WorldWideScience

Sample records for selected thermodynamic database

  1. JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes. Selection of thermodynamic data of cobalt and nickel

    International Nuclear Information System (INIS)

    Kitamura, Akira; Yui, Mikazu; Kirishima, Akira; Saito, Takumi; Shibutani, Sanae; Tochiyama, Osamu

    2009-11-01

    Within the scope of the JAEA thermodynamic database project for performance assessment of geological disposal of high-level and TRU wastes, the selection of the thermodynamic data on the inorganic compounds and complexes of cobalt and nickel have been carried out. For cobalt, extensive literature survey has been performed and all the obtained literatures have been carefully reviewed to select the thermodynamic data. Selection of thermodynamic data of nickel has been based on a thermodynamic database published by the Nuclear Energy Agency in the Organisation for Economic Co-operation and Development (OECD/NEA), which has been carefully reviewed by the authors, and then thermodynamic data have been selected after surveying latest literatures. Based on the similarity of chemical properties between cobalt and nickel, complementary thermodynamic data of nickel and cobalt species expected under the geological disposal condition have been selected to complete the thermodynamic data set for the performance assessment of geological disposal of radioactive wastes. (author)

  2. A selected thermodynamic database for REE to be used in HLNW performance assessment exercises

    Energy Technology Data Exchange (ETDEWEB)

    Spahiu, K; Bruno, J [MBT Tecnologia Ambiental, Cerdanyola (Spain)

    1995-01-01

    A selected thermodynamic database for the Rare Earth Elements (REE) to be used in the safety assessment of high-level nuclear waste deposition has been compiled. Thermodynamic data for the aqueous species of the REE with the most important ligands relevant for granitic groundwater conditions have been selected and validated. The dominant soluble species under repository conditions are the carbonate complexes of REE. The solubilities of the oxides, hydroxides, carbonates, hydroxycarbonates, phosphates and other important solids have been selected and validated. Solubilities and solubility limiting solids in repository conditions have been estimated with the selected database. At the initial stages of fuel dissolution, the UO{sub 2} matrix dissolution will determine the concentrations of REE. Later on, solid phosphates, hydroxycarbonates and carbonates may limit their solubility. Recommendations for further studies on important systems in repository conditions have been presented. 136 refs, 13 figs, 16 tabs.

  3. A selected thermodynamic database for REE to be used in HLNW performance assessment exercises

    International Nuclear Information System (INIS)

    Spahiu, K.; Bruno, J.

    1995-01-01

    A selected thermodynamic database for the Rare Earth Elements (REE) to be used in the safety assessment of high-level nuclear waste deposition has been compiled. Thermodynamic data for the aqueous species of the REE with the most important ligands relevant for granitic groundwater conditions have been selected and validated. The dominant soluble species under repository conditions are the carbonate complexes of REE. The solubilities of the oxides, hydroxides, carbonates, hydroxycarbonates, phosphates and other important solids have been selected and validated. Solubilities and solubility limiting solids in repository conditions have been estimated with the selected database. At the initial stages of fuel dissolution, the UO 2 matrix dissolution will determine the concentrations of REE. Later on, solid phosphates, hydroxycarbonates and carbonates may limit their solubility. Recommendations for further studies on important systems in repository conditions have been presented. 136 refs, 13 figs, 16 tabs

  4. JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes. Selection of thermodynamic data of selenium

    International Nuclear Information System (INIS)

    Doi, Reisuke; Kitamura, Akira; Yui, Mikazu

    2010-02-01

    Within the scope of the JAEA thermodynamic database project for performance assessment of geological disposal of high-level and TRU radioactive wastes, the selection of the thermodynamic data on the inorganic compounds and complexes of selenium was carried out. Selection of thermodynamic data of selenium was based on a thermodynamic database of selenium published by the Nuclear Energy Agency in the Organisation for Economic Co-operation and Development (OECD/NEA). The remarks of a thermodynamic database by OECD/NEA found by the authors were noted in this report and then thermodynamic data was reviewed after surveying latest literatures. Some thermodynamic values of iron selenides were not selected by the OECD/NEA due to low reliability. But they were important for the performance assessment of geological disposal of radioactive wastes, so we selected them as a tentative value with specifying reliability and needs of the value to be determined. (author)

  5. JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes. Selection of thermodynamic data of molybdenum

    International Nuclear Information System (INIS)

    Kitamura, Akira; Kirishima, Akira; Saito, Takumi; Shibutani, Sanae; Tochiyama, Osamu

    2010-06-01

    Within the scope of the JAEA thermodynamic database project for performance assessment of geological disposal of high-level radioactive and TRU wastes, the selection of the thermodynamic data on the inorganic compounds and complexes of molybdenum were carried out. We focused to select thermodynamic data of aqueous species and compounds which could form under repository conditions for the disposal of radioactive wastes, i.e. relatively low concentration of molybdenum and from near neutral through alkaline conditions. Selection of thermodynamic data was based on the guidelines by the Nuclear Energy Agency in the Organisation for Economic Co-operation and Development (OECD/NEA). Extensive literature survey was performed and all the obtained articles were carefully reviewed to select the thermodynamic data for molybdenum. Thermodynamic data at 25degC and zero ionic strength were determined from accepted thermodynamic data which were considered to be reliable. We especially paid attention to select formation constant of molybdate ion (MoO 4 2- ) with hydrogen ion (H + ) in detail. This is the first report in showing selection of thermodynamic data for molybdenum with detailed reviewing process. (author)

  6. Thermodynamic Database for Zirconium Alloys

    International Nuclear Information System (INIS)

    Jerlerud Perez, Rosa

    2003-05-01

    For many decades zirconium alloys have been commonly used in the nuclear power industry as fuel cladding material. Besides their good corrosion resistance and acceptable mechanical properties the main reason of using these alloys is the low neutron absorption. Zirconium alloys are exposed to a very severe environment during the nuclear fission process and there is a demand for better design of this material. To meet this requirement a thermodynamic database is developed to support material designers. In this thesis some aspects about the development of a thermodynamic database for zirconium alloys are presented. A thermodynamic database represents an important facility in applying thermodynamic equilibrium calculations for a given material providing: 1) relevant information about the thermodynamic properties of the alloys e.g. enthalpies, activities, heat capacity, and 2) significant information for the manufacturing process e.g. heat treatment temperature. The basic information in the database is first the unary data, i.e. pure elements; those are taken from the compilation of the Scientific Group Thermodata Europe (SGTE) and then the binary and ternary systems. All phases present in those binary and ternary systems are described by means of the Gibbs energy dependence on composition and temperature. Many of those binary systems have been taken from published or unpublished works and others have been assessed in the present work. All the calculations have been made using Thermo C alc software and the representation of the Gibbs energy obtained by applying Calphad technique

  7. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  8. Thermodynamic data-base for metal fluorides

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Hyung; Lee, Byung Gik; Kang, Young Ho and others

    2001-05-01

    This study is aimed at collecting useful data of thermodynamic properties of various metal fluorides. Many thermodynamic data for metal fluorides are needed for the effective development, but no report of data-base was published. Accordingly, the objective of this report is to rearrange systematically the existing thermodynamic data based on metal fluorides and is to use it as basic data for the development of pyrochemical process. The physicochemical properties of various metal fluorides and metals were collected from literature and such existing data base as HSC code, TAPP code, FACT code, JANAF table, NEA data-base, CRC handbook. As major contents of the thermodynamic data-base, the physicochemical properties such as formation energy, viscosity, density, vapor pressure, etc. were collected. Especially, some phase diagrams of eutectic molten fluorides are plotted and thermodynamic data of liquid metals are also compiled. In the future, the technical report is to be used as basic data for the development of the pyrochemical process which is being carried out as a long-term nuclear R and D project.

  9. Thermodynamic data-base for metal fluorides

    International Nuclear Information System (INIS)

    Yoo, Jae Hyung; Lee, Byung Gik; Kang, Young Ho and others

    2001-05-01

    This study is aimed at collecting useful data of thermodynamic properties of various metal fluorides. Many thermodynamic data for metal fluorides are needed for the effective development, but no report of data-base was published. Accordingly, the objective of this report is to rearrange systematically the existing thermodynamic data based on metal fluorides and is to use it as basic data for the development of pyrochemical process. The physicochemical properties of various metal fluorides and metals were collected from literature and such existing data base as HSC code, TAPP code, FACT code, JANAF table, NEA data-base, CRC handbook. As major contents of the thermodynamic data-base, the physicochemical properties such as formation energy, viscosity, density, vapor pressure, etc. were collected. Especially, some phase diagrams of eutectic molten fluorides are plotted and thermodynamic data of liquid metals are also compiled. In the future, the technical report is to be used as basic data for the development of the pyrochemical process which is being carried out as a long-term nuclear R and D project

  10. A consistent thermodynamic database for cement minerals

    International Nuclear Information System (INIS)

    Blanc, P.; Claret, F.; Burnol, A.; Marty, N.; Gaboreau, S.; Tournassat, C.; Gaucher, E.C.; Giffault, E.; Bourbon, X.

    2010-01-01

    Document available in extended abstract form only. In the context of waste confinement and, more specifically, waste from the nuclear industry, concrete is used both as a confinement and as a building material. The exposure to high temperatures makes its geochemical behaviour difficult to predict over large periods of time. The present work aims to elucidate the temperature dependency of the thermodynamic functions related to minerals from the concrete or associated with some of its degradation products. To address precisely these functions is a key issue in order to investigate correctly the cement/clay interaction, from a geochemical point of view. A large set of experimental data has been collected, for the chemical systems CaO-SiO 2 -H 2 O, SO 3 -Al 2 O 3 - CaO-CO 2 -Cl-H 2 O and SiO 2 -Al 2 O 3 -CaO-H 2 O, including iron and magnesium bearing phases. Data include calorimetric measurements when available and results from equilibration experiments. The stability of C-S-H phases was considered as a specific issue, those phases may appear both as amorphous or crystalline minerals. In addition, the composition of amorphous minerals is still under debate. The phase diagram of crystalline phases was refined, providing the thermodynamic function of most of the main minerals. Then, we were able to build up a polyhedral model from the refined properties. The composition and the equilibrium constants of amorphous C-S-H, at room temperature, were derived from a large a set of equilibration data. Finally, the thermodynamic functions were completed by using the polyhedral model, both for amorphous and crystalline phases, in some cases. A verification test, based on reaction enthalpies derived from experimental data, indicates that predicted values for amorphous C-S-H are in close agreement with experimental data. For phases other than C-S-H, we have proceeded for each mineral the following way: - the equilibrium constant at 25 deg. C is selected from a single experimental

  11. Development of thermodynamic databases for geochemical calculations

    International Nuclear Information System (INIS)

    Arthur, R.C.; Sasamoto, Hiroshi; Shibata, Masahiro; Yui, Mikazu; Neyama, Atsushi

    1999-09-01

    Two thermodynamic databases for geochemical calculations supporting research and development on geological disposal concepts for high level radioactive waste are described in this report. One, SPRONS.JNC, is compatible with thermodynamic relations comprising the SUPCRT model and software, which permits calculation of the standard molal and partial molal thermodynamic properties of minerals, gases, aqueous species and reactions from 1 to 5000 bars and 0 to 1000degC. This database includes standard molal Gibbs free energies and enthalpies of formation, standard molal entropies and volumes, and Maier-Kelly heat capacity coefficients at the reference pressure (1 bar) and temperature (25degC) for 195 minerals and 16 gases. It also includes standard partial molal Gibbs free energies and enthalpies of formation, standard partial molal entropies, and Helgeson, Kirkham and Flowers (HKF) equation-of-state coefficients at the reference pressure and temperature for 1147 inorganic and organic aqueous ions and complexes. SPRONS.JNC extends similar databases described elsewhere by incorporating new and revised data published in the peer-reviewed literature since 1991. The other database, PHREEQE.JNC, is compatible with the PHREEQE series of geochemical modeling codes. It includes equilibrium constants at 25degC and l bar for mineral-dissolution, gas-solubility, aqueous-association and oxidation-reduction reactions. Reaction enthalpies, or coefficients in an empirical log K(T) function, are also included in this database, which permits calculation of equilibrium constants between 0 and 100degC at 1 bar. All equilibrium constants, reaction enthalpies, and log K(T) coefficients in PHREEQE.JNC are calculated using SUPCRT and SPRONS.JNC, which ensures that these two databases are mutually consistent. They are also internally consistent insofar as all the data are compatible with basic thermodynamic definitions and functional relations in the SUPCRT model, and because primary

  12. Development of thermodynamic databases for geochemical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, R.C. [Monitor Scientific, L.L.C., Denver, Colorado (United States); Sasamoto, Hiroshi; Shibata, Masahiro; Yui, Mikazu [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan); Neyama, Atsushi [Computer Software Development Corp., Tokyo (Japan)

    1999-09-01

    Two thermodynamic databases for geochemical calculations supporting research and development on geological disposal concepts for high level radioactive waste are described in this report. One, SPRONS.JNC, is compatible with thermodynamic relations comprising the SUPCRT model and software, which permits calculation of the standard molal and partial molal thermodynamic properties of minerals, gases, aqueous species and reactions from 1 to 5000 bars and 0 to 1000degC. This database includes standard molal Gibbs free energies and enthalpies of formation, standard molal entropies and volumes, and Maier-Kelly heat capacity coefficients at the reference pressure (1 bar) and temperature (25degC) for 195 minerals and 16 gases. It also includes standard partial molal Gibbs free energies and enthalpies of formation, standard partial molal entropies, and Helgeson, Kirkham and Flowers (HKF) equation-of-state coefficients at the reference pressure and temperature for 1147 inorganic and organic aqueous ions and complexes. SPRONS.JNC extends similar databases described elsewhere by incorporating new and revised data published in the peer-reviewed literature since 1991. The other database, PHREEQE.JNC, is compatible with the PHREEQE series of geochemical modeling codes. It includes equilibrium constants at 25degC and l bar for mineral-dissolution, gas-solubility, aqueous-association and oxidation-reduction reactions. Reaction enthalpies, or coefficients in an empirical log K(T) function, are also included in this database, which permits calculation of equilibrium constants between 0 and 100degC at 1 bar. All equilibrium constants, reaction enthalpies, and log K(T) coefficients in PHREEQE.JNC are calculated using SUPCRT and SPRONS.JNC, which ensures that these two databases are mutually consistent. They are also internally consistent insofar as all the data are compatible with basic thermodynamic definitions and functional relations in the SUPCRT model, and because primary

  13. Thermodynamic database for proteins: features and applications.

    Science.gov (United States)

    Gromiha, M Michael; Sarai, Akinori

    2010-01-01

    We have developed a thermodynamic database for proteins and mutants, ProTherm, which is a collection of a large number of thermodynamic data on protein stability along with the sequence and structure information, experimental methods and conditions, and literature information. This is a valuable resource for understanding/predicting the stability of proteins, and it can be accessible at http://www.gibk26.bse.kyutech.ac.jp/jouhou/Protherm/protherm.html . ProTherm has several features including various search, display, and sorting options and visualization tools. We have analyzed the data in ProTherm to examine the relationship among thermodynamics, structure, and function of proteins. We describe the progress on the development of methods for understanding/predicting protein stability, such as (i) relationship between the stability of protein mutants and amino acid properties, (ii) average assignment method, (iii) empirical energy functions, (iv) torsion, distance, and contact potentials, and (v) machine learning techniques. The list of online resources for predicting protein stability has also been provided.

  14. Improvement of the European thermodynamic database NUCLEA

    Energy Technology Data Exchange (ETDEWEB)

    Brissoneau, L.; Journeau, C.; Piluso, P. [CEA Cadarache, DEN, F-13108 St Paul Les Durance (France); Bakardjieva, S. [Acad Sci Czech Republic, Inst Inorgan Chem, CZ-25068 Rez (Czech Republic); Barrachin, M. [Inst Radioprotect and Surete Nucl, St Paul Les Durance (France); Bechta, S. [NITI, Aleksandrov Res Inst Technol, Sosnovyi Bor (Russian Federation); Bottomley, D. [Commiss European Communities, Joint Res Ctr, Inst Transuranium Elements, D-76125 Karlsruhe (Germany); Cheynet, B.; Fischer, E. [Thermodata, F-38400 St Martin Dheres (France); Kiselova, M. [Nucl Res Inst UJV, Rez 25068 (Czech Republic); Mezentseva, L. [Russian Acad Sci, Inst Silicate Chem, St Petersburg (Russian Federation)

    2010-07-01

    Modelling of corium behaviour during a severe accident requires knowledge of the phases present at equilibrium for a given corium composition, temperature and pressure. The thermodynamic database NUCLEA in combination with a Gibbs Energy minimizer is the European reference tool to achieve this goal. This database has been improved thanks to the analysis of bibliographical data and to EU-funded experiments performed within the SARNET network, PLINIUS as well as the ISTC CORPHAD and EVAN projects. To assess the uncertainty range associated with Energy Dispersive X-ray analyses, a round-robin exercise has been launched in which a UO{sub 2}-containing corium-concrete interaction sample from VULCANO has been analyzed by three European laboratories with satisfactorily small differences. (authors)

  15. Thermodynamics of Advanced Fuels - International Database Project

    International Nuclear Information System (INIS)

    Massara, Simone; Gueneau, Christine

    2014-01-01

    The Thermodynamics of Advanced Fuels - International Database (TAF-ID) Project was established in 2013 under the auspices of the NEA Nuclear Science Committee. The project was designed to make available a comprehensive, internationally recognised and quality-assured database of phase diagrams and thermodynamic properties of advanced nuclear fuels with a view to meeting specialised requirements for the development of advanced fuels for a future generation of nuclear reactors. Some of the specific technical objectives that this programme intends to achieve are to predict the solid, liquid and/or gas phases formed during fuel cladding chemical interactions under normal and accident conditions, to improve the control of the experimental conditions during the fabrication of fuel materials at high temperature, for example by predicting the vapour pressures of the elements (particularly of plutonium and the minor actinides) and to predict the evolution of the chemical composition of fuel under irradiation versus temperature and burn-up. This joint project, co-ordinated by the NEA, was established for an initial three-year period among nine organisations from six NEA member countries: Canada (AECL, RMCC, UOIT), France (CEA), Japan (JAEA, CRIEPI), the Netherlands (NRG), the Republic of Korea (KAERI) and the United States (US DOE). It is entirely funded by the nine signatories of the project. (authors)

  16. HATCHES - a thermodynamic database and management system

    International Nuclear Information System (INIS)

    Cross, J.E.; Ewart, F.T.

    1990-03-01

    The Nirex Safety Assessment Research Programme has been compiling the thermodynamic data necessary to allow simulations of the aqueous behaviour of the elements important to radioactive waste disposal to be made. These data have been obtained from the literature, when available, and validated for the conditions of interest by experiment. In order to maintain these data in an accessible form and to satisfy quality assurance on all data used for assessments, a database has been constructed which resides on a personal computer operating under MS-DOS using the Ashton-Tate dBase III program. This database contains all the input data fields required by the PHREEQE program and, in addition, a body of text which describes the source of the data and the derivation of the PHREEQE input parameters from the source data. The HATCHES system consists of this database, a suite of programs to facilitate the searching and listing of data and a further suite of programs to convert the dBase III files to PHREEQE database format. (Author)

  17. On the modelling of microsegregation in steels involving thermodynamic databases

    International Nuclear Information System (INIS)

    You, D; Bernhard, C; Michelic, S; Wieser, G; Presoly, P

    2016-01-01

    A microsegregation model involving thermodynamic database based on Ohnaka's model is proposed. In the model, the thermodynamic database is applied for equilibrium calculation. Multicomponent alloy effects on partition coefficients and equilibrium temperatures are accounted for. Microsegregation and partition coefficients calculated using different databases exhibit significant differences. The segregated concentrations predicted using the optimized database are in good agreement with the measured inter-dendritic concentrations. (paper)

  18. Thermodynamic database of multi-component Mg alloys and its application to solidification and heat treatment

    Directory of Open Access Journals (Sweden)

    Guanglong Xu

    2016-12-01

    Full Text Available An overview about one thermodynamic database of multi-component Mg alloys is given in this work. This thermodynamic database includes thermodynamic descriptions for 145 binary systems and 48 ternary systems in 23-component (Mg–Ag–Al–Ca–Ce–Cu–Fe–Gd–K–La–Li–Mn–Na–Nd–Ni–Pr–Si–Sn–Sr–Th–Y–Zn–Zr system. First, the major computational and experimental tools to establish the thermodynamic database of Mg alloys are briefly described. Subsequently, among the investigated binary and ternary systems, representative binary and ternary systems are shown to demonstrate the major feature of the database. Finally, application of the thermodynamic database to solidification simulation and selection of heat treatment schedule is described.

  19. Development of a thermodynamic data base for selected heavy metals

    International Nuclear Information System (INIS)

    Hageman, Sven; Scharge, Tina; Willms, Thomas

    2015-07-01

    The report on the development of a thermodynamic data base for selected heavy metals covers the description of experimental methods, the thermodynamic model for chromate, the thermodynamic model for dichromate, the thermodynamic model for manganese (II), the thermodynamic model for cobalt, the thermodynamic model for nickel, the thermodynamic model for copper (I), the thermodynamic model for copper(II), the thermodynamic model for mercury (0) and mercury (I), the thermodynamic model for mercury (III), the thermodynamic model for arsenate.

  20. THEREDA. Thermodynamic reference database. Summary of final report

    Energy Technology Data Exchange (ETDEWEB)

    Altmaier, Marcus; Bube, Christiane; Marquardt, Christian [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Institut fuer Nukleare Entsorgung; Brendler, Vinzenz; Richter, Anke [Helmholtz-Zentrum Dresden-Rossendorf (Germany). Inst. fuer Radiochemie; Moog, Helge C.; Scharge, Tina [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany); Voigt, Wolfgang [TU Bergakademie Freiburg (Germany). Inst. fuer Anorganische Chemie; Wilhelm, Stefan [AF-Colenco AG, Baden (Switzerland)

    2011-03-15

    A long term safety assessment of a repository for radioactive waste requires evidence, that all relevant processes are known and understood, which might have a significant positive or negative impact on its safety. In 2002, a working group of five institutions was established to create a common thermodynamic database for nuclear waste disposal in deep geological formations. The common database was named THEREDA: Thermodynamic Reference Database. The following institutions are members of the working group: Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiochemistry - Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal - Technische Universitaet Bergakademie Freiberg, Institute of Inorganic Chemistry - AF-Colenco AG, Baden, Switzerland, Department of Groundwater Protection and Waste Disposal - Gesellschaft fur Anlagen- und Reaktorsicherheit, Braunschweig. For the future it is intended that its usage becomes mandatory for geochemical model calculations for nuclear waste disposal in Germany. Furthermore, it was agreed that the new database should be established in accordance with the following guidelines: Long-term usability: The disposal of radioactive waste is a task encompassing decades. The database is projected to operate on a long-term basis. This has influenced the choice of software (which is open source), the documentation and the data structure. THEREDA is adapted to the present-day necessities and computational codes but also leaves many degrees of freedom for varying demands in the future. Easy access: The database is accessible via the World Wide Web for free. Applicability: To promote the usage of the database in a wide community, THEREDA is providing ready-to-use parameter files for the most common codes. These are at present: PHREEQC, EQ3/6, Geochemist's Workbench, and CHEMAPP. Internal consistency: It is distinguished between dependent and independent data. To ensure the required internal consistency of THEREDA, the

  1. THEREDA. Thermodynamic reference database. Summary of final report

    International Nuclear Information System (INIS)

    Altmaier, Marcus; Bube, Christiane; Marquardt, Christian; Voigt, Wolfgang

    2011-03-01

    A long term safety assessment of a repository for radioactive waste requires evidence, that all relevant processes are known and understood, which might have a significant positive or negative impact on its safety. In 2002, a working group of five institutions was established to create a common thermodynamic database for nuclear waste disposal in deep geological formations. The common database was named THEREDA: Thermodynamic Reference Database. The following institutions are members of the working group: Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiochemistry - Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal - Technische Universitaet Bergakademie Freiberg, Institute of Inorganic Chemistry - AF-Colenco AG, Baden, Switzerland, Department of Groundwater Protection and Waste Disposal - Gesellschaft fur Anlagen- und Reaktorsicherheit, Braunschweig. For the future it is intended that its usage becomes mandatory for geochemical model calculations for nuclear waste disposal in Germany. Furthermore, it was agreed that the new database should be established in accordance with the following guidelines: Long-term usability: The disposal of radioactive waste is a task encompassing decades. The database is projected to operate on a long-term basis. This has influenced the choice of software (which is open source), the documentation and the data structure. THEREDA is adapted to the present-day necessities and computational codes but also leaves many degrees of freedom for varying demands in the future. Easy access: The database is accessible via the World Wide Web for free. Applicability: To promote the usage of the database in a wide community, THEREDA is providing ready-to-use parameter files for the most common codes. These are at present: PHREEQC, EQ3/6, Geochemist's Workbench, and CHEMAPP. Internal consistency: It is distinguished between dependent and independent data. To ensure the required internal consistency of THEREDA, the

  2. Comparison of thermodynamic databases used in geochemical modelling

    International Nuclear Information System (INIS)

    Chandratillake, M.R.; Newton, G.W.A.; Robinson, V.J.

    1988-05-01

    Four thermodynamic databases used by European groups for geochemical modelling have been compared. Thermodynamic data for both aqueous species and solid species have been listed. When the values are directly comparable any differences between them have been highlighted at two levels of significance. (author)

  3. Aspects of quality assurance in a thermodynamic Mg alloy database

    Energy Technology Data Exchange (ETDEWEB)

    Schmid-Fetzer, R.; Janz, A.; Groebner, J.; Ohno, M. [Clausthal University of Technology, Institute of Metallurgy, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld (Germany)

    2005-12-01

    Quality assurance is a major concern for large thermodynamic databases. Examples for standard tests on phase diagrams, thermodynamic functions or parameters will be shown that are of practical use in checking consistency and plausibility. The typical end user, applying the database to a real multicomponent material or process, will generally not have sufficient time, resources, and experience to perform the quality check himself. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  4. Thermodynamic study of selected monoterpenes

    Czech Academy of Sciences Publication Activity Database

    Štejfa, V.; Fulem, Michal; Růžička, K.; Červinka, C.; Rocha, M.A.A.; Santos, L.M.N.B.F.; Schröder, B.

    2013-01-01

    Roč. 60, MAY (2013), 117-125 ISSN 0021-9614 Institutional support: RVO:68378271 Keywords : monoterpenes * pinene * vapor pressure * heat capacity * vaporization and sublimation enthalpy * ideal - gas thermodynamic Subject RIV: BJ - Thermodynamics Impact factor: 2.423, year: 2013

  5. Improvement of the European thermodynamic database NUCLEA

    Czech Academy of Sciences Publication Activity Database

    Bakardjieva, Snejana; Barrachin, M.; Bechta, S.; Bottomley, D.; Brissoneau, L.; Cheynet, B.; Fischer, E.; Journeau, C.; Kiselová, M.; Mezentseva, L.; Piluso, P.; Wiss, T.

    2010-01-01

    Roč. 52, č. 1 (2010), s. 84-96 ISSN 0149-1970 Institutional research plan: CEZ:AV0Z40320502 Keywords : corium * Severe Accidents * thermodynamic databese Subject RIV: CA - Inorganic Chemistry Impact factor: 1.085, year: 2010

  6. Modelling of phase diagrams and thermodynamic properties using Calphad method – Development of thermodynamic databases

    Czech Academy of Sciences Publication Activity Database

    Kroupa, Aleš

    2013-01-01

    Roč. 66, JAN (2013), s. 3-13 ISSN 0927-0256 R&D Projects: GA MŠk(CZ) OC08053 Institutional support: RVO:68081723 Keywords : Calphad method * phase diagram modelling * thermodynamic database development Subject RIV: BJ - Thermodynamics Impact factor: 1.879, year: 2013

  7. Thermodynamic study of selected monoterpenes III

    International Nuclear Information System (INIS)

    Štejfa, Vojtěch; Fulem, Michal; Růžička, Květoslav; Červinka, Ctirad

    2014-01-01

    Highlights: • (−)-trans-Pinane, (+)-Δ-carene, eucalyptol, and limonene were studied. • New thermodynamic data were measured and calculated. • Many of thermodynamic data are reported for the first time. - Abstract: A thermodynamic study of selected monoterpenes, (−)-trans-pinane, (+)-Δ-carene, eucalyptol, (+)-limonene, and (−)-limonene, is presented in this work. The vapor pressure measurements were performed using the static method over the environmentally important temperature range (238 to 308) K. Liquid heat capacities were measured by Tian–Calvet calorimetry in the temperature interval (258 to 355) K. The phase behavior was investigated by differential scanning calorimetry (DSC) from T = 183 K. The thermodynamic properties in the ideal-gas state were calculated by combining statistical thermodynamic and density functional theory (DFT) calculations. Calculated ideal-gas heat capacities and experimental data for vapor pressures and condensed phase heat capacities were treated simultaneously to obtain a consistent thermodynamic description

  8. Towards a common thermodynamic database for speciation models

    International Nuclear Information System (INIS)

    Lee, J. van der; Lomenech, C.

    2004-01-01

    Bio-geochemical speciation models and reactive transport models are reaching an operational stage, allowing simulation of complex dynamic experiments and description of field observations. For decades, the main focus has been on model performance but at present, the availability and reliability of thermodynamic data is the limiting factor of the models. Thermodynamic models applied to real and complex geochemical systems require much more extended thermodynamic databases with many minerals, colloidal phases, humic and fulvic acids, cementitious phases and (dissolved) organic complexing agents. Here we propose a methodological approach to achieve, ultimately, a common, operational database including the reactions and constants of these phases. Provided they are coherent with the general thermodynamic laws, sorption reactions are included as well. We therefore focus on sorption reactions and parameter values associated with specific sorption models. The case of sorption on goethite has been used to illustrate the way the methodology handles the problem of inconsistency and data quality. (orig.)

  9. Index Selection in Relational Databases

    NARCIS (Netherlands)

    Choenni, R.S.; Blanken, Henk; Chang, S.C.

    Intending to develop a tool which aims to support the physical design of relational databases can not be done without considering the problem of index selection. Generally the problem is split into a primary and secondary index selection problem and the selection is done per table. Whereas much

  10. Thermodynamic database for the Co-Pr system

    Directory of Open Access Journals (Sweden)

    S.H. Zhou

    2016-03-01

    Full Text Available In this article, we describe data on (1 compositions for both as-cast and heat treated specimens were summarized in Table 1; (2 the determined enthalpy of mixing of liquid phase is listed in Table 2; (3 thermodynamic database of the Co-Pr system in TDB format for the research articled entitle Chemical partitioning for the Co-Pr system: First-principles, experiments and energetic calculations to investigate the hard magnetic phase W. Keywords: Thermodynamic database of Co-Pr, Solution calorimeter measurement, Phase diagram Co-Pr

  11. Criteria for compilation of a site-specific thermodynamic database for geochemical speciation calculations

    International Nuclear Information System (INIS)

    Chandratillake, M.; Trivedi, D.P.; Randall, M.G.; Humphreys, P.N.

    1998-01-01

    A methodology has been developed to establish a site-specific database appropriate to geochemical modelling the critical components and the wide range of near field conditions expected in the low level radioactive waste disposal site at Drigg in the UK. Several databases available in the public domain have been compared to select a foundation database. The foundation database was 'trimmed-down' and then customised to suit Drigg applications. The species dominant at Drigg have been identified and the thermodynamic constants of these species have been critically evaluated. The evaluated database has been validated for quality by comparing speciation calculations with plutonium and uranium experimental solubility results. (orig.)

  12. Thermodynamic and volumetric databases and software for magnesium alloys

    Science.gov (United States)

    Kang, Youn-Bae; Aliravci, Celil; Spencer, Philip J.; Eriksson, Gunnar; Fuerst, Carlton D.; Chartrand, Patrice; Pelton, Arthur D.

    2009-05-01

    Extensive databases for the thermodynamic and volumetric properties of magnesium alloys have been prepared by critical evaluation, modeling, and optimization of available data. Software has been developed to access the databases to calculate equilibrium phase diagrams, heat effects, etc., and to follow the course of equilibrium or Scheil-Gulliver cooling, calculating not only the amounts of the individual phases, but also of the microstructural constituents.

  13. Thermodynamic database development: Al-Am-Ga-Pu-U

    Energy Technology Data Exchange (ETDEWEB)

    Perron, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Physical and Life Sciences; Turchi, P. E. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Physical and Life Sciences; Landa, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Physical and Life Sciences; Soderlind, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Physical and Life Sciences

    2014-03-17

    The goal of this study is about the thermodynamic re-assessment of the Plutonium- Uranium (Pu-U) system as a first step leading to the development of a plutonium-based thermodynamic database (i.e., Pu with Al, Am, Ga, Mo, U…) with resulting phase diagrams and associated thermodynamic data. Indeed, phase stability trends and phase diagrams of multi-component nuclear materials are crucial for predicting properties and performance under normal, hypothetical or even accidental conditions. This work is based on a coupling between ab initio energetics, phenomenological thermodynamics models - based on the CALPHAD (CALculation of PHAse Diagrams) approach - and the use of the Thermo-Calc software, together with experimental data (whenever available). The present report summarizes results obtained (quarter period: 10/07/2013-01/07/2014) under the auspices of an agreement between CEA/DAM and NNSA/DP on cooperation in fundamental science supporting stockpile stewardship (P182).

  14. JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes. Refinement of thermodynamic data for trivalent actinoids and samarium

    International Nuclear Information System (INIS)

    Kitamura, Akira; Fujiwara, Kenso; Yui, Mikazu

    2010-01-01

    Within the scope of the JAEA thermodynamic database project for performance assessment of geological disposal of high-level radioactive and TRU wastes, the refinement of the thermodynamic data for the inorganic compounds and complexes of trivalent actinoids (actinium(III), plutonium(III), americium(III) and curium(III)) and samarium(III) was carried out. Refinement of thermodynamic data for these elements was based on the thermodynamic database for americium published by the Nuclear Energy Agency in the Organisation for Economic Co-operation and Development (OECD/NEA). Based on the similarity of chemical properties among trivalent actinoids and samarium, complementary thermodynamic data for their species expected under the geological disposal conditions were selected to complete the thermodynamic data set for the performance assessment of geological disposal of radioactive wastes. (author)

  15. Thermodynamic study of selected monoterpenes II

    International Nuclear Information System (INIS)

    Štejfa, Vojtěch; Fulem, Michal; Růžička, Květoslav; Červinka, Ctirad

    2014-01-01

    Highlights: • (−)-Borneol, (−)-camphor, (±)-camphene, and (+)-fenchone were studied. • New thermodynamic data were measured and calculated. • Most of thermodynamic data are reported for the first time. - Abstract: A thermodynamic study of selected monoterpenes, (−)-borneol, (−)-camphor, (±)-camphene, and (+)-fenchone is presented in this work. The vapor pressure measurements were performed using the static method over the environmentally important temperature range from (238 to 308) K. Heat capacities of condensed phases were measured by Tian–Calvet calorimetry in the temperature interval from (258 to 355) K. The phase behavior was investigated by differential scanning calorimetry (DSC) from subambient temperatures up to the fusion temperatures. The thermodynamic properties in the ideal-gas state were calculated by combining statistical thermodynamic and density functional theory (DFT) calculations. Calculated ideal-gas heat capacities and experimental data for vapor pressures and condensed phase heat capacities were treated simultaneously to obtain a consistent thermodynamic description

  16. M4FT-16LL080302052-Update to Thermodynamic Database Development and Sorption Database Integration

    Energy Technology Data Exchange (ETDEWEB)

    Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Glenn T. Seaborg Inst.. Physical and Life Sciences; Wolery, T. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Akima Infrastructure Services, LLC; Atkins-Duffin, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Global Security

    2016-08-16

    This progress report (Level 4 Milestone Number M4FT-16LL080302052) summarizes research conducted at Lawrence Livermore National Laboratory (LLNL) within the Argillite Disposal R&D Work Package Number FT-16LL08030205. The focus of this research is the thermodynamic modeling of Engineered Barrier System (EBS) materials and properties and development of thermodynamic databases and models to evaluate the stability of EBS materials and their interactions with fluids at various physico-chemical conditions relevant to subsurface repository environments. The development and implementation of equilibrium thermodynamic models are intended to describe chemical and physical processes such as solubility, sorption, and diffusion.

  17. Americium thermodynamic data for the EQ3/6 database

    International Nuclear Information System (INIS)

    Kerrisk, J.F.

    1984-07-01

    Existing thermodynamic data for aqueous and solid species of americium have been reviewed and collected in a form that can be used with the EQ3/6 database. Data that are important in solubility calculations for americium at a proposed Yucca Mountain nuclear waste repository were emphasized. Conflicting data exist for americium complexes with carbonates. Essentially no data are available for americium solids or complexes at temperatures greater than 25 0 C. 17 references, 4 figures

  18. Thermodynamic database for the Co-Pr system.

    Science.gov (United States)

    Zhou, S H; Kramer, M J; Meng, F Q; McCallum, R W; Ott, R T

    2016-03-01

    In this article, we describe data on (1) compositions for both as-cast and heat treated specimens were summarized in Table 1; (2) the determined enthalpy of mixing of liquid phase is listed in Table 2; (3) thermodynamic database of the Co-Pr system in TDB format for the research articled entitle Chemical partitioning for the Co-Pr system: First-principles, experiments and energetic calculations to investigate the hard magnetic phase W.

  19. Update of a thermodynamic database for radionuclides to assist solubility limits calculation for performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Duro, L.; Grive, M.; Cera, E.; Domenech, C.; Bruno, J. (Enviros Spain S.L., Barcelona (ES))

    2006-12-15

    This report presents and documents the thermodynamic database used in the assessment of the radionuclide solubility limits within the SR-Can Exercise. It is a supporting report to the solubility assessment. Thermodynamic data are reviewed for 20 radioelements from Groups A and B, lanthanides and actinides. The development of this database is partially based on the one prepared by PSI and NAGRA. Several changes, updates and checks for internal consistency and completeness to the reference NAGRA-PSI 01/01 database have been conducted when needed. These modifications are mainly related to the information from the various experimental programmes and scientific literature available until the end of 2003. Some of the discussions also refer to a previous database selection conducted by Enviros Spain on behalf of ANDRA, where the reader can find additional information. When possible, in order to optimize the robustness of the database, the description of the solubility of the different radionuclides calculated by using the reported thermodynamic database is tested in front of experimental data available in the open scientific literature. When necessary, different procedures to estimate gaps in the database have been followed, especially accounting for temperature corrections. All the methodologies followed are discussed in the main text

  20. Update of a thermodynamic database for radionuclides to assist solubility limits calculation for performance assessment

    International Nuclear Information System (INIS)

    Duro, L.; Grive, M.; Cera, E.; Domenech, C.; Bruno, J.

    2006-12-01

    This report presents and documents the thermodynamic database used in the assessment of the radionuclide solubility limits within the SR-Can Exercise. It is a supporting report to the solubility assessment. Thermodynamic data are reviewed for 20 radioelements from Groups A and B, lanthanides and actinides. The development of this database is partially based on the one prepared by PSI and NAGRA. Several changes, updates and checks for internal consistency and completeness to the reference NAGRA-PSI 01/01 database have been conducted when needed. These modifications are mainly related to the information from the various experimental programmes and scientific literature available until the end of 2003. Some of the discussions also refer to a previous database selection conducted by Enviros Spain on behalf of ANDRA, where the reader can find additional information. When possible, in order to optimize the robustness of the database, the description of the solubility of the different radionuclides calculated by using the reported thermodynamic database is tested in front of experimental data available in the open scientific literature. When necessary, different procedures to estimate gaps in the database have been followed, especially accounting for temperature corrections. All the methodologies followed are discussed in the main text

  1. Technical Work Plan for: Thermodynamic Databases for Chemical Modeling

    International Nuclear Information System (INIS)

    C.F. Jovecolon

    2006-01-01

    The objective of the work scope covered by this Technical Work Plan (TWP) is to correct and improve the Yucca Mountain Project (YMP) thermodynamic databases, to update their documentation, and to ensure reasonable consistency among them. In addition, the work scope will continue to generate database revisions, which are organized and named so as to be transparent to internal and external users and reviewers. Regarding consistency among databases, it is noted that aqueous speciation and mineral solubility data for a given system may differ according to how solubility was determined, and the method used for subsequent retrieval of thermodynamic parameter values from measured data. Of particular concern are the details of the determination of ''infinite dilution'' constants, which involve the use of specific methods for activity coefficient corrections. That is, equilibrium constants developed for a given system for one set of conditions may not be consistent with constants developed for other conditions, depending on the species considered in the chemical reactions and the methods used in the reported studies. Hence, there will be some differences (for example in log K values) between the Pitzer and ''B-dot'' database parameters for the same reactions or species

  2. Generic Natural Systems Evaluation - Thermodynamic Database Development and Data Management

    Energy Technology Data Exchange (ETDEWEB)

    Wolery, T W; Sutton, M

    2011-09-19

    , meaning that they use a large body of thermodynamic data, generally from a supporting database file, to sort out the various important reactions from a wide spectrum of possibilities, given specified inputs. Usually codes of this kind are used to construct models of initial aqueous solutions that represent initial conditions for some process, although sometimes these calculations also represent a desired end point. Such a calculation might be used to determine the major chemical species of a dissolved component, the solubility of a mineral or mineral-like solid, or to quantify deviation from equilibrium in the form of saturation indices. Reactive transport codes such as TOUGHREACT and NUFT generally require the user to determine which chemical species and reactions are important, and to provide the requisite set of information including thermodynamic data in an input file. Usually this information is abstracted from the output of a geochemical modeling code and its supporting thermodynamic data file. The Yucca Mountain Project (YMP) developed two qualified thermodynamic databases to model geochemical processes, including ones involving repository components such as spent fuel. The first of the two (BSC, 2007a) was for systems containing dilute aqueous solutions only, the other (BSC, 2007b) for systems involving concentrated aqueous solutions and incorporating a model for such based on Pitzer's (1991) equations. A 25 C-only database with similarities to the latter was also developed for the Waste Isolation Pilot Plant (WIPP, cf. Xiong, 2005). The NAGRA/PSI database (Hummel et al., 2002) was developed to support repository studies in Europe. The YMP databases are often used in non-repository studies, including studies of geothermal systems (e.g., Wolery and Carroll, 2010) and CO2 sequestration (e.g., Aines et al., 2011).

  3. Generic Natural Systems Evaluation - Thermodynamic Database Development and Data Management

    International Nuclear Information System (INIS)

    Wolery, T.W.; Sutton, M.

    2011-01-01

    they use a large body of thermodynamic data, generally from a supporting database file, to sort out the various important reactions from a wide spectrum of possibilities, given specified inputs. Usually codes of this kind are used to construct models of initial aqueous solutions that represent initial conditions for some process, although sometimes these calculations also represent a desired end point. Such a calculation might be used to determine the major chemical species of a dissolved component, the solubility of a mineral or mineral-like solid, or to quantify deviation from equilibrium in the form of saturation indices. Reactive transport codes such as TOUGHREACT and NUFT generally require the user to determine which chemical species and reactions are important, and to provide the requisite set of information including thermodynamic data in an input file. Usually this information is abstracted from the output of a geochemical modeling code and its supporting thermodynamic data file. The Yucca Mountain Project (YMP) developed two qualified thermodynamic databases to model geochemical processes, including ones involving repository components such as spent fuel. The first of the two (BSC, 2007a) was for systems containing dilute aqueous solutions only, the other (BSC, 2007b) for systems involving concentrated aqueous solutions and incorporating a model for such based on Pitzer's (1991) equations. A 25 C-only database with similarities to the latter was also developed for the Waste Isolation Pilot Plant (WIPP, cf. Xiong, 2005). The NAGRA/PSI database (Hummel et al., 2002) was developed to support repository studies in Europe. The YMP databases are often used in non-repository studies, including studies of geothermal systems (e.g., Wolery and Carroll, 2010) and CO2 sequestration (e.g., Aines et al., 2011).

  4. Bayesian Calibration of Thermodynamic Databases and the Role of Kinetics

    Science.gov (United States)

    Wolf, A. S.; Ghiorso, M. S.

    2017-12-01

    Self-consistent thermodynamic databases of geologically relevant materials (like Berman, 1988; Holland and Powell, 1998, Stixrude & Lithgow-Bertelloni 2011) are crucial for simulating geological processes as well as interpreting rock samples from the field. These databases form the backbone of our understanding of how fluids and rocks interact at extreme planetary conditions. Considerable work is involved in their construction from experimental phase reaction data, as they must self-consistently describe the free energy surfaces (including relative offsets) of potentially hundreds of interacting phases. Standard database calibration methods typically utilize either linear programming or least squares regression. While both produce a viable model, they suffer from strong limitations on the training data (which must be filtered by hand), along with general ignorance of many of the sources of experimental uncertainty. We develop a new method for calibrating high P-T thermodynamic databases for use in geologic applications. The model is designed to handle pure solid endmember and free fluid phases and can be extended to include mixed solid solutions and melt phases. This new calibration effort utilizes Bayesian techniques to obtain optimal parameter values together with a full family of statistically acceptable models, summarized by the posterior. Unlike previous efforts, the Bayesian Logistic Uncertain Reaction (BLUR) model directly accounts for both measurement uncertainties and disequilibrium effects, by employing a kinetic reaction model whose parameters are empirically determined from the experiments themselves. Thus, along with the equilibrium free energy surfaces, we also provide rough estimates of the activation energies, entropies, and volumes for each reaction. As a first application, we demonstrate this new method on the three-phase aluminosilicate system, illustrating how it can produce superior estimates of the phase boundaries by incorporating constraints

  5. Applicability of thermodynamic database of radioactive elements developed for the Japanese performance assessment of HLW repository

    International Nuclear Information System (INIS)

    Yui, Mikazu; Shibata, Masahiro; Rai, Dhanpat; Ochs, Michael

    2003-01-01

    In 1999 Japan Nuclear Cycle Development Institute (JNC) published a second progress report (also known as H12 report) on high-level radioactive waste (HLW) disposal in Japan (JNC 1999). This report helped to develop confidence in the selected HLW disposal system and to establish the implementation body in 2000 for the disposal of HLW. JNC developed an in-house thermodynamic database for radioactive elements for performance analysis of the engineered barrier system (EBS) and the geosphere for H12 report. This paper briefly presents the status of the JNC's thermodynamic database and its applicability to perform realistic analyses of the solubilities of radioactive elements, evolution of solubility-limiting solid phases, predictions of the redox state of Pu in the neutral pH range under reducing conditions, and to estimate solubilities of radioactive elements in cementitious conditions. (author)

  6. A thermodynamic reference database for nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Brendler, V. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Altmaier, M. [Karlsruhe Institute of Technology, Karlsruhe (Germany); Moog, H. [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH, Braunschweig (Germany); Voigt, W. [TU Bergakademie Freiberg (Germany); Wilhelm, S. [AF Consult Switzerland AG, Baden (Switzerland)

    2015-07-01

    Safety analysis for a geological repository for radioactive waste as well as remediation measures for uranium mining and processing legacies share an essential: the need for a reliable, traceable and accurate assessment of potential migration of toxic constituents into the biosphere. The respective computational codes require site-independent thermodynamic data concerning aqueous speciation, solubility limiting solid phases and ion-interaction parameters. Such databases, however, show several constraints: - Incompleteness in terms of major and trace elements - Inconsistencies between species considered and corresponding formation constants - Restricted variation ranges of intensive parameters (temperature, density, pressure) - Limitations with respect to solution compositions (ionic strength). To overcome these limitations to a significant degree, an ambitious database project - THEREDA - has been launched in 2006 by institutions leading in the field of safety research for nuclear waste disposal in Germany. The main objective is a centrally administrated and maintained database of verified thermodynamic parameters for environmental applications in general and radiochemical issues in particular. During the last year, the most important point was the official release of four more datasets (adding carbonate, An(III), Np(V) and Cs to the hexary system of oceanic salts), all based on the Pitzer model describing the ion-ion interactions. They can all be downloaded as separate files from the project web site www.thereda.de (navigation menu: THEREDA Data Query → Tailored Databases) as generic ASCII type, and in formats specific to the geochemical speciation codes PhreeqC, EQ3/6, ChemApp and Geochemist Workbench. Moreover, access to data records is now also possible through interactive forms (menu: THEREDA Data Query → Single Data Query // Complex Systems), both with export options as CSV or MS Excel file. Additional releases of thermodynamic data for Th(IV), U(IV) and

  7. A thermodynamic reference database for nuclear waste disposal

    International Nuclear Information System (INIS)

    Brendler, V.; Altmaier, M.; Moog, H.; Voigt, W.; Wilhelm, S.

    2015-01-01

    Safety analysis for a geological repository for radioactive waste as well as remediation measures for uranium mining and processing legacies share an essential: the need for a reliable, traceable and accurate assessment of potential migration of toxic constituents into the biosphere. The respective computational codes require site-independent thermodynamic data concerning aqueous speciation, solubility limiting solid phases and ion-interaction parameters. Such databases, however, show several constraints: - Incompleteness in terms of major and trace elements - Inconsistencies between species considered and corresponding formation constants - Restricted variation ranges of intensive parameters (temperature, density, pressure) - Limitations with respect to solution compositions (ionic strength). To overcome these limitations to a significant degree, an ambitious database project - THEREDA - has been launched in 2006 by institutions leading in the field of safety research for nuclear waste disposal in Germany. The main objective is a centrally administrated and maintained database of verified thermodynamic parameters for environmental applications in general and radiochemical issues in particular. During the last year, the most important point was the official release of four more datasets (adding carbonate, An(III), Np(V) and Cs to the hexary system of oceanic salts), all based on the Pitzer model describing the ion-ion interactions. They can all be downloaded as separate files from the project web site www.thereda.de (navigation menu: THEREDA Data Query → Tailored Databases) as generic ASCII type, and in formats specific to the geochemical speciation codes PhreeqC, EQ3/6, ChemApp and Geochemist Workbench. Moreover, access to data records is now also possible through interactive forms (menu: THEREDA Data Query → Single Data Query // Complex Systems), both with export options as CSV or MS Excel file. Additional releases of thermodynamic data for Th(IV), U(IV) and

  8. JNC thermodynamic database for performance assessment of high-level radioactive waste disposal system

    Energy Technology Data Exchange (ETDEWEB)

    Yui, Mikazu; Azuma, Jiro; Shibata, Masahiro [Japan Nuclear Cycle Development Inst., Tokai Works, Waste Isolation Research Division, Tokai, Ibaraki (Japan)

    1999-11-01

    This report is a summary of status, frozen datasets, and future tasks of the JNC (Japan Nuclear Cycle Development Institute) thermodynamic database (JNC-TDB) for assessing performance of high-level radioactive waste in geological environments. The JNC-TDB development was carried out after the first progress report on geological disposal research in Japan (H-3). In the development, thermodynamic data (equilibrium constants at 25degC, I=0) for important radioactive elements were selected/determined based on original experimental data using different models (e.g., SIT, Pitzer). As a result, the reliability and traceability of the data for most of the important elements were improved over those of the PNC-TDB used in H-3 report. For detailed information of data analysis and selections for each element, see the JNC technical reports listed in this document. (author)

  9. The thermodynamic database COST MP0602 for materials for high-temperature lead-free soldering

    Czech Academy of Sciences Publication Activity Database

    Kroupa, Aleš; Dinsdale, A.; Watson, A.; Vřešťál, J.; Zemanová, Adéla; Brož, P.

    2012-01-01

    Roč. 48, č. 3 (2012), s. 339-346 ISSN 1450-5339 R&D Projects: GA MŠk LD11024 Institutional support: RVO:68081723 Keywords : CALPHAD method * lead-free solders * thermodynamic database Subject RIV: BJ - Thermodynamics Impact factor: 1.435, year: 2012

  10. Thermodynamic optimization of individual steel database by means of systematic DSC measurements according the CALPHAD approach

    International Nuclear Information System (INIS)

    Presoly, P; Bernhard, C; Six, J

    2016-01-01

    Reliable thermodynamic data are essential information required for the design of new steel types and are a prerequisite to effective process optimization and simulation. Moreover, it is important to know the exact temperatures at which the high-temperature phase transformations (T Liquid , T Solid , T Perit , T γ→δ ) occur in order to describe the solidification sequence and to describe further processing parameters. By utilizing DTA/DSC measurements, our earlier experimental studies of selected commercial DP, TRIP and high-Mn TWIP steels, have indicated that currently commercially available databases can often not be utilised to reliably describe the behaviour and microstructural development in such complex alloy systems. Because of these ostensible deficiencies, an experimental study was undertaken in an attempt to determine the pertaining thermodynamic data to analyse the behaviour of the important five- component Fe-C-Si-Mn-Al alloy system. High purity model alloys with systematic alloy variations were prepared and utilized in order to determine the influence of individual alloying elements in this complex, but industrially important alloy system. The present study provides new validated experimental thermodynamic data and analysis of the five-component Fe-C-Si- Mn-Al system, which will allow the construction of new phase diagrams, prediction of solidification sequences and the assessment of micro-segregation. (paper)

  11. Thermodynamic optimization of individual steel database by means of systematic DSC measurements according the CALPHAD approach

    Science.gov (United States)

    Presoly, P.; Six, J.; Bernhard, C.

    2016-03-01

    Reliable thermodynamic data are essential information required for the design of new steel types and are a prerequisite to effective process optimization and simulation. Moreover, it is important to know the exact temperatures at which the high-temperature phase transformations (TLiquid, TSolid, TPerit, Tγ→δ) occur in order to describe the solidification sequence and to describe further processing parameters. By utilizing DTA/DSC measurements, our earlier experimental studies of selected commercial DP, TRIP and high-Mn TWIP steels, have indicated that currently commercially available databases can often not be utilised to reliably describe the behaviour and microstructural development in such complex alloy systems. Because of these ostensible deficiencies, an experimental study was undertaken in an attempt to determine the pertaining thermodynamic data to analyse the behaviour of the important five- component Fe-C-Si-Mn-Al alloy system. High purity model alloys with systematic alloy variations were prepared and utilized in order to determine the influence of individual alloying elements in this complex, but industrially important alloy system. The present study provides new validated experimental thermodynamic data and analysis of the five-component Fe-C-Si- Mn-Al system, which will allow the construction of new phase diagrams, prediction of solidification sequences and the assessment of micro-segregation.

  12. Thermodynamic study of selected monoterpenes II

    Czech Academy of Sciences Publication Activity Database

    Štejfa, V.; Fulem, Michal; Růžička, K.; Červinka, C.

    2014-01-01

    Roč. 79, Dec (2014), 272-279 ISSN 0021-9614 Institutional support: RVO:68378271 Keywords : monoterpenes * vapor pressure * heat capacity * ideal - gas thermodynamic properties * vaporization and sublimation enthalpy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.679, year: 2014

  13. Thermodynamic study of selected monoterpenes III

    Czech Academy of Sciences Publication Activity Database

    Štejfa, V.; Fulem, Michal; Růžička, K.; Červinka, C.

    2014-01-01

    Roč. 79, Dec (2014), 280-289 ISSN 0021-9614 Institutional support: RVO:68378271 Keywords : monoterpenes * vapor pressure * heat capacity * ideal - gas thermodynamic properties * vaporization and sublimation enthalpy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.679, year: 2014

  14. ThermoDex An index of selected thermodynamic data handbooks

    CERN Document Server

    This database contains records for printed handbooks and compilations of thermodynamic and thermophysical data for chemical compounds and other substances. You can enter both a type of compound and a property, and ThermoDex will return a list of hand

  15. The IVTANTHERMO-Online database for thermodynamic properties of individual substances with web interface

    Science.gov (United States)

    Belov, G. V.; Dyachkov, S. A.; Levashov, P. R.; Lomonosov, I. V.; Minakov, D. V.; Morozov, I. V.; Sineva, M. A.; Smirnov, V. N.

    2018-01-01

    The database structure, main features and user interface of an IVTANTHERMO-Online system are reviewed. This system continues the series of the IVTANTHERMO packages developed in JIHT RAS. It includes the database for thermodynamic properties of individual substances and related software for analysis of experimental results, data fitting, calculation and estimation of thermodynamical functions and thermochemistry quantities. In contrast to the previous IVTANTHERMO versions it has a new extensible database design, the client-server architecture, a user-friendly web interface with a number of new features for online and offline data processing.

  16. Development of conversion programs for formats of thermodynamic databases

    International Nuclear Information System (INIS)

    Yoshida, Yasushi; Yui, Mikazu

    2003-02-01

    Programs which enable to convert the database format from PHREEQE code to PHREEQC, EQ3/6 and Geochemist's Workbench code were developed and quality of these programs was checked. As a result, it was confirmed that these programs converted the database format correctly except for specific conditions which lead errors. (author)

  17. Thermodynamics in rotating systems—analysis of selected examples

    International Nuclear Information System (INIS)

    Güémez, J; Fiolhais, M

    2014-01-01

    We solve a set of selected exercises on rotational motion requiring a mechanical and thermodynamical analysis. When non-conservative forces or thermal effects are present, a complete study must use the first law of thermodynamics together with Newton’s second law. The latter is here better expressed in terms of an ‘angular’ impulse–momentum equation (Poinsot–Euler equation), or, equivalently, in terms of a ‘rotational’ pseudo-work–energy equation. Thermodynamical aspects in rotational systems, when e.g. frictional forces are present or when there is a variation of the rotational kinetic energy due to internal sources of energy, are discussed. (paper)

  18. Is there a link between selectivity and binding thermodynamics profiles?

    Science.gov (United States)

    Tarcsay, Ákos; Keserű, György M

    2015-01-01

    Thermodynamics of ligand binding is influenced by the interplay between enthalpy and entropy contributions of the binding event. The impact of these binding free energy components, however, is not limited to the primary target only. Here, we investigate the relationship between binding thermodynamics and selectivity profiles by combining publicly available data from broad off-target assay profiling and the corresponding thermodynamics measurements. Our analysis indicates that compounds binding their primary targets with higher entropy contributions tend to hit more off-targets compared with those ligands that demonstrated enthalpy-driven binding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Selective Document Retrieval from Encrypted Database

    NARCIS (Netherlands)

    Bösch, C.T.; Tang, Qiang; Hartel, Pieter H.; Jonker, Willem

    We propose the concept of selective document retrieval (SDR) from an encrypted database which allows a client to store encrypted data on a third-party server and perform efficient search remotely. We propose a new SDR scheme based on the recent advances in fully homomorphic encryption schemes. The

  20. Comment on the internal consistency of thermodynamic databases supporting repository safety assessments

    International Nuclear Information System (INIS)

    Arthur, R.C.

    2001-11-01

    This report addresses the concept of internal consistency and its relevance to the reliability of thermodynamic databases used in repository safety assessments. In addition to being internally consistent, a reliable database should be accurate over a range of relevant temperatures and pressures, complete in the sense that all important aqueous species, gases and solid phases are represented, and traceable to original experimental results. No single definition of internal consistency need to be universally accepted as the most appropriate under all conditions, however. As a result, two databases that are each internally consistent may be inconsistent with respect to each other, and a database derived from two or more such databases must itself be internally inconsistent. The consequences of alternative definitions that are reasonably attributable to the concept of internal consistency can be illustrated with reference to the thermodynamic database supporting SKB's recent SR 97 safety assessment. This database is internally inconsistent because it includes equilibrium constants calculated over a range of temperatures: using conflicting reference values for some solids, gases and aqueous species that are common to two internally consistent databases (the OECD/NEA database for radioelements and SUPCRT databases for non-radioactive elements) that serve as source databases for the SR 97 TDB, using different definitions in these source databases of standard states for condensed phases and aqueous species, based on different mathematical expressions used in these source databases representing the temperature dependence of the heat capacity, and based on different chemical models adopted in these source databases for the aqueous phase. The importance of such inconsistencies must be considered in relation to the other database reliability criteria noted above, however. Thus, accepting a certain level of internal inconsistency in a database it is probably preferable to use a

  1. Comment on the internal consistency of thermodynamic databases supporting repository safety assessments

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, R.C. [Monitor Scientific, LLC, Denver, CO (United States)

    2001-11-01

    This report addresses the concept of internal consistency and its relevance to the reliability of thermodynamic databases used in repository safety assessments. In addition to being internally consistent, a reliable database should be accurate over a range of relevant temperatures and pressures, complete in the sense that all important aqueous species, gases and solid phases are represented, and traceable to original experimental results. No single definition of internal consistency need to be universally accepted as the most appropriate under all conditions, however. As a result, two databases that are each internally consistent may be inconsistent with respect to each other, and a database derived from two or more such databases must itself be internally inconsistent. The consequences of alternative definitions that are reasonably attributable to the concept of internal consistency can be illustrated with reference to the thermodynamic database supporting SKB's recent SR 97 safety assessment. This database is internally inconsistent because it includes equilibrium constants calculated over a range of temperatures: using conflicting reference values for some solids, gases and aqueous species that are common to two internally consistent databases (the OECD/NEA database for radioelements and SUPCRT databases for non-radioactive elements) that serve as source databases for the SR 97 TDB, using different definitions in these source databases of standard states for condensed phases and aqueous species, based on different mathematical expressions used in these source databases representing the temperature dependence of the heat capacity, and based on different chemical models adopted in these source databases for the aqueous phase. The importance of such inconsistencies must be considered in relation to the other database reliability criteria noted above, however. Thus, accepting a certain level of internal inconsistency in a database it is probably preferable to

  2. Development of a thermodynamic data base for selected heavy metals; Entwicklung einer thermodynamischen Datenbasis fuer ausgewaehlte Schwermetalle

    Energy Technology Data Exchange (ETDEWEB)

    Hageman, Sven; Scharge, Tina; Willms, Thomas

    2015-07-15

    The report on the development of a thermodynamic data base for selected heavy metals covers the description of experimental methods, the thermodynamic model for chromate, the thermodynamic model for dichromate, the thermodynamic model for manganese (II), the thermodynamic model for cobalt, the thermodynamic model for nickel, the thermodynamic model for copper (I), the thermodynamic model for copper(II), the thermodynamic model for mercury (0) and mercury (I), the thermodynamic model for mercury (III), the thermodynamic model for arsenate.

  3. Data compilation and evaluation of U(IV) and U(VI) for thermodynamic reference database THEREDA

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Anke; Bok, Frank; Brendler, Vinzenz

    2015-07-01

    THEREDA (Thermodynamic Reference Database) is a collaborative project, which has been addressed this challenge. The partners are Helmholtz-Zentrum Dresden-Rossendorf, Karlsruhe Institute of Technology (KIT-INE), Gesellschaft fuer Anlagen- und Reaktorsicherheit Braunschweig mbH (GRS), TU Bergakademie Freiberg (TUBAF) and AF-Consult Switzerland AG (Baden, Switzerland). The aim of the project is the establishment of a consistent and quality assured database for all safety relevant elements, temperature and pressure ranges, with its focus on saline systems. This implied the use of the Pitzer approach to compute activity coefficients suitable for such conditions. Data access is possible via commonly available internet browsers under the address http://www.thereda.de. One part of the project - the data collection and evaluation for uranium - was a task of the Helmholtz-Zentrum Dresden-Rossendorf. The aquatic chemistry and thermodynamics of U(VI) and U(IV) is of great importance for geochemical modelling in repository-relevant systems. The OECD/NEA Thermochemical Database (NEA TDB) compilation is the major source for thermodynamic data of the aqueous and solid uranium species, even though this data selection does not utilize the Pitzer model for the ionic strength effect correction. As a result of the very stringent quality demands, the NEA TDB is rather restrictive and therefore incomplete for extensive modelling calculations of real systems. Therefore, the THEREDA compilation includes additional thermodynamic data of solid secondary phases formed in the waste material, the backfill and the host rock, though falling into quality assessment (QA) categories of lower accuracy. The data review process prefers log K values from solubility experiments (if available) to those calculated from thermochemical data.

  4. Data compilation and evaluation of U(IV) and U(VI) for thermodynamic reference database THEREDA

    International Nuclear Information System (INIS)

    Richter, Anke; Bok, Frank; Brendler, Vinzenz

    2015-01-01

    THEREDA (Thermodynamic Reference Database) is a collaborative project, which has been addressed this challenge. The partners are Helmholtz-Zentrum Dresden-Rossendorf, Karlsruhe Institute of Technology (KIT-INE), Gesellschaft fuer Anlagen- und Reaktorsicherheit Braunschweig mbH (GRS), TU Bergakademie Freiberg (TUBAF) and AF-Consult Switzerland AG (Baden, Switzerland). The aim of the project is the establishment of a consistent and quality assured database for all safety relevant elements, temperature and pressure ranges, with its focus on saline systems. This implied the use of the Pitzer approach to compute activity coefficients suitable for such conditions. Data access is possible via commonly available internet browsers under the address http://www.thereda.de. One part of the project - the data collection and evaluation for uranium - was a task of the Helmholtz-Zentrum Dresden-Rossendorf. The aquatic chemistry and thermodynamics of U(VI) and U(IV) is of great importance for geochemical modelling in repository-relevant systems. The OECD/NEA Thermochemical Database (NEA TDB) compilation is the major source for thermodynamic data of the aqueous and solid uranium species, even though this data selection does not utilize the Pitzer model for the ionic strength effect correction. As a result of the very stringent quality demands, the NEA TDB is rather restrictive and therefore incomplete for extensive modelling calculations of real systems. Therefore, the THEREDA compilation includes additional thermodynamic data of solid secondary phases formed in the waste material, the backfill and the host rock, though falling into quality assessment (QA) categories of lower accuracy. The data review process prefers log K values from solubility experiments (if available) to those calculated from thermochemical data.

  5. Selection of nuclear power information database management system

    International Nuclear Information System (INIS)

    Zhang Shuxin; Wu Jianlei

    1996-01-01

    In the condition of the present database technology, in order to build the Chinese nuclear power information database (NPIDB) in the nuclear industry system efficiently at a high starting point, an important task is to select a proper database management system (DBMS), which is the hinge of the matter to build the database successfully. Therefore, this article explains how to build a practical information database about nuclear power, the functions of different database management systems, the reason of selecting relation database management system (RDBMS), the principles of selecting RDBMS, the recommendation of ORACLE management system as the software to build database and so on

  6. JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes. Refinement of thermodynamic data for tetravalent thorium, uranium, neptunium and plutonium

    International Nuclear Information System (INIS)

    Fujiwara, Kenso; Kitamura, Akira; Yui, Mikazu

    2010-03-01

    Within the scope of the JAEA thermodynamic database project for performance assessment of geological disposal of high-level and TRU radioactive wastes, the refinement of the thermodynamic data for the inorganic compounds and complexes of Thorium(IV), Uranium(IV), Neptunium(IV) and Plutonium(IV) was carried out. Refinement of thermodynamic data for the element was performed on a basis of the thermodynamic database for actinide published by the Nuclear Energy Agency in the Organisation for Economic Co-operation and Development (OECD/NEA). Additionally, the latest data after publication of thermodynamic data by OECD/NEA were reevaluated to determine whether the data should be included in the JAEA-TDB. (author)

  7. PROXiMATE: a database of mutant protein-protein complex thermodynamics and kinetics.

    Science.gov (United States)

    Jemimah, Sherlyn; Yugandhar, K; Michael Gromiha, M

    2017-09-01

    We have developed PROXiMATE, a database of thermodynamic data for more than 6000 missense mutations in 174 heterodimeric protein-protein complexes, supplemented with interaction network data from STRING database, solvent accessibility, sequence, structural and functional information, experimental conditions and literature information. Additional features include complex structure visualization, search and display options, download options and a provision for users to upload their data. The database is freely available at http://www.iitm.ac.in/bioinfo/PROXiMATE/ . The website is implemented in Python, and supports recent versions of major browsers such as IE10, Firefox, Chrome and Opera. gromiha@iitm.ac.in. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  8. Phase-field simulation of solidification in multicomponent alloys coupled with thermodynamic and diffusion mobility databases

    International Nuclear Information System (INIS)

    Zhang Ruijie; Jing Tao; Jie Wanqi; Liu Baicheng

    2006-01-01

    To simulate quantitatively the microstructural evolution in the solidification process of multicomponent alloys, we extend the phase-field model for binary alloys to multicomponent alloys with consideration of the solute interactions between different species. These interactions have a great influence not only on the phase equilibria but also on the solute diffusion behaviors. In the model, the interface region is assumed to be a mixture of solid and liquid with the same chemical potential, but with different compositions. The simulation presented is coupled with thermodynamic and diffusion mobility databases, which can accurately predict the phase equilibria and the solute diffusion transportation in the whole system. The phase equilibria in the interface and other thermodynamic quantities are obtained using Thermo-Calc through the TQ interface. As an example, two-dimensional computations for the dendritic growth in Al-Cu-Mg ternary alloy are performed. The quantitative solute distributions and diffusion matrix are obtained in both solid and liquid phases

  9. Applications of Protein Thermodynamic Database for Understanding Protein Mutant Stability and Designing Stable Mutants.

    Science.gov (United States)

    Gromiha, M Michael; Anoosha, P; Huang, Liang-Tsung

    2016-01-01

    Protein stability is the free energy difference between unfolded and folded states of a protein, which lies in the range of 5-25 kcal/mol. Experimentally, protein stability is measured with circular dichroism, differential scanning calorimetry, and fluorescence spectroscopy using thermal and denaturant denaturation methods. These experimental data have been accumulated in the form of a database, ProTherm, thermodynamic database for proteins and mutants. It also contains sequence and structure information of a protein, experimental methods and conditions, and literature information. Different features such as search, display, and sorting options and visualization tools have been incorporated in the database. ProTherm is a valuable resource for understanding/predicting the stability of proteins and it can be accessed at http://www.abren.net/protherm/ . ProTherm has been effectively used to examine the relationship among thermodynamics, structure, and function of proteins. We describe the recent progress on the development of methods for understanding/predicting protein stability, such as (1) general trends on mutational effects on stability, (2) relationship between the stability of protein mutants and amino acid properties, (3) applications of protein three-dimensional structures for predicting their stability upon point mutations, (4) prediction of protein stability upon single mutations from amino acid sequence, and (5) prediction methods for addressing double mutants. A list of online resources for predicting has also been provided.

  10. The development of platinum-based alloys and their thermodynamic database

    OpenAIRE

    Cornish L.A.; Hohls J.; Hill P.J.; Prins S.; Süss R.; Compton D.N.

    2002-01-01

    A series of quaternary platinum-based alloys have been demonstrated to exhibit the same two-phase structure as Ni-based superalloys and showed good mechanical properties. The properties of ternary alloys were a good indication that the quaternary alloys, with their better microstructure, will be even better. The quaternary alloy composition has been optimised at Pt84:Al11:Ru2:Cr3 for the best microstructure and hardness. Work has begun on establishing a thermodynamic database for Pt-Al-Ru-Cr ...

  11. Thermodynamics

    CERN Document Server

    Fermi, Enrico

    1956-01-01

    Indisputably, this is a modern classic of science. Based on a course of lectures delivered by the author at Columbia University, the text is elementary in treatment and remarkable for its clarity and organization. Although it is assumed that the reader is familiar with the fundamental facts of thermometry and calorimetry, no advanced mathematics beyond calculus is assumed.Partial contents: thermodynamic systems, the first law of thermodynamics (application, adiabatic transformations), the second law of thermodynamics (Carnot cycle, absolute thermodynamic temperature, thermal engines), the entr

  12. Comparison of the thermodynamic databases for radioactive elements in application to the calculation of the solubilities in the porewater

    International Nuclear Information System (INIS)

    Doi, Reisuke; Shibata, Masahiro

    2006-07-01

    To calculate the solubility of radioactive elements which is the important parameter for performance assessment of geological disposal system, the thermodynamic database must be reliable and based on the latest information. In this research, it has been compared in the calculation of the solubilities of the representative radioactive elements in the porewater compositions of the compacted bentonite which were set up in the second progress report (H12) that the thermodynamic database of JNC, OECD/NEA, Nagra/PSI. And the causes of the differences among the results from application of different databases were investigated and discussed. (author)

  13. Selected topics on data and databases

    International Nuclear Information System (INIS)

    Ralchenko, Y.

    2001-01-01

    Dr. Ralchenko reviewed atomic data activities at the WIS Plasma Laboratory. Physical sputtering yields over the broad energy range for fusion is presented. Collisional database including electron and heavy particle projectiles was completed. Quantum-mechanical calculations for the process of Stark broadening of atomic spectral lines are continued. Systems considered include data for Be-like ions and lithium-like ions

  14. Selected topics on data and databases

    Energy Technology Data Exchange (ETDEWEB)

    Ralchenko, Y [Weizmann Institute of Science, Rehovot (Israel)

    2001-12-01

    Dr. Ralchenko reviewed atomic data activities at the WIS Plasma Laboratory. Physical sputtering yields over the broad energy range for fusion is presented. Collisional database including electron and heavy particle projectiles was completed. Quantum-mechanical calculations for the process of Stark broadening of atomic spectral lines are continued. Systems considered include data for Be-like ions and lithium-like ions.

  15. 77 FR 12234 - Changes in Hydric Soils Database Selection Criteria

    Science.gov (United States)

    2012-02-29

    ... Conservation Service [Docket No. NRCS-2011-0026] Changes in Hydric Soils Database Selection Criteria AGENCY... Changes to the National Soil Information System (NASIS) Database Selection Criteria for Hydric Soils of the United States. SUMMARY: The National Technical Committee for Hydric Soils (NTCHS) has updated the...

  16. Evaluated and estimated solubility of some elements for performance assessment of geological disposal of high-level radioactive waste using updated version of thermodynamic database

    International Nuclear Information System (INIS)

    Kitamura, Akira; Doi, Reisuke; Yoshida, Yasushi

    2011-01-01

    Japan Atomic Energy Agency (JAEA) established the thermodynamic database (JAEA-TDB) for performance assessment of geological disposal of high-level radioactive waste (HLW) and TRU waste. Twenty-five elements which were important for the performance assessment of geological disposal were selected for the database. JAEA-TDB enhanced reliability of evaluation and estimation of their solubility through selecting the latest and the most reliable thermodynamic data at present. We evaluated and estimated solubility of the 25 elements in the simulated porewaters established in the 'Second Progress Report for Safety Assessment of Geological Disposal of HLW in Japan' using the JAEA-TDB and compared with those using the previous thermodynamic database (JNC-TDB). It was found that most of the evaluated and estimated solubility values were not changed drastically, but the solubility and speciation of dominant aqueous species for some elements using the JAEA-TDB were different from those using the JNC-TDB. We discussed about how to provide reliable solubility values for the performance assessment. (author)

  17. The development of platinum-based alloys and their thermodynamic database

    Directory of Open Access Journals (Sweden)

    Cornish L.A.

    2002-01-01

    Full Text Available A series of quaternary platinum-based alloys have been demonstrated to exhibit the same two-phase structure as Ni-based superalloys and showed good mechanical properties. The properties of ternary alloys were a good indication that the quaternary alloys, with their better microstructure, will be even better. The quaternary alloy composition has been optimised at Pt84:Al11:Ru2:Cr3 for the best microstructure and hardness. Work has begun on establishing a thermodynamic database for Pt-Al-Ru-Cr alloys, and further work will be done to enhance the mechanical and oxidation properties of the alloys by adding small amounts of other elements to the base composition of Pt84:Al11:Ru2:Cr3.

  18. Database Software Selection for the Egyptian National STI Network.

    Science.gov (United States)

    Slamecka, Vladimir

    The evaluation and selection of information/data management system software for the Egyptian National Scientific and Technical (STI) Network are described. An overview of the state-of-the-art of database technology elaborates on the differences between information retrieval and database management systems (DBMS). The desirable characteristics of…

  19. Online-Expert: An Expert System for Online Database Selection.

    Science.gov (United States)

    Zahir, Sajjad; Chang, Chew Lik

    1992-01-01

    Describes the design and development of a prototype expert system called ONLINE-EXPERT that helps users select online databases and vendors that meet users' needs. Search strategies are discussed; knowledge acquisition and knowledge bases are described; and the Analytic Hierarchy Process (AHP), a decision analysis technique that ranks databases,…

  20. Thermodynamics and phase transformations: the selected works of Mats Hillert

    International Nuclear Information System (INIS)

    Agren, J.; Brechet, Y.; Hutchinson, Ch.; Purdy, G.

    2006-01-01

    For over half a century, Mats Hillert has contributed greatly to the science of materials. He is widely known and respected as an innovator and an educator, a scientist with an enormous breadth of interest and depth of insight. In acknowledgment of his many contributions, a conference was held in Stockholm in December 2004 to mark his eightieth birthday. This volume was conceived prior to, and publicly announced during the conference. The difficult choice of twenty-four papers from a publication list of more than three hundred was carried out in consultation with Mats. He also suggested or approved the scientists who would be invited to write a brief introduction to each paper. A brief reading of the topics of the selected papers and their introductions reveals something of their range and depth. Several early selections (for example, those on 'The Role of Interfacial Energy during Solid State Phase Transformations', and 'A Solid-Solution Model for Inhomogeneous Systems') contained seminal material that established Mats as a leading figure in the study of phase transformations in solids. Others established his presence in the areas of solidification and computational thermodynamics. A review of his full publication list shows that he has consistently built upon those early foundational papers, and maintained a dominant position in those fields. Although many of his contributions have been of a theoretical nature, he has always maintained a close contact with experiment, and indeed, he has designed numerous critical experiments. This volume represents a judicious sampling of Mats Hillert's extensive body of work; it is necessarily incomplete, but it is hoped and expected that it will prove useful to students of materials science and engineering at all levels, and that it will inspire the further study and appreciation of his many contributions. (authors)

  1. Thermodynamics

    International Nuclear Information System (INIS)

    Zanchini, E.

    1988-01-01

    The definition of energy, in thermodynamics, is dependent by starting operative definitions of the basic concepts of physics on which it rests, such as those of isolated systems, ambient of a system, separable system and set of separable states. Then the definition of energy is rigorously extended to open systems. The extension gives a clear physical meaning to the concept of energy difference between two states with arbitrary different compositions

  2. On the selection of Secondary Indices in Relational Databases

    NARCIS (Netherlands)

    Choenni, R.S.; Blanken, Henk; Chang, Thiel

    1993-01-01

    An important problem in the physical design of databases is the selection of secondary indices. In general, this problem cannot be solved in an optimal way due to the complexity of the selection process. Often use is made of heuristics such as the well-known ADD and DROP algorithms. In this paper it

  3. Thermodynamic analysis for molten stratification test MASCA with ionic liquid U-Zr-Fe-O-B-C-FPs database

    International Nuclear Information System (INIS)

    Fukasawa, Masanori; Tamura, Shigeyuki

    2007-01-01

    The molten corium stratification tested in the OECD MASCA project was analyzed with our thermo-dynamic database and the database was verified to be effective for the stratification analysis. The MASCA test shows that the molten corium can be stratified with the metal layer under the oxide when sub-oxidized corium including iron was retained in the lower head of the reactor vessel. This stratification is caused by the increased density of the metal layer attributed to a transfer of uranium metal that was reduced from uranium oxide by zirconium. Thermodynamic equilibrium calculations with the database, which was developed for the corium U-Zr-Fe-O-B-C-FPs system using the ionic two-sublattice model for liquid, show quantitative agreements with the MASCA test, such as the composition of each layer, fission product (FP) partitioning between the layers and B 4 C effect on the stratification. (author)

  4. Relational databases for conditions data and event selection in ATLAS

    International Nuclear Information System (INIS)

    Viegas, F; Hawkings, R; Dimitrov, G

    2008-01-01

    The ATLAS experiment at LHC will make extensive use of relational databases in both online and offline contexts, running to O(TBytes) per year. Two of the most challenging applications in terms of data volume and access patterns are conditions data, making use of the LHC conditions database, COOL, and the TAG database, that stores summary event quantities allowing a rapid selection of interesting events. Both of these databases are being replicated to regional computing centres using Oracle Streams technology, in collaboration with the LCG 3D project. Database optimisation, performance tests and first user experience with these applications will be described, together with plans for first LHC data-taking and future prospects

  5. Relational databases for conditions data and event selection in ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Viegas, F; Hawkings, R; Dimitrov, G [CERN, CH-1211 Geneve 23 (Switzerland)

    2008-07-15

    The ATLAS experiment at LHC will make extensive use of relational databases in both online and offline contexts, running to O(TBytes) per year. Two of the most challenging applications in terms of data volume and access patterns are conditions data, making use of the LHC conditions database, COOL, and the TAG database, that stores summary event quantities allowing a rapid selection of interesting events. Both of these databases are being replicated to regional computing centres using Oracle Streams technology, in collaboration with the LCG 3D project. Database optimisation, performance tests and first user experience with these applications will be described, together with plans for first LHC data-taking and future prospects.

  6. THERMODYNAMIC MODEL AND VISCOSITY OF SELECTED ZIRCONIA CONTAINING SILICATE GLASSES

    Directory of Open Access Journals (Sweden)

    MÁRIA CHROMČÍKOVÁ

    2013-03-01

    Full Text Available The compositional dependence of viscosity, and viscous flow activation energy of glasses with composition xNa2O∙(15-x K2O∙yCaO∙(10-yZnO∙zZrO2∙(75-zSiO2 (x = 0, 7.5, 15; y = 0, 5, 10; z = 0, 1, 3, 5, 7 was analyzed. The studied glasses were described by the thermodynamic model of Shakhmatkin and Vedishcheva considering the glass as an equilibrium ideal solution of species with stoichiometry given by the composition of stable crystalline phases of respective glass forming system. Viscosity-composition relationships were described by the regression approach considering the viscous flow activation energy and the particular isokome temperature as multilinear function of equilibrium molar amounts of system components. The classical approach where the mole fractions of individual oxides are considered as independent variables was compared with the thermodynamic model. On the basis of statistical analysis there was proved that the thermodynamic model is able to describe the composition property relationships with higher reliability. Moreover, due its better physical justification, thermodynamic model can be even used for predictive purposes.

  7. CHEMVAL project. Critical evaluation of the CHEMVAL thermodynamic database with respect to its contents and relevance to radioactive waste disposal at Sellafield and Dounreay

    International Nuclear Information System (INIS)

    Falck, W.E.

    1992-01-01

    This report is concerned with assessing the applicability of the CHEMVAL Thermodynamic Database (Version 3.0) to studies of radioactive waste disposal at Sellafield and Dounreay. Comparisons are drawn with similar listings produced elsewhere and suggestions made for database enhancement. The feasibility of extending the database to take into account simulations at elevated temperatures is also addressed. (author)

  8. Blending Education and Polymer Science: Semiautomated Creation of a Thermodynamic Property Database

    Science.gov (United States)

    Tchoua, Roselyne B.; Qin, Jian; Audus, Debra J.; Chard, Kyle; Foster, Ian T.; de Pablo, Juan

    2016-01-01

    Structured databases of chemical and physical properties play a central role in the everyday research activities of scientists and engineers. In materials science, researchers and engineers turn to these databases to quickly query, compare, and aggregate various properties, thereby allowing for the development or application of new materials. The…

  9. Shape-Selection of Thermodynamically Stabilized Colloidal Pd and Pt Nanoparticles Controlled via Support Effects

    DEFF Research Database (Denmark)

    Ahmadi, M.; Behafarid, F.; Holse, Christian

    2015-01-01

    Colloidal chemistry, in combination with nanoparticle (NP)/support epitaxial interactions is used here to synthesize shape-selected and thermodynamically stable metallic NPs over a broad range of NP sizes. The morphology of three-dimensional palladium and platinum NPs supported on TiO2(110) was i......Colloidal chemistry, in combination with nanoparticle (NP)/support epitaxial interactions is used here to synthesize shape-selected and thermodynamically stable metallic NPs over a broad range of NP sizes. The morphology of three-dimensional palladium and platinum NPs supported on TiO2...... rows and was found to be responsible for the shape control. The ability of synthesizing thermally stable shape-selected metal NPs demonstrated here is expected to be of relevance for applications in the field of catalysis, since the activity and selectivity of NP catalysts has been shown to strongly...

  10. Effects of food processing on the thermodynamic and nutritive value of foods: literature and database survey.

    Science.gov (United States)

    Prochaska, L J; Nguyen, X T; Donat, N; Piekutowski, W V

    2000-02-01

    One of the goals of our society is to provide adequate nourishment for the general population of humans. In the strictness sense, the foodstuffs which we ingest are bundles of thermodynamic energy. In our post-industrial society, food producers provide society with the bioenergetic content of foods, while stabilizing the food in a non-perishable form that enables the consumer to access foods that are convenient and nutritious. As our modern society developed, the processing of foodstuffs increased to allow consumers flexibility in their choice in which foods to eat (based on nutritional content and amount of post-harvest processing). The thermodynamic energy content of foodstuffs is well documented in the literature by the use of bomb calorimetry measurements. Here, we determine the effects of processing (in most cases by the application of heat) on the thermodynamic energy content of foods in order to investigate the role of processing in daily nutritional needs. We also examine which processing procedures affect the nutritive quality (vitamin and mineral content) and critically assess the rational, advantages and disadvantages of additives to food. Finally, we discuss the role of endogenous enzymes in foods not only on the nutritive quality of the food but also on the freshness and flavor of the food. Our results show that a significant decrease in thermodynamic energy content occurs in fruits, vegetables, and meat products upon processing that is independent of water content. No significant change in energy content was observed in cereals, sugars, grains, fats and oils, and nuts. The vitamin content of most foods was most dramatically decreased by canning while smaller effects were observed upon blanching and freezing. We found that most food additives had very little effect on thermodynamic energy content due to their presence in minute quantities and that most were added to preserve the foodstuff or supplement its vitamin content. The endogenous food enzymes

  11. Predictive calculation of phase formation in Al-rich Al-Zn-Mg-Cu-Sc-Zr alloys using a thermodynamic Mg-alloy database

    International Nuclear Information System (INIS)

    Groebner, J.; Rokhlin, L.L.; Dobatkina, T.V.; Schmid-Fetzer, R.

    2007-01-01

    Three series of Al-rich alloys in the system Al-Zn-Mg-Cu-Sc-Zr and the subsystems Al-Zn-Mg-Cu-Sc and Al-Zn-Mg-Sc were studied by thermodynamic calculations. Phase formation was compared with experimental data obtained by DTA and microstructural analysis. Calculated phase diagrams, phase amount charts and enthalpy charts together with non-equilibrium calculations under Scheil conditions reveal significant details of the complex phase formation. This enables consistent and correct interpretation of thermal analysis data. Especially the interpretation of liquidus temperature and primary phase is prone to be wrong without using this tool of computational thermodynamics. All data are predictions from a thermodynamic database developed for Mg-alloys and not a specialized Al-alloy database. That provides support for a reasonable application of this database for advanced Mg-alloys beyond the conventional composition ranges

  12. Predictive calculation of phase formation in Al-rich Al-Zn-Mg-Cu-Sc-Zr alloys using a thermodynamic Mg-alloy database

    Energy Technology Data Exchange (ETDEWEB)

    Groebner, J. [Institute of Metallurgy, Clausthal University of Technology, Robert-Koch Strasse 42, D-38678 Clausthal-Zellerfeld (Germany); Rokhlin, L.L. [Baikov Institute of Metallurgy and Materials Science, Leninsky prosp. 49, 119991 GSP-1, Moscow (Russian Federation); Dobatkina, T.V. [Baikov Institute of Metallurgy and Materials Science, Leninsky prosp. 49, 119991 GSP-1, Moscow (Russian Federation); Schmid-Fetzer, R. [Institute of Metallurgy, Clausthal University of Technology, Robert-Koch Strasse 42, D-38678 Clausthal-Zellerfeld (Germany)]. E-mail: schmid-fetzer@tu-clausthal.de

    2007-05-16

    Three series of Al-rich alloys in the system Al-Zn-Mg-Cu-Sc-Zr and the subsystems Al-Zn-Mg-Cu-Sc and Al-Zn-Mg-Sc were studied by thermodynamic calculations. Phase formation was compared with experimental data obtained by DTA and microstructural analysis. Calculated phase diagrams, phase amount charts and enthalpy charts together with non-equilibrium calculations under Scheil conditions reveal significant details of the complex phase formation. This enables consistent and correct interpretation of thermal analysis data. Especially the interpretation of liquidus temperature and primary phase is prone to be wrong without using this tool of computational thermodynamics. All data are predictions from a thermodynamic database developed for Mg-alloys and not a specialized Al-alloy database. That provides support for a reasonable application of this database for advanced Mg-alloys beyond the conventional composition ranges.

  13. On the Selection of Optimal Index Configuration in OO Databases

    NARCIS (Netherlands)

    Choenni, R.S.; Bertino, E.; Blanken, Henk; Chang, S.C.

    An operation in object-oriented databases gives rise to the processing of a path. Several database operations may result into the same path. The authors address the problem of optimal index configuration for a single path. As it is shown an optimal index configuration for a path can be achieved by

  14. Thermodynamics of natural selection III: Landauer's principle in computation and chemistry.

    Science.gov (United States)

    Smith, Eric

    2008-05-21

    This is the third in a series of three papers devoted to energy flow and entropy changes in chemical and biological processes, and their relations to the thermodynamics of computation. The previous two papers have developed reversible chemical transformations as idealizations for studying physiology and natural selection, and derived bounds from the second law of thermodynamics, between information gain in an ensemble and the chemical work required to produce it. This paper concerns the explicit mapping of chemistry to computation, and particularly the Landauer decomposition of irreversible computations, in which reversible logical operations generating no heat are separated from heat-generating erasure steps which are logically irreversible but thermodynamically reversible. The Landauer arrangement of computation is shown to produce the same entropy-flow diagram as that of the chemical Carnot cycles used in the second paper of the series to idealize physiological cycles. The specific application of computation to data compression and error-correcting encoding also makes possible a Landauer analysis of the somewhat different problem of optimal molecular recognition, which has been considered as an information theory problem. It is shown here that bounds on maximum sequence discrimination from the enthalpy of complex formation, although derived from the same logical model as the Shannon theorem for channel capacity, arise from exactly the opposite model for erasure.

  15. Database system selection for marketing strategies support in information systems

    Directory of Open Access Journals (Sweden)

    František Dařena

    2007-01-01

    Full Text Available In today’s dynamically changing environment marketing has a significant role. Creating successful marketing strategies requires large amount of high quality information of various kinds and data types. A powerful database management system is a necessary condition for marketing strategies creation support. The paper briefly describes the field of marketing strategies and specifies the features that should be provided by database systems in connection with these strategies support. Major commercial (Oracle, DB2, MS SQL, Sybase and open-source (PostgreSQL, MySQL, Firebird databases are than examined from the point of view of accordance with these characteristics and their comparison in made. The results are useful for making the decision before acquisition of a database system during information system’s hardware architecture specification.

  16. Databases

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.

    Information on bibliographic as well as numeric/textual databases relevant to coastal geomorphology has been included in a tabular form. Databases cover a broad spectrum of related subjects like coastal environment and population aspects, coastline...

  17. A three-dimensional cellular automata model coupled with finite element method and thermodynamic database for alloy solidification

    Science.gov (United States)

    Zhao, Y.; Qin, R. S.; Chen, D. F.

    2013-08-01

    A three-dimensional (3D) cellular automata (CA) model has been developed for the simulation of microstructure evolution in alloy solidification. The governing rule for the CA model is associated with the phase transition driving force which is obtained via a thermodynamic database. This determines the migration rate of the non-equilibrium solid-liquid (SL) interface and is calculated according to the local temperature and chemical composition. The curvature of the interface and the anisotropic property of the surface energy are taken into consideration. A 3D finite element (FE) method is applied for the calculation of transient heat and mass transfer. Numerical calculations for the solidification of Fe-1.5 wt% C alloy have been performed. The morphological evolution of dendrites, carbon segregation and temperature distribution in both isothermal and non-isothermal conditions are studied. The parameters affecting the growth of equiaxed and columnar dendrites are discussed. The calculated results are verified using the analytical model and previous experiments. The method provides a sophisticated approach to the solidification of multi-phase and multi-component systems.

  18. Thermodynamic selectivity of functional agents on zeolite for sodium dodecyl sulfate sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Leng, Ling; Wang, Jian [Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR (China); Qiu, Xianxiu; Zhao, Yanxiang; Yip, Yuk-Wang; Law, Ga-Lai [Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR (China); Shih, Kaimin; Zhou, Zhengyuan [Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR (China); Lee, Po-Heng, E-mail: poheng76@gmail.com [Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR (China)

    2016-11-15

    Highlights: • A thermodynamic approach to select a functional agent for adsorbent is proposed. • ITC and QCS were used to interpret the interaction between adsorbate and agent. • The interaction identifies the adsorption mechanism and performance. • This approach enables the manipulation of adsorption capacity optimization. - Abstract: This study proposes a thermodynamic approach to effectively select functional agents onto zeolite for sodium dodecyl sulfate (SDS) sequestration in greywater reuse. We combine isothermal titration calorimetry (ITC) and quantum chemistry simulation (QCS) to identify the interactions between SDS and agents at the molecular level. Three potential agents, cetyl trimethyl ammonium bromide (CTAB), N,N,N-trimethyltetradecan-1-aminium bromide (C{sub 14}TAB), and 14-hydroxy-N,N,N-trimethyltetradecan-1-aminium bromide (C{sub 14}HTAB), differ in carbon chain length and hydrophilic groups. The ITC titration of SDS with CTAB released the highest heat, followed by those with C{sub 14}TAB and C{sub 14}HTAB, as was the same trend for the amounts of SDS adsorbed by the respective functionalized-zeolites. Results suggest that the favorable SDS sorption occurred at the bilayer CTAB-zeolite is driven by enthalpy as similar as the SDS…CTAB interaction found, regardless of the contribution from electrostatic and/or hydrophobic behaviors, while the declined sorption is entropy-driven via the predominant hydrophobic interaction onto the monolayer CTAB-zeolite. The data presented here interpret the nature of molecularly thermodynamic quantities and enable the manipulation of sorption capacity optimization.

  19. Giving you the business - Competitive pricing of selected Predicasts' databases

    Science.gov (United States)

    Jack, Robert F.

    1987-01-01

    The pricing policies of different data-base services offering Predicast data bases are examined from a user perspective. The services carrying these data bases are listed; the problems introduced by varying exchange rates and seemingly idiosyncratic price structures are discussed; and numerous specific examples are given.

  20. Selecting a Relational Database Management System for Library Automation Systems.

    Science.gov (United States)

    Shekhel, Alex; O'Brien, Mike

    1989-01-01

    Describes the evaluation of four relational database management systems (RDBMSs) (Informix Turbo, Oracle 6.0 TPS, Unify 2000 and Relational Technology's Ingres 5.0) to determine which is best suited for library automation. The evaluation criteria used to develop a benchmark specifically designed to test RDBMSs for libraries are discussed. (CLB)

  1. A graphical criterion for working fluid selection and thermodynamic system comparison in waste heat recovery

    International Nuclear Information System (INIS)

    Xi, Huan; Li, Ming-Jia; He, Ya-Ling; Tao, Wen-Quan

    2015-01-01

    In the present study, we proposed a graphical criterion called CE diagram by achieving the Pareto optimal solutions of the annual cash flow and exergy efficiency. This new graphical criterion enables both working fluid selection and thermodynamic system comparison for waste heat recovery. It's better than the existing criterion based on single objective optimization because it is graphical and intuitionistic in the form of diagram. The features of CE diagram were illustrated by studying 5 examples with different heat-source temperatures (ranging between 100 °C to 260 °C), 26 chlorine-free working fluids and two typical ORC systems including basic organic Rankine cycle(BORC) and recuperative organic Rankine cycle (RORC). It is found that the proposed graphical criterion is feasible and can be applied to any closed loop waste heat recovery thermodynamic systems and working fluids. - Highlights: • A graphical method for ORC system comparison/working fluid selection was proposed. • Multi-objectives genetic algorithm (MOGA) was applied for optimizing ORC systems. • Application cases were performed to demonstrate the usage of the proposed method.

  2. Reverse engineering of fluid selection for thermodynamic cycles with cubic equations of state, using a compression heat pump as example

    International Nuclear Information System (INIS)

    Roskosch, Dennis; Atakan, Burak

    2015-01-01

    the thermodynamic understanding of the process. Finally, for the COP optimization a strategy for screening large databases is explained. Several fluids from different substance groups like hydrogen iodide (COP = 3.68), formaldehyde (3.61) or cyclopropane (3.42) were found to have higher COPs than the often used R134a (3.12). These fluids will also have to fulfill further criteria, prior to their usage, but the method appears to be a good base for fluid selection. - Highlights: • A new reverse engineering approach for fluid selection. • Able to find less common fluids for cycles. • Increased understanding of important fluid parameters. • Demonstrated for a heat pump cycle

  3. Interactive FORTRAN IV computer programs for the thermodynamic and transport properties of selected cryogens (fluids pack)

    Science.gov (United States)

    Mccarty, R. D.

    1980-01-01

    The thermodynamic and transport properties of selected cryogens had programmed into a series of computer routines. Input variables are any two of P, rho or T in the single phase regions and either P or T for the saturated liquid or vapor state. The output is pressure, density, temperature, entropy, enthalpy for all of the fluids and in most cases specific heat capacity and speed of sound. Viscosity and thermal conductivity are also given for most of the fluids. The programs are designed for access by remote terminal; however, they have been written in a modular form to allow the user to select either specific fluids or specific properties for particular needs. The program includes properties for hydrogen, helium, neon, nitrogen, oxygen, argon, and methane. The programs include properties for gaseous and liquid states usually from the triple point to some upper limit of pressure and temperature which varies from fluid to fluid.

  4. Databases

    Directory of Open Access Journals (Sweden)

    Nick Ryan

    2004-01-01

    Full Text Available Databases are deeply embedded in archaeology, underpinning and supporting many aspects of the subject. However, as well as providing a means for storing, retrieving and modifying data, databases themselves must be a result of a detailed analysis and design process. This article looks at this process, and shows how the characteristics of data models affect the process of database design and implementation. The impact of the Internet on the development of databases is examined, and the article concludes with a discussion of a range of issues associated with the recording and management of archaeological data.

  5. Selection effects and database screening in forensic science

    NARCIS (Netherlands)

    Meester, R.W.J.; Sjerps, M.

    2009-01-01

    We argue that it is, in principle, not difficult to deal with selection effects in forensic science. If a suspect is selected through a process that is related to the forensic evidence, then the strength of the evidence will be compensated by very small prior odds. No further correction is

  6. On a Thermodynamic Approach to Material Selection for Service in Aggressive Multi-Component Gaseous and/or Vapor Environments

    Energy Technology Data Exchange (ETDEWEB)

    Glazoff, Michael Vasily [Idaho National Lab. (INL), Idaho Falls, ID (United States); Marschman, Steven Craig [Idaho National Lab. (INL), Idaho Falls, ID (United States); Soelberg, Nicholas Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    . This is related to alloy design, corrosion protection, and material selection for different applications. In this work, an effort was made to advance in that direction using modern computational thermodynamics methodology, software, and databases by Thermo-Calc Inc. The developed methodology is illustrated by the case study – a process of nuclear waste immobilization using a chemical engineering approach described below. The developed methodology can be considered a practical illustration of the Ellingham approach generalization and could be used for obtaining thermodynamic guidance on a given process’ feasibility using equipment/sensors made of a particular multicomponent heterogeneous metallic alloy.

  7. An engineering thermodynamic approach to select the electromagnetic wave effective on cell growth.

    Science.gov (United States)

    Lucia, Umberto; Grisolia, Giulia; Ponzetto, Antonio; Silvagno, Francesca

    2017-09-21

    To date, the choice of the characteristics of the extremely low-frequency electromagnetic field beneficial in proliferative disorders is still empirical. In order to make the ELF interaction selective, we applied the thermodynamic and biochemical principles to the analysis of the thermo-chemical output generated by the cell in the environment. The theoretical approach applied an engineering bio-thermodynamic approach recently developed in order to obtain a physical-mathematical model that calculated the frequency of the field able to maximize the mean entropy changes as a function of cellular parameters. The combined biochemical approach envisioned the changes of entropy as a metabolic shift leading to a reduction of cell growth. The proliferation of six human cancer cell lines was evaluated as the output signal able to confirm the correctness of the mathematical model. By considering the cell as a reactive system able to respond to the unbalancing external stimuli, for the first time we could calculate and validate the frequencies of the field specifically effective on distinct cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Ion exchange reactions of major inorganic cations (H+, Na+, Ca2+, Mg2+ and K+) on beidellite: Experimental results and new thermodynamic database. Toward a better prediction of contaminant mobility in natural environments

    International Nuclear Information System (INIS)

    Robin, Valentin; Tertre, Emmanuel; Beaufort, Daniel; Regnault, Olivier; Sardini, Paul; Descostes, Michael

    2015-01-01

    Highlights: • Multi-site ion exchange model for beidellite for Na + , Ca 2+ , Mg 2+ , K + and H + . • Validity over the 1–7 pH range and total normality >5 × 10 −3 mol/L. • Application to equilibrium between smectite and acidic solution from mining sites. • Impact of crystal chemistry of smectites on their sorption properties. - Abstract: To our knowledge, no thermodynamic database is available in the literature concerning ion-exchange reactions occurring in low-charge smectite with tetrahedral charge (beidellite). The lack of this information makes it difficult to predict the mobility of contaminants in environments where beidellite and major cations, which act as competitors with contaminants for sorption on the clay phase, are present. The present study proposes a multi-site ion exchange model able to describe experimental data obtained for H + and the four major cations (Na + , Ca 2+ , Mg 2+ and K + ) found in natural waters interacting with a <0.3 μm size fraction of Na-beidellite. The nature of the sites involved in the sorption processes is assessed using qualitative structural data. Moreover, the effect of the charge location in the smectite on the selectivity coefficient values is discussed by comparison with the results reported in the literature for smectite characterized by octahedral charge (montmorillonite). The new thermodynamic database proposed in this study is based on the same total sorption site density and distribution of sites regardless of the cations investigated. This database is valid for a large range of physico-chemical conditions: a [1–7] pH range, a total normality higher than 5 × 10 −3 mol/L corresponding to a flocculated state for water/clay systems, and when sorption of ions pairs can be neglected. Note that this study provides evidence that a thermodynamic database describing ion exchange reactions between H + and the four major cations of natural water for smectite cannot be valid irrespective of the total

  9. Magnetic refrigeration cycle analysis using selected thermodynamic property characterizations for gadolinium gallium garnet

    International Nuclear Information System (INIS)

    Murphy, R.W.

    1992-01-01

    Magneto-thermodynamic property characterizations were selected, adapted, and compared to material property data for gadolinium gallium garnet in the temperature range 4--40 K and magnetic field range 0--6 T. The most appropriate formulations were incorporated into a model in which methods similar to those previously developed for other materials and temperature ranges were used to make limitation and relative performance assessments of Carnot, ideal regenerative, and pseudo-constant field regenerative cycles. Analysis showed that although Carnot cycle limitations on available temperature lift for gadolinium gallium garnet are not as severe as those for materials previously examined, substantial improvements in cooling capacity/temperature lift combinations can be achieved using regenerative cycles within specified fields limits if significant loss mechanisms are mitigated

  10. Biofuel Database

    Science.gov (United States)

    Biofuel Database (Web, free access)   This database brings together structural, biological, and thermodynamic data for enzymes that are either in current use or are being considered for use in the production of biofuels.

  11. Research on Big Data Attribute Selection Method in Submarine Optical Fiber Network Fault Diagnosis Database

    Directory of Open Access Journals (Sweden)

    Chen Ganlang

    2017-11-01

    Full Text Available At present, in the fault diagnosis database of submarine optical fiber network, the attribute selection of large data is completed by detecting the attributes of the data, the accuracy of large data attribute selection cannot be guaranteed. In this paper, a large data attribute selection method based on support vector machines (SVM for fault diagnosis database of submarine optical fiber network is proposed. Mining large data in the database of optical fiber network fault diagnosis, and calculate its attribute weight, attribute classification is completed according to attribute weight, so as to complete attribute selection of large data. Experimental results prove that ,the proposed method can improve the accuracy of large data attribute selection in fault diagnosis database of submarine optical fiber network, and has high use value.

  12. The Einstein database of IPC x-ray observations of optically selected and radio-selected quasars, 1.

    Science.gov (United States)

    Wilkes, Belinda J.; Tananbaum, Harvey; Worrall, D. M.; Avni, Yoram; Oey, M. S.; Flanagan, Joan

    1994-01-01

    We present the first volume of the Einstein quasar database. The database includes estimates of the X-ray count rates, fluxes, and luminosities for 514 quasars and Seyfert 1 galaxies observed with the Imaging Proportional Counter (IPC) aboard the Einstein Observatory. All were previously known optically selected or radio-selected objects, and most were the targets of the X-ray observations. The X-ray properties of the Active Galactic Nuclei (AGNs) have been derived by reanalyzing the IPC data in a systematic manner to provide a uniform database for general use by the astronomical community. We use the database to extend earlier quasar luminosity studies which were made using only a subset of the currently available data. The database can be accessed on internet via the SAO Einstein on-line system ('Einline') and is available in ASCII format on magnetic tape and DOS diskette.

  13. Application Of Database Program in selecting Sorghum (Sorghum bicolor L) Mutant Lines

    International Nuclear Information System (INIS)

    H, Soeranto

    2000-01-01

    Computer database software namely MSTAT and paradox have been exercised in the field of mutation breeding especially in the process of selecting plant mutant lines of sorghum. In MSTAT, selecting mutant lines can be done by activating the SELECTION function and then followed by entering mathematical formulas for the selection criterion. Another alternative is by defining the desired selection intensity to the analysis results of subprogram SORT. Including the selected plant mutant lines in BRSERIES program, it will make their progenies be easier to be traced in subsequent generations. In paradox, an application program for selecting mutant lines can be made by combining facilities of Table, form and report. Selecting mutant lines with defined selection criterion can easily be done through filtering data. As a relation database, paradox ensures that the application program for selecting mutant lines and progeny trachings, can be made easier, efficient and interactive

  14. Thermodynamic and kinetic aspects on the selective surface oxidation of binary, ternary and quarternary model alloys

    International Nuclear Information System (INIS)

    Swaminathan, Srinivasan; Spiegel, Michael

    2007-01-01

    Segregation and selective oxidation phenomena of minor alloying elements during annealing of steel sheets lead to the formation of bare spots after hot dip galvanizing. In order to understand the influence of common alloying elements on the surface chemistry after annealing, model alloys of binary (Fe-2Si, Fe-2Mn and Fe-0.8Cr), ternary (Fe-2Mn-2Si, Fe-2Mn-0.8Cr and Fe-2Si-0.8Cr) and quarternary (Fe-2Mn-2Si-0.8Cr) systems were investigated. The specimens were annealed for 60 s at 820 deg. C in N 2 -5% H 2 gas atmospheres with different dew points -80 and -40 deg. C, respectively. Surface chemistry of the annealed specimens was obtained by using X-ray photoelectron spectroscopy (XPS). The field emission scanning electron microscopy (FE-SEM) was used to view surface morphology. At low dew point -80 deg. C, apart from the thermodynamical calculations such as solubility product of oxides and their critical solute concentrations, kinetics play a decisive role on the selective oxidation, i.e. oxygen competition. As expected, the amount of external selective oxidation of alloying elements are well pronounced at higher dew point -40 deg. C. An attempt has been made to explain the dominant process of Si and Mn on Cr-oxidation and segregation. It is observed that annealing of quarternary system at higher dew point shifts the Cr-oxidation from external to internal

  15. Thermodynamic and kinetic aspects on the selective surface oxidation of binary, ternary and quarternary model alloys

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, Srinivasan [High Temperature Reactions Group, Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut fuer Eisenforschung GmbH, Max-Planck-Str. 1, D-40237 Duesseldorf (Germany)]. E-mail: s.swaminathan@mpie.de; Spiegel, Michael [High Temperature Reactions Group, Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut fuer Eisenforschung GmbH, Max-Planck-Str. 1, D-40237 Duesseldorf (Germany)

    2007-03-15

    Segregation and selective oxidation phenomena of minor alloying elements during annealing of steel sheets lead to the formation of bare spots after hot dip galvanizing. In order to understand the influence of common alloying elements on the surface chemistry after annealing, model alloys of binary (Fe-2Si, Fe-2Mn and Fe-0.8Cr), ternary (Fe-2Mn-2Si, Fe-2Mn-0.8Cr and Fe-2Si-0.8Cr) and quarternary (Fe-2Mn-2Si-0.8Cr) systems were investigated. The specimens were annealed for 60 s at 820 deg. C in N{sub 2}-5% H{sub 2} gas atmospheres with different dew points -80 and -40 deg. C, respectively. Surface chemistry of the annealed specimens was obtained by using X-ray photoelectron spectroscopy (XPS). The field emission scanning electron microscopy (FE-SEM) was used to view surface morphology. At low dew point -80 deg. C, apart from the thermodynamical calculations such as solubility product of oxides and their critical solute concentrations, kinetics play a decisive role on the selective oxidation, i.e. oxygen competition. As expected, the amount of external selective oxidation of alloying elements are well pronounced at higher dew point -40 deg. C. An attempt has been made to explain the dominant process of Si and Mn on Cr-oxidation and segregation. It is observed that annealing of quarternary system at higher dew point shifts the Cr-oxidation from external to internal.

  16. Thermodynamic analysis of the selective chlorination of electric arc furnace dust

    International Nuclear Information System (INIS)

    Pickles, C.A.

    2009-01-01

    The remelting of automobile scrap in an electric arc furnace (EAF) results in the production of a dust, which contains high concentrations of the oxides of zinc, iron, calcium and other metals. Typically, the lead and zinc are of commercial value, while the other metals are not worth recovering. At the present time, EAF dusts are treated in high temperature Waelz rotary kiln-type processes, where the lead and zinc oxides are selectively reduced and simultaneously reoxidized and a crude zinc oxide is produced. Another alternative processing route is selective chlorination, in which the non-ferrous metals are preferentially chlorinated to their gaseous chlorides and in this manner separated from the iron. In the present research, a detailed thermodynamic analysis of this chlorination process has been performed and the following factors were investigated; temperature, amount of chlorine, lime content, silica content, presence of an inert gas and the oxygen potential. High lead and zinc recoveries as gaseous chlorides could be achieved but some of the iron oxide was also chlorinated. Additionally, the calcium oxide in the dust consumes chlorine, but this can be minimized by adding silica, which results in the formation of stable calcium silicates. The optimum conditions were determined for a typical dust composition. The selectivities achieved with chlorination were lower than those for reduction, as reported in the literature, but there are other advantages such as the potential recovery of copper.

  17. Thermodynamic analysis of the selective chlorination of electric arc furnace dust

    Energy Technology Data Exchange (ETDEWEB)

    Pickles, C.A., E-mail: pickles-c@mine.queensu.ca [Department of Mining Engineering, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada)

    2009-07-30

    The remelting of automobile scrap in an electric arc furnace (EAF) results in the production of a dust, which contains high concentrations of the oxides of zinc, iron, calcium and other metals. Typically, the lead and zinc are of commercial value, while the other metals are not worth recovering. At the present time, EAF dusts are treated in high temperature Waelz rotary kiln-type processes, where the lead and zinc oxides are selectively reduced and simultaneously reoxidized and a crude zinc oxide is produced. Another alternative processing route is selective chlorination, in which the non-ferrous metals are preferentially chlorinated to their gaseous chlorides and in this manner separated from the iron. In the present research, a detailed thermodynamic analysis of this chlorination process has been performed and the following factors were investigated; temperature, amount of chlorine, lime content, silica content, presence of an inert gas and the oxygen potential. High lead and zinc recoveries as gaseous chlorides could be achieved but some of the iron oxide was also chlorinated. Additionally, the calcium oxide in the dust consumes chlorine, but this can be minimized by adding silica, which results in the formation of stable calcium silicates. The optimum conditions were determined for a typical dust composition. The selectivities achieved with chlorination were lower than those for reduction, as reported in the literature, but there are other advantages such as the potential recovery of copper.

  18. Thermodynamic analysis of the selective chlorination of electric arc furnace dust.

    Science.gov (United States)

    Pickles, C A

    2009-07-30

    The remelting of automobile scrap in an electric arc furnace (EAF) results in the production of a dust, which contains high concentrations of the oxides of zinc, iron, calcium and other metals. Typically, the lead and zinc are of commercial value, while the other metals are not worth recovering. At the present time, EAF dusts are treated in high temperature Waelz rotary kiln-type processes, where the lead and zinc oxides are selectively reduced and simultaneously reoxidized and a crude zinc oxide is produced. Another alternative processing route is selective chlorination, in which the non-ferrous metals are preferentially chlorinated to their gaseous chlorides and in this manner separated from the iron. In the present research, a detailed thermodynamic analysis of this chlorination process has been performed and the following factors were investigated; temperature, amount of chlorine, lime content, silica content, presence of an inert gas and the oxygen potential. High lead and zinc recoveries as gaseous chlorides could be achieved but some of the iron oxide was also chlorinated. Additionally, the calcium oxide in the dust consumes chlorine, but this can be minimized by adding silica, which results in the formation of stable calcium silicates. The optimum conditions were determined for a typical dust composition. The selectivities achieved with chlorination were lower than those for reduction, as reported in the literature, but there are other advantages such as the potential recovery of copper.

  19. Selectivity in Ligand Binding to Uranyl Compounds: A Synthetic, Structural, Thermodynamic and Computational Study

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, John [Univ. of California, Berkeley, CA (United States)

    2017-12-06

    The uranyl cation (UO22+) is the most abundant form of uranium on the planet. It is estimated that 4.5 billion tons of uranium in this form exist in sea water. The ability to bind and extract the uranyl cation from aqueous solution while separating it from other elements would provide a limitless source of nuclear fuel. A large body of research concerns the selective recognition and extraction of uranyl. A stable molecule, the cation has a linear O=U=O geometry. The short U-O bonds (1.78 Å) arise from the combination of uranium 5f/6d and oxygen 2p orbitals. Due to the oxygen moieties being multiply bonded, these sites were not thought to be basic enough for Lewis acidic coordination to be a viable approach to sequestration. We believe that the goal of developing a practical system for uranium separation from seawater will not be attained without new insights into our existing fundamental knowledge of actinide chemistry. We posit that detailed studies of the kinetic and thermodynamic factors that influence interactions between f-elements and ligands with a range of donor atoms is essential to any major advance in this important area. The goal of this research is thus to broaden the coordination chemistry of the uranyl ion by studying new ligand systems via synthetic, structural, thermodynamic and computational methods. We anticipate that this fundamental science will find use beyond actinide separation technologies in areas such as nuclear waste remediation and nuclear materials.

  20. Cyanide and antimony thermodynamic database for the aqueous species and solids for the EPA-MINTEQ geochemical code

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1989-05-01

    Thermodynamic data for aqueous species and solids that contain cyanide and antimony were tabulated from several commonly accepted, published sources of thermodynamic data and recent journal article. The review does not include gases or organic complexes of either antimony or cyanide, nor does the review include the sulfur compounds of cyanide. The basic thermodynamic data, ΔG/sub f,298//sup o/, ΔH/sub f,298//sup o/, and S/sub f//sup o/ values, were chosen to represent each solid phase and aqueous species for which data were available in the appropriate standard state. From these data the equilibrium constants (log K/sub r,298//sup o/) and enthalpies of reaction (ΔH/sub r,298//sup o/) at 298 K (25/degree/C) were calculated for reactions involving the formation of these aqueous species and solids from the basic components. 34 refs., 14 tabs

  1. Evaluation of selectivity and thermodynamic characteristics of doubly charged cations on zirconium titanate from aqueous and alcoholic solutions

    International Nuclear Information System (INIS)

    Zakaria, E.S.; Ali, I.M.; El-Naggar, I.M.

    2005-01-01

    The ion exchange of Ni 2+ /H + and Co 2+ /H + have been determined using solution of 0.1 ionic strength for both forward and backward reactions at 25 degree C by batch technique. The thermodynamic equilibrium constants for the exchange process have been calculated using Gains Thomas equation. The preference series Ni 2+ >Co 2+ was determined. The ion exchange selectivity for exchange of Ni 2 + and Co 2+ ions with hydrogen ions on zirconium titanate have been investigated for aqueous and 25% of methanol and ethanol solutions. The values of thermodynamic functions for the studied systems have been calculated

  2. Thermodynamic data for selected gas impurities in the primary coolant of high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Feber, R.C.

    1976-12-01

    The literature of thermodynamic data for selected fission-product species is reviewed and supplemented in support of complex chemical equilibrium calculations applied to fission-product distributions in the primary coolant of high-temperature gas-cooled reactors. Thermodynamic functions and heats and free energies of formation are calculated and tabulated to 3000 0 K for CsI (s,l,g), Cs 2 I 2 (g), CH 3 I(g), COI 2 (g), and CsH(g). 79 references

  3. Development of thermodynamic databases and geochemical/transport models for prediction of long-term radionuclide migration (Germany)

    International Nuclear Information System (INIS)

    Kienzler, B.

    2000-01-01

    The isolation capacity of a repository system for radionuclides is described by geochemical modeling. The models for interpretation of experimental findings and for long-term extrapolation of experimental results are based on thermodynamic approaches. The geochemical models include dissolution reactions of waste forms, the evolution of the geochemical milieu, interactions of radionuclides with constituents of the groundwater (brines) and the precipitation of new solid phases. Reliable thermodynamic data, understanding of radionuclide complexation in aqueous multi-electrolyte solutions at the relevant ionic strength and knowledge on the formation of pure and mixed solids and on sorption processes are urgently needed for such model calculations. (author)

  4. Analysis of B4C influences on thermodynamic properties and phase separation of molten corium with ionic liquid U-Zr-Fe-O-B-C-FPs database

    International Nuclear Information System (INIS)

    Fukasawa, Masanori; Tamura, Shigeyuki; Saito, Masaki

    2009-01-01

    Boron carbide influences on thermodynamic properties and phase separation of molten corium such as liquidus temperature were estimated with our U-Zr-Fe-O-B-C-FPs thermodynamic database. The liquidus temperature of the oxide for the typical corium was estimated to increase by a hundred degrees with B 4 C addition when the corium included up to 10 wt% Fe. On the other hand, the liquidus temperature was hardly changed when the corium included 50 wt% Fe. The interaction temperature between the steel and the corium with B 4 C was estimated at 1130 K. We define the interaction temperature as the lowest temperature where the solid Fe and the liquid phase of a corium are in equilibrium, at which interactions such as microstructure change of the vessel were observed in test studies. Although it is 180 K lower than that without B 4 C, the estimated temperature is still over 200 K higher than the criterion temperature where the vessel loses its structural strength, which has been used in the feasibility evaluation of the in-vessel retention. Other thermodynamic influences of B 4 C were also estimated as not having a negative impact on the in-vessel retention. (author)

  5. Selectivity in ligand binding to uranyl compounds: A synthetic, structural, thermodynamic and computational study

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, John [Univ. of California, Berkeley, CA (United States)

    2015-01-21

    The uranyl cation (UO₂²⁺) is the most abundant form of uranium on the planet. It is estimated that 4.5 billion tons of uranium in this form exist in sea water. The ability to bind and extract the uranyl cation from aqueous solution while separating it from other elements would provide a limitless source of nuclear fuel. A large body of research concerns the selective recognition and extraction of uranyl. A stable molecule, the cation has a linear O=U=O geometry. The short U-O bonds (1.78 Å) arise from the combination of uranium 5f/6d and oxygen 2p orbitals. Due to the oxygen moieties being multiply bonded, these sites were not thought to be basic enough for Lewis acidic coordination to be a viable approach to sequestration. The goal of this research is thus to broaden the coordination chemistry of the uranyl ion by studying new ligand systems via synthetic, structural, thermodynamic and computational methods. It is anticipated that this fundamental science will find use beyond actinide separation technologies in areas such as nuclear waste remediation and nuclear materials. The focus of this study is to synthesize uranyl complexes incorporating amidinate and guanidinate ligands. Both synthetic and computational methods are used to investigate novel equatorial ligand coordination and how this affects the basicity of the oxo ligands. Such an understanding will later apply to designing ligands incorporating functionalities that can bind uranyl both equatorially and axially for highly selective sequestration. Efficient and durable chromatography supports for lanthanide separation will be generated by (1) identifying robust peptoid-based ligands capable of binding different lanthanides with variable affinities, and (2) developing practical synthetic methods for the attachment of these ligands to Dowex ion exchange resins.

  6. Selectivity in ligand binding to uranyl compounds: A synthetic, structural, thermodynamic and computational study

    International Nuclear Information System (INIS)

    Arnold, John

    2015-01-01

    The uranyl cation (UO 2 2+ ) is the most abundant form of uranium on the planet. It is estimated that 4.5 billion tons of uranium in this form exist in sea water. The ability to bind and extract the uranyl cation from aqueous solution while separating it from other elements would provide a limitless source of nuclear fuel. A large body of research concerns the selective recognition and extraction of uranyl. A stable molecule, the cation has a linear O=U=O geometry. The short U-O bonds (1.78 Å) arise from the combination of uranium 5f/6d and oxygen 2p orbitals. Due to the oxygen moieties being multiply bonded, these sites were not thought to be basic enough for Lewis acidic coordination to be a viable approach to sequestration. The goal of this research is thus to broaden the coordination chemistry of the uranyl ion by studying new ligand systems via synthetic, structural, thermodynamic and computational methods. It is anticipated that this fundamental science will find use beyond actinide separation technologies in areas such as nuclear waste remediation and nuclear materials. The focus of this study is to synthesize uranyl complexes incorporating amidinate and guanidinate ligands. Both synthetic and computational methods are used to investigate novel equatorial ligand coordination and how this affects the basicity of the oxo ligands. Such an understanding will later apply to designing ligands incorporating functionalities that can bind uranyl both equatorially and axially for highly selective sequestration. Efficient and durable chromatography supports for lanthanide separation will be generated by (1) identifying robust peptoid-based ligands capable of binding different lanthanides with variable affinities, and (2) developing practical synthetic methods for the attachment of these ligands to Dowex ion exchange resins.

  7. Chemical Thermodynamics Vol. 12 - Chemical Thermodynamics of tin

    International Nuclear Information System (INIS)

    Gamsjaeger, Heinz; GAJDA, Tamas; Sangster, James; Saxena, Surendra K.; Voigt, Wolfgang; Perrone, Jane

    2012-01-01

    This is the 12th volume of a series of expert reviews of the chemical thermodynamics of key chemical elements in nuclear technology and waste management. This volume is devoted to the inorganic species and compounds of tin. The tables contained in Chapters III and IV list the currently selected thermodynamic values within the NEA TDB Project. The database system developed at the NEA Data Bank, see Section II.6, assures consistency among all the selected and auxiliary data sets. The recommended thermodynamic data are the result of a critical assessment of published information. The values in the auxiliary data set, see Tables IV-1 and IV-2, have been adopted from CODATA key values or have been critically reviewed in this or earlier volumes of the series

  8. Development of a database system for operational use in the selection of titanium alloys

    Science.gov (United States)

    Han, Yuan-Fei; Zeng, Wei-Dong; Sun, Yu; Zhao, Yong-Qing

    2011-08-01

    The selection of titanium alloys has become a complex decision-making task due to the growing number of creation and utilization for titanium alloys, with each having its own characteristics, advantages, and limitations. In choosing the most appropriate titanium alloys, it is very essential to offer a reasonable and intelligent service for technical engineers. One possible solution of this problem is to develop a database system (DS) to help retrieve rational proposals from different databases and information sources and analyze them to provide useful and explicit information. For this purpose, a design strategy of the fuzzy set theory is proposed, and a distributed database system is developed. Through ranking of the candidate titanium alloys, the most suitable material is determined. It is found that the selection results are in good agreement with the practical situation.

  9. Uncertainty in geochemical modelling of CO2 and calcite dissolution in NaCl solutions due to different modelling codes and thermodynamic databases

    International Nuclear Information System (INIS)

    Haase, Christoph; Dethlefsen, Frank; Ebert, Markus; Dahmke, Andreas

    2013-01-01

    Highlights: • CO 2 and calcite dissolution is calculated. • The codes PHREEQC, Geochemist’s Workbench, EQ3/6, and FactSage are used. • Comparison with Duan and Li (2008) shows lowest deviation using phreeqc.dat and wateq4f.dat. • Using Pitzer databases does not improve accurate calculations. • Uncertainty in dissolved CO 2 is largest using the geochemical models. - Abstract: A prognosis of the geochemical effects of CO 2 storage induced by the injection of CO 2 into geologic reservoirs or by CO 2 leakage into the overlaying formations can be performed by numerical modelling (non-invasive) and field experiments. Until now the research has been focused on the geochemical processes of the CO 2 reacting with the minerals of the storage formation, which mostly consists of quartzitic sandstones. Regarding the safety assessment the reactions between the CO 2 and the overlaying formations in the case of a CO 2 leakage are of equal importance as the reactions in the storage formation. In particular, limestone formations can react very sensitively to CO 2 intrusion. The thermodynamic parameters necessary to model these reactions are not determined explicitly through experiments at the total range of temperature and pressure conditions and are thus extrapolated by the simulation code. The differences in the calculated results lead to different calcite and CO 2 solubilities and can influence the safety issues. This uncertainty study is performed by comparing the computed results, applying the geochemical modelling software codes The Geochemist’s Workbench, EQ3/6, PHREEQC and FactSage/ChemApp and their thermodynamic databases. The input parameters (1) total concentration of the solution, (2) temperature and (3) fugacity are varied within typical values for CO 2 reservoirs, overlaying formations and close-to-surface aquifers. The most sensitive input parameter in the system H 2 O–CO 2 –NaCl–CaCO 3 for the calculated range of dissolved calcite and CO 2 is the

  10. Comparison of the thermodynamic and correlation criteria for internal standard selection in laser-induced breakdown spectrometry

    International Nuclear Information System (INIS)

    Labutin, Timur A.; Zaytsev, Sergey M.; Popov, Andrey M.; Seliverstova, Irina V.; Bozhenko, Sergey E.; Zorov, Nikita B.

    2013-01-01

    The use of the reference line of an internal standard in LIBS is a usual way to eliminate or reduce the fluctuations of plasma parameters from pulse to pulse as well as from sample to sample. Thermodynamic criterion, i.e. closeness of excitation potentials of the analytical line and the reference one, is often used to select an appropriate reference line. In this work, we propose an alternative criterion based on searching the best correlated pairs of lines under the variations of laser energy. Two criteria were compared for high-alloy steels and soils of different origins. The discrepancy among the values of plasma temperature calculated from Fe I, Mn I and Cr I transitions was found under the conditions of slightly changed laser fluence on steel samples. On the other hand, the agreement between plasma temperatures, obtained for Fe I and Mn I transitions, was demonstrated in plasma on soil samples. Calibration results obtained for manganese in steels and lead in soils show that thermodynamic criterion can be an appropriate way for choosing an internal standard only under LTE conditions. Two lines of Mn I at 403.07 nm and 404.14 nm and Pb I at 405.78 nm were the analytical lines for the quantification of manganese in steels and lead in soils, respectively. The use of the correlative criterion seems to be suitable for internal standardization under LTE or non-LTE conditions. Probable limitations of the correlative criterion and its possibilities to identify weak lines are discussed in the article. - Highlights: • Novel criterion for internal standard selection, based on the correlation of analytical line and reference one • Comparison of correlation and thermodynamic criteria • Correlation analysis of the spectrum can be useful for atomic line identification. • Correlation approach can be used in LTE and non-LTE conditions

  11. A phenome database (NEAUHLFPD) designed and constructed for broiler lines divergently selected for abdominal fat content.

    Science.gov (United States)

    Li, Min; Dong, Xiang-yu; Liang, Hao; Leng, Li; Zhang, Hui; Wang, Shou-zhi; Li, Hui; Du, Zhi-Qiang

    2017-05-20

    Effective management and analysis of precisely recorded phenotypic traits are important components of the selection and breeding of superior livestocks. Over two decades, we divergently selected chicken lines for abdominal fat content at Northeast Agricultural University (Northeast Agricultural University High and Low Fat, NEAUHLF), and collected large volume of phenotypic data related to the investigation on molecular genetic basis of adipose tissue deposition in broilers. To effectively and systematically store, manage and analyze phenotypic data, we built the NEAUHLF Phenome Database (NEAUHLFPD). NEAUHLFPD included the following phenotypic records: pedigree (generations 1-19) and 29 phenotypes, such as body sizes and weights, carcass traits and their corresponding rates. The design and construction strategy of NEAUHLFPD were executed as follows: (1) Framework design. We used Apache as our web server, MySQL and Navicat as database management tools, and PHP as the HTML-embedded language to create dynamic interactive website. (2) Structural components. On the main interface, detailed introduction on the composition, function, and the index buttons of the basic structure of the database could be found. The functional modules of NEAUHLFPD had two main components: the first module referred to the physical storage space for phenotypic data, in which functional manipulation on data can be realized, such as data indexing, filtering, range-setting, searching, etc.; the second module related to the calculation of basic descriptive statistics, where data filtered from the database can be used for the computation of basic statistical parameters and the simultaneous conditional sorting. NEAUHLFPD could be used to effectively store and manage not only phenotypic, but also genotypic and genomics data, which can facilitate further investigation on the molecular genetic basis of chicken adipose tissue growth and development, and expedite the selection and breeding of broilers

  12. First Principles Prediction of Structure, Structure Selectivity, and Thermodynamic Stability under Realistic Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ceder, Gerbrand [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials and Engineering

    2018-01-28

    Novel materials are often the enabler for new energy technologies. In ab-initio computational materials science, method are developed to predict the behavior of materials starting from the laws of physics, so that properties can be predicted before compounds have to be synthesized and tested. As such, a virtual materials laboratory can be constructed, saving time and money. The objectives of this program were to develop first-principles theory to predict the structure and thermodynamic stability of materials. Since its inception the program focused on the development of the cluster expansion to deal with the increased complexity of complex oxides. This research led to the incorporation of vibrational degrees of freedom in ab-initio thermodynamics, developed methods for multi-component cluster expansions, included the explicit configurational degrees of freedom of localized electrons, developed the formalism for stability in aqueous environments, and culminated in the first ever approach to produce exact ground state predictions of the cluster expansion. Many of these methods have been disseminated to the larger theory community through the Materials Project, pymatgen software, or individual codes. We summarize three of the main accomplishments.

  13. The selection of a refrigerant thermodynamically efficient and economical; Seleccion de un refrigerante que sea termodinamicamente eficiente y economico

    Energy Technology Data Exchange (ETDEWEB)

    Lemus F, Enrique; Ambriz, Juan Jose; Lugo L, Raul [Universidad Autonoma Metropolitana-Iztapalapa, Mexico, D. F. (Mexico)

    1994-12-31

    This paper presents a way of dealing with the problem of selecting a refrigerant that fulfills the operation restrictions such as the refrigeration capacity and cycle temperatures. This selection can be made if the amount of refrigerant handled by the system is known, as well as the relationships supplied by the behavior coefficient (COP) and the inverted cycle efficiency with base on the second law of thermodynamics. [Espanol] Se presenta una forma de como abordar el problema de la seleccion de un refrigerante que cumpla con las restricciones de operacion tales como la capacidad de refrigeracion y temperaturas del ciclo. Esta seleccion puede hacerse si se conoce la cantidad de refrigerante que maneja el sistema, asi como las relaciones que proporcionan el coeficiente de comportamiento (COP) y la eficiencia del ciclo invertido con base en la segunda ley de la termodinamica.

  14. Thermodynamic Analysis of the Selective Reduction of a Nickeliferous Limonitic Laterite Ore by Hydrogen

    Science.gov (United States)

    Elliott, R.; Pickles, C. A.

    2017-09-01

    Nickeliferous limonitic laterite ores are becoming increasingly attractive as a source of metallic nickel as the costs associated with recovering nickel from the sulphide ores increase. Unlike the sulphide ores, however, the laterite ores are not amenable to concentration by conventional mineral processing techniques such as froth flotation. One potential concentrating method would be the pyrometallurgical solid state reduction of the nickeliferous limonitic ores at relatively low temperatures, followed by beneficiation via magnetic separation. A number of reductants can be utilized in the reduction step, and in this research, a thermodynamic model has been developed to investigate the reduction of a nickeliferous limonitic laterite by hydrogen. The nickel recovery to the ferronickel phase was predicted to be greater than 95 % at temperatures of 673-873 K. Reductant additions above the stoichiometric requirement resulted in high recoveries over a wider temperature range, but the nickel grade of the ferronickel decreased.

  15. On the Future of Thermochemical Databases, the Development of Solution Models and the Practical Use of Computational Thermodynamics in Volcanology, Geochemistry and Petrology: Can Innovations of Modern Data Science Democratize an Oligarchy?

    Science.gov (United States)

    Ghiorso, M. S.

    2014-12-01

    Computational thermodynamics (CT) has now become an essential tool of petrologic and geochemical research. CT is the basis for the construction of phase diagrams, the application of geothermometers and geobarometers, the equilibrium speciation of solutions, the construction of pseudosections, calculations of mass transfer between minerals, melts and fluids, and, it provides a means of estimating materials properties for the evaluation of constitutive relations in fluid dynamical simulations. The practical application of CT to Earth science problems requires data. Data on the thermochemical properties and the equation of state of relevant materials, and data on the relative stability and partitioning of chemical elements between phases as a function of temperature and pressure. These data must be evaluated and synthesized into a self consistent collection of theoretical models and model parameters that is colloquially known as a thermodynamic database. Quantitative outcomes derived from CT reply on the existence, maintenance and integrity of thermodynamic databases. Unfortunately, the community is reliant on too few such databases, developed by a small number of research groups, and mostly under circumstances where refinement and updates to the database lag behind or are unresponsive to need. Given the increasing level of reliance on CT calculations, what is required is a paradigm shift in the way thermodynamic databases are developed, maintained and disseminated. They must become community resources, with flexible and assessable software interfaces that permit easy modification, while at the same time maintaining theoretical integrity and fidelity to the underlying experimental observations. Advances in computational and data science give us the tools and resources to address this problem, allowing CT results to be obtained at the speed of thought, and permitting geochemical and petrological intuition to play a key role in model development and calibration.

  16. Selecting polymers for two-phase partitioning bioreactors (TPPBs): Consideration of thermodynamic affinity, crystallinity, and glass transition temperature.

    Science.gov (United States)

    Bacon, Stuart L; Peterson, Eric C; Daugulis, Andrew J; Parent, J Scott

    2015-01-01

    Two-phase partitioning bioreactor technology involves the use of a secondary immiscible phase to lower the concentration of cytotoxic solutes in the fermentation broth to subinhibitory levels. Although polymeric absorbents have attracted recent interest due to their low cost and biocompatibility, material selection requires the consideration of properties beyond those of small molecule absorbents (i.e., immiscible organic solvents). These include a polymer's (1) thermodynamic affinity for the target compound, (2) degree of crystallinity (wc ), and (3) glass transition temperature (Tg ). We have examined the capability of three thermodynamic models to predict the partition coefficient (PC) for n-butyric acid, a fermentation product, in 15 polymers. Whereas PC predictions for amorphous materials had an average absolute deviation (AAD) of ≥16%, predictions for semicrystalline polymers were less accurate (AAD ≥ 30%). Prediction errors were associated with uncertainties in determining the degree of crystallinity within a polymer and the effect of absorbed water on n-butyric acid partitioning. Further complications were found to arise for semicrystalline polymers, wherein strongly interacting solutes increased the polymer's absorptive capacity by actually dissolving the crystalline fraction. Finally, we determined that diffusion limitations may occur for polymers operating near their Tg , and that the Tg can be reduced by plasticization by water and/or solute. This study has demonstrated the impact of basic material properties that affects the performance of polymers as sequestering phases in TPPBs, and reflects the additional complexity of polymers that must be taken into account in material selection. © 2015 American Institute of Chemical Engineers.

  17. Statistical thermodynamics

    International Nuclear Information System (INIS)

    Hwang, Jeong Ui; Jang, Jong Jae; Jee, Jong Gi

    1987-01-01

    The contents of this book are thermodynamics on the law of thermodynamics, classical thermodynamics and molecule thermodynamics, basics of molecule thermodynamics, molecule and assembly partition function, molecule partition function, classical molecule partition function, thermodynamics function for ideal assembly in fixed system, thermodynamics function for ideal assembly in running system, Maxwell-Boltzmann's law of distribution, chemical equilibrium like calculation of equilibrium constant and theory of absolute reaction rate.

  18. Experimental and Thermodynamic Study of Selected in-Situ Composites from the Fe-Cr-Ni-Mo-C System

    Directory of Open Access Journals (Sweden)

    Wieczerzak K.

    2016-06-01

    Full Text Available The aim of the study was to synthesize and characterize the selected in-situ composites from the Fe-Cr-Ni-Mo-C system, additionally strengthened by intermetallic compounds. The project of the alloys was supported by thermodynamic simulations using Calculation of Phase Diagram approach via Thermo-Calc. Selected alloys were synthesized in an arc furnace in a high purity argon atmosphere using a suction casting unit. The studies involved a range of experimental techniques to characterize the alloys in the as-cast state, including optical emission spectrometry, light microscopy, scanning electron microscopy, electron microprobe analysis, X-ray diffraction and microhardness tests. These experimental studies were compared with the Thermo-Calc data and high resolution dilatometry. The results of investigations presented in this paper showed that there is a possibility to introduce intermetallic compounds, such as χ and σ, through modification of the chemical composition of the alloy with respect to Nieq and Creq. It was found that the place of intermetallic compounds precipitation strongly depends on matrix nature. Results presented in this paper may be successfully used to build a systematic knowledge about the group of alloys with a high volume fraction of complex carbides, and high physicochemical properties, additionally strengthened by intermetallic compounds.

  19. Osmotic Power Generation by Inner Selective Hollow Fiber Membranes: An investigation of thermodynamics, mass transfer, and module scale modelling

    KAUST Repository

    Xiong, Jun Ying

    2016-12-29

    A comprehensive analysis of fluid motion, mass transport, thermodynamics and power generation during pressure retarded osmotic (PRO) processes was conducted. This work aims to (1) elucidate the fundamental relationship among various membrane properties and operation parameters and (2) analyse their individual and combined impacts on PRO module performance. A state-of-the-art inner-selective thin-film composite (TFC) hollow fiber membrane was employed in the modelling. The analyses of mass transfer and Gibbs free energy of mixing indicate that the asymmetric nature of hollow fibers results in more significant external concentration polarization (ECP) in the lumen side of the inner-selective hollow fiber membranes. In addition, a trade-off relationship exists between the power density (PD) and the specific energy (SE). The PD vs. SE trade-off upper bound may provide a useful guidance whether the flowrates of the feed and draw solutions should be further optimized in order to (1) minimize the boundary thickness and (2) maximize the osmotic power generation. Two new terms, mass transfer efficiency and power harvesting efficiency for osmotic power generation, have been proposed. This work may provide useful insights to design and operate PRO modules with enhanced performance so that the PRO process becomes more promising in real applications in the near future.

  20. The impact of database restriction on pharmacovigilance signal detection of selected cancer therapies.

    Science.gov (United States)

    Hauben, Manfred; Hung, Eric; Wood, Jennifer; Soitkar, Amit; Reshef, Daniel

    2017-05-01

    The aim of this study was to investigate whether database restriction can improve oncology drug pharmacovigilance signal detection performance. We used spontaneous adverse event (AE) reports in the United States (US) Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) database. Positive control (PC) drug medical concept (DMC) pairs were selected from safety information not included in the product's first label but subsequently added as label changes. These medical concepts (MCs) were mapped to the Medical Dictionary for Regulatory Activities (MedDRA) preferred terms (PTs) used in FAERS to code AEs. Negative controls (NC) were MCs with circumscribed PTs not included in the corresponding US package insert (USPI). We calculated shrinkage-adjusted observed-to-expected (O/E) reporting frequencies for the aforementioned drug-PT pairs. We also formulated an adjudication framework to calculate performance at the MC level. Performance metrics [sensitivity, specificity, positive and negative predictive value (PPV, NPV), signal/noise (S/N), F and Matthews correlation coefficient (MCC)] were calculated for each analysis and compared. The PC reference set consisted of 11 drugs, 487 PTs, 27 MCs, 37 drug-MC combinations and 638 drug-event combinations (DECs). The NC reference set consisted of 11 drugs, 9 PTs, 5 MCs, 40 drug-MC combinations and 67 DECs. Most drug-event pairs were not highlighted by either analysis. A small percentage of signals of disproportionate reporting were lost, more noise than signal, with no gains. Specificity and PPV improved whereas sensitivity, NPV, F and MCC decreased, but all changes were small relative to the decrease in sensitivity. The overall S/N improved. This oncology drug restricted analysis improved the S/N ratio, removing proportionately more noise than signal, but with significant credible signal loss. Without broader experience and a calculus of costs and utilities of correct versus incorrect classifications in

  1. Thermodynamic modelling and in-situ neutron diffraction investigation of the (Ce + Mg + Zn) system

    International Nuclear Information System (INIS)

    Zhu, Zhijun; Gharghouri, Michael A.; Medraj, Mamoun; Lee, Soo Yeol; Pelton, Arthur D.

    2016-01-01

    Highlights: • All phase diagram and thermodynamic data critically assessed for the (Ce + Mg + Zn) system. • All phases described by optimized thermodynamic models. • In-situ neutron diffraction performed to identify phases and transition temperatures. • Assessments of other (RE + Mg + Zn) systems have been carried out simultaneously. • The final product is a thermodynamic database for multicomponent (Mg + RE + Zn) systems. - Abstract: All available phase diagram data for the (Ce + Mg + Zn) system were critically assessed. In-situ neutron diffraction (ND) experiments were performed on selected samples to identify phases and transition temperatures. A critical thermodynamic evaluation and optimization of the (Ce + Mg + Zn) system were carried out and model parameters for the thermodynamic properties of all phases were obtained. The phase transformation behaviour of selected samples was well resolved from the ND experiments and experimental data were used to refine the thermodynamic model parameters.

  2. Defining new criteria for selection of cell-based intestinal models using publicly available databases

    Directory of Open Access Journals (Sweden)

    Christensen Jon

    2012-06-01

    Full Text Available Abstract Background The criteria for choosing relevant cell lines among a vast panel of available intestinal-derived lines exhibiting a wide range of functional properties are still ill-defined. The objective of this study was, therefore, to establish objective criteria for choosing relevant cell lines to assess their appropriateness as tumor models as well as for drug absorption studies. Results We made use of publicly available expression signatures and cell based functional assays to delineate differences between various intestinal colon carcinoma cell lines and normal intestinal epithelium. We have compared a panel of intestinal cell lines with patient-derived normal and tumor epithelium and classified them according to traits relating to oncogenic pathway activity, epithelial-mesenchymal transition (EMT and stemness, migratory properties, proliferative activity, transporter expression profiles and chemosensitivity. For example, SW480 represent an EMT-high, migratory phenotype and scored highest in terms of signatures associated to worse overall survival and higher risk of recurrence based on patient derived databases. On the other hand, differentiated HT29 and T84 cells showed gene expression patterns closest to tumor bulk derived cells. Regarding drug absorption, we confirmed that differentiated Caco-2 cells are the model of choice for active uptake studies in the small intestine. Regarding chemosensitivity we were unable to confirm a recently proposed association of chemo-resistance with EMT traits. However, a novel signature was identified through mining of NCI60 GI50 values that allowed to rank the panel of intestinal cell lines according to their drug responsiveness to commonly used chemotherapeutics. Conclusions This study presents a straightforward strategy to exploit publicly available gene expression data to guide the choice of cell-based models. While this approach does not overcome the major limitations of such models

  3. Basic Thermodynamics

    International Nuclear Information System (INIS)

    Duthil, P

    2014-01-01

    The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered

  4. Basic Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Duthil, P [Orsay, IPN (France)

    2014-07-01

    The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered.

  5. Osmotic Power Generation by Inner Selective Hollow Fiber Membranes: An investigation of thermodynamics, mass transfer, and module scale modelling

    KAUST Repository

    Xiong, Jun Ying; Cai, Dong Jun; Chong, Qing Yu; Lee, Swin Hui; Chung, Neal Tai-Shung

    2016-01-01

    A comprehensive analysis of fluid motion, mass transport, thermodynamics and power generation during pressure retarded osmotic (PRO) processes was conducted. This work aims to (1) elucidate the fundamental relationship among various membrane

  6. Statistical thermodynamics

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2008-03-01

    This book consists of 15 chapters, which are basic conception and meaning of statistical thermodynamics, Maxwell-Boltzmann's statistics, ensemble, thermodynamics function and fluctuation, statistical dynamics with independent particle system, ideal molecular system, chemical equilibrium and chemical reaction rate in ideal gas mixture, classical statistical thermodynamics, ideal lattice model, lattice statistics and nonideal lattice model, imperfect gas theory on liquid, theory on solution, statistical thermodynamics of interface, statistical thermodynamics of a high molecule system and quantum statistics

  7. Elaboration of database to support the selection of sites for nuclear installations

    International Nuclear Information System (INIS)

    Silva, Dayana Braga Cordeiro; Martins, Vivian Borges

    2013-01-01

    The main objective of this study is to collect data to develop a geocoded geographic database, contributing to the monitoring of nuclear activities situated in the Sao Francisco Basin, and also treat, adapt, display, and organize these data in the form of a single database so that they can be used in the decision-making process

  8. Experimental thermodynamics experimental thermodynamics of non-reacting fluids

    CERN Document Server

    Neindre, B Le

    2013-01-01

    Experimental Thermodynamics, Volume II: Experimental Thermodynamics of Non-reacting Fluids focuses on experimental methods and procedures in the study of thermophysical properties of fluids. The selection first offers information on methods used in measuring thermodynamic properties and tests, including physical quantities and symbols for physical quantities, thermodynamic definitions, and definition of activities and related quantities. The text also describes reference materials for thermometric fixed points, temperature measurement under pressures, and pressure measurements. The publicatio

  9. Choice of the thermodynamic variables

    International Nuclear Information System (INIS)

    Balian, R.

    1985-09-01

    Some basic ideas of thermodynamics and statistical mechanics, both at equilibrium and off equilibrium, are recalled. In particular, the selection of relevant variables which underlies any macroscopic description is discussed, together with the meaning of the various thermodynamic quantities, in order to set the thermodynamic approaches used in nuclear physics in a general prospect [fr

  10. Thermodynamic Database for the Terrestrial and Planetary Mantle Studies: Where we stand, and some future directions involving experimental studies, numerical protocol for EoS and atomistic calculations (Invited)

    Science.gov (United States)

    Ganguly, J.; Tirone, M.; Sorcar, N.

    2013-12-01

    Reliable thermodynamic databases for rock forming minerals are essential for petrological and geodynamic studies. While the available databases (1-3) represent laudable efforts, none seems to be completely satisfactory. We show inter-comparison of phase diagrams computed from different databases and also their comparisons with experimental phase diagrams in complex systems. The results show good agreement and also significant disagreements in some P-T-X regimes; resolution of these disagreements via new experimental and thermodynamic data is needed to sort out the problems and make further progress. Two of the main challenges in the development of databases (4) seem to be (a) appropriate formulation of an EoS for solids that is suitable for studies of Earth and planetary interiors and (b) relatively simple formulations of thermodynamic mixing properties of mantle minerals that perform well within the compositional space of interest. While work on EoS formulation continues, we present a semi-empirical numerical approach that creates a consistent set of material properties (α, K, Cp, Cv) up to very high P-T conditions by satisfying certain physical constraints. Adequate experimental data are not available to constrain the mixing properties of several minerals that would be valid over the compositional range of interest in the natural environments. We have, thus, pursued an alternative approach on the basis of physical and crystal-chemical data. It is found that combination of elastic mixing energy, incorporating the effect of multi-atom interactions (5, 6), and crystal-field (CF) energy of mixing provide enthalpy of mixing in binary solid solutions that are in good agreement with experimental and calorimetric data. The CF-splitting vs. composition in a solid solution involving transition metal ion may be approximated by a semi-empirical relation using mean metal-oxygen bond-distance when such data are not available from spectroscopic studies. We also discuss the

  11. Role of Database Management Systems in Selected Engineering Institutions of Andhra Pradesh: An Analytical Survey

    Directory of Open Access Journals (Sweden)

    Kutty Kumar

    2016-06-01

    Full Text Available This paper aims to analyze the function of database management systems from the perspective of librarians working in engineering institutions in Andhra Pradesh. Ninety-eight librarians from one hundred thirty engineering institutions participated in the study. The paper reveals that training by computer suppliers and software packages are the significant mode of acquiring DBMS skills by librarians; three-fourths of the librarians are postgraduate degree holders. Most colleges use database applications for automation purposes and content value. Electrical problems and untrained staff seem to be major constraints faced by respondents for managing library databases.

  12. Risk estimates for hip fracture from clinical and densitometric variables and impact of database selection in Lebanese subjects.

    Science.gov (United States)

    Badra, Mohammad; Mehio-Sibai, Abla; Zeki Al-Hazzouri, Adina; Abou Naja, Hala; Baliki, Ghassan; Salamoun, Mariana; Afeiche, Nadim; Baddoura, Omar; Bulos, Suhayl; Haidar, Rachid; Lakkis, Suhayl; Musharrafieh, Ramzi; Nsouli, Afif; Taha, Assaad; Tayim, Ahmad; El-Hajj Fuleihan, Ghada

    2009-01-01

    Bone mineral density (BMD) and fracture incidence vary greatly worldwide. The data, if any, on clinical and densitometric characteristics of patients with hip fractures from the Middle East are scarce. The objective of the study was to define risk estimates from clinical and densitometric variables and the impact of database selection on such estimates. Clinical and densitometric information were obtained in 60 hip fracture patients and 90 controls. Hip fracture subjects were 74 yr (9.4) old, were significantly taller, lighter, and more likely to be taking anxiolytics and sleeping pills than controls. National Health and Nutrition Examination Survey (NHANES) database selection resulted in a higher sensitivity and almost equal specificity in identifying patients with a hip fracture compared with the Lebanese database. The odds ratio (OR) and its confidence interval (CI) for hip fracture per standard deviation (SD) decrease in total hip BMD was 2.1 (1.45-3.05) with the NHANES database, and 2.11 (1.36-2.37) when adjusted for age and body mass index (BMI). Risk estimates were higher in male compared with female subjects. In Lebanese subjects, BMD- and BMI-derived hip fracture risk estimates are comparable to western standards. The study validates the universal use of the NHANES database, and the applicability of BMD- and BMI-derived risk fracture estimates in the World Health Organization (WHO) global fracture risk model, to the Lebanese.

  13. Five hydrologic and landscape databases for selected National Wildlife Refuges in the Southeastern United States

    Science.gov (United States)

    Buell, Gary R.; Gurley, Laura N.; Calhoun, Daniel L.; Hunt, Alexandria M.

    2017-06-12

    This report serves as metadata and a user guide for five out of six hydrologic and landscape databases developed by the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, to describe data-collection, data-reduction, and data-analysis methods used to construct the databases and provides statistical and graphical descriptions of the databases. Six hydrologic and landscape databases were developed: (1) the Cache River and White River National Wildlife Refuges (NWRs) and contributing watersheds in Arkansas, Missouri, and Oklahoma, (2) the Cahaba River NWR and contributing watersheds in Alabama, (3) the Caloosahatchee and J.N. “Ding” Darling NWRs and contributing watersheds in Florida, (4) the Clarks River NWR and contributing watersheds in Kentucky, Tennessee, and Mississippi, (5) the Lower Suwannee NWR and contributing watersheds in Georgia and Florida, and (6) the Okefenokee NWR and contributing watersheds in Georgia and Florida. Each database is composed of a set of ASCII files, Microsoft Access files, and Microsoft Excel files. The databases were developed as an assessment and evaluation tool for use in examining NWR-specific hydrologic patterns and trends as related to water availability and water quality for NWR ecosystems, habitats, and target species. The databases include hydrologic time-series data, summary statistics on landscape and hydrologic time-series data, and hydroecological metrics that can be used to assess NWR hydrologic conditions and the availability of aquatic and riparian habitat. Landscape data that describe the NWR physiographic setting and the locations of hydrologic data-collection stations were compiled and mapped. Categories of landscape data include land cover, soil hydrologic characteristics, physiographic features, geographic and hydrographic boundaries, hydrographic features, and regional runoff estimates. The geographic extent of each database covers an area within which human activities, climatic

  14. Ch. 33 Modeling: Computational Thermodynamics

    International Nuclear Information System (INIS)

    Besmann, Theodore M.

    2012-01-01

    This chapter considers methods and techniques for computational modeling for nuclear materials with a focus on fuels. The basic concepts for chemical thermodynamics are described and various current models for complex crystalline and liquid phases are illustrated. Also included are descriptions of available databases for use in chemical thermodynamic studies and commercial codes for performing complex equilibrium calculations.

  15. Surface thermodynamics

    International Nuclear Information System (INIS)

    Garcia-Moliner, F.

    1975-01-01

    Basic thermodynamics of a system consisting of two bulk phases with an interface. Solid surfaces: general. Discussion of experimental data on surface tension and related concepts. Adsorption thermodynamics in the Gibbsian scheme. Adsorption on inert solid adsorbents. Systems with electrical charges: chemistry and thermodynamics of imperfect crystals. Thermodynamics of charged surfaces. Simple models of charge transfer chemisorption. Adsorption heat and related concepts. Surface phase transitions

  16. A Database for Reviewing and Selecting Radioactive Waste Treatment Technologies and Vendors

    International Nuclear Information System (INIS)

    P. C. Marushia; W. E. Schwinkendorf

    1999-01-01

    Several attempts have been made in past years to collate and present waste management technologies and solutions to waste generators. These efforts have been manifested as reports, buyers' guides, and databases. While this information is helpful at the time it is assembled, the principal weakness is maintaining the timeliness and accuracy of the information over time. In many cases, updates have to be published or developed as soon as the product is disseminated. The recently developed National Low-Level Waste Management Program's Technologies Database is a vendor-updated Internet based database designed to overcome this problem. The National Low-Level Waste Management Program's Technologies Database contains information about waste types, treatment technologies, and vendor information. Information is presented about waste types, typical treatments, and the vendors who provide those treatment methods. The vendors who provide services update their own contact information, their treatment processes, and the types of wastes for which their treatment process is applicable. This information is queriable by a generator of low-level or mixed low-level radioactive waste who is seeking information on waste treatment methods and the vendors who provide them. Timeliness of the information in the database is assured using time clocks and automated messaging to remind featured vendors to keep their information current. Failure to keep the entries current results in a vendor being warned and then ultimately dropped from the database. This assures that the user is dealing with the most current information available and the vendors who are active in reaching and serving their market

  17. Selection of a food classification system and a food composition database for future food consumption surveys

    NARCIS (Netherlands)

    Ireland, J.; Erp-Baart, A.M.J.; Charrondière, U.R.; Moller, A.; Smithers, G.; Trichopoulou, A.

    2002-01-01

    Objective: To harmonize food classification and food composition databases, allowing comparability of consumption at both food and nutrient levels in Europe. Design: To establish the level of comparability at the food level, the EFCOSUM group benefited from the work already carried out within other

  18. High-temperature experimental and thermodynamic modelling research on the pyrometallurgical processing of copper

    Science.gov (United States)

    Hidayat, Taufiq; Shishin, Denis; Decterov, Sergei A.; Hayes, Peter C.; Jak, Evgueni

    2017-01-01

    Uncertainty in the metal price and competition between producers mean that the daily operation of a smelter needs to target high recovery of valuable elements at low operating cost. Options for the improvement of the plant operation can be examined and decision making can be informed based on accurate information from laboratory experimentation coupled with predictions using advanced thermodynamic models. Integrated high-temperature experimental and thermodynamic modelling research on phase equilibria and thermodynamics of copper-containing systems have been undertaken at the Pyrometallurgy Innovation Centre (PYROSEARCH). The experimental phase equilibria studies involve high-temperature equilibration, rapid quenching and direct measurement of phase compositions using electron probe X-ray microanalysis (EPMA). The thermodynamic modelling deals with the development of accurate thermodynamic database built through critical evaluation of experimental data, selection of solution models, and optimization of models parameters. The database covers the Al-Ca-Cu-Fe-Mg-O-S-Si chemical system. The gas, slag, matte, liquid and solid metal phases, spinel solid solution as well as numerous solid oxide and sulphide phases are included. The database works within the FactSage software environment. Examples of phase equilibria data and thermodynamic models of selected systems, as well as possible implementation of the research outcomes to selected copper making processes are presented.

  19. Efficient Serial and Parallel Algorithms for Selection of Unique Oligos in EST Databases.

    Science.gov (United States)

    Mata-Montero, Manrique; Shalaby, Nabil; Sheppard, Bradley

    2013-01-01

    Obtaining unique oligos from an EST database is a problem of great importance in bioinformatics, particularly in the discovery of new genes and the mapping of the human genome. Many algorithms have been developed to find unique oligos, many of which are much less time consuming than the traditional brute force approach. An algorithm was presented by Zheng et al. (2004) which finds the solution of the unique oligos search problem efficiently. We implement this algorithm as well as several new algorithms based on some theorems included in this paper. We demonstrate how, with these new algorithms, we can obtain unique oligos much faster than with previous ones. We parallelize these new algorithms to further improve the time of finding unique oligos. All algorithms are run on ESTs obtained from a Barley EST database.

  20. Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: an experimental and theoretical evaluation.

    Science.gov (United States)

    Chen, Yuzhen; Xiao, Huizhi; Zheng, Jie; Liang, Guizhao

    2015-01-01

    Phenolic acids and derivatives have potential biological functions, however, little is known about the structure-activity relationships and the underlying action mechanisms of these phenolic acids to date. Herein we investigate the structure-thermodynamics-antioxidant relationships of 20 natural phenolic acids and derivatives using DPPH• scavenging assay, density functional theory calculations at the B3LYP/6-311++G(d,p) levels of theory, and quantitative structure-activity relationship (QSAR) modeling. Three main working mechanisms (HAT, SETPT and SPLET) are explored in four micro-environments (gas-phase, benzene, water and ethanol). Computed thermodynamics parameters (BDE, IP, PDE, PA and ETE) are compared with the experimental radical scavenging activities against DPPH•. Available theoretical and experimental investigations have demonstrated that the extended delocalization and intra-molecular hydrogen bonds are the two main contributions to the stability of the radicals. The C = O or C = C in COOH, COOR, C = CCOOH and C = CCOOR groups, and orthodiphenolic functionalities are shown to favorably stabilize the specific radical species to enhance the radical scavenging activities, while the presence of the single OH in the ortho position of the COOH group disfavors the activities. HAT is the thermodynamically preferred mechanism in the gas phase and benzene, whereas SPLET in water and ethanol. Furthermore, our QSAR models robustly represent the structure-activity relationships of these explored compounds in polar media.

  1. Thermodynamic Properties of Aqueous Carbonate Species and Solid Carbonate Phases of Selected Trace Elements pertinent to Drinking Water Standards of the U.S. Environmental Protection Agency

    Energy Technology Data Exchange (ETDEWEB)

    Apps, John A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wilkin, Richard T. [US Environmental Protection Agency (EPA), Cincinnati, OH (United States)

    2015-09-30

    This report contains a series of tables summarizing the thermodynamic properties of aqueous carbonate complexes and solid carbonate phases of the following elements: arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), manganese (Mn), mercury (Hg), nickel (Ni) thallium (Tl), uranium (U) and zinc (Zn). Most of these elements are potentially hazardous as defined by extant primary drinking water standards of the United States Environmental Protection Agency (EPA). The remainder are not considered hazardous, but are either listed by EPA under secondary standards, or because they can adversely affect drinking water quality. Additional tables are included giving the thermodynamic properties for carbonates of the alkali metal and alkali earth elements, sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), and strontium (Sr), because of their value in developing correlative models to estimate the thermodynamic properties of carbonate minerals for which no such data currently exist. The purpose in creating the tables in this report is to provide future investigators with a convenient source for selecting and tracing the sources of thermodynamic data of the above listed elements for use in modeling their geochemical behavior in “underground sources of drinking water” (USDW). The incentive for doing so lies with a heightened concern over the potential consequences of the proposed capture and storage of carbon dioxide (CO2) generated by fossil fuel fired power plants in deep subsurface reservoirs. If CO2 were to leak from such reservoirs, it could migrate upward and contaminate USDWs with undesirable, but undetermined, consequences to water quality. The EPA, Office of Research and Development, through an Interagency Agreement with the U.S. Department of Energy at the Lawrence Berkeley National Laboratory, funded the preparation of this report.

  2. Extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1993-01-01

    Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics thro...

  3. Development of Pipeline Database and CAD Model for Selection of Core Security Zone in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Choi, Seong Soo; Kwon, Tae Gyun; Baek, Hun Hyun; Kwon, Min Jin

    2008-07-01

    The objective of the project is to develop the pipeline database which can be used for selection of core security zones considering safety significance of pipes and to develop CAD model for 3-dimensional visualization of core security zones, for the purpose of minimizing damage and loss, enforcing security and protection on important facilities, and improving plant design preparing against emergency situations such as physical terrors in nuclear power plants. In this study, the pipeline database is developed for selection of core security zones considering safety significance of safety class 1 and 2 pipes. The database includes the information on 'pipe-room information-surrogate component' mapping, initiating events which may occur and accident mitigation functions which may be damaged by the pipe failure, and the drawing information related to 2,270 pipe segments of 30 systems. For the 3-dimensional visualization of core security zones, the CAD models on the containment building and the auxiliary building are developed using 3-D MAX tool and the demo program which can visualize the direct-X model converted from the 3-D MAX model is also developed. In addition to this, the coordinate information of all the buildings and their rooms is generated using AUTO CAD tool in order to be used as an input for 3-dimensional browsing of the VIP program

  4. Development of a material property database on selected ceramic matrix composite materials

    Science.gov (United States)

    Mahanta, Kamala

    1996-01-01

    Ceramic Matrix Composites, with fiber/whisker/particulate reinforcement, possess the attractive properties of ceramics such as high melting temperature, high strength and stiffness at high temperature, low density, excellent environmental resistance, combined with improved toughness and mechanical reliability. These unique properties have made these composites an enabling technology for thermomechanically demanding applications in high temperature, high stress and aggressive environments. On a broader scale, CMC's are anticipated to be applicable in aircraft propulsion, space propulsion, power and structures, in addition to ground based applications. However, it is also true that for any serious commitment of the material toward any of the intended critical thermo-mechanical applications to materialize, vigorous research has to be conducted for a thorough understanding of the mechanical and thermal behavior of CMC's. The high technology of CMC'S is far from being mature. In view of this growing need for CMC data, researchers all over the world have found themselves drawn into the characterization of CMC's such as C/SiC, SiC/SiC, SiC/Al203, SiC/Glass, SiC/C, SiC/Blackglas. A significant amount of data has been generated by the industries, national laboratories and educational institutions in the United States of America. NASA/Marshall Space Flight Center intends to collect the 'pedigreed' CMC data and store those in a CMC database within MAPTIS (Materials and Processes Technical Information System). The task of compilation of the CMC database is a monumental one and requires efforts in various directions. The project started in the form of a summer faculty fellowship in 1994 and has spilled into the months that followed and into the summer faculty fellowship of 1995 and has the prospect of continuing into the future for a healthy growth, which of course depends to a large extent on how fast CMC data are generated. The 10-week long summer fellowship has concentrated

  5. Measurements of thermodynamic and optical properties of selected aqueous organic and organic-inorganic mixtures of atmospheric relevance.

    Science.gov (United States)

    Lienhard, Daniel M; Bones, David L; Zuend, Andreas; Krieger, Ulrich K; Reid, Jonathan P; Peter, Thomas

    2012-10-11

    Atmospheric aerosol particles can exhibit liquid solution concentrations supersaturated with respect to the dissolved organic and inorganic species and supercooled with respect to ice. In this study, thermodynamic and optical properties of sub- and supersaturated aqueous solutions of atmospheric interest are presented. The density, refractive index, water activity, ice melting temperatures, and homogeneous ice freezing temperatures of binary aqueous solutions containing L(+)-tartaric acid, tannic acid, and levoglucosan and ternary aqueous solutions containing levoglucosan and one of the salts NH(4)HSO(4), (NH(4))(2)SO(4), and NH(4)NO(3) have been measured in the supersaturated concentration range for the first time. In addition, the density and refractive index of binary aqueous citric acid and raffinose solutions and the glass transition temperatures of binary aqueous L(+)-tartaric acid and levoglucosan solutions have been measured. The data presented here are derived from experiments on single levitated microdroplets and bulk solutions and should find application in thermodynamic and atmospheric aerosol models as well as in food science applications.

  6. General thermodynamics

    CERN Document Server

    Olander, Donald

    2007-01-01

    The book’s methodology is unified, concise, and multidisciplinary, allowing students to understand how the principles of thermodynamics apply to all technical fields that touch upon this most fundamental of scientific theories. It also offers a rigorous approach to the quantitative aspects of thermodynamics, accompanied by clear explanations to help students transition smoothly from the physical concepts to their mathematical representations

  7. Leading product-related environmental performance indicators: a selection guide and database

    DEFF Research Database (Denmark)

    Issa, Isabela I.; Pigosso, Daniela Cristina Antelmi; McAloone, Tim C.

    2015-01-01

    Ecodesign is a proactive environmental management and improvement approach employed in the product development process, which aims to minimize the environmental impacts caused during a product's life cycle and thus improve its environmental performance. The establishment of measurable environmental...... in the selection and application of environmental performance indicators - a more structured approach is still lacking. This paper presents the efforts made to identify and systematize existing leading product-related environmental performance indicators, based on a systematic literature review, and to develop...

  8. Thermodynamic data for modeling acid mine drainage problems: compilation and estimation of data for selected soluble iron-sulfate minerals

    Science.gov (United States)

    Hemingway, Bruch S.; Seal, Robert R.; Chou, I-Ming

    2002-01-01

    Enthalpy of formation, Gibbs energy of formation, and entropy values have been compiled from the literature for the hydrated ferrous sulfate minerals melanterite, rozenite, and szomolnokite, and a variety of other hydrated sulfate compounds. On the basis of this compilation, it appears that there is no evidence for an excess enthalpy of mixing for sulfate-H2O systems, except for the first H2O molecule of crystallization. The enthalpy and Gibbs energy of formation of each H2O molecule of crystallization, except the first, in the iron(II) sulfate - H2O system is -295.15 and -238.0 kJ?mol-1, respectively. The absence of an excess enthalpy of mixing is used as the basis for estimating thermodynamic values for a variety of ferrous, ferric, and mixed-valence sulfate salts of relevance to acid-mine drainage systems.

  9. Thermodynamic and molecular origin of interfacial rate enhancements and endo-selectivities of a Diels-Alder reaction.

    Science.gov (United States)

    Beniwal, Vijay; Kumar, Anil

    2017-02-08

    Organic reactions in general display large rate accelerations when performed under interfacial conditions, such as on water or at ionic liquid interfaces. However, a clear picture of the physicochemical factors responsible for this large rate enhancements is not available. To gain an understanding of the thermodynamic and molecular origin of these large rate enhancements, we performed a Diels-Alder reaction between cyclopentadiene and methyl acrylate at ionic liquid/n-hexane interfaces. This study describes, for the first time, a methodology for the calculation of the activation parameters of an interfacial reaction. It has been seen that the energy of activation for an interfacial reaction is much smaller than that of the corresponding homogeneous reaction, resulting into the large rate acceleration for the interfacial reaction. Furthermore, the study describes the effects of the alkyl chain length of ionic liquid cations, the extent of heterogeneity, and the polarity of ionic liquids on the rate constants and stereoselectivity of the reaction.

  10. Thermodynamic properties of cryogenic fluids

    CERN Document Server

    Leachman, Jacob; Lemmon, Eric; Penoncello, Steven

    2017-01-01

    This update to a classic reference text provides practising engineers and scientists with accurate thermophysical property data for cryogenic fluids. The equations for fifteen important cryogenic fluids are presented in a basic format, accompanied by pressure-enthalpy and temperature-entropy charts and tables of thermodynamic properties. It begins with a chapter introducing the thermodynamic relations and functional forms for equations of state, and goes on to describe the requirements for thermodynamic property formulations, needed for the complete definition of the thermodynamic properties of a fluid. The core of the book comprises extensive data tables and charts for the most commonly-encountered cryogenic fluids. This new edition sees significant updates to the data presented for air, argon, carbon monoxide, deuterium, ethane, helium, hydrogen, krypton, nitrogen and xenon. The book supports and complements NIST’s REFPROP - an interactive database and tool for the calculation of thermodynamic propertie...

  11. Atmospheric thermodynamics

    CERN Document Server

    Iribarne, J V

    1973-01-01

    The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...

  12. Thermodynamic holography

    Science.gov (United States)

    Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao

    2015-01-01

    The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics. PMID:26478214

  13. A thermodynamic approach for selecting operating conditions in the design of reversible solid oxide cell energy systems

    Science.gov (United States)

    Wendel, Christopher H.; Kazempoor, Pejman; Braun, Robert J.

    2016-01-01

    Reversible solid oxide cell (ReSOC) systems are being increasingly considered for electrical energy storage, although much work remains before they can be realized, including cell materials development and system design optimization. These systems store electricity by generating a synthetic fuel in electrolysis mode and subsequently recover electricity by electrochemically oxidizing the stored fuel in fuel cell mode. System thermal management is improved by promoting methane synthesis internal to the ReSOC stack. Within this strategy, the cell-stack operating conditions are highly impactful on system performance and optimizing these parameters to suit both operating modes is critical to achieving high roundtrip efficiency. Preliminary analysis shows the thermoneutral voltage to be a useful parameter for analyzing ReSOC systems and the focus of this study is to quantitatively examine how it is affected by ReSOC operating conditions. The results reveal that the thermoneutral voltage is generally reduced by increased pressure, and reductions in temperature, fuel utilization, and hydrogen-to-carbon ratio. Based on the thermodynamic analysis, many different combinations of these operating conditions are expected to promote efficient energy storage. Pressurized systems can achieve high efficiency at higher temperature and fuel utilization, while non-pressurized systems may require lower stack temperature and suffer from reduced energy density.

  14. The selection and use of a sorption database for the geosphere model in the Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Vandergraaf, T.T.; Ticknor, K.V.; Melnyk, T.W.

    1992-01-01

    An extensively characterized intrusive granitic formation, the Lac du Bonnet batholith, is being used as a test case for environmental and safety assessment calculations of the impact of a hypothetical disposal vault. The conceptual vault has dimensions of 2 x 2 km and is located at a depth of 500 m, near the Whiteshell Nuclear Research Establishment (WNRE) (CANADA). Hydraulic investigations of the batholith have shown that the bulk of the groundwater flow will be limited to the existing network of water-bearing fractures. Groundwater flow and contaminant transport modelling is based on a porous-medium concept for both the fracture systems and the rock matrix. Geochemical investigations have identified a number of alteration minerals in these fracture systems. The geochemistry encountered along the flow field is too complex to allow the interaction of radionuclides with the geological material to be represented by a single sorption coefficient for each radionuclide on a single rock type. However, the level of understanding of radionuclide interaction with geological materials is not sufficiently well developed to calculate radionuclide transport using models based on chemical thermodynamics or on advanced sorption models based on surface complexation or mass action. Instead, a parametric model has been developed using the total dissolved solids and radionuclide concentrations as independent variables. The mineralogical complexity of the flow field is addressed by selecting sorption data on the nine most commonly occurring fracture infilling minerals in this batholith, four common rock-forming minerals, and on altered and unaltered granite. This approach produces two polynomial equations for each radionuclide/mineral combination, one under oxic and one under anoxic conditions. Where insufficient information is available, these polynomial expressions are reduced to an equation with one variable or to a single sorption coefficient. 48 refs., 6 figs., 4 tabs

  15. Effect of inter-species selective interactions on the thermodynamics and nucleation free-energy barriers of a tessellating polyhedral compound

    International Nuclear Information System (INIS)

    Escobedo, Fernando A.

    2016-01-01

    The phase behavior and the homogeneous nucleation of an equimolar mixture of octahedra and cuboctahedra are studied using thermodynamic integration, Gibbs-Duhem integration, and umbrella sampling simulations. The components of this mixture are modeled as polybead objects of equal edge lengths so that they can assemble into a space-filling compound with the CsCl crystal structure. Taking as reference the hard-core system where the compound crystal does not spontaneously nucleate, we quantified the effect of inter-species selective interactions on facilitating the disorder-to-order transition. Facet selective and facet non-selective inter-species attractions were considered, and while the former was expectedly more favorable toward the target tessellating structure, the latter was found to be similarly effective in nucleating the crystal compound. Ranges for the strength of attractions and degree of supersaturation were identified where the nucleation free-energy barrier was small enough to foretell a fast process but large enough to prevent spinodal fluctuations that can trap the system in dense metastable states lacking long-range order. At those favorable conditions, the tendency toward the local orientational order favored by packing entropy is amplified and found to play a key role seeding nuclei with the CsCl structure.

  16. Stochastic thermodynamics

    Science.gov (United States)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response

  17. Modern thermodynamics

    CERN Document Server

    Ben-Naim, Arieh

    2017-01-01

    This textbook introduces thermodynamics with a modern approach, starting from four fundamental physical facts (the atomic nature of matter, the indistinguishability of atoms and molecules of the same species, the uncertainty principle, and the existence of equilibrium states) and analyzing the behavior of complex systems with the tools of information theory, in particular with Shannon's measure of information (or SMI), which can be defined on any probability distribution. SMI is defined and its properties and time evolution are illustrated, and it is shown that the entropy is a particular type of SMI, i.e. the SMI related to the phase-space distribution for a macroscopic system at equilibrium. The connection to SMI allows the reader to understand what entropy is and why isolated systems follow the Second Law of Thermodynamics. The Second Llaw is also formulated for other systems, not thermally isolated and even open with respect to the transfer of particles. All the fundamental aspects of thermodynamics are d...

  18. Translational database selection and multiplexed sequence capture for up front filtering of reliable breast cancer biomarker candidates.

    Directory of Open Access Journals (Sweden)

    Patrik L Ståhl

    Full Text Available Biomarker identification is of utmost importance for the development of novel diagnostics and therapeutics. Here we make use of a translational database selection strategy, utilizing data from the Human Protein Atlas (HPA on differentially expressed protein patterns in healthy and breast cancer tissues as a means to filter out potential biomarkers for underlying genetic causatives of the disease. DNA was isolated from ten breast cancer biopsies, and the protein coding and flanking non-coding genomic regions corresponding to the selected proteins were extracted in a multiplexed format from the samples using a single DNA sequence capture array. Deep sequencing revealed an even enrichment of the multiplexed samples and a great variation of genetic alterations in the tumors of the sampled individuals. Benefiting from the upstream filtering method, the final set of biomarker candidates could be completely verified through bidirectional Sanger sequencing, revealing a 40 percent false positive rate despite high read coverage. Of the variants encountered in translated regions, nine novel non-synonymous variations were identified and verified, two of which were present in more than one of the ten tumor samples.

  19. Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid

    International Nuclear Information System (INIS)

    Rahmani-Sani, Abolfazl; Hosseini-Bandegharaei, Ahmad; Hosseini, Seyyed-Hossein; Kharghani, Keivan; Zarei, Hossein; Rastegar, Ayoob

    2015-01-01

    Highlights: • The objective of the study is to investigate the potential application of a selective EIR for sorption of U(VI) and Th(IV) ions. • The effects of several physiochemical parameters were investigated. • The sorption kinetics and sorption isotherms were used to explain the sorption mechanism. • The thermodynamic studies showed the feasibility of sorption process. • The EIR beads showed a great potential for effective removal of U(VI) and Th(IV) ions. - Abstract: In this work, the removal of uranium and thorium ions from aqueous solutions was studied by solid–liquid extraction using an advantageous extractant-impregnated resin (EIR) prepared by loading carminic acid (CA) onto Amberlite XAD-16 resin beads. Batch sorption experiments using CA/XAD-16 beads for the removal of U(VI) and Th(IV) ions were carried out as a function of several parameters, like equilibration time, metal ion concentration, etc. The equilibrium data obtained from the sorption experiments were adjusted to the Langmuir isotherm model and the calculated maximum sorption capacities in terms of monolayer sorption were in agreement with those obtained from the experiments. The experimental data on the sorption behavior of both metal ions onto the EIR beads fitted well in both Bangham and intra-particle diffusion kinetic models, indicating that the intra-particle diffusion is the rate-controlling step. The thermodynamic studies at different temperatures revealed the feasibility and the spontaneous nature of the sorption process for both uranium and thorium ions

  20. Database development and management

    CERN Document Server

    Chao, Lee

    2006-01-01

    Introduction to Database Systems Functions of a DatabaseDatabase Management SystemDatabase ComponentsDatabase Development ProcessConceptual Design and Data Modeling Introduction to Database Design Process Understanding Business ProcessEntity-Relationship Data Model Representing Business Process with Entity-RelationshipModelTable Structure and NormalizationIntroduction to TablesTable NormalizationTransforming Data Models to Relational Databases .DBMS Selection Transforming Data Models to Relational DatabasesEnforcing ConstraintsCreating Database for Business ProcessPhysical Design and Database

  1. QUASI-STELLAR OBJECT SELECTION ALGORITHM USING TIME VARIABILITY AND MACHINE LEARNING: SELECTION OF 1620 QUASI-STELLAR OBJECT CANDIDATES FROM MACHO LARGE MAGELLANIC CLOUD DATABASE

    International Nuclear Information System (INIS)

    Kim, Dae-Won; Protopapas, Pavlos; Alcock, Charles; Trichas, Markos; Byun, Yong-Ik; Khardon, Roni

    2011-01-01

    We present a new quasi-stellar object (QSO) selection algorithm using a Support Vector Machine, a supervised classification method, on a set of extracted time series features including period, amplitude, color, and autocorrelation value. We train a model that separates QSOs from variable stars, non-variable stars, and microlensing events using 58 known QSOs, 1629 variable stars, and 4288 non-variables in the MAssive Compact Halo Object (MACHO) database as a training set. To estimate the efficiency and the accuracy of the model, we perform a cross-validation test using the training set. The test shows that the model correctly identifies ∼80% of known QSOs with a 25% false-positive rate. The majority of the false positives are Be stars. We applied the trained model to the MACHO Large Magellanic Cloud (LMC) data set, which consists of 40 million light curves, and found 1620 QSO candidates. During the selection none of the 33,242 known MACHO variables were misclassified as QSO candidates. In order to estimate the true false-positive rate, we crossmatched the candidates with astronomical catalogs including the Spitzer Surveying the Agents of a Galaxy's Evolution LMC catalog and a few X-ray catalogs. The results further suggest that the majority of the candidates, more than 70%, are QSOs.

  2. Consideration on thermodynamic data for predicting solubility and chemical species of elements in groundwater. Part 2: Np, Pu

    International Nuclear Information System (INIS)

    Yamaguchi, Tetsuji

    2000-11-01

    The solubility determines the release of a radionuclide from waste form and is used as a source term in radionuclide migration analysis in performance assessment of radioactive waste repository. Complexations of the radionuclide by ligands in groundwater affect the interaction between radionuclides and geologic media, thus affect their migration behavior. It is essential to estimate the solubility and to predict the chemical species for the radionuclide based on thermodynamic data. The thermodynamic data of aqueous species and compounds were reviewed and compiled for Np and Pu. Thermodynamic data were reviewed with emphasis on the hydrolysis and carbonate complexation that can dominate the speciation in groundwater. Thermodynamic data for other species were selected based on existing databases. Thermodynamic data for other important elements are under investigation, thus shown in an appendix for temporary use. (author)

  3. dbVOR: a database system for importing pedigree, phenotype and genotype data and exporting selected subsets.

    Science.gov (United States)

    Baron, Robert V; Conley, Yvette P; Gorin, Michael B; Weeks, Daniel E

    2015-03-18

    When studying the genetics of a human trait, we typically have to manage both genome-wide and targeted genotype data. There can be overlap of both people and markers from different genotyping experiments; the overlap can introduce several kinds of problems. Most times the overlapping genotypes are the same, but sometimes they are different. Occasionally, the lab will return genotypes using a different allele labeling scheme (for example 1/2 vs A/C). Sometimes, the genotype for a person/marker index is unreliable or missing. Further, over time some markers are merged and bad samples are re-run under a different sample name. We need a consistent picture of the subset of data we have chosen to work with even though there might possibly be conflicting measurements from multiple data sources. We have developed the dbVOR database, which is designed to hold data efficiently for both genome-wide and targeted experiments. The data are indexed for fast retrieval by person and marker. In addition, we store pedigree and phenotype data for our subjects. The dbVOR database allows us to select subsets of the data by several different criteria and to merge their results into a coherent and consistent whole. Data may be filtered by: family, person, trait value, markers, chromosomes, and chromosome ranges. The results can be presented in columnar, Mega2, or PLINK format. dbVOR serves our needs well. It is freely available from https://watson.hgen.pitt.edu/register . Documentation for dbVOR can be found at https://watson.hgen.pitt.edu/register/docs/dbvor.html .

  4. Statistical thermodynamics

    CERN Document Server

    Schrödinger, Erwin

    1952-01-01

    Nobel Laureate's brilliant attempt to develop a simple, unified standard method of dealing with all cases of statistical thermodynamics - classical, quantum, Bose-Einstein, Fermi-Dirac, and more.The work also includes discussions of Nernst theorem, Planck's oscillator, fluctuations, the n-particle problem, problem of radiation, much more.

  5. Interfacial engineering of solution-processed Ni nanochain-SiO{sub x} (x < 2) cermets towards thermodynamically stable, anti-oxidation solar selective absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaobai; Wang, Xiaoxin; Liu, Jifeng, E-mail: Jifeng.Liu@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755 (United States); Zhang, Qinglin [Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, Kentucky 40506 (United States)

    2016-04-07

    Cermet solar thermal selective absorber coatings are an important component of high-efficiency concentrated solar power (CSP) receivers. The oxidation of the metal nanoparticles in cermet solar absorbers is a great challenge for vacuum-free operation. Recently, we have demonstrated that oxidation is kinetically retarded in solution processed, high-optical-performance Ni nanochain-SiO{sub x} cermet system compared to conventional Ni-Al{sub 2}O{sub 3} system when annealed in air at 450–600 °C for several hours. However, for long-term, high-temperature applications in CSP systems, thermodynamically stable antioxidation behavior is highly desirable, which requires new mechanisms beyond kinetically reducing the oxidation rate. Towards this goal, in this paper, we demonstrate that pre-operation annealing of Ni nanochain-SiO{sub x} cermets at 900 °C in N{sub 2} forms the thermodynamically stable orthorhombic phase of NiSi at the Ni/SiO{sub x} interfaces, leading to self-terminated oxidation at 550 °C in air due to this interfacial engineering. In contrast, pre-operation annealing at a lower temperature of 750 °C in N{sub 2} (as conducted in our previous work) cannot achieve interfacial NiSi formation directly, and further annealing in air at 450–600 °C for >4 h only leads to the formation of the less stable (metastable) hexagonal phase of NiSi. Therefore, the high-temperature pre-operation annealing is critical to form the desirable orthorhombic phase of NiSi at Ni/SiO{sub x} interfaces towards thermodynamically stable antioxidation behavior. Remarkably, with this improved interfacial engineering, the oxidation of 80-nm-diameter Ni nanochain-SiO{sub x} saturates after annealing at 550 °C in air for 12 h. Additional annealing at 550 °C in air for as long as 20 h (i.e., 32 h air annealing at >550 °C in total) has almost no further impact on the structural or optical properties of the coatings, the latter being very sensitive to any

  6. Plain Radiography May Be Safely Omitted for Selected Major Trauma Patients Undergoing Whole Body CT: Database Study

    Directory of Open Access Journals (Sweden)

    Sarah Hudson

    2012-01-01

    Full Text Available Introduction. Whole body CT is being used increasingly in the primary survey of major trauma patients. We evaluated whether omitting plain films of the chest and pelvis in the primary survey was safe. We compared the probability of survival of patients and time to CT who had plain X-rays to those who did not. Method. We performed a database study on major trauma patients admitted between 2008 and 2010 using data from Trauma, Audit and Research Network (TARN and our PACS system. We included adult major trauma patients who has an ISS of greater than 15 and underwent whole body CT. Results. 245 patients were included in the study. 44 (17.9% did not undergo plain films. The median time to whole body CT from the time of admission was longer (47 minutes in patients having plain films, than those who did not have plain films performed (30 minutes, P<0.005. Mortality was increased in the group who received plain films, 9.5% compared to 4.5%, but this was not statistically significant (P=0.77. Conclusion. We conclude that plain films may be safely omitted during the primary survey of selected major trauma patients.

  7. Establishment of data base files of thermodynamic data developed by OECD/NEA. Part 4. Addition of thermodynamic data for iron, tin and thorium

    International Nuclear Information System (INIS)

    Yoshida, Yasushi; Kitamura, Akira

    2014-12-01

    Thermodynamic data for compounds and complexes of elements with auxiliary species specialized in modeling requirements for safety assessments of radioactive waste disposal systems have been developed by the Thermochemical Data Base (TDB) project of the Nuclear Energy Agency in the Organization for Economic Co-operation and Development (OECD/NEA). Recently, thermodynamic data for aqueous complexes, solids and gases of thorium, tin and iron (Part 1) have been published in 2008, 2012 and 2013, respectively. These thermodynamic data have been selected on the basis of NEA’s guidelines which describe peer review and data selection, extrapolation to zero ionic strength, assignment of uncertainty, and temperature correction; therefore the selected data are considered to be reliable. The reliability of selected thermodynamic data of TDB developed by Japan Atomic Energy Agency (JAEA-TDB) has been confirmed by comparing with selected data by the NEA. For this comparison, text files of the selected data on some geochemical calculation programs are required. In the present report, the database files for the NEA’s TDB with addition of selected data for iron, tin and thorium to the previous files have been established for use of PHREEQC, Geochemist’s Workbench and EQ3/6. In addition, as an example of confirmation of quality, dominant species in iron TDB were compared in Eh-pH diagram and differences between JAEA-TDB and NEA-TDB were shown. Data base files established in the present study will be at the Website of thermodynamic, sorption and diffusion database in JAEA (http://migrationdb.jaea.go.jp/). A CD-ROM is attached as an appendix. (J.P.N.)

  8. Thermodynamic analysis of water vapor sorption isotherms and mechanical properties of selected paper-based food packaging materials.

    Science.gov (United States)

    Rhim, Jong-Whan; Lee, Jun Ho

    2009-01-01

    Adsorption isotherms of 3 selected paper-based packaging materials, that is, vegetable parchment (VP) paper, Kraft paper, and solid-bleached-sulfate (SBS) paperboard, were determined at 3 different temperatures (25, 40, and 50 degrees C). The GAB isotherm model was found to fit adequately for describing experimental adsorption isotherm data for the paper samples. The monolayer moisture content of the paper samples decreased with increase in temperature, which is in the range of 0.0345 to 0.0246, 0.0301 to 0.0238, and 0.0318 to 0.0243 g water/g solid for the MG paper, the Kraft paper, and the SBS paperboard, respectively. The net isosteric heats of sorption (q(st)) for the paper samples decreased exponentially with increase in moisture content after reaching the maximum values of 18.51, 27.39, and 26.80 kJ/mol for the VP paper, the Kraft paper, and the SBS paperboard, respectively, at low-moisture content. The differential enthalpy and entropy of 3 paper samples showed compensation phenomenon with the isokinetic temperature of 399.7 K indicating that water vapor had been adsorbed onto the paper samples with the same mechanism. Depending on the paper material, tensile strength of paper samples was affected by moisture content.

  9. Solvation thermodynamics

    CERN Document Server

    Ben-Naim, Arieh

    1987-01-01

    This book deals with a subject that has been studied since the beginning of physical chemistry. Despite the thousands of articles and scores of books devoted to solvation thermodynamics, I feel that some fundamen­ tal and well-established concepts underlying the traditional approach to this subject are not satisfactory and need revision. The main reason for this need is that solvation thermodynamics has traditionally been treated in the context of classical (macroscopic) ther­ modynamics alone. However, solvation is inherently a molecular pro­ cess, dependent upon local rather than macroscopic properties of the system. Therefore, the starting point should be based on statistical mechanical methods. For many years it has been believed that certain thermodynamic quantities, such as the standard free energy (or enthalpy or entropy) of solution, may be used as measures of the corresponding functions of solvation of a given solute in a given solvent. I first challenged this notion in a paper published in 1978 b...

  10. eQuilibrator--the biochemical thermodynamics calculator.

    Science.gov (United States)

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like 'how much Gibbs energy is released by ATP hydrolysis at pH 5?' are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use.

  11. eQuilibrator—the biochemical thermodynamics calculator

    Science.gov (United States)

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like ‘how much Gibbs energy is released by ATP hydrolysis at pH 5?’ are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use. PMID:22064852

  12. Ecosystem thermodynamics

    International Nuclear Information System (INIS)

    Gomez Palacio, German Rau

    1998-01-01

    Ecology is no more a descriptive and self-sufficient science. Many viewpoints are needed simultaneously to give a full coverage of such complex systems: ecosystems. These viewpoints come from physics, chemistry, and nuclear physics, without a new far from equilibrium thermodynamics and without new mathematical tools such as catastrophe theory, fractal theory, cybernetics and network theory, the development of ecosystem science would never have reached the point of today. Some ideas are presented about the importance that concept such as energy, entropy, exergy information and none equilibrium have in the analysis of processes taking place in ecosystems

  13. Framework for Optimizing Selection of Interspecies Correlation Estimation Models to Address Species Diversity and Toxicity Gaps in an Aquatic Database

    Science.gov (United States)

    The Chemical Aquatic Fate and Effects (CAFE) database is a tool that facilitates assessments of accidental chemical releases into aquatic environments. CAFE contains aquatic toxicity data used in the development of species sensitivity distributions (SSDs) and the estimation of ha...

  14. OECD/NEA thermochemical database

    Energy Technology Data Exchange (ETDEWEB)

    Byeon, Kee Hoh; Song, Dae Yong; Shin, Hyun Kyoo; Park, Seong Won; Ro, Seung Gy

    1998-03-01

    This state of the art report is to introduce the contents of the Chemical Data-Service, OECD/NEA, and the results of survey by OECD/NEA for the thermodynamic and kinetic database currently in use. It is also to summarize the results of Thermochemical Database Projects of OECD/NEA. This report will be a guide book for the researchers easily to get the validate thermodynamic and kinetic data of all substances from the available OECD/NEA database. (author). 75 refs.

  15. Failure database and tools for wind turbine availability and reliability analyses. The application of reliability data for selected wind turbines

    DEFF Research Database (Denmark)

    Kozine, Igor; Christensen, P.; Winther-Jensen, M.

    2000-01-01

    The objective of this project was to develop and establish a database for collecting reliability and reliability-related data, for assessing the reliability of wind turbine components and subsystems and wind turbines as a whole, as well as for assessingwind turbine availability while ranking the ...... similar safety systems. The database was established with Microsoft Access DatabaseManagement System, the software for reliability and availability assessments was created with Visual Basic....... the contributions at both the component and system levels. The project resulted in a software package combining a failure database with programs for predicting WTB availability and the reliability of all thecomponents and systems, especially the safety system. The report consists of a description of the theoretical......The objective of this project was to develop and establish a database for collecting reliability and reliability-related data, for assessing the reliability of wind turbine components and subsystems and wind turbines as a whole, as well as for assessingwind turbine availability while ranking...

  16. Nanofluidics thermodynamic and transport properties

    CERN Document Server

    Michaelides, Efstathios E (Stathis)

    2014-01-01

    This volume offers a comprehensive examination of the subject of heat and mass transfer with nanofluids as well as a critical review of the past and recent research projects in this area. Emphasis is placed on the fundamentals of the transport processes using particle-fluid suspensions, such as nanofluids. The nanofluid research is examined and presented in a holistic way using a great deal of our experience with the subjects of continuum mechanics, statistical thermodynamics, and non-equilibrium thermodynamics of transport processes. Using a thorough database, the experimental, analytical, and numerical advances of recent research in nanofluids are critically examined and connected to past research with medium and fine particles as well as to functional engineering systems. Promising applications and technological issues of heat/mass transfer system design with nanofluids are also discussed. This book also: Provides a deep scientific analysis of nanofluids using classical thermodynamics and statistical therm...

  17. Surgery Risk Assessment (SRA) Database

    Data.gov (United States)

    Department of Veterans Affairs — The Surgery Risk Assessment (SRA) database is part of the VA Surgical Quality Improvement Program (VASQIP). This database contains assessments of selected surgical...

  18. Equilibrium thermodynamics

    CERN Document Server

    de Oliveira, Mário J

    2017-01-01

    This textbook provides an exposition of equilibrium thermodynamics and its applications to several areas of physics with particular attention to phase transitions and critical phenomena. The applications include several areas of condensed matter physics and include also a chapter on thermochemistry. Phase transitions and critical phenomena are treated according to the modern development of the field, based on the ideas of universality and on the Widom scaling theory. For each topic, a mean-field or Landau theory is presented to describe qualitatively the phase transitions. These theories include the van der Waals theory of the liquid-vapor transition, the Hildebrand-Heitler theory of regular mixtures, the Griffiths-Landau theory for multicritical points in multicomponent systems, the Bragg-Williams theory of order-disorder in alloys, the Weiss theory of ferromagnetism, the Néel theory of antiferromagnetism, the Devonshire theory for ferroelectrics and Landau-de Gennes theory of liquid crystals. This new edit...

  19. Development of Pipeline Database and CAD Model for Selection of Core Security Zone in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jung, Woo Sik; Choi, Seong Soo

    2010-06-01

    The goals of this report are (1) to develop a piping database for safety class 1 and 2 piping in Ulchin Units 3 and 4 in order to identify vital areas (2) to develop a CAD model for a vital area visualization (3) to realize a 3D program for a virtual reality of vital areas. We have performed a piping segmentation and an accident consequence analysis and developed a piping database. We also have developed a CAD model for primary auxiliary building, containment building, secondary auxiliary building, and turbine building

  20. Thermodynamic data for predicting concentrations of Pu(III), Am(III), and Cm(III) in geologic environments

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Dhanpat; Rao, Linfeng; Weger, H.T.; Felmy, A.R. [Pacific Northwest National Laboratory, WA (United States); Choppin, G.R. [Florida State University, Florida (United States); Yui, Mikazu [Japan Nuclear Cycle Development Inst., Tokai Works, Tokai, Ibaraki (Japan)

    1999-01-01

    This report provides thermodynamic data for predicting concentrations of Pu(III), Am(III), and Cm(III) in geologic environments, and contributes to an integration of the JNC chemical thermodynamic database, JNC-TDB (previously PNC-TDB), for the performance analysis of geological isolation system for high-level radioactive wastes. Thermodynamic data for the formation of complexes or compounds with hydroxide, chloride, fluoride, carbonate, nitrate, sulfate and phosphate are discussed in this report. Where data for specific actinide(III) species are lacking, the data were selected based on chemical analogy to other trivalent actinides. In this study, the Pitzer ion-interaction model is mainly used to extrapolate thermodynamic constants to zero ionic strength at 25degC. (author)

  1. Consideration on thermodynamic data for predicting solubility and chemical species of elements in groundwater. Part 1: Tc, U, Am

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Tetsuji; Takeda, Seiji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-01-01

    The solubility determines the release of radionuclides from waste form and is used as a source term in radionuclide migration analysis in performance assessment of radioactive waste repository. Complexations of radionuclides by ligands in groundwater affect the interaction between radionuclides and geologic media, thus affect their migration behavior. Thermodynamic data for Tc, Am and U were reviewed and compiled to be used for predicting the solubility and chemical species in groundwater. Thermodynamic data were reviewed with emphasis on the hydrolysis and carbonate complexation that can dominate the speciation in typical groundwater. Thermodynamic data for other species were selected based on existing database. Thermodynamic data for other important elements are under investigation, thus shown in an appendix for temporary use. (author)

  2. ZZ HATCHES-18, Database for radiochemical modelling

    International Nuclear Information System (INIS)

    Heath, T.G.

    2008-01-01

    1 - Description of program or function: HATCHES is a referenced, quality assured, thermodynamic database, developed by Serco Assurance for Nirex. Although originally compiled for use in radiochemical modelling work, HATCHES also includes data suitable for many other applications e.g. toxic waste disposal, effluent treatment and chemical processing. It is used in conjunction with chemical and geochemical computer programs, to simulate a wide variety of reactions in aqueous environments. The database includes thermodynamic data (the log formation constant and the enthalpy of formation for the chemical species) for the actinides, fission products and decay products. The datasets for Ni, Tc, U, Np, Pu and Am are based on the NEA reviews of the chemical thermodynamics of these elements. The data sets for these elements with oxalate, citrate and EDTA are based on the NEA-selected values. For iso-saccharinic acid, additional data (non-selected values) have been included from the NEA review as well as data derived from other sources. HATCHES also includes data for many toxic metals and for elements commonly found in groundwaters or geological materials. HARPHRQ operates by reference to the PHREEQE master species list. Thus the thermodynamic information supplied is: a) the log equilibrium constant for the formation reaction of the requested species from the PHREEQE master species for the corresponding elements; b) the enthalpy of reaction for the formation reaction of the requested species from the PHREEQE master species for the corresponding elements. This version of HATCHES has been updated since the previous release to provide consistency with the selected data from two recent publications in the OECD Nuclear Energy Agency series on chemical thermodynamics: Chemical Thermodynamics Series Volume 7 (2005): Chemical Thermodynamics of Selenium by Aeke Olin (Chairman), Bengt Nolaeng, Lars-Olof Oehman, Evgeniy Osadchii and Erik Rosen and Chemical Thermodynamics Series Volume 8

  3. RNA Thermodynamic Structural Entropy.

    Science.gov (United States)

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  4. RNA Thermodynamic Structural Entropy.

    Directory of Open Access Journals (Sweden)

    Juan Antonio Garcia-Martin

    Full Text Available Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs. However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  5. Thermodynamically consistent model calibration in chemical kinetics

    Directory of Open Access Journals (Sweden)

    Goutsias John

    2011-05-01

    Full Text Available Abstract Background The dynamics of biochemical reaction systems are constrained by the fundamental laws of thermodynamics, which impose well-defined relationships among the reaction rate constants characterizing these systems. Constructing biochemical reaction systems from experimental observations often leads to parameter values that do not satisfy the necessary thermodynamic constraints. This can result in models that are not physically realizable and may lead to inaccurate, or even erroneous, descriptions of cellular function. Results We introduce a thermodynamically consistent model calibration (TCMC method that can be effectively used to provide thermodynamically feasible values for the parameters of an open biochemical reaction system. The proposed method formulates the model calibration problem as a constrained optimization problem that takes thermodynamic constraints (and, if desired, additional non-thermodynamic constraints into account. By calculating thermodynamically feasible values for the kinetic parameters of a well-known model of the EGF/ERK signaling cascade, we demonstrate the qualitative and quantitative significance of imposing thermodynamic constraints on these parameters and the effectiveness of our method for accomplishing this important task. MATLAB software, using the Systems Biology Toolbox 2.1, can be accessed from http://www.cis.jhu.edu/~goutsias/CSS lab/software.html. An SBML file containing the thermodynamically feasible EGF/ERK signaling cascade model can be found in the BioModels database. Conclusions TCMC is a simple and flexible method for obtaining physically plausible values for the kinetic parameters of open biochemical reaction systems. It can be effectively used to recalculate a thermodynamically consistent set of parameter values for existing thermodynamically infeasible biochemical reaction models of cellular function as well as to estimate thermodynamically feasible values for the parameters of new

  6. Thermodynamics of phase transitions

    International Nuclear Information System (INIS)

    Cofta, H.

    1972-01-01

    The phenomenology of the phase transitions has been considered. The definitions of thermodynamic functions and parameters, as well as those of the phase transitions, are given and some of the relations between those quantities are discussed. The phase transitions classification proposed by Ehrenfest has been described. The most important features of phase transitions are discussed using the selected physical examples including the critical behaviour of ferromagnetic materials at the Curie temperature and antiferromagnetic materials at the Neel temperature. Some aspects of the Ehrenfest's equations, that have been derived, for the interfacial lines and surfaces are considered as well as the role the notion of interfaces. (S.B.)

  7. Thermodynamics of Radiation Modes

    Science.gov (United States)

    Pina, Eduardo; de la Selva, Sara Maria Teresa

    2010-01-01

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…

  8. Mathematical foundations of thermodynamics

    CERN Document Server

    Giles, R; Stark, M; Ulam, S

    2013-01-01

    Mathematical Foundations of Thermodynamics details the core concepts of the mathematical principles employed in thermodynamics. The book discusses the topics in a way that physical meanings are assigned to the theoretical terms. The coverage of the text includes the mechanical systems and adiabatic processes; topological considerations; and equilibrium states and potentials. The book also covers Galilean thermodynamics; symmetry in thermodynamics; and special relativistic thermodynamics. The book will be of great interest to practitioners and researchers of disciplines that deal with thermodyn

  9. [Occupational exposure to silica dust by selected sectors of national economy in Poland based on electronic database].

    Science.gov (United States)

    Bujak-Pietrek, Stella; Mikołajczyk, Urszula; Szadkowska-Stańczyk, Irena; Stroszejn-Mrowca, Grazyna

    2008-01-01

    To evaluate occupational exposure to dusts, the Nofer Institute of Occupational Medicine in Łódź, in collaboration with the Chief Sanitary Inspectorate, has developed the national database to store the results of routine dust exposure measurements performed by occupational hygiene and environmental protection laboratories in Poland in the years 2001-2005. It was assumed that the collected information will be useful in analyzing workers' exposure to free crystalline silica (WKK)-containing dusts in Poland, identyfing exceeded hygiene standards and showing relevant trends, which illustrate the dynamics of exposure in the years under study. Inhalable and respirable dust measurement using personal dosimetry were done according to polish standard PN-91/Z-04030/05 and PN-91/Z-04030/06. In total, 148 638 measurement records, provided by sanitary inspection services from all over Poland, were entered into the database. The database enables the estimation of occupational exposure to dust by the sectors of national economy, according to the Polish Classification of Activity (PKD) and by kinds of dust. The highest exposure level of inhalable and respirable dusts was found in coal mining. Also in this sector, almost 60% of surveys demonstrated exceeded current hygiene standards. High concentrations of both dust fractions (inhalable and respirable) and a considerable percentage of measurements exceeding hygiene standards were found in the manufacture of transport equipment (except for cars), as well as in the chemical, mining (rock, sand, gravel, clay mines) and construction industries. The highest percentage of surveys (inhalable and respirable dust) showing exceeded hygiene standards were observed for coal dust with different content of crystalline silica, organic dust containing more than 10% of SiO2, and highly fibrosis dust containing more than 50% of SiO2.

  10. Thermodynamic tables to accompany Modern engineering thermodynamics

    CERN Document Server

    Balmer, Robert T

    2011-01-01

    This booklet is provided at no extra charge with new copies of Balmer's Modern Engineering Thermodynamics. It contains two appendices. Appendix C contains 40 thermodynamic tables, and Appendix D consists of 6 thermodynamic charts. These charts and tables are provided in a separate booklet to give instructors the flexibility of allowing students to bring the tables into exams. The booklet may be purchased separately if needed.

  11. Classical and statistical thermodynamics

    CERN Document Server

    Rizk, Hanna A

    2016-01-01

    This is a text book of thermodynamics for the student who seeks thorough training in science or engineering. Systematic and thorough treatment of the fundamental principles rather than presenting the large mass of facts has been stressed. The book includes some of the historical and humanistic background of thermodynamics, but without affecting the continuity of the analytical treatment. For a clearer and more profound understanding of thermodynamics this book is highly recommended. In this respect, the author believes that a sound grounding in classical thermodynamics is an essential prerequisite for the understanding of statistical thermodynamics. Such a book comprising the two wide branches of thermodynamics is in fact unprecedented. Being a written work dealing systematically with the two main branches of thermodynamics, namely classical thermodynamics and statistical thermodynamics, together with some important indexes under only one cover, this treatise is so eminently useful.

  12. Materials Properties Database for Selection of High-Temperature Alloys and Concepts of Alloy Design for SOFC Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z Gary; Paxton, Dean M.; Weil, K. Scott; Stevenson, Jeffry W.; Singh, Prabhakar

    2002-11-24

    To serve as an interconnect / gas separator in an SOFC stack, an alloy should demonstrate the ability to provide (i) bulk and surface stability against oxidation and corrosion during prolonged exposure to the fuel cell environment, (ii) thermal expansion compatibility with the other stack components, (iii) chemical compatibility with adjacent stack components, (iv) high electrical conductivity of the surface reaction products, (v) mechanical reliability and durability at cell exposure conditions, (vii) good manufacturability, processability and fabricability, and (viii) cost effectiveness. As the first step of this approach, a composition and property database was compiled for high temperature alloys in order to assist in determining which alloys offer the most promise for SOFC interconnect applications in terms of oxidation and corrosion resistance. The high temperature alloys of interest included Ni-, Fe-, Co-base superal

  13. Statistical thermodynamics of clustered populations.

    Science.gov (United States)

    Matsoukas, Themis

    2014-08-01

    We present a thermodynamic theory for a generic population of M individuals distributed into N groups (clusters). We construct the ensemble of all distributions with fixed M and N, introduce a selection functional that embodies the physics that governs the population, and obtain the distribution that emerges in the scaling limit as the most probable among all distributions consistent with the given physics. We develop the thermodynamics of the ensemble and establish a rigorous mapping to regular thermodynamics. We treat the emergence of a so-called giant component as a formal phase transition and show that the criteria for its emergence are entirely analogous to the equilibrium conditions in molecular systems. We demonstrate the theory by an analytic model and confirm the predictions by Monte Carlo simulation.

  14. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria

    International Nuclear Information System (INIS)

    Fritzsching, Keith J.; Hong, Mei; Schmidt-Rohr, Klaus

    2016-01-01

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations ( 13 C– 13 C, 15 N– 13 C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 13 C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited “hand-picked” data sets, we show that ∼94 % of the 13 C NMR data and almost all 15 N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6 % of the 13 C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. −2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra-residue cross peaks by inspection or by using a

  15. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsching, Keith J., E-mail: kfritzsc@brandeis.edu [Brandeis University, Department of Chemistry (United States); Hong, Mei [Massachusetts Institute of Technology, Department of Chemistry (United States); Schmidt-Rohr, Klaus, E-mail: srohr@brandeis.edu [Brandeis University, Department of Chemistry (United States)

    2016-02-15

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations ({sup 13}C–{sup 13}C, {sup 15}N–{sup 13}C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 {sup 13}C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited “hand-picked” data sets, we show that ∼94 % of the {sup 13}C NMR data and almost all {sup 15}N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6 % of the {sup 13}C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. −2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra

  16. Chemical thermodynamics of iron - Part 1 - Chemical thermodynamics volume 13a

    International Nuclear Information System (INIS)

    Lemire, Robert J.; Berner, Urs; Musikas, Claude; Palmer, Donald A.; Taylor, Peter; Tochiyama, Osamu; Perrone, Jane

    2013-01-01

    Volume 13a of the 'Chemical Thermodynamics' (TDB) series, is the first of two volumes describing the selection of chemical thermodynamic data for species of iron. Because of the voluminous information in the literature, it has been more efficient to prepare the review in two (unequal) parts. This larger first part contains assessments of data for the metal, simple ions, aqueous hydroxido, chlorido, sulfido, sulfato and carbonato complexes, and for solid oxides and hydroxides, halides, sulfates, carbonates and simple silicates. The second part will provide assessments of data for other aqueous halido species, sulfide solids, and solid and solution species with nitrate, phosphate and arsenate, as well as some aspects of solid solutions in iron-oxide and iron-sulfide systems. The database system developed at the OECD/NEA Data Bank ensures consistency not only within the recommended data sets of iron, but also among all the data sets published in the series. This volume will be of particular interest to scientists carrying out performance assessments of deep geological disposal sites for radioactive waste

  17. Ternary alloy systems. Phase diagrams, crystallographic and thermodynamic data critically evaluated by MSIT registered. Subvol. C. Non-ferrous metal systems. Pt. 4: Selected nuclear materials and engineering systems

    International Nuclear Information System (INIS)

    Effenberg, Guenter; Ilyenko, Svitlana; Aldinger, Fritz; Bochvar, Nataliya; Cacciamani, Gabriele

    2007-01-01

    The present volume in the New Series of Landolt-Boernstein provides critically evaluated data on phase diagrams, crystallographic and thermodynamic data of ternary alloy systems. Reliable phase diagrams provide materials scientists and engineers with basic information important for fundamental research, development and optimization of materials. The often conflicting literature data have been critically evaluated by Materials Science International Team, MSIT registered , a team working together since many years, and with expertise in a broad range of methods, materials and applications. All evaluation reports published here have undergone a thorough review process in which the reviewers had access to all the original data. The data for each ternary system are provided in a standard format which includes text, tables and diagrams. The topics presented are literature data, binary systems, solid phases, pseudobinary systems, invariant equilibria, liquidus, solidus, and solvus surfaces, isothermal sections, temperature-composition sections, thermodynamics, materials properties and applications, and miscellanea. Finally, a detailed bibliography of all cited references is provided. In the present volume IV/11C selected non-ferrous-metal systems are considered, especially selected nuclear materials and engineering systems in this Part 4. (orig.)

  18. Thermodynamics in Einstein's thought

    International Nuclear Information System (INIS)

    Klein, M.J.

    1983-01-01

    The role of the thermodynamical approach in the Einstein's scientific work is analyzed. The Einstein's development of a notion about statistical fluctuations of thermodynamical systems that leads him to discovery of corpuscular-wave dualism is retraced

  19. Thermodynamic characterization of the molten salt reactor fuel - 5233

    International Nuclear Information System (INIS)

    Capelli, E.; Konings, R.J.M.; Benes, O.

    2015-01-01

    The Molten Salt Reactor (MSR) has been selected as one of the Generation IV nuclear systems. The very unique feature of this reactor concept is the liquid nature of the fuel which offers numerous advantages concerning the reactor safety. Nowadays, the research in Europe is focused on an innovative concept, the MSFR (Molten Salt Fast Reactor), that combines the generic assets of molten salt as liquid fuel with those related to fast neutron reactors and the thorium fuel cycle. For the design and safety assessment of the MSFR concept, it is extremely important to have a thorough knowledge of the physico-chemical properties of fluorides salts, which is the class of materials that is the best suited for nuclear applications. Potential chemical systems have been critically reviewed and an extensive thermodynamic database describing the most relevant systems has been created at the Institute for Transuranium Elements of the Joint Research Centre (JRC). Thermochemical equilibrium calculations are a very important tool that allows the evaluation of the performance of several salt mixtures predicting their properties and thus the optimization of the fuel composition. The work combines the experimental determination of different salt properties with the modelling of the thermodynamic functions, using the Calphad method. An overview of the experimental work and the thermodynamic assessments will be given in this paper and different fuel options for the MSFR will be discussed. (authors)

  20. Use of thermodynamic sorption models to derive radionuclide Kd values for performance assessment: Selected results and recommendations of the NEA sorption project

    Science.gov (United States)

    Ochs, M.; Davis, J.A.; Olin, M.; Payne, T.E.; Tweed, C.J.; Askarieh, M.M.; Altmann, S.

    2006-01-01

    For the safe final disposal and/or long-term storage of radioactive wastes, deep or near-surface underground repositories are being considered world-wide. A central safety feature is the prevention, or sufficient retardation, of radionuclide (RN) migration to the biosphere. To this end, radionuclide sorption is one of the most important processes. Decreasing the uncertainty in radionuclide sorption may contribute significantly to reducing the overall uncertainty of a performance assessment (PA). For PA, sorption is typically characterised by distribution coefficients (Kd values). The conditional nature of Kd requires different estimates of this parameter for each set of geochemical conditions of potential relevance in a RN's migration pathway. As it is not feasible to measure sorption for every set of conditions, the derivation of Kd for PA must rely on data derived from representative model systems. As a result, uncertainty in Kd is largely caused by the need to derive values for conditions not explicitly addressed in experiments. The recently concluded NEA Sorption Project [1] showed that thermodynamic sorption models (TSMs) are uniquely suited to derive K d as a function of conditions, because they allow a direct coupling of sorption with variable solution chemistry and mineralogy in a thermodynamic framework. The results of the project enable assessment of the suitability of various TSM approaches for PA-relevant applications as well as of the potential and limitations of TSMs to model RN sorption in complex systems. ?? by Oldenbourg Wissenschaftsverlag.

  1. Heat and thermodynamics

    CERN Document Server

    Saxena, A K

    2014-01-01

    Heat and thermodynamics aims to serve as a textbook for Physics, Chemistry and Engineering students. The book covers basic ideas of Heat and Thermodynamics, Kinetic Theory and Transport Phenomena, Real Gases, Liquafaction and Production and Measurement of very Low Temperatures, The First Law of Thermodynamics, The Second and Third Laws of Thermodynamics and Heat Engines and Black Body Radiation. KEY FEATURES Emphasis on concepts Contains 145 illustrations (drawings), 9 Tables and 48 solved examples At the end of chapter exercises and objective questions

  2. Thermodynamic data for predicting concentrations of Th(IV), U(IV), Np(IV), and Pu(IV) in geologic environments

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Dhanpat; Roa, Linfeng; Weger, H.T.; Felmy, A.R. [Battelle, Pacific Northwest National Laboratory (PNNL) (United States); Choppin, G.R. [Florida State University (United States); Yui, Mikazu [Waste Isolation Research Division, Tokai Works, Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan)

    1999-01-01

    This report provides thermodynamic data for predicting concentrations of Th(IV), U(IV), Np(IV), and Pu(IV) in geologic environments, and contributes to an integration of the JNC chemical thermodynamic database, JNC-TDB (previously PNC-TDB), for the performance analysis of geological isolation system for high-level radioactive wastes. Thermodynamic data for the formation of complexes or compounds with hydroxide, chloride, fluoride, carbonate, nitrate, sulfate and phosphate are discussed in this report. Where data for specific actinide(IV) species was lacking, the data were selected based on chemical analogy to other tetravalent actinides. In this study, the Pitzer ion-interaction model is used to extrapolate thermodynamic constants to zero ionic strength at 25degC. (author)

  3. Thermodynamic behaviour of ruthenium at high temperatures

    International Nuclear Information System (INIS)

    Garisto, F.

    1988-01-01

    Thermodynamic equilibrium calculations are used to determine the chemical speciation of ruthenium under postulated reactor accident conditions. The speciation of ruthenium is determined for various values of temperature, pressure, oxygen partial pressure and ruthenium concentration. The importance of these variables, in particular the oxygen partial pressure, in determining the volatility of ruthenium is clearly demonstrated in this report. Reliable thermodynamic data are required to determine the behaviour of ruthenium using equilibrium calculations. Therefore, it was necessary to compile a thermodynamic database for the ruthenium species that can be formed under reactor accident conditions. The origin of the thermodynamic data for the ruthenium species included in our calculations is discussed in detail in Appendix A. 23 refs

  4. Advanced classical thermodynamics

    International Nuclear Information System (INIS)

    Emanuel, G.

    1987-01-01

    The theoretical and mathematical foundations of thermodynamics are presented in an advanced text intended for graduate engineering students. Chapters are devoted to definitions and postulates, the fundamental equation, equilibrium, the application of Jacobian theory to thermodynamics, the Maxwell equations, stability, the theory of real gases, critical-point theory, and chemical thermodynamics. Diagrams, graphs, tables, and sample problems are provided. 38 references

  5. In vitro anti-proliferative activity on colon cancer cell line (HT-29) of Thai medicinal plants selected from Thai/Lanna medicinal plant recipe database "MANOSROI III".

    Science.gov (United States)

    Manosroi, Aranya; Akazawa, Hiroyuki; Akihisa, Toshihiro; Jantrawut, Pensak; Kitdamrongtham, Worapong; Manosroi, Worapaka; Manosroi, Jiradej

    2015-02-23

    Thai/Lanna region has its own folklore wisdoms including the traditional medicinal plant recipes. Thai/Lanna medicinal plant recipe database "MANOSROI III" has been developed by Prof. Dr. Jiradej Manosroi. It consists of over 200,000 recipes for all diseases including cancer. To investigate the anti-proliferative and apoptotic activities on human colon cancer cell line (HT-29) as well as the cancer cell selectivity of the methanolic extracts (MEs) and fractions of the 23 selected plants from the "MANOSROI III" database. The 23 selected plants were extracted with methanol under reflux and evaluated for their anti-proliferative activity by sulforhodamine B assay. The 5 plants (Gloriosa superba, Caesalpinia sappan, Fibraurea tinctoria, Ventilago denticulata and Psophocarpus tetragonolobus) with potent anti-proliferative activity were fractionated by liquid-liquid partition to give 4 fractions including each hexane (HF), methanol-water (MF), n-butanol (BF) and water (WF) fractions. They were tested for anti-proliferative activity and cancer cell selectivity. The ME and fractions of G. superba which showed potent anti-proliferative activity were further examined for morphological changes and apoptotic activities by acridine orange (AO)/ethidium bromide (EB) staining. The ME of G. superba root showed active with the highest anti-proliferative activity at 9.17 and 1.58 folds of cisplatin and doxorubicin, respectively. After liquid-liquid partition, HF of V. denticulata, MFs of F. tinctoria, V. denticulata and BF of P. tetragonolobus showed higher anti-proliferative activities than their MEs. The MF of G. superba indicated the highest anti-proliferative activity at 7.73 and 1.34 folds of cisplatin and doxorubicin, respectively, but only 0.86 fold of its ME. The ME and HF, MF and BF of G. superba and MF of F. tinctoria demonstrated high cancer cell selectivity. At 50 µg/ml, ME, HF, MF and BF of G. superba demonstrated higher apoptotic activities than the two standard drugs

  6. Database for nuclear-waste disposal for temperatures up to 3000C

    International Nuclear Information System (INIS)

    Phillips, S.L.; Silvester, L.F.

    1982-09-01

    A computerized database is compiled of evaluated thermodynamic data for aqueous species associated with nuclear waste storage. The data are organized as hydrolysis and formation constants; solubilities of oxides and hydroxides; and, as Nernstian potentials. More emphasis is on stability constants. Coeffficients are given to calculate stability constants at various ionic strengths and to high temperatures. Results are presented as tables for selected species including uranium, amorphous silica and actinides

  7. Introduction to applied thermodynamics

    CERN Document Server

    Helsdon, R M; Walker, G E

    1965-01-01

    Introduction to Applied Thermodynamics is an introductory text on applied thermodynamics and covers topics ranging from energy and temperature to reversibility and entropy, the first and second laws of thermodynamics, and the properties of ideal gases. Standard air cycles and the thermodynamic properties of pure substances are also discussed, together with gas compressors, combustion, and psychrometry. This volume is comprised of 16 chapters and begins with an overview of the concept of energy as well as the macroscopic and molecular approaches to thermodynamics. The following chapters focus o

  8. Twenty lectures on thermodynamics

    CERN Document Server

    Buchdahl, H A

    2013-01-01

    Twenty Lectures on Thermodynamics is a course of lectures, parts of which the author has given various times over the last few years. The book gives the readers a bird's eye view of phenomenological and statistical thermodynamics. The book covers many areas in thermodynamics such as states and transition; adiabatic isolation; irreversibility; the first, second, third and Zeroth laws of thermodynamics; entropy and entropy law; the idea of the application of thermodynamics; pseudo-states; the quantum-static al canonical and grand canonical ensembles; and semi-classical gaseous systems. The text

  9. A method for the selection of a functional form for a thermodynamic equation of state using weighted linear least squares stepwise regression

    Science.gov (United States)

    Jacobsen, R. T.; Stewart, R. B.; Crain, R. W., Jr.; Rose, G. L.; Myers, A. F.

    1976-01-01

    A method was developed for establishing a rational choice of the terms to be included in an equation of state with a large number of adjustable coefficients. The methods presented were developed for use in the determination of an equation of state for oxygen and nitrogen. However, a general application of the methods is possible in studies involving the determination of an optimum polynomial equation for fitting a large number of data points. The data considered in the least squares problem are experimental thermodynamic pressure-density-temperature data. Attention is given to a description of stepwise multiple regression and the use of stepwise regression in the determination of an equation of state for oxygen and nitrogen.

  10. Rational extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1998-01-01

    Ordinary thermodynamics provides reliable results when the thermodynamic fields are smooth, in the sense that there are no steep gradients and no rapid changes. In fluids and gases this is the domain of the equations of Navier-Stokes and Fourier. Extended thermodynamics becomes relevant for rapidly varying and strongly inhomogeneous processes. Thus the propagation of high­ frequency waves, and the shape of shock waves, and the regression of small-scale fluctuation are governed by extended thermodynamics. The field equations of ordinary thermodynamics are parabolic while extended thermodynamics is governed by hyperbolic systems. The main ingredients of extended thermodynamics are • field equations of balance type, • constitutive quantities depending on the present local state and • entropy as a concave function of the state variables. This set of assumptions leads to first order quasi-linear symmetric hyperbolic systems of field equations; it guarantees the well-posedness of initial value problems and f...

  11. Retrospective chart review of a referenced EEG database in assisting medication selection for treatment of depression in patients with eating disorders

    Directory of Open Access Journals (Sweden)

    Greenblatt JM

    2011-09-01

    Full Text Available James M Greenblatt1, Craig Sussman1, Mariko Jameson1, Lee Yuan1, Daniel A Hoffman2, Dan V Iosifescu31Comprehensive Psychiatric Resources, Waltham, MA, USA; 2Neuro-Therapy Clinic Inc, Denver, CO, USA; 3Mood and Anxiety Disorders Program, Mount Sinai School of Medicine, New York, NY, USABackground: A retrospective chart review was undertaken in a private clinic to examine the clinical outcomes for patients with an eating disorder comorbid with depression or bipolar illness who underwent a referenced electroencephalographic (EEG database analysis to help guide medication selection.Method: We examined 33 charts for patients with the primary psychiatric diagnosis of an eating disorder and comorbid major depressive disorder or bipolar disorder who underwent a quantitative EEG database assessment to provide additional information for choices of medication. The current analysis includes data from 22 subjects who accepted treatments based on information from the referenced-EEG medication database. Hamilton Depression Rating Scale, Clinical Global Impression-Severity, Clinical Global Impression-Improvement, and hospitalization data were examined for these patients.Results: Patients whose EEG data was used for clinical treatment reported significant decreases in associated depressive symptoms (HDRS scores, overall severity of illness (Clinical Global Impression-Severity, and overall clinical global improvement (Clinical Global Impression-Improvement. This cohort also reported fewer inpatient, residential, and partial hospitalization program days following referenced-EEG compared with the two-year period prior to treatment.Conclusion: These findings are consistent with previously reported data for patients with eating disorders and suggest the need for future studies using EEG data correlated with those from other patients with similar quantitative EEG features.Keywords: eating disorders, anorexia, bulimia, depression, referenced-EEG, chart review

  12. Thermochemistry in BWR. An overview of applications of program codes and databases

    International Nuclear Information System (INIS)

    Hermansson, H-P.; Becker, R.

    2010-01-01

    The Swedish work on thermodynamics of metal-water systems relevant to BWR conditions has been ongoing since the 70ies, and at present time a compilation and adaptation of codes and thermodynamic databases are in progress. In the previous work, basic thermodynamic data were compiled for parts of the system Fe-Cr-Ni-Co-Zn-S-H 2 O at 25-300 °C. Since some thermodynamic information necessary for temperature extrapolations of data up to 300 °C was not published in the earlier works, these data have now been partially recalculated. This applies especially to the parameters of the HKF-model, which are used to extrapolate the thermodynamic data for ionic and neutral aqua species from 25 °C to BWR temperatures. Using the completed data, e.g. the change in standard Gibbs energy (ΔG 0 ) and the equilibrium constant (log K) can be calculated for further applications at BWR/LWR conditions. In addition a computer program is currently being developed at Studsvik for the calculation of equilibrium conductivity in high temperature water. The program is intended for PWR applications, but can also be applied to BWR environment. Data as described above will be added to the database of this program. It will be relatively easy to further develop the program e.g. to calculate Pourbaix diagrams, and these graphs could then be calculated at any temperature. This means that there will be no limitation to the temperatures and total concentrations (usually 10 -6 to 10 -8 mol/kg) as reported in earlier work. It is also easy to add a function generating ΔG 0 and log K values at selected temperatures. One of the fundamentals for this work was also to overview and collect publicly available thermodynamic program codes and databases of relevance for BWR conditions found in open sources. The focus has been on finding already done compilations and reviews, and some 40 codes and 15 databases were found. Codes and data-bases are often integrated and such a package is often developed for

  13. Thermodynamic modeling of the Co-Fe-O system

    DEFF Research Database (Denmark)

    Zhang, Weiwei; Chen, Ming

    2013-01-01

    As a part of the research project aimed at developing a thermodynamic database of the La-Sr-Co-Fe-O system for applications in Solid Oxide Fuel Cells (SOFCs), the Co-Fe-O subsystem was thermodynamically re-modeled in the present work using the CALPHAD methodology. The solid phases were described...... using the Compound Energy Formalism (CEF) and the ionized liquid was modeled with the ionic two-sublattice model based on CEF. A set of self-consistent thermodynamic parameters was obtained eventually. Calculated phase diagrams and thermodynamic properties are presented and compared with experimental...

  14. Potent anti-proliferative effects against oral and cervical cancers of Thai medicinal plants selected from the Thai/Lanna medicinal plant recipe database "MANOSROI III".

    Science.gov (United States)

    Manosroi, Aranya; Akazawa, Hiroyuki; Pattamapun, Kassara; Kitdamrongtham, Worapong; Akihisa, Toshihiro; Manosroi, Worapaka; Manosroi, Jiradej

    2015-07-01

    Thai/Lanna medicinal plant recipes have been used for the treatment of several diseases including oral and cervical cancers. To investigate anti-proliferative activity on human cervical (HeLa) and oral (KB) cancer cell lines of medicinal plants selected from Thai/Lanna medicinal plant recipe database "MANOSROI III". Twenty-three methanolic plant crude extracts were tested for phytochemicals and anti-proliferative activity on HeLa and KB cell lines for 24 h by the sulforhodamine B (SRB) assay at the doses of 1 × 10(1)-1 × 10(-6 )mg/ml. The nine extracts with the concentrations giving 50% growth inhibition (GI50) lower than 100 µg/ml were further semi-purified by liquid/liquid partition in order to evaluate and enhance the anti-proliferative potency. All extracts contained steroids/triterpenoids, but not xanthones. The methanolic extracts of Gloriosa superba L. (Colchinaceae) root and Albizia chinensis (Osbeck) Merr. (Leguminosae-Mimosoideae) wood gave the highest anti-proliferative activity on HeLa and KB cell lines with the GI50 values of 0.91 (6.0- and 0.31-fold of cisplatin and doxorubicin) and 0.16 µg/ml (28.78- and 82.29-fold of cisplatin and doxorubicin), respectively. Hexane and methanol-water fractions of G. superba exhibited the highest anti-proliferative activity on HeLa and KB cell lines with the GI50 values of 0.15 (37- and 1.9-fold of cisplatin and doxorubicin) and 0.058 µg/ml (77.45- and 221.46-fold of cisplatin and doxorubicin), respectively. This study has demonstrated the potential of plants selected from MANOSROI III database especially G. superba and A. chinensis for further development as anti-oral and cervical cancer agents.

  15. Relational databases

    CERN Document Server

    Bell, D A

    1986-01-01

    Relational Databases explores the major advances in relational databases and provides a balanced analysis of the state of the art in relational databases. Topics covered include capture and analysis of data placement requirements; distributed relational database systems; data dependency manipulation in database schemata; and relational database support for computer graphics and computer aided design. This book is divided into three sections and begins with an overview of the theory and practice of distributed systems, using the example of INGRES from Relational Technology as illustration. The

  16. Mouse Phenome Database (MPD)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Mouse Phenome Database (MPD) has characterizations of hundreds of strains of laboratory mice to facilitate translational discoveries and to assist in selection...

  17. Kansas Cartographic Database (KCD)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Kansas Cartographic Database (KCD) is an exact digital representation of selected features from the USGS 7.5 minute topographic map series. Features that are...

  18. Thermodynamics of the Earth

    International Nuclear Information System (INIS)

    Stacey, Frank D

    2010-01-01

    Applications of elementary thermodynamic principles to the dynamics of the Earth lead to robust, quantitative conclusions about the tectonic effects that arise from convection. The grand pattern of motion conveys deep heat to the surface, generating mechanical energy with a thermodynamic efficiency corresponding to that of a Carnot engine operating over the adiabatic temperature gradient between the heat source and sink. Referred to the total heat flux derived from the Earth's silicate mantle, the efficiency is 24% and the power generated, 7.7 x 10 12 W, causes all the material deformation apparent as plate tectonics and the consequent geological processes. About 3.5% of this is released in seismic zones but little more than 0.2% as seismic waves. Even major earthquakes are only localized hiccups in this motion. Complications that arise from mineral phase transitions can be used to illuminate details of the motion. There are two superimposed patterns of convection, plate subduction and deep mantle plumes, driven by sources of buoyancy, negative and positive respectively, at the top and bottom of the mantle. The patterns of motion are controlled by the viscosity contrasts (>10 4 : 1) at these boundaries and are self-selected as the least dissipative mechanisms of heat transfer for convection in a body with very strong viscosity variation. Both are subjects of the thermodynamic efficiency argument. Convection also drives the motion in the fluid outer core that generates the geomagnetic field, although in that case there is an important energy contribution by compositional separation, as light solute is rejected by the solidifying inner core and mixed into the outer core, a process referred to as compositional convection. Uncertainty persists over the core energy balance because thermal conduction is a drain on core energy that has been a subject of diverse estimates, with attendant debate over the need for radiogenic heat in the core. The geophysical approach to

  19. An introduction to equilibrium thermodynamics

    CERN Document Server

    Morrill, Bernard; Hartnett, James P; Hughes, William F

    1973-01-01

    An Introduction to Equilibrium Thermodynamics discusses classical thermodynamics and irreversible thermodynamics. It introduces the laws of thermodynamics and the connection between statistical concepts and observable macroscopic properties of a thermodynamic system. Chapter 1 discusses the first law of thermodynamics while Chapters 2 through 4 deal with statistical concepts. The succeeding chapters describe the link between entropy and the reversible heat process concept of entropy; the second law of thermodynamics; Legendre transformations and Jacobian algebra. Finally, Chapter 10 provides a

  20. Thermodynamics for scientists and engineers

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2011-02-01

    This book deals with thermodynamics for scientists and engineers. It consists of 11 chapters, which are concept and background of thermodynamics, the first law of thermodynamics, the second law of thermodynamics and entropy, mathematics related thermodynamics, properties of thermodynamics on pure material, equilibrium, stability of thermodynamics, the basic of compound, phase equilibrium of compound, excess gibbs energy model of compound and activity coefficient model and chemical equilibrium. It has four appendixes on properties of pure materials and thermal mass.

  1. Experimental investigation and thermodynamic modeling of molybdenum and vanadium-containing carbide hardened iron-based alloys

    International Nuclear Information System (INIS)

    Cabrol, E.; Bellot, C.; Lamesle, P.; Delagnes, D.; Povoden-Karadeniz, E.

    2013-01-01

    Highlights: ► Improvement of a carbide selective extraction method. ► Determination of experimental data on the Fe–C–Cr–Mo–V system for carbides above 900 °C: crystallographic structures and compositions of precipitates, matrix composition. ► High molybdenum solubility in FCC carbides. ► Improvement of thermodynamic databases from experimental results. ► Validation of the optimized database with different compositions steels. -- Abstract: A technique for the microstructural study of steels, based on the use of matrix dissolution to collect the very low number density precipitates formed in martensitic steels, has been considerably improved. This technique was applied to two different grades of alloy, characterized by high nickel and cobalt contents and varying chromium, molybdenum and vanadium contents. The technique was implemented at temperatures ranging between 900 °C and 1000 °C, in order to accurately determine experimental data including the crystallographic structure and chemical composition of the carbides, the carbide solvus temperatures, and variations in the chemical composition of the matrix. These experimental investigations reveal that the solubility of molybdenum in FCC carbides can be very high. These results have been compared with the behavior predicted by computational thermodynamics, and used to evaluate and improve the thermodynamic Matcalc steel database. This upgraded database has been validated on three other steels with different chemical compositions, characterized by the same Fe–Cr–Mo–V–C system

  2. Experimental investigation and thermodynamic modeling of molybdenum and vanadium-containing carbide hardened iron-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cabrol, E., E-mail: ecabrol@mines-albi.fr [Institut Clément Ader, Mines Albi, Campus Jarlard, F-81013 Albi Cedex 09 (France); Aubert and Duval, BP1 F-63770 Les Ancizes (France); Bellot, C. [Institut Clément Ader, Mines Albi, Campus Jarlard, F-81013 Albi Cedex 09 (France); Aubert and Duval, BP1 F-63770 Les Ancizes (France); Lamesle, P.; Delagnes, D. [Institut Clément Ader, Mines Albi, Campus Jarlard, F-81013 Albi Cedex 09 (France); Povoden-Karadeniz, E. [Christian Doppler Laboratory for Early Stages of Precipitation, Vienna University of Technology, Favoritenstrasse 9-11, A-1040 Vienna (Austria)

    2013-04-15

    Highlights: ► Improvement of a carbide selective extraction method. ► Determination of experimental data on the Fe–C–Cr–Mo–V system for carbides above 900 °C: crystallographic structures and compositions of precipitates, matrix composition. ► High molybdenum solubility in FCC carbides. ► Improvement of thermodynamic databases from experimental results. ► Validation of the optimized database with different compositions steels. -- Abstract: A technique for the microstructural study of steels, based on the use of matrix dissolution to collect the very low number density precipitates formed in martensitic steels, has been considerably improved. This technique was applied to two different grades of alloy, characterized by high nickel and cobalt contents and varying chromium, molybdenum and vanadium contents. The technique was implemented at temperatures ranging between 900 °C and 1000 °C, in order to accurately determine experimental data including the crystallographic structure and chemical composition of the carbides, the carbide solvus temperatures, and variations in the chemical composition of the matrix. These experimental investigations reveal that the solubility of molybdenum in FCC carbides can be very high. These results have been compared with the behavior predicted by computational thermodynamics, and used to evaluate and improve the thermodynamic Matcalc steel database. This upgraded database has been validated on three other steels with different chemical compositions, characterized by the same Fe–Cr–Mo–V–C system.

  3. Thermodynamic properties for arsenic minerals and aqueous species

    Science.gov (United States)

    Nordstrom, D. Kirk; Majzlan, Juraj; Königsberger, Erich; Bowell, Robert J.; Alpers, Charles N.; Jamieson, Heather E.; Nordstrom, D. Kirk; Majzlan, Juraj

    2014-01-01

    Quantitative geochemical calculations are not possible without thermodynamic databases and considerable advances in the quantity and quality of these databases have been made since the early days of Lewis and Randall (1923), Latimer (1952), and Rossini et al. (1952). Oelkers et al. (2009) wrote, “The creation of thermodynamic databases may be one of the greatest advances in the field of geochemistry of the last century.” Thermodynamic data have been used for basic research needs and for a countless variety of applications in hazardous waste management and policy making (Zhu and Anderson 2002; Nordstrom and Archer 2003; Bethke 2008; Oelkers and Schott 2009). The challenge today is to evaluate thermodynamic data for internal consistency, to reach a better consensus of the most reliable properties, to determine the degree of certainty needed for geochemical modeling, and to agree on priorities for further measurements and evaluations.

  4. pycalphad: CALPHAD-based Computational Thermodynamics in Python

    Directory of Open Access Journals (Sweden)

    Richard Otis

    2017-01-01

    Full Text Available The pycalphad software package is a free and open-source Python library for designing thermodynamic models, calculating phase diagrams and investigating phase equilibria using the CALPHAD method. It provides routines for reading thermodynamic databases and solving the multi-component, multi-phase Gibbs energy minimization problem. The pycalphad software project advances the state of thermodynamic modeling by providing a flexible yet powerful interface for manipulating CALPHAD data and models. The key feature of the software is that the thermodynamic models of individual phases and their associated databases can be programmatically manipulated and overridden at run-time without modifying any internal solver or calculation code. Because the models are internally decoupled from the equilibrium solver and the models themselves are represented symbolically, pycalphad is an ideal tool for CALPHAD database development and model prototyping.

  5. Community Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This excel spreadsheet is the result of merging at the port level of several of the in-house fisheries databases in combination with other demographic databases such...

  6. Thermodynamics of Bioreactions.

    Science.gov (United States)

    Held, Christoph; Sadowski, Gabriele

    2016-06-07

    Thermodynamic principles have been applied to enzyme-catalyzed reactions since the beginning of the 1930s in an attempt to understand metabolic pathways. Currently, thermodynamics is also applied to the design and analysis of biotechnological processes. The key thermodynamic quantity is the Gibbs energy of reaction, which must be negative for a reaction to occur spontaneously. However, the application of thermodynamic feasibility studies sometimes yields positive Gibbs energies of reaction even for reactions that are known to occur spontaneously, such as glycolysis. This article reviews the application of thermodynamics in enzyme-catalyzed reactions. It summarizes the basic thermodynamic relationships used for describing the Gibbs energy of reaction and also refers to the nonuniform application of these relationships in the literature. The review summarizes state-of-the-art approaches that describe the influence of temperature, pH, electrolytes, solvents, and concentrations of reacting agents on the Gibbs energy of reaction and, therefore, on the feasibility and yield of biological reactions.

  7. An open-source thermodynamic software library

    DEFF Research Database (Denmark)

    Ritschel, Tobias Kasper Skovborg; Gaspar, Jozsef; Capolei, Andrea

    This is a technical report which accompanies the article ”An open-source thermodynamic software library” which describes an efficient Matlab and C implementation for evaluation of thermodynamic properties. In this technical report we present the model equations, that are also presented in the paper......, together with a full set of first and second order derivatives with respect to temperature and pressure, and in cases where applicable, also with respect to mole numbers. The library is based on parameters and correlations from the DIPPR database and the Peng-Robinson and the Soave-Redlich-Kwong equations...

  8. Thermodynamically efficient solar concentrators

    Science.gov (United States)

    Winston, Roland

    2012-10-01

    Non-imaging Optics is the theory of thermodynamically efficient optics and as such depends more on thermodynamics than on optics. Hence in this paper a condition for the "best" design is proposed based on purely thermodynamic arguments, which we believe has profound consequences for design of thermal and even photovoltaic systems. This new way of looking at the problem of efficient concentration depends on probabilities, the ingredients of entropy and information theory while "optics" in the conventional sense recedes into the background.

  9. Black Holes and Thermodynamics

    OpenAIRE

    Wald, Robert M.

    1997-01-01

    We review the remarkable relationship between the laws of black hole mechanics and the ordinary laws of thermodynamics. It is emphasized that - in analogy with the laws of thermodynamics - the validity the laws of black hole mechanics does not appear to depend upon the details of the underlying dynamical theory (i.e., upon the particular field equations of general relativity). It also is emphasized that a number of unresolved issues arise in ``ordinary thermodynamics'' in the context of gener...

  10. Database Administrator

    Science.gov (United States)

    Moore, Pam

    2010-01-01

    The Internet and electronic commerce (e-commerce) generate lots of data. Data must be stored, organized, and managed. Database administrators, or DBAs, work with database software to find ways to do this. They identify user needs, set up computer databases, and test systems. They ensure that systems perform as they should and add people to the…

  11. Methods of thermodynamics

    CERN Document Server

    Reiss, Howard

    1997-01-01

    Since there is no shortage of excellent general books on elementary thermodynamics, this book takes a different approach, focusing attention on the problem areas of understanding of concept and especially on the overwhelming but usually hidden role of ""constraints"" in thermodynamics, as well as on the lucid exposition of the significance, construction, and use (in the case of arbitrary systems) of the thermodynamic potential. It will be especially useful as an auxiliary text to be used along with any standard treatment.Unlike some texts, Methods of Thermodynamics does not use statistical m

  12. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    Rand, M.H.

    1975-01-01

    A report is presented of the Fourth International Symposium on Thermodynamics of Nuclear Materials held in Vienna, 21-25 October 1974. The technological theme of the Symposium was the application of thermodynamics to the understanding of the chemistry of irradiated nuclear fuels and to safety assessments for hypothetical accident conditions in reactors. The first four sessions were devoted to these topics and they were followed by four more sessions on the more basic thermodynamics, phase diagrams and the thermodynamic properties of a wide range of nuclear materials. Sixty-seven papers were presented

  13. Thermodynamic and Quantum Thermodynamic Analyses of Brownian Movement

    OpenAIRE

    Gyftopoulos, Elias P.

    2006-01-01

    Thermodynamic and quantum thermodynamic analyses of Brownian movement of a solvent and a colloid passing through neutral thermodynamic equilibrium states only. It is shown that Brownian motors and E. coli do not represent Brownian movement.

  14. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: The science of chemical thermodynamics has substantially contributed to the understanding of the many problems encountered in nuclear and reactor technology. These problems include reaction of materials with their surroundings and chemical and physical changes of fuels. Modern reactor technology, by its very nature, has offered new fields of investigations for the scientists and engineers concerned with the design of nuclear fuel elements. Moreover, thermodynamics has been vital in predicting the behaviour of new materials for fission as well as fusion reactors. In this regard, the Symposium was organized to provide a mechanism for review and discussion of recent thermodynamic investigations of nuclear materials. The Symposium was held in the Juelich Nuclear Research Centre, at the invitation of the Government of the Federal Republic of Germany. The International Atomic Energy Agency has given much attention to the thermodynamics of nuclear materials, as is evidenced by its sponsorship of four international symposia in 1962, 1965, 1967, and 1974. The first three meetings were primarily concerned with the fundamental thermodynamics of nuclear materials; as with the 1974 meeting, this last Symposium was primarily aimed at the thermodynamic behaviour of nuclear materials in actual practice, i.e., applied thermodynamics. Many advances have been made since the 1974 meeting, both in fundamental and applied thermodynamics of nuclear materials, and this meeting provided opportunities for an exchange of new information on this topic. The Symposium dealt in part with the thermodynamic analysis of nuclear materials under conditions of high temperatures and a severe radiation environment. Several sessions were devoted to the thermodynamic studies of nuclear fuels and fission and fusion reactor materials under adverse conditions. These papers and ensuing discussions provided a better understanding of the chemical behaviour of fuels and materials under these

  15. Thermodynamics of firms' growth

    Science.gov (United States)

    Zambrano, Eduardo; Hernando, Alberto; Hernando, Ricardo; Plastino, Angelo

    2015-01-01

    The distribution of firms' growth and firms' sizes is a topic under intense scrutiny. In this paper, we show that a thermodynamic model based on the maximum entropy principle, with dynamical prior information, can be constructed that adequately describes the dynamics and distribution of firms' growth. Our theoretical framework is tested against a comprehensive database of Spanish firms, which covers, to a very large extent, Spain's economic activity, with a total of 1 155 142 firms evolving along a full decade. We show that the empirical exponent of Pareto's law, a rule often observed in the rank distribution of large-size firms, is explained by the capacity of economic system for creating/destroying firms, and that can be used to measure the health of a capitalist-based economy. Indeed, our model predicts that when the exponent is larger than 1, creation of firms is favoured; when it is smaller than 1, destruction of firms is favoured instead; and when it equals 1 (matching Zipf's law), the system is in a full macroeconomic equilibrium, entailing ‘free’ creation and/or destruction of firms. For medium and smaller firm sizes, the dynamical regime changes, the whole distribution can no longer be fitted to a single simple analytical form and numerical prediction is required. Our model constitutes the basis for a full predictive framework regarding the economic evolution of an ensemble of firms. Such a structure can be potentially used to develop simulations and test hypothetical scenarios, such as economic crisis or the response to specific policy measures. PMID:26510828

  16. Thermodynamics and heat power

    CERN Document Server

    Granet, Irving

    2014-01-01

    Fundamental ConceptsIntroductionThermodynamic SystemsTemperatureForce and MassElementary Kinetic Theory of GasesPressureReviewKey TermsEquations Developed in This ChapterQuestionsProblemsWork, Energy, and HeatIntroductionWorkEnergyInternal EnergyPotential EnergyKinetic EnergyHeatFlow WorkNonflow WorkReviewKey TermsEquations Developed in This ChapterQuestionsProblemsFirst Law of ThermodynamicsIntroductionFirst Law of ThermodynamicsNonflow SystemSteady-Flow SystemApplications of First Law of ThermodynamicsReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Second Law of ThermodynamicsIntroductionReversibility-Second Law of ThermodynamicsThe Carnot CycleEntropyReviewKey TermsEquations Developed in This ChapterQuestionsProblemsProperties of Liquids and GasesIntroductionLiquids and VaporsThermodynamic Properties of SteamComputerized PropertiesThermodynamic DiagramsProcessesReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Ideal GasIntroductionBasic ConsiderationsSpecific Hea...

  17. The thermodynamic solar energy

    International Nuclear Information System (INIS)

    Rivoire, B.

    2002-04-01

    The thermodynamic solar energy is the technic in the whole aiming to transform the solar radiation energy in high temperature heat and then in mechanical energy by a thermodynamic cycle. These technic are most often at an experimental scale. This paper describes and analyzes the research programs developed in the advanced countries, since 1980. (A.L.B.)

  18. Quasiparticles and thermodynamical consistency

    International Nuclear Information System (INIS)

    Shanenko, A.A.; Biro, T.S.; Toneev, V.D.

    2003-01-01

    A brief and simple introduction into the problem of the thermodynamical consistency is given. The thermodynamical consistency relations, which should be taken into account under constructing a quasiparticle model, are found in a general manner from the finite-temperature extension of the Hellmann-Feynman theorem. Restrictions following from these relations are illustrated by simple physical examples. (author)

  19. German activities towards a thermodynamic reference data base

    International Nuclear Information System (INIS)

    Herbert, H.J.; Hagemann, S.; Brendler, V.; Marquardt, Ch.; Voigt, W.; Wilhelm, S.

    2006-01-01

    Leading research centres in the field of radioactive waste disposal in Germany have decided to combine their efforts in order to achieve a common goal, the development of a comprehensive and consistent thermodynamic reference database. All the thermodynamic data needed for the modelling of geochemical near- and far field processes in the geological media for high level waste repositories presently under discussion in Germany (salt, clay, granite) shall be collected and qualified in a single database. The partners participating in the project are a group of experts, who are generating, collecting and evaluating thermodynamic data of all relevant radionuclides and matrix elements according to uniform previously established and internationally accepted criteria. Special attention will be given to complete documentation and traceability of all data entries in the database. Existing data from international databases such as those of NEA, NAGRA, YMP will be integrated. Ion interaction coefficients (SIT, Pitzer) needed for modelling in a high saline environment will be included also. (authors)

  20. German activities towards a thermodynamic reference data base

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, H.J.; Hagemann, S. [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Braunschweig (Germany); Brendler, V. [Forschungszentrum Rossendorf, Institut fur Radiochemie, Dresden (Germany); Marquardt, Ch. [Forschungszentrum Karlsruhe, Institut fur Nukleare Entsorgung, Karlsruhe (Germany); Voigt, W. [Technische Univ. Bergakademie Freiberg, Freiberg (Germany); Wilhelm, S. [Colenco Power Engineering, Baden (Switzerland)

    2006-07-01

    Leading research centres in the field of radioactive waste disposal in Germany have decided to combine their efforts in order to achieve a common goal, the development of a comprehensive and consistent thermodynamic reference database. All the thermodynamic data needed for the modelling of geochemical near- and far field processes in the geological media for high level waste repositories presently under discussion in Germany (salt, clay, granite) shall be collected and qualified in a single database. The partners participating in the project are a group of experts, who are generating, collecting and evaluating thermodynamic data of all relevant radionuclides and matrix elements according to uniform previously established and internationally accepted criteria. Special attention will be given to complete documentation and traceability of all data entries in the database. Existing data from international databases such as those of NEA, NAGRA, YMP will be integrated. Ion interaction coefficients (SIT, Pitzer) needed for modelling in a high saline environment will be included also. (authors)

  1. Equilibrium thermodynamics - Callen's postulational approach

    NARCIS (Netherlands)

    Jongschaap, R.J.J.; Öttinger, Hans Christian

    2001-01-01

    In order to provide the background for nonequilibrium thermodynamics, we outline the fundamentals of equilibrium thermodynamics. Equilibrium thermodynamics must not only be obtained as a special case of any acceptable nonequilibrium generalization but, through its shining example, it also elucidates

  2. Applied chemical engineering thermodynamics

    CERN Document Server

    Tassios, Dimitrios P

    1993-01-01

    Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics,pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations.

  3. Thermodynamics an engineering approach

    CERN Document Server

    Cengel, Yunus A

    2014-01-01

    Thermodynamics, An Engineering Approach, eighth edition, covers the basic principles of thermodynamics while presenting a wealth of real-world engineering examples so students get a feel for how thermodynamics is applied in engineering practice. This text helps students develop an intuitive understanding by emphasizing the physics and physical arguments. Cengel and Boles explore the various facets of thermodynamics through careful explanations of concepts and use of numerous practical examples and figures, having students develop necessary skills to bridge the gap between knowledge and the confidence to properly apply their knowledge. McGraw-Hill is proud to offer Connect with the eighth edition of Cengel/Boles, Thermodynamics, An Engineering Approach. This innovative and powerful new system helps your students learn more efficiently and gives you the ability to assign homework problems simply and easily. Problems are graded automatically, and the results are recorded immediately. Track individual stude...

  4. Thermodynamic estimation: Ionic materials

    International Nuclear Information System (INIS)

    Glasser, Leslie

    2013-01-01

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy

  5. Biochemical thermodynamics: applications of Mathematica.

    Science.gov (United States)

    Alberty, Robert A

    2006-01-01

    The most efficient way to store thermodynamic data on enzyme-catalyzed reactions is to use matrices of species properties. Since equilibrium in enzyme-catalyzed reactions is reached at specified pH values, the thermodynamics of the reactions is discussed in terms of transformed thermodynamic properties. These transformed thermodynamic properties are complicated functions of temperature, pH, and ionic strength that can be calculated from the matrices of species values. The most important of these transformed thermodynamic properties is the standard transformed Gibbs energy of formation of a reactant (sum of species). It is the most important because when this function of temperature, pH, and ionic strength is known, all the other standard transformed properties can be calculated by taking partial derivatives. The species database in this package contains data matrices for 199 reactants. For 94 of these reactants, standard enthalpies of formation of species are known, and so standard transformed Gibbs energies, standard transformed enthalpies, standard transformed entropies, and average numbers of hydrogen atoms can be calculated as functions of temperature, pH, and ionic strength. For reactions between these 94 reactants, the changes in these properties can be calculated over a range of temperatures, pHs, and ionic strengths, and so can apparent equilibrium constants. For the other 105 reactants, only standard transformed Gibbs energies of formation and average numbers of hydrogen atoms at 298.15 K can be calculated. The loading of this package provides functions of pH and ionic strength at 298.15 K for standard transformed Gibbs energies of formation and average numbers of hydrogen atoms for 199 reactants. It also provides functions of temperature, pH, and ionic strength for the standard transformed Gibbs energies of formation, standard transformed enthalpies of formation, standard transformed entropies of formation, and average numbers of hydrogen atoms for 94

  6. A PHREEQE database for Pd, Ni and Se

    International Nuclear Information System (INIS)

    Baeyens, B.

    1989-06-01

    This report presents a selection of thermodynamic data for Pd, Ni and Se to allow modelling of the speciation and solubility of these elements in repository safety analysis. Insufficient data are available in the literature to allow full appraisal of the data selected but, where possible, values were chosen from critical compilations or were checked for consistency between different sources. In an appendix, the data selected are presented in a format for direct use in the geochemical code PHREEQE. The report also includes examples of use of the database to examine the behaviour of these elements in chemical systems relevant to the Swiss nuclear waste management programme. Limitations of application and possible future work in this field are also discussed. (author) 12 tabs., 53 refs

  7. The NEA thermochemical database project. 30 years of accomplishments

    International Nuclear Information System (INIS)

    Ragoussi, Maria-Eleni; Brassinnes, Stephane

    2015-01-01

    The NEA Thermochemical Database (TDB) Project (www.oecd-nea.org/dbtdb/) provides a database of chemical thermodynamic values treating the most significant elements related to nuclear waste management. The work carried out since the initiation of TDB in 1984 has resulted in the publication of thirteen major reviews and a large set of selected values that have become an international reference in the field, as they are characterized for their accuracy, consistency and high quality. Herein, we describe the basis, scientific principles and organization of the TDB project, together with its evolution from its inception to the present organization as a joint undertaking under Article 5(b) of the Statute of the OECD Nuclear Energy Agency (NEA).

  8. Thermodynamics and economics

    International Nuclear Information System (INIS)

    Mansson, B.A.

    1990-01-01

    Economics, as the social science most concerned with the use and distribution of natural resources, must start to make use of the knowledge at hand in the natural sciences about such resources. In this, thermodynamics is an essential part. In a physicists terminology, human economic activity may be described as a dissipative system which flourishes by transforming and exchanging resources, goods and services. All this involves complex networks of flows of energy and materials. This implies that thermodynamics, the physical theory of energy and materials flows, must have implications for economics. On another level, thermodynamics has been recognized as a physical theory of value, with value concepts similar to those of economic theory. This paper discusses some general aspects of the significance of non-equilibrium thermodynamics for economics. The role of exergy, probably the most important of the physical measures of value, is elucidated. Two examples of integration of thermodynamics with economic theory are reviewed. First, a simple model of a steady-state production system is sued to illustrate the effects of thermodynamic process constraints. Second, the framework of a simple macroeconomic growth model is used to illustrate how some thermodynamic limitations may be integrated in macroeconomic theory

  9. Federal databases

    International Nuclear Information System (INIS)

    Welch, M.J.; Welles, B.W.

    1988-01-01

    Accident statistics on all modes of transportation are available as risk assessment analytical tools through several federal agencies. This paper reports on the examination of the accident databases by personal contact with the federal staff responsible for administration of the database programs. This activity, sponsored by the Department of Energy through Sandia National Laboratories, is an overview of the national accident data on highway, rail, air, and marine shipping. For each mode, the definition or reporting requirements of an accident are determined and the method of entering the accident data into the database is established. Availability of the database to others, ease of access, costs, and who to contact were prime questions to each of the database program managers. Additionally, how the agency uses the accident data was of major interest

  10. The Danish Urogynaecological Database

    DEFF Research Database (Denmark)

    Guldberg, Rikke; Brostrøm, Søren; Hansen, Jesper Kjær

    2013-01-01

    in the DugaBase from 1 January 2009 to 31 October 2010, using medical records as a reference. RESULTS: A total of 16,509 urogynaecological procedures were registered in the DugaBase by 31 December 2010. The database completeness has increased by calendar time, from 38.2 % in 2007 to 93.2 % in 2010 for public......INTRODUCTION AND HYPOTHESIS: The Danish Urogynaecological Database (DugaBase) is a nationwide clinical database established in 2006 to monitor, ensure and improve the quality of urogynaecological surgery. We aimed to describe its establishment and completeness and to validate selected variables....... This is the first study based on data from the DugaBase. METHODS: The database completeness was calculated as a comparison between urogynaecological procedures reported to the Danish National Patient Registry and to the DugaBase. Validity was assessed for selected variables from a random sample of 200 women...

  11. Advanced thermodynamics engineering

    CERN Document Server

    Annamalai, Kalyan; Jog, Milind A

    2011-01-01

    Thermolab Excel-Based Software for Thermodynamic Properties and Flame Temperatures of Fuels IntroductionImportance, Significance and LimitationsReview of ThermodynamicsMathematical BackgroundOverview of Microscopic/NanothermodynamicsSummaryAppendix: Stokes and Gauss Theorems First Law of ThermodynamicsZeroth LawFirst Law for a Closed SystemQuasi Equilibrium (QE) and Nonquasi-equilibrium (NQE) ProcessesEnthalpy and First LawAdiabatic Reversible Process for Ideal Gas with Constant Specific HeatsFirst Law for an Open SystemApplications of First Law for an Open SystemIntegral and Differential Form

  12. Thermodynamics I essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Thermodynamics I includes review of properties and states of a pure substance, work and heat, energy and the first law of thermodynamics, entropy and the second law of thermodynamics

  13. Non-equilibrium thermodynamics

    CERN Document Server

    De Groot, Sybren Ruurds

    1984-01-01

    The study of thermodynamics is especially timely today, as its concepts are being applied to problems in biology, biochemistry, electrochemistry, and engineering. This book treats irreversible processes and phenomena - non-equilibrium thermodynamics.S. R. de Groot and P. Mazur, Professors of Theoretical Physics, present a comprehensive and insightful survey of the foundations of the field, providing the only complete discussion of the fluctuating linear theory of irreversible thermodynamics. The application covers a wide range of topics: the theory of diffusion and heat conduction, fluid dyn

  14. Thermodynamics of quantum strings

    CERN Document Server

    Morgan, M J

    1994-01-01

    A statistical mechanical analysis of an ideal gas of non-relativistic quantum strings is presented, in which the thermodynamic properties of the string gas are calculated from a canonical partition function. This toy model enables students to gain insight into the thermodynamics of a simple 'quantum field' theory, and provides a useful pedagogical introduction to the more complicated relativistic string theories. A review is also given of the thermodynamics of the open bosonic string gas and the type I (open) superstring gas. (author)

  15. Modern engineering thermodynamics

    CERN Document Server

    Balmer, Robert T

    2010-01-01

    Designed for use in a standard two-semester engineering thermodynamics course sequence. The first half of the text contains material suitable for a basic Thermodynamics course taken by engineers from all majors. The second half of the text is suitable for an Applied Thermodynamics course in mechanical engineering programs. The text has numerous features that are unique among engineering textbooks, including historical vignettes, critical thinking boxes, and case studies. All are designed to bring real engineering applications into a subject that can be somewhat abstract and mathematica

  16. Elaboration of database to support the selection of sites for nuclear installations; Elaboracao de banco de dados para suporte a escolha de locais para instalacoes nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Dayana Braga Cordeiro; Martins, Vivian Borges, E-mail: braga1dayana@gmail.com, E-mail: vbmartins@gmail.com [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The main objective of this study is to collect data to develop a geocoded geographic database, contributing to the monitoring of nuclear activities situated in the Sao Francisco Basin, and also treat, adapt, display, and organize these data in the form of a single database so that they can be used in the decision-making process.

  17. Thermodynamic calculations in ternary titanium–aluminium–manganese system

    Directory of Open Access Journals (Sweden)

    ANA I. KOSTOV

    2008-04-01

    Full Text Available Thermodynamic calculations in the ternary Ti–Al–Mn system are shown in this paper. The thermodynamic calculations were performed using the FactSage thermochemical software and database, with the aim of determining thermodynamic properties, such as activities, coefficient of activities, partial and integral values of the enthalpies and Gibbs energies of mixing and excess energies at two different temperatures: 2000 and 2100 K. Bearing in mind that no experimental data for the Ti–Al–Mn ternary system have been obtained or reported. The obtained results represent a good base for further thermodynamic analysis and may be useful as a comparison with some future critical experimental results and thermodynamic optimization of this system.

  18. Theoretical physics 5 thermodynamics

    CERN Document Server

    Nolting, Wolfgang

    2017-01-01

    This concise textbook offers a clear and comprehensive introduction to thermodynamics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series, defining macroscopic variables, such as internal energy, entropy and pressure,together with thermodynamic principles. The first part of the book introduces the laws of thermodynamics and thermodynamic potentials. More complex themes are covered in the second part of the book, which describes phases and phase transitions in depth. Ideally suited to undergraduate students with some grounding in classical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this series cove...

  19. Elements of chemical thermodynamics

    CERN Document Server

    Nash, Leonard K

    2005-01-01

    This survey of purely thermal data in calculating the position of equilibrium in a chemical reaction highlights the physical content of thermodynamics, as distinct from purely mathematical aspects. 1970 edition.

  20. Elements of statistical thermodynamics

    CERN Document Server

    Nash, Leonard K

    2006-01-01

    Encompassing essentially all aspects of statistical mechanics that appear in undergraduate texts, this concise, elementary treatment shows how an atomic-molecular perspective yields new insights into macroscopic thermodynamics. 1974 edition.

  1. Electrochemical thermodynamic measurement system

    Science.gov (United States)

    Reynier, Yvan [Meylan, FR; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  2. Workshop on Teaching Thermodynamics

    CERN Document Server

    1985-01-01

    It seemed appropriate to arrange a meeting of teachers of thermodynamics in the United Kingdom, a meeting held in the pleasant surroundings of Emmanuel College, Cambridge, in Sept~mber, 1984. This volume records the ideas put forward by authors, the discussion generated and an account of the action that discussion has initiated. Emphasis was placed on the Teaching of Thermodynamics to degree-level students in their first and second years. The meeting, a workshop for practitioners in which all were expected to take part, was remarkably well supported. This was notable in the representation of essentially every UK university and polytechnic engaged in teaching engineering thermodynamics and has led to a stimulating spread of ideas. By intention, the emphasis for attendance was put on teachers of engineering concerned with thermodynamics, both mechanical and chemical engineering disciplines. Attendance from others was encouraged but limited as follows: non-engineering acad­ emics, 10%, industrialists, 10%. The ...

  3. Black-hole thermodynamics

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1980-01-01

    Including black holes in the scheme of thermodynamics has disclosed a deep-seated connection between gravitation, heat and the quantum that may lead us to a synthesis of the corresponding branches of physics

  4. Polyelectrolytes thermodynamics and rheology

    CERN Document Server

    P M, Visakh; Picó, Guillermo Alfredo

    2014-01-01

    This book discusses current development of theoretical models and experimental findings on the thermodynamics of polyelectrolytes. Particular emphasis is placed on the rheological description of polyelectrolyte solutions and hydrogels.

  5. Database Replication

    CERN Document Server

    Kemme, Bettina

    2010-01-01

    Database replication is widely used for fault-tolerance, scalability and performance. The failure of one database replica does not stop the system from working as available replicas can take over the tasks of the failed replica. Scalability can be achieved by distributing the load across all replicas, and adding new replicas should the load increase. Finally, database replication can provide fast local access, even if clients are geographically distributed clients, if data copies are located close to clients. Despite its advantages, replication is not a straightforward technique to apply, and

  6. Refactoring databases evolutionary database design

    CERN Document Server

    Ambler, Scott W

    2006-01-01

    Refactoring has proven its value in a wide range of development projects–helping software professionals improve system designs, maintainability, extensibility, and performance. Now, for the first time, leading agile methodologist Scott Ambler and renowned consultant Pramodkumar Sadalage introduce powerful refactoring techniques specifically designed for database systems. Ambler and Sadalage demonstrate how small changes to table structures, data, stored procedures, and triggers can significantly enhance virtually any database design–without changing semantics. You’ll learn how to evolve database schemas in step with source code–and become far more effective in projects relying on iterative, agile methodologies. This comprehensive guide and reference helps you overcome the practical obstacles to refactoring real-world databases by covering every fundamental concept underlying database refactoring. Using start-to-finish examples, the authors walk you through refactoring simple standalone databas...

  7. RDD Databases

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This database was established to oversee documents issued in support of fishery research activities including experimental fishing permits (EFP), letters of...

  8. Snowstorm Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Snowstorm Database is a collection of over 500 snowstorms dating back to 1900 and updated operationally. Only storms having large areas of heavy snowfall (10-20...

  9. Dealer Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dealer reporting databases contain the primary data reported by federally permitted seafood dealers in the northeast. Electronic reporting was implemented May 1,...

  10. A New Perspective on Thermodynamics

    CERN Document Server

    Lavenda, Bernard H

    2010-01-01

    Dr. Bernard H. Lavenda has written A New Perspective on Thermodynamics to combine an old look at thermodynamics with a new foundation. The book presents a historical perspective, which unravels the current presentation of thermodynamics found in standard texts, and which emphasizes the fundamental role that Carnot played in the development of thermodynamics. A New Perspective on Thermodynamics will: Chronologically unravel the development of the principles of thermodynamics and how they were conceived by their discoverers Bring the theory of thermodynamics up to the present time and indicate areas of further development with the union of information theory and the theory of means and their inequalities. New areas include nonextensive thermodynamics, the thermodynamics of coding theory, multifractals, and strange attractors. Reintroduce important, yet nearly forgotten, teachings of N.L. Sardi Carnot Highlight conceptual flaws in timely topics such as endoreversible engines, finite-time thermodynamics, geometri...

  11. National database

    DEFF Research Database (Denmark)

    Kristensen, Helen Grundtvig; Stjernø, Henrik

    1995-01-01

    Artikel om national database for sygeplejeforskning oprettet på Dansk Institut for Sundheds- og Sygeplejeforskning. Det er målet med databasen at samle viden om forsknings- og udviklingsaktiviteter inden for sygeplejen.......Artikel om national database for sygeplejeforskning oprettet på Dansk Institut for Sundheds- og Sygeplejeforskning. Det er målet med databasen at samle viden om forsknings- og udviklingsaktiviteter inden for sygeplejen....

  12. The thermodynamics of protein aggregation reactions may underpin the enhanced metabolic efficiency associated with heterosis, some balancing selection, and the evolution of ploidy levels.

    Science.gov (United States)

    Ginn, B R

    2017-07-01

    Identifying the physical basis of heterosis (or "hybrid vigor") has remained elusive despite over a hundred years of research on the subject. The three main theories of heterosis are dominance theory, overdominance theory, and epistasis theory. Kacser and Burns (1981) identified the molecular basis of dominance, which has greatly enhanced our understanding of its importance to heterosis. This paper aims to explain how overdominance, and some features of epistasis, can similarly emerge from the molecular dynamics of proteins. Possessing multiple alleles at a gene locus results in the synthesis of different allozymes at reduced concentrations. This in turn reduces the rate at which each allozyme forms soluble oligomers, which are toxic and must be degraded, because allozymes co-aggregate at low efficiencies. The model developed in this paper can explain how heterozygosity impacts the metabolic efficiency of an organism. It can also explain why the viabilities of some inbred lines seem to decline rapidly at high inbreeding coefficients (F > 0.5), which may provide a physical basis for truncation selection for heterozygosity. Finally, the model has implications for the ploidy level of organisms. It can explain why polyploids are frequently found in environments where severe physical stresses promote the formation of soluble oligomers. The model can also explain why complex organisms, which need to synthesize aggregation-prone proteins that contain intrinsically unstructured regions (IURs) and multiple domains because they facilitate complex protein interaction networks (PINs), tend to be diploid while haploidy tends to be restricted to relatively simple organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Gravity as a thermodynamic phenomenon

    OpenAIRE

    Moustos, Dimitris

    2017-01-01

    The analogy between the laws of black hole mechanics and the laws of thermodynamics led Bekenstein and Hawking to argue that black holes should be considered as real thermodynamic systems that are characterised by entropy and temperature. Black hole thermodynamics indicates a deeper connection between thermodynamics and gravity. We review and examine in detail the arguments that suggest an interpretation of gravity itself as a thermodynamic theory.

  14. Extraction of 2-Phenylethanol (PEA) from Aqueous Solution Using Ionic Liquids: Synthesis, Phase Equilibrium Investigation, Selectivity in Separation, and Thermodynamic Models.

    Science.gov (United States)

    Domańska, Urszula; Okuniewska, Patrycja; Paduszyński, Kamil; Królikowska, Marta; Zawadzki, Maciej; Więckowski, Mikołaj

    2017-08-17

    This study assessed the effect of ionic liquids (ILs) on extraction of 2-phenylethanol (PEA) from aqueous phase. It consists the synthesis of four new ILs, their physicochemical properties, and experimental solubility measurements in water as well as liquid-liquid phase equilibrium in ternary systems. ILs are an important new media for imaging and sensing applications because of their solvation property, thermal stability, and negligible vapor pressure. However, complex procedures and nonmiscibility with water are often required in PEA extraction. Herein, a facile and general strategy using four ILs as extraction media including the synthesis of new bis(fluorosulfonyl)imide-based ILs, 1-hexyl-methylmorpholinium bis(fluorosulfonyl)imide, [HMMOR][FSI], N-octylisoquinolinium bis(fluorosulfonyl)imide, [OiQuin][FSI], 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide, [BMPYR][FSI], and N-triethyl-N-octylammonium bis(fluorosulfonyl)imide, [N 2228 ][FSI], were investigated. The thermal properties, density, viscosity, and surface tension of new ILs were measured. Calorimetric measurements (DSC) were used to determine the melting point and the enthalpy of melting as well as the glass transition temperature and heat capacity at glass transition of the ILs. The phase equilibrium in binary systems (IL + PEA, or water) and in ternary systems {IL (1) + PEA (2) + water (3)} at temperature T = 308.15 K and ambient pressure are reported. All systems present liquid-liquid equilibrium with the upper critical solution temperature (UCST). All ILs revealed complete miscibility with PEA. In all ternary systems immiscibility gap was observed, which classified measured systems as Treybal's type II. The two partially miscible binaries (IL + water) and (PEA + water) exist in these systems. The discussion contains the specific selectivity and the solute distribution ratio of separation for the used ILs. The commonly used NRTL model was used for the correlation of the experimental binary

  15. Potent anti-cervical cancer activity: synergistic effects of Thai medicinal plants in recipe N040 selected from the MANOSROI III database.

    Science.gov (United States)

    Kitdamrongtham, Worapong; Manosroi, Aranya; Akazawa, Hiroyuki; Gidado, Abubakar; Stienrut, Pramote; Manosroi, Worapaka; Lohcharoenkal, Warangkana; Akihisa, Toshihiro; Manosroi, Jiradej

    2013-08-26

    One of the prestigious Thai/Lanna folklore wisdoms is the medicinal plant recipes. Thai/Lanna medicinal plant recipe database MANOSROI III has been developed by Prof. Dr. Jiradej Manosroi. It consists of over 200,000 recipes covering all diseases including cancer. To investigate the in vitro and in vivo anti-cervical cancer activity and the active constituents of the Thai medicinal plant recipe N040 selected from the MANOSROI III database. The extracts of recipe N040 and single medicinal plants in the recipe were prepared by hot water and methanol extraction, respectively. The n-hexane, ethyl acetate (EtOAc), n-butanol (n-BuOH) and water fractions of Caesalpinia sappan, the plant which showed the highest anti-proliferative activity were prepared by liquid-liquid partition extraction. The fraction which showed the highest anti-proliferative activity was further isolated for active constituents. Anti-proliferative activity of recipe N040, methanolic extracts, fractions of Caesalpinia sappan and brazilin, an active constituent on HeLa cell were investigated using sulforhodamine B (SRB) assay. Anti-oxidative activities including free radical scavenging and metal ion-chelating activities, as well as the phenolic and flavonoid contents of these fractions were also determined. The in vivo anti-cancer activity of recipe N040 on HeLa cell xenograft and the subchronic toxicity were performed in nude mice and rats, respectively. N040 showed the potent in vitro anti-proliferative activity on HeLa cell with the IC50 value of 0.11 µg/ml. Phytochemicals detected in the plants were steroids/triterpenoids, tannins, flavonoids, saponins and alkaloids. For the single plant, methanolic extract of Caesalpinia sappan gave the highest anti-proliferative activity with the IC50 of 33.46 µg/ml. EtOAc fraction of Caesalpinia sappan showed the highest anti-proliferative and free radical scavenging activities with the IC50 and SC50 of 17.81 and 21.95 µg/ml which were 1.88 and 0.83 folds of

  16. Experiment Databases

    Science.gov (United States)

    Vanschoren, Joaquin; Blockeel, Hendrik

    Next to running machine learning algorithms based on inductive queries, much can be learned by immediately querying the combined results of many prior studies. Indeed, all around the globe, thousands of machine learning experiments are being executed on a daily basis, generating a constant stream of empirical information on machine learning techniques. While the information contained in these experiments might have many uses beyond their original intent, results are typically described very concisely in papers and discarded afterwards. If we properly store and organize these results in central databases, they can be immediately reused for further analysis, thus boosting future research. In this chapter, we propose the use of experiment databases: databases designed to collect all the necessary details of these experiments, and to intelligently organize them in online repositories to enable fast and thorough analysis of a myriad of collected results. They constitute an additional, queriable source of empirical meta-data based on principled descriptions of algorithm executions, without reimplementing the algorithms in an inductive database. As such, they engender a very dynamic, collaborative approach to experimentation, in which experiments can be freely shared, linked together, and immediately reused by researchers all over the world. They can be set up for personal use, to share results within a lab or to create open, community-wide repositories. Here, we provide a high-level overview of their design, and use an existing experiment database to answer various interesting research questions about machine learning algorithms and to verify a number of recent studies.

  17. INIST: databases reorientation

    International Nuclear Information System (INIS)

    Bidet, J.C.

    1995-01-01

    INIST is a CNRS (Centre National de la Recherche Scientifique) laboratory devoted to the treatment of scientific and technical informations and to the management of these informations compiled in a database. Reorientation of the database content has been proposed in 1994 to increase the transfer of research towards enterprises and services, to develop more automatized accesses to the informations, and to create a quality assurance plan. The catalog of publications comprises 5800 periodical titles (1300 for fundamental research and 4500 for applied research). A science and technology multi-thematic database will be created in 1995 for the retrieval of applied and technical informations. ''Grey literature'' (reports, thesis, proceedings..) and human and social sciences data will be added to the base by the use of informations selected in the existing GRISELI and Francis databases. Strong modifications are also planned in the thematic cover of Earth sciences and will considerably reduce the geological information content. (J.S.). 1 tab

  18. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    1962-01-01

    The first session of the symposium discussed in general the thermodynamic properties of actinides, including thorium, uranium and Plutonium which provide reactor fuel. The second session was devoted to applications of thermodynamic theory to the study of nuclear materials, while the experimental techniques for the determination of thermodynamic data were examined at the next session. The thermodynamic properties of alloys were considered at a separate session, and another session was concerned with solids other than alloys. Vaporization processes, which are of special interest in the development of high-temperature reactors, were discussed at a separate session. The discussions on the methods of developing the data and ascertaining their accuracy were especially useful in highlighting the importance of determining whether any given data are reliable before they can be put to practical application. Many alloys and refractory materials (i. e. materials which evaporate only at very high temperatures) are of great importance in nuclear technology, and some of these substances are extremely complex in their chemical composition. For example, until recently the phase composition of the oxides of thorium, uranium and plutonium had been only very imperfectly understood, and the same was true of the carbides of these elements. Recent developments in experimental techniques have made it possible to investigate the phase composition of these complex materials as well as the chemical species of these materials in the gaseous phase. Recent developments in measuring techniques, such as fluorine bomb calorimetry and Knudsen effusion technique, have greatly increased the accuracy of thermodynamic data

  19. Database and Expert Systems Applications

    DEFF Research Database (Denmark)

    Viborg Andersen, Kim; Debenham, John; Wagner, Roland

    schemata, query evaluation, semantic processing, information retrieval, temporal and spatial databases, querying XML, organisational aspects of databases, natural language processing, ontologies, Web data extraction, semantic Web, data stream management, data extraction, distributed database systems......This book constitutes the refereed proceedings of the 16th International Conference on Database and Expert Systems Applications, DEXA 2005, held in Copenhagen, Denmark, in August 2005.The 92 revised full papers presented together with 2 invited papers were carefully reviewed and selected from 390...... submissions. The papers are organized in topical sections on workflow automation, database queries, data classification and recommendation systems, information retrieval in multimedia databases, Web applications, implementational aspects of databases, multimedia databases, XML processing, security, XML...

  20. NIST/ASME Steam Properties Database

    Science.gov (United States)

    SRD 10 NIST/ASME Steam Properties Database (PC database for purchase)   Based upon the International Association for the Properties of Water and Steam (IAPWS) 1995 formulation for the thermodynamic properties of water and the most recent IAPWS formulations for transport and other properties, this updated version provides water properties over a wide range of conditions according to the accepted international standards.

  1. Thermodynamics of complexity

    DEFF Research Database (Denmark)

    Westerhoff, Hans V.; Jensen, Peter Ruhdal; Snoep, Jacky L.

    1998-01-01

    -called emergent properties. Tendency towards increased entropy is an essential determinant for the behaviour of ideal gas mixtures, showing that even in the simplest physical/chemical systems, (dys)organisation of components is crucial for the behaviour of systems. This presentation aims at illustrating...... that the behaviour of two functionally interacting biological components (molecules, protein domains, pathways, organelles) differs from the behaviour these components would exhibit in isolation from one another, where the difference should be essential for the maintenance and growth of the living state, For a true...... understanding of this BioComplexity, modem thermodynamic concepts and methods (nonequilibrium thermodynamics, metabolic and hierarchical control analysis) will be needed. We shall propose to redefine nonequilibrium thermodynamics as: The science that aims at understanding the behaviour of nonequilibrium systems...

  2. Extended Irreversible Thermodynamics

    CERN Document Server

    Jou, David

    2010-01-01

    This is the 4th edition of the highly acclaimed monograph on Extended Irreversible Thermodynamics, a theory that goes beyond the classical theory of irreversible processes. In contrast to the classical approach, the basic variables describing the system are complemented by non-equilibrium quantities. The claims made for extended thermodynamics are confirmed by the kinetic theory of gases and statistical mechanics. The book covers a wide spectrum of applications, and also contains a thorough discussion of the foundations and the scope of the current theories on non-equilibrium thermodynamics. For this new edition, the authors critically revised existing material while taking into account the most recent developments in fast moving fields such as heat transport in micro- and nanosystems or fast solidification fronts in materials sciences. Several fundamental chapters have been revisited emphasizing physics and applications over mathematical derivations. Also, fundamental questions on the definition of non-equil...

  3. Statistical thermodynamics of alloys

    CERN Document Server

    Gokcen, N A

    1986-01-01

    This book is intended for scientists, researchers, and graduate students interested in solutions in general, and solutions of metals in particular. Readers are assumed to have a good background in thermodynamics, presented in such books as those cited at the end of Chapter 1, "Thermo­ dynamic Background." The contents of the book are limited to the solutions of metals + metals, and metals + metalloids, but the results are also appli­ cable to numerous other types of solutions encountered by metallurgists, materials scientists, geologists, ceramists, and chemists. Attempts have been made to cover each topic in depth with numerical examples whenever necessary. Chapter 2 presents phase equilibria and phase diagrams as related to the thermodynamics of solutions. The emphasis is on the binary diagrams since the ternary diagrams can be understood in terms of the binary diagrams coupled with the phase rule, and the Gibbs energies of mixing. The cal­ culation of thermodynamic properties from the phase diagrams is ...

  4. Thermodynamics of Crystalline States

    CERN Document Server

    Fujimoto, Minoru

    2010-01-01

    Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattices, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. This book is divided into three parts. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. In the third part, the multi-electron system is discussed theoretically, as a quantum-mechanical example, for the superconducting state in metallic crystals. Throughout the book, the role played by the lattice is emphasized and examined in-depth. Thermodynamics of Crystalline States is an introductory treatise and textbook on meso...

  5. Database for propagation models

    Science.gov (United States)

    Kantak, Anil V.

    1991-07-01

    A propagation researcher or a systems engineer who intends to use the results of a propagation experiment is generally faced with various database tasks such as the selection of the computer software, the hardware, and the writing of the programs to pass the data through the models of interest. This task is repeated every time a new experiment is conducted or the same experiment is carried out at a different location generating different data. Thus the users of this data have to spend a considerable portion of their time learning how to implement the computer hardware and the software towards the desired end. This situation may be facilitated considerably if an easily accessible propagation database is created that has all the accepted (standardized) propagation phenomena models approved by the propagation research community. Also, the handling of data will become easier for the user. Such a database construction can only stimulate the growth of the propagation research it if is available to all the researchers, so that the results of the experiment conducted by one researcher can be examined independently by another, without different hardware and software being used. The database may be made flexible so that the researchers need not be confined only to the contents of the database. Another way in which the database may help the researchers is by the fact that they will not have to document the software and hardware tools used in their research since the propagation research community will know the database already. The following sections show a possible database construction, as well as properties of the database for the propagation research.

  6. Concise chemical thermodynamics

    CERN Document Server

    Peters, APH

    2010-01-01

    EnergyThe Realm of ThermodynamicsEnergy BookkeepingNature's Driving ForcesSetting the Scene: Basic IdeasSystem and SurroundingsFunctions of StateMechanical Work and Expanding GasesThe Absolute Temperature Scale Forms of Energy and Their Interconversion Forms of Renewable Energy Solar Energy Wind Energy Hydroelectric Power Geothermal Energy Biomass Energy References ProblemsThe First Law of Thermodynamics Statement of the First Law Reversible Expansion of an Ideal GasConstant-Volume ProcessesConstant-Pressure ProcessesA New Function: EnthalpyRelationship between ?H and ?UUses and Conventions of

  7. Thermodynamics II essentials

    CERN Document Server

    REA, The Editors of

    2013-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Thermodynamics II includes review of thermodynamic relations, power and refrigeration cycles, mixtures and solutions, chemical reactions, chemical equilibrium, and flow through nozzl

  8. Thermodynamics for engineers

    CERN Document Server

    Wong, Kaufui Vincent

    2011-01-01

    Praise for the First Edition from Students: "It is a great thermodynamics text…I loved it!-Mathew Walters "The book is comprehensive and easy to understand. I love the real world examples and problems, they make you feel like you are learning something very practical."-Craig Paxton"I would recommend the book to friends."-Faure J. Malo-Molina"The clear diction, as well as informative illustrations and diagrams, help convey the material clearly to the reader."-Paul C. Start"An inspiring and effective tool for any aspiring scientist or engineer. Definitely the best book on Classical Thermodynamics out."-Seth Marini.

  9. Mechanics, Waves and Thermodynamics

    Science.gov (United States)

    Ranjan Jain, Sudhir

    2016-05-01

    Figures; Preface; Acknowledgement; 1. Energy, mass, momentum; 2. Kinematics, Newton's laws of motion; 3. Circular motion; 4. The principle of least action; 5. Work and energy; 6. Mechanics of a system of particles; 7. Friction; 8. Impulse and collisions; 9. Central forces; 10. Dimensional analysis; 11. Oscillations; 12. Waves; 13. Sound of music; 14. Fluid mechanics; 15. Water waves; 16. The kinetic theory of gases; 17. Concepts and laws of thermodynamics; 18. Some applications of thermodynamics; 19. Basic ideas of statistical mechanics; Bibliography; Index.

  10. Statistical thermodynamics of alloys

    International Nuclear Information System (INIS)

    Gokcen, N.A.

    1986-01-01

    This book presents information on the following topics: consequences of laws of thermodynamics; Helmholtz and Gibbs energies; analytical forms of excess partial molar properties; single-component and multicomponent equilibria; phase rules and diagrams; lever rule; fermions, bosons, and Boltzons; approximate equations; enthalpy and heat capacity; Pd-H system; hydrogen-metal systems; limitations of Wagner model; energy of electrons and hols; dopants in semiconductors; derived thermodynamic properties; simple equivalent circuit; calculation procedure; multicompoent diagrams re; Engel-Brewer theories; p-n junctions; and solar cells

  11. THERMODYNAMIC PROPERTIES OF SELECTED HFC REFRIGERANTS

    Science.gov (United States)

    Hydrofluorocarbon (HFC) refrigerants are possible alternatives to replace ozone-depleting chlorofluorocarbon and hydrochlorofluorocarbon (HCFC) refrigerants. The flammability of a proposed new refrigerant is a major consideration in assessing its utility for a particular applicat...

  12. XV International conference on chemical thermodynamics in Russia. RCCT-2005. Summary of reports. Volume I

    International Nuclear Information System (INIS)

    2005-01-01

    Proceedings of the XV International conference on chemical thermodynamics are performed. The release covers wide frame on physical chemistry and chemical thermodynamics, and present-day conception on properties as individual substances, so their mixtures on phase and chemical equilibriums, surface effects in different systems is demonstrated. Solutions and melts, complex fluid systems (polymer solutions, liquid crystals, micellar solutions), new materials are part of concerned problems. Theoretical and experimental methods of chemical thermodynamics, automated experimental databases are among discussed problems [ru

  13. Black Hole Thermodynamics in an Undergraduate Thermodynamics Course.

    Science.gov (United States)

    Parker, Barry R.; McLeod, Robert J.

    1980-01-01

    An analogy, which has been drawn between black hole physics and thermodynamics, is mathematically broadened in this article. Equations similar to the standard partial differential relations of thermodynamics are found for black holes. The results can be used to supplement an undergraduate thermodynamics course. (Author/SK)

  14. Correct thermodynamic forces in Tsallis thermodynamics: connection with Hill nanothermodynamics

    International Nuclear Information System (INIS)

    Garcia-Morales, Vladimir; Cervera, Javier; Pellicer, Julio

    2005-01-01

    The equivalence between Tsallis thermodynamics and Hill's nanothermodynamics is established. The correct thermodynamic forces in Tsallis thermodynamics are pointed out. Through this connection we also find a general expression for the entropic index q which we illustrate with two physical examples, allowing in both cases to relate q to the underlying dynamics of the Hamiltonian systems

  15. DMPD: Mechanisms of selection mediated by interleukin-7, the preBCR, and hemokinin-1during B-cell development. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14962188 Mechanisms of selection mediated by interleukin-7, the preBCR, and hemokin...ng) (.svg) (.html) (.csml) Show Mechanisms of selection mediated by interleukin-7, the preBCR, and hemokinin...-1during B-cell development. PubmedID 14962188 Title Mechanisms of selection medi

  16. Effect of Uncertainties in CO2 Property Databases on the S-CO2 Compressor Performance

    International Nuclear Information System (INIS)

    Lee, Je Kyoung; Lee, Jeong Ik; Ahn, Yoonhan; Kim, Seong Gu; Cha, Je Eun

    2013-01-01

    Various S-CO 2 Brayton cycle experiment facilities are on the state of construction or operation for demonstration of the technology. However, during the data analysis, S-CO 2 property databases are widely used to predict the performance and characteristics of S-CO 2 Brayton cycle. Thus, a reliable property database is very important before any experiment data analyses or calculation. In this paper, deviation of two different property databases which are widely used for the data analysis will be identified by using three selected properties for comparison, C p , density and enthalpy. Furthermore, effect of above mentioned deviation on the analysis of test data will be briefly discussed. From this deviation, results of the test data analysis can have critical error. As the S-CO 2 Brayton cycle researcher knows, CO 2 near the critical point has dramatic change on thermodynamic properties. Thus, it is true that a potential error source of property prediction exists in CO 2 properties near the critical point. During an experiment data analysis with the S-CO 2 Brayton cycle experiment facility, thermodynamic properties are always involved to predict the component performance and characteristics. Thus, construction or defining of precise CO 2 property database should be carried out to develop Korean S-CO 2 Brayton cycle technology

  17. Fluctuating Thermodynamics for Biological Processes

    Science.gov (United States)

    Ham, Sihyun

    Because biomolecular processes are largely under thermodynamic control, dynamic extension of thermodynamics is necessary to uncover the mechanisms and driving factors of fluctuating processes. The fluctuating thermodynamics technology presented in this talk offers a practical means for the thermodynamic characterization of conformational dynamics in biomolecules. The use of fluctuating thermodynamics has the potential to provide a comprehensive picture of fluctuating phenomena in diverse biological processes. Through the application of fluctuating thermodynamics, we provide a thermodynamic perspective on the misfolding and aggregation of the various proteins associated with human diseases. In this talk, I will present the detailed concepts and applications of the fluctuating thermodynamics technology for elucidating biological processes. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1401-13.

  18. A Hamiltonian approach to Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Baldiotti, M.C., E-mail: baldiotti@uel.br [Departamento de Física, Universidade Estadual de Londrina, 86051-990, Londrina-PR (Brazil); Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br [Universidade Federal do ABC, Av. dos Estados 5001, 09210-580, Santo André-SP (Brazil); Molina, C., E-mail: cmolina@usp.br [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Bettio 1000, CEP 03828-000, São Paulo-SP (Brazil)

    2016-10-15

    In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.

  19. A Hamiltonian approach to Thermodynamics

    International Nuclear Information System (INIS)

    Baldiotti, M.C.; Fresneda, R.; Molina, C.

    2016-01-01

    In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.

  20. Specialist Bibliographic Databases.

    Science.gov (United States)

    Gasparyan, Armen Yuri; Yessirkepov, Marlen; Voronov, Alexander A; Trukhachev, Vladimir I; Kostyukova, Elena I; Gerasimov, Alexey N; Kitas, George D

    2016-05-01

    Specialist bibliographic databases offer essential online tools for researchers and authors who work on specific subjects and perform comprehensive and systematic syntheses of evidence. This article presents examples of the established specialist databases, which may be of interest to those engaged in multidisciplinary science communication. Access to most specialist databases is through subscription schemes and membership in professional associations. Several aggregators of information and database vendors, such as EBSCOhost and ProQuest, facilitate advanced searches supported by specialist keyword thesauri. Searches of items through specialist databases are complementary to those through multidisciplinary research platforms, such as PubMed, Web of Science, and Google Scholar. Familiarizing with the functional characteristics of biomedical and nonbiomedical bibliographic search tools is mandatory for researchers, authors, editors, and publishers. The database users are offered updates of the indexed journal lists, abstracts, author profiles, and links to other metadata. Editors and publishers may find particularly useful source selection criteria and apply for coverage of their peer-reviewed journals and grey literature sources. These criteria are aimed at accepting relevant sources with established editorial policies and quality controls.

  1. Specialist Bibliographic Databases

    Science.gov (United States)

    2016-01-01

    Specialist bibliographic databases offer essential online tools for researchers and authors who work on specific subjects and perform comprehensive and systematic syntheses of evidence. This article presents examples of the established specialist databases, which may be of interest to those engaged in multidisciplinary science communication. Access to most specialist databases is through subscription schemes and membership in professional associations. Several aggregators of information and database vendors, such as EBSCOhost and ProQuest, facilitate advanced searches supported by specialist keyword thesauri. Searches of items through specialist databases are complementary to those through multidisciplinary research platforms, such as PubMed, Web of Science, and Google Scholar. Familiarizing with the functional characteristics of biomedical and nonbiomedical bibliographic search tools is mandatory for researchers, authors, editors, and publishers. The database users are offered updates of the indexed journal lists, abstracts, author profiles, and links to other metadata. Editors and publishers may find particularly useful source selection criteria and apply for coverage of their peer-reviewed journals and grey literature sources. These criteria are aimed at accepting relevant sources with established editorial policies and quality controls. PMID:27134485

  2. New perspectives in thermodynamics

    International Nuclear Information System (INIS)

    Serrin, J.

    1986-01-01

    The last decade has seen a unity of method and approach in the foundations of thermodynamics and continuum mechanics, in which rigorous laws of thermodynamics have been combined with invariance notions of mechanics to produce new and deep understanding. Real progress has been made in finding a set of appropriate concepts for classical thermodynamics, by which energy conservation and the Clausius inequality can be given well-defined meanings for arbitrary processes and which allow an approach to the entropy concept which is free of traditional ambiguities. There has been, moreover, a careful scrutiny of long established but nevertheless not sharply defined concepts such as the Maxwell equal-area rule, the famous Gibbs phase rule, and the equivalence of work and heat. The thirteen papers in this volume accordingly gather together for the first time the many ideas and concepts which have raised classical thermodynamics from a heuristic and intuitive science to the level of precision presently demanded of other branches of mathematical physics

  3. Thermodynamics and statistical mechanics

    CERN Document Server

    Landsberg, Peter T

    1990-01-01

    Exceptionally articulate treatment combines precise mathematical style with strong physical intuition. Wide range of applications includes negative temperatures, negative heat capacities, special and general relativistic effects, black hole thermodynamics, gravitational collapse, more. Over 100 problems with worked solutions. Advanced undergraduate, graduate level. Table of applications. Useful formulas and other data.

  4. Thermodynamic stabilization of colloids

    NARCIS (Netherlands)

    Stol, R.J.; Bruyn, P.L. de

    An analysis is given of the conditions necessary for obtaining a thermodynamically stable dispersion (TSD) of solid particles in a continuous aqueous solution phase. The role of the adsorption of potential-determining ions at the planar interface in lowering the interfacial free energy (γ) to

  5. Chemical thermodynamics. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Keszei, Ernoe [Budapest Univ. (Hungary). Dept. of Physical Chemistry

    2012-07-01

    Eminently suitable as a required textbook comprising complete material for or an undergraduate chemistry major course in chemical thermodynamics. Clearly explains details of formal derivations that students can easily follow and so master applied mathematical operations. Offers problems and solutions at the end of each chapter for self-test and self- or group study. This course-derived undergraduate textbook provides a concise explanation of the key concepts and calculations of chemical thermodynamics. Instead of the usual 'classical' introduction, this text adopts a straightforward postulatory approach that introduces thermodynamic potentials such as entropy and energy more directly and transparently. Structured around several features to assist students' understanding, Chemical Thermodynamics: - Develops applications and methods for the ready treatment of equilibria on a sound quantitative basis. - Requires minimal background in calculus to understand the text and presents formal derivations to the student in a detailed but understandable way. - Offers end-of-chapter problems (and answers) for self-testing and review and reinforcement, of use for self- or group study. This book is suitable as essential reading for courses in a bachelor and master chemistry program and is also valuable as a reference or textbook for students of physics, biochemistry and materials science.

  6. Thermodynamics applied. Where? Why?

    NARCIS (Netherlands)

    Hirs, Gerard

    2003-01-01

    In recent years, thermodynamics has been applied in a number of new fields leading to a greater societal impact. This paper gives a survey of these new fields and the reasons why these applications are important. In addition, it is shown that the number of fields could be even greater in the future

  7. Thermodynamics, applied. : Where? why?

    NARCIS (Netherlands)

    Hirs, Gerard

    1999-01-01

    In recent years thermodynamics has been applied in a number of new fields leading to a greater societal impact. The paper gives a survey of these new fields and the reasons why these applications are important. In addition it is shown that the number of fields could be even greater in the future and

  8. Nonequilibrium thermodynamics of nucleation

    NARCIS (Netherlands)

    Schweizer, M.; Sagis, L.M.C.

    2014-01-01

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a

  9. On Teaching Thermodynamics

    Science.gov (United States)

    Debbasch, F.

    2011-01-01

    The logical structure of classical thermodynamics is presented in a modern, geometrical manner. The first and second law receive clear, operatively oriented statements and the Gibbs free energy extremum principle is fully discussed. Applications relevant to chemistry, such as phase transitions, dilute solutions theory and, in particular, the law…

  10. Black hole thermodynamical entropy

    International Nuclear Information System (INIS)

    Tsallis, Constantino; Cirto, Leonardo J.L.

    2013-01-01

    As early as 1902, Gibbs pointed out that systems whose partition function diverges, e.g. gravitation, lie outside the validity of the Boltzmann-Gibbs (BG) theory. Consistently, since the pioneering Bekenstein-Hawking results, physically meaningful evidence (e.g., the holographic principle) has accumulated that the BG entropy S BG of a (3+1) black hole is proportional to its area L 2 (L being a characteristic linear length), and not to its volume L 3 . Similarly it exists the area law, so named because, for a wide class of strongly quantum-entangled d-dimensional systems, S BG is proportional to lnL if d=1, and to L d-1 if d>1, instead of being proportional to L d (d ≥ 1). These results violate the extensivity of the thermodynamical entropy of a d-dimensional system. This thermodynamical inconsistency disappears if we realize that the thermodynamical entropy of such nonstandard systems is not to be identified with the BG additive entropy but with appropriately generalized nonadditive entropies. Indeed, the celebrated usefulness of the BG entropy is founded on hypothesis such as relatively weak probabilistic correlations (and their connections to ergodicity, which by no means can be assumed as a general rule of nature). Here we introduce a generalized entropy which, for the Schwarzschild black hole and the area law, can solve the thermodynamic puzzle. (orig.)

  11. Thermodynamics Far from the Thermodynamic Limit.

    Science.gov (United States)

    de Miguel, Rodrigo; Rubí, J Miguel

    2017-11-16

    Understanding how small systems exchange energy with a heat bath is important to describe how their unique properties can be affected by the environment. In this contribution, we apply Landsberg's theory of temperature-dependent energy levels to describe the progressive thermalization of small systems as their spectrum is perturbed by a heat bath. We propose a mechanism whereby the small system undergoes a discrete series of excitations and isentropic spectrum adjustments leading to a final state of thermal equilibrium. This produces standard thermodynamic results without invoking system size. The thermal relaxation of a single harmonic oscillator is analyzed as a model example of a system with a quantized spectrum than can be embedded in a thermal environment. A description of how the thermal environment affects the spectrum of a small system can be the first step in using environmental factors, such as temperature, as parameters in the design and operation of nanosystem properties.

  12. M4SF-17LL010301071: Thermodynamic Database Development

    Energy Technology Data Exchange (ETDEWEB)

    Zavarin, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Glenn T. Seaborg Institute, Physical & Life Sciences; Wolery, T. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Akima Infrastructure Services, LLC

    2017-09-05

    This progress report (Level 4 Milestone Number M4SF-17LL010301071) summarizes research conducted at Lawrence Livermore National Laboratory (LLNL) within the Argillite Disposal R&D Work Package Number M4SF-17LL01030107. The DR Argillite Disposal R&D control account is focused on the evaluation of important processes in the analysis of disposal design concepts and related materials for nuclear fuel disposal in clay-bearing repository media. The objectives of this work package are to develop model tools for evaluating impacts of THMC process on long-term disposal of spent fuel in argillite rocks, and to establish the scientific basis for high thermal limits. This work is contributing to the GDSA model activities to identify gaps, develop process models, provide parameter feeds and support requirements providing the capability for a robust repository performance assessment model by 2020.

  13. Thermodynamics for the practicing engineer

    CERN Document Server

    Theodore, Louis; Vanvliet, Timothy

    2009-01-01

    This book concentrates specifically on the applications of thermodynamics, rather than the theory. It addresses both technical and pragmatic problems in the field, and covers such topics as enthalpy effects, equilibrium thermodynamics, non-ideal thermodynamics and energy conversion applications. Providing the reader with a working knowledge of the principles of thermodynamics, as well as experience in their application, it stands alone as an easy-to-follow self-teaching aid to practical applications and contains worked examples.

  14. Uranium solubility and solubility controls in selected Needle's Eye groundwaters

    International Nuclear Information System (INIS)

    Falck, W.E.; Hooker, P.J.

    1991-01-01

    The solubility control of uranium in selected groundwater samples from the cliff and sediments at the Needle's Eye natural analogue site is investigated using the speciation code PHREEQE and the CHEMVAL thermodynamic database (release 3). Alkali-earth bearing uranyl carbonate secondary minerals are likely to exert influence on the solubility . Other candidates are UO 2 and arsenates, depending on the prevailing redox conditions. In the absence of literature data, solubility products for important arsenates have been estimated from analogy with other arsenates and phosphates. Phosphates themselves are unlikely to exert control owing to their comparatively high solubilities. The influence of seawater flooding into the sediments is also discussed. The importance of uranyl arsenates in the retardation of uranium in shallow sediments has been demonstrated in theory, but there are some significant gaps in the thermodynamic databases used. (author)

  15. Quality improvements of thermodynamic data applied to corium interactions for severe accident modelling in SARNET2

    Czech Academy of Sciences Publication Activity Database

    Bakardjieva, Snejana; Barrachin, M.; Bechta, S.; Bezdička, Petr; Bottomley, D.; Brissoneau, L.; Cheynet, B.; Dugne, O.; Fischer, E.; Fischer, M.; Gusarov, V.; Journeau, C.; Khabensky, V.; Kiselová, M.; Manara, D.; Piluso, P.; Sheindlin, M.; Tyrpekl, V.; Wiss, T.

    2014-01-01

    Roč. 74, SI (2014), s. 110-124 ISSN 0306-4549 Institutional support: RVO:61388980 Keywords : Corium * Severe accidents * Thermodynamic database Subject RIV: CA - Inorganic Chemistry Impact factor: 0.960, year: 2014

  16. Thermodynamics of perfect fluids from scalar field theory

    CERN Document Server

    Ballesteros, Guillermo; Pilo, Luigi

    2016-01-01

    The low-energy dynamics of relativistic continuous media is given by a shift-symmetric effective theory of four scalar fields. These scalars describe the embedding in spacetime of the medium and play the role of Stuckelberg fields for spontaneously broken spatial and time translations. Perfect fluids are selected imposing a stronger symmetry group or reducing the field content to a single scalar. We explore the relation between the field theory description of perfect fluids to thermodynamics. By drawing the correspondence between the allowed operators at leading order in derivatives and the thermodynamic variables, we find that a complete thermodynamic picture requires the four Stuckelberg fields. We show that thermodynamic stability plus the null energy condition imply dynamical stability. We also argue that a consistent thermodynamic interpretation is not possible if any of the shift symmetries is explicitly broken.

  17. Contact symmetries and Hamiltonian thermodynamics

    International Nuclear Information System (INIS)

    Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F.

    2015-01-01

    It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production

  18. Statistical Thermodynamics and Microscale Thermophysics

    Science.gov (United States)

    Carey, Van P.

    1999-08-01

    Many exciting new developments in microscale engineering are based on the application of traditional principles of statistical thermodynamics. In this text Van Carey offers a modern view of thermodynamics, interweaving classical and statistical thermodynamic principles and applying them to current engineering systems. He begins with coverage of microscale energy storage mechanisms from a quantum mechanics perspective and then develops the fundamental elements of classical and statistical thermodynamics. Subsequent chapters discuss applications of equilibrium statistical thermodynamics to solid, liquid, and gas phase systems. The remainder of the book is devoted to nonequilibrium thermodynamics of transport phenomena and to nonequilibrium effects and noncontinuum behavior at the microscale. Although the text emphasizes mathematical development, Carey includes many examples and exercises to illustrate how the theoretical concepts are applied to systems of scientific and engineering interest. In the process he offers a fresh view of statistical thermodynamics for advanced undergraduate and graduate students, as well as practitioners, in mechanical, chemical, and materials engineering.

  19. Fragile Thermodynamic Order

    International Nuclear Information System (INIS)

    Bernhoeft, N.; Lander, G.H.; Colineau, E.

    2003-01-01

    An asymmetric shift in the position of the magnetic Bragg peak with respect to the fiducial lattice has been observed by resonant X-ray scattering in a diverse series of antiferromagnetic compounds. This apparent violation of Bragg's law is interpreted in terms of a dynamically phased order parameter. We demonstrate the use of this effect as a novel probe of fragile or dynamic thermodynamic order in strongly correlated electronic systems. In particular, fresh light is shed on the paradoxical situation encountered in URu 2 Si 2 where the measured entropy gain on passing through T Neel is incompatible with the ground state moment estimated by neutron diffraction. The intrinsic space-time averaging of the probe used to characterise the thermodynamic macroscopic state may play a crucial and previously neglected role. In turn, this suggests the further use of resonant X-ray scattering in investigations of systems dominated by quantum fluctuations. (author)

  20. Mechanics and thermodynamics

    CERN Document Server

    Demtröder, Wolfgang

    2017-01-01

    This introduction to classical mechanics and thermodynamics provides an accessible and clear treatment of the fundamentals. Starting with particle mechanics and an early introduction to special relativity this textbooks enables the reader to understand the basics in mechanics. The text is written from the experimental physics point of view, giving numerous real life examples and applications of classical mechanics in technology. This highly motivating presentation deepens the knowledge in a very accessible way. The second part of the text gives a concise introduction to rotational motion, an expansion to rigid bodies, fluids and gases. Finally, an extensive chapter on thermodynamics and a short introduction to nonlinear dynamics with some instructive examples intensify the knowledge of more advanced topics. Numerous problems with detailed solutions are perfect for self study.

  1. Thermodynamical quantum information sharing

    International Nuclear Information System (INIS)

    Wiesniak, M.; Vedral, V.; Brukner, C.

    2005-01-01

    Full text: Thermodynamical properties fully originate from classical physics and can be easily measured for macroscopic systems. On the other hand, entanglement is a widely spoken feature of quantum physics, which allows to perform certain task with efficiency unavailable with any classical resource. Therefore an interesting question is whether we can witness entanglement in a state of a macroscopic sample. We show, that some macroscopic properties, in particular magnetic susceptibility, can serve as an entanglement witnesses. We also study a mutual relation between magnetic susceptibility and magnetisation. Such a complementarity exhibits quantum information sharing between these two thermodynamical quantities. Magnetization expresses properties of individual spins, while susceptibility might reveal non-classical correlations as a witness. Therefore, a rapid change of one of these two quantities may mean a phase transition also in terms of entanglement. The complementarity relation is demonstrated by an analytical solution of an exemplary model. (author)

  2. A commentary on thermodynamics

    CERN Document Server

    Day, William Alan

    1988-01-01

    The aim of this book is to comment on, and clarify, the mathematical aspects of the theory of thermodynamics. The standard presentations of the subject are often beset by a number of obscurities associated with the words "state", "reversible", "irreversible", and "quasi-static". This book is written in the belief that such obscurities are best removed not by the formal axiomatization of thermodynamics, but by setting the theory in the wider context of a genuine field theory which incorporates the effects of heat conduction and intertia, and proving appropriate results about the governing differential equations of this field theory. Even in the simplest one-dimensional case it is a nontrivial task to carry through the details of this program, and many challenging problems remain open.

  3. Thermodynamics of Crystalline States

    CERN Document Server

    Fujimoto, Minoru

    2013-01-01

    Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium with the surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattice, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. New to this edition is the examination of magnetic crystals, where magnetic symmetry is essential for magnetic phase transitions. The multi-electron system is also discussed  theoretically, as a quantum-mechanical example, for superconductivity in metallic crystals. Throughout the book, the role played by the lattice is emphasized and studied in-depth. Thermod...

  4. Thermodynamics of clan production

    International Nuclear Information System (INIS)

    Giovannini, Alberto; Lupia, Sergio; Ugoccioni, Roberto

    2002-01-01

    Scenarios for particle production in the GeV and TeV regions are reviewed. The expected increase with the c.m. energy of the average number of clans for the soft component and the decrease for the semihard one indicate possible classical and quantum behavior of gluons, respectively. Clan thermodynamics, discussed in the paper, appears as the natural framework to deal with such phenomena

  5. Work reservoirs in thermodynamics

    International Nuclear Information System (INIS)

    Anacleto, Joaquim

    2010-01-01

    We stress the usefulness of the work reservoir in the formalism of thermodynamics, in particular in the context of the first law. To elucidate its usefulness, the formalism is then applied to the Joule expansion and other peculiar and instructive experimental situations, clarifying the concepts of configuration and dissipative work. The ideas and discussions presented in this study are primarily intended for undergraduate students, but they might also be useful to graduate students, researchers and teachers.

  6. Work reservoirs in thermodynamics

    Science.gov (United States)

    Anacleto, Joaquim

    2010-05-01

    We stress the usefulness of the work reservoir in the formalism of thermodynamics, in particular in the context of the first law. To elucidate its usefulness, the formalism is then applied to the Joule expansion and other peculiar and instructive experimental situations, clarifying the concepts of configuration and dissipative work. The ideas and discussions presented in this study are primarily intended for undergraduate students, but they might also be useful to graduate students, researchers and teachers.

  7. Thermodynamics of chaos

    International Nuclear Information System (INIS)

    Bonasera, A.; Latora, V.; Ploszajczak, M.

    1996-07-01

    The maximal Lyapunov exponents (LE) are calculated, starting from concepts of hydrodynamics. Analytical expressions for the LE can be found in ergodic limit by using results of the classical thermodynamics for a Boltzmann gas and for systems undergoing a second order phase transition. A recipe is given to measure LE in systems which might have a critical behavior, such as a Bose-Einstein condensation or a transition to a quark-gluon plasma. (author)

  8. Database on wind characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, K.S. [The Technical Univ. of Denmark (Denmark); Courtney, M.S. [Risoe National Lab., (Denmark)

    1999-08-01

    The organisations that participated in the project consists of five research organisations: MIUU (Sweden), ECN (The Netherlands), CRES (Greece), DTU (Denmark), Risoe (Denmark) and one wind turbine manufacturer: Vestas Wind System A/S (Denmark). The overall goal was to build a database consisting of a large number of wind speed time series and create tools for efficiently searching through the data to select interesting data. The project resulted in a database located at DTU, Denmark with online access through the Internet. The database contains more than 50.000 hours of measured wind speed measurements. A wide range of wind climates and terrain types are represented with significant amounts of time series. Data have been chosen selectively with a deliberate over-representation of high wind and complex terrain cases. This makes the database ideal for wind turbine design needs but completely unsuitable for resource studies. Diversity has also been an important aim and this is realised with data from a large range of terrain types; everything from offshore to mountain, from Norway to Greece. (EHS)

  9. Advanced thermodynamic (exergetic) analysis

    International Nuclear Information System (INIS)

    Tsatsaronis, G; Morosuk, T

    2012-01-01

    Exergy analysis is a powerful tool for developing, evaluating and improving an energy conversion system. However, the lack of a formal procedure in using the results obtained by an exergy analysis is one of the reasons for exergy analysis not being very popular among energy practitioners. Such a formal procedure cannot be developed as long as the interactions among components of the overall system are not being taken properly into account. Splitting the exergy destruction into unavoidable and avoidable parts in a component provides a realistic measure of the potential for improving the thermodynamic efficiency of this component. Alternatively splitting the exergy destruction into endogenous and exogenous parts provides information on the interactions among system components. Distinctions between avoidable and unavoidable exergy destruction on one side and endogenous and exogenous exergy destruction on the other side allow the engineer to focus on the thermodynamic inefficiencies that can be avoided and to consider the interactions among system components. The avoidable endogenous and the avoidable exogenous exergy destruction provide the best guidance for improving the thermodynamic performance of energy conversion systems.

  10. The discovery of thermodynamics

    Science.gov (United States)

    Weinberger, Peter

    2013-07-01

    Based on the idea that a scientific journal is also an "agora" (Greek: market place) for the exchange of ideas and scientific concepts, the history of thermodynamics between 1800 and 1910 as documented in the Philosophical Magazine Archives is uncovered. Famous scientists such as Joule, Thomson (Lord Kelvin), Clausius, Maxwell or Boltzmann shared this forum. Not always in the most friendly manner. It is interesting to find out, how difficult it was to describe in a scientific (mathematical) language a phenomenon like "heat", to see, how long it took to arrive at one of the fundamental principles in physics: entropy. Scientific progress started from the simple rule of Boyle and Mariotte dating from the late eighteenth century and arrived in the twentieth century with the concept of probabilities. Thermodynamics was the driving intellectual force behind the industrial revolution, behind the enormous social changes caused by this revolution. The history of thermodynamics is a fascinating story, which also gives insights into the mechanism that seem to govern science.

  11. Development and application of nuclear power operation database

    International Nuclear Information System (INIS)

    Shao Juying; Fang Zhaoxia

    1996-01-01

    The article describes the development of the Nuclear Power Operation Database which include Domestic and Overseas Nuclear Event Scale Database, Overseas Nuclear Power Operation Abnormal Event Database, Overseas Nuclear Power Operation General Reliability Database and Qinshan Nuclear Power Operation Abnormal Event Database. The development includes data collection and analysis, database construction and code design, database management system selection. The application of the database to provide support to the safety analysis of the NPPs which have been in commercial operation is also introduced

  12. Stackfile Database

    Science.gov (United States)

    deVarvalho, Robert; Desai, Shailen D.; Haines, Bruce J.; Kruizinga, Gerhard L.; Gilmer, Christopher

    2013-01-01

    This software provides storage retrieval and analysis functionality for managing satellite altimetry data. It improves the efficiency and analysis capabilities of existing database software with improved flexibility and documentation. It offers flexibility in the type of data that can be stored. There is efficient retrieval either across the spatial domain or the time domain. Built-in analysis tools are provided for frequently performed altimetry tasks. This software package is used for storing and manipulating satellite measurement data. It was developed with a focus on handling the requirements of repeat-track altimetry missions such as Topex and Jason. It was, however, designed to work with a wide variety of satellite measurement data [e.g., Gravity Recovery And Climate Experiment -- GRACE). The software consists of several command-line tools for importing, retrieving, and analyzing satellite measurement data.

  13. International Shock-Wave Database: Current Status

    Science.gov (United States)

    Levashov, Pavel

    2013-06-01

    Shock-wave and related dynamic material response data serve for calibrating, validating, and improving material models over very broad regions of the pressure-temperature-density phase space. Since the middle of the 20th century vast amount of shock-wave experimental information has been obtained. To systemize it a number of compendiums of shock-wave data has been issued by LLNL, LANL (USA), CEA (France), IPCP and VNIIEF (Russia). In mid-90th the drawbacks of the paper handbooks became obvious, so the first version of the online shock-wave database appeared in 1997 (http://www.ficp.ac.ru/rusbank). It includes approximately 20000 experimental points on shock compression, adiabatic expansion, measurements of sound velocity behind the shock front and free-surface-velocity for more than 650 substances. This is still a useful tool for the shock-wave community, but it has a number of serious disadvantages which can't be easily eliminated: (i) very simple data format for points and references; (ii) minimalistic user interface for data addition; (iii) absence of history of changes; (iv) bad feedback from users. The new International Shock-Wave database (ISWdb) is intended to solve these and some other problems. The ISWdb project objectives are: (i) to develop a database on thermodynamic and mechanical properties of materials under conditions of shock-wave and other dynamic loadings, selected related quantities of interest, and the meta-data that describes the provenance of the measurements and material models; and (ii) to make this database available internationally through the Internet, in an interactive form. The development and operation of the ISWdb is guided by an advisory committee. The database will be installed on two mirrored web-servers, one in Russia and the other in USA (currently only one server is available). The database provides access to original experimental data on shock compression, non-shock dynamic loadings, isentropic expansion, measurements of sound

  14. Calorimetry and thermodynamics of living systems

    International Nuclear Information System (INIS)

    Lamprecht, Ingolf

    2003-01-01

    Calorimetry of living systems and classical thermodynamics developed in parallel, from Lavoisier's early ice calorimeter experiments on guinea pigs, followed by Dubrunfaut's macrocalorimetric research of fermentation processes and Atwater-Rosa's whole-body calorimetry on humans and domestic animals, to the introduction of the famous Tian-Calvet instrument that found entrance into so many different fields of biology. In this work, six examples of living-system calorimetry and thermodynamics are presented. These are: (i) glycolytic oscillations far off the thermodynamic equilibrium; (ii) growth and energy balances in fermenting and respiring yeast cultures; (iii) direct and indirect calorimetric monitoring of electrically stimulated reptile metabolism; (iv) biologic and climatic factors influencing the temperature constancy and distribution in the mound of a wood ant colony as an example of a complex ecological system; (v) energetic considerations on the clustering of European honeybees in winter as a means to save energy and stored food as well as for their Japanese counterparts in defending against hornet predators; and (vi) energetic and evolutionary aspects of the mass specific entropy production rate, the so-called bound dissipation or psiu-function. The examples presented here are just a very personal selection of living systems from a broad spectrum at all levels of complexity. Common for all of them is that they were investigated calorimetrically on the background of classical and irreversible thermodynamics

  15. Thermodynamical analysis of human thermal comfort

    International Nuclear Information System (INIS)

    Prek, Matjaz

    2006-01-01

    Traditional methods of human thermal comfort analysis are based on the first law of thermodynamics. These methods use an energy balance of the human body to determine heat transfer between the body and its environment. By contrast, the second law of thermodynamics introduces the useful concept of exergy. It enables the determination of the exergy consumption within the human body dependent on human and environmental factors. Human body exergy consumption varies with the combination of environmental (room) conditions. This process is related to human thermal comfort in connection with temperature, heat, and mass transfer. In this paper a thermodynamic analysis of human heat and mass transfer based on the 2nd law of thermodynamics in presented. It is shown that the human body's exergy consumption in relation to selected human parameters exhibits a minimal value at certain combinations of environmental parameters. The expected thermal sensation also shows that there is a correlation between exergy consumption and thermal sensation. Thus, our analysis represents an improvement in human thermal modelling and gives more information about the environmental impact on expected human thermal sensation

  16. Thermodynamic and structural basis for electrochemical response of Cu–Zr based metallic glass

    International Nuclear Information System (INIS)

    Zhang, Chunzhi; Qiu, Nannan; Kong, Lingliang; Yang, Xiaodan; Li, Huiping

    2015-01-01

    Highlights: • Thermodynamic and structural basis for electrochemical response were proposed. • La improves the corrosion resistance by inhibition of the selective dissolution. • Corrosion of the MG responses well with thermodynamic and structural parameters. - Abstract: Cu–Zr based metallic glasses were prepared by hyperquenching strategy to explore the thermodynamic and structural basis for electrochemical response. The thermodynamic parameters and the local atomic structure were obtained. Corrosion resistance in seawater was investigated via potentiodynamic polarization curve. The results indicate that increasing thermodynamic parameter values improves the corrosion resistance. The topological instability represented by the nearest neighbor atomic distance yields same tendency as the corrosion resistance with La addition

  17. Critical evaluation and thermodynamic optimization of the U-Pb and U-Sb binary systems

    International Nuclear Information System (INIS)

    Wang, Jian; Jin, Liling; Chen, Chuchu; Rao, Weifeng; Wang, Cuiping; Liu, Xingjun

    2016-01-01

    A complete literature review, critical evaluation and thermodynamic optimization of the phase diagrams and thermodynamic properties of U-Pb and U-Sb binary systems are presented. The CALculation of PHAse Diagrams (CALPHAD) method was used for the thermodynamic optimization, the results of which can reproduce all available reliable experimental phase equilibria and thermodynamic data. The modified quasi-chemical model in the pair approximation (MQMPA) was used for modeling the liquid solution. The Gibbs energies of all terminal solid solutions and intermetallic compounds were described by the compound energy formalism (CEF) model. All reliable experimental data of the U-Pb and U-Sb systems have been reproduced. A self-consistent thermodynamic database has been constructed for these binary systems; this database can be used in liquid-metal fuel reactor (LMFR) research.

  18. Open Geoscience Database

    Science.gov (United States)

    Bashev, A.

    2012-04-01

    Currently there is an enormous amount of various geoscience databases. Unfortunately the only users of the majority of the databases are their elaborators. There are several reasons for that: incompaitability, specificity of tasks and objects and so on. However the main obstacles for wide usage of geoscience databases are complexity for elaborators and complication for users. The complexity of architecture leads to high costs that block the public access. The complication prevents users from understanding when and how to use the database. Only databases, associated with GoogleMaps don't have these drawbacks, but they could be hardly named "geoscience" Nevertheless, open and simple geoscience database is necessary at least for educational purposes (see our abstract for ESSI20/EOS12). We developed a database and web interface to work with them and now it is accessible at maps.sch192.ru. In this database a result is a value of a parameter (no matter which) in a station with a certain position, associated with metadata: the date when the result was obtained; the type of a station (lake, soil etc); the contributor that sent the result. Each contributor has its own profile, that allows to estimate the reliability of the data. The results can be represented on GoogleMaps space image as a point in a certain position, coloured according to the value of the parameter. There are default colour scales and each registered user can create the own scale. The results can be also extracted in *.csv file. For both types of representation one could select the data by date, object type, parameter type, area and contributor. The data are uploaded in *.csv format: Name of the station; Lattitude(dd.dddddd); Longitude(ddd.dddddd); Station type; Parameter type; Parameter value; Date(yyyy-mm-dd). The contributor is recognised while entering. This is the minimal set of features that is required to connect a value of a parameter with a position and see the results. All the complicated data

  19. Plasma-wall interactions data compendium-1. ''Hydrogen retention property, diffusion and recombination coefficients database for selected plasma-facing materials''

    Energy Technology Data Exchange (ETDEWEB)

    Iwakiri, Hirotomo [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Matsuhiro, Kenjirou [Osaka Univ., Osaka (Japan); Hirooka, Yoshi [National Inst. for Fusion Science, Toki, Gifu (Japan); Yamamura, Yasunori [Okayama Univ. of Scinece, Okayama (Japan)

    2002-05-01

    A summary on the recent activities of the plasma-wall interactions database task group at the National Institute for Fusion Science is presented in this report. These activities are focused on the compilation of literature data on the key parameters related to wall recycling characteristics that affect dynamic particle balance during plasma discharges and also on-site tritium inventory. More specifically, in this task group a universal fitting formula has been proposed and successfully applied to help compile hydrogen implantation-induced retention data. Also, presented here are the data on hydrogen diffusion and surface recombination coefficients, both critical in modeling dynamic wall recycling behavior. Data compilation has been conducted on beryllium, carbon, tungsten and molybdenum, all currently used for plasma-facing components in magnetic fusion experiments. (author)

  20. Volume 42, Issue5 (May 2005)Articles in the Current Issue:Developmental growth in students' concept of energy: Analysis of selected items from the TIMSS database

    Science.gov (United States)

    Liu, Xiufeng; McKeough, Anne

    2005-05-01

    The aim of this study was to develop a model of students' energy concept development. Applying Case's (1985, 1992) structural theory of cognitive development, we hypothesized that students' concept of energy undergoes a series of transitions, corresponding to systematic increases in working memory capacity. The US national sample from the Third International Mathematics and Science Study (TIMSS) database was used to test our hypothesis. Items relevant to the energy concept in the TIMSS test booklets for three populations were identified. Item difficulty from Rasch modeling was used to test the hypothesized developmental sequence, and percentage of students' correct responses was used to test the correspondence between students' age/grade level and level of the energy concepts. The analysis supported our hypothesized sequence of energy concept development and suggested mixed effects of maturation and schooling on energy concept development. Further, the results suggest that curriculum and instruction design take into consideration the developmental progression of students' concept of energy.

  1. Comparison of Ablation Predictions for Carbonaceous Materials Using CEA and JANAF-Based Species Thermodynamics

    Science.gov (United States)

    Milos, Frank S.

    2011-01-01

    In most previous work at NASA Ames Research Center, ablation predictions for carbonaceous materials were obtained using a species thermodynamics database developed by Aerotherm Corporation. This database is derived mostly from the JANAF thermochemical tables. However, the CEA thermodynamics database, also used by NASA, is considered more up to date. In this work, the FIAT code was modified to use CEA-based curve fits for species thermodynamics, then analyses using both the JANAF and CEA thermodynamics were performed for carbon and carbon phenolic materials over a range of test conditions. The ablation predictions are comparable at lower heat fluxes where the dominant mechanism is carbon oxidation. However, the predictions begin to diverge in the sublimation regime, with the CEA model predicting lower recession. The disagreement is more significant for carbon phenolic than for carbon, and this difference is attributed to hydrocarbon species that may contribute to the ablation rate.

  2. Thermodynamics: The Unique Universal Science

    Directory of Open Access Journals (Sweden)

    Wassim M. Haddad

    2017-11-01

    Full Text Available Thermodynamics is a physical branch of science that governs the thermal behavior of dynamical systems from those as simple as refrigerators to those as complex as our expanding universe. The laws of thermodynamics involving conservation of energy and nonconservation of entropy are, without a doubt, two of the most useful and general laws in all sciences. The first law of thermodynamics, according to which energy cannot be created or destroyed, merely transformed from one form to another, and the second law of thermodynamics, according to which the usable energy in an adiabatically isolated dynamical system is always diminishing in spite of the fact that energy is conserved, have had an impact far beyond science and engineering. In this paper, we trace the history of thermodynamics from its classical to its postmodern forms, and present a tutorial and didactic exposition of thermodynamics as it pertains to some of the deepest secrets of the universe.

  3. Thermodynamics of adaptive molecular resolution.

    Science.gov (United States)

    Delgado-Buscalioni, R

    2016-11-13

    A relatively general thermodynamic formalism for adaptive molecular resolution (AMR) is presented. The description is based on the approximation of local thermodynamic equilibrium and considers the alchemic parameter λ as the conjugate variable of the potential energy difference between the atomistic and coarse-grained model Φ=U (1) -U (0) The thermodynamic formalism recovers the relations obtained from statistical mechanics of H-AdResS (Español et al, J. Chem. Phys. 142, 064115, 2015 (doi:10.1063/1.4907006)) and provides relations between the free energy compensation and thermodynamic potentials. Inspired by this thermodynamic analogy, several generalizations of AMR are proposed, such as the exploration of new Maxwell relations and how to treat λ and Φ as 'real' thermodynamic variablesThis article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  4. Chemical thermodynamics of uranium

    International Nuclear Information System (INIS)

    Grenthe, I.; Fuger, J.; Lemire, R.J.; Muller, A.B.; Nguyen-Trung Cregu, C.; Wanner, H.

    1992-01-01

    A comprehensive overview on the chemical thermodynamics of those elements that are of particular importance in the safety assessment of radioactive waste disposal systems is provided. This is the first volume in a series of critical reviews to be published on this subject. The book provides an extensive compilation of chemical thermodynamic data for uranium. A description of procedures for activity corrections and uncertainty estimates is given. A critical discussion of data needed for nuclear waste management assessments, including areas where significant gaps of knowledge exist is presented. A detailed inventory of chemical thermodynamic data for inorganic compounds and complexes of uranium is listed. Data and their uncertainty limits are recommended for 74 aqueous complexes and 199 solid and 31 gaseous compounds containing uranium, and on 52 aqueous and 17 solid auxiliary species containing no uranium. The data are internally consistent and compatible with the CODATA Key Values. The book contains a detailed discussion of procedures used for activity factor corrections in aqueous solution, as well as including methods for making uncertainty estimates. The recommended data have been prepared for use in environmental geochemistry. Containing contributions written by experts the chapters cover various subject areas such a s: oxide and hydroxide compounds and complexes, the uranium nitrides, the solid uranium nitrates and the arsenic-containing uranium compounds, uranates, procedures for consistent estimation of entropies, gaseous and solid uranium halides, gaseous uranium oxides, solid phosphorous-containing uranium compounds, alkali metal uranates, uncertainties, standards and conventions, aqueous complexes, uranium minerals dealing with solubility products and ionic strength corrections. The book is intended for nuclear research establishments and consulting firms dealing with uranium mining and nuclear waste disposal, as well as academic and research institutes

  5. Association between Selective Beta-adrenergic Drugs and Blood Pressure Elevation: Data Mining of the Japanese Adverse Drug Event Report (JADER) Database.

    Science.gov (United States)

    Ohyama, Katsuhiro; Inoue, Michiko

    2016-01-01

    Selective beta-adrenergic drugs are used clinically to treat various diseases. Because of imperfect receptor selectivity, beta-adrenergic drugs cause some adverse drug events by stimulating other adrenergic receptors. To examine the association between selective beta-adrenergic drugs and blood pressure elevation, we reviewed the Japanese Adverse Drug Event Reports (JADERs) submitted to the Japan Pharmaceuticals and Medical Devices Agency. We used the Medical Dictionary for Regulatory Activities (MedDRA) Preferred Terms extracted from Standardized MedDRA queries for hypertension to identify events related to blood pressure elevation. Spontaneous adverse event reports from April 2004 through May 2015 in JADERs, a data mining algorithm, and the reporting odds ratio (ROR) were used for quantitative signal detection, and assessed by the case/non-case method. Safety signals are considered significant if the ROR estimates and lower bound of the 95% confidence interval (CI) exceed 1. A total of 2021 reports were included in this study. Among the nine drugs examined, significant signals were found, based on the 95%CI for salbutamol (ROR: 9.94, 95%CI: 3.09-31.93) and mirabegron (ROR: 7.52, 95%CI: 4.89-11.55). The results of this study indicate that some selective beta-adrenergic drugs are associated with blood pressure elevation. Considering the frequency of their indications, attention should be paid to their use in elderly patients to avoid adverse events.

  6. Thermodynamics of quark gas

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, S. N.

    1980-07-01

    The application of quantum statistical mechanics to a system of particles consisting of quarks is considered. Realistic theoretical investigations have been underway to understand highly dense objects such as white dwarfs and neutron stars. The various possibilities in the case of very high densities such as 10/sup 15/ or 10/sup 16/ g/cm/sup 3/ are enumerated. The thermodynamics of a phase transition from neutron matter phase to quark matter phase is analysed. Preliminary results based on quantum chromodynamics and other phenomenological models are reported.

  7. Time and Thermodynamics

    CERN Document Server

    Kirkland, Kyle

    2007-01-01

    Temperature is vital to the health and welfare of all living beings, and Earth's temperature varies considerably from place to place. Early humans could only live in warm areas such as the tropics. Although modern humans have the technology to keep their houses and offices warm even in cold environments, the growth and development of civilization has created unintentional effects. Cities are warmer than their surrounding regions, and on a global scale, Earth is experiencing rising temperatures. Thus, the science of thermodynamics offers an important tool to study these effects. "Time and

  8. Thermodynamics of Crystals

    Science.gov (United States)

    Navrotsky, Alexandra

    Thermodynamics of Crystals is a gold mine of a references bargain with more derivations of useful equations per dollar, or per page, than almost any other book I know. Useful to whom? To the solid state physicist, the solid state chemist working the geophysicist, the rock mechanic, the mineral physicist. Useful for what? For lattice dynamics, crystal potentials, band structure. For elegant, rigorous, and concise derivations of fundamental equations. For comparison of levels of approximation. For some data and physical insights, especially for metals and simple halides. This book is a reissue, with some changes and additions, of a 1970 treatise. It ages well, since the fundamentals do not change.

  9. Interfacial solvation thermodynamics

    International Nuclear Information System (INIS)

    Ben-Amotz, Dor

    2016-01-01

    Previous studies have reached conflicting conclusions regarding the interplay of cavity formation, polarizability, desolvation, and surface capillary waves in driving the interfacial adsorptions of ions and molecules at air–water interfaces. Here we revisit these questions by combining exact potential distribution results with linear response theory and other physically motivated approximations. The results highlight both exact and approximate compensation relations pertaining to direct (solute–solvent) and indirect (solvent–solvent) contributions to adsorption thermodynamics, of relevance to solvation at air–water interfaces, as well as a broader class of processes linked to the mean force potential between ions, molecules, nanoparticles, proteins, and biological assemblies. (paper)

  10. Principles of thermodynamics

    CERN Document Server

    Kaufman, Myron

    2002-01-01

    Ideal for one- or two-semester courses that assume elementary knowledge of calculus, This text presents the fundamental concepts of thermodynamics and applies these to problems dealing with properties of materials, phase transformations, chemical reactions, solutions and surfaces. The author utilizes principles of statistical mechanics to illustrate key concepts from a microscopic perspective, as well as develop equations of kinetic theory. The book provides end-of-chapter question and problem sets, some using Mathcad™ and Mathematica™; a useful glossary containing important symbols, definitions, and units; and appendices covering multivariable calculus and valuable numerical methods.

  11. Gravitation, Thermodynamics, and Quantum Theory

    OpenAIRE

    Wald, Robert M.

    1999-01-01

    During the past 30 years, research in general relativity has brought to light strong hints of a very deep and fundamental relationship between gravitation, thermodynamics, and quantum theory. The most striking indication of such a relationship comes from black hole thermodynamics, where it appears that certain laws of black hole mechanics are, in fact, simply the ordinary laws of thermodynamics applied to a system containing a black hole. This article will review the present status of black h...

  12. On thermodynamic and microscopic reversibility

    International Nuclear Information System (INIS)

    Crooks, Gavin E

    2011-01-01

    The word 'reversible' has two (apparently) distinct applications in statistical thermodynamics. A thermodynamically reversible process indicates an experimental protocol for which the entropy change is zero, whereas the principle of microscopic reversibility asserts that the probability of any trajectory of a system through phase space equals that of the time reversed trajectory. However, these two terms are actually synonymous: a thermodynamically reversible process is microscopically reversible, and vice versa

  13. CERCLIS (Superfund) ASCII Text Format - CPAD Database

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) (Superfund) Public Access Database (CPAD) contains a selected set...

  14. Quantum Thermodynamics at Strong Coupling: Operator Thermodynamic Functions and Relations

    Directory of Open Access Journals (Sweden)

    Jen-Tsung Hsiang

    2018-05-01

    Full Text Available Identifying or constructing a fine-grained microscopic theory that will emerge under specific conditions to a known macroscopic theory is always a formidable challenge. Thermodynamics is perhaps one of the most powerful theories and best understood examples of emergence in physical sciences, which can be used for understanding the characteristics and mechanisms of emergent processes, both in terms of emergent structures and the emergent laws governing the effective or collective variables. Viewing quantum mechanics as an emergent theory requires a better understanding of all this. In this work we aim at a very modest goal, not quantum mechanics as thermodynamics, not yet, but the thermodynamics of quantum systems, or quantum thermodynamics. We will show why even with this minimal demand, there are many new issues which need be addressed and new rules formulated. The thermodynamics of small quantum many-body systems strongly coupled to a heat bath at low temperatures with non-Markovian behavior contains elements, such as quantum coherence, correlations, entanglement and fluctuations, that are not well recognized in traditional thermodynamics, built on large systems vanishingly weakly coupled to a non-dynamical reservoir. For quantum thermodynamics at strong coupling, one needs to reexamine the meaning of the thermodynamic functions, the viability of the thermodynamic relations and the validity of the thermodynamic laws anew. After a brief motivation, this paper starts with a short overview of the quantum formulation based on Gelin & Thoss and Seifert. We then provide a quantum formulation of Jarzynski’s two representations. We show how to construct the operator thermodynamic potentials, the expectation values of which provide the familiar thermodynamic variables. Constructing the operator thermodynamic functions and verifying or modifying their relations is a necessary first step in the establishment of a viable thermodynamics theory for

  15. Extending Database Integration Technology

    National Research Council Canada - National Science Library

    Buneman, Peter

    1999-01-01

    Formal approaches to the semantics of databases and database languages can have immediate and practical consequences in extending database integration technologies to include a vastly greater range...

  16. Experimental approaches to membrane thermodynamics

    DEFF Research Database (Denmark)

    Westh, Peter

    2009-01-01

    Thermodynamics describes a system on the macroscopic scale, yet it is becoming an important tool for the elucidation of many specific molecular aspects of membrane properties. In this note we discuss this application of thermodynamics, and give a number of examples on how thermodynamic measurements...... have contributed to the understanding of specific membrane phenomena. We mainly focus on non-specific interactions of bilayers and small molecules (water and solutes) in the surrounding solvent, and the changes in membrane properties they bring about. Differences between thermodynamic...

  17. Molecular thermodynamics of nonideal fluids

    CERN Document Server

    Lee, Lloyd L

    2013-01-01

    Molecular Thermodynamics of Nonideal Fluids serves as an introductory presentation for engineers to the concepts and principles behind and the advances in molecular thermodynamics of nonideal fluids. The book covers related topics such as the laws of thermodynamics; entropy; its ensembles; the different properties of the ideal gas; and the structure of liquids. Also covered in the book are topics such as integral equation theories; theories for polar fluids; solution thermodynamics; and molecular dynamics. The text is recommended for engineers who would like to be familiarized with the concept

  18. Thermodynamics of Accelerating Black Holes.

    Science.gov (United States)

    Appels, Michael; Gregory, Ruth; Kubizňák, David

    2016-09-23

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  19. LHCb distributed conditions database

    International Nuclear Information System (INIS)

    Clemencic, M

    2008-01-01

    The LHCb Conditions Database project provides the necessary tools to handle non-event time-varying data. The main users of conditions are reconstruction and analysis processes, which are running on the Grid. To allow efficient access to the data, we need to use a synchronized replica of the content of the database located at the same site as the event data file, i.e. the LHCb Tier1. The replica to be accessed is selected from information stored on LFC (LCG File Catalog) and managed with the interface provided by the LCG developed library CORAL. The plan to limit the submission of jobs to those sites where the required conditions are available will also be presented. LHCb applications are using the Conditions Database framework on a production basis since March 2007. We have been able to collect statistics on the performance and effectiveness of both the LCG library COOL (the library providing conditions handling functionalities) and the distribution framework itself. Stress tests on the CNAF hosted replica of the Conditions Database have been performed and the results will be summarized here

  20. Normed kernel function-based fuzzy possibilistic C-means (NKFPCM) algorithm for high-dimensional breast cancer database classification with feature selection is based on Laplacian Score

    Science.gov (United States)

    Lestari, A. W.; Rustam, Z.

    2017-07-01

    In the last decade, breast cancer has become the focus of world attention as this disease is one of the primary leading cause of death for women. Therefore, it is necessary to have the correct precautions and treatment. In previous studies, Fuzzy Kennel K-Medoid algorithm has been used for multi-class data. This paper proposes an algorithm to classify the high dimensional data of breast cancer using Fuzzy Possibilistic C-means (FPCM) and a new method based on clustering analysis using Normed Kernel Function-Based Fuzzy Possibilistic C-Means (NKFPCM). The objective of this paper is to obtain the best accuracy in classification of breast cancer data. In order to improve the accuracy of the two methods, the features candidates are evaluated using feature selection, where Laplacian Score is used. The results show the comparison accuracy and running time of FPCM and NKFPCM with and without feature selection.

  1. Thermodynamics of geothermal fluids

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, P.S.Z.

    1981-03-01

    A model to predict the thermodynamic properties of geothermal brines, based on a minimum amount of experimental data on a few key systems, is tested. Volumetric properties of aqueous sodium chloride, taken from the literature, are represented by a parametric equation over the range 0 to 300{sup 0}C and 1 bar to 1 kbar. Density measurements at 20 bar needed to complete the volumetric description also are presented. The pressure dependence of activity and thermal properties, derived from the volumetric equation, can be used to complete an equation of state for sodium chloride solutions. A flow calorimeter, used to obtain heat capacity data at high temperatures and pressures, is described. Heat capacity measurements, from 30 to 200{sup 0}C and 1 bar to 200 bar, are used to derive values for the activity coefficient and other thermodynamic properties of sodium sulfate solutions as a function of temperature. Literature data on the solubility of gypsum in mixed electrolyte solutions have been used to evaluate model parameters for calculating gypsum solubility in seawater and natural brines. Predictions of strontium and barium sulfate solubility in seawater also are given.

  2. Thermodynamics of Error Correction

    Directory of Open Access Journals (Sweden)

    Pablo Sartori

    2015-12-01

    Full Text Available Information processing at the molecular scale is limited by thermal fluctuations. This can cause undesired consequences in copying information since thermal noise can lead to errors that can compromise the functionality of the copy. For example, a high error rate during DNA duplication can lead to cell death. Given the importance of accurate copying at the molecular scale, it is fundamental to understand its thermodynamic features. In this paper, we derive a universal expression for the copy error as a function of entropy production and work dissipated by the system during wrong incorporations. Its derivation is based on the second law of thermodynamics; hence, its validity is independent of the details of the molecular machinery, be it any polymerase or artificial copying device. Using this expression, we find that information can be copied in three different regimes. In two of them, work is dissipated to either increase or decrease the error. In the third regime, the protocol extracts work while correcting errors, reminiscent of a Maxwell demon. As a case study, we apply our framework to study a copy protocol assisted by kinetic proofreading, and show that it can operate in any of these three regimes. We finally show that, for any effective proofreading scheme, error reduction is limited by the chemical driving of the proofreading reaction.

  3. Chemical thermodynamic representation of

    International Nuclear Information System (INIS)

    Lindemer, T.B.; Besmann, T.M.

    1984-01-01

    The entire data base for the dependence of the nonstoichiometry, x, on temperature and chemical potential of oxygen (oxygen potential) was retrieved from the literature and represented. This data base was interpreted by least-squares analysis using equations derived from the classical thermodynamic theory for the solid solution of a solute in a solvent. For hyperstoichiometric oxide at oxygen potentials more positive than -266700 + 16.5T kJ/mol, the data were best represented by a [UO 2 ]-[U 3 O 7 ] solution. For O/U ratios above 2 and oxygen potentials below this boundary, a [UO 2 ]-[U 2 O 4 . 5 ] solution represented the data. The data were represented by a [UO 2 ]-[U 1 / 3 ] solution. The resulting equations represent the experimental ln(PO 2 ) - ln(x) behavior and can be used in thermodynamic calculations to predict phase boundary compositions consistent with the literature. Collectively, the present analysis permits a mathematical representation of the behavior of the total data base

  4. Light cone thermodynamics

    Science.gov (United States)

    De Lorenzo, Tommaso; Perez, Alejandro

    2018-02-01

    We show that null surfaces defined by the outgoing and infalling wave fronts emanating from and arriving at a sphere in Minkowski spacetime have thermodynamical properties that are in strict formal correspondence with those of black hole horizons in curved spacetimes. Such null surfaces, made of pieces of light cones, are bifurcate conformal Killing horizons for suitable conformally stationary observers. They can be extremal and nonextremal depending on the radius of the shining sphere. Such conformal Killing horizons have a constant light cone (conformal) temperature, given by the standard expression in terms of the generalization of surface gravity for conformal Killing horizons. Exchanges of conformally invariant energy across the horizon are described by a first law where entropy changes are given by 1 /(4 ℓp2) of the changes of a geometric quantity with the meaning of horizon area in a suitable conformal frame. These conformal horizons satisfy the zeroth to the third laws of thermodynamics in an appropriate way. In the extremal case they become light cones associated with a single event; these have vanishing temperature as well as vanishing entropy.

  5. Thermodynamics and statistical physics. 2. rev. ed.

    International Nuclear Information System (INIS)

    Schnakenberg, J.

    2002-01-01

    This textbook covers tthe following topics: Thermodynamic systems and equilibrium, irreversible thermodynamics, thermodynamic potentials, stability, thermodynamic processes, ideal systems, real gases and phase transformations, magnetic systems and Landau model, low temperature thermodynamics, canonical ensembles, statistical theory, quantum statistics, fermions and bosons, kinetic theory, Bose-Einstein condensation, photon gas

  6. Thermodynamic Properties and Thermodynamic Geometries of Black p-Branes

    International Nuclear Information System (INIS)

    Yi-Huan Wei; Xiao Cui; Jia-Xin Zhao

    2016-01-01

    The heat capacity and the electric capacitance of the black p-branes (BPB) are generally defined, then they are calculated for some special processes. It is found that the Ruppeiner thermodynamic geometry of BPB is flat. Finally, we give some discussions for the flatness of the Ruppeiner thermodynamic geometry of BPB and some black holes. (paper)

  7. Spatial database of mining-related features in 2001 at selected phosphate mines, Bannock, Bear Lake, Bingham, and Caribou Counties, Idaho

    Science.gov (United States)

    Moyle, Phillip R.; Kayser, Helen Z.

    2006-01-01

    This report describes the spatial database, PHOSMINE01, and the processes used to delineate mining-related features (active and inactive/historical) in the core of the southeastern Idaho phosphate resource area. The spatial data have varying degrees of accuracy and attribution detail. Classification of areas by type of mining-related activity at active mines is generally detailed; however, for many of the closed or inactive mines the spatial coverage does not differentiate mining-related surface disturbance features. Nineteen phosphate mine sites are included in the study, three active phosphate mines - Enoch Valley (nearing closure), Rasmussen Ridge, and Smoky Canyon - and 16 inactive (or historical) phosphate mines - Ballard, Champ, Conda, Diamond Gulch, Dry Valley, Gay, Georgetown Canyon, Henry, Home Canyon, Lanes Creek, Maybe Canyon, Mountain Fuel, Trail Canyon, Rattlesnake, Waterloo, and Wooley Valley. Approximately 6,000 hc (15,000 ac), or 60 km2 (23 mi2) of phosphate mining-related surface disturbance are documented in the spatial coverage. Spatial data for the inactive mines is current because no major changes have occurred; however, the spatial data for active mines were derived from digital maps prepared in early 2001 and therefore recent activity is not included. The inactive Gay Mine has the largest total area of disturbance, 1,900 hc (4,700 ac) or about 19 km2 (7.4 mi2). It encompasses over three times the disturbance area of the next largest mine, the Conda Mine with 610 hc (1,500 ac), and it is nearly four times the area of the Smoky Canyon Mine, the largest of the active mines with about 550 hc (1,400 ac). The wide range of phosphate mining-related surface disturbance features (141) from various industry maps were reduced to 15 types or features based on a generic classification system used for this study: mine pit; backfilled mine pit; waste rock dump; adit and waste rock dump; ore stockpile; topsoil stockpile; tailings or tailings pond; sediment

  8. Digital database of mining-related features at selected historic and active phosphate mines, Bannock, Bear Lake, Bingham, and Caribou counties, Idaho

    Science.gov (United States)

    Causey, J. Douglas; Moyle, Phillip R.

    2001-01-01

    This report provides a description of data and processes used to produce a spatial database that delineates mining-related features in areas of historic and active phosphate mining in the core of the southeastern Idaho phosphate resource area. The data have varying degrees of accuracy and attribution detail. Classification of areas by type of mining-related activity at active mines is generally detailed; however, the spatial coverage does not differentiate mining-related surface disturbance features at many of the closed or inactive mines. Nineteen phosphate mine sites are included in the study. A total of 5,728 hc (14,154 ac), or more than 57 km2 (22 mi2), of phosphate mining-related surface disturbance are documented in the spatial coverage of the core of the southeast Idaho phosphate resource area. The study includes 4 active phosphate mines—Dry Valley, Enoch Valley, Rasmussen Ridge, and Smoky Canyon—and 15 historic phosphate mines—Ballard, Champ, Conda, Diamond Gulch, Gay, Georgetown Canyon, Henry, Home Canyon, Lanes Creek, Maybe Canyon, Mountain Fuel, Trail Canyon, Rattlesnake Canyon, Waterloo, and Wooley Valley. Spatial data on the inactive historic mines is relatively up-to-date; however, spatially described areas for active mines are based on digital maps prepared in early 1999. The inactive Gay mine has the largest total area of disturbance: 1,917 hc (4,736 ac) or about 19 km2 (7.4 mi2). It encompasses over three times the disturbance area of the next largest mine, the Conda mine with 607 hc (1,504 ac), and it is nearly four times the area of the Smoky Canyon mine, the largest of the active mines with 497 hc (1,228 ac). The wide range of phosphate mining-related surface disturbance features (approximately 80) were reduced to 13 types or features used in this study—adit and pit, backfilled mine pit, facilities, mine pit, ore stockpile, railroad, road, sediment catchment, tailings or tailings pond, topsoil stockpile, water reservoir, and disturbed

  9. Fundamental functions in equilibrium thermodynamics

    NARCIS (Netherlands)

    Horst, H.J. ter

    In the standard presentations of the principles of Gibbsian equilibrium thermodynamics one can find several gaps in the logic. For a subject that is as widely used as equilibrium thermodynamics, it is of interest to clear up such questions of mathematical rigor. In this paper it is shown that using

  10. Thermodynamics of negative absolute pressures

    International Nuclear Information System (INIS)

    Lukacs, B.; Martinas, K.

    1984-03-01

    The authors show that the possibility of negative absolute pressure can be incorporated into the axiomatic thermodynamics, analogously to the negative absolute temperature. There are examples for such systems (GUT, QCD) processing negative absolute pressure in such domains where it can be expected from thermodynamical considerations. (author)

  11. Thermodynamic optimization of power plants

    NARCIS (Netherlands)

    Haseli, Y.

    2011-01-01

    Thermodynamic Optimization of Power Plants aims to establish and illustrate comparative multi-criteria optimization of various models and configurations of power plants. It intends to show what optimization objectives one may define on the basis of the thermodynamic laws, and how they can be applied

  12. Thermodynamics of urban population flows.

    Science.gov (United States)

    Hernando, A; Plastino, A

    2012-12-01

    Orderliness, reflected via mathematical laws, is encountered in different frameworks involving social groups. Here we show that a thermodynamics can be constructed that macroscopically describes urban population flows. Microscopic dynamic equations and simulations with random walkers underlie the macroscopic approach. Our results might be regarded, via suitable analogies, as a step towards building an explicit social thermodynamics.

  13. Thermodynamics from Car to Kitchen

    Science.gov (United States)

    Auty, Geoff

    2014-01-01

    The historical background to the laws of thermodynamics is explained using examples we can all observe in the world around us, focusing on motorised transport, refrigeration and solar heating. This is not to be considered as an academic article. The purpose is to improve understanding of thermodynamics rather than impart new knowledge, and for…

  14. The GLIMS Glacier Database

    Science.gov (United States)

    Raup, B. H.; Khalsa, S. S.; Armstrong, R.

    2007-12-01

    The Global Land Ice Measurements from Space (GLIMS) project has built a geospatial and temporal database of glacier data, composed of glacier outlines and various scalar attributes. These data are being derived primarily from satellite imagery, such as from ASTER and Landsat. Each "snapshot" of a glacier is from a specific time, and the database is designed to store multiple snapshots representative of different times. We have implemented two web-based interfaces to the database; one enables exploration of the data via interactive maps (web map server), while the other allows searches based on text-field constraints. The web map server is an Open Geospatial Consortium (OGC) compliant Web Map Server (WMS) and Web Feature Server (WFS). This means that other web sites can display glacier layers from our site over the Internet, or retrieve glacier features in vector format. All components of the system are implemented using Open Source software: Linux, PostgreSQL, PostGIS (geospatial extensions to the database), MapServer (WMS and WFS), and several supporting components such as Proj.4 (a geographic projection library) and PHP. These tools are robust and provide a flexible and powerful framework for web mapping applications. As a service to the GLIMS community, the database contains metadata on all ASTER imagery acquired over glacierized terrain. Reduced-resolution of the images (browse imagery) can be viewed either as a layer in the MapServer application, or overlaid on the virtual globe within Google Earth. The interactive map application allows the user to constrain by time what data appear on the map. For example, ASTER or glacier outlines from 2002 only, or from Autumn in any year, can be displayed. The system allows users to download their selected glacier data in a choice of formats. The results of a query based on spatial selection (using a mouse) or text-field constraints can be downloaded in any of these formats: ESRI shapefiles, KML (Google Earth), Map

  15. Predictions of titanium alloy properties using thermodynamic modeling tools

    Science.gov (United States)

    Zhang, F.; Xie, F.-Y.; Chen, S.-L.; Chang, Y. A.; Furrer, D.; Venkatesh, V.

    2005-12-01

    Thermodynamic modeling tools have become essential in understanding the effect of alloy chemistry on the final microstructure of a material. Implementation of such tools to improve titanium processing via parameter optimization has resulted in significant cost savings through the elimination of shop/laboratory trials and tests. In this study, a thermodynamic modeling tool developed at CompuTherm, LLC, is being used to predict β transus, phase proportions, phase chemistries, partitioning coefficients, and phase boundaries of multicomponent titanium alloys. This modeling tool includes Pandat, software for multicomponent phase equilibrium calculations, and PanTitanium, a thermodynamic database for titanium alloys. Model predictions are compared with experimental results for one α-β alloy (Ti-64) and two near-β alloys (Ti-17 and Ti-10-2-3). The alloying elements, especially the interstitial elements O, N, H, and C, have been shown to have a significant effect on the β transus temperature, and are discussed in more detail herein.

  16. Applied thermodynamics: A new frontier for biotechnology

    DEFF Research Database (Denmark)

    Mollerup, Jørgen

    2006-01-01

    The scientific career of one of the most outstanding scientists in molecular thermodynamics, Professor John M. Prausnitz at Berkeley, reflects the change in the agenda of molecular thermodynamics, from hydrocarbon chemistry to biotechnology. To make thermodynamics a frontier for biotechnology...

  17. Thermodynamics in Loop Quantum Cosmology

    International Nuclear Information System (INIS)

    Li, L.F.; Zhu, J.Y.

    2009-01-01

    Loop quantum cosmology (LQC) is very powerful to deal with the behavior of early universe. Moreover, the effective loop quantum cosmology gives a successful description of the universe in the semiclassical region. We consider the apparent horizon of the Friedmann-Robertson-Walker universe as a thermodynamical system and investigate the thermodynamics of LQC in the semiclassical region. The effective density and effective pressure in the modified Friedmann equation from LQC not only determine the evolution of the universe in LQC scenario but also are actually found to be the thermodynamic quantities. This result comes from the energy definition in cosmology (the Misner-Sharp gravitational energy) and is consistent with thermodynamic laws. We prove that within the framework of loop quantum cosmology, the elementary equation of equilibrium thermodynamics is still valid.

  18. GOBASE: an organelle genome database

    OpenAIRE

    O?Brien, Emmet A.; Zhang, Yue; Wang, Eric; Marie, Veronique; Badejoko, Wole; Lang, B. Franz; Burger, Gertraud

    2008-01-01

    The organelle genome database GOBASE, now in its 21st release (June 2008), contains all published mitochondrion-encoded sequences (?913 000) and chloroplast-encoded sequences (?250 000) from a wide range of eukaryotic taxa. For all sequences, information on related genes, exons, introns, gene products and taxonomy is available, as well as selected genome maps and RNA secondary structures. Recent major enhancements to database functionality include: (i) addition of an interface for RNA editing...

  19. Applied statistical thermodynamics

    CERN Document Server

    Lucas, Klaus

    1991-01-01

    The book guides the reader from the foundations of statisti- cal thermodynamics including the theory of intermolecular forces to modern computer-aided applications in chemical en- gineering and physical chemistry. The approach is new. The foundations of quantum and statistical mechanics are presen- ted in a simple way and their applications to the prediction of fluid phase behavior of real systems are demonstrated. A particular effort is made to introduce the reader to expli- cit formulations of intermolecular interaction models and to show how these models influence the properties of fluid sy- stems. The established methods of statistical mechanics - computer simulation, perturbation theory, and numerical in- tegration - are discussed in a style appropriate for newcom- ers and are extensively applied. Numerous worked examples illustrate how practical calculations should be carried out.

  20. Thermodynamic properties of vanadium

    International Nuclear Information System (INIS)

    Desai, P.D.

    1986-01-01

    This work reviews and discusses the data and information on the various thermodynamic properties of vanadium available through March 1985. These include the heat capacity and enthalpy, enthalpy of melting, vapor pressure, and enthalpy of vaporization. The existing data have been critically evaluated and analyzed, and the recommended values for heat capacity, enthalpy, entropy, and Gibbs energy function covering the temperature range from 1 to 3800 K have been generated. These values are referred to tempertures based on IPTS-1968. The units used for various properties are joules per mole (J. mol - 1 ). The estimated uncertainties in the heat capacity are +/-3% below 15 K, +/-10% from 15 to 150 K, +/-3% from 150 to 298.15 K, +/-2% from 298.15 to 1000 K, +/-3% from 1000 to the melting point (2202 K), and +/-5% in the liquid region

  1. Thermodynamics and energy conversion

    CERN Document Server

    Struchtrup, Henning

    2014-01-01

    This textbook gives a thorough treatment of engineering thermodynamics with applications to classical and modern energy conversion devices.   Some emphasis lies on the description of irreversible processes, such as friction, heat transfer and mixing, and the evaluation of the related work losses. Better use of resources requires high efficiencies, therefore the reduction of irreversible losses should be seen as one of the main goals of a thermal engineer. This book provides the necessary tools.   Topics include: car and aircraft engines,  including Otto, Diesel and Atkinson cycles, by-pass turbofan engines, ramjet and scramjet;  steam and gas power plants, including advanced regenerative systems, solar tower, and compressed air energy storage; mixing and separation, including reverse osmosis, osmotic powerplants, and carbon sequestration; phase equilibrium and chemical equilibrium, distillation, chemical reactors, combustion processes, and fuel cells; the microscopic definition of entropy.    The book i...

  2. The AMMA database

    Science.gov (United States)

    Boichard, Jean-Luc; Brissebrat, Guillaume; Cloche, Sophie; Eymard, Laurence; Fleury, Laurence; Mastrorillo, Laurence; Moulaye, Oumarou; Ramage, Karim

    2010-05-01

    The AMMA project includes aircraft, ground-based and ocean measurements, an intensive use of satellite data and diverse modelling studies. Therefore, the AMMA database aims at storing a great amount and a large variety of data, and at providing the data as rapidly and safely as possible to the AMMA research community. In order to stimulate the exchange of information and collaboration between researchers from different disciplines or using different tools, the database provides a detailed description of the products and uses standardized formats. The AMMA database contains: - AMMA field campaigns datasets; - historical data in West Africa from 1850 (operational networks and previous scientific programs); - satellite products from past and future satellites, (re-)mapped on a regular latitude/longitude grid and stored in NetCDF format (CF Convention); - model outputs from atmosphere or ocean operational (re-)analysis and forecasts, and from research simulations. The outputs are processed as the satellite products are. Before accessing the data, any user has to sign the AMMA data and publication policy. This chart only covers the use of data in the framework of scientific objectives and categorically excludes the redistribution of data to third parties and the usage for commercial applications. Some collaboration between data producers and users, and the mention of the AMMA project in any publication is also required. The AMMA database and the associated on-line tools have been fully developed and are managed by two teams in France (IPSL Database Centre, Paris and OMP, Toulouse). Users can access data of both data centres using an unique web portal. This website is composed of different modules : - Registration: forms to register, read and sign the data use chart when an user visits for the first time - Data access interface: friendly tool allowing to build a data extraction request by selecting various criteria like location, time, parameters... The request can

  3. Thermodynamics of Fluid Polyamorphism

    Directory of Open Access Journals (Sweden)

    Mikhail A. Anisimov

    2018-01-01

    Full Text Available Fluid polyamorphism is the existence of different condensed amorphous states in a single-component fluid. It is either found or predicted, usually at extreme conditions, for a broad group of very different substances, including helium, carbon, silicon, phosphorous, sulfur, tellurium, cerium, hydrogen, and tin tetraiodide. This phenomenon is also hypothesized for metastable and deeply supercooled water, presumably located a few degrees below the experimental limit of homogeneous ice formation. We present a generic phenomenological approach to describe polyamorphism in a single-component fluid, which is completely independent of the molecular origin of the phenomenon. We show that fluid polyamorphism may occur either in the presence or in the absence of fluid phase separation depending on the symmetry of the order parameter. In the latter case, it is associated with a second-order transition, such as in liquid helium or liquid sulfur. To specify the phenomenology, we consider a fluid with thermodynamic equilibrium between two distinct interconvertible states or molecular structures. A fundamental signature of this concept is the identification of the equilibrium fraction of molecules involved in each of these alternative states. However, the existence of the alternative structures may result in polyamorphic fluid phase separation only if mixing of these structures is not ideal. The two-state thermodynamics unifies all the debated scenarios of fluid polyamorphism in different areas of condensed-matter physics, with or without phase separation, and even goes beyond the phenomenon of polyamorphism by generically describing the anomalous properties of fluids exhibiting interconversion of alternative molecular states.

  4. Thermodynamic modelling of alkali-activated slag cements

    International Nuclear Information System (INIS)

    Myers, Rupert J.; Lothenbach, Barbara; Bernal, Susan A.; Provis, John L.

    2015-01-01

    Highlights: • A thermodynamic modelling analysis of alkali-activated slag cements is presented. • Thermodynamic database describes zeolites, alkali carbonates, C–(N–)A–S–H gel. • Updated thermodynamic model for Mg–Al layered double hydroxides. • Description of phase assemblages in Na 2 SiO 3 - and Na 2 CO 3 -activated slag cements. • Phase diagrams for NaOH-activated and Na 2 SiO 3 -activated slag cements are simulated. - Abstract: This paper presents a thermodynamic modelling analysis of alkali-activated slag-based cements, which are high performance and potentially low-CO 2 binders relative to Portland cement. The thermodynamic database used here contains a calcium (alkali) aluminosilicate hydrate ideal solid solution model (CNASH-ss), alkali carbonate and zeolite phases, and an ideal solid solution model for a hydrotalcite-like Mg–Al layered double hydroxide phase. Simulated phase diagrams for NaOH- and Na 2 SiO 3 -activated slag-based cements demonstrate the high stability of zeolites and other solid phases in these materials. Thermodynamic modelling provides a good description of the chemical compositions and types of phases formed in Na 2 SiO 3 -activated slag cements over the most relevant bulk chemical composition range for these cements, and the simulated volumetric properties of the cement paste are consistent with previously measured and estimated values. Experimentally determined and simulated solid phase assemblages for Na 2 CO 3 -activated slag cements were also found to be in good agreement. These results can be used to design the chemistry of alkali-activated slag-based cements, to further promote the uptake of this technology and valorisation of metallurgical slags

  5. Electron Effective-Attenuation-Length Database

    Science.gov (United States)

    SRD 82 NIST Electron Effective-Attenuation-Length Database (PC database, no charge)   This database provides values of electron effective attenuation lengths (EALs) in solid elements and compounds at selected electron energies between 50 eV and 2,000 eV. The database was designed mainly to provide EALs (to account for effects of elastic-eletron scattering) for applications in surface analysis by Auger-electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS).

  6. Nuclear database management systems

    International Nuclear Information System (INIS)

    Stone, C.; Sutton, R.

    1996-01-01

    The authors are developing software tools for accessing and visualizing nuclear data. MacNuclide was the first software application produced by their group. This application incorporates novel database management and visualization tools into an intuitive interface. The nuclide chart is used to access properties and to display results of searches. Selecting a nuclide in the chart displays a level scheme with tables of basic, radioactive decay, and other properties. All level schemes are interactive, allowing the user to modify the display, move between nuclides, and display entire daughter decay chains

  7. Thermodynamic modeling of iodine and selenium retention in solutions with high salinity

    International Nuclear Information System (INIS)

    Hagemann, Sven; Moog, Helge C.; Herbert, Horst-Juergen; Erich, Agathe

    2012-04-01

    The report on iodine and selenium retention in saline solutions includes the following chapters: (1) Introduction and scope of the work. (2) Actual status of knowledge. (3) Experimental and numerical models. (4) Thermodynamic properties of selenite and hydrogen selenite in solutions of oceanic salts. (5) Thermodynamic properties of selenate in solutions of oceanic salts. (6) Thermodynamic properties of iodide in solutions of oceanic salts. (7) Experimental studies on the retention of iodine and selenium in selected sorbents. (8) Summary and conclusions.

  8. High-Throughput Thermodynamic Modeling and Uncertainty Quantification for ICME

    Science.gov (United States)

    Otis, Richard A.; Liu, Zi-Kui

    2017-05-01

    One foundational component of the integrated computational materials engineering (ICME) and Materials Genome Initiative is the computational thermodynamics based on the calculation of phase diagrams (CALPHAD) method. The CALPHAD method pioneered by Kaufman has enabled the development of thermodynamic, atomic mobility, and molar volume databases of individual phases in the full space of temperature, composition, and sometimes pressure for technologically important multicomponent engineering materials, along with sophisticated computational tools for using the databases. In this article, our recent efforts will be presented in terms of developing new computational tools for high-throughput modeling and uncertainty quantification based on high-throughput, first-principles calculations and the CALPHAD method along with their potential propagations to downstream ICME modeling and simulations.

  9. Thermodynamic modeling of the Sr-Co-Fe-O system

    DEFF Research Database (Denmark)

    Zhang, Wei Wei; Povoden-Karadeniz, Erwin; Chen, Ming

    2016-01-01

    This paper reviews and assesses phase equilibria and thermodynamic properties of phases in the Sr-Co-Fe-O system, with a focus on oxides, especially the SrCo1 - xFexO3 - δ perovskite. In our work, the SrCo1 - xFexO3 - δ perovskite was modeled with a three-sublattice model, where the three...... sublattices correspond to the A, B and oxygen sites in an ABO3 perovskite, respectively. A number of other important ternary oxide phases in Sr-Co-O and Sr-Co-Fe-O were also considered. Available thermodynamic and phase diagram data were carefully assessed. A thermodynamic description of Sr-Co-O was derived...... using the CALPHAD approach and was further extrapolated to that of Sr-Co-Fe-O. The thermodynamic database of Sr-Co-Fe-O established in this work allows for calculating phase diagrams, thermodynamic properties, cation distribution and defect chemistry properties, and therefore enables material...

  10. Benchmarking the CEMDATA07 database to model chemical degradation of concrete using GEMS and PHREEQC

    International Nuclear Information System (INIS)

    Jacques, Diederik; Wang, Lian; Martens, Evelien; Mallants, Dirk

    2012-01-01

    Thermodynamic equilibrium modelling of degradation of cement and concrete systems by chemically detrimental reactions as carbonation, sulphate attack and decalcification or leaching processes requires a consistent thermodynamic database with the relevant aqueous species, cement minerals and hydrates. The recent and consistent database CEMDATA07 is used as the basis in the studies of the Belgian near-surface disposal concept being developed by ONDRAF/NIRAS. The database is consistent with the thermodynamic data in the Nagra/PSI-Thermodynamic Database. When used with the GEMS thermodynamic code, thermodynamic modelling can be performed at temperatures different from the standard temperature of 25 C. GEMS calculates thermodynamic equilibrium by minimizing the Gibbs free energy of the system. Alternatively, thermodynamic equilibrium can also be calculated by solving a nonlinear system of mass balance equations and mass action equations, as is done in PHREEQC. A PHREEQC-database for the cement systems at temperatures different from 25 C is derived from the thermodynamic parameters and models from GEMS. A number of benchmark simulations using PHREEQC and GEM-Selektor were done to verify the implementation of the CEMDATA07 database in PHREEQC-databases. Simulations address a series of reactions that are relevant to the assessment of long-term cement and concrete durability. Verification calculations were performed for different systems with increasing complexity: CaO-SiO 2 -CO 2 , CaO-Al 2 O 3 -SO 3 -CO 2 , and CaO-SiO 2 -Al 2 O 3 -Fe 2 O 3 -MgO-SO 3 -CO 2 . Three types of chemical degradation processes were simulated: (1) carbonation by adding CO 2 to the bulk composition, (2) sulphate attack by adding SO 3 to the bulk composition, and (3) decalcification/leaching by putting the cement solid phase sequentially in contact with pure water. An excellent agreement between the simulations with GEMS and PHREEQC was obtained

  11. Selected results of retrieval and statistics from radiation oncology greater area database (ROGAD). From 2nd data collection (1992) to 6th data collection (1997)

    International Nuclear Information System (INIS)

    Harauchi, Hajime; Inamura, Kiyonari; Umeda, Tokuo

    1999-01-01

    Case distribution in terms of ICD-O code for primary tumor region expressed by 286 tables and 286 figures were worked out, but only 26 figures were selected for presentation here. Chronological variation of cases distribution during those six years were found and stated as follow as examples. Primary response in ''head and neck'' and ''lungs and bronchus'' showed improvement both in terms of complete response (CR) and partial response (PR) in those 6 years. As for female genital organs, both CR and alive with cancer'' showed improvement. The averaged figures for all topographical regions for these 7,057 cases reveal that CR, CR+PR, ''alive with cancer'' and ''alive without cancer'' increased relatively, and we can state that total contribution of radiotherapy itself is increasing. The rate of chemotherapy combined with radiotherapy had increased and that of surgery combined with radiotherapy had decreased in the primary tumor region of both esophagus and female genital organs. Cases of radiotherapy alone without any other treatment have a tendency to increase in lungs and bronchus. Ratios of primary regions of lungs and bronchus, liver, biliary tract and pancreas, bones and hematopoietic systems, breast and stomach and colon compared with that of total topographic regions involving other regions are found to have increased. In contrast, female genital organs and head and neck regions decreased on a relative basis. Change of performance status between at radiotherapy start and at radiotherapy termination for primary regions of lungs and bronchus and breast searched in 1996 tells that radiotherapy contributed to improve PS as far as the primary response is concerned. But change of PS from the time of radiotherapy termination of treatment in the two topographical regions mentioned above in February of 1996 to the time of follow up survey in June of 1997, which was 16 months after radiotherapy termination, dose not indicate any improvement. (K.H.)

  12. Statistical Thermodynamics of Disperse Systems

    DEFF Research Database (Denmark)

    Shapiro, Alexander

    1996-01-01

    Principles of statistical physics are applied for the description of thermodynamic equilibrium in disperse systems. The cells of disperse systems are shown to possess a number of non-standard thermodynamic parameters. A random distribution of these parameters in the system is determined....... On the basis of this distribution, it is established that the disperse system has an additional degree of freedom called the macro-entropy. A large set of bounded ideal disperse systems allows exact evaluation of thermodynamic characteristics. The theory developed is applied to the description of equilibrium...

  13. Thermodynamic light on black holes

    International Nuclear Information System (INIS)

    Davies, P.

    1977-01-01

    The existence of black holes and their relevance to our understanding of the nature of space and time are considered, with especial reference to the application of thermodynamic arguments which can reveal their energy-transfer processes in a new light. The application of thermodynamics to strongly gravitating systems promises some fascinating new insights into the nature of gravity. Situations can occur during gravitational collapse in which existing physics breaks down. Under these circumstances, the application of universal thermodynamical principles might be our only guide. (U.K.)

  14. Thermodynamic metrics and optimal paths.

    Science.gov (United States)

    Sivak, David A; Crooks, Gavin E

    2012-05-11

    A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.

  15. Some aspects of plasma thermodynamics

    International Nuclear Information System (INIS)

    Gorgoraki, V.I.

    1986-01-01

    The objective reasons which have inhibited the development of a plasma-thermodynamics theory are discussed and the authors formulate the fundamental principles which can be the basis of a common plasma-thermodynamics theory. Two kinds of thermodynamic equilibrium plasmas are discussed, an isothermal plasma and a nonisothermal plasma. An isothermal plasma is a high-temperature plasma; the Saha-Eggert equation describes its behavior. A nonisothermal plasma is a low-temperature plasma, and the reactions taking place therein are purely plasma-chemical. The ionization equilibrium and the composition of such a plasma can be found with the aid of the equations presented in this paper

  16. Practical chemical thermodynamics for geoscientists

    CERN Document Server

    Fegley, Bruce, Jr

    2012-01-01

    Practical Chemical Thermodynamics for Geoscientists covers classical chemical thermodynamics and focuses on applications to practical problems in the geosciences, environmental sciences, and planetary sciences. This book will provide a strong theoretical foundation for students, while also proving beneficial for earth and planetary scientists seeking a review of thermodynamic principles and their application to a specific problem. Strong theoretical foundation and emphasis on applications Numerous worked examples in each chapter Brief historical summaries and biographies of key thermodynamicists-including their fundamental research and discoveries Extensive references to relevant literature.

  17. Thermodynamic analysis of biochemical systems

    International Nuclear Information System (INIS)

    Yuan, Y.; Fan, L.T.; Shieh, J.H.

    1989-01-01

    Introduction of the concepts of the availability (or exergy), datum level materials, and the dead state has been regarded as some of the most significant recent developments in classical thermodynamics. Not only the available energy balance but also the material and energy balances of a biological system may be established in reference to the datum level materials in the dead state or environment. In this paper these concepts are illustrated with two examples of fermentation and are shown to be useful in identifying sources of thermodynamic inefficiency, thereby leading naturally to the rational definition of thermodynamic efficiency of a biochemical process

  18. The thermodynamic properties of benzothiazole and benzoxazole

    Science.gov (United States)

    Steele, W. V.; Chirico, R. D.; Knipmeyer, S. E.; Nguyen, A.

    1991-08-01

    This research program, funded by the Department of Energy, Office of Fossil Energy, Advanced Extraction and Process Technology, provides accurate experimental thermochemical and thermophysical properties for key organic diheteroatom-containing compounds present in heavy petroleum feedstocks, and applies the experimental information to thermodynamic analyses of key hydrodesulfurization, hydrodenitrogenation, and hydrodeoxygenation reaction networks. Thermodynamic analyses, based on accurate information, provide insights for the design of cost-effective methods of heteroatom removal. The results reported here, and in a companion report to be completed, will point the way to the development of new methods of heteroatom removal from heavy petroleum. Measurements leading to the calculation of the ideal-gas thermodynamic properties are reported for benzothiazole and benzoxazole. Experimental methods included combustion calorimetry, adiabatic heat-capacity calorimetry, comparative ebulliometry, inclinded-piston gauge manometry, and differential-scanning calorimetry (d.s.c). Critical property estimates are made for both compounds. Entropies, enthalpies, and Gibbs energies of formation were derived for the ideal gas for both compounds for selected temperatures between 280 K and near 650 K. The Gibbs energies of formation will be used in a subsequent report in thermodynamic calculations to study the reaction pathways for the removal of the heteratoms by hydrogenolysis. The results obtained in this research are compared with values present in the literature. The failure of a previous adiabatic heat capacity study to see the phase transition in benzothiazole is noted. Literature vibrational frequency assignments were used to calculate ideal gas entropies in the temperature range reported here for both compounds. Resulting large deviations show the need for a revision of those assignments.

  19. HadISD: a quality-controlled global synoptic report database for selected variables at long-term stations from 1973–2011

    Directory of Open Access Journals (Sweden)

    D. E. Parker

    2012-10-01

    Full Text Available This paper describes the creation of HadISD: an automatically quality-controlled synoptic resolution dataset of temperature, dewpoint temperature, sea-level pressure, wind speed, wind direction and cloud cover from global weather stations for 1973–2011. The full dataset consists of over 6000 stations, with 3427 long-term stations deemed to have sufficient sampling and quality for climate applications requiring sub-daily resolution. As with other surface datasets, coverage is heavily skewed towards Northern Hemisphere mid-latitudes. The dataset is constructed from a large pre-existing ASCII flatfile data bank that represents over a decade of substantial effort at data retrieval, reformatting and provision. These raw data have had varying levels of quality control applied to them by individual data providers. The work proceeded in several steps: merging stations with multiple reporting identifiers; reformatting to netCDF; quality control; and then filtering to form a final dataset. Particular attention has been paid to maintaining true extreme values where possible within an automated, objective process. Detailed validation has been performed on a subset of global stations and also on UK data using known extreme events to help finalise the QC tests. Further validation was performed on a selection of extreme events world-wide (Hurricane Katrina in 2005, the cold snap in Alaska in 1989 and heat waves in SE Australia in 2009. Some very initial analyses are performed to illustrate some of the types of problems to which the final data could be applied. Although the filtering has removed the poorest station records, no attempt has been made to homogenise the data thus far, due to the complexity of retaining the true distribution of high-resolution data when applying adjustments. Hence non-climatic, time-varying errors may still exist in many of the individual station records and care is needed in inferring long-term trends from these data. This

  20. Thermodynamic properties of Portland cement hydrates in the system CaO-Al2O3-SiO2-CaSO4-CaCO3-H2O

    International Nuclear Information System (INIS)

    Matschei, Thomas; Lothenbach, Barbara; Glasser, Fredrik P.

    2007-01-01

    A database is presented for commonly-encountered cement substances including C-S-H, Ca(OH) 2 , selected AFm, AFt and hydrogarnet compositions as well as solid solutions. The AFm compositions include straetlingite. The data were obtained for the most part from experiment and many of the predicted reactions were confirmed by focussed experiments. The temperature-dependence of the thermodynamic data for the above phases, determined partly from experiment and partly from thermodynamic estimations, are also tabulated in the range 1 deg. C to 99 deg. C. Relative to previous databases, sulfate AFm is shown to have a definite range of stability range at 25 deg. C thus removing long-standing doubts about its stability in normal hydrated cement pastes. Carbonate is shown to interact strongly with stabilisation of AFm across a broad range of temperatures and, at low temperatures, to substitute into AFt. The new database enables the ultimate hydrate mineralogy to be calculated from chemistry: most solid assemblages, the persistence of C-S-H apart, correspond closely to equilibrium. This realisation means that hydrate assemblages can be controlled. The development of a thermodynamic approach also enables a fresh look at how mineralogical changes occur in response to environmentally-conditioned reactions; several papers showing applications are cited

  1. Mathematics for Databases

    NARCIS (Netherlands)

    ir. Sander van Laar

    2007-01-01

    A formal description of a database consists of the description of the relations (tables) of the database together with the constraints that must hold on the database. Furthermore the contents of a database can be retrieved using queries. These constraints and queries for databases can very well be

  2. Databases and their application

    NARCIS (Netherlands)

    Grimm, E.C.; Bradshaw, R.H.W; Brewer, S.; Flantua, S.; Giesecke, T.; Lézine, A.M.; Takahara, H.; Williams, J.W.,Jr; Elias, S.A.; Mock, C.J.

    2013-01-01

    During the past 20 years, several pollen database cooperatives have been established. These databases are now constituent databases of the Neotoma Paleoecology Database, a public domain, multiproxy, relational database designed for Quaternary-Pliocene fossil data and modern surface samples. The

  3. DOT Online Database

    Science.gov (United States)

    Page Home Table of Contents Contents Search Database Search Login Login Databases Advisory Circulars accessed by clicking below: Full-Text WebSearch Databases Database Records Date Advisory Circulars 2092 5 data collection and distribution policies. Document Database Website provided by MicroSearch

  4. Thermodynamic tables for nuclear waste isolation

    International Nuclear Information System (INIS)

    Phillips, S.L.; Hale, F.V.; Silvester, L.F.; Siegel, M.D.

    1988-05-01

    Tables of consistent thermodynamic property values for nuclear waste isolation are given. The tables include critically assessed values for Gibbs energy of formation, enthalpy of formation, entropy and heat capacity for minerals; solids; aqueous ions; ion pairs and complex ions of selected actinide and fission decay products at 25 degree C and zero ionic strength. These intrinsic data are used to calculate equilibrium constants and standard potentials which are compared with typical experimental measurements and other work. Recommendations for additional research are given. 13 figs., 23 tabs

  5. Thermodynamical string fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Nadine [Theoretical Particle Physics, Department of Astronomy and Theoretical Physics, Lund University,Sölvegatan 14A, Lund, SE-223 62 (Sweden); School of Physics and Astronomy, Monash University,Wellington Road, Clayton, VIC-3800 (Australia); Sjöstrand, Torbjörn [Theoretical Particle Physics, Department of Astronomy and Theoretical Physics, Lund University,Sölvegatan 14A, Lund, SE-223 62 (Sweden)

    2017-01-31

    The observation of heavy-ion-like behaviour in pp collisions at the LHC suggests that more physics mechanisms are at play than traditionally assumed. The introduction e.g. of quark-gluon plasma or colour rope formation can describe several of the observations, but as of yet there is no established paradigm. In this article we study a few possible modifications to the Pythia event generator, which describes a wealth of data but fails for a number of recent observations. Firstly, we present a new model for generating the transverse momentum of hadrons during the string fragmentation process, inspired by thermodynamics, where heavier hadrons naturally are suppressed in rate but obtain a higher average transverse momentum. Secondly, close-packing of strings is taken into account by making the temperature or string tension environment-dependent. Thirdly, a simple model for hadron rescattering is added. The effect of these modifications is studied, individually and taken together, and compared with data mainly from the LHC. While some improvements can be noted, it turns out to be nontrivial to obtain effects as big as required, and further work is called for.

  6. Thermodynamic properties of gaseous ruthenium species.

    Science.gov (United States)

    Miradji, Faoulat; Souvi, Sidi; Cantrel, Laurent; Louis, Florent; Vallet, Valérie

    2015-05-21

    The review of thermodynamic data of ruthenium oxides reveals large uncertainties in some of the standard enthalpies of formation, motivating the use of high-level relativistic correlated quantum chemical methods to reduce the level of discrepancies. The reaction energies leading to the formation of ruthenium oxides RuO, RuO2, RuO3, and RuO4 have been calculated for a series of reactions. The combination of different quantum chemical methods has been investigated [DFT, CASSCF, MRCI, CASPT2, CCSD(T)] in order to predict the geometrical parameters, the energetics including electronic correlation and spin-orbit coupling. The most suitable method for ruthenium compounds is the use of TPSSh-5%HF for geometry optimization, followed by CCSD(T) with complete basis set (CBS) extrapolations for the calculation of the total electronic energies. SO-CASSCF seems to be accurate enough to estimate spin-orbit coupling contributions to the ground-state electronic energies. This methodology yields very accurate standard enthalpies of formations of all species, which are either in excellent agreement with the most reliable experimental data or provide an improved estimate for the others. These new data will be implemented in the thermodynamical databases that are used by the ASTEC code (accident source term evaluation code) to build models of ruthenium chemistry behavior in severe nuclear accident conditions. The paper also discusses the nature of the chemical bonds both from molecular orbital and topological view points.

  7. Thermodynamic Calculations for Systems Biocatalysis

    DEFF Research Database (Denmark)

    Abu, Rohana; Gundersen, Maria T.; Woodley, John M.

    2015-01-01

    the transamination of a pro-chiral ketone into a chiral amine (interesting in many pharmaceutical applications). Here, the products are often less energetically stable than the reactants, meaning that the reaction may be thermodynamically unfavourable. As in nature, such thermodynamically-challenged reactions can...... on the basis of kinetics. However, many of the most interesting non-natural chemical reactions which could potentially be catalysed by enzymes, are thermodynamically unfavourable and are thus limited by the equilibrium position of the reaction. A good example is the enzyme ω-transaminase, which catalyses...... be altered by coupling with other reactions. For instance, in the case of ω-transaminase, such a coupling could be with alanine dehydrogenase. Herein, the aim of this work is to identify thermodynamic bottlenecks within a multi-enzyme process, using group contribution method to calculate the Gibbs free...

  8. Shock Thermodynamic Applied Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with a...

  9. Thermodynamic analysis of PBMR plant

    International Nuclear Information System (INIS)

    Sen, S.; Kadiroglu, O.K.

    2002-01-01

    The thermodynamic analysis of a PBMR is presented for various pressures and temperatures values. The design parameters of the components of the power plant are calculated and an optimum cycle for the maximum thermal efficiency is sought for. (author)

  10. Thermodynamic efficiency of solar concentrators.

    Science.gov (United States)

    Shatz, Narkis; Bortz, John; Winston, Roland

    2010-04-26

    The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. We discuss consequences of Fermat's principle of geometrical optics and review étendue dilution and optical loss mechanisms associated with nonimaging concentrators. We develop an expression for the optical thermodynamic efficiency which combines the first and second laws of thermodynamics. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. We provide examples illustrating the use of this new metric for concentrating photovoltaic systems for solar power applications, and in particular show how skewness mismatch limits the attainable optical thermodynamic efficiency.

  11. Thermodynamic origin of nonimaging optics

    Science.gov (United States)

    Jiang, Lun; Winston, Roland

    2016-10-01

    Nonimaging optics is the theory of thermodynamically efficient optics and as such depends more on thermodynamics than on optics. Hence, in this paper, a condition for the "best" design is proposed based on purely thermodynamic arguments, which we believe has profound consequences for the designs of thermal and even photovoltaic systems. This way of looking at the problem of efficient concentration depends on probabilities, the ingredients of entropy and information theory, while "optics" in the conventional sense recedes into the background. Much of the paper is pedagogical and retrospective. Some of the development of flowline designs will be introduced at the end and the connection between the thermodynamics and flowline design will be graphically presented. We will conclude with some speculative directions of where the ideas might lead.

  12. First principles thermodynamics of alloys

    International Nuclear Information System (INIS)

    Ducastelle, F.

    1993-01-01

    We present a brief report on the methods of solid state physics (electronic structure, statistical thermodynamics) that allow us to discuss the phase stability of alloys and to determine their phase diagrams. (orig.)

  13. Thermodynamic approach to biomass gasification

    International Nuclear Information System (INIS)

    Boissonnet, G.; Seiler, J.M.

    2003-01-01

    The document presents an approach of biomass transformation in presence of steam, hydrogen or oxygen. Calculation results based on thermodynamic equilibrium are discussed. The objective of gasification techniques is to increase the gas content in CO and H 2 . The maximum content in these gases is obtained when thermodynamic equilibrium is approached. Any optimisation action of a process. will, thus, tend to approach thermodynamic equilibrium conditions. On the other hand, such calculations can be used to determine the conditions which lead to an increase in the production of CO and H 2 . An objective is also to determine transformation enthalpies that are an important input for process calculations. Various existing processes are assessed, and associated thermodynamic limitations are evidenced. (author)

  14. Thermodynamic calculation on the stability of (Fe,Mn){sub 3}AlC carbide in high aluminum steels

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Kwang-Geun [Automotive Steel Products Research Group, POSCO Technical Research Laboratories, POSCO, Jeonnam 545-090 (Korea, Republic of); School of Materials Science and Engineering, Pusan National University, Pusan, 609-735 (Korea, Republic of); Lee, Hyuk-Joong [Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of); Kwak, Jai-Hyun [Automotive Steel Products Research Group, POSCO Technical Research Laboratories, POSCO, Jeonnam 545-090 (Korea, Republic of); Kang, Jung-Yoon [School of Materials Science and Engineering, Pusan National University, Pusan, 609-735 (Korea, Republic of); Lee, Byeong-Joo, E-mail: calphad@postech.ac.k [Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of)

    2010-08-27

    A CALPHAD type thermodynamic description for the Fe-Mn-Al-C quaternary system has been constructed by combining a newly assessed Mn-Al-C ternary description and a partly modified Fe-Al-C description to an existing thermodynamic database for steels. A special attention was paid to reproduce experimentally reported phase stability of {kappa} carbide in high Al and high Mn steels. This paper demonstrates that the proposed thermodynamic description makes it possible to predict phase equilibria in corresponding alloys with a practically acceptable accuracy. The applicability of the thermodynamic calculation is also demonstrated for the interpretation of microstructural and constitutional evolution during industrial processes for high Al steels.

  15. Thermodynamic calculation on the stability of (Fe,Mn)3AlC carbide in high aluminum steels

    International Nuclear Information System (INIS)

    Chin, Kwang-Geun; Lee, Hyuk-Joong; Kwak, Jai-Hyun; Kang, Jung-Yoon; Lee, Byeong-Joo

    2010-01-01

    A CALPHAD type thermodynamic description for the Fe-Mn-Al-C quaternary system has been constructed by combining a newly assessed Mn-Al-C ternary description and a partly modified Fe-Al-C description to an existing thermodynamic database for steels. A special attention was paid to reproduce experimentally reported phase stability of κ carbide in high Al and high Mn steels. This paper demonstrates that the proposed thermodynamic description makes it possible to predict phase equilibria in corresponding alloys with a practically acceptable accuracy. The applicability of the thermodynamic calculation is also demonstrated for the interpretation of microstructural and constitutional evolution during industrial processes for high Al steels.

  16. A Practical and Fast Method To Predict the Thermodynamic Preference of omega-Transaminase-Based Transformations

    DEFF Research Database (Denmark)

    Meier, Robert J.; Gundersen Deslauriers, Maria; Woodley, John

    2015-01-01

    A simple, easy-to-use, and fast approach method is proposed and validated that can predict whether a transaminase reaction is thermodynamically unfavourable. This allowed us to de-select, in the present case, at least 50% of the reactions because they were thermodynamically unfavourable as confir...

  17. Thermodynamics from concepts to applications

    CERN Document Server

    Shavit, Arthur

    2008-01-01

    The book presents a logical methodology for solving problems in the context of conservation laws and property tables or equations. The authors elucidate the terms around which thermodynamics has historically developed, such as work, heat, temperature, energy, and entropy. Using a pedagogical approach that builds from basic principles to laws and eventually corollaries of the laws, the text enables students to think in clear and correct thermodynamic terms as well as solve real engineering problems.

  18. Dietary Supplement Ingredient Database

    Science.gov (United States)

    ... and US Department of Agriculture Dietary Supplement Ingredient Database Toggle navigation Menu Home About DSID Mission Current ... values can be saved to build a small database or add to an existing database for national, ...

  19. Energy Consumption Database

    Science.gov (United States)

    Consumption Database The California Energy Commission has created this on-line database for informal reporting ) classifications. The database also provides easy downloading of energy consumption data into Microsoft Excel (XLSX

  20. Generalization of Gibbs Entropy and Thermodynamic Relation

    OpenAIRE

    Park, Jun Chul

    2010-01-01

    In this paper, we extend Gibbs's approach of quasi-equilibrium thermodynamic processes, and calculate the microscopic expression of entropy for general non-equilibrium thermodynamic processes. Also, we analyze the formal structure of thermodynamic relation in non-equilibrium thermodynamic processes.

  1. M4FT-15LL0806062-LLNL Thermodynamic and Sorption Data FY15 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Zavarin, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wolery, T. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-31

    This progress report (Milestone Number M4FT-15LL0806062) summarizes research conducted at Lawrence Livermore National Laboratory (LLNL) within Work Package Number FT-15LL080606. The focus of this research is the thermodynamic modeling of Engineered Barrier System (EBS) materials and properties and development of thermodynamic databases and models to evaluate the stability of EBS materials and their interactions with fluids at various physicochemical conditions relevant to subsurface repository environments. The development and implementation of equilibrium thermodynamic models are intended to describe chemical and physical processes such as solubility, sorption, and diffusion.

  2. EquilTheTA: Thermodynamic and transport properties of complex equilibrium plasmas

    International Nuclear Information System (INIS)

    Colonna, G.; D'Angola, A.

    2012-01-01

    EquilTheTA (EQUILibrium for plasma THErmodynamics and Transport Applications) is a web-based software which calculates chemical equilibrium product concentrations from any set of reactants and determines thermodynamic and transport properties for the product mixture in wide temperature and pressure ranges. The program calculates chemical equilibrium by using a hierarchical approach, thermodynamic properties and transport coefficients starting from recent and accurate databases of atomic and molecular energy levels and collision integrals. In the calculations, Debye length and cut-off are consistently updated and virial corrections (up to third order) can be considered. Transport coefficients are calculated by using high order approximations of the Chapman-Enskog method.

  3. Method and electronic database search engine for exposing the content of an electronic database

    NARCIS (Netherlands)

    Stappers, P.J.

    2000-01-01

    The invention relates to an electronic database search engine comprising an electronic memory device suitable for storing and releasing elements from the database, a display unit, a user interface for selecting and displaying at least one element from the database on the display unit, and control

  4. Collecting Taxes Database

    Data.gov (United States)

    US Agency for International Development — The Collecting Taxes Database contains performance and structural indicators about national tax systems. The database contains quantitative revenue performance...

  5. USAID Anticorruption Projects Database

    Data.gov (United States)

    US Agency for International Development — The Anticorruption Projects Database (Database) includes information about USAID projects with anticorruption interventions implemented worldwide between 2007 and...

  6. NoSQL databases

    OpenAIRE

    Mrozek, Jakub

    2012-01-01

    This thesis deals with database systems referred to as NoSQL databases. In the second chapter, I explain basic terms and the theory of database systems. A short explanation is dedicated to database systems based on the relational data model and the SQL standardized query language. Chapter Three explains the concept and history of the NoSQL databases, and also presents database models, major features and the use of NoSQL databases in comparison with traditional database systems. In the fourth ...

  7. Review and recommended thermodynamic properties of FeCO3

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Thomsen, Kaj; Stenby, Erling Halfdan

    2010-01-01

    An extensive review of entropy, enthalpy of formation and Gibbs energy of formation, heat capacity, aqueous solubility and solubility constant of FeCO3 is given. A consistent set of thermodynamic properties for FeCO3 and relevant aqeous species is selected and recommended for use. Speciation...

  8. Thermodynamics of Paint Related Systems with Engineering Models

    DEFF Research Database (Denmark)

    Lindvig, Thomas; Michelsen, Michael Locht; Kontogeorgis, Georgios

    2001-01-01

    Paints are complex materials composed of polymers (binders) dissolved in one or more solvents, pigments, and other additives. The thermodynamics of such systems is essential, for example, for selecting improved solvents and understanding a number of phenomena related especially! to adhesion...

  9. Design of thermodynamic experiments and analyses of thermodynamic relationships

    International Nuclear Information System (INIS)

    Oezer Arnas, A.

    2009-01-01

    In teaching of thermodynamics, a certain textbook is followed internationally whatever language it is written in. However, although some do a very good job, most are not correct and precise and furthermore NONE discuss at all the need for and importance of designing thermodynamic experiments although experimentation in engineering is considered to be the back bone of analyses, not pursued much these days, or numerical studies, so very predominant these days. Here some thermodynamic experiments along with physical interpretation of phenomena through simple mathematics will be discussed that are straightforward, meaningful and which can be performed by any undergraduate/graduate student. Another important topic for discussion is the fact that the thermodynamic state principle demands uniqueness of results. It has been found in literature that this fact is not well understood by those who attempt to apply it loosely and end up with questionable results. Thermodynamics is the fundamental science that clarifies all these issues if well understood, applied and interpreted. The attempt of this paper is to clarify these situations and offer alternative methods for analyses. (author)

  10. Towards the renewal of the NEA Thermochemical Database

    International Nuclear Information System (INIS)

    Ragoussi, Maria-Eleni; Costa, Davide; Bossant, Manuel

    2015-01-01

    The Thermochemical Database (TDB) Project was created three decades ago as a joint undertaking of the NEA Radioactive Waste Management Committee and the NEA Data Bank. The project involves the collection of high-quality and traceable thermochemical data for a set of elements (mainly minor actinides and fission products) relevant to geophysical modelling of deep geological repositories. Funding comes from 15 participating organisations, primarily national nuclear waste authorities and research institutions. The quantities that are stored in the TDB database are: the standard molar Gibbs energy and enthalpy of formation, the standard molar entropy and, when available, the heat capacity at constant pressure, together with their uncertainty intervals. Reaction data are also provided: equilibrium constant of reaction, molar Gibbs energy of reaction, molar enthalpy of reaction and molar entropy of reaction. Data assessment is carried out by teams of expert reviewers through an in-depth analysis of the available scientific literature, following strict guidelines defined by the NEA to ensure the accuracy and self-consistency of the adopted datasets. Thermochemical data that has been evaluated and selected over the years have been published in the 13 volumes of the Chemical Thermodynamics series. They are also stored in a database that is updated each time the study of a new element is completed. The TDB selected data are made available to external third parties through the NEA web site where data extracted from the database can be displayed and downloaded as plain text files. Following recent recommendations of the Task Force on the Future Programme of the NEA Data Bank to enhance scientific expertise and user services, a renewal of the software managing the TDB database is being undertaken. The software currently used was designed 20 years ago and is becoming obsolete. Redesigning the application will provide an opportunity to correct current shortcomings and to develop

  11. Selecting Full-Text Undergraduate Periodicals Databases.

    Science.gov (United States)

    Still, Julie M.; Kassabian, Vibiana

    1999-01-01

    Examines how libraries and librarians can compare full-text general periodical indices, using ProQuest Direct, Periodical Abstracts (via Ovid), and EBSCOhost as examples. Explores breadth and depth of coverage; manipulation of results (email/download/print); ease of use (searching); and indexing quirks. (AEF)

  12. PrimateLit Database

    Science.gov (United States)

    Primate Info Net Related Databases NCRR PrimateLit: A bibliographic database for primatology Top of any problems with this service. We welcome your feedback. The PrimateLit database is no longer being Resources, National Institutes of Health. The database is a collaborative project of the Wisconsin Primate

  13. Thermodynamic assessment of the Nb-W-C system

    International Nuclear Information System (INIS)

    Huang Weiming; Selleby, M.

    1997-01-01

    The phase equilibrium and thermodynamic information of the Nb-W-C system was reviewed and assessed by using thermodynamic models for the Gibbs energy of individual phases. The assessment was based on the recent evaluations of the W-C, Nb-W and Nb-C, which was revised in the present work taking ternary information into account. The model parameters were evaluated by fitting the selected experimental data by means of a computer program. A consistent set of parameters was obtained, which satisfactorily describes most of the experimental information. (orig.)

  14. Network and Database Security: Regulatory Compliance, Network, and Database Security - A Unified Process and Goal

    Directory of Open Access Journals (Sweden)

    Errol A. Blake

    2007-12-01

    Full Text Available Database security has evolved; data security professionals have developed numerous techniques and approaches to assure data confidentiality, integrity, and availability. This paper will show that the Traditional Database Security, which has focused primarily on creating user accounts and managing user privileges to database objects are not enough to protect data confidentiality, integrity, and availability. This paper is a compilation of different journals, articles and classroom discussions will focus on unifying the process of securing data or information whether it is in use, in storage or being transmitted. Promoting a change in Database Curriculum Development trends may also play a role in helping secure databases. This paper will take the approach that if one make a conscientious effort to unifying the Database Security process, which includes Database Management System (DBMS selection process, following regulatory compliances, analyzing and learning from the mistakes of others, Implementing Networking Security Technologies, and Securing the Database, may prevent database breach.

  15. KALIMER database development

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwan Seong; Lee, Yong Bum; Jeong, Hae Yong; Ha, Kwi Seok

    2003-03-01

    KALIMER database is an advanced database to utilize the integration management for liquid metal reactor design technology development using Web applications. KALIMER design database is composed of results database, Inter-Office Communication (IOC), 3D CAD database, and reserved documents database. Results database is a research results database during all phase for liquid metal reactor design technology development of mid-term and long-term nuclear R and D. IOC is a linkage control system inter sub project to share and integrate the research results for KALIMER. 3D CAD database is a schematic overview for KALIMER design structure. And reserved documents database is developed to manage several documents and reports since project accomplishment.

  16. KALIMER database development

    International Nuclear Information System (INIS)

    Jeong, Kwan Seong; Lee, Yong Bum; Jeong, Hae Yong; Ha, Kwi Seok

    2003-03-01

    KALIMER database is an advanced database to utilize the integration management for liquid metal reactor design technology development using Web applications. KALIMER design database is composed of results database, Inter-Office Communication (IOC), 3D CAD database, and reserved documents database. Results database is a research results database during all phase for liquid metal reactor design technology development of mid-term and long-term nuclear R and D. IOC is a linkage control system inter sub project to share and integrate the research results for KALIMER. 3D CAD database is a schematic overview for KALIMER design structure. And reserved documents database is developed to manage several documents and reports since project accomplishment

  17. Logical database design principles

    CERN Document Server

    Garmany, John; Clark, Terry

    2005-01-01

    INTRODUCTION TO LOGICAL DATABASE DESIGNUnderstanding a Database Database Architectures Relational Databases Creating the Database System Development Life Cycle (SDLC)Systems Planning: Assessment and Feasibility System Analysis: RequirementsSystem Analysis: Requirements Checklist Models Tracking and Schedules Design Modeling Functional Decomposition DiagramData Flow Diagrams Data Dictionary Logical Structures and Decision Trees System Design: LogicalSYSTEM DESIGN AND IMPLEMENTATION The ER ApproachEntities and Entity Types Attribute Domains AttributesSet-Valued AttributesWeak Entities Constraint

  18. An Interoperable Cartographic Database

    OpenAIRE

    Slobodanka Ključanin; Zdravko Galić

    2007-01-01

    The concept of producing a prototype of interoperable cartographic database is explored in this paper, including the possibilities of integration of different geospatial data into the database management system and their visualization on the Internet. The implementation includes vectorization of the concept of a single map page, creation of the cartographic database in an object-relation database, spatial analysis, definition and visualization of the database content in the form of a map on t...

  19. Software listing: CHEMTOX database

    International Nuclear Information System (INIS)

    Moskowitz, P.D.

    1993-01-01

    Initially launched in 1983, the CHEMTOX Database was among the first microcomputer databases containing hazardous chemical information. The database is used in many industries and government agencies in more than 17 countries. Updated quarterly, the CHEMTOX Database provides detailed environmental and safety information on 7500-plus hazardous substances covered by dozens of regulatory and advisory sources. This brief listing describes the method of accessing data and provides ordering information for those wishing to obtain the CHEMTOX Database

  20. Thermodynamic modeling of La2O3-SrO-Mn2O3-Cr2O3 for solid oxide fuel cell applications

    DEFF Research Database (Denmark)

    Povoden-Karadeniz, E.; Chen, Ming; Ivas, Toni

    2012-01-01

    The thermodynamic La–Sr–Mn–Cr–O oxide database is obtained as an extension of thermodynamic descriptions of oxide subsystems using the calculation of phase diagrams approach. Concepts of the thermodynamic modeling of solid oxide phases are discussed. Gibbs energy functions of SrCrO4, Sr2.67Cr2O8......, Sr2CrO4, and SrCr2O4 are presented, and thermodynamic model parameters of La–Sr–Mn–Chromite perovskite are given. Experimental solid solubilities and nonstoichiometries in La1xSrxCrO3d and LaMn1xCrxO3d are reproduced by the model. The presented oxide database can be used for applied computational...... thermodynamics of traditional lanthanum manganite cathode with Cr-impurities. It represents the fundament for extensions to higher orders, aiming on thermodynamic calculations in noble symmetric solid oxide fuel cells...

  1. The Thermodynamic Machinery of Life

    CERN Document Server

    Kurzynski, Michal

    2006-01-01

    Living organisms are open thermodynamic systems whose functional structure has developed and been kinetically frozen during the historical process of biological evolution. A thermodynamics of both nonequilibrium and complex systems is needed for their description. In this book, the foundations of such a thermodynamics are presented. Biological processes at the cellular level are considered as coupled chemical reactions and transport processes across internal and the cytoplasmic membrane. All these processes are catalyzed by specific enzymes hence the kinetics of enzymatic catalysis and its control are described here in detail. The coupling of several processes through a common enzyme is considered in the context of free energy or signal transduction. Special attention is paid to evidence for a rich stochastic internal dynamics of native proteins and its possible role in the control of enzyme activity and in the action of biological molecular machines.

  2. Complexation thermodynamics of modified cyclodextrins

    DEFF Research Database (Denmark)

    Schönbeck, Jens Christian Sidney; Westh, Peter; Holm, Rene

    2014-01-01

    Inclusion complexes between two bile salts and a range of differently methylated β-cyclodextrins were studied in an attempt to rationalize the complexation thermodynamics of modified cyclodextrins. Calorimetric titrations at a range of temperatures provided precise values of the enthalpies (ΔH......°), entropies (ΔS°), and heat capacities (ΔCp) of complexation, while molecular dynamics simulations assisted the interpretation of the obtained thermodynamic parameters. As previously observed for several types of modified cyclodextrins, the substituents at the rims of the cyclodextrin induced large changes......° and then a strong decrease when the degree of substitution exceeded some threshold. Exactly the same trend was observed for ΔCp. The dehydration of nonpolar surface, as quantified by the simulations, can to a large extent explain the variation in the thermodynamic parameters. The methyl substituents form additional...

  3. Thermodynamics a complete undergraduate course

    CERN Document Server

    Steane, Andrew M

    2016-01-01

    This is an undergraduate textbook in thermodynamics—the science of heat, work, temperature, and entropy. The text presents thermodynamics in and of itself, as an elegant and powerful set of ideas and methods. These methods open the way to understanding a very wide range of phenomena in physics, chemistry, engineering, and biology. Starting out from an introduction of concepts at first year undergraduate level, the roles of temperature, internal energy, and entropy are explained via the laws of thermodynamics. The text employs a combination of examples, exercises, and careful discussion, with a view to conveying the feel of the subject as well as avoiding common misunderstandings. The Feynman–Smuluchowski ratchet, Szilard’s engine, and Maxwell’s daemon are used to elucidate entropy and the second law. Free energy and thermodynamic potentials are discussed at length, with applications to solids as well as fluids and flow processes. Thermal radiation is discussed, and the main ideas significant to global...

  4. Development of Thermodynamic Conceptual Evaluation

    Science.gov (United States)

    Talaeb, P.; Wattanakasiwich, P.

    2010-07-01

    This research aims to develop a test for assessing student understanding of fundamental principles in thermodynamics. Misconceptions found from previous physics education research were used to develop the test. Its topics include heat and temperature, the zeroth and the first law of thermodynamics, and the thermodynamics processes. The content validity was analyzed by three physics experts. Then the test was administered to freshmen, sophomores and juniors majored in physics in order to determine item difficulties and item discrimination of the test. A few items were eliminated from the test. Finally, the test will be administered to students taking Physics I course in order to evaluate the effectiveness of Interactive Lecture Demonstrations that will be used for the first time at Chiang Mai University.

  5. Prediction methods and databases within chemoinformatics

    DEFF Research Database (Denmark)

    Jónsdóttir, Svava Osk; Jørgensen, Flemming Steen; Brunak, Søren

    2005-01-01

    MOTIVATION: To gather information about available databases and chemoinformatics methods for prediction of properties relevant to the drug discovery and optimization process. RESULTS: We present an overview of the most important databases with 2-dimensional and 3-dimensional structural information...... about drugs and drug candidates, and of databases with relevant properties. Access to experimental data and numerical methods for selecting and utilizing these data is crucial for developing accurate predictive in silico models. Many interesting predictive methods for classifying the suitability...

  6. Prototype Food and Nutrient Database for Dietary Studies: Branded Food Products Database for Public Health Proof of Concept

    Science.gov (United States)

    The Prototype Food and Nutrient Database for Dietary Studies (Prototype FNDDS) Branded Food Products Database for Public Health is a proof of concept database. The database contains a small selection of food products which is being used to exhibit the approach for incorporation of the Branded Food ...

  7. On the Spectral Entropy of Thermodynamic Paths for Elementary Systems

    Directory of Open Access Journals (Sweden)

    Daniel J. Graham

    2009-12-01

    Full Text Available Systems do not elect thermodynamic pathways on their own. They operate in tandem with their surroundings. Pathway selection and traversal require coordinated work and heat exchanges along with parallel tuning of the system variables. Previous research by the author (Reference [1] focused on the information expressed in thermodynamic pathways. Examined here is how spectral entropy is a by-product of information that depends intricately on the pathway structure. The spectral entropy has proven to be a valuable tool in diverse fields. This paper illustrates the contact between spectral entropy and the properties which distinguish ideal from non-ideal gases. The role of spectral entropy in the first and second laws of thermodynamics and heat → work conversions is also discussed.

  8. MMA-EoS: A Computational Framework for Mineralogical Thermodynamics

    Science.gov (United States)

    Chust, T. C.; Steinle-Neumann, G.; Dolejš, D.; Schuberth, B. S. A.; Bunge, H.-P.

    2017-12-01

    We present a newly developed software framework, MMA-EoS, that evaluates phase equilibria and thermodynamic properties of multicomponent systems by Gibbs energy minimization, with application to mantle petrology. The code is versatile in terms of the equation-of-state and mixing properties and allows for the computation of properties of single phases, solution phases, and multiphase aggregates. Currently, the open program distribution contains equation-of-state formulations widely used, that is, Caloric-Murnaghan, Caloric-Modified-Tait, and Birch-Murnaghan-Mie-Grüneisen-Debye models, with published databases included. Through its modular design and easily scripted database, MMA-EoS can readily be extended with new formulations of equations-of-state and changes or extensions to thermodynamic data sets. We demonstrate the application of the program by reproducing and comparing physical properties of mantle phases and assemblages with previously published work and experimental data, successively increasing complexity, up to computing phase equilibria of six-component compositions. Chemically complex systems allow us to trace the budget of minor chemical components in order to explore whether they lead to the formation of new phases or extend stability fields of existing ones. Self-consistently computed thermophysical properties for a homogeneous mantle and a mechanical mixture of slab lithologies show no discernible differences that require a heterogeneous mantle structure as has been suggested previously. Such examples illustrate how thermodynamics of mantle mineralogy can advance the study of Earth's interior.

  9. Thermodynamics of nuclear power systems

    International Nuclear Information System (INIS)

    Anno, J.

    1983-01-01

    The conversion of nuclear energy to useful work follows essentially the same course as the conversion of thermal energy from fossil fuel to work. The thermal energy released in the reactor core is first transferred to the primary coolant which then generally transfers its heat to a secondary fluid. The secondary fluid serves as the working fluid in a heat engine. In this chapter the authors briefly examine the thermodynamic principles governing the operation of such engines, the major thermodynamic cycles used, and their application to nuclear power plants

  10. Thermodynamics of nuclear power systems

    International Nuclear Information System (INIS)

    Anno, J.

    1977-01-01

    The conversion of nuclear energy to useful work follows essentially the same course as the conversion of thermal energy from fossil fuel to work. The thermal energy released in the reactor core is first transferred to the primary coolant which then generally transfers its heat to a secondary fluid. The secondary fluid serves as the working fluid in a heat engine. The author briefly examines the thermodynamic principles governing the operation of such engines, the major thermodynamic cycles used, and their application to nuclear power plants. (Auth.)

  11. Placement by thermodynamic simulated annealing

    International Nuclear Information System (INIS)

    Vicente, Juan de; Lanchares, Juan; Hermida, Roman

    2003-01-01

    Combinatorial optimization problems arise in different fields of science and engineering. There exist some general techniques coping with these problems such as simulated annealing (SA). In spite of SA success, it usually requires costly experimental studies in fine tuning the most suitable annealing schedule. In this Letter, the classical integrated circuit placement problem is faced by Thermodynamic Simulated Annealing (TSA). TSA provides a new annealing schedule derived from thermodynamic laws. Unlike SA, temperature in TSA is free to evolve and its value is continuously updated from the variation of state functions as the internal energy and entropy. Thereby, TSA achieves the high quality results of SA while providing interesting adaptive features

  12. Thermodynamics of Dipolar Chain Systems

    DEFF Research Database (Denmark)

    R. Armstrong, J.; Zinner, Nikolaj Thomas; V. Fedorov, D.

    2012-01-01

    The thermodynamics of a quantum system of layers containing perpendicularly oriented dipolar molecules is studied within an oscillator approximation for both bosonic and fermionic species. The system is assumed to be built from chains with one molecule in each layer. We consider the effects...... numerically. Our findings indicate that thermodynamic observables, such as the heat capacity, can be used to probe the signatures of the intralayer interaction between chains. This should be relevant for near future experiments on polar molecules with strong dipole moments....

  13. Applied Thermodynamics: Grain Boundary Segregation

    Directory of Open Access Journals (Sweden)

    Pavel Lejček

    2014-03-01

    Full Text Available Chemical composition of interfaces—free surfaces and grain boundaries—is generally described by the Langmuir–McLean segregation isotherm controlled by Gibbs energy of segregation. Various components of the Gibbs energy of segregation, the standard and the excess ones as well as other thermodynamic state functions—enthalpy, entropy and volume—of interfacial segregation are derived and their physical meaning is elucidated. The importance of the thermodynamic state functions of grain boundary segregation, their dependence on volume solid solubility, mutual solute–solute interaction and pressure effect in ferrous alloys is demonstrated.

  14. Thermodynamics of de Sitter universes

    International Nuclear Information System (INIS)

    Huang Chaoguang; Liu Liao; Wang Bobo

    2002-01-01

    It is shown that the first law of thermodynamics can be applied to the de Sitter universe to relate its vacuum energy, pressure, entropy of horizon, chemical potential, etc., when the cosmological constant changes due to the fluctuation of the vacuum or other reasons. The second law should be reformulated in the form that the spontaneous decay of the vacuum never makes the entropy of the de Sitter universe decrease. The third law of thermodynamics, applying to the de Sitter universe, implies that the cosmological constant cannot reach zero by finite physical processes. The relation to the holographic principle is also briefly discussed

  15. Nuclear thermodynamics below particle threshold

    International Nuclear Information System (INIS)

    Schiller, A.; Agvaanluvsan, U.; Algin, E.; Bagheri, A.; Chankova, R.; Guttormsen, M.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.; Sunde, A. C.; Voinov, A.

    2005-01-01

    From a starting point of experimentally measured nuclear level densities, we discuss thermodynamical properties of nuclei below the particle emission threshold. Since nuclei are essentially mesoscopic systems, a straightforward generalization of macroscopic ensemble theory often yields unphysical results. A careful critique of traditional thermodynamical concepts reveals problems commonly encountered in mesoscopic systems. One of which is the fact that microcanonical and canonical ensemble theory yield different results, another concerns the introduction of temperature for small, closed systems. Finally, the concept of phase transitions is investigated for mesoscopic systems

  16. Peaceful nuclear explosions and thermodynamics

    International Nuclear Information System (INIS)

    Prieto, F.E.

    1975-01-01

    Some theoretical advances in the thermodynamics of very high pressures are reviewed. A universal (system-independent) formulation of the thermodynamics is sketched, and some of the equations more frequently used are written in system-independent form. Among these equations are: Hugoniot pressure and temperature as functions of volume; the Mie-Gruneisen equation; and an explicit form for the equation of state. It is also shown that this formalism can be used to interpret and predict results from peaceful nuclear explosions. (author)

  17. Nonequilibrium thermodynamics and information theory: basic concepts and relaxing dynamics

    Science.gov (United States)

    Altaner, Bernhard

    2017-11-01

    Thermodynamics is based on the notions of energy and entropy. While energy is the elementary quantity governing physical dynamics, entropy is the fundamental concept in information theory. In this work, starting from first principles, we give a detailed didactic account on the relations between energy and entropy and thus physics and information theory. We show that thermodynamic process inequalities, like the second law, are equivalent to the requirement that an effective description for physical dynamics is strongly relaxing. From the perspective of information theory, strongly relaxing dynamics govern the irreversible convergence of a statistical ensemble towards the maximally non-commital probability distribution that is compatible with thermodynamic equilibrium parameters. In particular, Markov processes that converge to a thermodynamic equilibrium state are strongly relaxing. Our framework generalizes previous results to arbitrary open and driven systems, yielding novel thermodynamic bounds for idealized and real processes. , which features invited work from the best early-career researchers working within the scope of J. Phys. A. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Bernhard Altaner was selected by the Editorial Board of J. Phys. A as an Emerging Talent.

  18. Thermodynamic data for biomass conversion and waste incineration

    Energy Technology Data Exchange (ETDEWEB)

    Domalski, E.S.; Jobe, T.L. Jr; Milne, T.A.

    1986-09-01

    The general purpose of this collection of thermodynamic data of selected materials is to make property information available to the engineering community on chemical mixtures, polymers, composite materials, solid wastes, biomass, and materials not easily identifiable by a single stoichiometric formula. More than 700 materials have been compiled covering properties such as specific heat, gross heat of combustion, heat of fusion, heat of vaporization, and vapor pressure. The information was obtained from the master files of the NBS Chemical Thermodynamics Data Center, the annual issues of the Bulletin of Chemical Thermodynamics, intermittent examinations of the Chemical Abstracts subject indexes, individual articles by various authors, and other general reference sources. The compilation is organized into several broad categories; materials are listed alphabetically within each category. For each material, the physical state, information as to the composition or character of the material, the kind of thermodynamic property reported, the specific property values for the material, and citations to the reference list are given. In addition, appendix A gives an empirical formula that allows heats of combustion of carbonaceous materials to be predicted with surprising accuracy when the elemental composition is known. A spread sheet illustrates this predictability with examples from this report and elsewhere. Appendix B lists some reports containing heats of combustion not included in this publication. Appendix C contains symbols, units, conversion factors, and atomic weights used in evaluating and compiling the thermodynamic data.

  19. Academic Journal Embargoes and Full Text Databases.

    Science.gov (United States)

    Brooks, Sam

    2003-01-01

    Documents the reasons for embargoes of academic journals in full text databases (i.e., publisher-imposed delays on the availability of full text content) and provides insight regarding common misconceptions. Tables present data on selected journals covering a cross-section of subjects and publishers and comparing two full text business databases.…

  20. Developing an Inhouse Database from Online Sources.

    Science.gov (United States)

    Smith-Cohen, Deborah

    1993-01-01

    Describes the development of an in-house bibliographic database by the U.S. Army Corp of Engineers Cold Regions Research and Engineering Laboratory on arctic wetlands research. Topics discussed include planning; identifying relevant search terms and commercial online databases; downloading citations; criteria for software selection; management…

  1. Accelerating Monte Carlo Molecular Simulations Using Novel Extrapolation Schemes Combined with Fast Database Generation on Massively Parallel Machines

    KAUST Repository

    Amir, Sahar Z.

    2013-05-01

    We introduce an efficient thermodynamically consistent technique to extrapolate and interpolate normalized Canonical NVT ensemble averages like pressure and energy for Lennard-Jones (L-J) fluids. Preliminary results show promising applicability in oil and gas modeling, where accurate determination of thermodynamic properties in reservoirs is challenging. The thermodynamic interpolation and thermodynamic extrapolation schemes predict ensemble averages at different thermodynamic conditions from expensively simulated data points. The methods reweight and reconstruct previously generated database values of Markov chains at neighboring temperature and density conditions. To investigate the efficiency of these methods, two databases corresponding to different combinations of normalized density and temperature are generated. One contains 175 Markov chains with 10,000,000 MC cycles each and the other contains 3000 Markov chains with 61,000,000 MC cycles each. For such massive database creation, two algorithms to parallelize the computations have been investigated. The accuracy of the thermodynamic extrapolation scheme is investigated with respect to classical interpolation and extrapolation. Finally, thermodynamic interpolation benefiting from four neighboring Markov chains points is implemented and compared with previous schemes. The thermodynamic interpolation scheme using knowledge from the four neighboring points proves to be more accurate than the thermodynamic extrapolation from the closest point only, while both thermodynamic extrapolation and thermodynamic interpolation are more accurate than the classical interpolation and extrapolation. The investigated extrapolation scheme has great potential in oil and gas reservoir modeling.That is, such a scheme has the potential to speed up the MCMC thermodynamic computation to be comparable with conventional Equation of State approaches in efficiency. In particular, this makes it applicable to large-scale optimization of L

  2. Database automation of accelerator operation

    International Nuclear Information System (INIS)

    Casstevens, B.J.; Ludemann, C.A.

    1983-01-01

    Database management techniques are applied to automating the setup of operating parameters of a heavy-ion accelerator used in nuclear physics experiments. Data files consist of ion-beam attributes, the interconnection assignments of the numerous power supplies and magnetic elements that steer the ions' path through the system, the data values that represent the electrical currents supplied by the power supplies, as well as the positions of motors and status of mechanical actuators. The database is relational and permits searching on ranges of any subset of the ion-beam attributes. A file selected from the database is used by the control software to replicate the ion beam conditions by adjusting the physical elements in a continuous manner

  3. Basic database performance tuning - developer's perspective

    CERN Document Server

    Kwiatek, Michal

    2008-01-01

    This lecture discusses selected database performance issues from the developer's point of view: connection overhead, bind variables and SQL injection, making most of the optimizer with up-to-date statistics, reading execution plans. Prior knowledge of SQL is expected.

  4. Thermodynamic evaluation of the Cu-Mg-Zr system

    International Nuclear Information System (INIS)

    Haemaelaeinen, M.; Zeng, K.

    1999-01-01

    The thermodynamic evaluation of the Cu-Mg-Zr system is presented in this paper. A literature survey was carried out first based on the most recent literature, which was scanned from the THERMET literature database. The evaluation of the thermodynamic parameters was carried out using Thermo-Calc (version H) software. The evaluation of the Cu-Mg-Zr system was carried out using the most recent experimental data from the literature and a set of DTA measurements. DTA measurements were done using alumina (Al 2 O 3 ) crucibles under helium atmosphere with the niobium (Nb) reference crucible. The evaluated Cu-Mg-Zr phase diagram fitted well with experimental data with the liquidus data in a limited range of composition. There were two miscibility gaps observe in the system. New τ phase was detected using the X-ray and microscopic analysis and the data was used in this evaluation. (orig.)

  5. Thermodynamic stability of biomolecules and evolution.

    Science.gov (United States)

    Chakravarty, Ashim K

    2017-08-01

    The thermodynamic stability of biomolecules in the perspective of evolution is a complex issue and needs discussion. Intra molecular bonds maintain the structure and the state of internal energy (E) of a biomolecule at "local minima". In this communication, possibility of loss in internal energy level of a biomolecule through the changes in the bonds has been discussed, that might earn more thermodynamic stability for the molecule. In the process variations in structure and functions of the molecule could occur. Thus, E of a biomolecule is likely to have energy stature for minimization. Such change in energy status is an intrinsic factor for evolving biomolecules buying more stability and generating variations in the structure and function of DNA molecules undergoing natural selection. Thus, the variations might very well contribute towards the process of evolution. A brief discussion on conserved sequence in the light of proposition in this communication has been made at the end. Extension of the idea may resolve certain standing problems in evolution, such as maintenance of conserved sequences in genome of diverse species, pre- versus post adaptive mutations, 'orthogenesis', etc. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Electronic database of arterial aneurysms

    Directory of Open Access Journals (Sweden)

    Fabiano Luiz Erzinger

    2014-12-01

    Full Text Available Background:The creation of an electronic database facilitates the storage of information, as well as streamlines the exchange of data, making easier the exchange of knowledge for future research.Objective:To construct an electronic database containing comprehensive and up-to-date clinical and surgical data on the most common arterial aneurysms, to help advance scientific research.Methods:The most important specialist textbooks and articles found in journals and on internet databases were reviewed in order to define the basic structure of the protocol. Data were computerized using the SINPE© system for integrated electronic protocols and tested in a pilot study.Results:The data entered onto the system was first used to create a Master protocol, organized into a structure of top-level directories covering a large proportion of the content on vascular diseases as follows: patient history; physical examination; supplementary tests and examinations; diagnosis; treatment; and clinical course. By selecting items from the Master protocol, Specific protocols were then created for the 22 arterial sites most often involved by aneurysms. The program provides a method for collection of data on patients including clinical characteristics (patient history and physical examination, supplementary tests and examinations, treatments received and follow-up care after treatment. Any information of interest on these patients that is contained in the protocol can then be used to query the database and select data for studies.Conclusions:It proved possible to construct a database of clinical and surgical data on the arterial aneurysms of greatest interest and, by adapting the data to specific software, the database was integrated into the SINPE© system, thereby providing a standardized method for collection of data on these patients and tools for retrieving this information in an organized manner for use in scientific studies.

  7. Multi-pressure boiler thermodynamics analysis code

    International Nuclear Information System (INIS)

    Lorenzoni, G.

    1992-01-01

    A new method and the relative FORTRAN program for the thermodynamics design analysis of a multipressure boiler are reported. This method permits the thermodynamics design optimization with regard to total exergy production and a preliminary costs

  8. THERMODYNAMIC STUDIES ON THE CHARGE-TRANSFER ...

    African Journals Online (AJOL)

    ... technique was employed to investigate thermodynamic parameters associated with the interaction ... KEY WORDS: Amitriptyline , chloranilic acid, thermodynamic parameters. Global Jnl Pure & Applied Sciences Vol.10(1) 2004: 147-153 ...

  9. On thermodynamic limits of entropy densities

    NARCIS (Netherlands)

    Moriya, H; Van Enter, A

    We give some sufficient conditions which guarantee that the entropy density in the thermodynamic limit is equal to the thermodynamic limit of the entropy densities of finite-volume (local) Gibbs states.

  10. Quantum and thermodynamic aspects of Black Holes

    International Nuclear Information System (INIS)

    Sande e Lemos, J.P. de; Videira, A.L.L.

    1983-01-01

    The main results originating from the attempts of trying to incorporate quantum and thermodynamic properties and concepts to the gravitational system black hole, essentially the Hawking effect and the four laws of thermodynamics are reviewed. (Author) [pt

  11. Thermodynamic theory of equilibrium fluctuations

    International Nuclear Information System (INIS)

    Mishin, Y.

    2015-01-01

    The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.

  12. Thermodynamic efficiency of nonimaging concentrators

    Science.gov (United States)

    Shatz, Narkis; Bortz, John; Winston, Roland

    2009-08-01

    The purpose of a nonimaging concentrator is to transfer maximal flux from the phase space of a source to that of a target. A concentrator's performance can be expressed relative to a thermodynamic reference. We discuss consequences of Fermat's principle of geometrical optics. We review étendue dilution and optical loss mechanisms associated with nonimaging concentrators, especially for the photovoltaic (PV) role. We introduce the concept of optical thermodynamic efficiency which is a performance metric combining the first and second laws of thermodynamics. The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. Examples are provided to illustrate the use of this new metric. In particular we discuss concentrating PV systems for solar power applications.

  13. Thermodynamics of asymptotically safe theories

    DEFF Research Database (Denmark)

    Rischke, Dirk H.; Sannino, Francesco

    2015-01-01

    We investigate the thermodynamic properties of a novel class of gauge-Yukawa theories that have recently been shown to be completely asymptotically safe, because their short-distance behaviour is determined by the presence of an interacting fixed point. Not only do all the coupling constants freeze...

  14. Thermodynamics of freezing and melting

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Costigliola, Lorenzo; Bailey, Nicholas

    2016-01-01

    phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio...

  15. Thermodynamical aspects of pulse tubes

    NARCIS (Netherlands)

    Waele, de A.T.A.M.; Steijaert, P.P.; Gijzen, J.

    1997-01-01

    The cooling power of cryocoolers is determined by the work done by the compressor and the entropy produced by the irreversible processes in the various components of the system. In this paper we discuss the thermodynamics of pulse tubes, but many of the relationships are equally valid for other

  16. Thermodynamics of Oligonucleotide Duplex Melting

    Science.gov (United States)

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  17. Thermodynamic theory of black holes

    Energy Technology Data Exchange (ETDEWEB)

    Davies, P C.W. [King' s Coll., London (UK). Dept. of Mathematics

    1977-04-21

    The thermodynamic theory underlying black hole processes is developed in detail and applied to model systems. It is found that Kerr-Newman black holes undergo a phase transition at a = 0.68M or Q = 0.86M, where the heat capacity has an infinite discontinuity. Above the transition values the specific heat is positive, permitting isothermal equilibrium with a surrounding heat bath. Simple processes and stability criteria for various black hole situations are investigated. The limits for entropically favoured black hole formation are found. The Nernst conditions for the third law of thermodynamics are not satisfied fully for black holes. There is no obvious thermodynamic reason why a black hole may not be cooled down below absolute zero and converted into a naked singularity. Quantum energy-momentum tensor calculations for uncharged black holes are extended to the Reissner-Nordstrom case, and found to be fully consistent with the thermodynamic picture for Q < M. For Q < M the model predicts that 'naked' collapse also produces radiation, with such intensity that the collapsing matter is entirely evaporated away before a naked singularity can form.

  18. One Antimatter— Two Possible Thermodynamics

    Directory of Open Access Journals (Sweden)

    Alexander Y. Klimenko

    2014-02-01

    Full Text Available Conventional thermodynamics, which is formulated for our world populated by radiation and matter, can be extended to describe physical properties of antimatter in two mutually exclusive ways: CP-invariant or CPT-invariant. Here we refer to invariance of physical laws under charge (C, parity (P and time reversal (T transformations. While in quantum field theory CPT invariance is a theorem confirmed by experiments, the symmetry principles applied to macroscopic phenomena or to the whole of the Universe represent only hypotheses. Since both versions of thermodynamics are different only in their treatment of antimatter, but are the same in describing our world dominated by matter, making a clear experimentally justified choice between CP invariance and CPT invariance in context of thermodynamics is not possible at present. This work investigates the comparative properties of the CP- and CPT-invariant extensions of thermodynamics (focusing on the latter, which is less conventional than the former and examines conditions under which these extensions can be experimentally tested.

  19. Simulating metabolism with statistical thermodynamics.

    Science.gov (United States)

    Cannon, William R

    2014-01-01

    New methods are needed for large scale modeling of metabolism that predict metabolite levels and characterize the thermodynamics of individual reactions and pathways. Current approaches use either kinetic simulations, which are difficult to extend to large networks of reactions because of the need for rate constants, or flux-based methods, which have a large number of feasible solutions because they are unconstrained by the law of mass action. This report presents an alternative modeling approach based on statistical thermodynamics. The principles of this approach are demonstrated using a simple set of coupled reactions, and then the system is characterized with respect to the changes in energy, entropy, free energy, and entropy production. Finally, the physical and biochemical insights that this approach can provide for metabolism are demonstrated by application to the tricarboxylic acid (TCA) cycle of Escherichia coli. The reaction and pathway thermodynamics are evaluated and predictions are made regarding changes in concentration of TCA cycle intermediates due to 10- and 100-fold changes in the ratio of NAD+:NADH concentrations. Finally, the assumptions and caveats regarding the use of statistical thermodynamics to model non-equilibrium reactions are discussed.

  20. THERMODYNAMICS USED IN ENVIRONMENTAL ENGINEERING

    Science.gov (United States)

    Thermodynamics is a science in which energy transformations are studied as well as their relationships to the changes in the chemical properties of a system. It is the fundamental basis of many engineering fields. The profession of environmental engineering is no exception. In pa...