on adsorbent. Conclusion: The results of present study demonstrated higher dye removal efficiency for AR88 in acidic pHs. Employing the IGSI material in this study proves to be a potential alternative to expensive adsorbents, utilized for the treatment of contaminated industrial waste waters.

  5. New ion selective materials. Application to the selective extraction of caesium

    International Nuclear Information System (INIS)

    Favre-Reguillon, Alain

    1996-01-01

    This research thesis addresses the synthesis and assessment of ion selective materials. The first part reports the development of a general method of assessment of ion selective materials. In the second part, the author describes different methods used to insolubilize macro-cycles on hydrophilic polymers. The obtained polyurethanes are synthesised. These hydrophilic polymers display interesting complexing properties and selectivities with respect to cations of alkali metals. Then the author addresses the improvement of selectivity with respect to caesium of ion exchange resorcinol-formaldehyde resins. Different factors affecting selectivity are identified, and the concept of molecular print is used to study the improvement of selectivity. The effect of macro-cyclic structures on phenolic resins with respect to caesium is highlighted [fr

  6. Protecting group and switchable pore-discriminating adsorption properties of a hydrophilic-hydrophobic metal-organic framework.

    Science.gov (United States)

    Mohideen, M Infas H; Xiao, Bo; Wheatley, Paul S; McKinlay, Alistair C; Li, Yang; Slawin, Alexandra M Z; Aldous, David W; Cessford, Naomi F; Düren, Tina; Zhao, Xuebo; Gill, Rachel; Thomas, K Mark; Griffin, John M; Ashbrook, Sharon E; Morris, Russell E

    2011-04-01

    Formed by linking metals or metal clusters through organic linkers, metal-organic frameworks are a class of solids with structural and chemical properties that mark them out as candidates for many emerging gas storage, separation, catalysis and biomedical applications. Important features of these materials include their high porosity and their flexibility in response to chemical or physical stimuli. Here, a copper-based metal-organic framework has been prepared in which the starting linker (benzene-1,3,5-tricarboxylic acid) undergoes selective monoesterification during synthesis to produce a solid with two different channel systems, lined by hydrophilic and hydrophobic surfaces, respectively. The material reacts differently to gases or vapours of dissimilar chemistry, some stimulating subtle framework flexibility or showing kinetic adsorption effects. Adsorption can be switched between the two channels by judicious choice of the conditions. The monoesterified linker is recoverable in quantitative yield, demonstrating possible uses of metal-organic frameworks in molecular synthetic chemistry as 'protecting groups' to accomplish selective transformations that are difficult using standard chemistry techniques.

  7. Adsorption Equilibrium Equation of Carboxylic Acids on Anion-Exchange Resins in Water.

    Science.gov (United States)

    Kanazawa, Nobuhiro; Urano, Kohei; Kokado, Naohiro; Urushigawa, Yoshikuni

    2001-06-01

    The adsorption of propionic acid and benzoic acid on anion-exchange resins was analyzed, and an adsorption equilibrium equation of carboxylic acids was proposed. The adsorption of carboxylic acids on the anion-exchange resins was considered to be the sum of the physical adsorption of the molecule and the ion-exchange adsorption of the ion, which were independent of each other. For the physical adsorption of carboxylic acids, it was conformed to the Freundlich equation. For the ion-exchange adsorption of carboxylate ions, the equilibrium equation corresponded well with the experimental results for wide ranges of concentration and pH. The equation contains a selectivity coefficient S(A)(Cl) for the chloride ion versus the carboxylate ion, which was considered essentially a constant. The influent of the bicarbonate ion from carbon dioxide in air could also be expressed by the additional equilibrium equation with the selectivity coefficient S(HCO(3))(Cl) for the chloride ion versus the bicarbonate ion. Consequently, an adsorption equilibrium equation can estimate the equilibrium adsorption amounts. Even the effect of a coexisting bicarbonate ion is inconsequential when the parameters of the Freundlich isotherm equation and the selectivity coefficients of the carboxylate ion and the bicarbonate ion in each resin are determined in advance. Copyright 2001 Academic Press.

  8. Removal Rate of Organic Matter Using Natural Cellulose via Adsorption Isotherm and Kinetic Studies.

    Science.gov (United States)

    Din, Mohd Fadhil Md; Ponraj, Mohanadoss; Low, Wen-Pei; Fulazzaky, Mohamad Ali; Iwao, Kenzo; Songip, Ahmad Rahman; Chelliapan, Shreeshivadasan; Ismail, Zulhilmi; Jamal, Mohamad Hidayat

    2016-02-01

    In this study, the removal of natural organic matter (NOM) using coconut fiber (CF) and palm oil fiber (POF) was investigated. Preliminary analysis was performed using a jar test for the selection of optimal medium before the fabricated column model experiment. The equilibrium studies on isotherms and kinetic models for NOM adsorption were analyzed using linearized correlation coefficient. Results showed that the equilibrium data were fitted to Langmuir isotherm model for both CF and POF. The most suitable adsorption model was the pseudo-first-order kinetic model for POF and pseudo-second-order kinetic model for CF. The adsorption capacities achieved by the CF and POF were 15.67 and 30.8 mg/g respectively. Based on this investigation, it can be concluded that the POF is the most suitable material for the removal of NOM in semi polluted river water.

  9. Henna wood as an adsorptive material for bentazon

    African Journals Online (AJOL)

    SAM

    2014-08-27

    Aug 27, 2014 ... removal of impurities from liquids and gases (Chowdhury ... terrestrial non-food crops: ornamental lawns and turf. It ... Carbonization was carried out in a vertical stainless-steel reactor ..... an essential procedure before designing the adsorption ..... Catalytic processes for the purification of drinking water.

  10. Selective Removal of the Genotoxic Compound 2-Aminopyridine in Water using Molecularly Imprinted Polymers Based on Magnetic Chitosan and β-Cyclodextrin

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2017-08-01

    Full Text Available To develop efficient materials with enhanced adsorption and selectivity for genotoxic 2-aminopyridine in water, based on magnetic chitosan (CTs and β-cyclodextrin (β-CD, the magnetic molecularly imprinted polymers (MMIPs of Fe3O4-CTs@MIP and Fe3O4-MAH-β-CD@MIP were synthesized by a molecular imprinting technique using 2-aminopyridine as a template. The selective adsorption experiments for 2-aminopyridine were performed by four analogues including pyridine, aniline, 2-amino-5-chloropyridine and phenylenediamine. Results showed the target 2-aminopyridine could be selectively adsorbed and quickly separated by the synthesized MMIPs in the presence of the above structural analogues. The coexisting ions including Na+, K+, Mg2+, Ca2+, Cl− and SO42− showed little effect on the adsorption of 2-aminopyridine. The maximum adsorption capacity of 2-aminopyridine on Fe3O4-CTs@MIP and Fe3O4-MAH-β-CD@MIP was 39.2 mg·g−1 and 46.5 mg·g−1, respectively, which is much higher than values in previous reports. The comparison result with commercial activated carbon showed the obtained MMIPs had higher adsorption ability and selectivity for 2-aminopyridine. In addition, the synthesized MMIPs exhibited excellent performance of regeneration, which was used at least five times with little adsorption capacity loss. Therefore, the synthesized MMIPs are potential effective materials in applications for selective removal and analysis of the genotoxic compound aminopyridine from environmental water.

  11. Selective adsorption of a supramolecular structure on flat and stepped gold surfaces

    Science.gov (United States)

    Peköz, Rengin; Donadio, Davide

    2018-04-01

    Halogenated aromatic molecules assemble on surfaces forming both hydrogen and halogen bonds. Even though these systems have been intensively studied on flat metal surfaces, high-index vicinal surfaces remain challenging, as they may induce complex adsorbate structures. The adsorption of 2,6-dibromoanthraquinone (2,6-DBAQ) on flat and stepped gold surfaces is studied by means of van der Waals corrected density functional theory. Equilibrium geometries and corresponding adsorption energies are systematically investigated for various different adsorption configurations. It is shown that bridge sites and step edges are the preferred adsorption sites for single molecules on flat and stepped surfaces, respectively. The role of van der Waals interactions, halogen bonds and hydrogen bonds are explored for a monolayer coverage of 2,6-DBAQ molecules, revealing that molecular flexibility and intermolecular interactions stabilize two-dimensional networks on both flat and stepped surfaces. Our results provide a rationale for experimental observation of molecular carpeting on high-index vicinal surfaces of transition metals.

  12. Gas-phase formaldehyde adsorption isotherm studies on activated carbon: correlations of adsorption capacity to surface functional group density.

    Science.gov (United States)

    Carter, Ellison M; Katz, Lynn E; Speitel, Gerald E; Ramirez, David

    2011-08-01

    Formaldehyde (HCHO) adsorption isotherms were developed for the first time on three activated carbons representing one activated carbon fiber (ACF) cloth, one all-purpose granular activated carbon (GAC), and one GAC commercially promoted for gas-phase HCHO removal. The three activated carbons were evaluated for HCHO removal in the low-ppm(v) range and for water vapor adsorption from relative pressures of 0.1-0.9 at 26 °C where, according to the IUPAC isotherm classification system, the adsorption isotherms observed exhibited Type V behavior. A Type V adsorption isotherm model recently proposed by Qi and LeVan (Q-L) was selected to model the observed adsorption behavior because it reduces to a finite, nonzero limit at low partial pressures and it describes the entire range of adsorption considered in this study. The Q-L model was applied to a polar organic adsorbate to fit HCHO adsorption isotherms for the three activated carbons. The physical and chemical characteristics of the activated carbon surfaces were characterized using nitrogen adsorption isotherms, X-ray photoelectron spectroscopy (XPS), and Boehm titrations. At low concentrations, HCHO adsorption capacity was most strongly related to the density of basic surface functional groups (SFGs), while water vapor adsorption was most strongly influenced by the density of acidic SFGs.

  13. Adsorption Behavior of High Stable Zr-Based MOFs for the Removal of Acid Organic Dye from Water

    Directory of Open Access Journals (Sweden)

    Ke-Deng Zhang

    2017-02-01

    Full Text Available Zirconium based metal organic frameworks (Zr-MOFs have become popular in engineering studies due to their high mechanical stability, thermostability and chemical stability. In our work, by using a theoretical kinetic adsorption isotherm, we can exert MOFs to an acid dye adsorption process, experimentally exploring the adsorption of MOFs, their external behavior and internal mechanism. The results indicate their spontaneous and endothermic nature, and the maximum adsorption capacity of this material for acid orange 7 (AO7 could be up to 358 mg·g−1 at 318 K, estimated by the Langmuir isotherm model. This is ascribed to the presence of an open active metal site that significantly intensified the adsorption, by majorly increasing the interaction strength with the adsorbates. Additionally, the enhanced π delocalization and suitable pore size of UiO-66 gave rise to the highest host–guest interaction, which further improves both the adsorption capacity and separation selectivity at low concentrations. Furthermore, the stability of UiO-66 was actually verified for the first time, through comparing the structure of the samples before and after adsorption mainly by Powder X-ray diffraction and thermal gravimetric analysis.

  14. The materials selection in ITER and the first materials workshop

    International Nuclear Information System (INIS)

    Matera, R.; Barabash, V.; Kalinin, G.; Tanaka, S.

    1998-01-01

    The selection of materials and joining technologies to be used in ITER is a trade-off between multiple and often conflicting requirements derived from the unique features of the fusion environment. Materials selection must encompass a total engineering approach, by considering not only physical and mechanical properties, but also the components' manufacturing, their maintainability and reliability, and, finally, how they can be recycled or disposed of at the end of machine operation

  15. Liquid-phase adsorption of phenols using activated carbons derived from agricultural waste material

    International Nuclear Information System (INIS)

    Singh, Kunwar P.; Malik, Amrita; Sinha, Sarita; Ojha, Priyanka

    2008-01-01

    Physical and chemical properties of activated carbons prepared from coconut shells (SAC and ATSAC) were studied. The adsorption equilibria and kinetics of phenol and 2,4-dichlorophenol from aqueous solutions on such carbons were then examined at three different temperatures (10, 25 and 40 deg. C). Adsorption of both phenol and 2,4-dichlorophenol increased with an increase in temperature. The experimental data were analyzed using the Langmuir and Freundlich isotherm models. Both the isotherm models adequately fit the adsorption data for both the phenols. The carbon developed through the acid treatment of coconut shells (ATSAC) exhibited relatively higher monolayer adsorption capacity for phenol (0.53 mmol g -1 ) and 2,4-dichlorophenol (0.31 mmol g -1 ) as compared to that developed by thermal activation (SAC) with adsorption capacity of 0.36 and 0.20 mmol g -1 , for phenol and 2,4-dichlorophenol, respectively. The equilibrium sorption and kinetics model parameters and thermodynamic functions were estimated and discussed. The thermodynamic parameters (free energy, enthalpy and entropy changes) exhibited the feasibility and spontaneous nature of the adsorption process. The sorption kinetics was studied using the pseudo-first-order and second-order kinetics models. The adsorption kinetics data for both the phenol and 2,4-dichlorophenol fitted better to the second-order model. An attempt was also made to identify the rate-limiting step involved in the adsorption process. Results of mass transfer analysis suggested the endothermic nature of the reaction and change in the mechanism with time and initial concentration of the adsorbate. The results of the study show that the activated carbons derived from coconut shells can be used as potential adsorbent for phenols in water/wastewater

  16. Micro- and Nano- Porous Adsorptive Materials for Removal of Contaminants from Water at Point-of-Use

    Science.gov (United States)

    Yakub, Ismaiel

    Water is food, a basic human need and a fundamental human right, yet hundreds of millions of people around the world do not have access to clean drinking water. As a result, about 5000 people die each day from preventable water borne diseases. This dissertation presents the results of experimental and theoretical studies on three different types of porous materials that were developed for the removal of contaminants from water at point of use (household level). First, three compositionally distinct porous ceramic water filters (CWFs) were made from a mixture of redart clay and sieved woodchips and processed into frustum shape. The filters were tested for their flow characteristics and bacteria filtration efficiencies. Since, the CWFs are made from brittle materials, and may fail during processing, transportation and usage, the mechanical and physical properties of the porous clays were characterized, and used in modeling designed to provide new insights for the design of filter geometries. The mechanical/physical properties that were characterized include: compressive strength, flexural strength, facture toughness and resistance curve behavior, keeping in mind the anisotropic nature of the filter structure. The measured flow characteristics and mechanical/physical properties were then related to the underlying porosity and characteristic pore size. In an effort to quantify the adhesive interactions associated with filtration phenomena, atomic force microscopy (AFM) was used to measure the adhesion between bi-material pairs that are relevant to point-of-use ceramic water filters. The force microscopy measurements of pull-off force and adhesion energy were used to rank the adhesive interactions. Similarly, the adsorption of fluoride to hydroxyapatite-doped redart clay was studied using composites of redart clay and hydroxyapatite (C-HA). The removal of fluoride from water was explored by carrying out adsorption experiments on C-HA adsorbents with different ratios of

  17. Adsorption of multi-heavy metals Zn and Cu onto surficial sediments: modeling and adsorption capacity analysis.

    Science.gov (United States)

    Li, Shanshan; Zhang, Chen; Wang, Meng; Li, Yu

    2014-01-01

    Improved multiple regression adsorption models (IMRAMs) was developed to estimate the adsorption capacity of the components [Fe oxides (Fe), Mn oxides (Mn), organic materials (OMs), residuals] in surficial sediments for multi-heavy metal Zn and Cu. IMRAM is an improved version over MRAM, which introduces a computer program in the model developing process. As MRAM, Zn(Cu) IMRAM, and Cu(Zn) IMRAM again confirmed that there is significant interaction effects that control the adsorption of compounded Zn and Cu, which was neglected by additional adsorption model. The verification experiment shows that the relative deviation of the IMRAMs is less than 13%. It is revealed by the IMRAMs that Mn, which has the greatest adsorption capability for compounded Zn and Cu (54.889 and 161.180 mg/l, respectively), follows by interference adsorption capacity of Fe/Mn (-1.072 and -24.591 mg/l respectively). Zn and Cu influence each other through different mechanisms. When Zn is the adsorbate, compounded Cu mainly affects the adsorption capacities of Fe/Mn and Fe/Mn/OMs; while when Cu is the adsorbate, compounded Zn mainly exerts its effect on Mn, Fe/Mn, and Mn/OMs. It also shows that the compounded Zn or Cu weakened the interference adsorption of Fe/Mn, and meanwhile, strengthened the interference adsorption of Mn/OMs.

  18. Rare earth chalcogels NaLnSnS{sub 4} (Ln = Y, Gd, Tb) for selective adsorption of volatile hydrocarbons and gases

    Energy Technology Data Exchange (ETDEWEB)

    Edhaim, Fatimah; Rothenberger, Alexander [Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2017-08-16

    The synthesis and characterization of the rare earth chalcogenide aerogels NaYSnS{sub 4}, NaGdSnS{sub 4}, and NaTbSnS{sub 4} is reported. Rare earth metal ions like Y{sup 3+}, Gd{sup 3+}, and Tb{sup 3+} react with the chalcogenide clusters [SnS{sub 4}]{sup 4-} in aqueous formamide solution forming extended polymeric networks by gelation. Aerogels obtained after supercritical drying have BET surface areas of 649 m{sup 2}.g{sup -1} (NaYSnS{sub 4}), 479 m{sup 2}.g{sup -1} (NaGdSnS{sub 4}), and 354 m{sup 2}.g{sup -1} (NaTbSnS{sub 4}). Electron microscopy and physisorption studies reveal that the new materials have pores in the macro (above 50 nm) and meso (2-50 nm) regions. These aerogels show higher adsorption of toluene vapor over cyclohexane vapor and CO{sub 2} over CH{sub 4} or H{sub 2}. The notable adsorption capacity for toluene (NaYSnS{sub 4}: 1108 mg.g{sup -1}; NaGdSnS{sub 4}: 921 mg.g{sup -1}; and NaTbSnS4: 645 mg.g{sup -1}) and high selectivity for gases (CO{sub 2}/H{sub 2}: 172 and CO{sub 2}/CH{sub 4}: 50 for NaYSnS{sub 4}, CO{sub 2}/H{sub 2}: 155 and CO{sub 2}/CH{sub 4}: 37 for NaGdSnS{sub 4}, and CO{sub 2}/H{sub 2}: 75 and CO{sub 2}/CH{sub 4}: 28 for NaTbSnS{sub 4}) indicate potential future use of chalcogels in adsorption-based gas or hydrocarbon separation processes. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. An efficient one-step condensation and activation strategy to synthesize porous carbons with optimal micropore sizes for highly selective CO₂ adsorption.

    Science.gov (United States)

    Wang, Jiacheng; Liu, Qian

    2014-04-21

    A series of microporous carbons (MPCs) were successfully prepared by an efficient one-step condensation and activation strategy using commercially available dialdehyde and diamine as carbon sources. The resulting MPCs have large surface areas (up to 1881 m(2) g(-1)), micropore volumes (up to 0.78 cm(3) g(-1)), and narrow micropore size distributions (0.7-1.1 nm). The CO₂ uptakes of the MPCs prepared at high temperatures (700-750 °C) are higher than those prepared under mild conditions (600-650 °C), because the former samples possess optimal micropore sizes (0.7-0.8 nm) that are highly suitable for CO₂ capture due to enhanced adsorbate-adsorbent interactions. At 1 bar, MPC-750 prepared at 750 °C demonstrates the best CO₂ capture performance and can efficiently adsorb CO₂ molecules at 2.86 mmol g(-1) and 4.92 mmol g(-1) at 25 and 0 °C, respectively. In particular, the MPCs with optimal micropore sizes (0.7-0.8 nm) have extremely high CO₂/N₂ adsorption ratios (47 and 52 at 25 and 0 °C, respectively) at 1 bar, and initial CO₂/N₂ adsorption selectivities of up to 81 and 119 at 25 °C and 0 °C, respectively, which are far superior to previously reported values for various porous solids. These excellent results, combined with good adsorption capacities and efficient regeneration/recyclability, make these carbons amongst the most promising sorbents reported so far for selective CO₂ adsorption in practical applications.

  20. Detailed characterization and preliminary adsorption model for materials for an intermediate-scale reactive-transport experiment

    International Nuclear Information System (INIS)

    Ward, D.B.; Bryan, C.R.

    1994-01-01

    An experiment involving migration of fluid and tracers (Li, Br, Ni) through a 6-m-high x 3-m-dia caisson Wedron 510 sand, is being carried out for Yucca Mountain Site Characterization Project. Sand's surface chemistry of the sand was studied and a preliminary surface-complexation model of Ni adsorption formulated for transport calculations. XPS and leaching suggest that surface of the quartz sand is partially covered by thin layers of Fe-oxyhydroxide and Ca-Mg carbonate and by flakes of kaolinite. Ni adsorption by the sand is strongly pH-dependent, showing no adsorption at pH 5 and near-total adsorption at pH 7. Location of adsorption edge is independent of ionic strength and dissolved Ni concentration; it is shifted to slightly lower pH with higher pCO2 and to slightly higher pH by competition with Li. Diminished adsorption at alkiline pH with higher pCO2 implies formation of dissolved Ni-carbonato complexes. Ni adsorption edges for goethite and quartz, two components of the sand were also measured. Ni adsorption on pure quartz is only moderately pH-dependent and differs in shape and location from that of the sand, whereas Ni adsorption by goethite is strongly pH-dependent. A triple-layer surface-complexation model developed for goethite provides a good fit to the Ni-adsorption curve of the sand. Based on this model, the apparent surface area of the Fe-oxyhydroxide coating is estimated to be 560 m 2 /g, compatible with its occurrence as amorphous Fe-oxyhydroxide. Potentiometric titrations on sand also differ from pure quartz and suggest that effective surface area of sand may be much greater than that measured by N 2 -BET gas adsorption. Attempts to model the adsorption of bulk sand in terms of properties of pure end member components suggest that much of the sand surface is inert. Although the exact Ni adsorption mechanisms remain ambiguous, this preliminary adsorption model provides an initial set of parameters that can be used in transport calculations

  1. Study on Shale Adsorption Equation Based on Monolayer Adsorption, Multilayer Adsorption, and Capillary Condensation

    Directory of Open Access Journals (Sweden)

    Qing Chen

    2017-01-01

    Full Text Available Shale gas is an effective gas resource all over the world. The evaluation of pore structure plays a critical role in exploring shale gas efficiently. Nitrogen adsorption experiment is one of the significant approaches to analyze pore size structure of shale. Shale is extremely heterogeneous due to component diversity and structure complexity. Therefore, adsorption isotherms for homogeneous adsorbents and empirical isotherms may not apply to shale. The shape of adsorption-desorption curve indicates that nitrogen adsorption on shale includes monolayer adsorption, multilayer adsorption, and capillary condensation. Usually, Langmuir isotherm is a monolayer adsorption model for ideal interfaces; BET (Brunauer, Emmett, Teller adsorption isotherm is a multilayer adsorption model based on specific assumptions; Freundlich isotherm is an empirical equation widely applied in liquid phase adsorption. In this study, a new nitrogen adsorption isotherm is applied to simultaneously depict monolayer adsorption, multilayer adsorption, and capillary condensation, which provides more real and accurate representation of nitrogen adsorption on shale. In addition, parameters are discussed in relation to heat of adsorption which is relevant to the shape of the adsorption isotherm curve. The curve fitting results indicate that our new nitrogen adsorption isotherm can appropriately describe the whole process of nitrogen adsorption on shale.

  2. Adsorption of Rare Earths(Ⅲ) Using an Efficient Sodium Alginate Hydrogel Cross-Linked with Poly-γ-Glutamate

    Science.gov (United States)

    Xu, Shuxia; Wang, Zhiwei; Gao, Yuqian; Zhang, Shimin; Wu, Kun

    2015-01-01

    With the exploitation of rare earth ore, more and more REEs came into groundwater. This was a waste of resources and could be harmful to the organisms. This study aimed to find an efficient adsorption material to mitigate the above issue. Through doping sodium alginate (SA) with poly-γ-glutamate (PGA), an immobilized gel particle material was produced. The composite exhibited excellent capacity for adsorbing rare earth elements (REEs). The amount of La3+ adsorbed on the SA-PGA gel particles reached approximately 163.93 mg/g compared to the 81.97 mg/g adsorbed on SA alone. The factors that potentially affected the adsorption efficiency of the SA-PGA composite, including the initial concentration of REEs, the adsorbent dosage, and the pH of the solution, were investigated. 15 types of REEs in single and mixed aqueous solutions were used to explore the selective adsorption of REEs on gel particles. Scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy analyses of the SA and SA-PGA gel beads suggested that the carboxyl groups in the composite might play a key role in the adsorption process and the morphology of SA-PGA changed from the compact structure of SA to a porous structure after doping PGA. The kinetics and thermodynamics of the adsorption of REEs were well fit with the pseudo-second-order equation and the Langmuir adsorption isotherm model, respectively. It appears that SA-PGA is useful for recycling REEs from wastewater. PMID:25996388

  3. Amorphous infinite coordination polymer microparticles: a new class of selective hydrogen storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, You-Moon; Heo, Jungseok; Mirkin, Chad A [Department of Chemistry, International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL (United States); Armatas, Gerasimos S [Department of Chemistry, Northwestern University, Evanston, IL (United States); Kanatzidis, Mercouri G [Materials Science Division, Argonne National Laboratory, Argonne, IL (United States)

    2008-06-04

    A new class of micrometer-sized amorphous infinite coordination particles is selectively prepared from the coordination chemistry of a metallo-salen building block and Zn{sup 2+} ions. The particles show moderately high H{sub 2} uptake and almost no N{sub 2} adsorption, even though they are amorphous and do not have the well-defined channels typically used to explain such selectivity in metal-organic framework systems. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  4. Liquid-phase adsorption of phenols using activated carbons derived from agricultural waste material

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Kunwar P. [Environmental Chemistry Section, Industrial Toxicology Research Centre, Post Box 80, MG Marg, Lucknow 226001 (India)], E-mail: kpsingh_52@yahoo.com; Malik, Amrita [Environmental Chemistry Section, Industrial Toxicology Research Centre, Post Box 80, MG Marg, Lucknow 226001 (India); Sinha, Sarita [National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001 (India); Ojha, Priyanka [Environmental Chemistry Section, Industrial Toxicology Research Centre, Post Box 80, MG Marg, Lucknow 226001 (India)

    2008-02-11

    Physical and chemical properties of activated carbons prepared from coconut shells (SAC and ATSAC) were studied. The adsorption equilibria and kinetics of phenol and 2,4-dichlorophenol from aqueous solutions on such carbons were then examined at three different temperatures (10, 25 and 40 deg. C). Adsorption of both phenol and 2,4-dichlorophenol increased with an increase in temperature. The experimental data were analyzed using the Langmuir and Freundlich isotherm models. Both the isotherm models adequately fit the adsorption data for both the phenols. The carbon developed through the acid treatment of coconut shells (ATSAC) exhibited relatively higher monolayer adsorption capacity for phenol (0.53 mmol g{sup -1}) and 2,4-dichlorophenol (0.31 mmol g{sup -1}) as compared to that developed by thermal activation (SAC) with adsorption capacity of 0.36 and 0.20 mmol g{sup -1}, for phenol and 2,4-dichlorophenol, respectively. The equilibrium sorption and kinetics model parameters and thermodynamic functions were estimated and discussed. The thermodynamic parameters (free energy, enthalpy and entropy changes) exhibited the feasibility and spontaneous nature of the adsorption process. The sorption kinetics was studied using the pseudo-first-order and second-order kinetics models. The adsorption kinetics data for both the phenol and 2,4-dichlorophenol fitted better to the second-order model. An attempt was also made to identify the rate-limiting step involved in the adsorption process. Results of mass transfer analysis suggested the endothermic nature of the reaction and change in the mechanism with time and initial concentration of the adsorbate. The results of the study show that the activated carbons derived from coconut shells can be used as potential adsorbent for phenols in water/wastewater.

  5. Nanofiber-Based Materials for Persistent Organic Pollutants in Water Remediation by Adsorption

    Directory of Open Access Journals (Sweden)

    Elise des Ligneris

    2018-01-01

    Full Text Available Fresh water is one of the most precious resources for our society. As a cause of oxygen depletion, organic pollutants released into water streams from industrial discharges, fertilizers, pesticides, detergents or consumed medicines can raise toxicological concerns due to their long-range transportability, bio-accumulation and degradation into carcinogenic compounds. The Stockholm Convention has named 21 persistent organic pollutants (POP so far. As opposed to other separation techniques, adsorption, typically performed with activated carbons, offers opportunities to combine low operation costs with high performance as well as fast kinetics of capture if custom-designed with the right choice of adsorbent structure and surface chemistry. Nanofibers possess a higher surface to volume ratio compared to commercial macro-adsorbents, and a higher stability in water than other adsorptive nanostructures, such as loose nanoparticles. This paper highlights the potential of nanofibers in organic pollutant adsorption and thus provides an up-to-date overview of their employment for the treatment of wastewater contaminated by disinfectants and pesticides, which is benchmarked with other reported adsorptive structures. The discussion further investigates the impact of adsorbent pore geometry and surface chemistry on the resulting adsorption performance against specific organic molecules. Finally, insight into the physicochemical properties required for an adsorbent against a targeted pollutant is provided.

  6. Integrated Removal of NOx with Carbon Monoxide as Reductant, and Capture of Mercury in a Low Temperature Selective Catalytic and Adsorptive Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Neville Pinto; Panagiotis Smirniotis; Stephen Thiel

    2010-08-31

    Coal will likely continue to be a dominant component of power generation in the foreseeable future. This project addresses the issue of environmental compliance for two important pollutants: NO{sub x} and mercury. Integration of emission control units is in principle possible through a Low Temperature Selective Catalytic and Adsorptive Reactor (LTSCAR) in which NO{sub x} removal is achieved in a traditional SCR mode but at low temperature, and, uniquely, using carbon monoxide as a reductant. The capture of mercury is integrated into the same process unit. Such an arrangement would reduce mercury removal costs significantly, and provide improved control for the ultimate disposal of mercury. The work completed in this project demonstrates that the use of CO as a reductant in LTSCR is technically feasible using supported manganese oxide catalysts, that the simultaneous warm-gas capture of elemental and oxidized mercury is technically feasible using both nanostructured chelating adsorbents and ceria-titania-based materials, and that integrated removal of mercury and NO{sub x} is technically feasible using ceria-titania-based materials.

  7. Impact of Initial pH and Pyrolysis Temperature on the Adsorption of Cr(Ⅵ from Aqueous Solutions on Corn Straw-based Materials

    Directory of Open Access Journals (Sweden)

    WANG Shuai

    2016-09-01

    Full Text Available Batch experiments were performed on Cr(Ⅵ adsorption using four straw-based materials including corn straw and three kinds of biochar pyrolysed at 300 ℃, 450 ℃ and 600 ℃, respectively. The results showed that the Cr(Ⅵ adsorption were significantly affected by initial pH and pyrolysis temperature. The data were described by kinetic and isotherm models, and showed that the adsorption of Cr(Ⅵ was increased with the decrease of initial pH. The removal rates of Cr(Ⅵ were decreased with the increase of the pyrolysis temperature at pH=3 or pH=5. The biochar pyrolysed at 300 ℃ had the best capability of removing Cr(Ⅵ from aqueous solution at pH=1, and the maxi-mum adsorption quantity was 141.24 mg·g-1 approximately. It observed that both the lower initial pH and the lower pyrolysis temperature had positive effects on the removal of Cr(Ⅵ from aqueous solution.

  8. Adsorption of pesticides onto quartz, calcite, kaolinite, and α-alumina

    DEFF Research Database (Denmark)

    Clausen, Liselotte; Fabricius, Ida Lykke; Madsen, L.

    2001-01-01

    adsorption characteristics of selected pesticides. Investigated mineral phases included quartz, calcite, kaolinite, and alpha -alumina. Selected pesticides comprised atrazine (6-chloro-N-2-ethyl-N-4-isopropyl-1,3,5-triazine-2,4-diamine isoproturon [3-(4-isopropyl-phenyl)-1,1-dimethylurea)], mecoprop [(RS)-2...... due to formation of Ca-pesticide-surface complexes. Adsorption of the uncharged pesticides (atrazine and isoproturon) was detected only on kaolinite. The lack of adsorption on alpha -alumina indicates that the uncharged pesticides have a greater affinity for the silanol surface sites (= SiOH) than...

  9. Carbon dioxide adsorption on micro-mesoporous composite materials of ZSM-12/MCM-48 type: The role of the contents of zeolite and functionalized amine

    Energy Technology Data Exchange (ETDEWEB)

    Santos, S.C.G. [Federal University of Sergipe, Materials Science and Engineering Postgraduate Program P" 2CEM, São Cristovão/SE (Brazil); Pedrosa, A.M.Garrido [Federal University of Sergipe, Departament of Chemistry (DQI), São Cristovão/SE (Brazil); Souza, M.J.B., E-mail: mjbsufs@gmail.com [Federal University of Sergipe, Department of Chemical Engineering (DEQ), Av. Marechal Rondon S/N, 49100-000, São Cristovão/SE (Brazil); Cecilia, J.A.; Rodríguez-Castellón, E. [University of Málaga, Department of Inorganic Chemistry, Crystallography and Mineralogy, Faculty of Sciences, 29071, Málaga (Spain)

    2015-10-15

    Highlights: • Synthesis of the micro-mesoporous composite materials of ZSM-12/MCM-48 type. • Application of these adsorbents in the carbon dioxide adsorption. • Effects of the contents of zeolite and amino group in the material surface on the CO{sub 2} capture efficiency. - Abstract: In this study ZSM-12/MCM-48 adsorbents have been synthesized at three ZSM-12 content, and also were functionalizated with amine groups by grafting. All the adsorbents synthesized were evaluated for CO{sub 2} capture. The X-ray diffraction analysis of the ZSM-12/MCM-48 composite showed the main characteristic peaks of ZSM-12 and MCM-48, and after the functionalization, the structure of MCM-48 on the composite impregnated was affected due amine presence. For the composites without amine, the ZSM-12 content was the factor determining in the adsorption capacity of CO{sub 2} and for the composites with amine the amount of amine was that influenced in the adsorption capacity.

  10. Carbon dioxide adsorption on micro-mesoporous composite materials of ZSM-12/MCM-48 type: The role of the contents of zeolite and functionalized amine

    International Nuclear Information System (INIS)

    2CEM, São Cristovão/SE (Brazil))" data-affiliation=" (Federal University of Sergipe, Materials Science and Engineering Postgraduate Program P2CEM, São Cristovão/SE (Brazil))" >Santos, S.C.G.; Pedrosa, A.M.Garrido; Souza, M.J.B.; Cecilia, J.A.; Rodríguez-Castellón, E.

    2015-01-01

    Highlights: • Synthesis of the micro-mesoporous composite materials of ZSM-12/MCM-48 type. • Application of these adsorbents in the carbon dioxide adsorption. • Effects of the contents of zeolite and amino group in the material surface on the CO 2 capture efficiency. - Abstract: In this study ZSM-12/MCM-48 adsorbents have been synthesized at three ZSM-12 content, and also were functionalizated with amine groups by grafting. All the adsorbents synthesized were evaluated for CO 2 capture. The X-ray diffraction analysis of the ZSM-12/MCM-48 composite showed the main characteristic peaks of ZSM-12 and MCM-48, and after the functionalization, the structure of MCM-48 on the composite impregnated was affected due amine presence. For the composites without amine, the ZSM-12 content was the factor determining in the adsorption capacity of CO 2 and for the composites with amine the amount of amine was that influenced in the adsorption capacity

  11. Synthesis and Characterization of Quaternary Metal Chalcogenide Aerogels for Gas Separation and Volatile Hydrocarbon Adsorption

    KAUST Repository

    Edhaim, Fatimah A.

    2017-11-01

    In this dissertation, the metathesis route of metal chalcogenide aerogel synthesis was expanded by conducting systematic studies between polysulfide building blocks and the 1st-row transition metal linkers. Resulting materials were screened as sorbents for selective gas separation and volatile organic compounds adsorption. They showed preferential adsorption of polarizable gases (CO2) and organic compounds (toluene). Ion exchange and heavy metal remediation properties have also been demonstrated. The effect of the presence of different counter-ion within chalcogel frameworks on the adsorption capacity of the chalcogels was studied on AFe3Zn3S17 (A= K, Na, and Rb) chalcogels. The highest adsorption capacity toward hydrocarbons and gases was observed on Rb based chalcogels. Adopting a new building block [BiTe3]3- with the 1st-row transition metal ions results in the formation of three high BET surface area chalcogels, KCrBiTe3, KZnBiTe3, and KFeBiTe3. The resulting chalcogels showed preferential adsorption of toluene vapor, and remarkable selectivity of CO2, indicating the potential future use of chalcogels in adsorption-based gas or hydrocarbon separation processes. The synthesis and characterization of the rare earth chalcogels NaYSnS4, NaGdSnS4, and NaTbSnS4 are also reported. Rare earth metal ions react with the thiostannate clusters in formamide solution forming extended polymeric networks by gelation. Obtained chalcogels have high BET surface areas, and showed notable adsorption capacity toward CO2 and toluene vapor. These chalcogels have also been engaged in the absorption of different organic molecules. The results reveal the ability of the chalcogels to distinguish among organic molecules on their electronic structures; hence, they could be used as sensors. Furthermore, the synthesis of metal chalcogenide aerogels Co0.5Sb0.33MoS4 and Co0.5Y0.33MoS4 by the sol-gel method is reported. In this system, the building blocks [MoS4]2- chelated with Co2+ and (Sb3

  12. Trimethylamine (fishy odor) adsorption by biomaterials: effect of fatty acids, alkanes, and aromatic compounds in waxes.

    Science.gov (United States)

    Boraphech, Phattara; Thiravetyan, Paitip

    2015-03-02

    Thirteen plant leaf materials were selected to be applied as dried biomaterial adsorbents for polar gaseous trimethylamine (TMA) adsorption. Biomaterial adsorbents were efficient in adsorbing gaseous TMA up to 100% of total TMA (100 ppm) within 24 h. Sansevieria trifasciata is the most effective plant leaf material while Plerocarpus indicus was the least effective in TMA adsorption. Activated carbon (AC) was found to be lower potential adsorbent to adsorb TMA when compared to biomaterial adsorbents. As adsorption data, the Langmuir isotherm supported that the gaseous TMA adsorbed monolayer on the adsorbent surface and was followed pseudo-second order kinetic model. Wax extracted from plant leaf could also adsorb gaseous TMA up to 69% of total TMA within 24 h. Another 27-63% of TMA was adsorbed by cellulose and lignin that naturally occur in high amounts in plant leaf. Subsequently, the composition appearing in biomaterial wax showed a large quantity of short-chain fatty acids (≤C18) especially octadecanoic acid (C18), and short-chain alkanes (C12-C18) as well as total aromatic components dominated in the wax, which affected TMA adsorption. Hence, it has been demonstrated that plant biomaterial is a superior biosorbent for TMA removal.

  13. Direct measurements of adsorption heats of hydrogen on nano-porous carbons

    International Nuclear Information System (INIS)

    Akihiko, Matsumoto; Kazumasa, Yamamoto; Tomoyuki, Miyata

    2005-01-01

    Since a exciting report of hydrogen storage in single-walled carbon nano-tubes by Dillon and his colleagues [1], nano-porous carbon materials, such as carbon nano-tubes, carbon nano-horns and micro-porous activated carbon, have attracted considerable attention as hydrogen storage materials. Adsorption plays a predominating role in the hydrogen storage process on solid surfaces. The adsorption is a spontaneous process, which is caused by interaction between gas molecules and surface, hence, it is always exothermic process and observed as adsorption heats. For this reason, direct measurement of the adsorption heats by adsorption microcalorimetry would provide quantitative information on the strength of adsorption interaction and the adsorption mechanism. However, the adsorption amounts of hydrogen on carbon materials are far less than those of condensable vapors near room temperature due to low critical temperature of hydrogen (33.2 K), therefore, the adsorption heats can not be determined accurately at conventional measurement conditions near room temperature and the atmospheric pressure. This contribution reports the calorimetric characterization of hydrogen adsorption on nano-porous carbon materials at low temperature and high-pressure conditions. The high-pressure adsorption apparatus consists of a volumetric adsorption line connected to a twin-conduction type microcalorimeter. Activated carbon fibers (ACF, Ad'all Co.) of different micropore sizes (Table 1) were used as model adsorbents. Each ACF has slit-shaped micropores of uniform size [2]. The adsorption isotherms and differential heats of adsorption at high-pressure region from 0 to 10 MPa were simultaneously measured at isothermal condition from 203 to 298 K. The adsorption isotherms on ACF were of Henry type regardless of adsorption temperature and pore width; the uptakes increased linearly with equilibrium pressure. The adsorption isotherm at lower sorption temperature tended to show higher sorptivity

  14. Nitrogen-Containing Functional Groups-Facilitated Acetone Adsorption by ZIF-8-Derived Porous Carbon

    Directory of Open Access Journals (Sweden)

    Liqing Li

    2018-01-01

    Full Text Available Nitrogen-doped porous carbon (ZC is prepared by modification with ammonia for increasing the specific surface area and surface polarity after carbonization of zeolite imidazole framework-8 (ZIF-8. The structure and properties of these ZCs were characterized by Transmission electron microscopy, X-ray diffraction, N2 sorption, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Through static adsorption tests of these carbons, the sample obtained at 600 °C was selected as an excellent adsorbent, which exhibited an excellent acetone capacity of 417.2 mg g−1 (25 °C with a very large surface area and high-level nitrogen doping (13.55%. The microporosity, surface area and N-containing groups of the materials, pyrrolic-N, pyridinic-N, and oxidized-N groups in particular, were found to be the determining factors for acetone adsorption by means of molecular simulation with density functional theory. These findings indicate that N-doped microporous carbon materials are potential promising adsorbents for acetone.

  15. Adsorption and catalysis: The effect of confinement on chemical reactions

    International Nuclear Information System (INIS)

    Santiso, Erik E.; George, Aaron M.; Turner, C. Heath; Kostov, Milen K.; Gubbins, Keith E.; Buongiorno-Nardelli, Marco; Sliwinska-Bartkowiak, MaIgorzata

    2005-01-01

    Confinement within porous materials can affect chemical reactions through a host of different effects, including changes in the thermodynamic state of the system due to interactions with the pore walls, selective adsorption, geometrical constraints that affect the reaction mechanism, electronic perturbation due to the substrate, etc. In this work, we present an overview of some of our recent research on some of these effects, on chemical equilibrium, kinetic rates and reaction mechanisms. We also discuss our current and future directions for research in this area

  16. Adsorption and Retardation of PFASs in Soil

    Science.gov (United States)

    Chen, W.; Yan, N.; Fu, X.; Carroll, K. C.; Holguin, F. O. O.; Brusseau, M. L.

    2017-12-01

    Per- and poly-fluorinated alkyl substances (PFASs) are emerging contaminants of concern that are present in the subsurface at numerous military and industrial facilities. Knowledge of the retention behavior of these compounds in the subsurface environment is critical for effective risk characterization and remediation. The objective of this research is to investigate the role of adsorption at the air-water interface on PFAS retention in vadose-zone systems. Surface tensions were measured for select PFAS to determine interfacial adsorption coefficients. Column experiments were conducted to characterize retardation and transport under saturated and unsaturated flow conditions. The impact of soil properties and groundwater constituents on surface tension, solid-phase adsorption, and interfacial adsorption was investigated.

  17. Adsorption behavior of lithium from seawater using manganese oxide adsorbent

    International Nuclear Information System (INIS)

    Wajima, Takaaki; Munakata, Kenzo; Uda, Tatsuhiko

    2012-01-01

    The deuterium-tritium (D-T) fusion reactor system is expected to provide the main source of electricity in the future. Large amounts of lithium will be required, dependent on the reactor design concept, and alternative resources should be found to provide lithium inventories for nuclear fusion plants. Seawater has recently become an attractive source of this element and the separation and recovery of lithium from seawater by co-precipitation, solvent extraction and adsorption have been investigated. Amongst these techniques, the adsorption method is suitable for recovery of lithium from seawater, because certain inorganic ion-exchange materials, especially spinel-type manganese oxides, show extremely high selectivity for the lithium ion. In this study, we prepared a lithium adsorbent (HMn 2 O 4 ) by elution of spinel-type lithium di-manganese-tetra-oxide (LiMn 2 O 4 ) and examined the kinetics of the adsorbent for lithium ions in seawater using a pseudo-second-order kinetic model. The intermediate, LiMn 2 O 4 , can be synthesized from LiOH·H 2 O and Mn 3 O 4 , from which the lithium adsorbent can subsequently be prepared via acid treatment., The adsorption kinetics become faster and the amount of lithium adsorbed on the adsorbent increases with increasing solution temperature. The thermodynamic values, ΔG 0 , ΔH 0 and ΔS 0 , indicate that adsorption is an endothermic and spontaneous process. (author)

  18. Adsorption of ion pairs onto graphene flakes and impacts of counterions during the adsorption processes

    Science.gov (United States)

    Zhu, Chang; Yun, Jiena; Wang, Qian; Yang, Gang

    2018-03-01

    Although cations and anions are two integral constituents for all electrolytes, adsorption of ion pairs onto carbonaceous materials gains obviously less attention than adsorption of only cations or anions. Here DFT calculations are employed finding that four adsorption configurations emerge for KI onto graphene flakes (GF) instead of three for the other ion pairs. Reservation of ionic bonds is critical to their stabilities, and the bilateral configurations, where GFs couple with both cations and anions, are disfavored due to rupture of ionic bonds. Relative stabilities of two vertical configurations can be regulated and even reversed through edge-functionalization. Surprisingly, the horizontal adsorption configurations, which are global energy minima as long as present, are non-existent for a majority of ion pairs, and their existence or not is determined by the adsorption differences between halide ions and alkali ions (△Ead). Counterions effects for both cations and anions increase with the atomic electronegativities and cations correspond to stronger counterion effects; e.g., Li+ added on the other side of GFs promotes the adsorption of F- more pronouncedly than edge-functionalization. Mechanisms of electron transfers are also discussed, and three alteration patterns by counterions are observed for each type of adsorption configurations. Furthermore, addition of counterions causes band gaps to vary within a wider range that may be useful to design electronic devices.

  19. Molecular simulation of polar molecules interaction with MOFs family materials

    International Nuclear Information System (INIS)

    De Toni, M.

    2012-01-01

    The topic of this thesis is the adsorption of simple molecular fluids in nano-porous materials. Many industrial processes are based on this phenomenon, including ionic exchange, selective separation and heterogeneous catalysis. I used molecular simulation to study the adsorption properties of polar molecules of industrial interest (CO 2 and H 2 O) in a new class of crystalline microporous hybrid organic-inorganic materials called Metal-Organic Frameworks (MOFs). They have exceptional adsorption properties due to their topological variety and their versatility, allowed by the large range of possibilities offered by organic and coordination chemistry and functionalizations. I first studied the adsorption of CO 2 in a family of materials called IRMOFs, which share the same topology but have different porous volume, in order to characterize the effect of confinement on their adsorption performance. In particular, a general behavior has been highlighted: the critical temperature decreases when the confinement increases. Then, I looked at a recently synthesized cationic MOF called Zn2(CBTACN). After having localized the extra-framework halogen anions in the unit cell of the material, something which was not possible experimentally, I characterized CO 2 adsorption in this system first as a pure gas and then as a component of different mixtures. Finally, I was interested in the hydrothermal stability of MOFs, a crucial issue for their use in industrial applications. I observed the hydration mechanism of system that is analogous to the MOF-5 (IRMOF-0h) and shed light on some collaborative effects of the attack of water that were unknown to in the literature. (author)

  20. Granular bamboo-derived activated carbon for high CO(2) adsorption: the dominant role of narrow micropores.

    Science.gov (United States)

    Wei, Haoran; Deng, Shubo; Hu, Bingyin; Chen, Zhenhe; Wang, Bin; Huang, Jun; Yu, Gang

    2012-12-01

    Cost-effective biomass-derived activated carbons with a high CO(2) adsorption capacity are attractive for carbon capture. Bamboo was found to be a suitable precursor for activated carbon preparation through KOH activation. The bamboo size in the range of 10-200 mesh had little effect on CO(2) adsorption, whereas the KOH/C mass ratio and activation temperature had a significant impact on CO(2) adsorption. The bamboo-derived activated carbon had a high adsorption capacity and excellent selectivity for CO(2) , and also the adsorption process was highly reversible. The adsorbed amount of CO(2) on the granular activated carbon was up to 7.0 mmol g(-1) at 273 K and 1 bar, which was higher than almost all carbon materials. The pore characteristics of activated carbons responsible for high CO(2) adsorption were fully investigated. Based on the analysis of narrow micropore size distribution of several activated carbons prepared under different conditions, a more accurate micropore range contributing to CO(2) adsorption was proposed. The volume of micropores in the range of 0.33-0.82 nm had a good linear relationship with CO(2) adsorption at 273 K and 1 bar, and the narrow micropores of about 0.55 nm produced the major contribution, which could be used to evaluate CO(2) adsorption on activated carbons. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Adsorption and desorption of radioactive inert gases in various materials

    International Nuclear Information System (INIS)

    Butkus, D.

    1999-01-01

    Peculiarities of the 85 Kr and 133 Xe adsorption and desorption processes in active carbon and paraffin are considered in the work. During the desorption process, the distribution of 85 Kr and 133 Xe atoms in active carbon particles is uneven: atoms in narrow micropores desorb the last. It is shown that by changing adsorption conditions the presence time of radioactive inert gases in an active carbon can be prolonged. The adsorption and desorption processes change in the adsorbent, which changes its aggregation state: adsorption occurs in a liquid absorbent and desorption - in a solid absorbent. Paraffin is just such an absorbent changing its aggregation state with low energy losses. It has been obtained that 133 Xe accumulates less in liquid paraffin that in an active carbon. The absorption of 85 Kr in paraffin is larger than in an active carbon (at 18-20 degrees Celsius), while desorption is slower. The velocity of radioactive inert gas atom motion in different places of a solid paraffin sample is different - it increases approaching the borders of the sample. Prolongation of the desorption time of radioactive inert gases from adsorbents and adsorbents in many cases is of a practical importance. In this work, it has been shown by model experiments that the intensity of adsorption and desorption processes for the same sorbents can be changed. Desorption intensity changes are related to the distribution of gas atoms on the surface of particles and in micropores. Desorption velocity decreases if inert gas atoms having entered micropores are 'closed' by condensed liquids in the environment. In this case an inert gas atom diffuses within the whole particle volume or through the condensed liquid. Radioactive inert gases 85 Kr and 133 Xe are absorbed not only in liquid paraffin but in solid one as well. Therefore, after a paraffin sample is hermetically closed in a glass dish, 85 Kr (gas) having diffused from this sample is repeatedly absorbed in it. The 85 Kr

  2. Nanostructured polyaniline rice husk composite as adsorption materials synthesized by different methods

    International Nuclear Information System (INIS)

    Pham, Thi Tot; Mai, Thi Thanh Thuy; Mai, Thi Xuan; Tran, Hai Yen; Phan, Thi Binh; Bui, Minh Quy

    2014-01-01

    Composites based on polyaniline (PANi) and rice husk (RH) were prepared by two methods: the first one was chemical method by combining RH contained in acid medium and aniline using ammonium persulfate as an oxidation agent and the second one was that of soaking RH into PANi solution. The presence of PANi combined with RH to form nanocomposite was clearly demonstrated by infrared (IR) spectra as well as by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. Lead(II) and cadmium(II) ion concentrations in solution before and after adsorption process on those composites were analysed by atomic adsorption spectroscopy. Of the above preparation methods, the soaking one provided a composite onto which the maximum adsorption capacity was higher for lead(II) ion (200 mg g −1 ), but lower for cadmium(II) ion (106.383 mg g −1 ) in comparison with the chemical one. However, their adsorption process occurring on both composites also fitted well into the Langmuir isotherm model. (paper)

  3. Material Selection for a Manual Winch Rope Drum

    OpenAIRE

    Moses F. Oduori; Enoch K. Musyoka; Thomas O. Mbuya

    2016-01-01

    The selection of materials is an essential task in mechanical design processes. This paper sets out to demonstrate the application of analytical decision making during mechanical design and, particularly, in selecting a suitable material for a given application. Equations for the mechanical design of a manual winch rope drum are used to derive quantitative material performance indicators, which are then used in a multiple attribute decision making (MADM) model to rank the candidate materials....

  4. Adsorption of volatile hydrocarbons in iron polysulfide chalcogels

    KAUST Repository

    Ahmed, Ejaz

    2014-11-01

    We report the synthesis, characterization and possible applications of three new metal-chalcogenide aerogels KFe3Co3S 21, KFe3Y3S22 and KFe 3Eu3S22. Metal acetates react with the alkali metal polychalcogenides in formamide/water mixture to form extended polymeric frameworks that exhibit gelation phenomena. Amorphous aerogels obtained after supercritical CO2 drying have BET surface area from 461 to 573 m 2/g. Electron microscopy images and nitrogen adsorption measurements showed that pore sizes are found in micro (below 2 nm), meso (2-50 nm), and macro (above 50 nm) porous regions. These chalcogels possess optical bandgaps in the range of 1.55-2.70 eV. These aerogels have been studied for the adsorption of volatile hydrocarbons and gases. A much higher adsorption of toluene in comparison with cyclohexane and cyclopentane vapors have been observed. The adsorption capacities of the three volatile hydrocarbons are found in the following order: toluene > cyclohexane > cyclopentane. It has been observed that high selectivity in adsorption is feasible with high-surface-area metal chalcogenides. Similarly, almost an eight to ten times increase in adsorption selectivity towards CO2 over H2/CH4 was observed in the aerogels. Moreover, reversible ion-exchange properties for K+/Cs+ ions have also been demonstrated. © 2014 Elsevier Inc. All rights reserved.

  5. Dual-porosity Mn2O3 cubes for highly efficient dye adsorption.

    Science.gov (United States)

    Shao, Yongjiu; Ren, Bin; Jiang, Hanmei; Zhou, Bingjie; Lv, Liping; Ren, Jingzheng; Dong, Lichun; Li, Jing; Liu, Zhenfa

    2017-07-05

    Dual-porosity materials containing both macropores and mesopores are highly desired in many fields. In this work, we prepared dual-porosity Mn 2 O 3 cube materials with large-pore mesopores, in which, macropores are made by using carbon spheres as the hard templates, while the mesopores are produced via a template-free route. The attained dual-porosity Mn 2 O 3 materials have 24nm of large-pore mesopores and 700nm of macropores. Besides, the achieved materials own cubic morphologies with particle sizes as large as 6.0μm, making them separable in the solution by a facile natural sedimentation. Dye adsorption measurements reveal that the dual-porosity materials possess a very high maximum adsorption capacity of 125.6mg/g, much larger than many reported materials. Particularly, the adsorbents can be recycled and the dye removal efficiency can be well maintained at 98% after four cycles. Adsorption isotherm and kinetics show that the Langmuir model and the pseudo-second-order kinetics model can well describe the adsorption process of Congo Red on the dual-porosity Mn 2 O 3 cube materials. In brief, the reported dual-porosity Mn 2 O 3 demonstrates a good example for controlled preparation of dual-porosity materials with large-pore mesopores, and the macropore-mesopore dual-porosity distribution is good for mass transfer in dye adsorption application. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. ARTIFICIAL NEURAL NETWORKS BASED GEARS MATERIAL SELECTION HYBRID INTELLIGENT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    X.C. Li; W.X. Zhu; G. Chen; D.S. Mei; J. Zhang; K.M. Chen

    2003-01-01

    An artificial neural networks(ANNs) based gear material selection hybrid intelligent system is established by analyzing the individual advantages and weakness of expert system (ES) and ANNs and the applications in material select of them. The system mainly consists of tow parts: ES and ANNs. By being trained with much data samples,the back propagation (BP) ANN gets the knowledge of gear materials selection, and is able to inference according to user input. The system realizes the complementing of ANNs and ES. Using this system, engineers without materials selection experience can conveniently deal with gear materials selection.

  7. Polyacrylamide–hydroxyapatite composite: Preparation, characterization and adsorptive features for uranium and thorium

    International Nuclear Information System (INIS)

    Baybaş, Demet; Ulusoy, Ulvi

    2012-01-01

    The composite of synthetically produced hydroxyapatite (HAP) and polyacrylamide was prepared (PAAm–HAP) and characterized by BET, FT-IR, TGA, XRD, SEM and PZC analysis. The adsorptive features of HAP and PAAm–HAP were compared for UO 2 2+ and Th 4+ . The entrapment of HAP into PAAm–HAP did not change the structure of HAP. Both structures had high affinity to the studied ions. The adsorption capacity of PAAm–HAP was than that of HAP. The adsorption dependence on pH and ionic intensity provided supportive evidences for the effect of complex formation on adsorption process. The adsorption kinetics was well compatible to pseudo second order model. The values of enthalpy and entropy changes were positive. Th 4+ adsorption from the leachate obtained from a regional fluorite rock confirmed the selectivity of PAAm–HAP for this ion. In consequence, PAAm–HAP should be considered amongst favorite adsorbents for especially deposition of nuclear waste containing U and Th, and radionuclide at secular equilibrium with these elements. - Graphical abstract: SEM images of hydroxyapatite (HAP) and polyacrylamide–hydroxyapatite (PAAm–HAP), and the adsorption isotherms for Uranium and Thorium. Highlights: ► Composite of PAAm–HAP was synthesized from hydroxyapatite and polyacrylamide. ► The materials were characterized by BET, FT-IR, XRD, SEM, TGA and PZC analysis. ► HAP and PAAm–HAP had high sorption capacity and very rapid uptake for UO 2 2+ and Th 4+ . ► Super porous PAAm was obtained from PAAm–HAP after its removal of HAP content. ► The composite is potential for deposition of U, Th and its associate radionuclides.

  8. Tools for Material Design and Selection

    Science.gov (United States)

    Wehage, Kristopher

    -dimensional microstructures are generated by Random Sequential Adsorption (RSA) of voxelized ellipses representing the coarse grain phase. A simulated annealing algorithm is used to geometrically optimize the placement of the ellipses in the model to achieve varying user-defined configurations of spatial arrangement of the coarse grains. During the simulated annealing process, the ellipses are allowed to overlap up to a specified threshold, allowing triple junctions to form in the model. Once the simulated annealing process is complete, the remaining space is populated by smaller ellipses representing the ultra-fine grain phase. Uniform random orientations are assigned to the grains. The program generates text files that can be imported in to Crystal Plasticity Finite Element Analysis Software for stress analysis. Finally, numerical methods and programming are applied to current issues in green engineering and hazard assessment. To understand hazards associated with materials and select safer alternatives, engineers and designers need access to up-to-date hazard information. However, hazard information comes from many disparate sources and aggregating, interpreting and taking action on the wealth of data is not trivial. In light of these challenges, a Framework for Automated Hazard Assessment based on the GreenScreen list translator is presented. The framework consists of a computer program that automatically extracts data from the GHS-Japan hazard database, loads the data into a machine-readable JSON format, transforms the JSON document in to a GreenScreen JSON document using the GreenScreen List Translator v1.2 and performs GreenScreen Benchmark scoring on the material. The GreenScreen JSON documents are then uploaded to a document storage system to allow human operators to search for, modify or add additional hazard information via a web interface.

  9. A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.C.; Li, Y.H. [College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Li, D.; Zhang, J.P. [College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Xia, Y.Z. [Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China)

    2010-01-15

    As one kind of environmentally friendly refrigeration, the adsorption refrigeration has attracted many attentions in resent decades. This paper introduces the researches of adsorption refrigeration systems with the commonly used working pairs, advanced adsorption cycles, heat and mass transfer enhancement and attempts of adsorption refrigeration applications. Poor heat and mass transfer problem is a bottleneck to prevent the improvements of the adsorption refrigeration technique. Two ways to enhance the heat and mass transfer are discussed in this paper. The adsorption deterioration of adsorbent, another obstacle to physical adsorption refrigeration applications, is also pointed out. And the possible reasons and the possible methods are analyzed. (author)

  10. Adsorption of ferrous ions onto montmorillonites

    Science.gov (United States)

    Qin, Dawei; Niu, Xia; Qiao, Min; Liu, Gang; Li, Hongxin; Meng, Zhenxiao

    2015-04-01

    The adsorption of Fe (II) onto montmorillonites was investigated through initial concentration, contact time, pH and temperature. During the whole adsorption process, the ascorbic acid (Vitamin C) was added as a kind of antioxidant, at the same time, deionized water (after boiling) and nitrogen protection were also used to avoid oxidation. The Fe2+/Fetotal ratio of the iron exists in the Fe-montmorillonites was found more than 95%. Two kinetic models, including pseudo-first-order and pseudo-second-order model, were used to analyze the adsorption process of Fe (II) on montmorillonites. The results of our study showed that adsorption process fitted with pseudo-second-order well. Adsorption isotherms showed that Langmuir model was better than Freundlich model. The thermodynamic parameters ΔG0 and ΔH0 were 3.696 kJ/mol and 6.689 kJ/mol (we just gave the values at 298 K), respectively. The positive values at different temperatures showed that the adsorption process was non-spontaneous and endothermic. The characteristics of materials were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Surface area and porosity analyzer, Thermogravimetric analysis (TGA), Differential scanning calorimeter (DSC) and Zeta potential distribution.

  11. Kinetic analysis of anionic surfactant adsorption from aqueous solution onto activated carbon and layered double hydroxide with the zero length column method

    NARCIS (Netherlands)

    Schouten, N.; van der Ham, Aloysius G.J.; Euverink, G.J.W.; de Haan, A.B.

    2009-01-01

    Low cost adsorption technology offers high potential to clean-up laundry rinsing water. From an earlier selection of adsorbents, layered double hydroxide (LDH) and granular activated carbon (GAC) proved to be interesting materials for the removal of anionic surfactant, linear alkyl benzene sulfonate

  12. Detoxification of zearalenone from corn oil by adsorption of functionalized GO systems

    Science.gov (United States)

    Bai, Xiaojuan; Sun, Changpo; Xu, Jing; Liu, Di; Han, Yangying; Wu, Songling; Luo, Xiaohong

    2018-02-01

    Graphene oxide (GO) and its functionalized systems have very unique structural advantages as excellent adsorbent or substrate material in the removal of organic contaminants. Herein, we reported a strategy to establish functionalized GO system (FGO) using amphiphilic molecules didodecyldimethylammonium bromide (DDAB) as a modifier for the detoxification of zearalenone (ZEN) from corn oil. The adsorption property for the removal of ZEN from edible corn oils under different experimental conditions such as pH, amphiphilic molecules, time and temperature was investigated in detail. The morphology structure, adsorption isotherm, adsorption kinetics and the recyclability of FGO systems have also been researched, systematically. The FGO systems exhibit a higher adsorption efficiency, recyclability and thermostability in comparison with the traditional adsorbent materials. It provides an insight into the detoxification of mycotoxin from edible oils by graphene-based new materials.

  13. Removal of Textile Dyestufes From Wastewater by Adsorptive Biodegradation

    OpenAIRE

    KAPDAN, İlgi KARAPINAR; KARGI, Fikret

    2000-01-01

    Removal of dyestuffs from a synthetic wastewater by adsorptive biodegradation was investigated in this study. The dyestuff adsorption capacities of granular, powdered activated carbon (GAC and PAC) and low-cost adsorbents such as zeolite, wood chips and wood ash were evaluated in order to obtain a low-cost adsorbent for use in an activated sludge unit. Then various activated sludge cultures were tested for biodegradation of a selected dyestuff. An activated sludge unit with the selected activ...

  14. First-wall/blanket materials selection for STARFIRE tokamak reactor

    International Nuclear Information System (INIS)

    Smith, D.L.; Mattas, R.F.; Clemmer, R.G.; Davis, J.W.

    1980-01-01

    The development of the reference STARFIRE first-wall/blanket design involved numerous trade-offs in the materials selection process for the breeding material, coolant structure, neutron multiplier, and reflector. The major parameters and properties that impact materials selection and design criteria are reviewed

  15. Adsorption of phenol and 1-naphthol onto XC-72 carbon

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Liming; Yu, Shaoming; Cheng, Leilei; Du, Erling [hefei university of technology, Hefei (China)

    2013-03-15

    XC-72 carbon (XC-72) was characterized by SEM, XPS, N{sub 2} adsorption-desorption, particle size distribution analysis and potentiometric acid-base titration. The adsorption of phenol and 1-naphthol on XC-72 was studied as a function of contact time, pH, adsorbent content and temperature. The kinetic adsorption data were described well by the pseudo-second-order model. The adsorption isotherms of phenol were described well by Freundlich model, while the adsorption isotherms of 1-naphthol were fitted well by Langmuir model. The results demonstrated that XC-72 had much higher adsorption capacity for 1-naphthol than for phenol. The adsorption thermodynamic data were calculated from the temperature-dependent adsorption isotherms at T=293, 313 and 333 K, and the results indicated that the adsorption of phenol was an exothermic process, whereas the adsorption of 1-naphthol was an endothermic process. XC-72 is a suitable material for the preconcentration of phenol and 1-naphthol from large volumes of aqueous solutions.

  16. Removal of 2,4-dichlorophenol using cyclodextrin-ionic liquid polymer as a macroporous material: Characterization, adsorption isotherm, kinetic study, thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Raoov, Muggundha [University of Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Advanced Medical and Dental Institute, University of Science Malaysia, No. 1–8 (Lot 8), Persiaran Seksyen 4/1, Bandar Putra Bertam, Kepala Batas, Pulau Pinang 13200 (Malaysia); Mohamad, Sharifah, E-mail: sharifahm@um.edu.my [University of Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Abas, Mohd Radzi [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2013-12-15

    Highlights: • βCD-BIMOTs-TDI exhibits macropore size (77.66 nm) with 1.254 m{sup 2} g{sup −1} surface area. • Freundlich isotherm and pseudo-second order kinetics fit well the adsorption process. • Removal was optimum at pH 6 with 83% and reached equilibrium at 80 mg L{sup −1}. • Entropy (ΔS°) and heat of adsorption (ΔH°) estimated as −55.99 J/K mol and −18.10 J/mol. • Inclusion complex and π–π interaction were found to be dominant at pH 6. -- Abstract: Cyclodextrin-ionic liquid polymer (βCD-BIMOTs-TDI) was firstly synthesized using functionalized β-Cyclodextrin (CD) with 1-benzylimidazole (BIM) to form monofunctionalized CD (βCD-BIMOTs) and was further polymerized using toluene diisocyanate (TDI) linker to form insoluble βCD-BIMOTs-TDI. SEM characterization result shows that βCD-BIMOTs-TDI exhibits macropore size while the BET result shows low surface area (1.254 m{sup 2} g{sup −1}). The unique properties of the ILs allow us to produce materials with different morphologies. The adsorption isotherm and kinetics of 2,4-dichlorophenol (2,4-DCP) onto βCD-BIMOTs-TDI is studied. Freundlich isotherm and pseudo-second order kinetics are found to be the best to represent the data for 2,4-DCP adsorption on the βCD-BIMOTs-TDI. The presence of macropores decreases the mass transfer resistance and increases the adsorption process by reducing the diffusion distance. The change in entropy (ΔS°) and heat of adsorption (ΔH°) for 2,4-DCP on βCD-BIMOTs-TDI were estimated as −55.99 J/Kmol and −18.10 J/mol, respectively. The negative value of Gibbs free energy (ΔG°) indicates that the adsorption process is thermodynamically feasible, spontaneous and chemically controlled. Finally, the interactions between the cavity of βCD-BIMOTs and 2,4-DCP are investigated and the results shows that the inclusion of the complex formation and π–π interaction are the main processes involved in the adsorption process.

  17. Adsorption of ferrous ions onto montmorillonites

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Dawei, E-mail: qdw109@163.com [Qilu University of Technology, Jinan, 250353, Shandong (China); Niu, Xia [Qilu University of Technology, Jinan, 250353, Shandong (China); Qiao, Min; Liu, Gang; Li, Hongxin; Meng, Zhenxiao [Shandong SiBang pharmaceutical co., LTD, Jinan, Shandong, 250200 (China)

    2015-04-01

    Highlights: • Adsorption study of ferrous ions on montmorillonites. • Using ascorbic acid as antioxidants in adsorption process. • Fe (II)-MMT had good affinity for phosphate. - Abstract: The adsorption of Fe (II) onto montmorillonites was investigated through initial concentration, contact time, pH and temperature. During the whole adsorption process, the ascorbic acid (Vitamin C) was added as a kind of antioxidant, at the same time, deionized water (after boiling) and nitrogen protection were also used to avoid oxidation. The Fe{sup 2+}/Fe{sub total} ratio of the iron exists in the Fe-montmorillonites was found more than 95%. Two kinetic models, including pseudo-first-order and pseudo-second-order model, were used to analyze the adsorption process of Fe (II) on montmorillonites. The results of our study showed that adsorption process fitted with pseudo-second-order well. Adsorption isotherms showed that Langmuir model was better than Freundlich model. The thermodynamic parameters ΔG{sup 0} and ΔH{sup 0} were 3.696 kJ/mol and 6.689 kJ/mol (we just gave the values at 298 K), respectively. The positive values at different temperatures showed that the adsorption process was non-spontaneous and endothermic. The characteristics of materials were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Surface area and porosity analyzer, Thermogravimetric analysis (TGA), Differential scanning calorimeter (DSC) and Zeta potential distribution.

  18. Insights into the Hydrothermal Stability of Triamine-Functionalized SBA-15 Silica for CO2 Adsorption.

    Science.gov (United States)

    Jahandar Lashaki, Masoud; Ziaei-Azad, Hessam; Sayari, Abdelhamid

    2017-10-23

    The hydrothermal stability of triamine-grafted, large-pore SBA-15 CO 2 adsorbents was studied by using steam stripping. Following two 3 h cycles of steam regeneration, lower CO 2 uptakes, lower CO 2 /N ratios, and slower adsorption kinetics were observed relative to fresh samples, particularly at the lowest adsorption temperature (25 °C). CO 2 adsorption measurements for a selected sample exposed to 48 h of steam stripping depicted that after the initial loss during the first exposure to steam (3-6 h), the adsorptive properties stabilized. For higher adsorption temperatures (i.e., 50 and 75 °C), however, all adsorptive properties remained almost unchanged after steaming, indicating the significance of diffusional limitations. Thermogravimetric analysis and FTIR spectroscopy on grafted samples before and after steam stripping showed no amine leaching and no change in the chemical nature of the amine groups, respectively. Also, a six-cycle CO 2 adsorption/desorption experiment under dry conditions showed no thermal degradation. However, N 2 adsorption measurement at 77 K showed significant reductions in the BET surface area of the grafted samples following steaming. Based on the pore size distribution of calcined, grafted samples before and after steaming, it is proposed that exposure to steam restructured the grafted materials, causing mass transfer resistance. It is inferred that triamine-grafted, large-pore SBA-15 adsorbents are potential candidates for CO 2 capture at relatively high temperatures (50-75 °C; for example, flue gas) combined with steam regeneration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Phosphorus adsorption pattern in selected cocoa growing soils in ...

    African Journals Online (AJOL)

    Application of phosphate fertilizer for the correction of P deficiency in soil is ideal in agricultural practices. Unfortunately, only a small fraction of applied P fertilizer is available for plant uptake due to fertilizer-soil interactions which leads to fixation of P. phosphorus adsorption isotherm and buffering capacity are strong tools ...

  20. Basic research on the development of 'intelligent-type' humidity control materials; Intelligent gata choshitsu zairyo no kaihatsu ni kansuru kiso kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tomura, S.; Maeda, M.; Inukai, K.; Ohashi, F.; Suzuki, M.; Suzuki, K.; Shibasaki, Y. [National Industrial Research Institute of Nagoya,Nagoya (Japan)

    2000-10-25

    The water vapor adsorption desorption isotherms of purified and/or synthesized sepiolite, allophane, diatomite, selectively leached kaolin and mesoporous silica were measured to develop humidity control materials in living environments. Based on Kelvin's capillary condensation theory, suitable pore diameters for controlling relative humidity at 40 and 70% were calculated to be 3.2 and 7.4 nm, respectively. Wakkanai diatomite, purified allophane, selectively leached kaolin and mesoporous silica have suitable pore diameters and high water adsorptivity, and were considered as candidates for humidity self-control materials. Among these materials, mesoporous silica formed as a tile showed the best performance as a humidity control material in desiccator and model house levels. (author)

  1. The adsorption of copper in a packed-bed of chitosan beads: Modeling, multiple adsorption and regeneration

    OpenAIRE

    Neomagus, Hein W J P; Osifo, Peter O; Everson, Raymond C; Webster, Athena; Gun, Marius A

    2009-01-01

    In this study, exoskeletons of Cape rock lobsters were used as raw material in the preparation of chitin that was successively deacetylated to chitosan flakes. The chitosan flakes were modified into chitosan beads and the beads were cross-linked with glutaraldehyde in order to study copper adsorption and regeneration in a packed-bed column. Five consecutive adsorption and desorption cycles were carried out and a chitosan mass loss of 25% was observed, after the last cycle. Despite the loss of...

  2. Quality criteria for phase change materials selection

    International Nuclear Information System (INIS)

    Vitorino, Nuno; Abrantes, João C.C.; Frade, Jorge R.

    2016-01-01

    Highlights: • Selection criteria of phase change materials for representative applications. • Selection criteria based on reliable solutions for latent heat transfer. • Guidelines for the role of geometry and heat transfer mechanisms. • Performance maps based on PCM properties, operating conditions, size and time scales. - Abstract: Selection guidelines are primary criterion for optimization of materials for specific applications in order to meet simultaneous and often conflicting requirements. This is mostly true for technologies and products required to meet the main societal needs, such as energy. In this case, gaps between supply and demand require strategies for energy conversion and storage, including thermal storage mostly based on phase change materials. Latent heat storage is also very versatile for thermal management and thermal control by allowing high storage density within narrow temperature ranges without strict dependence between stored thermal energy and temperature. Thus, this work addressed the main issues of latent heat storage from a materials selection perspective, based on expected requirements of applications in thermal energy storage or thermal regulation. Representative solutions for the kinetics of latent heat charge/discharge were used to derive optimization guidelines for high energy density, high power, response time (from fast response to thermal inertia), etc. The corresponding property relations were presented in graphical forms for a wide variety of prospective phase change materials, and for wide ranges of operating conditions, and accounting for changes in geometry and mechanisms.

  3. Ceramic material with porosity for adsorption in spilling of petroleum; Material ceramico com alta porosidade para adsorcao em derrame de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, Maria Celeste Ribeiro; Mothe, Cheila G. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica; Duailibi Filho, Jamil [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil)

    2004-07-01

    In the present work the ceramic blocks with high porosity were placed into a tank, where simulated oil spill with petroleum and water by the Guanabara Bay. From a mixture of caulinitic clays from the Rio de Janeiro State and pore forming agent, conforming by extrusion followed by drying and sintering between 900 deg C and 1100 deg C porous ceramic blocks were processed. The adsorption process was monitored by thermal analysis in samples before and after sintering, ceramic after adsorption and petroleum. The TG/DTG curves of the samples, before sintering, showed a mass loss around 10%. At 400 deg C, suggests that the mass loss was caused by the dehydroxylation of caulinitic, samples after sintering did not show mass loss at all, ceramic with petroleum adsorption showed at 100 deg C water loss between 150 deg C and 470 deg C, suggesting oil's decomposition and the second one showed oil adsorption about 22%. The preliminary results seem to be a useful tool since it showed the composition's influence on the adsorption's properties. Many works have studied the oil adsorption with caulinitic clays particles but did not use porous ceramic. (author)

  4. Surfactant-free synthesis of octahedral ZnO/ZnFe2O4 heterostructure with ultrahigh and selective adsorption capacity of malachite green

    Science.gov (United States)

    Liu, Jue; Zeng, Min; Yu, Ronghai

    2016-05-01

    A new octahedral ZnO/ZnFe2O4 heterostructure has been fabricated through a facile surfactant-free solvothermal method followed by thermal treatment. It exhibits a record-high adsorption capacity (up to 4983.0 mg·g-1) of malachite green (MG), which is a potentially harmful dye in prevalence and should be removed from wastewater and other aqueous solutions before discharging into the environment. The octahedral ZnO/ZnFe2O4 heterostructure also demonstrates strong selective adsorption towards MG from two kinds of mixed solutions: MG/methyl orange (MO) and MG/rhodamine B (RhB) mixtures, indicating its promise in water treatment.

  5. Estimating Uranium Partition Coefficients from Laboratory Adsorption Isotherms

    International Nuclear Information System (INIS)

    Hull, L.C.; Grossman, C.; Fjeld, R.A.; Coates, J.T.; Elzerman, A.W.

    2002-01-01

    An estimated 330 metric tons of uranium have been buried in the radioactive waste Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). An assessment of uranium transport parameters is being performed to decrease the uncertainty in risk and dose predictions derived from computer simulations of uranium fate and transport to the underlying Snake River Plain Aquifer. Uranium adsorption isotherms have been measured in the laboratory and fit with a Freundlich isotherm. The Freundlich n parameter was statistically identical for 14 sediment samples. The Freundlich Kf for seven samples, where material properties have been measured, is correlated to sediment surface area. Based on these empirical observations, a model has been derived for adsorption of uranium on INEEL sedimentary materials using surface complexation theory. The model was then used to predict the range of adsorption conditions to be expected at the SDA. Adsorption in the deep vadose zone is predicted to be stronger than in near-surface sediments because the total dissolved carbonate decreases with depth

  6. SQUARE WAVE CATHODIC STRIPPING VOLTAMMETRY ADSORPTIVE FOR NICKEL AND COBALT ANALYSIS

    Directory of Open Access Journals (Sweden)

    Saryati Saryati

    2010-06-01

    Full Text Available The adsorptive stripping voltammetric determination of Ni and Co based on adsorption of the Ni/Co and dimethylglioxime (DMG complex on a hanging mercury drop electrode is studied. The reduction current of the adsorbed DMG complex is measured by square wave cathodic stripping voltammetry method. The effect of various parameters such as ligand concentration, pH of supporting electrolytic, adsorption potential and adsorption time on the current peak of Ni and Co voltammogram were studied. Optimum condition of this method are supporting electrolyte pH 9, DMG concentration 5×10 -4 M, adsorption potential -0.7 V vs Ag/AgCl and adsorption time 180 second. A linier relationship between the current peak and Ni or Co concentration was obtained in the range 5 - 30 ng/mL and the detection limit 0.6 ng/ml for both Ni and Co. The recovery of Ni and Co were 98.11-104.17% using standard biological materials with RSD 2.59 - 10.37%. Based on ";t"; test can be conclude that the result are nearly equal to the standard reference material.   Keywords: adsorptive stripping voltammetric, dimethylglioxime complex, nickel, cobalt

  7. Bilirubin adsorption on nanocrystalline titania films

    International Nuclear Information System (INIS)

    Yang Zhengpeng; Si Shihui; Fung Yingsing

    2007-01-01

    Bilirubin produced from hemoglobin metabolism and normally conjugated with albumin is a kind of lipophilic endotoxin, and can cause various diseases when its concentration is high. Bilirubin adsorption on the nanocrystalline TiO 2 films was investigated using quartz crystal microbalance, UV-vis and IR techniques, and factors affecting its adsorption such as pH, bilirubin concentration, solution ionic strength, temperature and thickness of TiO 2 films were discussed. The amount of adsorption and parameters for the adsorption kinetics were estimated from the frequency measurements of quartz crystal microbalance. A fresh surface of the nanocrystalline TiO 2 films could be photochemically regenerated because holes and hydroxyl radicals were generated by irradiating the nanocrystalline TiO 2 films with UV light, which could oxidize and decompose organic materials, and the nanocrystalline TiO 2 films can be easily regenerated when it is used as adsorbent for the removal of bilirubin

  8. Adsorption characteristics of methane on Maxsorb III by gravimetric method

    KAUST Repository

    Thu, Kyaw; Kim, Youngdeuk; Ismil, Azhar Bin; Saha, Bidyut Baran; Ng, Kim Choon

    2014-01-01

    Adsorption characteristics of CH4 on the carbonaceous porous material is evaluated for possible application in adsorbed natural gas (ANG) system. Adsorption uptakes at assorted temperatures (25-80 °C) and pressures ranging from ambient to relatively

  9. Enhanced selective removal of Cu(II) from aqueous solution by novel polyethylenimine-functionalized ion imprinted hydrogel: Behaviors and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingjing [State Key Laboratory of Pollutant Control and Resource Reuse, Nanjing 210023 (China); School of the Environment, Nanjing University, Nanjing 210023 (China); Li, Zhengkui, E-mail: zhkuili@nju.edu.cn [State Key Laboratory of Pollutant Control and Resource Reuse, Nanjing 210023 (China); School of the Environment, Nanjing University, Nanjing 210023 (China)

    2015-12-30

    Highlights: • A novel ion-imprinted poly(polyethylenimine/hydroxyethyl acrylate) hydrogel was synthesized. • The prepared hydrogel enhanced the selectivity of Cu(II) removal. • The material had high adsorption capacity and excellent regeneration property for copper. • The adsorption mechanism was the chelate interaction between functional groups and Cu(II) ions. - Abstract: A novel polyethylenimine-functionalized ion-imprinted hydrogel (Cu(II)-p(PEI/HEA)) was newly synthesized by {sup 60}Co-γ-induced polymerization for the selective removal of Cu(II) from aqueous solution. The adsorption performances including the adsorption capacity and selectivity of the novel hydrogel were much better than those of similar adsorbents reported. The hydrogel was characterized via scanning electron microscope, transmission electron microscopy, Fourier transform infrared spectra, thermal gravimetric analysis and X-ray photoelectron spectroscopy to determine the structure and mechanisms. The adsorption process was pH and temperature sensitive, better fitted to pseudo-second-order equation, and was Langmuir monolayer adsorption. The maximum adsorption capacity for Cu(II) was 40.00 mg/g. The selectivity coefficients of ion-imprinted hydrogel for Cu(II)/Pb(II), Cu(II)/Cd(II) and Cu(II)/Ni(II) were 55.09, 107.47 and 63.12, respectively, which were 3.93, 4.25 and 3.53 times greater than those of non-imprinted hydrogel, respectively. Moreover, the adsorption capacity of Cu(II)-p(PEI/HEA) could still keep more than 85% after four adsorption–desorption cycles. Because of such enhanced selective removal performance and excellent regeneration property, Cu(II)-p(PEI/HEA) is a promising adsorbent for the selective removal of copper ions from wastewater.

  10. Adsorption of carbon dioxide in porous magnesium oxides

    International Nuclear Information System (INIS)

    Gutierrez B, E.

    2016-01-01

    Mg O powders were synthesized by chemical solution combustion and treated by mechanical milling, and separately were doped with Fe and Ni. The obtained powders were characterized by the X-ray diffraction (DRX) technique, scanning electron microscopy (Sem), elementary semi-quantitative analysis (EDS), N_2 physisorption measurements and infrared spectroscopy (IR). It was studied the CO_2 adsorption capacity in the synthesized materials as a function of temperature, pressure and saturation time. The results show that the CO_2 adsorption capacities on respective materials were 0.39 mmol/g in Mg O powders synthesized by chemical solution combustion, 1.61 mmol/g in Mg O powders treated by mechanical milling during 2.5 h, 0.90 mmol/g in Mg O powders doped with Fe by milling during 2.5 h and 1.50 mmol/g for Mg O powders doped with Ni milling during 7.5 h, at 25 degrees Celsius, 1 atm and 30 min of saturation time. The results showed that the powders treated by mechanical milling are efficient for CO_2 adsorption and are an alternative of advanced materials to be used as potential adsorbent materials and contribute to reduce the global warming. (Author)

  11. Quest for anionic MOF membranes: Continuous sod -ZMOF membrane with Co2 adsorption-driven selectivity

    KAUST Repository

    Almaythalony, Bassem

    2015-02-11

    We report the fabrication of the first continuous zeolite-like metal-organic framework (ZMOF) thin-film membrane. A pure phase sod-ZMOF, sodalite topology, membrane was grown and supported on a porous alumina substrate using a solvothermal crystallization method. The absence of pinhole defects in the film was confirmed and supported by the occurrence of quantifiable time-lags, for all studied gases, during constant volume/variable pressure permeation tests. For both pure and mixed gas feeds, the sod-ZMOF-1 membrane exhibits favorable permeation selectivity toward carbon dioxide over relevant industrial gases such as H2, N2, and CH4, and it is mainly governed by favorable CO2 adsorption.

  12. Enhanced selective metal adsorption on optimised agroforestry waste mixtures.

    Science.gov (United States)

    Rosales, Emilio; Ferreira, Laura; Sanromán, M Ángeles; Tavares, Teresa; Pazos, Marta

    2015-04-01

    The aim of this work is to ascertain the potentials of different agroforestry wastes to be used as biosorbents in the removal of a mixture of heavy metals. Fern (FE), rice husk (RI) and oak leaves (OA) presented the best removal percentages for Cu(II) and Ni(II), Mn(II) and Zn(II) and Cr(VI), respectively. The performance of a mixture of these three biosorbents was evaluated, and an improvement of 10% in the overall removal was obtained (19.25mg/g). The optimum mixture proportions were determined using simplex-centroid mixture design method (FE:OA:RI=50:13.7:36.3). The adsorption kinetics and isotherms of the optimised mixture were fit by the pseudo-first order kinetic model and Langmuir isotherm. The adsorption mechanism was studied, and the effects of the carboxylic, hydroxyl and phenolic groups on metal-biomass binding were demonstrated. Finally, the recoveries of the metals using biomass were investigated, and cationic metal recoveries of 100% were achieved when acidic solutions were used. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Adsorption of Pb(II by Activated Pyrolytic Char from Used Tire

    Directory of Open Access Journals (Sweden)

    Lu Ping

    2016-01-01

    Full Text Available As a renewable resource, the pyrolytic char derived from used tire has promising adsorption capacities owing to its similar structure and properties with active carbon. The purification and activation of the pyrolytic char from used tire, as well as the application of this material in the adsorption of Pb(II in water is conducted. The influences on the adsorption capacity by temperature and pH value are investigated and discussed; the adsorption thermodynamics and kinetics are also studied. The results show that the pyrolytic char from used tire has remarkable adsorption capacity for Pb(II, and the adsorption is an endothermic process complying with the Langmuir isotherm. The adsorption kinetics is a pseudo second-order reaction.

  14. Adsorptive removal of arsenic by novel iron/olivine composite: Insights into preparation and adsorption process by response surface methodology and artificial neural network.

    Science.gov (United States)

    Ghosal, Partha S; Kattil, Krishna V; Yadav, Manoj K; Gupta, Ashok K

    2018-03-01

    Olivine, a low-cost natural material, impregnated with iron is introduced in the adsorptive removal of arsenic. A wet impregnation method and subsequent calcination were employed for the preparation of iron/olivine composite. The major preparation process parameter, viz., iron loading and calcination temperature were optimized through the response surface methodology coupled with a factorial design. A significant variation of adsorption capacity of arsenic (measured as total arsenic), i.e., 63.15 to 310.85 mg/kg for arsenite [As(III) T ] and 76.46 to 329.72 mg/kg for arsenate [As(V) T ] was observed, which exhibited the significant effect of the preparation process parameters on the adsorption potential. The iron loading delineated the optima at central points, whereas a monotonous decreasing trend of adsorption capacity for both the As(III) T and As(V) T was observed with the increasing calcination temperature. The variation of adsorption capacity with the increased iron loading is more at lower calcination temperature showing the interactive effect between the factors. The adsorbent prepared at the optimized condition of iron loading and calcination temperature, i.e., 10% and 200 °C, effectively removed the As(III) T and As(V) T by more than 96 and 99%, respectively. The material characterization of the adsorbent showed the formation of the iron compound in the olivine and increase in specific surface area to the tune of 10 multifold compared to the base material, which is conducive to the enhancement of the adsorption capacity. An artificial neural network was applied for the multivariate optimization of the adsorption process from the experimental data of the univariate optimization study and the optimized model showed low values of error functions and high R 2 values of more than 0.99 for As(III) T and As(V) T . The adsorption isotherm and kinetics followed Langmuir model and pseudo second order model, respectively demonstrating the chemisorption in this

  15. Influence of alternative cations distribution in AgxLi96-x-LSX on dehydration kinetics and its selective adsorption performance for N2 and O2

    Science.gov (United States)

    Panezai, Hamida; Sun, Jihong; Jin, Xiaoqi

    2016-12-01

    Adsorption characteristics of pure gases N2 and O2 on various silver exchanged low silica X-type (AgxLi96-x-LSX) zeolites were investigated. The equilibrium adsorption isotherms of N2 and O2 were measured at 273 and 298 K. Textual and structural properties of parent and resultant AgxLi96-x-LSX were characterized by XRD, BET surface area, and SEM techniques. Kinetics of their thermal dehydration were studied by exploiting thermogravimetric and differential data (TG-DTG) obtained at three heating rates (5, 10 and 15 K) using two model-free (Kissinger and Flynn-Wall-Ozawa) and one model fitting (Coats-Redfern) methods. Forty one mechanism functions were used to evaluate kinetic triplet (activation energy, frequency factor, and most probable mechanism/model) for different stages of dehydration. Results revealed that the impact of very small content of silver on the adsorption of N2 is pronounced and attributed to weak chemical bonds formed between N2 and Ag+ clusters due to strong adsorption of N2 at low pressure, whereas O2 adsorption is affected to a negligible extent. In addition, the N2/O2 adsorption selectivity shows unexpected low values for Ag87.08Li7.94Na0.98-LSX with higher Ag+ content (91.00 %), which might be due to low crystalline water content as well as Ag+ clusters located at SIII sites. N2 adsorption strongly depends on temperature as higher adsorption occurs at low temperature 273 K as compared to 298 K.

  16. Toward an effective adsorbent for polar pollutants: Formaldehyde adsorption by activated carbon

    International Nuclear Information System (INIS)

    Lee, Kyung Jin; Miyawaki, Jin; Shiratori, Nanako; Yoon, Seong-Ho; Jang, Jyongsik

    2013-01-01

    Highlights: • Activated carbon fiber with mild activation condition is useful as adsorbent for polar pollutants. • Diverse variations are investigated for developing an effective adsorbent. • Surface functional group is the most important factor for capacity as a adsorbent. • Surface functional groups on ACFs are investigated using micro-ATR FTIR. -- Abstract: Due to increasing concerns about environmental pollutants, the development of an effective adsorbent or sensitive sensor has been pursued in recent years. Diverse porous materials have been selected as promising candidates for detecting and removing harmful materials, but the most appropriate pore structure and surface functional groups, both important factors for effective adsorbency, have not yet been fully elucidated. In particular, there is limited information relating to the use of activated carbon materials for effective adsorbent of specific pollutants. Here, the pore structure and surface functionality of polyacrylonitrile-based activated carbon fibers were investigated to develop an efficient adsorbent for polar pollutants. The effect of pore structure and surface functional groups on removal capability was investigated. The activated carbons with higher nitrogen content show a great ability to absorb formaldehyde because of their increased affinity with polar pollutants. In particular, nitrogen functional groups that neighbor oxygen atoms play an important role in maximizing adsorption capability. However, because there is also a similar increase in water affinity in adsorbents with polar functional groups, there is a considerable decrease in adsorption ability under humid conditions because of preferential adsorption of water to adsorbents. Therefore, it can be concluded that pore structures, surface functional groups and the water affinity of any adsorbent should be considered together to develop an effective and practical adsorbent for polar pollutants. These studies can provide vital

  17. Polyacrylamide-hydroxyapatite composite: Preparation, characterization and adsorptive features for uranium and thorium

    Energy Technology Data Exchange (ETDEWEB)

    Baybas, Demet, E-mail: dbaybas@cumhuriyet.edu.tr [Cumhuriyet University, Faculty of Science, Department of Chemistry, Kayseri, Sivas 58140 (Turkey); Ulusoy, Ulvi, E-mail: ulusoy@cumhuriyet.edu.tr [Cumhuriyet University, Faculty of Science, Department of Chemistry, Kayseri, Sivas 58140 (Turkey)

    2012-10-15

    The composite of synthetically produced hydroxyapatite (HAP) and polyacrylamide was prepared (PAAm-HAP) and characterized by BET, FT-IR, TGA, XRD, SEM and PZC analysis. The adsorptive features of HAP and PAAm-HAP were compared for UO{sub 2}{sup 2+} and Th{sup 4+}. The entrapment of HAP into PAAm-HAP did not change the structure of HAP. Both structures had high affinity to the studied ions. The adsorption capacity of PAAm-HAP was than that of HAP. The adsorption dependence on pH and ionic intensity provided supportive evidences for the effect of complex formation on adsorption process. The adsorption kinetics was well compatible to pseudo second order model. The values of enthalpy and entropy changes were positive. Th{sup 4+} adsorption from the leachate obtained from a regional fluorite rock confirmed the selectivity of PAAm-HAP for this ion. In consequence, PAAm-HAP should be considered amongst favorite adsorbents for especially deposition of nuclear waste containing U and Th, and radionuclide at secular equilibrium with these elements. - Graphical abstract: SEM images of hydroxyapatite (HAP) and polyacrylamide-hydroxyapatite (PAAm-HAP), and the adsorption isotherms for Uranium and Thorium. Highlights: Black-Right-Pointing-Pointer Composite of PAAm-HAP was synthesized from hydroxyapatite and polyacrylamide. Black-Right-Pointing-Pointer The materials were characterized by BET, FT-IR, XRD, SEM, TGA and PZC analysis. Black-Right-Pointing-Pointer HAP and PAAm-HAP had high sorption capacity and very rapid uptake for UO{sub 2}{sup 2+} and Th{sup 4+}. Black-Right-Pointing-Pointer Super porous PAAm was obtained from PAAm-HAP after its removal of HAP content. Black-Right-Pointing-Pointer The composite is potential for deposition of U, Th and its associate radionuclides.

  18. Removal of paraquat solution onto zeolite material

    Science.gov (United States)

    Sirival, Rujikarn; Patdhanagul, Nopbhasinthu; Preecharram, Sutthidech; Photharin, Somkuan

    2018-04-01

    The purpose of this research was to study the adsorption of paraquat herbicides onto zeolite Y materials by the batch method. Three adsorbents material: Zeolite-3, Zeolite-10, and Zeolite-100 were Si/Al ratio at 3.58, 8.57 and 154.37, respectively. The factors for adsorption of paraquat as follows, adsorption time, initial concentrations of paraquat, pH and adsorption isotherm were investigated. The results showed that zeolite-10 had higher adsorption capacity than zeolite-3 and zeolite-100. The appropriate conditions for adsorption were 24 h., Zeolite 0.1 g., Initial paraquat concentration 100 ppm at pH 6. The adsorption isotherm was found to correspond with Langmuir Isotherm and the maximum paraquat adsorption is 26.38 mg/g for zeolite-10, 21.41 mg/g and 9.60 mg/g for zeolite-3 and zeolite-100, respectively. The characterization of zeolite material with XRD, XRF and BET. Furthermore, the zeolite materials applied to remove other organic and inorganic wastewater.

  19. Study of water vapour adsorption kinetics on aluminium oxide materials

    Science.gov (United States)

    Livanova, Alesya; Meshcheryakov, Evgeniy; Reshetnikov, Sergey; Kurzina, Irina

    2017-11-01

    Adsorbents on the basis of active aluminum oxide are still of demand on the adsorbent-driers market. Despite comprehensive research of alumina adsorbents, and currently is an urgent task to improve their various characteristics, and especially the task of increasing the sorption capacity. In the present work kinetics of the processes of water vapours' adsorption at room temperature on the surface of desiccant samples has been studied. It was obtained on the basis of bayerite and pseudoboehmite experimentally. The samples of pseudoboehmite modified with sodium and potassium ions were taken as study objects. The influence of an adsorbent's grain size on the kinetics of water vapours' adsorption was studied. The 0.125-0.25 mm and 0.5-1.0 mm fractions of this sample were used. It has been revealed that the saturation water vapor fine powder (0.125-0.25 mm) is almost twofold faster in comparison with the sample of fraction 0.5-1.0 mm due to the decrease in diffusion resistance in the pores of the samples when moving from the sample of larger fraction to the fine-dispersed sample. It has been established that the adsorption capacity of the pseudoboehmite samples, modified by alkaline ions, is higher by ˜40 %, than for the original samples on the basis of bayerite and pseudoboehmite.

  20. Synthesis of L-lysine imprinted cryogels for immunoglobulin G adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Çulha, Senem; Armutcu, Canan; Uzun, Lokman; Şenel, Serap, E-mail: senel@hacettepe.edu.tr; Denizli, Adil

    2015-07-01

    L-Lysine imprinted poly(2-hydroxyethyl methacrylate-co-N-methacryloyl-L-aspartic acid) [P(HEMA-co-MAAsp)] cryogels were synthesized and characterized with Fourier transform infrared spectroscopy, scanning electron microscopy, surface area measurements, swelling, and squeezing tests. Specific surface area for imprinted cryogel was 34.2 m{sup 2}/g while the value was 21.3 m{sup 2}/g for non-imprinted cryogel. IgG adsorption from aqueous solution was examined in continuous mode examining the factors effecting adsorption capacity such as pH, concentration, flow rate, temperature, ionic strength, and incubation time. 0.5 M NaCl was used as desorption agent. The IgG adsorption capacity was determined as 55.1 mg/g for 1.0 mg/mL IgG original concentration at 25.0 °C while pH and flow rate were 7.0 and 0.5 mL/min, respectively. When human serum was used as IgG source, the removal of 90.4% of crude IgG was attained for 1/20 diluted plasma sample. The imprinted cryogel was used in ten successive cycles without significant loss in adsorption capacity. The cryogel was determined to be 1.79 times more selective to IgG than albumin and 1.45 times more selective than hemoglobin. The adsorption behavior well suited to Langmuir isotherm and the kinetics followed pseudo-second-order model. Thermodynamic parameters ΔH°, ΔS° and ΔG° for this adsorption process were also calculated. - Highlights: • L-Lysine imprinted cryogels through epitope imprinting approach • Optimization of recognition conditions for template (L-lysine) and target (IgG) biomolecules • Efficient reusability (upto 10 cycles) without any significant change in capacity • A great potential for specific and selective IgG purification • Promising, cost-friendly, specific and selective adsorbent • IgG separation/purification from complex feeding solutions like human serum.

  1. Adsorption columns for use in radioimmunoassays

    International Nuclear Information System (INIS)

    1976-01-01

    Adsorption columns are provided which can be utilized in radioimmunoassay systems such as those involving the separation of antibody-antigen complexes from free antigens. The preparation of the columns includes the treatment of retaining substrate material to render it hydrophilic, preparation and degassing of the separation material and loading the column

  2. Nitroimidazoles adsorption on activated carbon cloth from aqueous solution.

    Science.gov (United States)

    Ocampo-Pérez, R; Orellana-Garcia, F; Sánchez-Polo, M; Rivera-Utrilla, J; Velo-Gala, I; López-Ramón, M V; Alvarez-Merino, M A

    2013-07-01

    The objective of this study was to analyze the equilibrium and adsorption kinetics of nitroimidazoles on activated carbon cloth (ACC), determining the main interactions responsible for the adsorption process and the diffusion mechanism of these compounds on this material. The influence of the different operational variables, such as ionic strength, pH, temperature, and type of water (ultrapure, surface, and waste), was also studied. The results obtained show that the ACC has a high capacity to adsorb nitroimidazoles in aqueous solution. Electrostatic interactions play an important role at pHpH values. Modifications of the ACC with NH3, K2S2O8, and O3 demonstrated that its surface chemistry plays a predominant role in nitroimidazole adsorption on this material. The adsorption capacity of ACC is considerably high in surface waters and reduced in urban wastewater, due to the levels of alkalinity and dissolved organic matter present in the different types of water. Finally, the results of applying kinetic models revealed that the global adsorption rate of dimetridazole and metronidazole is controlled by intraparticle diffusion. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Magnetically separable polymer (Mag-MIP) for selective analysis of biotin in food samples.

    Science.gov (United States)

    Uzuriaga-Sánchez, Rosario Josefina; Khan, Sabir; Wong, Ademar; Picasso, Gino; Pividori, Maria Isabel; Sotomayor, Maria Del Pilar Taboada

    2016-01-01

    This work presents an efficient method for the preparation of magnetic nanoparticles modified with molecularly imprinted polymers (Mag-MIP) through core-shell method for the determination of biotin in milk food samples. The functional monomer acrylic acid was selected from molecular modeling, EGDMA was used as cross-linking monomer and AIBN as radical initiator. The Mag-MIP and Mag-NIP were characterized by FTIR, magnetic hysteresis, XRD, SEM and N2-sorption measurements. The capacity of Mag-MIP for biotin adsorption, its kinetics and selectivity were studied in detail. The adsorption data was well described by Freundlich isotherm model with adsorption equilibrium constant (KF) of 1.46 mL g(-1). The selectivity experiments revealed that prepared Mag-MIP had higher selectivity toward biotin compared to other molecules with different chemical structure. The material was successfully applied for the determination of biotin in diverse milk samples using HPLC for quantification of the analyte, obtaining the mean value of 87.4% recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Selection, development and characterisation of plasma facing materials for ITER

    International Nuclear Information System (INIS)

    Barabash, V.; Akiba, M.; Ulrickson, M.; Vieider, G.

    1996-01-01

    The current status of the selection of the armour materials for first wall, limiters and divertor are presented. The candidate armour materials are beryllium, tungsten and carbon base materials (mainly carbon fiber composites). The selection of the references grades from these material classes is discussed and the candidate grades are described. The main reasons for the selection of the reference grades are also discussed. The urgent materials R and D needs for the development of the design are described briefly. (orig.)

  5. Competitive adsorption and selectivity sequence of heavy metals by chicken bone-derived biochar: Batch and column experiment.

    Science.gov (United States)

    Park, Jong-Hwan; Cho, Ju-Sik; Ok, Yong Sik; Kim, Seong-Heon; Kang, Se-Won; Choi, Ik-Won; Heo, Jong-Soo; DeLaune, Ronald D; Seo, Dong-Cheol

    2015-01-01

    The objective of this research was to evaluate adsorption of heavy metals in single- and ternary-metal forms onto chicken bone biochar (CBB). Competitive sorption of heavy metals by CBB has never been reported previously. The maximum adsorption capacities of metals by CBB were in the order of Cu (130 mg g(-1)) > Cd (109 mg g(-1)) > Zn (93 mg g(-1)) in the single-metal adsorption isotherm and Cu (108 mg g(-1)) > Cd (54 mg g(-1)) ≥ Zn (44 mg g(-1)) in the ternary-metal adsorption isotherm. Cu was the most retained cation, whereas Zn could be easily exchanged and substituted by Cu. Batch experimental data best fit the Langmuir model rather than the Freundlich isotherms. In the column experiments, the total adsorbed amounts of the metals were in the following order of Cu (210 mg g(-1)) > Cd (192 mg g(-1)) > Zn (178) in single-metal conditions, and Cu (156) > Cd (123) > Zn (92) in ternary-metal conditions. Results from both the batch and column experiments indicate that competitive adsorption among metals increases the mobility of these metals. Especially, Zn in single-metal conditions lost it adsorption capacity most significantly. Based on the 3D simulation graphs of heavy metals, adsorption patterns under single adsorption condition were different than under competitive adsorption condition. Results from both the batch and column experiments show that competitive adsorption among metals increases the mobility of these metals. The maximum metal adsorption capacity of the metals in the column experiments was higher than that in the batch experiment indicating other metal retention mechanisms rather than adsorption may be involved. Therefore, both column and batch experiments are needed for estimating retention capacities and removal efficiencies of metals in CBB.

  6. Adsorption of diastase over natural halloysite nanotubes (HNTs)

    Science.gov (United States)

    Twaiq, F.; Chang, K. X.; Ling, J. Y. W.

    2017-06-01

    Adsorption of diastase over natural halloysite nanotubes is studied in order to evaluate the adsorption capacity of diastase. The halloysite surface characteristics were assessed using nitrogen adsorption, x-ray diffraction (XRD), thermal gravimetric analysis (TGA) and Fourier transformed infrared (FTIR). The surface area of the natural halloysite is found to be 51 m2·g-1, with total pore volume of 0.106 cm3·g-1. The natural halloysite has a basal spacing (d001) of 10 Å confirming the structure of the natural halloysite material. TGA results indicated that halloysite loses its interlayer water in the range of 30 to 105 °C and the dehydration in the structural layer above 150 °C. The dehydroxylation of halloysite has occurred at approximately 460 °C. The FTIR result of the thermally treated halloysite sample indicated that the bands observed are assigned to Si-O and Al-O bonds. The effects of solution pH and temperature were studied on the adsorption capacity and percent removal of diastase from the solution. The adsorption kinetic found to fit well with both the Pseudo first-order and Pseudo second-order models, and the values of the kinetic constant were found to be 0.173 min-1 and 0.00018 g·mg-1·min-1 respectively. The Langmuir isotherm model is found to fit well to the adsorption data and a kinetic value is found to be 0.00059 m3·g-1. The maximum adsorption capacity was found to be 370 mg·g-1, indicating the potential for applications of the natural nanostructured halloysite material as an effective adsorbent for diastase.

  7. Adsorption methods for hydrogen isotope storage on zeolitic sieves

    International Nuclear Information System (INIS)

    Cristescu, Ioana; Cristescu, Ion; Vasut, F.; Brad, S.; Lazar, A.

    2001-01-01

    For hydrogen isotope separation, adsorption molecular sieves and active carbon were used. Adsorption process proceeds at liquid nitrogen and liquid hydrogen temperatures. Commercial zeolites have the same proprieties with natural zeolites, but they have a regular pore structure. They also have affinity for molecules of different size with defined shapes. Experimental results obtained at liquid nitrogen temperature (77.4 K) and liquid hydrogen revealed the efficient behaviour of the active carbon and zeolitic sieves for hydrogen isotopes temporary storage. We study adsorption of the synthetic zeolites in a wide range of temperatures and pressures and we used the molecular sieves 4A, 5A and active carbon. The 4A and 5A zeolites have a tridimensional structure with 11.4 A diameter. When the hydration water is eliminated, the material keeps a porous structure. The porous volume represents 45% from the zeolite mass for 4A and 5A sieves. The activation temperature of the zeolite and the carbon is very important for obtaining a high adsorption capacity. If the temperature used for activation is low, the structural water will be not eliminated and the adsorption capacity will be low. The excessive temperature will destroy the porous structure. The adsorption capacity for the hydrogen isotopes was calculated with the relation: A = V ads /m (cm 3 /g). The adsorption capacity and efficiency for the adsorbent materials, are given. Physical adsorption process of the hydrogen isotopes was carried out at liquid nitrogen temperature. The flux gas used in the adsorption system is composed of dry deuterium and protium. This mixture is cooled in liquid nitrogen and then is passed to the adsorbent getter at the same temperature (77.4 K). The gas flux in the adsorbent getter is 5 and 72 l/h (which correspond to 0.008 and 0.134 discharge velocity, respectively). (authors)

  8. Study of cesium and strontium adsorption on slovak bentonite

    International Nuclear Information System (INIS)

    Galambos, M.

    2010-01-01

    Bentonite is a natural clay and one of the most promising candidates for use as a buffer material in the geological disposal systems for high-level radioactive waste and spent nuclear fuel. It is intended to isolate metal canisters with highly radioactive waste products from the surrounding rocks because of its ability to retard the movement of radionuclides by adsorption. Slovak Republic avails of many significant deposits of bentonite. Adsorption of Cs and Sr on five Slovak bentonite of deposits (Jelsovy potok, Kopernica, Lieskovec, Lastovce and Dolna Ves) and montmorillonite K10 (Sigma-Aldrich) has been studied with the using batch of radiometric techniques. Natural, irradiated and natrified samples, in three different kinds of grain size: 15, 45 and 250 μm have been used in the experiments. The adsorptions of Cs and Sr on bentonite under various experimental conditions, such as contact time, adsorbent and adsorbate concentrations, pH after adsorption and effect of pH change, chemical modification, competitive ions and organic agents on the adsorption have been studied. The K d have been determined for adsorbent-Cs/Sr solution system as a function of contact time and adsorbate and adsorbent concentration. The data have been interpreted in terms of Langmuir isotherm. The adsorption of Cs and Sr has increased with increasing metal concentrations. Adsorption of Cs and Sr has been suppressed by presence of organic agents; and of bivalent cations more than univalent cations. By adsorption on natrified samples colloidal particles and pH value increase have been formed. Adsorption experiments carried out show that the most suitable materials intended for use as barriers surrounding a canister of spent nuclear fuel are bentonite of the Jelsovy potok and Kopernica deposits. (author)

  9. A comparison of basic dye adsorption onto zeolitic materials synthesized from fly ash

    International Nuclear Information System (INIS)

    Atun, Guelten; Hisarli, Guel; Kurtoglu, Ayse Engin; Ayar, Nihat

    2011-01-01

    This investigation reveals the adsorption characteristics of two basic dyes, thionine (TH) and safranine T (ST), onto fly ash (FA) and its three zeolitized products prepared at different hydrothermal conditions. Typical two-step isotherms were observed for TH adsorption onto four adsorbents, whereas the isotherms of the larger ST molecules were S-shaped. The adsorption capacities of the zeolitized fly ash (ZFA) estimated from the first plateau region of the TH isotherms was nearly twice the FA capacity. The capacities increased by up to five times in the second plateau region. The adsorption capacity of FA for ST is equivalent that of TH, whereas the capacities of ZFA are lower than those found for TH. The equilibrium results were well-described by the Freundlich isotherm model. The kinetic data obtained in the temperature range of 298-318 K was analyzed using Paterson's and Nernst Plank's approximations based on the homogeneous surface diffusion model (HSDM). The thermodynamic functions for the transition state were evaluated from the temperature-dependence of the surface diffusion coefficients by applying the Eyring model.

  10. A comparison of basic dye adsorption onto zeolitic materials synthesized from fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Atun, Guelten, E-mail: gultena@istanbul.edu.tr [Istanbul University, Faculty of Engineering, Department of Chemistry, 34850 Avcilar, Istanbul (Turkey); Hisarli, Guel; Kurtoglu, Ayse Engin; Ayar, Nihat [Istanbul University, Faculty of Engineering, Department of Chemistry, 34850 Avcilar, Istanbul (Turkey)

    2011-03-15

    This investigation reveals the adsorption characteristics of two basic dyes, thionine (TH) and safranine T (ST), onto fly ash (FA) and its three zeolitized products prepared at different hydrothermal conditions. Typical two-step isotherms were observed for TH adsorption onto four adsorbents, whereas the isotherms of the larger ST molecules were S-shaped. The adsorption capacities of the zeolitized fly ash (ZFA) estimated from the first plateau region of the TH isotherms was nearly twice the FA capacity. The capacities increased by up to five times in the second plateau region. The adsorption capacity of FA for ST is equivalent that of TH, whereas the capacities of ZFA are lower than those found for TH. The equilibrium results were well-described by the Freundlich isotherm model. The kinetic data obtained in the temperature range of 298-318 K was analyzed using Paterson's and Nernst Plank's approximations based on the homogeneous surface diffusion model (HSDM). The thermodynamic functions for the transition state were evaluated from the temperature-dependence of the surface diffusion coefficients by applying the Eyring model.

  11. Adsorption and separation of CO{sub 2} on Fe(II)-MOF-74: Effect of the open metal coordination site

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Wolong; Yang, Jiangfeng; Li, Libo; Li, Jinping, E-mail: Jpli211@hotmail.com

    2014-05-01

    We describe the successful synthesis of Fe{sub 2}(dobdc) (dobdc{sup 4−}=2, 5-dioxido-1, 4-benzenedicarboxylate), which has an open metal coordination site Fe(II), and investigate the adsorption properties of three important molecules CO{sub 2}, CH{sub 4} and N{sub 2} on Fe{sub 2}(dobdc) and an oxidized analog, Fe{sub 2}(O{sub 2})(dobdc). We found that CO{sub 2} adsorption isotherm of Fe{sub 2}(dobdc) at 10 bar was very different from Fe{sub 2}(O{sub 2})(dobdc), with the capacities of 144.5 cm{sup 3} g{sup −1} and 98.1 cm{sup 3} g{sup −1}, respectively. The adsorption capacities for CH{sub 4} were 75.8 cm{sup 3} g{sup −1} and 36.8 cm{sup 3} g{sup −1}, respectively, at 10 bar in these materials. Using ideal adsorbed solution theory (IAST), we obtain the adsorption selectivity for CO{sub 2} using equimolar mixtures of CO{sub 2}/CH{sub 4} and CO{sub 2}/N{sub 2} with Fe{sub 2}(dobdc) and Fe{sub 2}(O{sub 2})(dobdc) as a function of pressure. Fe{sub 2}(dobdc) has a higher, more stable separation factor. - Graphical abstract: The selectivity of CO{sub 2}/CH{sub 4} mixture (50%/50%) on Fe{sub 2}(dobdc) and Fe{sub 2}(O{sub 2})(dobdc). - Highlights: • We explored the contrastive adsorption of CO{sub 2}, CH{sub 4}, and N{sub 2} in Fe{sub 2}(dobdc) and Fe{sub 2}(O{sub 2})(dobdc) for the first time. • Through IAST, we obtain the adsorption selectivity for CO{sub 2} from the equimolar mixture of CO{sub 2}/CH{sub 4} and CO{sub 2}/N{sub 2} for Fe{sub 2}(dobdc) and Fe{sub 2}(O{sub 2})(dobdc). • We determined that the open coordination site of Fe(II) is the main reason for different adsorption performances.

  12. Super-resolution fluorescence imaging of nanoimprinted polymer patterns by selective fluorophore adsorption combined with redox switching

    KAUST Repository

    Yabiku, Y.

    2013-10-22

    We applied a super-resolution fluorescence imaging based on selective adsorption and redox switching of the fluorescent dye molecules for studying polymer nanostructures. We demonstrate that nano-scale structures of polymer thin films can be visualized with the image resolution better than 80 nm. The method was applied to image 100 nm-wide polymer nanopatterns fabricated by thermal nanoimprinting. The results point to the applicability of the method for evaluating residual polymer thin films and dewetting defect of the polymer resist patterns which are important for the quality control of the fine nanoimprinted patterns. 2013 Author(s).

  13. Super-resolution fluorescence imaging of nanoimprinted polymer patterns by selective fluorophore adsorption combined with redox switching

    Directory of Open Access Journals (Sweden)

    Yu Yabiku

    2013-10-01

    Full Text Available We applied a super-resolution fluorescence imaging based on selective adsorption and redox switching of the fluorescent dye molecules for studying polymer nanostructures. We demonstrate that nano-scale structures of polymer thin films can be visualized with the image resolution better than 80 nm. The method was applied to image 100 nm-wide polymer nanopatterns fabricated by thermal nanoimprinting. The results point to the applicability of the method for evaluating residual polymer thin films and dewetting defect of the polymer resist patterns which are important for the quality control of the fine nanoimprinted patterns.

  14. Evaluation of the potential of volatile organic compound (di-methyl benzene) removal using adsorption on natural minerals compared to commercial oxides

    Energy Technology Data Exchange (ETDEWEB)

    Zaitan, Hicham, E-mail: hicham.zaitan@usmba.ac.ma [Laboratory LCMC, Faculty of Sciences and Techniques, University Sidi Mohamed BenAbdellah, B.P. 2202, Fez (Morocco); Korrir, Abdelhamid; Chafik, Tarik [Laboratory LGCVR, Faculty of Sciences and Techniques, University Abdelmalek Essaadi, B.P. 416, Tangier (Morocco); Bianchi, Daniel [Institut de Recherche sur la Catalyse et l’Environnement de Lyon (IRCELYON), UMR 5256 CNRS, University Claude Bernard Lyon I, Bat. Chevreul, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne (France)

    2013-11-15

    Highlights: • The adsorption of dMB on natural minerals and commercial oxides was evaluated. • The adsorption capacities were discussed considering the adsorbents cost and the bed size. • The adsorption capacity of bentonite is higher than other adsorbents. • Langmuir model provide best correlation of the experimental data. • The isotherms data allow determination of isosteric heat of adsorption. -- Abstract: This study is dedicated to the investigation of the potential of volatile organic compounds (VOC) adsorption over low cost natural minerals (bentonite and diatomite). The performances of these solids, in terms of adsorption/desorption properties, were compared to commercial adsorbents, such as silica, alumina and titanium dioxide. The solids were first characterized by different physico-chemical methods and di-methyl benzene (dMB) was selected as model VOC pollutant for the investigation of adsorptive characteristics. The experiments were carried out with a fixed bed reactor under dynamic conditions using Fourier Transform InfraRed spectrometer to measure the evolution of dMB concentrations in the gaseous stream at the outlet of the reactor. The measured breakthrough curves yields to adsorbed amounts at saturation that has been used to obtain adsorption isotherms. The latters were used for determination of the heat involved in the adsorption process and estimation of its values using the isosteric method. Furthermore, the performances of the studied materials were compared considering the adsorption efficiency/cost ratio.

  15. Evaluation of the potential of volatile organic compound (di-methyl benzene) removal using adsorption on natural minerals compared to commercial oxides

    International Nuclear Information System (INIS)

    Zaitan, Hicham; Korrir, Abdelhamid; Chafik, Tarik; Bianchi, Daniel

    2013-01-01

    Highlights: • The adsorption of dMB on natural minerals and commercial oxides was evaluated. • The adsorption capacities were discussed considering the adsorbents cost and the bed size. • The adsorption capacity of bentonite is higher than other adsorbents. • Langmuir model provide best correlation of the experimental data. • The isotherms data allow determination of isosteric heat of adsorption. -- Abstract: This study is dedicated to the investigation of the potential of volatile organic compounds (VOC) adsorption over low cost natural minerals (bentonite and diatomite). The performances of these solids, in terms of adsorption/desorption properties, were compared to commercial adsorbents, such as silica, alumina and titanium dioxide. The solids were first characterized by different physico-chemical methods and di-methyl benzene (dMB) was selected as model VOC pollutant for the investigation of adsorptive characteristics. The experiments were carried out with a fixed bed reactor under dynamic conditions using Fourier Transform InfraRed spectrometer to measure the evolution of dMB concentrations in the gaseous stream at the outlet of the reactor. The measured breakthrough curves yields to adsorbed amounts at saturation that has been used to obtain adsorption isotherms. The latters were used for determination of the heat involved in the adsorption process and estimation of its values using the isosteric method. Furthermore, the performances of the studied materials were compared considering the adsorption efficiency/cost ratio

  16. Protein adsorption onto nanozeolite: effect of micropore openings.

    Science.gov (United States)

    Wu, Jiamin; Li, Xiang; Yan, Yueer; Hu, Yuanyuan; Zhang, Yahong; Tang, Yi

    2013-09-15

    A clear and deep understanding of protein adsorption on porous surfaces is desirable for the reasonable design and applications of porous materials. In this study, the effect of surface micropores on protein adsorption was systematically investigated by comparing adsorption behavior of cytochrome c (Cyto-c) and Candida antarctica Lipase B (CALB) on porous and non-porous nanozeolites silicalite-1 and Beta. It was found that micropore openings on the surface of nanozeolites played a key role in determining adsorption affinity, conformations, and activities of proteins. Both Cyto-c and CALB showed higher affinity to porous nanozeolites than to non-porous ones, resulting in greater conformational change of proteins on porous surfaces which in turn affected their bio-catalytic performance. The activity of Cyto-c improved while that of CALB decreased on porous nanozeolites. Recognition of certain amino acid residues or size-matching secondary structures by micropore openings on the surface of nanozeolites was proposed to be the reason. Moreover, the pore opening effect of porous nanozeolites on protein behavior could be altered by changing protein coverage on them. This study gives a novel insight into the interaction between proteins and microporous materials, which will help to guide the rational fabrication and bio-applications of porous materials in the future. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Selective nanoscale growth of lattice mismatched materials

    Science.gov (United States)

    Lee, Seung-Chang; Brueck, Steven R. J.

    2017-06-20

    Exemplary embodiments provide materials and methods of forming high-quality semiconductor devices using lattice-mismatched materials. In one embodiment, a composite film including one or more substantially-single-particle-thick nanoparticle layers can be deposited over a substrate as a nanoscale selective growth mask for epitaxially growing lattice-mismatched materials over the substrate.

  18. Recovery of Lithium From Geothermal Fluid at Lumpur Sidoarjo by Adsorption Method

    OpenAIRE

    Noerochim, Lukman; Satriawangsa, Gita Akbar; Widodo, Amien

    2016-01-01

    The recovery of lithium from geothermal fluid at Lumpur Sidoarjo, Indonesia was investigated employing an adsorption method with polymer membrane as container. The lithium concentration in geothermal fluid from Lumpur Sidoarjo used in the present study was about 5 mg/l. Lithium manganese oxide (LMO) was selected as a promising adsorbent material due to its non-toxic, topotactical behavior and low cost. In this study, LMO with single Li/Mn mole ratio was prepared, i.e. Li1.6Mn1.6O4. The adsorb...

  19. Importance of Micropore-Mesopore Interfaces in Carbon Dioxide Capture by Carbon-Based Materials.

    Science.gov (United States)

    Durá, Gema; Budarin, Vitaliy L; Castro-Osma, José A; Shuttleworth, Peter S; Quek, Sophie C Z; Clark, James H; North, Michael

    2016-08-01

    Mesoporous carbonaceous materials (Starbons®) derived from low-value/waste bio-resources separate CO2 from CO2 /N2 mixtures. Compared to Norit activated charcoal (AC), Starbons® have much lower microporosities (8-32 % versus 73 %) yet adsorb up to 65 % more CO2 . The presence of interconnected micropores and mesopores is responsible for the enhanced CO2 adsorption. The Starbons® also showed three-four times higher selectivity for CO2 adsorption rather than N2 adsorption compared to AC. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Quantum trajectories in elastic atom-surface scattering: threshold and selective adsorption resonances.

    Science.gov (United States)

    Sanz, A S; Miret-Artés, S

    2005-01-01

    The elastic resonant scattering of He atoms off the Cu(117) surface is fully described with the formalism of quantum trajectories provided by Bohmian mechanics. Within this theory of quantum motion, the concept of trapping is widely studied and discussed. Classically, atoms undergo impulsive collisions with the surface, and then the trapped motion takes place covering at least two consecutive unit cells. However, from a Bohmian viewpoint, atom trajectories can smoothly adjust to the equipotential energy surface profile in a sort of sliding motion; thus the trapping process could eventually occur within one single unit cell. In particular, both threshold and selective adsorption resonances are explained by means of this quantum trapping considering different space and time scales. Furthermore, a mapping between each region of the (initial) incoming plane wave and the different parts of the diffraction and resonance patterns can be easily established, an important issue only provided by a quantum trajectory formalism. (c) 2005 American Institute of Physics.

  1. Fibrinogen adsorption on blocked surface of albumin.

    Science.gov (United States)

    Holmberg, Maria; Hou, Xiaolin

    2011-05-01

    We have investigated the adsorption of albumin and fibrinogen onto PET (polyethylene terephthalate) and glass surfaces and how pre-adsorption of albumin onto these surfaces can affect the adsorption of later added fibrinogen. For materials and devices being exposed to blood, adsorption of fibrinogen is often a non-wanted event, since fibrinogen is part of the clotting cascade and unspecific adsorption of fibrinogen can have an influence on the activation of platelets. Albumin is often used as blocking agent for avoiding unspecific protein adsorption onto surfaces in devices designed to handle biological samples, including protein solutions. It is based on the assumption that proteins adsorbs as a monolayer on surfaces and that proteins do not adsorb on top of each other. By labelling albumin and fibrinogen with two different radioactive iodine isotopes that emit gamma radiation with different energies, the adsorption of both albumin and fibrinogen has been monitored simultaneously on the same sample. Information about topography and coverage of adsorbed protein layers has been obtained using AFM (Atomic Force Microscopy) analysis in liquid. Our studies show that albumin adsorbs in a multilayer fashion on PET and that fibrinogen adsorbs on top of albumin when albumin is pre-adsorbed on the surfaces. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Fluorocarbon adsorption in hierarchical porous frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Motkuri, RK; Annapureddy, HVR; Vijaykumar, M; Schaef, HT; Martin, PF; McGrail, BP; Dang, LX; Krishna, R; Thallapally, PK

    2014-07-09

    Metal-organic frameworks comprise an important class of solid-state materials and have potential for many emerging applications such as energy storage, separation, catalysis and bio-medical. Here we report the adsorption behaviour of a series of fluorocarbon derivatives on a set of microporous and hierarchical mesoporous frameworks. The microporous frameworks show a saturation uptake capacity for dichlorodifluoromethane of >4 mmol g(-1) at a very low relative saturation pressure (P/P-o) of 0.02. In contrast, the mesoporous framework shows an exceptionally high uptake capacity reaching >14 mmol g(-1) at P/P-o of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption is found to generally correlate with the polarizability and boiling point of the refrigerant, with dichlorodifluoromethane >chlorodifluoromethane >chlorotrifluoromethane >tetrafluoromethane >methane. These results suggest the possibility of exploiting these sorbents for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling.

  3. Chromate adsorption on selected soil minerals: Surface complexation modeling coupled with spectroscopic investigation

    Energy Technology Data Exchange (ETDEWEB)

    Veselská, Veronika, E-mail: veselskav@fzp.czu.cz [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic); Fajgar, Radek [Department of Analytical and Material Chemistry, Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135/1, CZ-16502, Prague (Czech Republic); Číhalová, Sylva [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic); Bolanz, Ralph M. [Institute of Geosciences, Friedrich-Schiller-University Jena, Carl-Zeiss-Promenade 10, DE-07745, Jena (Germany); Göttlicher, Jörg; Steininger, Ralph [ANKA Synchrotron Radiation Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, DE-76344, Eggenstein-Leopoldshafen (Germany); Siddique, Jamal A.; Komárek, Michael [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic)

    2016-11-15

    Highlights: • Study of Cr(VI) adsorption on soil minerals over a large range of conditions. • Combined surface complexation modeling and spectroscopic techniques. • Diffuse-layer and triple-layer models used to obtain fits to experimental data. • Speciation of Cr(VI) and Cr(III) was assessed. - Abstract: This study investigates the mechanisms of Cr(VI) adsorption on natural clay (illite and kaolinite) and synthetic (birnessite and ferrihydrite) minerals, including its speciation changes, and combining quantitative thermodynamically based mechanistic surface complexation models (SCMs) with spectroscopic measurements. Series of adsorption experiments have been performed at different pH values (3–10), ionic strengths (0.001–0.1 M KNO{sub 3}), sorbate concentrations (10{sup −4}, 10{sup −5}, and 10{sup −6} M Cr(VI)), and sorbate/sorbent ratios (50–500). Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy were used to determine the surface complexes, including surface reactions. Adsorption of Cr(VI) is strongly ionic strength dependent. For ferrihydrite at pH <7, a simple diffuse-layer model provides a reasonable prediction of adsorption. For birnessite, bidentate inner-sphere complexes of chromate and dichromate resulted in a better diffuse-layer model fit. For kaolinite, outer-sphere complexation prevails mainly at lower Cr(VI) loadings. Dissolution of solid phases needs to be considered for better SCMs fits. The coupled SCM and spectroscopic approach is thus useful for investigating individual minerals responsible for Cr(VI) retention in soils, and improving the handling and remediation processes.

  4. Unravelling the influence of carbon dioxide on the adsorptive recovery of butanol from fermentation broth using ITQ-29 and ZIF-8.

    Science.gov (United States)

    Martin-Calvo, Ana; Van der Perre, Stijn; Claessens, Benjamin; Calero, Sofia; Denayer, Joeri F M

    2018-04-18

    The vapor phase adsorption of butanol from ABE fermentation at the head space of the fermenter is an interesting route for the efficient recovery of biobutanol. The presence of gases such as carbon dioxide that are produced during the fermentation process causes a stripping of valuable compounds from the aqueous into the vapor phase. This work studies the effect of the presence of carbon dioxide on the adsorption of butanol at a molecular level. With this aim in mind Monte Carlo simulations were employed to study the adsorption of mixtures containing carbon dioxide, butanol and ethanol. Molecular models for butanol and ethanol that reproduce experimental properties of the molecules such as polarity, vapor-liquid coexistence or liquid density have been developed. Pure component isotherms and heats of adsorption have been computed and compared to experimental data to check the accuracy of the interacting parameters. Adsorption of butanol/ethanol mixtures has been studied in absence and presence of CO2 on two representative materials, a pure silica LTA zeolite and a hydrophobic metal-organic framework ZIF-8. To get a better understanding of the molecular mechanism that governs the adsorption of the targeted mixture in the selected materials, the distribution of the molecules inside the structures was analyzed. The combination of these features allows obtaining a deeper understanding of the process and to identify the role of carbon dioxide in the butanol purification process.

  5. Adsorption of procion red using layer double hydroxide Mg/Al

    Directory of Open Access Journals (Sweden)

    Muhammad Imron

    2017-07-01

    Full Text Available Layer double hydroxide Mg/Al was synthesized by inorganic synthetic method. Material was characterized using FTIR and XRD analyses and used as adsorbent of procion red dye in aqueous medium.  Factors that affect the adsorption process are adsorption time as the kinetic parameter; and the temperature and concentration of procion red as the thermodynamic parameter. FTIR spectra of layer double hydroxides showed unique vibration at wavenumber 1300 cm-1 and 1600 cm-1. Characterization using XRD shows diffraction angles at 29o, 27o, and 28o, which are typical of Mg/Al double layer hydroxides. Adsorption of procion red using layer double hydroxide Mg/Al resulted adsorption rate 7.1 minutes-1, maximum adsorption capacity 111.1 mg/g at 60 oC with increasing energy by increasing adsorption temperature.   Keywords: Layered double hydroxides, adsorption, procion red.

  6. Surface modification of spinel λ-MnO2 and its lithium adsorption properties from spent lithium ion batteries

    International Nuclear Information System (INIS)

    Li, Li; Qu, Wenjie; Liu, Fang; Zhao, Taolin; Zhang, Xiaoxiao; Chen, Renjie; Wu, Feng

    2014-01-01

    Highlights: • A method is designed to synthesize a λ-MnO 2 ion-sieve for lithium ions adsorption. • Ultrasonic treatment with acid is highly efficient for lithium ions extraction. • Surface modification by CeO 2 is used to improve the adsorption capacity. • A 0.5 wt.% CeO 2 -coated ion-sieve shows the best adsorption properties. • λ-MnO 2 ion-sieves are promising for recovering scarce lithium resources. - Abstract: Spinel λ-MnO 2 ion-sieves are promising materials because of their high selectivity toward lithium ions, and this can be applied to the recovery of lithium from spent lithium ion batteries. However, manganese dissolution loss during the delithiation of LiMn 2 O 4 causes a decrease in adsorption capacity and poor cycling stability for these ion-sieves. To improve the lithium adsorption properties of λ-MnO 2 ion-sieves, surface modification with a CeO 2 coating was studied using hydrothermal-heterogeneous nucleation. The structure, morphology and composition of the synthesized materials were determined by XRD, SEM, TEM and EDS. The effect of hydrothermal synthesis conditions and the amount of CeO 2 coating on the adsorption performance of λ-MnO 2 were also investigated. A 0.5 wt.% CeO 2 -coated ion-sieve was synthesized by heating at 120 °C for 3 h and it had better adsorption properties than the bare samples. The effect of ultrasonic treatment on the lithium extraction ratio from LiMn 2 O 4 upon acid treatment at various temperatures was studied and the results were compared with conventional mechanical stirring. We found that ultrasonic treatment at lower temperature gave almost the same maximum lithium extraction ratio and was more efficient and economic

  7. Selection and challenges for LFR reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Weisenburger, A.; Jianu, A.; Del Giacco, M.; Fetzer, R.; Heinzel, A.; Mueller, G. [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Pulsed Power and Microwave Technology

    2013-07-01

    Nuclear energy using Fast GenIV reactors can fulfil future demands concerning CO2 free, base load capability and sustainability. One of the most promising coolants especially due to its high thermal inertia is liquid lead (Pb). Since several years researches all over the world investigate this coolant and its impact on the reactor design and by that on the materials to be selected. The LEADER project, a follow up of ELSY, aims to design a prototypical demonstrator ALFRED and to continue with several design related aspects of the ELFR reactor. For a demonstrator the criteria of material selection are somewhat different to a commercial type like the ELFR. Material selection for ELFR of course considers all the aspects relevant for ALFRED plus the targeted burn up and the expected total dpa related damage especially of the fuel pins. In the past compatibility of structural material (steels like 316L, T91 and 15-15Ti (1.4970)) that can be employed for Pb cooled fast nuclear reactors were investigated in several EU projects like EUROTRANS and worldwide. Solubility of steel alloying elements like Ni, Fe, Cr is the driving force for the reduced corrosion resistance in contact with Pb. In-situ oxidation is the acknowledged measure to protect steels in Pb up to certain temperatures that are material dependent. Based on experiments and the derived temperature limits the average core outlet temperatures of ALFRED and the ELFR are set to 480 C. The most challenging conditions with respect to temperature are at the fuel assembly and the heat exchangers. For both, thin stable oxide scales with negligible reduction in heat transfer are the requested protection method. This presentation will give an overview on the selected materials for ALFRED and ELFR considering, beside pure compatibility, the influence of mechanical interaction like creep and fretting. (orig.)

  8. Characteristics of selective fluoride adsorption by biocarbon-Mg/Al layered double hydroxides composites from protein solutions: kinetics and equilibrium isotherms study.

    Science.gov (United States)

    Ma, Wei; Lv, Tengfei; Song, Xiaoyan; Cheng, Zihong; Duan, Shibo; Xin, Gang; Liu, Fujun; Pan, Decong

    2014-03-15

    In the study, two novel applied biocarbon-Mg/Al layered double hydroxides composites (CPLDH and CPLDH-Ca) were successfully prepared and characterized by TEM, ICP-AES, XFS, EDS, FTIR, XRD, BET and pHpzc. The fluoride removal efficiency (RF) and protein recovery ratio (RP) of the adsorbents were studied in protein systems of lysozyme (LSZ) and bovine serum albumin (BSA). The results showed that the CPLDH-Ca presented remarkable performance for selective fluoride removal from protein solution. It reached the maximum RF of 92.1% and 94.8% at the CPLDH-Ca dose of 2.0g/L in LSZ and BSA system, respectively. The RP in both systems of LSZ and BSA were more than 90%. Additionally, the RP of CPLDH-Ca increased with the increase of ionic strengths, and it almost can be 100% with more than 93% RF. Fluoride adsorption by the CPLDH-Ca with different initial fluoride concentrations was found to obey the mixed surface reaction and diffusion controlled adsorption kinetic model, and the overall reaction rate is probably controlled by intra-particle diffusion, boundary layer diffusion and reaction process. The adsorption isotherms of fluoride in BSA system fit the Langmuir-Freundlich model well. The BSA has synergistic effect on fluoride adsorption and the degree increased with the increase of the initial BSA concentration. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Preparation of a magnetic molecularly imprinted polymer for selective recognition of rhodamine B

    International Nuclear Information System (INIS)

    Liu, Xiuying; Yu, Dan; Yu, Yingchao; Ji, Shujuan

    2014-01-01

    Graphical abstract: A novel material based on the use of magnetic Fe3O4 nanoparticles coated with MMIP for preconcentration and determination of RhB in real samples prior to fluorospectrophotometry was developed. - Highlights: • A novel rhodamine B magnetic molecularly imprinted polymer by using Fe 3 O 4 magnetite as the magnetically susceptible component was synthesized. • The MMIP had rapid adsorption and high selectivity towards rhodamine B. • Rhodamine B can be extracted selectively by MMIP from real samples. • The method provides the advantages of short analysis time and high sensitivity. - Abstract: A novel magnetic molecularly imprinted polymer (MMIP) was developed as an adsorbent to selectively remove rhodamine B from real samples. The polymer was characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, and thermo-gravimetric analysis. Static adsorption, kinetic adsorption, and selective recognition experiments were also performed to investigate the specific adsorption equilibrium, kinetics, and selective recognition ability of the MMIP. The MMIPs had outstanding thermal stability, large adsorption capacity, and high competitive selectivity. When they were used as dispersed solid-phase extraction adsorbents in real samples, rhodamine B recovery was 79.97–81.88% and 75.56–79.74% in intra-day and inter-day reproducibility experiments with relative standard deviations lower than 2.62% and 4.28%, respectively. Extraction was optimized for yield and efficiency. Precision, accuracy, and linear working range were determined under optimal experimental conditions. The limits of detection and quantification were 1.05 and 3.49 μg L −1 , respectively. These results suggest MMIPs may be used for determination of rhodamine B in real samples

  10. Density functional theory for adsorption of gas mixtures in metal-organic frameworks.

    Science.gov (United States)

    Liu, Yu; Liu, Honglai; Hu, Ying; Jiang, Jianwen

    2010-03-04

    In this work, a recently developed density functional theory in three-dimensional space was extended to the adsorption of gas mixtures. Weighted density approximations to the excess free energy with different weighting functions were adopted for both repulsive and attractive contributions. An equation of state for hard-sphere mixtures and a modified Benedict-Webb-Rubin equation for Lennard-Jones mixtures were used to estimate the excess free energy of a uniform fluid. The theory was applied to the adsorption of CO(2)/CH(4) and CO(2)/N(2) mixtures in two metal-organic frameworks: ZIF-8 and Zn(2)(BDC)(2)(ted). To validate the theoretical predictions, grand canonical Monte Carlo simulations were also conducted. The predicted adsorption and selectivity from DFT were found to agree well with the simulation results. CO(2) has stronger adsorption than CH(4) and N(2), particularly in Zn(2)(BDC)(2)(ted). The selectivity of CO(2) over CH(4) or N(2) increases with increasing pressure as attributed to the cooperative interactions of adsorbed CO(2) molecules. The composition of the gas mixture exhibits a significant effect on adsorption but not on selectivity.

  11. The adsorption behavior of functional particles modified by polyvinylimidazole for Cu(II) ion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixin; Men, Jiying; Gao, Baojiao [School of Chemical Engineering and Environment, North University of China, Taiyuan (China)

    2012-03-15

    In this paper, a novel composite material the silica grafted by poly(N-vinyl imidazole) (PVI), i.e., PVI/SiO{sub 2}, was prepared using 3-methacryloxypropyl trimethoxysilane (MPS) as intermedia through the ''grafting from'' method. The adsorption behavior of metal ions by PVI/SiO{sub 2} was researched by both static and dynamic methods. Experimental results showed that PVI/SiO{sub 2} possessed very strong adsorption ability for metal ions. For different metal ions, PVI/SiO{sub 2} exhibited different adsorption abilities with the following order of adsorption capacity: Cu{sup 2+}> Cd{sup 2+}> Zn{sup 2+}. The adsorption material PVI/SiO{sub 2} was especially good at adsorbing Cu(II) ion and the saturated adsorption capacity could reach up to 49.2 mg/g. The empirical Freundlich isotherm was found to describe well the equilibrium adsorption data. Higher temperatures facilitated the adsorption process and thus increased the adsorption capacity. The pH and grafting amount of PVI had great influence on the adsorption amount. In addition, PVI/SiO{sub 2} particles had excellent eluting and regenerating property using diluted hydrochloric acid solution as eluent. The adsorption ability trended to steady during 10 cycles. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Gas adsorption capacity in an all carbon nanomaterial composed of carbon nanohorns and vertically aligned carbon nanotubes.

    Science.gov (United States)

    Puthusseri, Divya; Babu, Deepu J; Okeil, Sherif; Schneider, Jörg J

    2017-10-04

    Whereas vertically aligned carbon nanotubes (VACNTs) typically show a promising adsorption behavior at high pressures, carbon nanohorns (CNHs) exhibit superior gas adsorption properties in the low pressure regime due to their inherent microporosity. These adsorption characteristics are further enhanced when both materials are opened at their tips. The so prepared composite material allows one to investigate the effect of physical entrapment of CO 2 molecules within the specific adsorption sites of VACNTs composed of opened double walled carbon nanotubes (CNTs) and in specific adsorption sites created by spherically aggregated opened single walled carbon nanohorns. Combining 50 wt% of tip opened CNTs with tip opened CNHs increases the CO 2 adsorption capacity of this material by ∼24% at 30 bar and 298 K compared to opened CNHs alone.

  13. Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres

    International Nuclear Information System (INIS)

    Iram, Mahmood; Guo, Chen; Guan Yueping; Ishfaq, Ahmad; Liu Huizhou

    2010-01-01

    Fe 3 O 4 hollow nanospheres were prepared via a simple one-pot template-free hydrothermal method and were fully characterized. These magnetic spheres have been investigated for application as an adsorbant for the removal of dye contaminants from water. Because of the high specific surface area, nano-scale particle size, and hollow porous material, Fe 3 O 4 hollow spheres showed favorable adsorption behavior for Neutral red. Factors affecting adsorption, such as, initial dye concentration, pH and contact time were evaluated. Langmuir and the Freundlich adsorption isotherms were selected to explicate the interaction of the dye and magnetic adsorbant. The characteristic parameters for each isotherm have been determined. The overall trend followed an increase of the sorption capacity with increasing dye concentration with a maximum of 90% dye removal. The monolayer adsorption capacity of magnetic hollow spheres (0.05 g) for NR in the concentration range studied, as calculated from the Langmuir isotherm model at 25 deg. C and pH 6, was found to be 105 mg g -1 . Adsorption kinetic followed pseudo-second-order reaction kinetics. Thermodynamic study showed that the adsorption processes are spontaneous and endothermic. The combination of the superior adsorption and the magnetic properties of Fe 3 O 4 nanospheres can be useful as a powerful separation tool to deal with environmental pollution.

  14. Adsorption and Gas Separation of Molecules by Carbon Nanohorns.

    Science.gov (United States)

    Gatica, Silvina M; Nekhai, Anton; Scrivener, Adam

    2016-05-19

    In this paper, we report the results of Monte Carlo simulations of the adsorption of neon, argon, methane and carbon dioxide in carbon nanohorns. We model the nanohorns as an array of carbon cones and obtained adsorption isotherms and isosteric heats. The main sites of adsorption are inside the cones and in the interstices between three cones. We also calculated the selectivity of carbon dioxide/methane, finding that nanohorns are a suitable substrate for gas separation. Our simulations are compared to available experimental data.

  15. Adsorption of cellulase on cellulolytic enzyme lignin from lodgepole pine.

    Science.gov (United States)

    Tu, Maobing; Pan, Xuejun; Saddler, Jack N

    2009-09-09

    Enzymatic hydrolysis of lignocellulosic materials is significantly affected by cellulase adsorption onto the lignocellulosic substrates and lignin. The presence of lignin plays an important role in lignocellulosic hydrolysis and enzyme recycling. Three cellulase preparations (Celluclast, Spezyme CP, and MSUBC) were evaluated to determine their adsorption onto cellulolytic enzyme lignin (CEL) from steam-exploded Lodgepole pine (SELP) and ethanol (organosolv)-pretreated Lodgepole pine (EPLP). The adsorption affinity of cellulase (Celluclast) onto isolated lignin (CEL-EPLP and CEL-SELP) was slightly higher than that from corresponding EPLP and SELP substrates on the basis of the Langmuir constants. Effects of temperature, ionic strength, and surfactant on cellulase adsorption onto isolated lignin were also explored in this study. Thermodynamic analysis of enzyme adsorption onto isolated lignin (Gibbs free energy change DeltaG(0) approximately -30 kJ/mol) indicated this adsorption was a spontaneous process. The addition of surfactant (0.2% w/v) could reduce the adsorption of cellulase onto CEL-SELP by 60%. Two types of adsorption isotherm were compared for cellulase adsorption onto isolated lignin. A Langmuir adsorption isotherm showed better fit for the experimental data than a Freundlich adsorption isotherm.

  16. Prediction of equilibrium parameters of adsorption of lead (II) ions onto diatomite

    Science.gov (United States)

    Salman, Taylan; Ardalı, Yüksel; Gamze Turan, N.

    2013-04-01

    Heavy metals from industrial wastewaters are one of the most important environmental issues to be solved today. Due to their toxicity and nonbiodegradable nature, heavy metals cause environmental and public health problems. Various techniques have been developed to remove heavy metals from aqueous solutions. These include chemical precipitation, reverse osmosis, ion Exchange and adsorption. Among them, adsorption is considered to be a particularly competitive and effective process for the removal of heavy metals from aqueous solutions. There is growing interest in using low cost, commercially available materials for the adsorption of heavy metals. Diatomite is a siliceous sedimentary rock having an amorphous form of silica (SiO2. nH2O) containing a small amount of microcrystalline material. It has unique combination of physical and chemical properties such as high porosity, high permeability, small particle size, large surface area, and low thermal conductivity. In addition, it is available in Turkey and in various locations around the world. Therefore, diatomite has been successfully used as adsorbent for the removal of heavy metals. The aim of the study is to investigate the adsorption properties of diatomite. The equilibrium adsorption data were applied to the Langmuir, Freundlich and Dubinin-Radushkevic (D-R) isotherm models. Adsorption experiments were performed under batch process, using Pb (II) initial concentration, pH of solution and contact time as variables. The results demonstrated that the adsorption of Pb (II) was strongly dependent on pH of solution. The effect of pH on adsorption of Pb(II) on diatomite was conducted by varying pH from 2 to 12 at 20 oC. In the pH range of 2.0-4.0, the adsorption percentage increases slightly as the pH increasing. At pH>4, the adsorption percentage decreases with increasing pH because hydrolysis product and the precipitation begin to play an important role in the sorption of Pb (II). At pH4, the maximum adsorption

  17. ABOUT INDEX EVALUATION OF MATERIAL RESOURCE SUPPLIER SELECTION

    OpenAIRE

    V. A. Skochinskaya

    2008-01-01

    The paper analyzes existing methods for evaluation of material resource supplier selection. It shows advantages and shortcomings of the present evaluation systems. The necessity for application of an index evaluation is justified in the paper. The paper contains rating (index) evaluation for material resource supplier selection which is based on the application of quantitative (index) tool instead of an expert (numerical) evaluation. 

  18. Impact of equilibrating time on phosphate adsorption and desorption behaviour in some selected saline sodic soils

    International Nuclear Information System (INIS)

    Khan, Q.U.; HAN; Khan, M.J.; Rehman, S.; Khan, S.U.

    2012-01-01

    To investigate the effect of equilibrating time on phosphate adsorption and desorption on saline sodic soils a study was carried using three soil series from Dera Ismail Khan (Pakistan) district, namely Zindani, Tikken and Gishkori. These soils are alkaline calcareous in nature with greater Electrical Conductivity (EC) and Sodium Adsorption Ratio (SAR) values which classify them as saline sodic soils. The equilibrating time for the adsorption study was 8, 12, 16, 20, 24, 48 and 72 hours for two levels (5 mg L/sup -1/ and 100 mg L/sup -1/). For desorption study 1, 2, 3, 4 and 5 hours after 24 hours for low and high dilution. Adsorption and desorption isotherms of phosphate were developed for these soils. The Gishkori soil showed the greatest rate of adsorption as compared with the other two soils. Applying Langmuir and Freundlich models to P adsorption data revealed that Freundlich equation (R2 = 0.99) showed a better fit over the Langmuir equation (R2 =0. 97) in the three soils. The desorption curves varied similarly from each other. The amount of P adsorbed was different from that released back to the soil solution. The amount of adsorption increased with the time. Statistical analysis showed that the rate of adsorption for both 5 and 100 mg P L/sup -1/ was significantly different at P<0.05 at 16 and 20 hours and at P<0.01 beyond 20 hours. However, the rate of desorption was not significantly influenced by the equilibrating time as compared with the theoretical values of the three series. As the P - desorption curve did not coincide the P - adsorption curve, hence the availability of P to plant was adversely affected on its application. (author)

  19. Superior selectivity and sensitivity of blue phosphorus nanotubes in gas sensing applications

    KAUST Repository

    Montes Muñoz, Enrique

    2017-05-23

    On the basis of first principles calculations, we study the adsorption of CO, CO2, NH3, NO, and NO2 molecules on armchair and zigzag blue phosphorus nanotubes. The nanotubes are found to surpass the gas sensing performance of other one-dimensional materials, in particular Si nanowires and carbon nanotubes, and two-dimensional materials, in particular graphene, phosphorene, and MoS2. Investigation of the energetics of the gas adsorption and induced charge transfers indicates that blue phosphorus nanotubes are highly sensitive to N-based molecules, in particular NO2, due to covalent bonding. The current–voltage characteristics of nanotubes connected to Au electrodes are derived by the non-equilibrium Green\\'s function formalism and used to quantitatively evaluate the change in resistivity upon gas adsorption. The observed selectivity and sensitivity properties make blue phosphorus nanotubes superior gas sensors for a wide range of applications.

  20. Adsorption of 2,4,6-trinitrotoluene on carboxylated porous polystyrene microspheres

    International Nuclear Information System (INIS)

    Ye Zhengfang; Meng Qingqiang; Lu Shengtao

    2012-01-01

    Large-pore-size (150 nm) polystyrene (PSt) microspheres were carboxylated with phthalic anhydride (PA) through Friedel-Crafts acetylation to study the adsorption of 2,4,6-trinitrotoluene (TNT) on this material from aqueous solution. The scanning electron microscope (SEM) images and mercury porosimetry measurements (MPM) of the microspheres showed that the pore structure was unchanged during the reaction. High adsorption capacity (11.2 mg g -1 of suction-dried adsorbent) and adsorption rate (33.9 mg g -1 h -1 ) for TNT were observed during the study. As shown by the adsorption isotherm, the adsorption of TNT on PA-PSt can be described by the Freundlich adsorption equation, indicating heterogeneous adsorption process. On-column adsorption of TNT on PA-PSt and elution indicated that TNT can be completely removed from aqueous solution and condensed into acetone.

  1. Flue gas adsorption by single-wall carbon nanotubes: A Monte Carlo study.

    Science.gov (United States)

    Romero-Hermida, M I; Romero-Enrique, J M; Morales-Flórez, V; Esquivias, L

    2016-08-21

    Adsorption of flue gases by single-wall carbon nanotubes (SWCNT) has been studied by means of Monte Carlo simulations. The flue gas is modeled as a ternary mixture of N2, CO2, and O2, emulating realistic compositions of the emissions from power plants. The adsorbed flue gas is in equilibrium with a bulk gas characterized by temperature T, pressure p, and mixture composition. We have considered different SWCNTs with different chiralities and diameters in a range between 7 and 20 Å. Our results show that the CO2 adsorption properties depend mainly on the bulk flue gas thermodynamic conditions and the SWCNT diameter. Narrow SWCNTs with diameter around 7 Å show high CO2 adsorption capacity and selectivity, but they decrease abruptly as the SWCNT diameter is increased. For wide SWCNT, CO2 adsorption capacity and selectivity, much smaller in value than for the narrow case, decrease mildly with the SWCNT diameter. In the intermediate range of SWCNT diameters, the CO2 adsorption properties may show a peculiar behavior, which depend strongly on the bulk flue gas conditions. Thus, for high bulk CO2 concentrations and low temperatures, the CO2 adsorption capacity remains high in a wide range of SWCNT diameters, although the corresponding selectivity is moderate. We correlate these findings with the microscopic structure of the adsorbed gas inside the SWCNTs.

  2. Flue gas adsorption by single-wall carbon nanotubes: A Monte Carlo study

    International Nuclear Information System (INIS)

    Romero-Hermida, M. I.; Romero-Enrique, J. M.; Morales-Flórez, V.; Esquivias, L.

    2016-01-01

    Adsorption of flue gases by single-wall carbon nanotubes (SWCNT) has been studied by means of Monte Carlo simulations. The flue gas is modeled as a ternary mixture of N 2 , CO 2 , and O 2 , emulating realistic compositions of the emissions from power plants. The adsorbed flue gas is in equilibrium with a bulk gas characterized by temperature T, pressure p, and mixture composition. We have considered different SWCNTs with different chiralities and diameters in a range between 7 and 20 Å. Our results show that the CO 2 adsorption properties depend mainly on the bulk flue gas thermodynamic conditions and the SWCNT diameter. Narrow SWCNTs with diameter around 7 Å show high CO 2 adsorption capacity and selectivity, but they decrease abruptly as the SWCNT diameter is increased. For wide SWCNT, CO 2 adsorption capacity and selectivity, much smaller in value than for the narrow case, decrease mildly with the SWCNT diameter. In the intermediate range of SWCNT diameters, the CO 2 adsorption properties may show a peculiar behavior, which depend strongly on the bulk flue gas conditions. Thus, for high bulk CO 2 concentrations and low temperatures, the CO 2 adsorption capacity remains high in a wide range of SWCNT diameters, although the corresponding selectivity is moderate. We correlate these findings with the microscopic structure of the adsorbed gas inside the SWCNTs.

  3. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene

    KAUST Repository

    Cui, X.; Chen, K.; Xing, H.; Yang, Q.; Krishna, R.; Bao, Z.; Wu, H.; Zhou, W.; Dong, Xinglong; Han, Y.; Li, B.; Ren, Q.; Zaworotko, M. J.; Chen, B.

    2016-01-01

    The trade-off between physical adsorption capacity and selectivity of porous materials is a major barrier for efficient gas separation and purification through physisorption. We report control over pore chemistry and size in metal coordination

  4. Platinum adsorption onto graphene and oxidized graphene: A quantum mechanics study

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, S.A.; Jahanshahi, M. [Nanotechnology Research Institute, School of Chemical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of); Ahangari, M. Ghorbanzadeh, E-mail: ghorbanzadeh.morteza@gmail.com [Department of Mechanical Engineering, Faculty of Engineering and Technology, University of Mazandaran, Babolsar (Iran, Islamic Republic of)

    2017-04-01

    Density functional theory based on first-principle calculations was used to examine platinum-supported oxidized graphene as a beneficial nanomaterial in terms of its catalytic activity and utility for contaminant removal and disinfecting polluted solutions in both domestic and industrial applications. The first step was to select the most appropriate available computing package to apply the supercell technique, which would provide a better representation of a large and real graphene slab. Using OpenMX was less time-consuming after we enforced a basis set for valence electrons to avoid an all-electron calculation, and this had very slight and negligible effect on the accuracy of the calculations. The OpenMX software was selected to perform forward steps of investigating changes in the properties such as adsorption energy and ground state structure of the complexes made by the adsorption of a platinum atom on the surface of pristine graphene (Pt/PG) and oxidized graphene (Pt/OG), which had the lowest adsorption energy of −5.28 eV. Moreover, we examined the effect of Pt atom adsorption on the surface and between two layers of graphene. Our results show that, there was no specific change observed in mentioned properties of Pt atom adsorption on bilayer graphene in comparison with single layer. - Highlights: • Pt adsorption on graphene and oxidized graphene was examined. • We have also considered the effect of the layered graphene on the Pt adsorption. • We first compared two different DFT calculation codes, SIESTA and OpenMX. • We then used ORCA to validate and select a suitable computation package for this study.

  5. High-throughput screening of small-molecule adsorption in MOF-74

    Science.gov (United States)

    Thonhauser, T.; Canepa, P.

    2014-03-01

    Using high-throughput screening coupled with state-of-the-art van der Waals density functional theory, we investigate the adsorption properties of four important molecules, H2, CO2, CH4, and H2O in MOF-74-  with  = Be, Mg, Al, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Zr, Nb, Ru, Rh, Pd, La, W, Os, Ir, and Pt. We show that high-throughput techniques can aid in speeding up the development and refinement of effective materials for hydrogen storage, carbon capture, and gas separation. The exploration of the configurational adsorption space allows us to extract crucial information concerning, for example, the competition of water with CO2 for the adsorption binding sites. We find that only a few noble metals--Rh, Pd, Os, Ir, and Pt--favor the adsorption of CO2 and hence are potential candidates for effective carbon-capture materials. Our findings further reveal significant differences in the binding characteristics of H2, CO2, CH4, and H2O within the MOF structure, indicating that molecular blends can be successfully separated by these nano-porous materials. Supported by DOE DE-FG02-08ER46491.

  6. Cadmium(II) and lead(II) adsorption onto hetero-atom functional mesoporous silica and activated carbon

    Science.gov (United States)

    Machida, Motoi; Fotoohi, Babak; Amamo, Yoshimasa; Mercier, Louis

    2012-07-01

    Adsorption of cadmium(II) and lead(II) on amino-, mercapto-functionalized mesoporous silica (HMS) and carboxylic-functionalized activated carbon (AC) were examined. The resultant isotherms fitted the Langmuir model and amino-functionalized HMS exhibited the highest adsorption capacity for both cadmium(II) and lead(II). Adsorption affinities for cadmium(II) were always greater than those for lead(II) in all three adsorbent types, while the difference between the two values was the largest for mercapto-functionalized HMS indicating a selective adsorption of cadmium(II). Influence of equilibrium solution pH on adsorption of cadmium(II), lead(II) and their binary mixtures was also studied. Carboxylic-functionalized AC adsorbed cadmium(II) and lead(II) in a wide pH range than conditions for the mercapto-functionalized HMS. It was concluded that each functional group had its own characteristics and advantages for adsorption of heavy metal ions; amino-groups showed high adsorption capacity, while mercapto-groups had good selectivity toward cadmium(II) adsorption and a wide solution pH in adsorption by carboxylic-groups were established in this study.

  7. Cadmium(II) and lead(II) adsorption onto hetero-atom functional mesoporous silica and activated carbon

    International Nuclear Information System (INIS)

    Machida, Motoi; Fotoohi, Babak; Amamo, Yoshimasa; Mercier, Louis

    2012-01-01

    Adsorption of cadmium(II) and lead(II) on amino-, mercapto-functionalized mesoporous silica (HMS) and carboxylic-functionalized activated carbon (AC) were examined. The resultant isotherms fitted the Langmuir model and amino-functionalized HMS exhibited the highest adsorption capacity for both cadmium(II) and lead(II). Adsorption affinities for cadmium(II) were always greater than those for lead(II) in all three adsorbent types, while the difference between the two values was the largest for mercapto-functionalized HMS indicating a selective adsorption of cadmium(II). Influence of equilibrium solution pH on adsorption of cadmium(II), lead(II) and their binary mixtures was also studied. Carboxylic-functionalized AC adsorbed cadmium(II) and lead(II) in a wide pH range than conditions for the mercapto-functionalized HMS. It was concluded that each functional group had its own characteristics and advantages for adsorption of heavy metal ions; amino-groups showed high adsorption capacity, while mercapto-groups had good selectivity toward cadmium(II) adsorption and a wide solution pH in adsorption by carboxylic-groups were established in this study.

  8. Human hair-derived high surface area porous carbon material for the adsorption isotherm and kinetics of tetracycline antibiotics.

    Science.gov (United States)

    Ahmed, M J; Islam, Md Azharul; Asif, M; Hameed, B H

    2017-11-01

    In this work, a human hair-derived high surface area porous carbon material (HHC) was prepared using potassium hydroxide activation. The morphology and textural properties of the HHC structure, along with its adsorption performance for tetracycline (TC) antibiotics, were evaluated. HHC showed a high surface area of 1505.11m 2 /g and 68.34% microporosity. The effects of most important variables, such as initial concentration (25-355mg/L), solution pH (3-13), and temperatures (30-50°C), on the HHC adsorption performance were investigated. Isotherm data analysis revealed the favorable application of the Langmuir model, with maximum TC uptakes of 128.52, 162.62, and 210.18mg/g at 30, 40, and 50°C, respectively. The experimental data of TC uptakes versus time were analyzed efficiently using a pseudo-first order model. Porous HHC could be an efficient adsorbent for eliminating antibiotic pollutants in wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Removal of arsenic from potable water by adsorptive media treatment techniques

    International Nuclear Information System (INIS)

    Yousuf, S.; Khan, S.; Aslam, M.T.; Khan, A.R.

    2012-01-01

    Summary: This study was conducted to investigate the arsenic removal efficiency of different adsorptive media from water. Different naturally occurring materials such as bauxite, plastic clay, plaster of Paris, lime, alum, and alumina etc. were used for the development of media to remove arsenic As/sup +5/ present in the artificially contaminated water. Different ratios of the selected materials were combined and ignited at 9000 C to enhance its arsenic removing efficiency. It was found that the media bauxite, plastic clay, lime (1:1:1) has a maximum removal (99%) of As +5 species from aqueous media and can be used on- site to reduce the arsenic contamination of potable water. Furthermore, the materials used in this experiment were cheaply and abundantly available within the country. The method is very simple and economically viable, for removal of arsenic from potable water. (author)

  10. Controlling Cooperative CO2 Adsorption in Diamine-Appended Mg2(dobpdc) Metal-Organic Frameworks.

    Science.gov (United States)

    Siegelman, Rebecca L; McDonald, Thomas M; Gonzalez, Miguel I; Martell, Jeffrey D; Milner, Phillip J; Mason, Jarad A; Berger, Adam H; Bhown, Abhoyjit S; Long, Jeffrey R

    2017-08-02

    In the transition to a clean-energy future, CO 2 separations will play a critical role in mitigating current greenhouse gas emissions and facilitating conversion to cleaner-burning and renewable fuels. New materials with high selectivities for CO 2 adsorption, large CO 2 removal capacities, and low regeneration energies are needed to achieve these separations efficiently at scale. Here, we present a detailed investigation of nine diamine-appended variants of the metal-organic framework Mg 2 (dobpdc) (dobpdc 4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) that feature step-shaped CO 2 adsorption isotherms resulting from cooperative and reversible insertion of CO 2 into metal-amine bonds to form ammonium carbamate chains. Small modifications to the diamine structure are found to shift the threshold pressure for cooperative CO 2 adsorption by over 4 orders of magnitude at a given temperature, and the observed trends are rationalized on the basis of crystal structures of the isostructural zinc frameworks obtained from in situ single-crystal X-ray diffraction experiments. The structure-activity relationships derived from these results can be leveraged to tailor adsorbents to the conditions of a given CO 2 separation process. The unparalleled versatility of these materials, coupled with their high CO 2 capacities and low projected energy costs, highlights their potential as next-generation adsorbents for a wide array of CO 2 separations.

  11. Radioactive waste management-colloidal adsorption of cations and anions. Technical progress report (semiannual), September 30, 1985-March 31, 1986

    International Nuclear Information System (INIS)

    Balam, B.S.

    1986-04-01

    The surface adsorption characteristics of ion-exchange resins and clay minerals as influenced by the type of colloidal material, activity of ions and the concentration of associated electrolytes are being investigated. Electrodes and dialysis techniques are being used to determine the binding and release characteristics of cations and anions of significance in the radioactive waste management. The results obtained and techniques employed for clay fractionation, colloidal material separation, cation exchange capacity measurement and preparation of monocationic saturated colloidal materials have already been reported. The research work was continued to determine the distribution, mobility and binding characteristics of Montmorillonite and Illite clay materials as affected by the degree of saturation of colloidal adsorption capacity and the presence of electrolytes. Donnan equilibrium systems using Ca:Rb ratios of 90:10, 75:25, 50:50 and 10:90 and electrolyte concentrations corresponding to 0 and 0.2 symmetries were established. The systems were allowed to attain equilibrium as judged by conductivity measurements of the dialyzate. The distribution of cations at equilibrium was calculated from ion selective electrode and spectrophotometric measurements

  12. Competitive Protein Adsorption - Multilayer Adsorption and Surface Induced Protein Aggregation

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2009-01-01

    In this study, competitive adsorption of albumin and IgG (immunoglobulin G) from human serum solutions and protein mixtures onto polymer surfaces is studied by means of radioactive labeling. By using two different radiolabels (125I and 131I), albumin and IgG adsorption to polymer surfaces...... is monitored simultaneously and the influence from the presence of other human serum proteins on albumin and IgG adsorption, as well as their mutual influence during adsorption processes, is investigated. Exploring protein adsorption by combining analysis of competitive adsorption from complex solutions...... of high concentration with investigation of single protein adsorption and interdependent adsorption between two specific proteins enables us to map protein adsorption sequences during competitive protein adsorption. Our study shows that proteins can adsorb in a multilayer fashion onto the polymer surfaces...

  13. ABOUT INDEX EVALUATION OF MATERIAL RESOURCE SUPPLIER SELECTION

    Directory of Open Access Journals (Sweden)

    V. A. Skochinskaya

    2008-01-01

    Full Text Available The paper analyzes existing methods for evaluation of material resource supplier selection. It shows advantages and shortcomings of the present evaluation systems. The necessity for application of an index evaluation is justified in the paper. The paper contains rating (index evaluation for material resource supplier selection which is based on the application of quantitative (index tool instead of an expert (numerical evaluation. 

  14. Improvement of soluble coffee aroma using an integrated process of supercritical CO2 extraction with selective removal of the pungent volatiles by adsorption on activates carbon

    Directory of Open Access Journals (Sweden)

    S. Lucas

    2006-06-01

    Full Text Available In this paper a two-step integrated process consisting of CO2 supercritical extraction of volatile coffee compounds (the most valuable from roasted and milled coffee, and a subsequent step of selective removal of pungent volatiles by adsorption on activated carbon is presented. Some experiments were carried out with key compounds from roasted coffee aroma in order to study the adsorption step: ethyl acetate as a desirable compound and furfural as a pungent component. Operational parameters such as adsorption pressure and temperature and CO2 flowrate were optimized. Experiments were conducted at adsorption pressures of 12-17 MPa, adsorption temperatures of 35-50ºC and a solvent flow rate of 3-5 kg/h. In all cases, the solute concentration and the activated particle size were kept constant. Results show that low pressures (12 MPa, low temperatures (35ºC and low CO2 flowrates (3 kg/h are suitable for removing the undesirable pungent and smell components (e.g. furfural and retaining the desirable aroma compounds (e.g. ethyl acetate. The later operation with real roasted coffee has corroborated the previous results obtained with the key compounds.

  15. Surface modification of glass beads with glutaraldehyde: Characterization and their adsorption property for metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Ozmen, Mustafa; Can, Keziban; Akin, Ilker; Arslan, Gulsin [Department of Chemistry, Selcuk University, 42031, Konya (Turkey); Tor, Ali, E-mail: ali.alitor@gmail.com [Department of Environmental Engineering, Selcuk University, Engineering Faculty, Campus, 42031, Konya (Turkey); Cengeloglu, Yunus; Ersoz, Mustafa [Department of Chemistry, Selcuk University, 42031, Konya (Turkey)

    2009-11-15

    In this study, a new material that adsorbs the metal ions was prepared by modification of the glass beads surfaces with glutaraldehyde. First, the glass beads were etched with 4 M NaOH solution. Then, they were reacted with 3-aminopropyl-triethoxysilane (APTES). Finally, silanized glass beads were treated with 25% of glutaraldehyde solution. The characterization studies by using Fourier Transform Infrared Spectroscopy (FT-IR), Thermal Gravimetric Analysis (TGA), elemental analysis and Scanning Electron Microscopy (SEM) indicated that modification of the glass bead surfaces was successfully performed. The adsorption studies exhibited that the modified glass beads could be efficiently used for the removal of the metal cations and anion (chromate ion) from aqueous solutions via chelation and ion-exchange mechanisms. For both Pb(II) and Cr(VI), selected as model ions, the adsorption equilibrium was achieved in 60 min and adsorption of both ions followed the second-order kinetic model. It was found that the sorption data was better represented by the Freundlich isotherm in comparison to the Langmuir and Redlich-Peterson isotherm models. The maximum adsorption capacities for Pb(II) and Cr(VI) were 9.947 and 11.571 mg/g, respectively. The regeneration studies also showed that modified glass beads could be re-used for the adsorption of Pb(II) and Cr(VI) from aqueous solutions over three cycles.

  16. Ultrasonic-assisted synthesis of superabsorbent hydrogels based on sodium lignosulfonate and their adsorption properties for Ni2.

    Science.gov (United States)

    Wang, Xiaohong; Wang, Yingying; He, Shufu; Hou, Haiqian; Hao, Chen

    2018-01-01

    Nowadays, the attention of both academic and industrial research is paid to the novel materials based on renewable organic resources. Sodium lignosulphonate (SLS) is selected in this study to synthesize novel superabsorbent hydrogels by ultrasonic polymerization. The structure, morphology and stability of SLS-based hydrogel were confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Under the optimal condition, SLS-based hydrogel possesses the water absorbency of 1328g·g -1 in distilled water and 110g·g -1 in 0.9wt% NaCl solution. In addition, the prepared SLS-hydrogel as an adsorbent was applied to remove Ni 2+ from an aqueous solution in virtue of its low cost and favorable adsorption capacity. The various experimental conditions that influence the adsorption capacity were investigated such as temperature (20-60°C), pH (2.0-7.0), contact time (0-360min) and initial concentration of the Ni 2+ solution (100-600mg·L -1 ). Then the adsorption capability could reach 293mg·g -1 under optimal conditions. The results revealed that the adsorption behavior is spontaneous and endothermic. Furthermore, it was observed that the adsorption mechanism and adsorption equilibrium data obeyed pseudo-second-order kinetic and Freundlich models. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Low grade heat driven adsorption system for cooling and power generation using advanced adsorbent materials

    International Nuclear Information System (INIS)

    Al-Mousawi, Fadhel Noraldeen; Al-Dadah, Raya; Mahmoud, Saad

    2016-01-01

    Highlights: • Adsorption system based on water and advanced physical adsorbents has the potential of producing cooling and power. • Adding an expander to physisorption system enhances efficiency by up to 11%. • MIL101Cr MOF can produce 95 W/kg and 1357 W/kg of specific power and cooling. • AQSOA Z02 can produce 73 W/kg and 640 W/kg of specific power and cooling. - Abstract: Globally there is abundance of low grade heat sources (around 150 °C) from renewables like solar energy or from industrial waste heat. The exploitation of such low grade heat sources will reduce fossil fuel consumption and CO_2 emissions. Adsorption technology offers the potential of using such low grade heat to generate cooling and power. In this work, the effect of using advanced adsorbent materials like AQSOA-Z02 (SAPO-34) zeolite and MIL101Cr Metal Organic Framework (MOF) at various operating conditions on power and cooling performance compared to that of commonly used silica-gel was investigated using water as refrigerant. A mathematical model for a two bed adsorption cooling cycle has been developed with the cycle modified to produce power by incorporating an expander between the desorber and the condenser. Results show that it is possible to produce power and cooling at the same time without affecting the cooling output. Results also show that for all adsorbents used as the heat source temperature increases, the cooling effect and power generated increase. As for increasing the cold bed temperature, this will decrease the cooling effect and power output except for SAPO-34 which shows slightly increasing trend of cooling and power output. As the condenser cooling temperature increases, the cooling effect and power output will decrease while for the chilled water temperature, the cooling load and power generated increased as the temperature increased. The maximum values of average specific power generation (SP), specific cooling power (SCP) and cycle efficiency are 73 W

  18. Peat and coconut fiber as biofilters for chromium adsorption from contaminated wastewaters.

    Science.gov (United States)

    Henryk, Kołoczek; Jarosław, Chwastowski; Witold, Żukowski

    2016-01-01

    Batch adsorption experiments were performed for the removal of chromium (III) and chromium (VI) ions from aqueous solutions using Canadian peat and coconut fiber. The Langmuir model was used to describe the adsorption isotherm. The maximum adsorption for peat reached 18.75 mg/g for Cr(III) and 8.02 mg/g for Cr(VI), whereas the value for fiber was slightly higher and reached 19.21 mg/g for Cr(III) and 9.54 mg/g for Cr(VI). Both chromium forms could be easily eluted from the materials. The adsorption of chromium forms to organic matter could be explained in terms of formation of donor-acceptor chemical covalent bound with hydroxyl groups as ligands and chromium as the central atom in the formed complex. The chromate-reducing activities were monitored with the use of electron paramagnetic resonance spectroscopy. The results showed that both adsorption and reduction occurred simultaneously and the maximum adsorption capacity of hexavalent chromium being equal to 95% for fiber and 92% for peat was obtained at pH 1.5. The reduction of Cr(VI) in wastewaters began immediately and disappeared after 20 h. Both materials contained yeast and fungi species which can be responsible for reduction of chromium compounds, due to their enzymatic activity (Chwastowski and Koloczek (Acta Biochim Pol 60: 829-834, 2013)). The reduction of Cr(VI) is a two-phase process, the first phase being rapid and based on chemical reaction and the second phase having biological features. After the recovery step, both types of organic materials can be used again for chromium adsorption without any loss in the metal uptake. Both of the materials could be used as biofilters in the wastewater treatment plants.

  19. Surface and adsorptive properties of Moringa oleifera bark for removal of V(V) from aqueous solutions.

    Science.gov (United States)

    Mnisi, Robert Londi; Ndibewu, Peter Papoh

    2017-11-04

    The bark of Moringa oleifera, a cheap and readily available natural biopolymeric resource material, found to significantly reduce coliform load and turbidity in contaminated water is investigated in this paper. Its surface and adsorptive properties are investigated to explore its adsorptive potential in removing V(V) from aqueous solutions. Surface properties were investigated using FTIR, HRSEM/EDS, IC, and BET-N 2 adsorption techniques. Adsorptive properties were investigated by optimizing adsorption parameters such as pH, temperature, initial metal concentration, and adsorbent dosage, using V(V) as an adsorbate. The adsorption-desorption isotherms are typical of type II with a H3 hysteresis loop and is characteristic of a largely macroporous material. Bottle ink pores are observed, which can provide good accessibility of the active sites, even though the internal BET surface area is typically low (1.79 g/m 2 ). Solution pH significantly influences the adsorptive potential of the material. The low surface area negatively impacts on the adsorption capacity, but is compensated for by the exchangeable anions (Cl - , F - , PO 4 3- , NO 3 - , and SO 4 2- ) and cations (Ca 2+ , K + , Mg 2+ , and Al 3+ ) at the surface and the accessibility of the active sites. Adsorption isotherm modeling show that the surface is largely heterogeneous with complex multiple sites and adsorption is not limited to monolayer.

  20. Cooperative adsorption of critical metal ions using archaeal poly-γ-glutamate.

    Science.gov (United States)

    Hakumai, Yuichi; Oike, Shota; Shibata, Yuka; Ashiuchi, Makoto

    2016-06-01

    Antimony, beryllium, chromium, cobalt (Co), gallium (Ga), germanium, indium (In), lithium, niobium, tantalum, the platinoids, the rare-earth elements (including dysprosium, Dy), and tungsten are generally regarded to be critical (rare) metals, and the ions of some of these metals are stabilized in acidic solutions. We examined the adsorption capacities of three water-soluble functional polymers, namely archaeal poly-γ-glutamate (L-PGA), polyacrylate (PAC), and polyvinyl alcohol (PVA), for six valuable metal ions (Co(2+), Ni(2+), Mn(2+), Ga(3+), In(3+), and Dy(3+)). All three polymers showed apparently little or no capacity for divalent cations, whereas L-PGA and PAC showed the potential to adsorb trivalent cations, implying the beneficial valence-dependent selectivity of anionic polyelectrolytes with multiple carboxylates for metal ions. PVA did not adsorb metal ions, indicating that the crucial role played by carboxyl groups in the adsorption of crucial metal ions cannot be replaced by hydroxyl groups under the conditions. In addition, equilibrium studies using the non-ideal competitive adsorption model indicated that the potential for L-PGA to be used for the removal (or collection) of water-soluble critical metal ions (e.g., Ga(3+), In(3+), and Dy(3+)) was far superior to that of any other industrially-versatile PAC materials.

  1. Adsorption and Detection of Hazardous Trace Gases by Metal-Organic Frameworks.

    Science.gov (United States)

    Woellner, Michelle; Hausdorf, Steffen; Klein, Nicole; Mueller, Philipp; Smith, Martin W; Kaskel, Stefan

    2018-06-19

    The quest for advanced designer adsorbents for air filtration and monitoring hazardous trace gases has recently been more and more driven by the need to ensure clean air in indoor, outdoor, and industrial environments. How to increase safety with regard to personal protection in the event of hazardous gas exposure is a critical question for an ever-growing population spending most of their lifetime indoors, but is also crucial for the chemical industry in order to protect future generations of employees from potential hazards. Metal-organic frameworks (MOFs) are already quite advanced and promising in terms of capacity and specific affinity to overcome limitations of current adsorbent materials for trace and toxic gas adsorption. Due to their advantageous features (e.g., high specific surface area, catalytic activity, tailorable pore sizes, structural diversity, and range of chemical and physical properties), MOFs offer a high potential as adsorbents for air filtration and monitoring of hazardous trace gases. Three advanced topics are considered here, in applying MOFs for selective adsorption: (i) toxic gas adsorption toward filtration for respiratory protection as well as indoor and cabin air, (ii) enrichment of hazardous gases using MOFs, and (iii) MOFs as sensors for toxic trace gases and explosives. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Selection of materials in nuclear fuel: present and future

    International Nuclear Information System (INIS)

    Munoz-Reja, C.; Fuentes, L.; Garcia de la Infanta, J. M.; Munoz Sicilia, A.

    2013-01-01

    One of the main aspects of the nuclear fuel is the selection of materials for the components. The operating conditions of the fuel elements impose a major challenge to materials: high temperature, corrosive aqueous environment, high mechanical properties, long periods of time under these extreme conditions and what is the differentiating factor; the effect of irradiation. The materials are selected to fulfill these severe requirements and also to be able to control and to predict its behavior in the working conditions. Their development, in terms of composition and processing, is based on the continuous follow-up of the operation behavior. Many of these materials are specific of the nuclear industry, such as the uranium dioxide and the zirconium alloys. This article presents the selection and development of the nuclear fuel materials as a function of the services requirements. It also includes a view of the new nuclear fuels materials that are being raised after Fukushima accident. (Author)

  3. Contributions of depth filter components to protein adsorption in bioprocessing.

    Science.gov (United States)

    Khanal, Ohnmar; Singh, Nripen; Traylor, Steven J; Xu, Xuankuo; Ghose, Sanchayita; Li, Zheng J; Lenhoff, Abraham M

    2018-04-16

    Depth filtration is widely used in downstream bioprocessing to remove particulate contaminants via depth straining and is therefore applied to harvest clarification and other processing steps. However, depth filtration also removes proteins via adsorption, which can contribute variously to impurity clearance and to reduction in product yield. The adsorption may occur on the different components of the depth filter, that is, filter aid, binder, and cellulose filter. We measured adsorption of several model proteins and therapeutic proteins onto filter aids, cellulose, and commercial depth filters at pH 5-8 and ionic strengths filter component in the adsorption of proteins with different net charges, using confocal microscopy. Our findings show that a complete depth filter's maximum adsorptive capacity for proteins can be estimated by its protein monolayer coverage values, which are of order mg/m 2 , depending on the protein size. Furthermore, the extent of adsorption of different proteins appears to depend on the nature of the resin binder and its extent of coating over the depth filter surface, particularly in masking the cation-exchanger-like capacity of the siliceous filter aids. In addition to guiding improved depth filter selection, the findings can be leveraged in inspiring a more intentional selection of components and design of depth filter construction for particular impurity removal targets. © 2018 Wiley Periodicals, Inc.

  4. Adsorptive removal of cesium using bio fuel extraction microalgal waste

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Katsutoshi, E-mail: inoue@elechem.chem.saga-u.ac.jp [Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo 1, Saga 840-8502 (Japan); Gurung, Manju [Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo 1, Saga 840-8502 (Japan); Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John' s, NL, Canada A1B 3X5 (Canada); Adhikari, Birendra Babu; Alam, Shafiq [Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John' s, NL, Canada A1B 3X5 (Canada); Kawakita, Hidetaka; Ohto, Keisuke [Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo 1, Saga 840-8502 (Japan); Kurata, Minoru [Research Laboratories, DENSO CORPORATION, Minamiyama 500-1, Komenoki, Nisshin, Aichi 470-0111 (Japan); Atsumi, Kinya [New Business Promotion Dept., DENSO CORPORATION, Showa-cho 1-1, Kariya, Aichi 448-8661 (Japan)

    2014-04-01

    Highlights: • A novel biosorbent was prepared from the microalgal waste after biofuel extraction. • Higher selectivity and adsorption efficiency of the adsorbent for Cs{sup +} over Na{sup +} ions from aqueous solutions. • Potential candidate and eco-friendly alternative to the commercial resins such as zeolite. - Abstract: An adsorption gel was prepared from microalgal waste after extracting biodiesel oil by a simple chemical treatment of crosslinking using concentrated sulfuric acid. The adsorbent exhibited notably high selectivity and adsorption capacity towards Cs{sup +} over Na{sup +} from aqueous solutions, within the pH range of slightly acidic to neutral. The adsorption followed Langmuir isotherm and the maximum adsorption capacity of the gel for Cs{sup +} calculated from Langmuir model was found to be 1.36 mol kg{sup −1}. Trace concentration of Cs{sup +} ions present in aqueous streams was successfully separated from Na{sup +} ions using a column packed with the adsorbent at pH 6.5. The adsorption capacity of the gel towards Cs{sup +} in column operation was 0.13 mol kg{sup −1}. Although the adsorbed Cs{sup +} ions were easily eluted using 1 M hydrochloric acid solution, simple incineration is proposed as an alternative for the treatment of adsorbent loaded with radioactive Cs{sup +} ions due to the combustible characteristics of this adsorbent.

  5. Adsorption and degradation of five selected antibiotics in agricultural soil.

    Science.gov (United States)

    Pan, Min; Chu, L M

    2016-03-01

    Large quantities of antibiotics are being added to agricultural fields worldwide through the application of wastewater, manures and biosolids, resulting in antibiotic contamination and elevated environmental risks in terrestrial environments. Most studies on the environmental fate of antibiotics focus on aquatic environments or wastewater treatment plants. Little is known about the behavior of antibiotics at environmentally relevant concentrations in agricultural soil. In this study we evaluated the adsorption and degradation of five different antibiotics (tetracycline, sulfamethazine, norfloxacin, erythromycin, and chloramphenicol) in sterilized and non-sterilized agricultural soils under aerobic and anaerobic conditions. Adsorption was highest for tetracycline (Kd, 1093 L/kg), while that for sulfamethazine was negligible (Kd, 1.365 L/kg). All five antibiotics were susceptible to microbial degradation under aerobic conditions, with half-lives ranging from 2.9 to 43.3 d in non-sterilized soil and 40.8 to 86.6 d in sterilized soil. Degradation occurred at a higher rate under aerobic conditions but was relatively persistent under anaerobic conditions. For all the antibiotics, a higher initial concentration was found to slow down degradation and prolong persistence in soil. The degradation behavior of the antibiotics varied in relation to their physicochemical properties as well as the microbial activities and aeration of the recipient soil. The poor adsorption and relative persistence of sulfamethazine under both aerobic and anaerobic conditions suggest that it may pose a higher risk to groundwater quality. An equation was proposed to predict the fate of antibiotics in soil under different field conditions, and assess their risks to the environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Interfacial adsorption of insulin - Conformational changes and reversibility of adsorption

    NARCIS (Netherlands)

    Mollmann, SH; Jorgensen, L; Bukrinsky, JT; Elofsson, U; Norde, W; Frokjaer, S

    The adsorption of human insulin to Teflon particles was studied with respect to conformational changes and the reversibility of adsorption was examined by total internal reflection fluorescence (TIRF). Adsorption isotherms for the adsorption of human insulin indicated high affinity adsorption, even

  7. Preparation and application of magnetic superhydrophobic polydivinylbenzene nanofibers for oil adsorption in wastewater.

    Science.gov (United States)

    Zhu, Xiaobiao; Tian, Ye; Li, Feifei; Liu, Yapeng; Wang, Xiaohui; Hu, Xiang

    2018-06-01

    Superhydrophobic materials have an excellent performance in oil adsorption. In this study, a novel magnetic polydivinylbenzene (PDVB) nanofiber was synthesized by the method of cation polymerization to adsorb oil from water. The magnetic PDVB was hollow nanofiber with Fe 3 O 4 nanoparticles embedded in its structure. The synthesis condition was optimized that the ratio of divinylbenzene (DVB) to boron fluoride ethyl ether (BFEE) was 10:1 (v/v), and the Fe 3 O 4 dosage was 0.175 g/g of DVB. The material showed an excellent oil adsorption performance in wastewater, and the oil concentration could be reduced from 2000 to 92.2 mg/L within 5 min. The magnetic PDVB had relatively high adsorption capacity (12 g/g) for oil, which could be attributed to its super hydrophobicity and one-dimensional nanostructure with high crosslinking degree. The isotherm study indicated that the magnetic PDVB adsorbed oil was an asymmetric or multilayer adsorption process. The material could be regenerated by simple squeeze and maintain its adsorption capacity after it has been used for 10 recycles. In real coking wastewater, the magnetic PDVB kept a good oil adsorption performance without the interference of various pollutants, indicating a wide prospect in practical use.

  8. Selective Integration in the Material-Point Method

    DEFF Research Database (Denmark)

    Andersen, Lars; Andersen, Søren; Damkilde, Lars

    2009-01-01

    The paper deals with stress integration in the material-point method. In order to avoid parasitic shear in bending, a formulation is proposed, based on selective integration in the background grid that is used to solve the governing equations. The suggested integration scheme is compared...... to a traditional material-point-method computation in which the stresses are evaluated at the material points. The deformation of a cantilever beam is analysed, assuming elastic or elastoplastic material behaviour....

  9. Phospholipid Adsorption Polymeric Materials for Detection of Xylazine and Metabolite in Blood and Urine

    Directory of Open Access Journals (Sweden)

    Xue Gao

    2016-01-01

    Full Text Available Polymers have been used in different areas. Recently, polymeric material is favored in analytical area due to its high performance and high consistency, which was used in sample pretreatment in this study. Xylazine poisoning is often seen in body fluid samples obtained from various accidents or suicides. However, the content of xylazine is difficult to detect precisely due to matrix effect in testing practices. In this paper, a method application for phospholipid adsorption polymeric materials to determine xylazine in blood and urine samples was proposed, developed, and validated. Compared with existing method, this method using polymeric pretreatment has a wider linear range of 2.0–2000.0 ng/mL for xylazine and its metabolite 2,6-dimethylaniline in both blood and urine and lower detection limits of 0.3 ng/mL for 2,6-dimethylaniline and xylazine in blood and 0.2 ng/mL for 2,6-dimethylaniline and xylazine in urine. Therefore, this method is suggested to be applied in testing practices by academic groups and commercial organizations.

  10. First-principles calculation study of mechanism of cation adsorption selectivity of zeolites. A guideline for effective removal of radioactive cesium

    International Nuclear Information System (INIS)

    Nakamura, Hiroki; Okumura, Masahiko; Machida, Masahiko

    2013-01-01

    Zeolites have attracted attention in the reprocessing of radioactive nuclear waste because of their high selective affinity for radioisotopes of Cs. Very recently, their useful properties have been widely utilized in decontamination after the accident at the Fukushima Daiichi Nuclear Power Plants. In this study, we study the high selectivity in the Cs adsorption of zeolites using first-principles calculations and clarify the mechanism of the cation selectivity of zeolites. We obtain energy surfaces on all capture locations for Cs/Na ions inside the micropores of a zeolite, 'mordenite', and find three crucial conditions for the highly ion-selective exchange of Na for Cs: 1) micropores with a radius of ∼3 Å, 2) a moderate Al/Si ratio, and 3) a uniform distribution of Al atoms around each micropore. These insights suggest a guideline for developing zeolites with high Cs selectivity and for enhancing the cation selectivity in more general situations. (author)

  11. Statistical mechanical model of gas adsorption in porous crystals with dynamic moieties.

    Science.gov (United States)

    Simon, Cory M; Braun, Efrem; Carraro, Carlo; Smit, Berend

    2017-01-17

    Some nanoporous, crystalline materials possess dynamic constituents, for example, rotatable moieties. These moieties can undergo a conformation change in response to the adsorption of guest molecules, which qualitatively impacts adsorption behavior. We pose and solve a statistical mechanical model of gas adsorption in a porous crystal whose cages share a common ligand that can adopt two distinct rotational conformations. Guest molecules incentivize the ligands to adopt a different rotational configuration than maintained in the empty host. Our model captures inflections, steps, and hysteresis that can arise in the adsorption isotherm as a signature of the rotating ligands. The insights disclosed by our simple model contribute a more intimate understanding of the response and consequence of rotating ligands integrated into porous materials to harness them for gas storage and separations, chemical sensing, drug delivery, catalysis, and nanoscale devices. Particularly, our model reveals design strategies to exploit these moving constituents and engineer improved adsorbents with intrinsic thermal management for pressure-swing adsorption processes.

  12. Kinetics Study of Gas Pollutant Adsorption and Thermal Desorption on Silica Gel

    Directory of Open Access Journals (Sweden)

    Rong A

    2017-06-01

    Full Text Available Silica gel is a typical porous desiccant material. Its adsorption performance for gaseous air pollutants was investigated to determine its potential contribution to reducing such pollutants. Three gaseous air pollutants, toluene, carbon dioxide, and methane, were investigated in this paper. A thermogravimetric analyzer was used to obtain the equilibrium adsorption capacity of gases on single silica gel particles. The silica gel adsorption capacity for toluene is much higher than that for carbon dioxide and methane. To understand gas pollutant thermal desorption from silica gel, the thermogravimetric analysis of toluene desorption was conducted with 609 ppm toluene vapor at 313 K, 323 K, and 333 K. The overall regeneration rate of silica gel was strongly dependent on temperature and the enthalpy of desorption. The gas pollutant adsorption performance and thermal desorption on silica gel material may be used to estimate the operating and design parameters for gas pollutant adsorption by desiccant wheels.

  13. Adsorption of vitamin E on mesoporous titania nanocrystals

    International Nuclear Information System (INIS)

    Shih, C.J.; Lin, C.T.; Wu, S.M.

    2010-01-01

    Tri-block nonionic surfactant and titanium chloride were used as starting materials for the synthesis of mesoporous titania nanocrystallite powders. The main objective of the present study was to examine the synthesis of mesoporous titania nanocrystals and the adsorption of vitamin E on those nanocrystals using X-ray diffraction (XRD), transmission electron microscopy, and nitrogen adsorption and desorption isotherms. When the calcination temperature was increased to 300 o C, the reflection peaks in the XRD pattern indicated the presence of an anatase phase. The crystallinity of the nanocrystallites increased from 80% to 98.6% with increasing calcination temperature from 465 o C to 500 o C. The N 2 adsorption data and XRD data taken after vitamin E adsorption revealed that the vitamin E molecules were adsorbed in the mesopores of the titania nanocrystals.

  14. Guidelines for the Development of Instructional Materials Selection Policies. Handbook I.

    Science.gov (United States)

    Motomatsu, Nancy, Ed.

    This manual was developed to assist school district personnel in the development of policies and procedures for selecting instructional materials. The manual describes State of Washington laws and regulations that govern the selection, use, and disposal of instructional materials and presents criteria and guidelines for selecting materials. Also…

  15. GIS-NaP1 zeolite microspheres as potential water adsorption material: Influence of initial silica concentration on adsorptive and physical/topological properties.

    Science.gov (United States)

    Sharma, Pankaj; Song, Ju-Sub; Han, Moon Hee; Cho, Churl-Hee

    2016-03-11

    GIS-NaP1 zeolite samples were synthesized using seven different Si/Al ratios (5-11) of the hydrothermal reaction mixtures having chemical composition Al2O3:xSiO2:14Na2O:840H2O to study the impact of Si/Al molar ratio on the water vapour adsorption potential, phase purity, morphology and crystal size of as-synthesized GIS-NaP1 zeolite crystals. The X-ray diffraction (XRD) observations reveal that Si/Al ratio does not affect the phase purity of GIS-NaP1 zeolite samples as high purity GIS-NaP1 zeolite crystals were obtained from all Si/Al ratios. Contrary, Si/Al ratios have remarkable effect on the morphology, crystal size and porosity of GIS-NaP1 zeolite microspheres. Transmission electron microscopy (TEM) evaluations of individual GIS-NaP1 zeolite microsphere demonstrate the characteristic changes in the packaging/arrangement, shape and size of primary nano crystallites. Textural characterisation using water vapour adsorption/desorption, and nitrogen adsorption/desorption data of as-synthesized GIS-NaP1 zeolite predicts the existence of mix-pores i.e., microporous as well as mesoporous character. High water storage capacity 1727.5 cm(3) g(-1) (138.9 wt.%) has been found for as-synthesized GIS-NaP1 zeolite microsphere samples during water vapour adsorption studies. Further, the total water adsorption capacity values for P6 (1299.4 mg g(-1)) and P7 (1388.8 mg g(-1)) samples reveal that these two particular samples can absorb even more water than their own weights.

  16. GIS-NaP1 zeolite microspheres as potential water adsorption material: Influence of initial silica concentration on adsorptive and physical/topological properties

    Science.gov (United States)

    Sharma, Pankaj; Song, Ju-Sub; Han, Moon Hee; Cho, Churl-Hee

    2016-01-01

    GIS-NaP1 zeolite samples were synthesized using seven different Si/Al ratios (5–11) of the hydrothermal reaction mixtures having chemical composition Al2O3:xSiO2:14Na2O:840H2O to study the impact of Si/Al molar ratio on the water vapour adsorption potential, phase purity, morphology and crystal size of as-synthesized GIS-NaP1 zeolite crystals. The X-ray diffraction (XRD) observations reveal that Si/Al ratio does not affect the phase purity of GIS-NaP1 zeolite samples as high purity GIS-NaP1 zeolite crystals were obtained from all Si/Al ratios. Contrary, Si/Al ratios have remarkable effect on the morphology, crystal size and porosity of GIS-NaP1 zeolite microspheres. Transmission electron microscopy (TEM) evaluations of individual GIS-NaP1 zeolite microsphere demonstrate the characteristic changes in the packaging/arrangement, shape and size of primary nano crystallites. Textural characterisation using water vapour adsorption/desorption, and nitrogen adsorption/desorption data of as-synthesized GIS-NaP1 zeolite predicts the existence of mix-pores i.e., microporous as well as mesoporous character. High water storage capacity 1727.5 cm3 g−1 (138.9 wt.%) has been found for as-synthesized GIS-NaP1 zeolite microsphere samples during water vapour adsorption studies. Further, the total water adsorption capacity values for P6 (1299.4 mg g−1) and P7 (1388.8 mg g−1) samples reveal that these two particular samples can absorb even more water than their own weights. PMID:26964638

  17. Carbon and TiO_2 synergistic effect on methylene blue adsorption

    International Nuclear Information System (INIS)

    Simonetti, Evelyn Alves Nunes; Simone Cividanes, Luciana de; Campos, Tiago Moreira Bastos; Rossi Canuto de Menezes, Beatriz; Brito, Felipe Sales; Thim, Gilmar Patrocínio

    2016-01-01

    Due to its high efficiency, low cost and a simple operation, the adsorption process is an important and widely used technique for industrial wastewater treatment. Recent studies on the removal of artificial dyes by adsorption include a large number of adsorbents, such as: activated carbon, silicates, carbon nanotube, graphene, fibers, titanates and doped titanates. The carbon insertion in the TiO_2 structure promotes a synergistic effect on the adsorbent composite, improving the adsorption and the charge-transfer efficiency rates. However, there are few studies regarding the adsorption capacity of TiO_2/Carbon composites with the carbon concentration. This study evaluates the effect of carbon (resorcinol/formaldehyde) insertion on TiO_2 structure through the adsorption process. Adsorbents were prepared by varying the carbon weight percentages using the sol-gel method. The physicochemical properties of the catalysts prepared, such as crystallinity, particle size, surface morphology, specific surface area and pore volume were investigated. The kinetic study, adsorption isotherm, pH effect and thermodynamic study were examined in batch experiments using methylene blue as organic molecule. In addition, the effect of carbon phase on the adsorption capacity of TiO_2-carbon composite was deeply investigated. SEM micrographs showed that TiO_2 phase grows along the carbon phase and FT-IR results showed the presence of Ti−O−C chemical bonding. The experiments indicate that the carbon phase acted as a nucleation agent for the growth of TiO_2 during the sol-gel step, with a TiO_2 structure suitable for blue methylene adsorption, resulting in a material with large surface area and slit-like or wedge-shaped pores. Further experiments will show the best carbon concentration for methylene blue adsorption using a TiO_2 based material. - Highlights: • This article deals with the adsorption of methylene blue onto TiO_2-Carbon composite. • The sol-gel synthesis was efficient

  18. Arsenic adsorption of lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil

    Directory of Open Access Journals (Sweden)

    Wuthiphun, L.

    2007-05-01

    Full Text Available Arsenic adsorption efficiency of soil covering materials (lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil obtained from Ronpiboon District, Nakhon Sri Thammarat Province tosolve arsenic air pollution problem was investigated using batch experiments. The four types of the aforementioned soil covering materials were examined to determine their arsenic adsorption efficiency, equilibriumtime as well as adsorption isotherms.The results revealed that among soil covering materials mixed with arsenic-contaminated soil at 10% w/w, the efficiency of arsenic adsorption of fly ash, lateritic soil, lime and limestone powder were 84, 60,38 and 1% respectively. The equilibrium time for lateritic soil at pH 4 was achieved within 4 hrs, whereas pH 7 and 12, the equilibrium time was 6 hrs. For fly ash, 2 hrs were required to reach the equilibrium at pH 12, while the equilibrium time was attained within 6 hrs at pH 4 and 7. Furthermore, lateritic soil possessedhigh arsenic adsorption efficiency at pH 7 and 4 and best fit with the Langmuir isotherm. The fly ash showing high arsenic adsorption efficiency at pH 12 and 7 fit the Freundlich isotherm at pH 12 and Langmuirisotherm at pH 7.This indicated that lateritic soil was suitable for arsenic adsorption at low pH, whilst at high pH,arsenic was well adsorbed by fly ash. The Freundlich and Langmuir isotherm could be used to determine quantities of soil covering materials for arsenic adsorption to prevent arsenic air pollution from arseniccontaminated soils.

  19. Organically functionalized mesoporous SBA-15 as sorbents for removal of selected pharmaceuticals from water

    Energy Technology Data Exchange (ETDEWEB)

    Bui, Tung Xuan [School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Kang, Seo-Young [International Environmental Research Center (IERC), Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Lee, Sang-Hyup [Water Environment Center, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650 (Korea, Republic of); Choi, Heechul, E-mail: hcchoi@gist.ac.kr [School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2011-10-15

    Highlights: {yields} SBA-15 grafted with aminopropyl, hydroxymethyl, and trimethylsilyl groups as sorbents. {yields} Sorbents for removal of a mixture of 12 pharmaceuticals from water. {yields} Hydroxymethyl-SBA-15 shows similar adsorption efficiency like SBA-15. {yields} Aminopropyl-SBA-15 makes increase for clofibric acid, diclofenac, decrease for atenolol, estrone, trimethoprim. {yields} Trimethylsilyl-SBA-15 makes increase for 9 compounds; 7 compounds from 70.6% to 98.9%. - Abstract: Mesoporous silica SBA-15 and its postfunctionalized counterparts with hydroxymethyl (HM-SBA-15), aminopropyl (AP-SBA-15), and trimethylsilyl (TMS-SBA-15) were prepared and characterized by powder X-ray diffraction, N{sub 2} adsorption-desorption measurement, Fourier-transform infrared spectroscopy, and elemental analysis. The removal of a mixture of 12 selected pharmaceuticals was investigated by batch adsorption experiments onto SBA-15 and the grafted materials. SBA-15 showed to have moderate adsorption affinity with amino-containing (atenolol, trimethoprim) and hydrophobic pharmaceuticals, but it displayed minimal adsorption affinity toward hydrophilic compounds. HM-SBA-15 was analogous with SBA-15 in terms of the adsorption efficiency toward all pharmaceuticals. AP-SBA-15 exhibited an increase in the adsorption of two acidic compounds (clofibric acid, diclofenac) but a decrease in the adsorption of estrone and the two amino-containing compounds. Among the grafted materials, TMS-SBA-15 had the highest adsorption affinity toward most pharmaceuticals. Moreover, the adsorption of nine pharmaceuticals to TMS-SBA-15 was significantly higher than that to SBA-15; seven of which showed the removal percentages from 70.6% to 98.9% onto TMS-SBA-15. The number of pharmaceuticals showing high adsorption efficiency onto TMS-SBA-15 did not alter significantly as the pH changed in the range of 5.5-7.6. The results suggest that TMS-SBA-15 is a promising material for the removal of pharmaceuticals

  20. Organically functionalized mesoporous SBA-15 as sorbents for removal of selected pharmaceuticals from water

    International Nuclear Information System (INIS)

    Bui, Tung Xuan; Kang, Seo-Young; Lee, Sang-Hyup; Choi, Heechul

    2011-01-01

    Highlights: → SBA-15 grafted with aminopropyl, hydroxymethyl, and trimethylsilyl groups as sorbents. → Sorbents for removal of a mixture of 12 pharmaceuticals from water. → Hydroxymethyl-SBA-15 shows similar adsorption efficiency like SBA-15. → Aminopropyl-SBA-15 makes increase for clofibric acid, diclofenac, decrease for atenolol, estrone, trimethoprim. → Trimethylsilyl-SBA-15 makes increase for 9 compounds; 7 compounds from 70.6% to 98.9%. - Abstract: Mesoporous silica SBA-15 and its postfunctionalized counterparts with hydroxymethyl (HM-SBA-15), aminopropyl (AP-SBA-15), and trimethylsilyl (TMS-SBA-15) were prepared and characterized by powder X-ray diffraction, N 2 adsorption-desorption measurement, Fourier-transform infrared spectroscopy, and elemental analysis. The removal of a mixture of 12 selected pharmaceuticals was investigated by batch adsorption experiments onto SBA-15 and the grafted materials. SBA-15 showed to have moderate adsorption affinity with amino-containing (atenolol, trimethoprim) and hydrophobic pharmaceuticals, but it displayed minimal adsorption affinity toward hydrophilic compounds. HM-SBA-15 was analogous with SBA-15 in terms of the adsorption efficiency toward all pharmaceuticals. AP-SBA-15 exhibited an increase in the adsorption of two acidic compounds (clofibric acid, diclofenac) but a decrease in the adsorption of estrone and the two amino-containing compounds. Among the grafted materials, TMS-SBA-15 had the highest adsorption affinity toward most pharmaceuticals. Moreover, the adsorption of nine pharmaceuticals to TMS-SBA-15 was significantly higher than that to SBA-15; seven of which showed the removal percentages from 70.6% to 98.9% onto TMS-SBA-15. The number of pharmaceuticals showing high adsorption efficiency onto TMS-SBA-15 did not alter significantly as the pH changed in the range of 5.5-7.6. The results suggest that TMS-SBA-15 is a promising material for the removal of pharmaceuticals from aqueous phase