WorldWideScience

Sample records for selected saturated alkanes

  1. Thermodynamic modeling of saturated liquid compositions and densities for asymmetric binary systems composed of carbon dioxide, alkanes and alkanols

    International Nuclear Information System (INIS)

    Bayestehparvin, Bita; Nourozieh, Hossein; Kariznovi, Mohammad; Abedi, Jalal

    2015-01-01

    Highlights: • Phase behavior of the binary systems containing largely different components. • Equation of state modeling of binary polar and non-polar systems by utilizing different mixing rules. • Three different mixing rules (one-parameter, two-parameters and Wong–Sandler) coupled with Peng–Robinson equation of state. • Two-parameter mixing rule shows promoting results compared to one-parameter mixing rule. • Wong–Sandler mixing rule is unable to predict saturated liquid densities with sufficient accuracy. - Abstract: The present study mainly focuses on the phase behavior modeling of asymmetric binary mixtures. Capability of different mixing rules and volume shift in the prediction of solubility and saturated liquid density has been investigated. Different binary systems of (alkane + alkanol), (alkane + alkane), (carbon dioxide + alkanol), and (carbon dioxide + alkane) are considered. The composition and the density of saturated liquid phase at equilibrium condition are the properties of interest. Considering composition and saturated liquid density of different binary systems, three main objectives are investigated. First, three different mixing rules (one-parameter, two parameters and Wong–Sandler) coupled with Peng–Robinson equation of state were used to predict the equilibrium properties. The Wong–Sandler mixing rule was utilized with the non-random two-liquid (NRTL) model. Binary interaction coefficients and NRTL model parameters were optimized using the Levenberg–Marquardt algorithm. Second, to improve the density prediction, the volume translation technique was applied. Finally, Two different approaches were considered to tune the equation of state; regression of experimental equilibrium compositions and densities separately and spontaneously. The modeling results show that there is no superior mixing rule which can predict the equilibrium properties for different systems. Two-parameter and Wong–Sandler mixing rule show promoting

  2. Selective conversion of butane into liquid hydrocarbon fuels on alkane metathesis catalysts

    KAUST Repository

    Szeto, Kaï Chung

    2012-01-01

    We report a selective direct conversion of n-butane into higher molecular weight alkanes (C 5+) by alkane metathesis reaction catalysed by silica-alumina supported tungsten or tantalum hydrides at moderate temperature and pressure. The product is unprecedented, asymmetrically distributed towards heavier alkanes. This journal is © 2012 The Royal Society of Chemistry.

  3. Selective conversion of butane into liquid hydrocarbon fuels on alkane metathesis catalysts

    KAUST Repository

    Szeto, Kaï Chung; Hardou, Lucie; Merle, Nicolas; Basset, Jean-Marie; Thivolle-Cazat, Jean; Papaioannou, Charalambos; Taoufik, Mostafa

    2012-01-01

    We report a selective direct conversion of n-butane into higher molecular weight alkanes (C 5+) by alkane metathesis reaction catalysed by silica-alumina supported tungsten or tantalum hydrides at moderate temperature and pressure. The product

  4. The effect of n-alkane selection depth on the quality of denormalizate

    Energy Technology Data Exchange (ETDEWEB)

    Dorodnova, V.S.; Bayburskaya, E.L.; Martynenko, A.G.

    1982-01-01

    The effect of n-alkane selection depth from crude diesel fuel on the quality of denormalization on a carbamide deparaffination G-64 device at the Gorknefteorgsintez Production Association. Diesel fuel with o.c. 210/sup 0/, c.c. 315/sup 0/, 828 kg/m/sup 3/ density, -25, n/sup 20/ D 1.4620, aniline point 66.9/sup 0/ and n-alkane content 14.7% was used. The regime of the stage of complex formation was maximal approximation of industrial conditions: ratio Cr: ben. 1:2.6 mass. no, complex formation 25/sup 0/, length of contact 30 min, levels of washing, 2; methanol, 2.0% in Cr. Changing the quantity of carbamide aided the various extraction depths of n-alkanes from the Cr. Following distillation of the solution the following parameters were examined: refraction, density, aniline point, diesel index; Obtained: the dependencies for changes in these indicators depending on the depth of the selection of n-alkanes from the potential or from their content in the denormalizate; as well as the dependence of the component composition of paraffins on the degree of their extraction from the Cr. To simultaneously obtain paraffins and diesel fuel of export quality with a diesel index no lower than 55, it is necessary to guarantee up to 50% (no higher) of paraffin selection from the potential Cr containing 14.7% n-alkanes; the sediment content of n-alkanes in the denormalizate must be found at the 7.4% level.

  5. Metathesis of alkanes and related reactions

    KAUST Repository

    Basset, Jean-Marie

    2010-02-16

    (Figure Presented) The transformation of alkanes remains a difficult challenge because of the relative inertness of the C-H and C-C bonds. The rewards for asserting synthetic control over unfunctionalized, saturated hydrocarbons are considerable, however, because converting short alkanes into longer chain analogues is usually a value-adding process. Alkane metathesis is a novel catalytic and direct transformation of two molecules of a given alkane into its lower and higher homologues; moreover, the process proceeds at relatively low temperature (ambient conditions or higher). It was discovered through the use of a silica-supported tantalum hydride, (=SiO)2TaH, a multifunctional catalyst with a single site of action. This reaction completes the story of the metathesis reactions discovered over the past 40 years: olefin metathesis, alkyne metathesis, and ene-yne cyclizations. In this Account, we examine the fundamental mechanistic aspects of alkane metathesis as well as the novel reactions that have been derived from its study. The silica-supported tantalum hydride catalyst was developed as the result of systematic and meticulous studies of the interaction between oxide supports and organometallic complexes, a field of study denoted surface organometallic chemistry (SOMC). A careful examination of this surface-supported tantalum hydride led to the later discovery of aluminasupported tungsten hydride, W(H)3/Al 2O3, which proved to be an even better catalyst for alkane metathesis. Supported tantalum and tungsten hydrides are highly unsaturated, electron-deficient species that are very reactive toward the C-H and C-C bonds of alkanes. They show a great versatility in various other reactions, such as cross-metathesis between methane and alkanes, cross-metathesis between toluene and ethane, or even methane nonoxidative coupling. Moreover, tungsten hydride exhibits a specific ability in the transformation of isobutane into 2,3-dimethylbutane as well as in the metathesis of

  6. Metathesis of alkanes and related reactions.

    Science.gov (United States)

    Basset, Jean-Marie; Copéret, Christophe; Soulivong, Daravong; Taoufik, Mostafa; Cazat, Jean Thivolle

    2010-02-16

    The transformation of alkanes remains a difficult challenge because of the relative inertness of the C-H and C-C bonds. The rewards for asserting synthetic control over unfunctionalized, saturated hydrocarbons are considerable, however, because converting short alkanes into longer chain analogues is usually a value-adding process. Alkane metathesis is a novel catalytic and direct transformation of two molecules of a given alkane into its lower and higher homologues; moreover, the process proceeds at relatively low temperature (ambient conditions or higher). It was discovered through the use of a silica-supported tantalum hydride, ([triple bond]SiO)(2)TaH, a multifunctional catalyst with a single site of action. This reaction completes the story of the metathesis reactions discovered over the past 40 years: olefin metathesis, alkyne metathesis, and ene-yne cyclizations. In this Account, we examine the fundamental mechanistic aspects of alkane metathesis as well as the novel reactions that have been derived from its study. The silica-supported tantalum hydride catalyst was developed as the result of systematic and meticulous studies of the interaction between oxide supports and organometallic complexes, a field of study denoted surface organometallic chemistry (SOMC). A careful examination of this surface-supported tantalum hydride led to the later discovery of alumina-supported tungsten hydride, W(H)(3)/Al(2)O(3), which proved to be an even better catalyst for alkane metathesis. Supported tantalum and tungsten hydrides are highly unsaturated, electron-deficient species that are very reactive toward the C-H and C-C bonds of alkanes. They show a great versatility in various other reactions, such as cross-metathesis between methane and alkanes, cross-metathesis between toluene and ethane, or even methane nonoxidative coupling. Moreover, tungsten hydride exhibits a specific ability in the transformation of isobutane into 2,3-dimethylbutane as well as in the metathesis

  7. High Selectivity of Alkanes Production by Calcium Basic Soap Thermal Decarboxylation

    Directory of Open Access Journals (Sweden)

    Neonufa Godlief F.

    2018-01-01

    Full Text Available Renewable fuel production from vegetable oil and fat or its fatty acids by direct decarboxylation has been widely reported. An innovative approach to produce drop-in fuel via thermal catalytic decarboxylation of basic soap derived from palm stearin reported in this research. The catalytic effect of the calcium and magnesium metals in the basic soap and its decarboxylation on drop-in fuel yield and product distribution was studied. The catalytic effect was tested in the temperature range up to 370°C and atmospheric pressure for 5 hours in a batch reactor. It has been proved that the calcium basic soap decarboxylation, effectively produce the drop-in fuel in carbon ranges C8 – C20, in which more than 78% selectivity toward alkane. Whereas, only 70% selectivity toward alkane has been resulted from the magnesium basic soap decarboxylation.

  8. Light alkane (mixed feed selective dehydrogenation using bi-metallic zeolite supported catalyst

    Directory of Open Access Journals (Sweden)

    Zeeshan Nawaz

    2009-12-01

    Full Text Available Light alkanes are the important intermediates of many refinery processes and their catalytic dehydrogenation gives corresponding alkenes. The aim behind this experimentation is to investigate reaction behavior of mixed alkanes during direct catalytic dehydrogenation and emphasis has been given to enhance propene. Bi-metallic zeolite supported catalyst Pt-Sn/ZSM-5 was prepared by sequentional impregnation method and characterized by BET, EDS and XRD. Direct dehydrogenation reaction is highly endothermic and its conversion is thermodynamically limited. Results showed that the increase in temperature increases the conversion to some extent but there is no overall effect on selectivity of propene. Increase in time-on-stream (TOS remarkably improves propene selectivity at the expense of lower conversion. The performances of bi-metallic zeolite based catalyst largely affected by coke deposition. The presence of butane and ethane adversely affected propane conversion. Optimum propene selectivity is about 48 %, obtained at 600 oC and time-on-stream 10 h.

  9. Developing Selective Oxidation Catalysts of Light Alkanes:. from Fundamental Understanding to Rational Design

    Science.gov (United States)

    Fu, Gang; Yi, Xiaodong; Huang, Chuanjing; Xu, Xin; Weng, Weizheng; Xia, Wensheng; Wan, Hui-Lin

    Selective oxidation of light alkanes remains to be a great challenge for the wider use of alkanes as feedstocks. To achieve high activity and at the same time high selectivity, some key issues have to be addressed: (1) the stability of the desired products with respect to the reactants; (2) the roles of the active components in the catalysts, the structure and the functionality of the active centers; (3) the reducibility of the metal cations, the Lewis acid sites and their synergic effects with the basic sites of the lattice oxygen anions; (4) spatial isolation of the active centers; and (5) the mechanisms for the formation and transformation of the intermediates and their kinetic controls. In this contribution, we took selective oxidation of propane to acrolein as our target reaction, and reviewed mainly our own work, trying to provide some thinking and answers to these five questions.

  10. A new and selective cycle for dehydrogenation of linear and cyclic alkanes under mild conditions using a base metal

    Science.gov (United States)

    Solowey, Douglas P.; Mane, Manoj V.; Kurogi, Takashi; Carroll, Patrick J.; Manor, Brian C.; Baik, Mu-Hyun; Mindiola, Daniel J.

    2017-11-01

    Selectively converting linear alkanes to α-olefins under mild conditions is a highly desirable transformation given the abundance of alkanes as well as the use of olefins as building blocks in the chemical community. Until now, this reaction has been primarily the remit of noble-metal catalysts, despite extensive work showing that base-metal alkylidenes can mediate the reaction in a stoichiometric fashion. Here, we show how the presence of a hydrogen acceptor, such as the phosphorus ylide, when combined with the alkylidene complex (PNP)Ti=CHtBu(CH3) (PNP=N[2-P(CHMe2)2-4-methylphenyl]2-), catalyses the dehydrogenation of cycloalkanes to cyclic alkenes, and linear alkanes with chain lengths of C4 to C8 to terminal olefins under mild conditions. This Article represents the first example of a homogeneous and selective alkane dehydrogenation reaction using a base-metal titanium catalyst. We also propose a unique mechanism for the transfer dehydrogenation of hydrocarbons to olefins and discuss a complete cycle based on a combined experimental and computational study.

  11. Application of a Crossover Equation of State to Describe Phase Equilibrium and Critical Properties of n-Alkanes and Methane/n-Alkane Mixtures

    DEFF Research Database (Denmark)

    P. C. M. Vinhal, Andre; Yan, Wei; Kontogeorgis, Georgios M.

    2018-01-01

    and the asymptotic one near the critical point. Although several crossover EOSs have been developed in the last decades their use in modeling industrial processes is rather limited. In this work, we use the crossover Soave–Redlich–Kwong (CSRK) to describe phase equilibrium and critical properties of pure n......-alkanes and methane/n-alkane binary mixtures and compare the results to two other modeling approaches of the SRK EOS. In the case of the pure fluids, CSRK gives an accurate overall description of the phase equilibrium and critical properties; nevertheless, a minor increase in the deviation of the saturation pressure...

  12. Catalytic Hydrodeoxygenation of High Carbon Furylmethanes to Renewable Jet-fuel Ranged Alkanes over a Rhenium-Modified Iridium Catalyst.

    Science.gov (United States)

    Liu, Sibao; Dutta, Saikat; Zheng, Weiqing; Gould, Nicholas S; Cheng, Ziwei; Xu, Bingjun; Saha, Basudeb; Vlachos, Dionisios G

    2017-08-24

    Renewable jet-fuel-range alkanes are synthesized by hydrodeoxygenation of lignocellulose-derived high-carbon furylmethanes over ReO x -modified Ir/SiO 2 catalysts under mild reaction conditions. Ir-ReO x /SiO 2 with a Re/Ir molar ratio of 2:1 exhibits the best performance, achieving a combined alkanes yield of 82-99 % from C 12 -C 15 furylmethanes. The catalyst can be regenerated in three consecutive cycles with only about 12 % loss in the combined alkanes yield. Mechanistically, the furan moieties of furylmethanes undergo simultaneous ring saturation and ring opening to form a mixture of complex oxygenates consisting of saturated furan rings, mono-keto groups, and mono-hydroxy groups. Then, these oxygenates undergo a cascade of hydrogenolysis reactions to alkanes. The high activity of Ir-ReO x /SiO 2 arises from a synergy between Ir and ReO x , whereby the acidic sites of partially reduced ReO x activate the C-O bonds of the saturated furans and alcoholic groups while the Ir sites are responsible for hydrogenation with H 2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effect of solid phase on the selectivity of alkyl radical formation by gamma-irradiation of branched alkanes

    International Nuclear Information System (INIS)

    Koizumi, Hitoshi; Hashino, Masatoshi; Ichikawa, Tsuneki; Yoshida, Hiroshi

    1992-01-01

    ESR and electron spin echo measurements of alkyl radicals generated by γ-irradiation of glassy and crystalline branched alkanes C 10 ∼ C 13 have been carried out to elucidate the effect of molecular structure and solid phase on the selectivity of alkyl radical formation. Alkyl radicals generated and stabilized at 77 K in the glassy alkanes are secondary penultimate radicals. Tertiary radicals and secondary radicals other than the penultimate one are not generated either by hydrogen abstraction or from ionized or excited molecules. In the crystalline alkanes, however, a small amount of secondary internal radicals are generated in addition to the predominant formation of the secondary penultimate radicals. It is concluded that the detachment of C-H hydrogen preferentially takes place at the location where the motion of carbon atoms assisting the detachment of the C-H hydrogen easily occurs. (author)

  14. Alkane Metathesis

    KAUST Repository

    Basset, Jean-Marie

    2015-03-29

    Catalytic activation of alkanes which directly transforms light alkanes into higher homologs is a major area in organometallic chemistry and petrochemical chemistry. This transformation is a chemical challenge considering the inertness of the sp3 carbon-hydrogen bond. It is generally accepted that this catalytic process involves the formation of olefins. This reaction is defined as alkane metathesis. To date, two catalytic systems of alkane metathesis exist: (i) a single catalytic system prepared by surface organometallic chemistry, acting as multifunctional-supported catalyst which transforms any alkanes into a mixture of their lower and higher homologs and (ii) the other catalytic systems employing a tandem strategy with two different metals, one metal for alkane (de)hydrogenation and another for olefin metathesis in which the activity of these catalysts is essentially driven by the performance of the (de)hydrogenation steps. In this book chapter, we would focus on the evolution of these two classes of catalysts by looking at their specific reactivity of the catalysts towards alkanes, comparing their performances and studying the mechanism.

  15. Structural Insights into Diversity and n-Alkane Biodegradation Mechanisms of Alkane Hydroxylases

    Directory of Open Access Journals (Sweden)

    Yurui eJi

    2013-03-01

    Full Text Available Environmental microbes utilize four degradation pathways for the oxidation of n-alkanes. Although the enzymes degrading n-alkanes in different microbes may vary, enzymes functioning in the first step in the aerobic degradation of alkanes all belong to the alkane hydroxylases. Alkane hydroxylases are a class of enzymes that insert oxygen atoms derived from molecular oxygen into different sites of the alkane terminus (or termini depending on the type of enzymes. In this review, we summarize the different types of alkane hydroxylases, their degrading steps and compare typical enzymes from various classes with regard to their three dimensional structures, in order to provide insights into how the enzymes mediate their different roles in the degradation of n-alkanes and what determines their different substrate ranges. Through the above analyses, the degrading mechanisms of enzymes can be elucidated and molecular biological methods can be utilized to expand their catalytic roles in the petrochemical industry or in bioremediation of oil-contaminated environments.

  16. Synthesis of Renewable Lubricant Alkanes from Biomass-Derived Platform Chemicals.

    Science.gov (United States)

    Gu, Mengyuan; Xia, Qineng; Liu, Xiaohui; Guo, Yong; Wang, Yanqin

    2017-10-23

    The catalytic synthesis of liquid alkanes from renewable biomass has received tremendous attention in recent years. However, bio-based platform chemicals have not to date been exploited for the synthesis of highly branched lubricant alkanes, which are currently produced by hydrocracking and hydroisomerization of long-chain n-paraffins. A selective catalytic synthetic route has been developed for the production of highly branched C 23 alkanes as lubricant base oil components from biomass-derived furfural and acetone through a sequential four-step process, including aldol condensation of furfural with acetone to produce a C 13 double adduct, selective hydrogenation of the adduct to a C 13 ketone, followed by a second condensation of the C 13 ketone with furfural to generate a C 23 aldol adduct, and finally hydrodeoxygenation to give highly branched C 23 alkanes in 50.6 % overall yield from furfural. This work opens a general strategy for the synthesis of high-quality lubricant alkanes from renewable biomass. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Selectivity of alkyl radical formation from branched alkanes studied by electron spin resonance and electron spin echo spectroscopy

    International Nuclear Information System (INIS)

    Tsuneki, Ichikawa; Hiroshi, Yoshida

    1992-01-01

    Alkyl radicals generated from branched alkanes by γ radiation are being measuring by electron spin resonance and electron spin echo spectroscopy. This research is being conducted to determine the mechanism of selective alkyl radical formation in low-temperature solids

  18. Crystallization features of normal alkanes in confined geometry.

    Science.gov (United States)

    Su, Yunlan; Liu, Guoming; Xie, Baoquan; Fu, Dongsheng; Wang, Dujin

    2014-01-21

    How polymers crystallize can greatly affect their thermal and mechanical properties, which influence the practical applications of these materials. Polymeric materials, such as block copolymers, graft polymers, and polymer blends, have complex molecular structures. Due to the multiple hierarchical structures and different size domains in polymer systems, confined hard environments for polymer crystallization exist widely in these materials. The confined geometry is closely related to both the phase metastability and lifetime of polymer. This affects the phase miscibility, microphase separation, and crystallization behaviors and determines both the performance of polymer materials and how easily these materials can be processed. Furthermore, the size effect of metastable states needs to be clarified in polymers. However, scientists find it difficult to propose a quantitative formula to describe the transition dynamics of metastable states in these complex systems. Normal alkanes [CnH2n+2, n-alkanes], especially linear saturated hydrocarbons, can provide a well-defined model system for studying the complex crystallization behaviors of polymer materials, surfactants, and lipids. Therefore, a deeper investigation of normal alkane phase behavior in confinement will help scientists to understand the crystalline phase transition and ultimate properties of many polymeric materials, especially polyolefins. In this Account, we provide an in-depth look at the research concerning the confined crystallization behavior of n-alkanes and binary mixtures in microcapsules by our laboratory and others. Since 2006, our group has developed a technique for synthesizing nearly monodispersed n-alkane containing microcapsules with controllable size and surface porous morphology. We applied an in situ polymerization method, using melamine-formaldehyde resin as shell material and nonionic surfactants as emulsifiers. The solid shell of microcapsules can provide a stable three-dimensional (3-D

  19. Thermodynamic properties of (an ester+an alkane). XVII. Experimental HmE and VmE values for (an alkyl propanoate+an alkane) at 318.15K

    International Nuclear Information System (INIS)

    Ortega, J.; Espiau, F.; Toledo, F.J.; Dieppa, R.

    2005-01-01

    In this article, we record the experimental values of H m E and V m E , obtained at a temperature of T=318.15K and atmospheric pressure for a set of 30 binary mixtures comprised of five alkyl propanoates (methyl to pentyl) with six odd alkanes (heptane to heptadecane). The net values obtained for these properties are the result of different effects of the selected compounds on the mixing process. These effects and the variation with temperature are studied. The H m E are positive in all cases and increase with the saturated hydrocarbon chain and diminish with the alkanolic portion of the ester. The variation in V m E is similar to that occurring in the H m E . For the data correlation, a new form of polynomial equation is used in which the variable is the so-called active fraction which, in turn, is a function of the concentration of the mixture, giving acceptable estimations for simultaneous correlations between the values of Gibbs function obtained in the isobaric (liquid+vapour) equilibria and the enthalpies of the mixture, for some of the mixtures studied. The results are explained with the molecular model proposed for (ester+alkane) mixtures. Finally, the application of two versions of the UNIFAC groups contribution method to estimate enthalpies of the mixtures does not give satisfactory results, although the modified UNIFAC gives somewhat better results

  20. Thermodynamics of mixtures containing alkoxyethanols. XXVIII: Liquid-liquid equilibria for 2-phenoxyethanol + selected alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Victor; Garcia, Mario [G.E.T.E.F., Grupo Especializado en Termodinamica de Equilibrio entre Fases, Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, E-47071 Valladolid (Spain); Gonzalez, Juan Antonio, E-mail: jagl@termo.uva.es [G.E.T.E.F., Grupo Especializado en Termodinamica de Equilibrio entre Fases, Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, E-47071 Valladolid (Spain); Garcia De La Fuente, Isaias; Cobos, Jose Carlos [G.E.T.E.F., Grupo Especializado en Termodinamica de Equilibrio entre Fases, Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, E-47071 Valladolid (Spain)

    2011-07-10

    Highlights: {yields} LLE coexistence curves were determined for mixtures of 2PhEE with alkanes. {yields} UCST values are higher for n-alkane systems than for solutions with cyclic alkanes. {yields} For the latter mixtures, UCST increases with the size of the alkyl group attached. {yields} Alkoxyethanol-alkoxyethanol interactions are enhanced by aromatic group in cellosolve. - Abstract: The coexistence curves of the liquid-liquid equilibria (LLE) for systems of 2-phenoxyethanol (2PhEE) with heptane, octane, cyclohexane, methylcyclohexane or ethylcyclohexane have been determined by the method of the critical opalescence using a laser scattering technique. All the curves show an upper critical solution temperature (UCST), have a rather horizontal top and their symmetry depends on the relative size of the mixture compounds. UCST values are higher for systems with linear alkanes than for solutions including cyclic alkanes. For these mixtures, the UCST increases with the size of the alkyl group attached to the cyclic part of the molecule. It is shown that interactions between alkoxyethanol molecules are stronger when the hydroxyether contains an aromatic group. Data are used to determine the critical exponent for the order parameter mole fraction. Values obtained are consistent with those provided by the Ising model or by the renormalization group theory.

  1. Thermodynamics of mixtures containing alkoxyethanols. XXVIII: Liquid-liquid equilibria for 2-phenoxyethanol + selected alkanes

    International Nuclear Information System (INIS)

    Alonso, Victor; Garcia, Mario; Gonzalez, Juan Antonio; Garcia De La Fuente, Isaias; Cobos, Jose Carlos

    2011-01-01

    Highlights: → LLE coexistence curves were determined for mixtures of 2PhEE with alkanes. → UCST values are higher for n-alkane systems than for solutions with cyclic alkanes. → For the latter mixtures, UCST increases with the size of the alkyl group attached. → Alkoxyethanol-alkoxyethanol interactions are enhanced by aromatic group in cellosolve. - Abstract: The coexistence curves of the liquid-liquid equilibria (LLE) for systems of 2-phenoxyethanol (2PhEE) with heptane, octane, cyclohexane, methylcyclohexane or ethylcyclohexane have been determined by the method of the critical opalescence using a laser scattering technique. All the curves show an upper critical solution temperature (UCST), have a rather horizontal top and their symmetry depends on the relative size of the mixture compounds. UCST values are higher for systems with linear alkanes than for solutions including cyclic alkanes. For these mixtures, the UCST increases with the size of the alkyl group attached to the cyclic part of the molecule. It is shown that interactions between alkoxyethanol molecules are stronger when the hydroxyether contains an aromatic group. Data are used to determine the critical exponent for the order parameter mole fraction. Values obtained are consistent with those provided by the Ising model or by the renormalization group theory.

  2. Enhanced selectivity in non-heme iron catalysed oxidation of alkanes with peracids : evidence for involvement of Fe(IV)=O species

    NARCIS (Netherlands)

    Berg, Tieme A. van den; Boer, Johannes W. de; Browne, Wesley R.; Roelfes, Gerard; Feringa, Bernard

    2004-01-01

    Catalytic alkane oxidation with high selectivity using peracids and an (N4Py)Fe complex is presented and the role of [(N4Py)Fe(IV)=O]2+ species, molecular oxygen and hydroxyl radicals in the catalysis is discussed.

  3. Catalytic conversion of light alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  4. Carbon isotope analysis of n-alkanes in dust from the lower atmosphere over the eastern Atlantic

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schefuß, E.; Ratmeyer, V.; Stuut, J-B.W.; Jansen, J.H.F.

    2003-01-01

    Atmospheric dust samples collected along a transect off the West African coast have been investigated for their lipid content and compound-specific stable carbon isotope compositions. The saturated hydrocarbon fractions of the organic solvent extracts consist mainly of long-chain n-alkanes derived

  5. Transcriptome response to alkane biofuels in Saccharomyces cerevisiae: identification of efflux pumps involved in alkane tolerance

    Science.gov (United States)

    2013-01-01

    Background Hydrocarbon alkanes have been recently considered as important next-generation biofuels because microbial production of alkane biofuels was demonstrated. However, the toxicity of alkanes to microbial hosts can possibly be a bottleneck for high productivity of alkane biofuels. To tackle this toxicity issue, it is essential to understand molecular mechanisms of interactions between alkanes and microbial hosts, and to harness these mechanisms to develop microbial host strains with improved tolerance against alkanes. In this study, we aimed to improve the tolerance of Saccharomyces cerevisiae, a model eukaryotic host of industrial significance, to alkane biofuels by exploiting cellular mechanisms underlying alkane response. Results To this end, we first confirmed that nonane (C9), decane (C10), and undecane (C11) were significantly toxic and accumulated in S. cerevisiae. Transcriptome analyses suggested that C9 and C10 induced a range of cellular mechanisms such as efflux pumps, membrane modification, radical detoxification, and energy supply. Since efflux pumps could possibly aid in alkane secretion, thereby reducing the cytotoxicity, we formed the hypothesis that those induced efflux pumps could contribute to alkane export and tolerance. In support of this hypothesis, we demonstrated the roles of the efflux pumps Snq2p and Pdr5p in reducing intracellular levels of C10 and C11, as well as enhancing tolerance levels against C10 and C11. This result provided the evidence that Snq2p and Pdr5p were associated with alkane export and tolerance in S. cerevisiae. Conclusions Here, we investigated the cellular mechanisms of S. cerevisiae response to alkane biofuels at a systems level through transcriptome analyses. Based on these mechanisms, we identified efflux pumps involved in alkane export and tolerance in S. cerevisiae. We believe that the results here provide valuable insights into designing microbial engineering strategies to improve cellular tolerance for

  6. Catalytic dehydroaromatization of n-alkanes by pincer-ligated iridium complexes

    Science.gov (United States)

    Ahuja, Ritu; Punji, Benudhar; Findlater, Michael; Supplee, Carolyn; Schinski, William; Brookhart, Maurice; Goldman, Alan S.

    2011-02-01

    Aromatic hydrocarbons are among the most important building blocks in the chemical industry. Benzene, toluene and xylenes are obtained from the high temperature thermolysis of alkanes. Higher alkylaromatics are generally derived from arene-olefin coupling, which gives branched products—that is, secondary alkyl arenes—with olefins higher than ethylene. The dehydrogenation of acyclic alkanes to give alkylaromatics can be achieved using heterogeneous catalysts at high temperatures, but with low yields and low selectivity. We present here the first catalytic conversion of n-alkanes to alkylaromatics using homogeneous or molecular catalysts—specifically ‘pincer’-ligated iridium complexes—and olefinic hydrogen acceptors. For example, the reaction of n-octane affords up to 86% yield of aromatic product, primarily o-xylene and secondarily ethylbenzene. In the case of n-decane and n-dodecane, the resulting alkylarenes are exclusively unbranched (that is, n-alkyl-substituted), with selectivity for the corresponding o-(n-alkyl)toluene.

  7. Hydrothermal conversion of cellulose to alkanes with in-situ hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Sudong; Tan, Zhongchao [Department of Mechanical and Mechatronics Engineering, University of Waterloo (Canada)], Email: tanz@uwaterloo.ca

    2011-07-01

    A recently study examined the probability of hydrothermal conversion of cellulose to alkanes with in-situ H2 instead of external H2. This paper discusses the results of that study. The study researched the effects of volumetric ratios of initial input water to the reactor (W/R) and of selected catalysts on the alkane yields and composition. It was found that with the proper W/R ratios, the reforming of steam in the steam gas phase would automatically produce in-situ H2 and the key was to maintain the right balance of steam phase and liquid phase in the reactor. All the study results conclude that direct hydrothermal conversion of cellulose to alkanes with in-situ H2 is technically feasible. In addition, the application of this technology would protect the alkane bio-oil production biomass from the impact of unstable external supply of H2.

  8. Selective One-Pot Production of High-Grade Diesel-Range Alkanes from Furfural and 2-Methylfuran over Pd/NbOPO4.

    Science.gov (United States)

    Xia, Qineng; Xia, Yinjiang; Xi, Jinxu; Liu, Xiaohui; Zhang, Yongguang; Guo, Yong; Wang, Yanqin

    2017-02-22

    A one-pot method for the selective production of high-grade diesel-range alkanes from biomass-derived furfural and 2-methylfuran (2-MF) was developed by combining the hydroxyalkylation/alkylation (HAA) condensation of furfural with 2-MF and the subsequent hydrodeoxygenation (HDO) over a multifunctional Pd/NbOPO 4 catalyst. The effects of various reaction conditions as well as a variety of solid-acid catalysts and metal-loaded NbOPO 4 catalysts were systematically investigated to optimize the reaction conditions for both reactions. Under the optimal reaction conditions up to 89.1 % total yield of diesel-range alkanes was obtained from furfural and 2-MF by this one-pot method. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Molecular sieve isolation technique for use in stable carbon isotope analysis of individual long-chain n-alkanes in crude oil

    International Nuclear Information System (INIS)

    Yamada, Keita; Kon, Makoto; Naraoka, Hiroshi; Ishiwatari, Ryoshi; Uzaki, Minoru.

    1994-01-01

    An isolation procedure of microgram amounts of long-chain n-alkanes from crude oil using molecular sieve was examined for its applicability to stable carbon isotope analysis by gas chromatography/isotope ratio mass spectrometry (GC/IRMS). The procedure examined is as follows: molecular sieve (type 5A, 200 mg) in 1 ml of isooctane solvent are mixed with a saturated hydrocarbon fraction extracted from an appropriate amount (approx. 20 mg) of crude oil and stayed at room temperatures for more than 3 hours. Long-chain n-alkanes are isolated by extraction with n-hexane after dissolution of the resulting molecular sieve with 47% hydrofluoric acid solution. The recoveries were 90±6% for C 15 -C 34 n-alkanes when their total amounts applied do not exceed 1.4 mg. No effect of the isolation procedure on carbon isotope ratios of n-alkanes was observed. (author)

  10. Effect of Thermal Maturation on n-alkanes and Kerogen in Preserved Organic Matter: Implications for Paleoenvironment Biomarkers

    Science.gov (United States)

    Craven, O. D.; Longbottom, T. L.; Hockaday, W. C.; Blackaby, E.

    2017-12-01

    Understanding the effects of maturity on biomarkers is vital in assessing biomarker reliability in mature sediments. It is well known for n-alkanes that increased maturity shortens chain lengths and decreases the odd over even preference however, the amount of change in these variables has not been determined for different maturities and types of preserved organic matter. For this reason, it is difficult to judge the trustworthiness of even lightly matured samples for paleoenvironment reconstruction. Another complication is the difficulty of accurately determining maturity as many maturity indicators are error-prone or not appropriate at low maturities. Using hydrous pyrolysis, we artificially matured black shale samples with type I (lacustrine) and type II (marine) kerogen to measure changes in n-alkane length and odd over even preference. Whole rock samples underwent hydrous pyrolysis for 72 hours, at 250 °C, 300 °C, 325 °C, 350 °C, and 375 °C to cover a wide maturity range. From the immature and artificially matured samples, the bitumen was extracted and the saturate fraction was separated using column chromatography. The saturate fraction was analyzed for n-alkanes using gas chromatography-mass spectroscopy. Kerogen structural changes were also measured using solid-state 13C NMR to relate changes in n-alkane biomarkers to changes in kerogen structure. Results show that for type I bitumen the n-alkanes did not change at low maturities considered premature in terms of oil generation (<325 °C). The NMR spectra of the type I kerogen support the lack of change, at low maturities no changes in the aliphatic portion (Fal) were observed, however, after 325 °C Fal decreased with increasing maturity. The loss of Fal indicates kerogen contributing hydrocarbons to bitumen that cause changes in n-alkane measurements. The type II kerogen's Fal also decreased with increasing maturity, but unlike the type I kerogen Fal loss started at low maturities. The differences

  11. Improved Alkane Production in Nitrogen-Fixing and Halotolerant Cyanobacteria via Abiotic Stresses and Genetic Manipulation of Alkane Synthetic Genes.

    Science.gov (United States)

    Kageyama, Hakuto; Waditee-Sirisattha, Rungaroon; Sirisattha, Sophon; Tanaka, Yoshito; Mahakhant, Aparat; Takabe, Teruhiro

    2015-07-01

    Cyanobacteria possess the unique capacity to produce alkane. In this study, effects of nitrogen deficiency and salt stress on biosynthesis of alkanes were investigated in three kinds of cyanobacteria. Intracellular alkane accumulation was increased in nitrogen-fixing cyanobacterium Anabaena sp. PCC7120, but decreased in non-diazotrophic cyanobacterium Synechococcus elongatus PCC7942 and constant in a halotolerant cyanobacterium Aphanothece halophytica under nitrogen-deficient condition. We also found that salt stress increased alkane accumulation in Anabaena sp. PCC7120 and A. halophytica. The expression levels of two alkane synthetic genes were not upregulated significantly under nitrogen deficiency or salt stress in Anabaena sp. PCC7120. The transformant Anabaena sp. PCC7120 cells with additional alkane synthetic gene set from A. halophytica increased intracellular alkane accumulation level compared to control cells. These results provide a prospect to improve bioproduction of alkanes in nitrogen-fixing halotolerant cyanobacteria via abiotic stresses and genetic engineering.

  12. Enzymes and Genes Involved in Aerobic Alkane Degradation

    Directory of Open Access Journals (Sweden)

    Zongze eShao

    2013-05-01

    Full Text Available Alkanes are major constituents of crude oil. They are also present at low concentrations in diverse non-contaminated because many living organisms produce them as chemo-attractants or as protecting agents against water loss. Alkane degradation is a widespread phenomenon in nature. The numerous microorganisms, both prokaryotic and eukaryotic, capable of utilizing alkanes as a carbon and energy source, have been isolated and characterized. This review summarizes the current knowledge of how bacteria metabolize alkanes aerobically, with a particular emphasis on the oxidation of long-chain alkanes, including factors that are responsible for chemotaxis to alkanes , transport across cell membrane of alkanes , the regulation of alkane degradation gene and initial oxidation.

  13. Investigating C4 Grass Contributions to N-alkane Based Paleoclimate Reconstructions

    Science.gov (United States)

    Doman, C. E.; Enders, S. K.; Chadwick, O.; Freeman, K. H.

    2014-12-01

    Plant wax n-alkanes are long-chain, saturated hydrocarbons contained within the protective waxy cuticle on leaves. These lipids are pervasive and persistent in soils and sediments and thus are ideal biomarkers of ancient terrestrial organic matter. In ecosystems dominated by C3 plants, the relationship between the carbon isotopic value of whole leaves and lipids is fairly well documented, but this relationship has not been fully investigated for plants that use C4 photosynthesis. In both cases, it is unclear if the isotopic relationships are sensitive to environmental conditions, or reflect inherited characteristics. This study used a natural climate gradient on the Kohala peninsula of Hawaii to investigate relationships between climate and the δ13C and δ2H values of n-alkanes in C3 and C4 plants. δ13C of C3 leaves and lipids decreased 5 ‰ from the driest to the wettest sites, consistent with published data. Carbon isotope values of C4 plants showed no relationship to moisture up to 1000 mm mean annual precipitation (MAP). Above this threshold, δ 13C values were around 10‰ more depleted, likely due to a combination of canopy effects and C4 grasses growing in an uncharacteristically wet and cold environment. In C3 plants, the fractionation between leaf and lipid carbon isotopes did not vary with MAP, which allows estimations of δ13C leaf to be made from alkanes preserved in ancient sediments. Along this transect, C3 plants produce around twice the quantity of n-alkanes as C4 grasses. C4 grasses produce longer carbon chains. As a result, n-alkanes in the geologic record will be biased towards C3 plants, but the presence of alkanes C33 and C35 indicate the contributions of C4 grasses. In both C3 and C4 plants, average chain length increased with mean annual precipitation, but the taxonomic differences in chain length were greater than environmental differences. Hydrogen isotopes of n-alkanes show no trends with MAP, but do show clear differences between plant

  14. Variation in n-Alkane Distributions of Modern Plants: Questioning Applications of n-Alkanes in Chemotaxonomy and Paleoecology

    Science.gov (United States)

    Bush, R. T.; McInerney, F. A.

    2010-12-01

    Long chain n-alkanes (n-C21 to n-C37) are synthesized as part of the epicuticular leaf wax of terrestrial plants and are among the most recognizable and widely used plant biomarkers. n-Alkane distributions have been utilized in previous studies on modern plant chemotaxonomy, testing whether taxa can be identified based on characteristic n-alkane profiles. Dominant n-alkanes (e.g. n-C27 or n-C31) have also been ascribed to major plant groups (e.g. trees or grasses respectively) and have been used in paleoecology studies to reconstruct fluctuations in plant functional types. However, many of these studies have been based on relatively few modern plant data; with the wealth of modern n-alkane studies, a more comprehensive analysis of n-alkanes in modern plants is now possible and can inform the usefulness of n-alkane distributions as paleoecological indicators. The work presented here is a combination of measurements made using plant leaves collected from the Chicago Botanic Garden and a compilation of published literature data from six continents. We categorized plants by type: angiosperms, gymnosperms, woody plants, forbs, grasses, ferns and pteridophytes, and mosses. We then quantified n-alkane distribution parameters such as carbon preference index (CPI), average chain length (ACL), and dispersion (a measure of the spread of the profile over multiple chain lengths) and used these to compare plant groups. Among all plants, one of the emergent correlations is a decrease in dispersion with increasing CPI. Within and among plant groups, n-alkane distributions show a very large range of variation, and the results show little or no correspondence between broad plant groups and a single dominant n-alkane or a ratio of n-alkanes. These findings are true both when data from six continents are combined and when plants from a given region are compared (North America). We also compared the n-alkane distributions of woody angiosperms, woody gymnosperms, and grasses with one

  15. Selective saturation method for EPR dosimetry with tooth enamel

    International Nuclear Information System (INIS)

    Ignatiev, E.A.; Romanyukha, A.A.; Koshta, A.A.; Wieser, A.

    1996-01-01

    The method of selective saturation is based on the difference in the microwave (mw) power dependence of the background and radiation induced EPR components of the tooth enamel spectrum. The subtraction of the EPR spectrum recorded at low mw power from that recorded at higher mw power provides a considerable reduction of the background component in the spectrum. The resolution of the EPR spectrum could be improved 10-fold, however simultaneously the signal-to-noise ratio was found to be reduced twice. A detailed comparative study of reference samples with known absorbed doses was performed to demonstrate the advantage of the method. The application of the selective saturation method for EPR dosimetry with tooth enamel reduced the lower limit of EPR dosimetry to about 100 mGy. (author)

  16. Geomicrobiological linkages between short-chain alkane consumption and sulfate reduction rates in seep sediments.

    Directory of Open Access Journals (Sweden)

    Arpita eBose

    2013-12-01

    Full Text Available Marine hydrocarbon seeps are ecosystems that are rich in methane, and, in some cases, short-chain (C2-C5 and longer alkanes. C2-C4 alkanes such as ethane, propane and butane can be significant components of seeping fluids. Some sulfate-reducing microbes oxidize short-chain alkanes anaerobically, and may play an important role in both the competition for sulfate and the local carbon budget. To better understand the anaerobic oxidation of short-chain n-alkanes coupled with sulfate-reduction, hydrocarbon-rich sediments from the Gulf of Mexico were amended with artificial, sulfate-replete seawater and one of four n-alkanes (C1-C4 then incubated under strict anaerobic conditions. Measured rates of alkane oxidation and sulfate reduction closely follow stoichiometric predictions that assume the complete oxidation of alkanes to CO2 (though other sinks for alkane carbon likely exist. Changes in the δ13C of all the alkanes in the reactors show enrichment over the course of the incubation, with the C3 and C4 incubations showing the greatest enrichment (4.4‰ and 4.5‰ respectively. The concurrent depletion in the δ13C of dissolved inorganic carbon (DIC implies a transfer of carbon from the alkane to the DIC pool (-3.5 and -6.7‰ for C3 and C4 incubations, respectively. Microbial community analyses reveal that certain members of the class Deltaproteobacteria are selectively enriched as the incubations degrade C1-C4 alkanes. Phylogenetic analyses indicate that distinct phylotypes are enriched in the ethane reactors, while phylotypes in the propane and butane reactors align with previously identified C3-C4 alkane-oxidizing sulfate-reducers. These data further constrain the potential influence of alkane oxidation on sulfate reduction rates in cold hydrocarbon-rich sediments, provide insight into their contribution to local carbon cycling, and illustrate the extent to which short-chain alkanes can serve as electron donors and govern microbial community

  17. Regioselective alkane hydroxylation with a mutant CYP153A6 enzyme

    Science.gov (United States)

    Koch, Daniel J.; Arnold, Frances H.

    2013-01-29

    Cytochrome P450 CYP153A6 from Myobacterium sp. strain HXN1500 was engineered using in-vivo directed evolution to hydroxylate small-chain alkanes regioselectively. Mutant CYP153A6-BMO1 selectively hydroxylates butane and pentane at the terminal carbon to form 1-butanol and 1-pentanol, respectively, at rates greater than wild-type CYP153A6 enzymes. This biocatalyst is highly active for small-chain alkane substrates and the regioselectivity is retained in whole-cell biotransformations.

  18. Simulation studies on structural and thermal properties of alkane thiol capped gold nanoparticles.

    Science.gov (United States)

    Devi, J Meena

    2017-06-01

    The structural and thermal properties of the passivated gold nanoparticles were explored employing molecular dynamics simulation for the different surface coverage densities of the self-assembled monolayer (SAM) of alkane thiol. The structural properties of the monolayer protected gold nanoparticles such us overall shape, organization and conformation of the capping alkane thiol chains were found to be influenced by the capping density. The structural order of the thiol capped gold nanoparticles enhances with the increase in the surface coverage density. The specific heat capacity of the alkane thiol capped gold nanoparticles was found to increase linearly with the thiol coverage density. This may be attributed to the enhancement in the lattice vibrational energy. The present simulation results suggest, that the structural and thermal properties of the alkane thiol capped gold nanoparticles may be modified by the suitable selection of the SAM coverage density. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Shale gas opportunities. Dehydrogenation of light alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Patcas, F.C.; Dieterle, M.; Rezai, A.; Asprion, N. [BASF SE, Ludwigshafen (Germany)

    2013-11-01

    The discovery and use of shale gas in North America has become a game changer for the chemical industry by access to a cheaper feedstock compared to conventional oil. Increased number of ethane crackers spurred increasing interest in light alkanes dehydrogenation. Several companies have announced their interest in new propane dehydrogenation units in North America. BASF is developing light alkanes dehydrogenation technologies for two decades now. BASF developed jointly with Linde the isothermal C3 dehydrogenation process. The latest dehydrogenation catalyst development at BASF focused on a supported and steam resistant Pt-Sn catalyst which yielded excellent selectivity and activity. Intense research work both internally as well as in cooperation with universities contributed to the understanding of the relationship between the surface structure and catalyst performances like activity, selectivity and coking resistance. Using such type of catalysts BASF developed an autothermal propane dehydrogenation as well as a butane dehydrogenation process. The most recent catalyst development was a dehydrogenation catalyst coated on a honeycomb monolith to improve catalyst usage and pressure drop. This will probably be the first industrial usage of catalytic monoliths in a chemical synthesis process. (orig.) (Published in summary form only)

  20. Study of Liquid Alkanes Production from Biomass-Derived Carbohydrates by Aldol-Condensation and Hydrogenation Processes

    Directory of Open Access Journals (Sweden)

    Navadol Laosiripojana

    2010-10-01

    Full Text Available This research aims to synthesis liquid alkanes from biomass-derived hydroxyl methyl furfural (HMF and furfural by aldol-condensation and hydrogenation processes over several catalysts i.e. TiO2, TiO2-ZrO2, Pd/Al2O3 and Pd/CeO2. It was found that the catalysts make significant impact on the selectivity and yield of alkanes product. It is noted that Pd/Al2O3 provided the highest alkane yield and selectivity. The aldol-condensation and hydrogenation of HMF over Pd/Al2O3 provide high C12 selectivity whereas the aldol-condensation and hydrogenation of furfural over Pd/Al2O3 provide high C8 selectivity. The effects of reaction temperature, reaction pressure and reaction time were then studied. The effect of inlet furfural to acetone molar ratio was also determined. It was also found that the optimized conditions to maximize the yield of alkane production from the aldol-condensation/hydrogenation of HMF and furfural are (i at 53oC and 24 hr for aldol-condenstation of HMF, (ii 80oC and 24 hr for aldol-condenstation of furfural, and (iii 120oC for 6 hr with HMF to acetone molar ratio of 3:1 and furfural to acetone molar ratio of 4:1 in the presence of Pd/Al2O3 (calcined at 500oC for hydrogenation reaction.

  1. n-Alkane adsorption to polar silica surfaces.

    Science.gov (United States)

    Brindza, Michael R; Ding, Feng; Fourkas, John T; Walker, Robert A

    2010-03-21

    The structures of medium-length n-alkane species (C(8)-C(11)) adsorbed to a hydrophilic silica/vapor interface were examined using vibrational sum frequency spectroscopy. Experiments sampling out-of-plane orientation show a clear pattern in vibrational band intensities that implies chains having primarily all-trans conformations lying flat along the interface. Further analysis shows that the methylene groups of the alkane chains have their local symmetry axes directed into and away from the surface. Spectra acquired under different polarization conditions interlock to reinforce this picture of interfacial structure and organization. Variation in signal intensities with chain length suggests that correlation between adsorbed monomers weakens with increasing chain length. This result stands in contrast with alkane behavior at neat liquid/vapor interfaces where longer length alkanes show considerably more surface induced ordering than short chain alkanes.

  2. Pulse radiolysis studies on liquid alkanes and related polymers

    International Nuclear Information System (INIS)

    Tagawa, S.; Hayashi, N.; Yoshida, Y.; Washio, M.; Tabata, Y.

    1989-01-01

    Absorption spectra of alkane radical cations, alkane excited states, and alkyl radicals and electrons in irradiated neat liquid alkanes at room temperature were assigned on subnanosecond and nanosecond time scale after an electron pulse. Two broad visible and near-infrared absorption bands of alkane excited states and radical cations, and UV absorption band of alkyl radicals was observed in neat n-alkanes. In neat cyclohezane and trans-decalin, very broad visible absorption band mainly due to alkane excited states and UV absorption band of alkyl radicals were observed. In neat neopentane and isooctane, visible absorption bands were not observed, although UV absorption bands of alkyl radicals were observed. The wavelengths of absorptive peaks of alkane radical cations and excited states become longer with increasing the number of carbon atoms of n-alkanes. The lifetimes of alkane radical cations become shorter with decreasing the number of carbon atoms of n-alkanes and are shorter than those of electrons in neat alkanes. The main processes of the alkyl radical formation finish within the time resolution of our system (about 20 ps). The alkyl radicals are produced mainly from excited radicals cations and partly from higher excited states, the lowest excited states, radical cations, and thermal hydrogen atoms, In irradiated ethylene-propylene copolymers, broad absorption bands of excited states and tail parts of absorption bands of radical cations and electrons were observed in visible and near-infrared region, although UV absorption of alkyl radicals was not confirmed lack of transparency of polymer films. (author)

  3. Deposition of radiation energy in solids as visualized by the distribution, structure and properties of alkyl radicals in γ-irradiated n-alkane single crystals

    International Nuclear Information System (INIS)

    Gillbro, T.; Lund, A.

    1976-01-01

    This paper summarizes results obtained earlier from ESR studies of γ-irradiated n-alkane single crystals. It also contains some new experimental results that serve to give a more complete picture of the deposition of radiation energy in solid alkanes. The experiments performed with solid n-alkanes have thus far provided structural data that permit the nature and even the conformation of alkyl radicals to be clearly understood. Two types of radical exist namely, one where the unpaired electron is located next to the end methyl group and one with the unpaired electron in the interior of the chain. The first type has a conformation which differs from that of the undamaged molecule. Microwave saturation data show that there is a difference in relaxation properties of these radicals which can be understood in terms of a difference in mobility. Relative yield measurements give the distribution of isomeric alkyl, the result differing from that obtained using product analysis in liquids. For protiated n-alkanes n-alkyl is lacking and the 2-alkyl concentration is higher than expected. For deuterated n-alkanes the ESR spectrum is mainly that of radicals with the unpaired electron located in the interior of the carbon chain. This isotope effect is again contrary to observations in liquid n-alkanes. The broad lines observed in protiated alkanes irradiated at 77 K and deuterated alkanes irradiated at 4.2 K are not believed to arise from strong spin-spin interactions. They are thought instead to arise from distorted crystal and radical structures relating to the damaged regions of the crystals. (Auth.)

  4. Wetting of alkanes on water

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, E.; Bonn, D.; Meunier, J.; Shahidzadeh, N. [Ecole Normale Superieure, Laboratoire de Physique Statistique, 24 rue Lhomond, 75231, Cedex 05 Paris (France); Broseta, D.; Ragil, K. [Institut Francais du Petrole, 1-4 avenue de Bois Preau, 92852 Rueil-Malmaison Cedex (France); Dobbs, H.; Indekeu, J.O. [Katholieke Universiteit Leuven, Laboratorium voor Vaste-Stoffysica en Magnetisme, B-3001 Leuven (Belgium)

    2002-04-01

    The wetting behavior of oil on water (or brine) has important consequences for the transport properties of oil in water-containing porous reservoirs, and consequently for oil recovery. The equilibrium wetting behavior of model oils composed of pure alkanes or alkane mixtures on brine is reviewed in this paper. Intermediate between the partial wetting state, in which oil lenses coexist on water with a thin film of adsorbed alkane molecules, and the complete wetting state, in which a macroscopically thick oil layer covers the water, these systems display a third, novel wetting state, in which oil lenses coexist with a mesoscopic (a few-nanometers-thick) oil film. The nature and location of the transitions between these wetting regimes depend on oil and brine compositions, temperature and pressure.

  5. Alkane Metathesis

    KAUST Repository

    Basset, Jean-Marie; Callens, Emmanuel; Riache, Nassima

    2015-01-01

    metal for alkane (de)hydrogenation and another for olefin metathesis in which the activity of these catalysts is essentially driven by the performance of the (de)hydrogenation steps. In this book chapter, we would focus on the evolution of these two

  6. Alkanes from Bioderived Furans by using Metal Triflates and Palladium-Catalyzed Hydrodeoxygenation of Cyclic Ethers.

    Science.gov (United States)

    Song, Hai-Jie; Deng, Jin; Cui, Min-Shu; Li, Xing-Long; Liu, Xin-Xin; Zhu, Rui; Wu, Wei-Peng; Fu, Yao

    2015-12-21

    Using a metal triflate and Pd/C as catalysts, alkanes were prepared from bioderived furans in a one-pot hydrodeoxygenation (HDO) process. During the reaction, the metal triflate plays a crucial role in the ring-opening HDO of furan compounds. The entire reaction process has goes through two major phases: at low temperatures, saturation of the exocyclic double bond and furan ring are catalyzed by Pd/C; at high temperatures, the HDO of saturated furan compounds is catalyzed by the metal triflate. The reaction mechanism was verified by analyzing the changes of the intermediates during the reaction. In addition, different metal triflates, solvents, and catalyst recycling were also investigated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. In situ detection of anaerobic alkane metabolites in subsurface environments

    Directory of Open Access Journals (Sweden)

    Lisa eGieg

    2013-06-01

    Full Text Available Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contibuting to modern-day detrimental effects such as oilfield souring, or may lead to more benefical technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments.

  8. Degradability of n-alkanes during ex situ natural bioremediation of soil contaminated by heavy residual fuel oil (mazut

    Directory of Open Access Journals (Sweden)

    Ali Ramadan Mohamed Muftah

    2013-01-01

    Full Text Available It is well known that during biodegradation of oil in natural geological conditions, or oil pollutants in the environment, a degradation of hydrocarbons occurs according to the well defined sequence. For example, the major changes during the degradation process of n-alkanes occur in the second, slight and third, moderate level (on the biodegradation scale from 1 to 10. According to previous research, in the fourth, heavy level, when intensive changes of phenanthrene and its methyl isomers begin, n-alkanes have already been completely removed. In this paper, the ex situ natural bioremediation (unstimulated bioremediation, without addition of biomass, nutrient substances and biosurfactant of soil contaminated with heavy residual fuel oil (mazut was conducted during the period of 6 months. Low abundance of n-alkanes in the fraction of total saturated hydrocarbons in the initial sample (identification was possible only after concentration by urea adduction technique showed that the investigated oil pollutant was at the boundary between the third and the fourth biodegradation level. During the experiment, an intense degradation of phenanthrene and its methyl-, dimethyl-and trimethyl-isomers was not followed by the removal of the remaining n-alkanes. The abundance of n-alkanes remained at the initial low level, even at end of the experiment when the pollutant reached one of the highest biodegradation levels. These results showed that the unstimulated biodegradation of some hydrocarbons, despite of their high biodegradability, do not proceed completely to the end, even at final degradation stages. In the condition of the reduced availability of some hydrocarbons, microorganisms tend to opt for less biodegradable but more accessible hydrocarbons.

  9. C14–22 n-Alkanes in Soil from the Freetown Layered Intrusion, Sierra Leone: Products of Pt Catalytic Breakdown of Natural Longer Chain n-Alkanes?

    Directory of Open Access Journals (Sweden)

    John F. W. Bowles

    2018-03-01

    Full Text Available Soil above a platinum-group element (PGE-bearing horizon within the Freetown Layered Intrusion, Sierra Leone, contains anomalous concentrations of n-alkanes (CnH2n+2 in the range C14 to C22 not readily attributable to an algal or lacustrine origin. Longer chain n-alkanes (C23 to C31 in the soil were derived from the breakdown of leaf litter beneath the closed canopy humid tropical forest. Spontaneous breakdown of the longer chain n-alkanes to form C14–22 n-alkanes without biogenic or abiogenic catalysts is unlikely as the n-alkanes are stable. In the Freetown soil, the catalytic properties of the PGE (Pt in particular may lower the temperature at which oxidation of the longer chain n-alkanes can occur. Reaction between these n-alkanes and Pt species, such as Pt2+(H2O2(OH2 and Pt4+(H2O2(OH4 can bend and twist the alkanes, and significantly lower the Heat of Formation. Microbial catalysis is a possibility. Since a direct organic geochemical source of the lighter n-alkanes has not yet been identified, this paper explores the theoretical potential for abiogenic Pt species catalysis as a mechanism of breakdown of the longer n-alkanes to form C14–22 alkanes. This novel mechanism could offer additional evidence for the presence of the PGE in solution, as predicted by soil geochemistry.

  10. The structure of n-alkane binary mixtures adsorbed on graphite

    International Nuclear Information System (INIS)

    Espeau, Philippe; White, John W.; Papoular, Robert J.

    2005-01-01

    The thermodynamics and structure of the surface adsorbed phase in binary C15-C16 and C15-C17 n-alkane mixtures confined in graphite pores have been studied by differential scanning calorimetry and small-angle X-ray scattering. The previously observed selective adsorption of the longer alkane for chain length differences greater than five carbon atoms is verified but reduced for chain length differences less than or equal to two. With a difference in chain length of one carbon atom, Vegard's law is followed for the melting points of the adsorbed mixture and the (0 2) d-spacing is a continuous function of the mole fraction x. With a two-carbon atom difference, samples aged for 1 week have a lamellar structure for which the entities A 1-x B x try to be commensurate with the substrate. The same samples aged for 1 month show a continuous parabolic x-dependence for both the melting points and the d-spacings. An explanation in terms of selective probability of adsorption is proposed based on crystallographic considerations

  11. The structure of n-alkane binary mixtures adsorbed on graphite

    Energy Technology Data Exchange (ETDEWEB)

    Espeau, Philippe [Laboratoire de Chimie Physique et Minerale, Faculte de Pharmacie, Universite Rene Descartes-Paris V, F-75006 Paris (France)]. E-mail: philippe.espeau@univ-paris5.fr; White, John W. [Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia); Papoular, Robert J. [Laboratoire Leon Brillouin, CEA-CEN Saclay, F-91191 Gif-sur-Yvette Cedex (France)

    2005-12-15

    The thermodynamics and structure of the surface adsorbed phase in binary C15-C16 and C15-C17 n-alkane mixtures confined in graphite pores have been studied by differential scanning calorimetry and small-angle X-ray scattering. The previously observed selective adsorption of the longer alkane for chain length differences greater than five carbon atoms is verified but reduced for chain length differences less than or equal to two. With a difference in chain length of one carbon atom, Vegard's law is followed for the melting points of the adsorbed mixture and the (0 2) d-spacing is a continuous function of the mole fraction x. With a two-carbon atom difference, samples aged for 1 week have a lamellar structure for which the entities A{sub 1-x}B {sub x} try to be commensurate with the substrate. The same samples aged for 1 month show a continuous parabolic x-dependence for both the melting points and the d-spacings. An explanation in terms of selective probability of adsorption is proposed based on crystallographic considerations.

  12. Separation of benzene from alkanes by solvent extraction with 1-ethylpyridinium ethylsulfate ionic liquid

    International Nuclear Information System (INIS)

    Gomez, Elena; Dominguez, Irene; Calvar, Noelia; Dominguez, Angeles

    2010-01-01

    The (liquid + liquid) equilibrium (LLE) data for ternary mixtures {alkane + benzene + 1-ethylpyridinium ethylsulfate ([EPy][EtSO 4 ])} at T = (283.15 and 298.15) K and atmospheric pressure are presented. The alkanes used were hexane and heptane. The cloud point method was used to determinate the binodal curve, and the tie-line compositions were obtained by density measurements. The LLE data obtained were used to calculate distribution coefficients and selectivity values. The consistency of tie-line data was ascertained by applying the Othmer-Tobias and Hand equations. Correlation of the experimental tie-lines was conducted through the use of NRTL equation, which provides good correlation of the experimental data. The results show that [EPy][EtSO 4 ] can be used as an alternative solvent in liquid extraction processes for the removal of benzene from its mixtures with alkanes.

  13. Partial molar volumes of organic solutes in water. XXIV. Selected alkane-α,ω-diols at temperatures T = 298 K to 573 K and pressures up to 30 MPa

    International Nuclear Information System (INIS)

    Cibulka, Ivan; Hnědkovský, Lubomír

    2013-01-01

    Highlights: • Standard molar volumes of three alkane-α,ω-diols (C 5 , C 8 , C 9 ) in water are presented. • Data were obtained in the range T from (298 to 573) K and p up to 30 MPa. • Dependences on carbon atom number, temperature, and pressure are analysed. -- Abstract: Density data for dilute aqueous solutions of three alkane-α,ω-diols (pentane-1,5-diol, octane-1,8-diol, nonane-1,9-diol) are presented together with standard molar volumes (partial molar volumes at infinite dilution) calculated from the experimental data. The measurements were performed at temperatures from T = 298 K up to T = 573 K. Experimental pressures were slightly above the saturation vapour pressure of water, and (15 and 30) MPa. The data were obtained using a high-temperature high-pressure flow vibrating-tube densimeter. Measured standard molar volumes were combined with data previously published for other members of the homologous series and discussed. Experimental standard molar volumes were correlated as a function of temperature and pressure using an empirical polynomial function. Dependences of standard molar volumes on temperature and pressure were analysed. Contributions of the methylene group to the standard molar volume were also evaluated and discussed

  14. Thermodynamic properties of (an ester + an alkane). XVIII. Experimental HmEandVmE values for (an alkyl butanoate + an alkane) at T = 318.15 K

    International Nuclear Information System (INIS)

    Ortega, J.; Navas, A.; Sabater, G.; Ascanio, M.; Placido, J.

    2007-01-01

    This work presents the experimental values of H m E andV m E obtained at a temperature of 318.15 K and atmospheric pressure for a group of 24 binary mixtures comprised of the first four alkyl butanoates (methyl to butyl) with six odd alkanes, from heptane to heptadecane. All the mixtures are endothermic, and present a regular increase in H m E with the molecular weight of the saturated hydrocarbon, while, for a same alkane, the enthalpic effects diminish with increasing alcoholic chain of the butanoate. The variation in V m E occurs in the same direction. In this paper the structural behaviour of these systems and the influence of temperature on excess properties are analysed. Experimental data are correlated with a suitable polynomial equation which is given as a function of concentration and temperature, that permits a simultaneous correlation to be established with other properties of the mixture, such as (vapour + liquid) equilibria; and acceptable results are obtained. Finally, an estimation of H m E is made with two known versions of the UNIFAC model. In the version by Dang and Tassios [J. Dang, D.P. Tassios, Ind. Eng. Chem. Process Des. Dev. 25 (1986) 22-31.], a method is proposed that considers the interaction parameters as a function of the butanoate alkanolic chain. The estimations obtained for H m E are good

  15. Thermal, Catalytic Conversion of Alkanes to Linear Aldehydes and Linear Amines.

    Science.gov (United States)

    Tang, Xinxin; Jia, Xiangqing; Huang, Zheng

    2018-03-21

    Alkanes, the main constituents of petroleum, are attractive feedstocks for producing value-added chemicals. Linear aldehydes and amines are two of the most important building blocks in the chemical industry. To date, there have been no effective methods for directly converting n-alkanes to linear aldehydes and linear amines. Here, we report a molecular dual-catalyst system for production of linear aldehydes via regioselective carbonylation of n-alkanes. The system is comprised of a pincer iridium catalyst for transfer-dehydrogenation of the alkane using t-butylethylene or ethylene as a hydrogen acceptor working sequentially with a rhodium catalyst for olefin isomerization-hydroformylation with syngas. The system exhibits high regioselectivity for linear aldehydes and gives high catalytic turnover numbers when using ethylene as the acceptor. In addition, the direct conversion of light alkanes, n-pentane and n-hexane, to siloxy-terminated alkyl aldehydes through a sequence of Ir/Fe-catalyzed alkane silylation and Ir/Rh-catalyzed alkane carbonylation, is described. Finally, the Ir/Rh dual-catalyst strategy has been successfully applied to regioselective alkane aminomethylation to form linear alkyl amines.

  16. Plant n-alkane production from litterfall altered the diversity and community structure of alkane degrading bacteria in litter layer in lowland subtropical rainforest in Taiwan

    Science.gov (United States)

    Huang, Tung-Yi; Hsu, Bing-Mu; Chao, Wei-Chun; Fan, Cheng-Wei

    2018-03-01

    n-Alkane and alkane-degrading bacteria have long been used as crucial biological indicators of paleoecology, petroleum pollution, and oil and gas prospecting. However, the relationship between n-alkane and alkane-degrading bacteria in natural forests is still poorly understood. In this study, long-chain n-alkane (C14-C35) concentrations in litterfall, litter layer, and topsoil as well as the diversity and abundance of n-alkane-degrading bacterial communities in litter layers were investigated in three habitats across a lowland subtropical rainforest in southern Taiwan: ravine, windward, and leeward habitats in Nanjenshan. Our results demonstrate that the litterfall yield and productivity of long-chain n-alkane were highest in the ravine habitats. However, long-chain n-alkane concentrations in all habitats were decreased drastically to a similar low level from the litterfall to the bulk soil, suggesting a higher rate of long-chain n-alkane degradation in the ravine habitat. Operational taxonomic unit (OTU) analysis using next-generation sequencing data revealed that the relative abundances of microbial communities in the windward and leeward habitats were similar and different from that in the ravine habitat. Data mining of community amplicon sequencing using the NCBI database revealed that alkB-gene-associated bacteria (95 % DNA sequence similarity to alkB-containing bacteria) were most abundant in the ravine habitat. Empirical testing of litter layer samples using semi-quantitative polymerase chain reaction for determining alkB gene levels confirmed that the ravine habitat had higher alkB gene levels than the windward and leeward habitats. Heat map analysis revealed parallels in pattern color between the plant and microbial species compositions of the habitats, suggesting a causal relationship between the plant n-alkane production and microbial community diversity. This finding indicates that the diversity and relative abundance of microbial communities in the

  17. Catalytic oxidation of light alkanes (C1-C4) by heteropoly compounds

    KAUST Repository

    Sun, Miao; Zhang, Jizhe; Putaj, Piotr; Caps, Valerie; Lefè bvre, Fré dé ric; Pelletier, Jeremie; Basset, Jean-Marie

    2014-01-01

    Heteropoly compounds (HPC) have revealed their potential to generate catalyst for selectively converting light alkanes to oxygenated products. There are various structures in which they are active the primary structure being that of the heteropolyanion itself, the secondary structure is the three-dimensional arrangements of polyanions, and the tertiary structure representing the manner in which the secondary structure assembles into solid particles. There are also a huge variety of elements inside the HPA. The heteropoly acids can have acidity, which varies dramatically depending on composition. This complexity of situation makes it very difficult to really have a predictive vision of their ability to activate and functionalize alkanes. However, a large amount of data reported suggests that the initial formula of the precatalyst is pivotal to direct the selectivity of the reaction toward different oxygenates. Inclusion of alternative transition metal atoms as addenda is highly influential with iron, vanadium, and antimony being particularly outstanding.

  18. Catalytic oxidation of light alkanes (C1-C4) by heteropoly compounds

    KAUST Repository

    Sun, Miao

    2014-01-22

    Heteropoly compounds (HPC) have revealed their potential to generate catalyst for selectively converting light alkanes to oxygenated products. There are various structures in which they are active the primary structure being that of the heteropolyanion itself, the secondary structure is the three-dimensional arrangements of polyanions, and the tertiary structure representing the manner in which the secondary structure assembles into solid particles. There are also a huge variety of elements inside the HPA. The heteropoly acids can have acidity, which varies dramatically depending on composition. This complexity of situation makes it very difficult to really have a predictive vision of their ability to activate and functionalize alkanes. However, a large amount of data reported suggests that the initial formula of the precatalyst is pivotal to direct the selectivity of the reaction toward different oxygenates. Inclusion of alternative transition metal atoms as addenda is highly influential with iron, vanadium, and antimony being particularly outstanding.

  19. Diversity of alkane degrading bacteria associated with plants in a petroleum oil-contaminated environment and expression of alkane monooxygenase (alkB) genes

    Science.gov (United States)

    Andria, V.; Yousaf, S.; Reichenauer, T. G.; Smalla, K.; Sessitsch, A.

    2009-04-01

    Among twenty-six different plant species, Italian ryegrass (Lolium multiflorum var. Taurus), Birdsfoot trefoil (Lotus corniculatus var. Leo), and the combination of both plants performed well in a petroleum oil contaminated soil. Hydrocarbon degrading bacteria were isolated from the rhizosphere, root interior and shoot interior and subjected to the analysis of 16S rRNA, the 16S and 23S rRNA intergenic spacer region and alkane hydroxylase genes. Higher numbers of culturable, degrading bacteria were associated with Italian ryegrass, which were also characterized by a higher diversity, particularly in the plant interior. Only half of the isolated bacteria hosted known alkane hydroxylase genes (alkB and cytochrome P153-like). Our results indicated that alkB genes have spread through horizontal gene transfer, particularly in the Italian ryegrass rhizosphere, and suggested mobility of catabolic genes between Gram-negative and Gram-positive bacteria. We furthermore studied the colonization behaviour of selected hydrocarbon-degrading strains (comprising an endopyhte and a rhizosphere strain) as well as the expression of their alkane monooxygenase genes in association with Italian ryegrass. Results showed that the endophyte strain better colonized the plant, particularly the plant interior, and also showed higher expression of alkB genes suggesting a more efficient degradation of the pollutant. Furthermore, plants inoculated with the endophyte were better able to grow in the presence of diesel. The rhizosphere strain colonized primarily the rhizosphere and showed low alkB gene expression in the plant interior.

  20. Simple addition of silica to an alkane solution of Wilkinson WMe6 or Schrock W alkylidyne complex give active complex for saturated and unsaturated hydrocarbons metathesis

    KAUST Repository

    Callens, Emmanuel

    2015-08-24

    Addition of PDA silica to a solution of the Wilkinson WMe6 as well as the Schrock W neopentilidyne tris neopentyl complex catalyzes linear or cyclic alkanes to produce respectively a distribution of linear alkanes from methane up to triacontane or a mixture of cyclic and macrocyclic hydrocarbons. This single catalytic system transforms also linear α-olefins into higher and lower homologues via isomerization/metathesis mechanism (ISOMET). This complex is also efficient towards functionalized olefins. Unsaturated fatty acid esters (FAEs) are converted into diesters corresponding to self-metathesis products.

  1. Fast on-line analysis of process alkane gas mixtures by NIR spectroscopy

    NARCIS (Netherlands)

    Boelens, H. F. M.; Kok, W. T.; de Noord, O. E.; Smilde, A. K.

    2000-01-01

    Proper operation of a molecular sieve process for the separation of iso- and cyclo-alkanes front normal alkanes requires the fast online detection of normal alkanes breaking through the column. The feasibility of using near-infrared (NIR) spectroscopy for this application was investigated. Alkane

  2. Effects of soil water saturation on sampling equilibrium and kinetics of selected polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Kim, Pil-Gon; Roh, Ji-Yeon; Hong, Yongseok; Kwon, Jung-Hwan

    2017-10-01

    Passive sampling can be applied for measuring the freely dissolved concentration of hydrophobic organic chemicals (HOCs) in soil pore water. When using passive samplers under field conditions, however, there are factors that might affect passive sampling equilibrium and kinetics, such as soil water saturation. To determine the effects of soil water saturation on passive sampling, the equilibrium and kinetics of passive sampling were evaluated by observing changes in the distribution coefficient between sampler and soil (K sampler/soil ) and the uptake rate constant (k u ) at various soil water saturations. Polydimethylsiloxane (PDMS) passive samplers were deployed into artificial soils spiked with seven selected polycyclic aromatic hydrocarbons (PAHs). In dry soil (0% water saturation), both K sampler/soil and k u values were much lower than those in wet soils likely due to the contribution of adsorption of PAHs onto soil mineral surfaces and the conformational changes in soil organic matter. For high molecular weight PAHs (chrysene, benzo[a]pyrene, and dibenzo[a,h]anthracene), both K sampler/soil and k u values increased with increasing soil water saturation, whereas they decreased with increasing soil water saturation for low molecular weight PAHs (phenanthrene, anthracene, fluoranthene, and pyrene). Changes in the sorption capacity of soil organic matter with soil water content would be the main cause of the changes in passive sampling equilibrium. Henry's law constant could explain the different behaviors in uptake kinetics of the selected PAHs. The results of this study would be helpful when passive samplers are deployed under various soil water saturations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Liquid–liquid extraction of toluene from alkane with pyridinium based ionic liquid ([BPy][NO3] and [HPy][NO3]) at 298.15 K and atmospheric pressure

    International Nuclear Information System (INIS)

    Enayati, Mobin; Mokhtarani, Babak; Sharifi, Ali; Anvari, Sanam; Mirzaei, Mojtaba

    2016-01-01

    Highlights: • Extraction of toluene from alkane with pyridinium based ionic liquid was studied. • The ionic liquids [BPy][NO 3 ] and [HPy][NO 3 ] were used. • The effect of alkane chain length on selectivity of toluene was evaluated. • The effect of alkyl chain length of ionic liquids on toluene selectivity was investigated. • The experimental data were correlated with the NRTL model. - Abstract: The focus of this paper is to study the liquid−liquid extraction process for the separation of toluene from alkane employing the ionic liquids N-butylpyridinium nitrate, [BPy][NO 3 ], and N-hexylpyridinium nitrate, [HPy][NO 3 ], as a new solvents. New experimental data for the ternary systems of {[BPy][NO 3 ] (1) + heptane, or octane, or decane (2) + toluene (3)} and {[HPy][NO 3 ] (1) + heptane, or octane, or decane (2) + toluene (3)} at T = 298.15 K and atmospheric pressure are reported. The Othmer-Tobias and Hand correlation are examined to check the reliability of the experimental LLE data. The toluene distribution ratios and selectivity were calculated form the experimental data. The selectivity values are higher than unity which indicates the ILs, [BPy][NO 3 ] and [HPy][NO 3 ], used in this work are potential solvents to separate toluene from alkane. Besides, the effect of the alkane chain length in the selectivity values was evaluated. In addition, the result of the NRTL thermodynamic modeling shows, the experimental data were satisfactorily correlated.

  4. Metabolism of Hydrocarbons in n-Alkane-Utilizing Anaerobic Bacteria.

    Science.gov (United States)

    Wilkes, Heinz; Buckel, Wolfgang; Golding, Bernard T; Rabus, Ralf

    2016-01-01

    The glycyl radical enzyme-catalyzed addition of n-alkanes to fumarate creates a C-C-bond between two concomitantly formed stereogenic carbon centers. The configurations of the two diastereoisomers of the product resulting from n-hexane activation by the n-alkane-utilizing denitrifying bacterium strain HxN1, i.e. (1-methylpentyl)succinate, were assigned as (2S,1'R) and (2R,1'R). Experiments with stereospecifically deuterated n-(2,5-2H2)hexanes revealed that exclusively the pro-S hydrogen atom is abstracted from C2 of the n-alkane by the enzyme and later transferred back to C3 of the alkylsuccinate formed. These results indicate that the alkylsuccinate-forming reaction proceeds with an inversion of configuration at the carbon atom (C2) of the n-alkane forming the new C-C-bond, and thus stereochemically resembles a SN2-type reaction. Therefore, the reaction may occur in a concerted manner, which may avoid the highly energetic hex-2-yl radical as an intermediate. The reaction is associated with a significant primary kinetic isotope effect (kH/kD ≥3) for hydrogen, indicating that the homolytic C-H-bond cleavage is involved in the first irreversible step of the reaction mechanism. The (1-methylalkyl)succinate synthases of n-alkane-utilizing anaerobic bacteria apparently have very broad substrate ranges enabling them to activate not only aliphatic but also alkyl-aromatic hydrocarbons. Thus, two denitrifiers and one sulfate reducer were shown to convert the nongrowth substrate toluene to benzylsuccinate and further to the dead-end product benzoyl-CoA. For this purpose, however, the modified β-oxidation pathway known from alkylbenzene-utilizing bacteria was not employed, but rather the pathway used for n-alkane degradation involving CoA ligation, carbon skeleton rearrangement and decarboxylation. Furthermore, various n-alkane- and alkylbenzene-utilizing denitrifiers and sulfate reducers were found to be capable of forming benzyl alcohols from diverse alkylbenzenes

  5. Alkane inducible proteins in Geobacillus thermoleovorans B23

    Directory of Open Access Journals (Sweden)

    Kato Tomohisa

    2009-03-01

    Full Text Available Abstract Background Initial step of β-oxidation is catalyzed by acyl-CoA dehydrogenase in prokaryotes and mitochondria, while acyl-CoA oxidase primarily functions in the peroxisomes of eukaryotes. Oxidase reaction accompanies emission of toxic by-product reactive oxygen molecules including superoxide anion, and superoxide dismutase and catalase activities are essential to detoxify them in the peroxisomes. Although there is an argument about whether primitive life was born and evolved under high temperature conditions, thermophilic archaea apparently share living systems with both bacteria and eukaryotes. We hypothesized that alkane degradation pathways in thermophilic microorganisms could be premature and useful to understand their evolution. Results An extremely thermophilic and alkane degrading Geobacillus thermoleovorans B23 was previously isolated from a deep subsurface oil reservoir in Japan. In the present study, we identified novel membrane proteins (P16, P21 and superoxide dismutase (P24 whose production levels were significantly increased upon alkane degradation. Unlike other bacteria acyl-CoA oxidase and catalase activities were also increased in strain B23 by addition of alkane. Conclusion We first suggested that peroxisomal β-oxidation system exists in bacteria. This eukaryotic-type alkane degradation pathway in thermophilic bacterial cells might be a vestige of primitive living cell systems that had evolved into eukaryotes.

  6. Hydrogenation and hydrodeoxygenation of difurfurylidene acetone to liquid alkanes over Raney Ni and the supported Pt catalysts

    International Nuclear Information System (INIS)

    Li, Yuping; Huang, Xiaoming; Zhang, Qian; Chen, Lungang; Zhang, Xinghua; Wang, Tiejun; Ma, Longlong

    2015-01-01

    Highlights: • The C_8−C_1_4 alkane yield of 82.9% was obtained in the two-step hydrogenation/HDO process. • Protonation effect from methanol solvent increased F_2A conversion in the two-step process. • The rate-determining step was acyl C=O bond hydrogenation in the first step of F_2A hydrogenation. • The acidic centers from SiO_2−ZrO_2 activated the acyl and oxygen atoms of intermediates. • Acidity of SiO_2−ZrO_2 and Pt active centers of 1 wt%Pt/SiO_2−ZrO_2 resulted stable HDO performance. - Abstract: Direct HDO process for difurfurylidene acetone dimer (F_2A) conversion to liquid alkanes (C_8−C_1_4) at 260 °C in a batch reactor was investigated over different material supported 1 wt%Pt catalysts, including SAPO-11, HZSM-5, SiO_2−Al_2O_3, MCM-22, and home-made SiO_2−ZrO_2. C_8−C_1_4 alkanes of 55.8% was obtained over the optimized 1 wt%Pt/SiO_2−ZrO_2 due to its proper pore size of 9.0 nm and moderate acidic centers, together with more than 10% carbon yield of the oxygenated hydrocarbons, including C_1_1−C_1_3 chain alcohols & ketones and the hydrogenated F_2A dimers with furan ring (H-F_2A dimers). To improve the liquid alkane yield, a two-step process for F_2A conversion was also investigated, which included low-temperature hydrogenation at 50 °C over Raney Ni catalyst in a batch reactor and the subsequent high-temperature hydrodeoxygenation (HDO) at 280 °C over 1 wt%Pt/SiO_2−ZrO_2 in a fixed-bed reactor. The selectivity of 1,5-di(tetrahydro-2-furanyl)-3-pentanol (II-c) was the highest of 83.0% among the hydrogenated intermediates of H-F_2A dimers due to the protonation effect of methanol as the solvent and the hydrogenation of C=C bonds by Ni active centers. In the same time, the high content of this saturated alcohol H-dimer of II-C increased the solubility and stability of the intermediates in methanol solvent. High carbon yield of C_8−C_1_4 alkanes of 82.9%(mol) was obtained after oxygen atom removal from H-F_2A dimers via

  7. Distribution and sources of n-alkanes in surface sediments of Taihu Lake, China

    Directory of Open Access Journals (Sweden)

    Yu Yunlong

    2016-03-01

    Full Text Available The last study on n-alkanes in surface sediments of Taihu Lake was in 2000, only 13 surface sediment samples were analysed, in order to have a comprehensive and up-to-date understanding of n-alkanes in the surface sediments of Taihu Lake, 41 surface sediment samples were analyzed by GC-MS. C10 to C37 were detected, the total concentrations of n-alkanes ranged from 2109 ng g−1 to 9096 ng g−1 (dry weight. There was strong odd carbon predominance in long chain n-alkanes and even carbon predominance in short chain n-alkanes. When this finding was combined with the analysis results of wax n-alkanes (WaxCn, carbon preference index (CPI, unresolved complex mixture (UCM, hopanes and steranes, it was considered that the long chain n-alkanes were mainly from terrigenous higher plants, and that the short chain n-alkanes mainly originated from bacteria and algae in the lake, compared with previous studies, there were no obvious anthropogenic petrogenic inputs. Terrestrial and aquatic hydrocarbons ratio (TAR and C21−/C25+ indicated that terrigenous input was higher than aquatic sources and the nearshore n-alkanes were mainly from land-derived sources. Moreover, the distribution of short chain n-alkanes presented a relatively uniform pattern, while the long chain n-alkanes presented a trend that concentrations dropped from nearshore places to the middle of lake.

  8. Improvement of chemical shift selective saturation (CHESS) pulse for MR angiography

    International Nuclear Information System (INIS)

    Ishimori, Yoshiyuki; Sashie, Hiroyuki; Hiraga, Akira; Matsuda, Tsuyoshi

    2000-01-01

    We improved the fat suppression technique based on chemical shift selective saturation (CHESS). To do this, we shortened the duration of the CHESS pulse to achieve a short repetition time (TR) for MR angiography (MRA). A short-duration CHESS pulse causes broad frequency band saturation, creating extensive offset from the resonance frequency of water. In our phantom experiment, the best parameters of the short-duration CHESS pulse were 3.84 ms in duration, -650 Hz in offset frequency from water resonance, and had a 130-degree flip angle. With this technique, MRA will be able to be carried out without a significant increase in TR. Thus, better vessel contrast will be maintained in time-of-flight (TOF) MRA or contrast-enhanced MRA when using the maximum intensity projection (MIP) method. (author)

  9. Catalytic conversion of light alkanes. Quarterly progress report, April 1--June 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  10. Nucleation, growth and habit modification of n-alkanes and homologous mixtures in the absence and presence of flow improving additives

    International Nuclear Information System (INIS)

    Taggart, Audrey M.

    1996-01-01

    A detailed study has been performed on the nucleation, growth and habit modification of n-alkanes and homologous mixtures in the absence and presence of flow improving additives in an attempt to gain a clearer appreciation of the interaction mechanisms behind wax / additive crystallisation. Kinetic and structural assessment of melt phase n-alkanes illustrate the different crystallographic forms present within the homologous series. Studies demonstrate the alternating behaviour of the even and odd numbered homologues which converges as a function of increasing molecular weight. Greater crystal lattice stabilities were found for those n-alkanes which have an even carbon number and which crystallise into the triclinic crystal structure. Solid state phase behaviour of the n-alkanes was found to vary depending on the number and parity of n. Nucleation kinetic studies of n-alkanes and homologous mixtures from model diesel fuel solvents (dodecane, m-xylene, decalin, pristane and a dewaxed fuel) are assessed using turbidity as the method of crystallite detection. Saturation temperatures are found to be related to both alkane structure and molecular chain length for all solvent systems. N-alkane solubilities are lower for n-alkane like solvents. The width of the meta stable zone varies as a function of solvent in order of dodecane ≅ pristane 19 H 40 and solvent m-xylene. Wax precipitation from distillate fuels in the presence of flow improving additives (di-alkyl di-amino xylene, phthalic acid and sulphobenzene acid derivatives and high molecular weight polymers) reveal responsive wax crystal nucleator and growth inhibitor additives. The crystal morphology of heptacosane, C 27 H 56 to simulate a model wax crystal is assessed in addition to its response to blocker 'tailor made' additives: methyl substituted C 27 H 56 and di-alkyl substituted phenyl additives [additive (A) and (B)]. Pure C 27 H 56 reveals a thin lozenge shaped platelet. All additives studied induce growth

  11. Reflectance spectroscopy of organic compounds: 1. Alkanes

    Science.gov (United States)

    Clark, R.N.; Curchin, J.M.; Hoefen, T.M.; Swayze, G.A.

    2009-01-01

    Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 /??m. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the. universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even ' when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.

  12. Production of liquid alkanes by controlling reactivity of sorbitol hydrogenation with a Ni/HZSM-5 catalyst in water

    International Nuclear Information System (INIS)

    Zhang, Qing; Wang, Tiejun; Xu, Ying; Zhang, Qi; Ma, Longlong

    2014-01-01

    Graphical abstract: MCM-41-modified Ni/HZSM-5 catalyst was developed by impregnation method with high catalytic performance for sorbitol hydrogenation in water. Appropriate amount of MCM-41 addition can distinctly promote the improvement in the surface structure and modulation of acidic sites of the catalyst. The scission of C–O bond in the sorbitol molecule into liquid alkanes was easily carried out on the catalyst containing more Lewis acidic sites. - Highlights: • Ni/HZSM-5 promoted with MCM-41 is active for sorbitol hydrogenation to liquid alkanes. • Lewis acidic sites of Ni/HZSM-5 can be modulated by pure silica MCM-41. • MCM-41 added can distinctly decrease carbon deposition on the catalyst surface. - Abstract: Liquid fuels derived from renewable biomass are of great importance on the potential substitution for diminishing fossil fuels. The conversion of sorbitol (a product of biomass-derived glucose hydrogenation) into liquid alkanes such as pentane and hexane over the Ni/HZSM-5 catalysts with or without MCM-41 addition was investigated in the presence of hydrogen in water medium. The production distribution of sorbitol hydrogenation can be controlled by adjusting the acidity of the catalyst. The scission of C–C bond in the sorbitol molecule into light C 1 –C 4 alkanes was mainly carried out over Ni/HZSM-5 containing strong Brønsted acid sites, while C–O bond scission into heavier alkanes was dominated over the catalysts added by MCM-41 containing weak Lewis acid sites. The sorbitol conversion and total liquid alkanes selectivity were found to be 67.1% and 98.7% over 2%Ni/HZSM-5 modified by 40 wt% of MCM-41, whereas the corresponding value was 40% and 35.6% over 2%Ni/HZSM-5 in the absence of MCM-41. The effect of MCM-41 on the structure, acidity, and reducibility of Ni/HZSM-5 was investigated by using XRD, Py-IR, IR, and H 2 -TPR. Meanwhile, the resistance of carbon deposition over the catalyst modified by MCM-41 was studied by using TG

  13. Quantification of the selective activation of C--H bonds in short chain alkanes: The reactivity of ethane, propane, isobutane, n-butane, and neopentane on Ir(111)

    International Nuclear Information System (INIS)

    Johnson, D.F.; Weinberg, W.H.

    1995-01-01

    The initial probabilities of precursor-mediated, dissociative chemisorption of the saturated hydrocarbons 13 C-labeled ethane, propane, isobutane, n-butane, and neopentane on the close-packed Ir(111) surface have been measured. The selective activation of primary (1 degree), secondary (2 degree), and tertiary (3 degree) C--H bonds has been quantified by examining the reactivities of the selectively deuterated isotopomers of propane, C 3 H 8 , CH 3 CD 2 CH 3 , and C 3 D 8 , and of isobutane, (CH 3 ) 3 CH, (CH 3 ) 3 CD, and (CD 3 ) 3 CH. With respect to the bottom of the physically adsorbed well for each hydrocarbon, the apparent C--H bond activation energies have been found to be 10.4±0.3 kcal/mol (ethane), 11.4±0.3 kcal/mol (propane), 11.5±0.3 kcal/mol (n-butane), 11.3±0.3 kcal/mol (i-butane), and 11.3±0.3 kcal/mol (neopentane). For all the alkanes examined, the ratios of the preexponential factors of the rate coefficients of reaction and desorption are 1x10 -2 . The C--D bond activation energies are higher than the corresponding C--H bond activation energies by 480 cal/mol (ethane), 630 cal/mol (propane), and 660 cal/mol (i-butane). By analyzing the primary kinetic isotope effects for the selectively deuterated isotopomers of propane and isobutane, the 2 degree C--H bond activation energy is found to be 310±160 cal/mol less than the 1 degree C--H bond activation energy on this surface, and similarly, 3 degree C--H bond cleavage is less by 80±70 cal/mol. The quantification of the branching ratios within the C--H bond activation channel for propane and isobutane on this surface shows that the formation of 1 degree-alkyl intermediates is, in general, favored over the formation of either 2 degree- or 3 degree-alkyl intermediates. (Abstract Truncated)

  14. Insights into the Anaerobic Biodegradation Pathway of n-Alkanes in Oil Reservoirs by Detection of Signature Metabolites

    Science.gov (United States)

    Bian, Xin-Yu; Maurice Mbadinga, Serge; Liu, Yi-Fan; Yang, Shi-Zhong; Liu, Jin-Feng; Ye, Ru-Qiang; Gu, Ji-Dong; Mu, Bo-Zhong

    2015-01-01

    Anaerobic degradation of alkanes in hydrocarbon-rich environments has been documented and different degradation strategies proposed, of which the most encountered one is fumarate addition mechanism, generating alkylsuccinates as specific biomarkers. However, little is known about the mechanisms of anaerobic degradation of alkanes in oil reservoirs, due to low concentrations of signature metabolites and lack of mass spectral characteristics to allow identification. In this work, we used a multidisciplinary approach combining metabolite profiling and selective gene assays to establish the biodegradation mechanism of alkanes in oil reservoirs. A total of twelve production fluids from three different oil reservoirs were collected and treated with alkali; organic acids were extracted, derivatized with ethanol to form ethyl esters and determined using GC-MS analysis. Collectively, signature metabolite alkylsuccinates of parent compounds from C1 to C8 together with their (putative) downstream metabolites were detected from these samples. Additionally, metabolites indicative of the anaerobic degradation of mono- and poly-aromatic hydrocarbons (2-benzylsuccinate, naphthoate, 5,6,7,8-tetrahydro-naphthoate) were also observed. The detection of alkylsuccinates and genes encoding for alkylsuccinate synthase shows that anaerobic degradation of alkanes via fumarate addition occurs in oil reservoirs. This work provides strong evidence on the in situ anaerobic biodegradation mechanisms of hydrocarbons by fumarate addition. PMID:25966798

  15. Unimolecular H2 elimination during the liquid phase radiolysis and photolysis of alkane - alkane mixtures

    International Nuclear Information System (INIS)

    Wojnarovits, L.; Foeldiak, G.

    1980-01-01

    Unimolecular H 2 elimination from alkanes was investigated in cyclopentane-cyclohexane, n-hexane-cyclohexane and cyclohexane-cyclooctane mixtures during fluradiolysis and 7.6 eV photolysis. During the radiolysis of all systems, and when the fluorescence shift law allowed it, during the photolysis as well, inhibited H 2 detachment was observed from the first component and sensitized hydrogen molecule elimination from the second. It has been concluded that the same excited state (the lowest singlet, S 1 ) is responsible for the H 2 elimination during radiolysis and photolysis and this is that one that gives rise to fluorescence in the experiments of other authors. The H 2 and H elimination from alkanes generally have different excited precursors. The direct population of S 1 by γ-irradiation is of limited importance and this intermediate is mainly produced in ''charge neutralization'' processes. (author)

  16. Acidic ionic liquids for n-alkane isomerization in a liquid-liquid or slurry-phase reaction mode

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, C.; Hager, V.; Geburtig, D.; Kohr, C.; Wasserscheid, P. [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer Chemische Reaktionstechnik; Haumann, M. [Chemical Reaction Engineering, FAU Busan Campus, Korea (Korea, Republic of)

    2011-07-01

    Highly acidic ionic liquid (IL) catalysts offer the opportunity to convert n-alkanes at very low reaction temperatures. The results of IL catalyzed isomerization and cracking reactions of pure n-octane are presented. Influence of IL composition, [C{sub 4}C{sub 1}Im]Cl / AlCl{sub 3} / H{sub 2}SO{sub 4} and [C{sub 4}C{sub 1}Im]Cl / AlCl{sub 3} / 1-chlorooctane, on catalyst activity and selectivities to branched alkanes was investigated. Acidic chloroaluminate IL catalysts form liquid-liquid biphasic systems with unpolar organic product mixtures. Thus, recycling of the acidic IL is enabled by simple phase separation in the liquid-liquid biphasic reaction mode or the IL can be immobilized on an inorganic support with a large specific surface area. These supported ionic liquid phase (SILP) catalysts offer the advantage to get a macroscopically heterogeneous system while still preserving all benefits of the homogeneous catalyst which can be used for the slurry-phase n-alkane isomerization. The interaction of the solid support and acidic IL influences strongly the catalytic activity. (orig.)

  17. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms

    DEFF Research Database (Denmark)

    Kang, Min Kyoung; Nielsen, Jens

    2017-01-01

    Advancement in metabolic engineering of microorganisms has enabled bio-based production of a range of chemicals, and such engineered microorganism can be used for sustainable production leading to reduced carbon dioxide emission there. One area that has attained much interest is microbial...... hydrocarbon biosynthesis, and in particular, alkanes and alkenes are important high-value chemicals as they can be utilized for a broad range of industrial purposes as well as ‘drop-in’ biofuels. Some microorganisms have the ability to biosynthesize alkanes and alkenes naturally, but their production level...... is extremely low. Therefore, there have been various attempts to recruit other microbial cell factories for production of alkanes and alkenes by applying metabolic engineering strategies. Here we review different pathways and involved enzymes for alkane and alkene production and discuss bottlenecks...

  18. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers

    KAUST Repository

    Wang, Hao; Dong, Xinglong; Lin, Junzhong; Teat, Simon J.; Jensen, Stephanie; Cure, Jeremy; Alexandrov, Eugeny V.; Xia, Qibin; Tan, Kui; Wang, Qining; Olson, David H.; Proserpio, Davide M.; Chabal, Yves J.; Thonhauser, Timo; Sun, Junliang; Han, Yu; Li, Jing

    2018-01-01

    As an alternative technology to energy intensive distillations, adsorptive separation by porous solids offers lower energy cost and higher efficiency. Herein we report a topology-directed design and synthesis of a series of Zr-based metal-organic frameworks with optimized pore structure for efficient separation of C6 alkane isomers, a critical step in the petroleum refining process to produce gasoline with high octane rating. Zr6O4(OH)4(bptc)3 adsorbs a large amount of n-hexane but excluding branched isomers. The n-hexane uptake is ~70% higher than that of a benchmark adsorbent, zeolite-5A. A derivative structure, Zr6O4(OH)8(H2O)4(abtc)2, is capable of discriminating all three C6 isomers and yielding a high separation factor for 3-methylpentane over 2,3-dimethylbutane. This property is critical for producing gasoline with further improved quality. Multicomponent breakthrough experiments provide a quantitative measure of the capability of these materials for separation of C6 alkane isomers. A detailed structural analysis reveals the unique topology, connectivity and relationship of these compounds.

  19. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers

    KAUST Repository

    Wang, Hao

    2018-04-25

    As an alternative technology to energy intensive distillations, adsorptive separation by porous solids offers lower energy cost and higher efficiency. Herein we report a topology-directed design and synthesis of a series of Zr-based metal-organic frameworks with optimized pore structure for efficient separation of C6 alkane isomers, a critical step in the petroleum refining process to produce gasoline with high octane rating. Zr6O4(OH)4(bptc)3 adsorbs a large amount of n-hexane but excluding branched isomers. The n-hexane uptake is ~70% higher than that of a benchmark adsorbent, zeolite-5A. A derivative structure, Zr6O4(OH)8(H2O)4(abtc)2, is capable of discriminating all three C6 isomers and yielding a high separation factor for 3-methylpentane over 2,3-dimethylbutane. This property is critical for producing gasoline with further improved quality. Multicomponent breakthrough experiments provide a quantitative measure of the capability of these materials for separation of C6 alkane isomers. A detailed structural analysis reveals the unique topology, connectivity and relationship of these compounds.

  20. Detection of optic nerve lesions in optic neuritis using frequency-selective fat-saturation sequences

    International Nuclear Information System (INIS)

    Miller, D.H.; MacManus, D.G.; Bartlett, P.A.; Kapoor, R.; Morrissey, S.P.; Moseley, I.F.

    1993-01-01

    MRI was performed on seven patients with acute optic neuritis, using two sequences which suppress the signal from orbital fat: frequency-selective fat-saturation and inversion recovery with a short inversion time. Lesions were seen on both sequences in all the symptomatic optic nerves studied. (orig.)

  1. Alkane Activation at Ambient Temperatures: Unusual Selectivities, C-C, C-H Bond Scission versus C-C Bond Coupling

    NARCIS (Netherlands)

    Trionfetti, C.; Agiral, A.; Gardeniers, Johannes G.E.; Lefferts, Leonardus; Seshan, Kulathuiyer

    2008-01-01

    Activating bonds: A cold plasma generated by dielectric barrier discharge in a microreactor converts alkanes (C1–C3) at atmospheric pressure. Large amounts of products with higher molecular weight than the starting hydrocarbons are observed showing that C-H activation at lower T favourably leads to

  2. Saturated Switching Systems

    CERN Document Server

    Benzaouia, Abdellah

    2012-01-01

    Saturated Switching Systems treats the problem of actuator saturation, inherent in all dynamical systems by using two approaches: positive invariance in which the controller is designed to work within a region of non-saturating linear behaviour; and saturation technique which allows saturation but guarantees asymptotic stability. The results obtained are extended from the linear systems in which they were first developed to switching systems with uncertainties, 2D switching systems, switching systems with Markovian jumping and switching systems of the Takagi-Sugeno type. The text represents a thoroughly referenced distillation of results obtained in this field during the last decade. The selected tool for analysis and design of stabilizing controllers is based on multiple Lyapunov functions and linear matrix inequalities. All the results are illustrated with numerical examples and figures many of them being modelled using MATLAB®. Saturated Switching Systems will be of interest to academic researchers in con...

  3. Thermodynamic properties of (an ester + an alkane). XVIII. Experimental H{sub m}{sup E}andV{sub m}{sup E} values for (an alkyl butanoate + an alkane) at T = 318.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J. [Laboratorio de Termodinamica y Fisicoquimica de Fluidos, Parque Cientifico-Tecnologico, Campus Universitario de Tafira, Universidad de Las Palmas de Gran Canaria, 35071 Las Palmas de Gran Canaria (Spain)], E-mail: jortega@dip.ulpgc.es; Navas, A.; Sabater, G.; Ascanio, M.; Placido, J. [Laboratorio de Termodinamica y Fisicoquimica de Fluidos, Parque Cientifico-Tecnologico, Campus Universitario de Tafira, Universidad de Las Palmas de Gran Canaria, 35071 Las Palmas de Gran Canaria (Spain)

    2007-11-15

    This work presents the experimental values of H{sub m}{sup E}andV{sub m}{sup E} obtained at a temperature of 318.15 K and atmospheric pressure for a group of 24 binary mixtures comprised of the first four alkyl butanoates (methyl to butyl) with six odd alkanes, from heptane to heptadecane. All the mixtures are endothermic, and present a regular increase in H{sub m}{sup E} with the molecular weight of the saturated hydrocarbon, while, for a same alkane, the enthalpic effects diminish with increasing alcoholic chain of the butanoate. The variation in V{sub m}{sup E} occurs in the same direction. In this paper the structural behaviour of these systems and the influence of temperature on excess properties are analysed. Experimental data are correlated with a suitable polynomial equation which is given as a function of concentration and temperature, that permits a simultaneous correlation to be established with other properties of the mixture, such as (vapour + liquid) equilibria; and acceptable results are obtained. Finally, an estimation of H{sub m}{sup E} is made with two known versions of the UNIFAC model. In the version by Dang and Tassios [J. Dang, D.P. Tassios, Ind. Eng. Chem. Process Des. Dev. 25 (1986) 22-31.], a method is proposed that considers the interaction parameters as a function of the butanoate alkanolic chain. The estimations obtained for H{sub m}{sup E} are good.

  4. Squeezing molecularly thin alkane lubrication films: Layering transistions and wear

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, V. N.; Persson, B. N. J.

    2004-01-01

    The properties of alkane lubricants confined between two approaching solids are investigated by a model that accounts for the curvature and the elastic properties of the solid surfaces. We consider linear alkane molecules of different chain lengths, C(3)H(8); C(4)H(10); C(8)H(18); C(9)H(20); C(10)H...

  5. Fundamental Flame Velocities of Pure Hydrocarbons I : Alkanes, Alkenes, Alkynes Benzene, and Cyclohexane

    Science.gov (United States)

    Gerstein, Melvin; Levine, Oscar; Wong, Edgar L

    1950-01-01

    The flame velocities of 37 pure hydrocarbons including normal and branched alkanes, alkenes, and alkynes; as well as benzene and cyclohexane, together with the experimental technique employed are presented. The normal alkanes have about the same flame velocity from ethane through heptane with methane being about 16 percent lower. Unsaturation increases the flame velocity in the order of alkanes, alkenes, and alkynes. Branching reduces the flame velocity.

  6. Image Charge Effects in the Wetting Behavior of Alkanes on Water with Accounting for Water Solubility

    Directory of Open Access Journals (Sweden)

    Kirill A. Emelyanenko

    2016-03-01

    Full Text Available Different types of surface forces, acting in the films of pentane, hexane, and heptane on water are discussed. It is shown that an important contribution to the surface forces originates from the solubility of water in alkanes. The equations for the distribution of electric potential inside the film are derived within the Debye-Hückel approximation, taking into account the polarization of the film boundaries by discrete charges at water-alkane interface and by the dipoles of water molecules dissolved in the film. On the basis of above equations we estimate the image charge contribution to the surface forces, excess free energy, isotherms of water adsorption in alkane film, and the total isotherms of disjoining pressure in alkane film. The results indicate the essential influence of water/alkane interface charging on the disjoining pressure in alkane films, and the wettability of water surface by different alkanes is discussed.

  7. Solvent extraction of thiophene from n-alkanes (C7, C12, and C16) using the ionic liquid [C8mim][BF4

    International Nuclear Information System (INIS)

    Alonso, Luisa; Arce, Alberto; Francisco, Maria; Soto, Ana

    2008-01-01

    In the last years, new strict environmental regulations to reduce sulfur content in liquid fuels have been established. Thiophene derivates can be considered as the key substances to be separated from liquid fuel oils. This paper reports the ability of the ionic liquid 1-methyl-3-octylimidazolium tetrafluoroborate to act as solvent in the (liquid + liquid) extraction of thiophene from aliphatic hydrocarbons. Tie-line data have been determined for ternary systems containing the ionic liquid, thiophene, and some n-alkanes at T = 298.15 K. Extraction process has been analyzed by means of thiophene distribution ratio and selectivity. The solute distribution coefficient decreases and the selectivity increases as the chain length of n-alkane increases. The use of 1-methyl-3-octylimidazolium tetrafluoroborate as potential solvent for separation of thiophene from n-alkanes is feasible using the necessary quantity of solvent. A correlation of the equilibrium data reported here has also been made, using the NRTL activity coefficient model, in order to facilitate their use in simulation and design processes

  8. The wetting behavior of alkanes on water

    Energy Technology Data Exchange (ETDEWEB)

    Ragil, Karine; Broseta, Daniel; Kalaydjian, Francois [Institut Francais du Petrole, BP 311, 92852 Rueil Malmaison Cedex (France); Bonn, Daniel; Meunier, Jacques [ENS, Laboratoire de Physique Statistique, 24 rue Lhomond, 75231 Paris Cedex 05 (France); Indekeu, Joseph [Katholieke Universiteit Leuven, Laboratorium voor Vaste-Stoffysica en Magnetisme, B-3001 Leuven (Belgium)

    1998-06-06

    This paper presents recent experimental and theoretical results concerning the wetting behavior of n-alkanes on water as a function of thermodynamic conditions (i.e., temperature, pressure, etc.). The transition from lenses to a macroscopically thick film, that takes place when the temperature is increased, occurs for n-alkanes on water in a manner very different from that encountered in other fluid systems. For n-pentane on water, ellipsometric measurements reveal that the growth of the pentane layer to a macroscopically thick film occurs in a continuous manner, for a temperature ({approx}53C) corresponding to a change in the sign of the Hamaker constant. A theoretical approach based on the Cahn-Landau theory, which takes into account long-range (van der Waals) forces, enables us to explain the mechanism of this continuous wetting transition. This transition is preceded (at a lower temperature) by a discontinuous transition from a thin film (of adsorbed molecules) to a thick (but not macroscopically thick) film. The latter transition was not visible for pentane on water (it should occur below the freezing temperature for water), but we expect to observe it for longer alkanes (e.g., hexane) on water. Work is underway to examine the wetting behavior of oil/brine systems more representative of reservoir conditions

  9. Coordinative saturation and the chemistry of triscyclopentadienyl thorium (IV) alkyls and alkenyls

    International Nuclear Information System (INIS)

    Wachter, W.A.

    1976-01-01

    Air- and moisture-sensitive (C 5 H 5 ) 3 Th(IV)R compounds (R = alkyl, alkenyl) were prepared by reacting (C 5 H 5 ) 3 Th(IV)Cl with the corresponding Grignard or lithium reagent in toluene at -78 0 . They were characterized by elemental analysis, molecular weight, and pmr, infrared, and Raman spectroscopy. The fluxional behavior in the nmr indicates a sigmatropic rearrangement with an activation energy of 8 to 9 kcal/mole. Alcoholysis is faster and more selective for alkane formation than in the analogous uranium system. In aromatic solvents the compounds exhibit first-order decomposition kinetics. Relative thermal stabilities are neopentyl > allyl > n-butyl > 2-cis-2-butenyl > 2-trans-2-butenyl > i-propyl. Respective half-lives of these compounds at 167 0 C are 7500, 566, 96, 39, 21, and 7 hr. Alkanes are the major product for R = alkyl. Retention of configuration is noted for R = cis- and trans-2-butenyl. k/sub H//k/sub D/ is 2.4 for R = n-butyl. The results are consistent with coordinative saturation about the Th center blocking β-elimination. The solid product was also crystallized, and x-ray diffraction results reveal a bridged dimer ((C 5 H 5 ) 2 (C 5 H 4 )Th) 2 . To each Th are bound three rings in a pentahapto fashion and one ring, which is bound in a pentahapto fashion to the other Th center, in a monohapto fashion. These results suggest a short-lived intermediate, possibly an ylid, prior to dimerization. The photochemical decomposition of triscyclopentadienyl Th(IV) isopropyl leads to the formation of propene, propane, and an insoluble green solid. The solid analyzes as (C 15 H 15 Th) 2 , has a temperature-independent paramagnetism of 18.45 x 10 -4 cgs, and exhibits vibrational frequencies characteristic of pentahaptocyclopentadienyl ligands

  10. Optimization of linear and branched alkane interactions with water to simulate hydrophobic hydration

    Science.gov (United States)

    Ashbaugh, Henry S.; Liu, Lixin; Surampudi, Lalitanand N.

    2011-08-01

    Previous studies of simple gas hydration have demonstrated that the accuracy of molecular simulations at capturing the thermodynamic signatures of hydrophobic hydration is linked both to the fidelity of the water model at replicating the experimental liquid density at ambient pressure and an accounting of polarization interactions between the solute and water. We extend those studies to examine alkane hydration using the transferable potentials for phase equilibria united-atom model for linear and branched alkanes, developed to reproduce alkane phase behavior, and the TIP4P/2005 model for water, which provides one of the best descriptions of liquid water for the available fixed-point charge models. Alkane site/water oxygen Lennard-Jones cross interactions were optimized to reproduce the experimental alkane hydration free energies over a range of temperatures. The optimized model reproduces the hydration free energies of the fitted alkanes with a root mean square difference between simulation and experiment of 0.06 kcal/mol over a wide temperature range, compared to 0.44 kcal/mol for the parent model. The optimized model accurately reproduces the temperature dependence of hydrophobic hydration, as characterized by the hydration enthalpies, entropies, and heat capacities, as well as the pressure response, as characterized by partial molar volumes.

  11. Alkanes as Components of Soil Hydrocarbon Status: Behavior and Indication Significance

    Science.gov (United States)

    Gennadiev, A. N.; Zavgorodnyaya, Yu. A.; Pikovskii, Yu. I.; Smirnova, M. A.

    2018-01-01

    Studies of soils on three key plots with different climatic conditions and technogenic impacts in Volgograd, Moscow, and Arkhangelsk oblasts have showed that alkanes in the soil exchange complex have some indication potential for the identification of soil processes. The following combinations of soil-forming factors and processes have been studied: (a) self-purification of soil after oil pollution; (b) accumulation of hydrocarbons coming from the atmosphere to soils of different land use patterns; and (c) changes in the soil hydrocarbon complex beyond the zone of technogenic impact due to the input of free hydrocarbon-containing gases. At the injection input of hydrocarbon pollutants, changes in the composition and proportions of alkanes allow tracing the degradation trend of pollutants in the soil from their initial content to the final stage of soil self-purification, when the background concentrations of hydrocarbons are reached. Upon atmospheric deposition of hydrocarbons onto the soil, from the composition and mass distribution of alkanes, conclusions can be drawn about the effect of toxicants on biogeochemical processes in the soil, including their manifestation under different land uses. Composition analysis of soil alkanes in natural landscapes can reveal signs of hydrocarbon emanation fluxes in soils. The indication potentials of alkanes in combination with polycyclic aromatic hydrocarbons and other components of soil hydrocarbon complex can also be used for the solution of other soil-geochemical problems.

  12. Alkane dimers interaction

    DEFF Research Database (Denmark)

    Ferrighi, Lara; Madsen, Georg Kent Hellerup; Hammer, Bjørk

    2010-01-01

    The interaction energies of a series of n-alkane dimers, from methane to decane, have been investigated with Density Functional Theory (DFT), using the MGGA-M06-L density functional. The results are compared both to the available wavefunction-based values as well as to dispersion corrected DFT...... values. The MGGA-M06-L density functional is a semi-local functional designed and has proven to provide accurate estimates of dispersion interactions for several systems at moderate computational cost. In the present application, it reproduces the trends obtained by the more expensive wavefunction...

  13. Abundance of macroalgal organic matter in biofilms: Evidence from n-alkane biomarkers

    Digital Repository Service at National Institute of Oceanography (India)

    Garg, A; Bhosle, N.B.

    carbon (OC), organic nitrogen (ON), chlorophyll a, diatoms and bacterial numbers on the titanium panels generally increased over the period of immersion. Total lipids and n-alkane concentration also showed similar trends. n-alkanes from C sub(12) to C sub...

  14. Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst.

    Science.gov (United States)

    Duan, Haohong; Dong, Juncai; Gu, Xianrui; Peng, Yung-Kang; Chen, Wenxing; Issariyakul, Titipong; Myers, William K; Li, Meng-Jung; Yi, Ni; Kilpatrick, Alexander F R; Wang, Yu; Zheng, Xusheng; Ji, Shufang; Wang, Qian; Feng, Junting; Chen, Dongliang; Li, Yadong; Buffet, Jean-Charles; Liu, Haichao; Tsang, Shik Chi Edman; O'Hare, Dermot

    2017-09-19

    Bio-oil, produced by the destructive distillation of cheap and renewable lignocellulosic biomass, contains high energy density oligomers in the water-insoluble fraction that can be utilized for diesel and valuable fine chemicals productions. Here, we show an efficient hydrodeoxygenation catalyst that combines highly dispersed palladium and ultrafine molybdenum phosphate nanoparticles on silica. Using phenol as a model substrate this catalyst is 100% effective and 97.5% selective for hydrodeoxygenation to cyclohexane under mild conditions in a batch reaction; this catalyst also demonstrates regeneration ability in long-term continuous flow tests. Detailed investigations into the nature of the catalyst show that it combines hydrogenation activity of Pd and high density of both Brønsted and Lewis acid sites; we believe these are key features for efficient catalytic hydrodeoxygenation behavior. Using a wood and bark-derived feedstock, this catalyst performs hydrodeoxygenation of lignin, cellulose, and hemicellulose-derived oligomers into liquid alkanes with high efficiency and yield.Bio-oil is a potential major source of renewable fuels and chemicals. Here, the authors report a palladium-molybdenum mixed catalyst for the selective hydrodeoxygenation of water-insoluble bio-oil to mixtures of alkanes with high carbon yield.

  15. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao [Rutgers Univ., Piscataway, NJ (United States). Department of Chemistry and Chemical Biology; Dong, Xinglong [King Abdullah University of Science and Technology, Thuwal (Saudi Arabia). Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division; Lin, Junzhong [Peking University, Beijing (China). College of Chemistry and Molecular Engineering; Teat, Simon J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Jensen, Stephanie [Wake Forest University, Winston-Salem, NC (United States). Department of Physics; Cure, Jeremy [Univ. of Texas-Dallas, Richardson, TX (United States). Department of Materials Science & Engineering; Alexandrov, Eugeny V. [Samara University (Russia). Samara Center for Theoretical Materials Science (SCTMS; Xia, Qibin [Rutgers Univ., Piscataway, NJ (United States). Department of Chemistry and Chemical Biology; South China University of Technology, Guangzhou (China). School of Chemistry and Chemical Engineering; Tan, Kui [Univ. of Texas-Dallas, Richardson, TX (United States). Department of Materials Science & Engineering; Wang, Qining [Rutgers Univ., Piscataway, NJ (United States). Department of Chemistry and Chemical Biology; Olson, David H. [Rutgers Univ., Piscataway, NJ (United States). Department of Chemistry and Chemical Biology; Proserpio, Davide M. [Samara University (Russia). Samara Center for Theoretical Materials Science (SCTMS; Università degli Studi di Milano, Milano (Italy). Dipartimento di Chimica; Chabal, Yves J. [Univ. of Texas-Dallas, Richardson, TX (United States). Department of Materials Science & Engineering; Thonhauser, Timo [Wake Forest University, Winston-Salem, NC (United States). Department of Physics; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Department of Chemistry; Sun, Junliang [Peking University, Beijing (China). College of Chemistry and Molecular Engineering; Han, Yu [King Abdullah University of Science and Technology, Thuwal (Saudi Arabia). Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division; Li, Jing [Rutgers Univ., Piscataway, NJ (United States). Department of Chemistry and Chemical Biology

    2018-05-01

    As an alternative technology to energy intensive distillations, adsorptive separation by porous solids offers lower energy cost and higher efficiency. Herein we report a topology-directed design and synthesis of a series of Zr-based metal-organic frameworks with optimized pore structure for efficient separation of C6 alkane isomers, a critical step in the petroleum refining process to produce gasoline with high octane rating. Zr6O4(OH)4(bptc)3 adsorbs a large amount of n-hexane but excluding branched isomers. The n-hexane uptake is ~70% higher than that of a benchmark adsorbent, zeolite-5A. A derivative structure, Zr6O4(OH)8(H2O)4(abtc)2, is capable of discriminating all three C6 isomers and yielding a high separation factor for 3-methylpentane over 2,3-dimethylbutane. This property is critical for producing gasoline with further improved quality. Multicomponent breakthrough experiments provide a quantitative measure of the capability of these materials for separation of C6 alkane isomers. A detailed structural analysis reveals the unique topology, connectivity and relationship of these compounds.

  16. Quaternary (liquid + liquid) equilibrium data for the extraction of toluene from alkanes using the ionic liquid [EMim][MSO4

    International Nuclear Information System (INIS)

    Corderí, Sandra; Calvar, Noelia; Gómez, Elena; Domínguez, Ángeles

    2014-01-01

    Highlights: • EMim[MSO 4 ] was proposed as solvent for the extraction of toluene from alkanes. • The quaternary system {heptane + cyclohexane + toluene + [EMim][MSO 4 ]} was evaluated. • The extraction of toluene would be facilitated in the presence of one alkane. • Experimental LLE data were successfully correlated with the NRTL model. - Abstract: (Liquid + liquid) equilibrium (LLE) studies for the extraction of aromatics from alkanes present in the petroleum fractions are important to develop theoretical/semiempirical (liquid + liquid) equilibrium models, which are used in the design of extraction processes. In this work, the ionic liquid 1-ethyl-3-methylimidazolium methylsulfate, [EMim][MSO 4 ], was evaluated as potential solvent for the separation of toluene from heptane and cyclohexane. The LLE data for the quaternary system {heptane (1) + cyclohexane (2) + toluene (3) + [EMim][MSO 4 ] (4)} were experimentally determined at T = 298.15 K and atmospheric pressure. Moreover, the LLE data for the ternary systems {heptane or cyclohexane (1) + toluene (2) + [EMim][MSO 4 ] (3)} were also determined. Solute distribution ratios and selectivities were calculated and analysed in order to evaluate the capability of the ionic liquid to accomplish the separation target. A comparison between the solute distribution ratios and selectivities for the quaternary and the ternary systems was also made. Finally, the experimental tie-line data were correlated with the NRTL model

  17. Hydrogen Bonding to Alkanes: Computational Evidence

    DEFF Research Database (Denmark)

    Hammerum, Steen; Olesen, Solveig Gaarn

    2009-01-01

    The structural, vibrational, and energetic properties of adducts of alkanes and strong cationic proton donors were studied with composite ab initio calculations. Hydrogen bonding in [D-H+ H-alkyl] adducts contributes to a significant degree to the interactions between the two components, which is...

  18. Transport properties of mixtures by the soft-SAFT + free-volume theory: application to mixtures of n-alkanes and hydrofluorocarbons.

    Science.gov (United States)

    Llovell, F; Marcos, R M; Vega, L F

    2013-05-02

    In a previous paper (Llovell et al. J. Phys. Chem. B, submitted for publication), the free-volume theory (FVT) was coupled with the soft-SAFT equation of state for the first time to extend the capabilities of the equation to the calculation of transport properties. The equation was tested with molecular simulations and applied to the family of n-alkanes. The capability of the soft-SAFT + FVT treatment is extended here to other chemical families and mixtures. The compositional rules of Wilke (Wilke, C. R. J. Chem. Phys. 1950, 18, 517-519) are used for the diluted term of the viscosity, while the dense term is evaluated using very simple mixing rules to calculate the viscosity parameters. The theory is then used to predict the vapor-liquid equilibrium and the viscosity of mixtures of nonassociating and associating compounds. The approach is applied to determine the viscosity of a selected group of hydrofluorocarbons, in a similar manner as previously done for n-alkanes. The soft-SAFT molecular parameters are taken from a previous work, fitted to vapor-liquid equilibria experimental data. The application of FVT requires three additional parameters related to the viscosity of the pure fluid. Using a transferable approach, the α parameter is taken from the equivalent n-alkane, while the remaining two parameters B and Lv are fitted to viscosity data of the pure fluid at several isobars. The effect of these parameters is then investigated and compared to those obtained for n-alkanes, in order to better understand their effect on the calculations. Once the pure fluids are well characterized, the vapor-liquid equilibrium and the viscosity of nonassociating and associating mixtures, including n-alkane + n-alkane, hydrofluorocarbon + hydrofluorocarbon, and n-alkane + hydrofluorocarbon mixtures, are calculated. One or two binary parameters are used to account for deviations in the vapor-liquid equilibrium diagram for nonideal mixtures; these parameters are used in a

  19. Regioselective alkane hydroxylation with a mutant AlkB enzyme

    Science.gov (United States)

    Koch, Daniel J.; Arnold, Frances H.

    2012-11-13

    AlkB from Pseudomonas putida was engineered using in-vivo directed evolution to hydroxylate small chain alkanes. Mutant AlkB-BMO1 hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. Mutant AlkB-BMO2 similarly hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. These biocatalysts are highly active for small chain alkane substrates and their regioselectivity is retained in whole-cell biotransformations.

  20. The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes.

    Science.gov (United States)

    Gray, N D; Sherry, A; Grant, R J; Rowan, A K; Hubert, C R J; Callbeck, C M; Aitken, C M; Jones, D M; Adams, J J; Larter, S R; Head, I M

    2011-11-01

    Libraries of 16S rRNA genes cloned from methanogenic oil degrading microcosms amended with North Sea crude oil and inoculated with estuarine sediment indicated that bacteria from the genera Smithella (Deltaproteobacteria, Syntrophaceace) and Marinobacter sp. (Gammaproteobacteria) were enriched during degradation. Growth yields and doubling times (36 days for both Smithella and Marinobacter) were determined using qPCR and quantitative data on alkanes, which were the predominant hydrocarbons degraded. The growth yield of the Smithella sp. [0.020 g(cell-C)/g(alkane-C)], assuming it utilized all alkanes removed was consistent with yields of bacteria that degrade hydrocarbons and other organic compounds in methanogenic consortia. Over 450 days of incubation predominance and exponential growth of Smithella was coincident with alkane removal and exponential accumulation of methane. This growth is consistent with Smithella's occurrence in near surface anoxic hydrocarbon degrading systems and their complete oxidation of crude oil alkanes to acetate and/or hydrogen in syntrophic partnership with methanogens in such systems. The calculated growth yield of the Marinobacter sp., assuming it grew on alkanes, was [0.0005 g(cell-C)/g(alkane-C)] suggesting that it played a minor role in alkane degradation. The dominant methanogens were hydrogenotrophs (Methanocalculus spp. from the Methanomicrobiales). Enrichment of hydrogen-oxidizing methanogens relative to acetoclastic methanogens was consistent with syntrophic acetate oxidation measured in methanogenic crude oil degrading enrichment cultures. qPCR of the Methanomicrobiales indicated growth characteristics consistent with measured rates of methane production and growth in partnership with Smithella. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  1. The fate of primary cations in radiolysis of alkanes as studied by ESR

    International Nuclear Information System (INIS)

    Iwasaki, M.; Toriyama, K.; Nunome, K.

    1983-01-01

    The structures and reactions of alkane cations (RH + ) have been studied by ESR to elucidate the fate of primary cations in radiolysis of alkanes. Radical cations of prototype alkanes such as C 2 H 6 , C 3 H 8 , iso-C 4 H 10 and neo-C 5 H 12 etc. as well as their partially deuterated analogues were stabilized in irradiated frozen matrices such as SF 6 , CFCl 2 CF 2 Cl and CFCl 3 having a higher ionization potential than that of these alkanes contained as dilute solutes. RH + in SF 6 and in CFCl 2 CF 2 Cl converts into alkyl radicals by deprotonation probably through bimolecular reactions, whereas RH + in CFCl 3 unimolecularily decomposes into olefinic cations by H 2 and/or CH 4 elimination reactions. It is further found that the electronic structures of propane and isobutane cations in halocarbon matrices are different from those in SF 6 and the difference is drastically reflected in the site preference of their deprotonation reactions. The results are discussed in relation to the mechanisms of pairwise formation of alkyl radicals in low temperature radiolysis of neat alkanes and its suppression by addition of electron scavengers. (author)

  2. Packing properties 1-alkanols and alkanes in a phospholipid membrane

    DEFF Research Database (Denmark)

    Westh, Peter

    2006-01-01

    We have used vibrating tube densitometry to investigate the packing properties of four alkanes and a homologous series of ten alcohols in fluid-phase membranes of dimyristoyl phosphatidylcholine (DMPC). It was found that the volume change of transferring these compounds from their pure states int...... into the membrane core, which is loosely packed. In this region, they partially occupy interstitial (or free-) volume, which bring about a denser molecular packing and generate a negative contribution to Vm(puremem)....... into the membrane, Vm(puremem), was positive for small (C4-C6) 1-alkanols while it was negative for larger alcohols and all alkanes. The magnitude of Vm(puremem) ranged from about +4 cm3/mol for alcohols with an alkyl chain about half the length of the fatty acids of DMPC, to -10 to -15 cm3/mol for the alkanes...

  3. The use of n-alkane markers to estimate the intake and apparent ...

    African Journals Online (AJOL)

    However, the effect of the higher recovery of the dosed marker needs further investigation. The estimates of apparent dry matter digestibility corresponded well with measured values, provided the factor for the incomplete faecal recovery of the internal alkanes was included in the calculation. It was concluded that the alkane ...

  4. Auger spectra of alkanes

    International Nuclear Information System (INIS)

    Rye, R.R.; Jennison, D.R.; Houston, J.E.

    1980-01-01

    The gas-phase Auger line shapes of the linear alkanes C 1 through C 6 and of neopentane are presented and analyzed. The general shape of the spectra are characteristic of carbon in a tetrahedral environment with the major feature in all cases occurring at approx.249 eV. The relatively large spectral changes found between methane and ethane results from the direct interaction of the terminal methyl groups in ethane, and the spectra of the higher alkanes are shown to be a composite of contributions from terminal methyl and interior methylene group carbon atoms. Theoretical analysis based on a one-electron approximation is shown to be capable of making a molecular orbital assignment by comparing calculated vertical transitions to features in the Auger spectra of ethane and propane, and, in the case of ethane, of differentiating between the 2 E/sub g/ and 2 A/sub 1g/ assignment of the ground state of (C 2 H 6 ) + . A one-electron based molecular orbital treatment, however, is shown to partially break down in propane and neopentane. Analysis of neopentane and the observed absence of any noticeable major peak energy shift with increasing molecular size (as predicted by the one-electron treatment) suggests that some Auger final states occur in which both valence holes are localized on the same subunit of the molecule

  5. Distribution, activity and function of short-chain alkane degrading phylotypes in hydrothermal vent sediments

    Science.gov (United States)

    Adams, M. M.; Joye, S. B.; Hoarfrost, A.; Girguis, P. R.

    2012-12-01

    Global geochemical analyses suggest that C2-C4 short chain alkanes are a common component of the utilizable carbon pool in deep-sea sediments worldwide and have been found in diverse ecosystems. From a thermodynamic standpoint, the anaerobic microbial oxidation of these aliphatic hydrocarbons is more energetically yielding than the anaerobic oxidation of methane (AOM). Therefore, the preferential degradation of these hydrocarbons may compete with AOM for the use of oxidants such as sulfate, or other potential oxidants. Such processes could influence the fate of methane in the deep-sea. Sulfate-reducing bacteria (SRB) from hydrocarbon seep sediments of the Gulf of Mexico and Guaymas Basin have previously been enriched that anaerobically oxidize short chain alkanes to generate CO2 with the preferential utilization of 12C-enriched alkanes (Kniemeyer et al. 2007). Different temperature regimens along with multiple substrates were tested and a pure culture (deemed BuS5) was isolated from mesophilic enrichments with propane or n-butane as the sole carbon source. Through comparative sequence analysis, strain BuS5 was determined to cluster with the metabolically diverse Desulfosarcina / Desulfococcus cluster, which also contains the SRB found in consortia with anaerobic, methane-oxidizing archaea in seep sediments. Enrichments from a terrestrial, low temperature sulfidic hydrocarbon seep also corroborated that propane degradation occurred with most bacterial phylotypes surveyed belonging to the Deltaproteobacteria, particularly Desulfobacteraceae (Savage et al. 2011). To date, no microbes capable of ethane oxidation or anaerobic C2-C4 alkane oxidation at thermophilic temperature have been isolated. The sediment-covered, hydrothermal vent systems found at Middle Valley (Juan de Fuca Ridge, eastern Pacific Ocean) are a prime environment for investigating mesophilic to thermophilic anaerobic oxidation of short-chain alkanes, given the elevated temperatures and dissolved

  6. Study of factors that influence complex-formation of n-alkanes with crystal carbamide

    Energy Technology Data Exchange (ETDEWEB)

    Dorodnova, V.S.; Korzhov, Yu.A.; Martynenko, A.G.

    1982-01-01

    Studies effect of temperature, solid phase content in the suspension and amount of MeOH on extent of n-alkane extraction during carbamide deparaffinization. A most thorough extraction of n-alkanes is achieved with a graduated temperature regimen of complex-formation.

  7. Cool-flame Extinction During N-Alkane Droplet Combustion in Microgravity

    Science.gov (United States)

    Nayagam, Vedha; Dietrich, Daniel L.; Hicks, Michael C.; Williams, Forman A.

    2014-01-01

    Recent droplet combustion experiments onboard the International Space Station (ISS) have revealed that large n-alkane droplets can continue to burn quasi-steadily following radiative extinction in a low-temperature regime, characterized by negative-temperaturecoefficient (NTC) chemistry. In this study we report experimental observations of n-heptane, n-octane, and n-decane droplets of varying initial sizes burning in oxygen/nitrogen/carbon dioxide and oxygen/helium/nitrogen environments at 1.0, 0.7, and 0.5 atmospheric pressures. The oxygen concentration in these tests varied in the range of 14% to 25% by volume. Large n-alkane droplets exhibited quasi-steady low-temperature burning and extinction following radiative extinction of the visible flame while smaller droplets burned to completion or disruptively extinguished. A vapor-cloud formed in most cases slightly prior to or following the "cool flame" extinction. Results for droplet burning rates in both the hot-flame and cool-flame regimes as well as droplet extinction diameters at the end of each stage are presented. Time histories of radiant emission from the droplet captured using broadband radiometers are also presented. Remarkably the "cool flame" extinction diameters for all the three n-alkanes follow a trend reminiscent of the ignition delay times observed in previous studies. The similarities and differences among the n-alkanes during "cool flame" combustion are discussed using simplified theoretical models of the phenomenon

  8. SUBSTRATE-SPECIFICITY OF THE ALKANE HYDROXYLASE SYSTEM OF PSEUDOMONAS-OLEOVORANS GPO1

    NARCIS (Netherlands)

    van Beilen, J.B.; Kingma, Jacob; Witholt, Bernard

    1994-01-01

    We have studied the hydroxylation of a wide range of linear, branched and cyclic alkanes and alkylbenzenes by the alkane hydroxylase system of Pseudomonas oleovorans GPo1 in vivo and in vitro. In vivo hydroxylation was determined with whole cells of the recombinant PpS8141; P. putida PpS81 carrying

  9. Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy

    Science.gov (United States)

    Bush, Rosemary T.; McInerney, Francesca A.

    2013-09-01

    Long chain (C21 to C37) n-alkanes are among the most long-lived and widely utilized terrestrial plant biomarkers. Dozens of studies have examined the range and variation of n-alkane chain-length abundances in modern plants from around the world, and n-alkane distributions have been used for a variety of purposes in paleoclimatology and paleoecology as well as chemotaxonomy. However, most of the paleoecological applications of n-alkane distributions have been based on a narrow set of modern data that cannot address intra- and inter-plant variability. Here, we present the results of a study using trees from near Chicago, IL, USA, as well as a meta-analysis of published data on modern plant n-alkane distributions. First, we test the conformity of n-alkane distributions in mature leaves across the canopy of 38 individual plants from 24 species as well as across a single growing season and find no significant differences for either canopy position or time of leaf collection. Second, we compile 2093 observations from 86 sources, including the new data here, to examine the generalities of n-alkane parameters such as carbon preference index (CPI), average chain length (ACL), and chain-length ratios for different plant groups. We show that angiosperms generally produce more n-alkanes than do gymnosperms, supporting previous observations, and furthermore that CPI values show such variation in modern plants that it is prudent to discard the use of CPI as a quantitative indicator of n-alkane degradation in sediments. We also test the hypotheses that certain n-alkane chain lengths predominate in and therefore can be representative of particular plant groups, namely, C23 and C25 in Sphagnum mosses, C27 and C29 in woody plants, and C31 in graminoids (grasses). We find that chain-length distributions are highly variable within plant groups, such that chemotaxonomic distinctions between grasses and woody plants are difficult to make based on n-alkane abundances. In contrast

  10. Heat capacity and Joule-Thomson coefficient of selected n-alkanes at 0.1 and 10 MPa in broad temperature ranges

    DEFF Research Database (Denmark)

    Regueira Muñiz, Teresa; Varzandeh, Farhad; Stenby, Erling Halfdan

    2017-01-01

    Isobaric heat capacity of six n-alkanes, i.e. n-hexane, n-octane, n-decane, n-dodecane, n-tetradecane and n-hexadecane, was determined with a Calvet type differential heat-flux calorimeter at 0.1 and 10 MPa in a broad temperature range. The measured isobaric heat capacity data were combined...

  11. Thermal analysis as an aid to forensics: Alkane melting and oxidative stability of wool

    International Nuclear Information System (INIS)

    Alan Riga, D.

    1998-01-01

    Interdisciplinary methods and thermal analytical techniques in particular are effective tools in aiding the identification and characterization of materials in question involved in civil or criminal law. Forensic material science uses systematic knowledge of the physical or material world gained through analysis, observation and experimentation. Thermal analytical data can be used to aid the legal system in interpreting technical variations in quite often a complex system.Calorimetry and thermal microscopic methods helped define a commercial product composed of alkanes that was involved in a major law suit. The solid-state structures of a number of normal alkanes have unique crystal structures. These alkanes melt and freeze below room temperature to more than 60C below zero. Mixtures of specific alkanes have attributes of pure chemicals. The X-ray diffraction structure of a mixture of alkanes is the same as a pure alkane, but the melting and freezing temperature are significantly lower than predicted. The jury ruled that the product containing n-alkanes had the appropriate melting characteristics. The thermal-physical properties made a commercial fluid truly unique and there was no advertising infringement according to the law and the jury trialA combination of thermogravimetry, differential thermal analysis, infrared spectroscopy and macrophotography were used to conduct an extensive modeling and analysis of physical evidence obtained in a mobile home fire and explosion. A person's death was allegedly linked to the misuse of a kerosene space heater. The thermal analytical techniques showed that external heating was the cause of the space heater's deformation, not a firing of the heater with gasoline and kerosene. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  12. Thermal analysis as an aid to forensics: Alkane melting and oxidative stability of wool

    Energy Technology Data Exchange (ETDEWEB)

    Alan Riga, D. [Professor of Chemistry, Cleveland State University and TechCon Inc., 6325 Aldenham Dr., Cleveland, OH 44143-3331 (United States)

    1998-12-21

    Interdisciplinary methods and thermal analytical techniques in particular are effective tools in aiding the identification and characterization of materials in question involved in civil or criminal law. Forensic material science uses systematic knowledge of the physical or material world gained through analysis, observation and experimentation. Thermal analytical data can be used to aid the legal system in interpreting technical variations in quite often a complex system.Calorimetry and thermal microscopic methods helped define a commercial product composed of alkanes that was involved in a major law suit. The solid-state structures of a number of normal alkanes have unique crystal structures. These alkanes melt and freeze below room temperature to more than 60C below zero. Mixtures of specific alkanes have attributes of pure chemicals. The X-ray diffraction structure of a mixture of alkanes is the same as a pure alkane, but the melting and freezing temperature are significantly lower than predicted. The jury ruled that the product containing n-alkanes had the appropriate melting characteristics. The thermal-physical properties made a commercial fluid truly unique and there was no advertising infringement according to the law and the jury trialA combination of thermogravimetry, differential thermal analysis, infrared spectroscopy and macrophotography were used to conduct an extensive modeling and analysis of physical evidence obtained in a mobile home fire and explosion. A person's death was allegedly linked to the misuse of a kerosene space heater. The thermal analytical techniques showed that external heating was the cause of the space heater's deformation, not a firing of the heater with gasoline and kerosene. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  13. Molecular dynamics simulation studies of mid-size liquid n-Alkanes, C12–C160

    International Nuclear Information System (INIS)

    Kwon, Tae Woo; Lee, Song Hi

    2015-01-01

    In this study, we report the results of molecular dynamics simulations (MD) for model systems of mid-size liquid n-alkanes (C 12 –C 160 ) at several temperatures (⁓2700 K) in canonical ensembles to calculate structural and dynamic properties (viscosity η, self-diffusion constant D, and monomeric friction constant ζ). For the small n-alkanes for n ≤ 80, the chains are clearly ≥ 1, which leads to the conclusion that the liquid n-alkanes are far away from the Rouse regime, but for the n-alkanes for n ≥ 120, the chains are ⁓ 1 and they are Gaussian. It is found that the long chains of these n-alkanes at high temperatures show abnormalities in density, viscosity, and monomeric friction constant. The mass and temperature dependences of structural and dynamic properties (η, D, and ζ) are discussed

  14. Alkane oxidation by Pseudomonas oleovorans : genes and proteins

    NARCIS (Netherlands)

    van Beilen, Jan Berthold

    1994-01-01

    This thesis deals with the molecular genetics and biochemistry of oxidation of medium chainlength alkanes by P. oleovorans, as part of a program to develop biotechnological processes, based on oxygenases.

  15. Nanoscale Trapping and Squeeze-Out of Confined Alkane Monolayers.

    Science.gov (United States)

    Gosvami, N N; O'Shea, S J

    2015-12-01

    We present combined force curve and conduction atomic force microscopy (AFM) data for the linear alkanes CnH2n+2 (n = 10, 12, 14, 16) confined between a gold-coated AFM tip and a graphite surface. Solvation layering is observed in the force curves for all liquids, and conduction AFM is used to study in detail the removal of the confined (mono)layer closest to the graphite surface. The squeeze-out behavior of the monolayer can be very different depending upon the temperature. Below the monolayer melting transition temperatures the molecules are in an ordered state on the graphite surface, and fast and complete removal of the confined molecules is observed. However, above the melting transition temperature the molecules are in a disordered state, and even at large applied pressure a few liquid molecules are trapped within the tip-sample contact zone. These findings are similar to a previous study for branched alkanes [ Gosvami Phys. Rev. Lett. 2008, 100, 076101 ], but the observation for the linear alkane homologue series demonstrates clearly the dependence of the squeeze-out and trapping on the state of the confined material.

  16. Use of nuclear magnetic resonance of hydrogen in the characterization of saturated hydrocarbonic chains

    International Nuclear Information System (INIS)

    Costa Neto, A.; Soares, V.L.P.; Costa Neto, C.

    1979-01-01

    Alkanes and cycloalkanes are characterized by a methyl-methylene-methine groups proportion, the percentual absorption in prefixed regions and the pattern of the spectrum of nuclear magnetic resonance of hydrogen. The GPI is calculated from the contribution of the areas corresponding to prefixed regions of the hydrogen magnetic resonance spectra (60 Mc). These regions are (for the saturated hydrocarbons): 0,5-1,05ppm (X), 1,05ppm (Y) and 1,50-2,00ppm (Z). The validity of the index was verified for the homologous series of linear hydrocarbons and methyl-, dimethyl-, ethyl-, cyclopentyl- and cyclohexyl-branched hydrocarbons. Its application to shale oil chemistry (xistoquimica) is discussed. (author) [pt

  17. Preferential methanogenic biodegradation of short-chain n-alkanes by microbial communities from two different oil sands tailings ponds.

    Science.gov (United States)

    Mohamad Shahimin, Mohd Faidz; Foght, Julia M; Siddique, Tariq

    2016-05-15

    Oil sands tailings ponds harbor diverse anaerobic microbial communities capable of methanogenic biodegradation of solvent hydrocarbons entrained in the tailings. Mature fine tailings (MFT) from two operators (Albian and CNRL) that use different extraction solvents were incubated with mixtures of either two (n-pentane and n-hexane) or four (n-pentane, n-hexane, n-octane and n-decane) n-alkanes under methanogenic conditions for ~600 d. Microbes in Albian MFT began methane production by ~80 d, achieving complete depletion of n-pentane and n-hexane in the two-alkane mixture and their preferential biodegradation in the four-alkane mixture. Microbes in CNRL MFT preferentially metabolized n-octane and n-decane in the four-alkane mixture after a ~80 d lag but exhibited a lag of ~360 d before commencing biodegradation of n-pentane and n-hexane in the two-alkane mixture. 16S rRNA gene pyrosequencing revealed Peptococcaceae members as key bacterial n-alkane degraders in all treatments except CNRL MFT amended with the four-alkane mixture, in which Anaerolineaceae, Desulfobacteraceae (Desulfobacterium) and Syntrophaceae (Smithella) dominated during n-octane and n-decane biodegradation. Anaerolineaceae sequences increased only in cultures amended with the four-alkane mixture and only during n-octane and n-decane biodegradation. The dominant methanogens were acetoclastic Methanosaetaceae. These results highlight preferential n-alkane biodegradation by microbes in oil sands tailings from different producers, with implications for tailings management and reclamation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Alkane Hydroxylase Gene (alkB Phylotype Composition and Diversity in Northern Gulf of Mexico Bacterioplankton

    Directory of Open Access Journals (Sweden)

    Conor Blake Smith

    2013-12-01

    Full Text Available Natural and anthropogenic activities introduce alkanes into marine systems where they are degraded by alkane hydroxylases expressed by phylogenetically diverse bacteria. Partial sequences for alkB, one of the structural genes of alkane hydroxylase, have been used to assess the composition of alkane-degrading communities, and to determine their responses to hydrocarbon inputs. We present here the first spatially extensive analysis of alkB in bacterioplankton of the northern Gulf of Mexico (nGoM, a region that experiences numerous hydrocarbon inputs. We have analyzed 401 partial alkB gene sequences amplified from genomic extracts collected during March 2010 from 17 water column samples that included surface waters and bathypelagic depths. Previous analyses of 16S rRNA gene sequences for these and related samples have shown that nGoM bacterial community composition and structure stratify strongly with depth, with distinctly different communities above and below 100 m. Although we hypothesized that alkB gene sequences would exhibit a similar pattern, PCA analyses of operational protein units (OPU indicated that community composition did not vary consistently with depth or other major physical-chemical variables. We observed 22 distinct OPUs, one of which was ubiquitous and accounted for 57% of all sequences. This OPU clustered with alkB sequences from known hydrocarbon oxidizers (e.g., Alcanivorax and Marinobacter. Some OPUs could not be associated with known alkane degraders, however, and perhaps represent novel hydrocarbon-oxidizing populations or genes. These results indicate that the capacity for alkane hydrolysis occurs widely in the nGoM, but that alkane degrader diversity varies substantially among sites and responds differently than bulk communities to physical-chemical variables.

  19. Alkane Biosynthesis Genes in Cyanobacteria and Their Transcriptional Organization

    International Nuclear Information System (INIS)

    Klähn, Stephan; Baumgartner, Desirée; Pfreundt, Ulrike; Voigt, Karsten; Schön, Verena; Steglich, Claudia; Hess, Wolfgang R.

    2014-01-01

    In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl–acyl carrier protein reductase and aldehyde deformylating oxygenase. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short-chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado) and sll0209 (aar), which give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313, and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in cyanobacteria.

  20. Alkane biosynthesis genes in cyanobacteria and their transcriptional organization

    Directory of Open Access Journals (Sweden)

    Stephan eKlähn

    2014-07-01

    Full Text Available In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl-acyl carrier protein reductase (AAR and aldehyde deformylating oxygenase (ADO. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado and sll0209 (aar, that give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313 and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in

  1. Alkane Biosynthesis Genes in Cyanobacteria and Their Transcriptional Organization

    Energy Technology Data Exchange (ETDEWEB)

    Klähn, Stephan; Baumgartner, Desirée; Pfreundt, Ulrike; Voigt, Karsten; Schön, Verena; Steglich, Claudia; Hess, Wolfgang R., E-mail: wolfgang.hess@biologie.uni-freiburg.de [Genetics and Experimental Bioinformatics, Institute of Biology 3, Faculty of Biology, University of Freiburg, Freiburg (Germany)

    2014-07-14

    In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl–acyl carrier protein reductase and aldehyde deformylating oxygenase. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short-chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado) and sll0209 (aar), which give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313, and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in cyanobacteria.

  2. n-Alkane assimilation and tert-butyl alcohol (TBA) oxidation capacity in Mycobacterium austroafricanum strains.

    Science.gov (United States)

    Lopes Ferreira, Nicolas; Mathis, Hugues; Labbé, Diane; Monot, Frédéric; Greer, Charles W; Fayolle-Guichard, Françoise

    2007-06-01

    Mycobacterium austroafricanum IFP 2012, which grows on methyl tert-butyl ether (MTBE) and on tert-butyl alcohol (TBA), the main intermediate of MTBE degradation, also grows on a broad range of n-alkanes (C2 to C16). A single alkB gene copy, encoding a non-heme alkane monooxygenase, was partially amplified from the genome of this bacterium. Its expression was induced after growth on n-propane, n-hexane, n-hexadecane and on TBA but not after growth on LB. The capacity of other fast-growing mycobacteria to grow on n-alkanes (C1 to C16) and to degrade TBA after growth on n-alkanes was compared to that of M. austroafricanum IFP 2012. We studied M. austroafricanum IFP 2012 and IFP 2015 able to grow on MTBE, M. austroafricanum IFP 2173 able to grow on isooctane, Mycobacterium sp. IFP 2009 able to grow on ethyl tert-butyl ether (ETBE), M. vaccae JOB5 (M. austroaafricanum ATCC 29678) able to degrade MTBE and TBA and M. smegmatis mc2 155 with no known degradation capacity towards fuel oxygenates. The M. austroafricanum strains grew on a broad range of n-alkanes and three were able to degrade TBA after growth on propane, hexane and hexadecane. An alkB gene was partially amplified from the genome of all mycobacteria and a sequence comparison demonstrated a close relationship among the M. austroafricanum strains. This is the first report suggesting the involvement of an alkane hydroxylase in TBA oxidation, a key step during MTBE metabolism.

  3. Extraction of pentylbenzene from high molar mass alkanes (C14 and C17) by N-methyl-2-pyrrolidone

    International Nuclear Information System (INIS)

    Fandary, Mohamed S.; Al-Jimaz, Adel S.; Al-Kandary, Jasem A.; Fahim, Mohamed A.

    2006-01-01

    Equilibrium tie line data have been determined for the two ternary liquid systems: {tetradecane, or heptadecane + pentylbenzene + N-methyl-2-pyrrolidone (NMP)} over a temperature range of (298 to 328) K. The two systems studied exhibit type I liquid + liquid phase diagram. The effect of temperature and n-alkane chain length upon solubility, selectivity, and distribution coefficients were investigated experimentally

  4. Critical constants and acentric factors for long-chain alkanes suitable for corresponding states applications

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Dimitrios, Tassios

    1997-01-01

    Several methods for the estimation of the critical temperature T-c, the critical pressure P-c, and the acentric factor omega for long-chain n-alkanes are reviewed and evaluated for the prediction of vapor pressures using Corresponding States (CS) methods, like the Lee-Kesler equation and the cubic....... Anselme, Correlation of the critical properties of alkanes and alkanols, Fluid Phase Equilibria, 56 (1990) 153-169; W. Hu, J. Lovland and P. Vonka. Generalized vapor pressure equations for n-alkanes, 1-alkenes, and 1-alkanols, Presented at the 11th Int. Congress of Chemical Engineering, Chemical Equipment...

  5. Cyclooctane metathesis catalyzed by silica-supported tungsten pentamethyl [(ΞSiO)W(Me)5]: Distribution of macrocyclic alkanes

    KAUST Repository

    Riache, Nassima

    2014-10-03

    Metathesis of cyclic alkanes catalyzed by the new surface complex [(ΞSiO)W(Me)5] affords a wide distribution of cyclic and macrocyclic alkanes. The major products with the formula CnH2n are the result of either a ring contraction or ring expansion of cyclooctane leading to lower unsubstituted cyclic alkanes (5≤n≤7) and to an unprecedented distribution of unsubstituted macrocyclic alkanes (12≤n≤40), respectively, identified by GC/MS and by NMR spectroscopies.

  6. Identification and use of an alkane transporter plug-in for application in biocatalysis and whole-cell biosensing of alkanes

    DEFF Research Database (Denmark)

    Grant, Chris; Deszcz, Dawid; Wei, Yu-Chia

    2014-01-01

    Effective application of whole-cell devices in synthetic biology and biocatalysis will always require consideration of the uptake of molecules of interest into the cell. Here we demonstrate that the AlkL protein from Pseudomonas putida GPo1 is an alkane import protein capable of industrially rele...

  7. Study of saturated hydrocarbons transport through MFI zeolitic membranes; Etude du transport d`hydrocarbures satures dans des membranes zeolithiques de structure MFI

    Energy Technology Data Exchange (ETDEWEB)

    Millot, B.

    1998-12-22

    The main goal of this work was to characterize and model alkanes transport through (MFI) zeolitic membranes. This work was divided in two steps. First, a characterization of alkanes sorption equilibria in MFI type zeolite was necessary. The measurements of sorption isotherms and Temperature Programmed Desorption allowed us to deduce: capacity of absorption, variations of the sorption isosteric enthalpy and entropy. A model using two different types of sorption sites in the zeolite was used to explain the presence of several interaction types between molecules and zeolite. The model showed the importance of entropy on the localization of the molecules in the zeolitic channels. Moreover, we studied the permeation of alkanes in zeolitic membranes. The results showed promising properties for the separation of linear and branched alkanes. Even if the behavior is very intricate, the use of the Generalized Maxwell-Stefan equations gave an access to the diffusivities of the linear and mono-branched alkanes. The preliminary modeling of the permeation mixtures results was also obtained. (author) 280 refs.

  8. 40 CFR 721.10103 - Naphtha (Fischer-Tropsch), C4-11-alkane, branched and linear.

    Science.gov (United States)

    2010-07-01

    ...-alkane, branched and linear. 721.10103 Section 721.10103 Protection of Environment ENVIRONMENTAL..., branched and linear. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as naphtha (fischer-tropsch), C4-11-alkane, branched and linear (PMN P-04-235; CAS No...

  9. Hydrogenation and hydrodeoxygenation of biomass-derived oxygenates to liquid alkanes for transportation fuels.

    Science.gov (United States)

    Sun, Shaohui; Yang, Ruishu; Wang, Xin; Yan, Shaokang

    2018-04-01

    An attractive approach for the production of transportation fuels from renewable biomass resources is to convert oxygenates into alkanes. In this paper, C 5 -C 20 alkanes formed via the hydrogenation and hydrodeoxygenation of the oligomers of furfuryl alcohol(FA) can be used as gasoline, diesel and jet fuel fraction. The first step of the process is the oligomers of FA convert into hydrogenated products over Raney Ni catalyst in a batch reactor. The second step of the process converts hydrogenated products to alkanes via hydrodeoxygenation over different bi-functional catalysts include hydrogenation and acidic deoxidization active sites. After this process, the oxygen content decreased from 22.1 wt% in the oligomers of FA to 0.58 wt% in the hydrodeoxygenation products.

  10. Analysis of alkane-dependent methanogenic community derived from production water of a high-temperature petroleum reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Mbadinga, Serge Maurice; Li, Kai-Ping; Zhou, Lei; Wang, Li-Ying; Yang, Shi-Zhong; Liu, Jin-Feng; Mu, Bo-Zhong [East China Univ. of Science and Technology, Shanghai (China). State Key Lab. of Bioreactor Engineering and Inst. of Applied Chemistry; Gu, Ji-Dong [Hong Kong Univ. (China). School of Biological Sciences

    2012-10-15

    Microbial assemblage in an n-alkanes-dependent thermophilic methanogenic enrichment cultures derived from production waters of a high-temperature petroleum reservoir was investigated in this study. Substantially higher amounts of methane were generated from the enrichment cultures incubated at 55 C for 528 days with a mixture of long-chain n-alkanes (C{sub 15}-C{sub 20}). Stoichiometric estimation showed that alkanes-dependent methanogenesis accounted for about 19.8% of the total amount of methane expected. Hydrogen was occasionally detected together with methane in the gas phase of the cultures. Chemical analysis of the liquid cultures resulted only in low concentrations of acetate and formate. Phylogenetic analysis of the enrichment revealed the presence of several bacterial taxa related to Firmicutes, Thermodesulfobiaceae, Thermotogaceae, Nitrospiraceae, Dictyoglomaceae, Candidate division OP8 and others without close cultured representatives, and Archaea predominantly related to uncultured members in the order Archaeoglobales and CO{sub 2}-reducing methanogens. Screening of genomic DNA retrieved from the alkanes-amended enrichment cultures also suggested the presence of new alkylsuccinate synthase alpha-subunit (assA) homologues. These findings suggest the presence of poorly characterized (putative) anaerobic n-alkanes degraders in the thermophilic methanogenic enrichment cultures. Our results indicate that methanogenesis of alkanes under thermophilic condition is likely to proceed via syntrophic acetate and/or formate oxidation linked with hydrogenotrophic methanogenesis. (orig.)

  11. Alkane-grown Beauveria bassiana produce mycelial pellets displaying peroxisome proliferation, oxidative stress, and cell surface alterations.

    Science.gov (United States)

    Huarte-Bonnet, Carla; Paixão, Flávia R S; Ponce, Juan C; Santana, Marianela; Prieto, Eduardo D; Pedrini, Nicolás

    2018-06-01

    The entomopathogenic fungus Beauveria bassiana is able to grow on insect cuticle hydrocarbons, inducing alkane assimilation pathways and concomitantly increasing virulence against insect hosts. In this study, we describe some physiological and molecular processes implicated in growth, nutritional stress response, and cellular alterations found in alkane-grown fungi. The fungal cytology was investigated using light and transmission electron microscopy while the surface topography was examined using atomic force microscopy. Additionally, the expression pattern of several genes associated with oxidative stress, peroxisome biogenesis, and hydrophobicity were analysed by qPCR. We found a novel type of growth in alkane-cultured B. bassiana similar to mycelial pellets described in other alkane-free fungi, which were able to produce viable conidia and to be pathogenic against larvae of the beetles Tenebrio molitor and Tribolium castaneum. Mycelial pellets were formed by hyphae cumulates with high peroxidase activity, exhibiting peroxisome proliferation and an apparent surface thickening. Alkane-grown conidia appeared to be more hydrophobic and cell surfaces displayed different topography than glucose-grown cells. We also found a significant induction in several genes encoding for peroxins, catalases, superoxide dismutases, and hydrophobins. These results show that both morphological and metabolic changes are triggered in mycelial pellets derived from alkane-grown B. bassiana. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  12. On the relation between Zenkevich and Wiener indices of alkanes

    Directory of Open Access Journals (Sweden)

    ZARKO BOSKOVIC

    2004-04-01

    Full Text Available A relatively complicated relation was found to exist between the quantity U, recently introduced by Zenkevich (providing a measure of internal molecular energy, and the Wiener index W (measuring molecular surface area and intermolecular forces. We now report a detailed analysis of this relation and show that, in the case of alkanes, its main features are reproduced by the formula U = –aW + b + gn1; where n1 is the number of methyl groups, and a, b and g are constants, depending only on the number of carbon atoms. Thus, for isomeric alkanes with the same number of methyl groups, U and W are linearly correlated.

  13. Structural and Kinetic Studies of Novel Cytochrome P450 Small-Alkane Hydroxylases

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Frances H.

    2012-02-27

    The goals of this project are to investigate (1) the kinetics and stabilities of engineered cytochrome P450 (P450) small alkane hydroxylases and their evolutionary intermediates, (2) the structural basis for catalytic proficiency on small alkanes of these engineered P450s, and (3) the changes in redox control resulting from protein engineering. To reach these goals, we have established new methods for determining the kinetics and stabilities of multicomponent P450s such as CYP153A6. Using these, we were able to determine that CYP153A6 is proficient for hydroxylation of alkanes as small as ethane, an activity that has never been observed previously in any natural P450. To elucidate the structures of the engineered P450s, we obtained x-ray diffraction data for two variants in the P450PMO (propane monooxygenase) lineage and a preliminary structure for the most evolved variant. This structure shows changes in the substrate binding regions of the enzyme and a reduction in active site volume that are consistent with the observed changes in substrate specificity from fatty acids in the native enzyme to small alkanes in P450PMO. We also constructed semi-rational designed libraries mutating only residues in the enzyme active site that in one round of mutagenesis and screening produced variants that achieved nearly half of the activity of the most evolved enzymes of the P450PMO lineage. Finally, we found that changes in redox properties of the laboratory-evolved P450 alkane hydroxylases did not reflect the improvement in their electron transfer efficiency. The heme redox potential remained constant throughout evolution, while activity increased and coupling efficiency improved from 10% to 90%. The lack of correlation between heme redox potential and enzyme activity and coupling efficiency led us to search for other enzyme properties that could be better predictors for activity towards small alkanes, specifically methane. We investigated the oxidation potential of the radical

  14. Pulse radiolysis of alkanes: a time-resolved EPR study - Part I. Alkyl radicals

    International Nuclear Information System (INIS)

    Shkrob, I.A.; Trifunac, A.D.

    1995-01-01

    Time-resolved EPR was applied to detect short-lived alkyl radicals in pulse radiolysis of liquid alkanes. Two problems were addressed: (i) the mechanism of radical formation and (ii) the mechanism of chemically-induced spin polarization in these radicals. (i) The ratio of yields of penultimate and interior radicals in n-alkanes at the instant of their generation was found to be ≅ 1.25 times greater than the statistical quantity. This higher-than-statistical production of penultimate radicals indicates that the proton transfer reaction involving excited radical cations must be a prevailing route of radical generation. The relative yields of hydrogen abstraction and fragmentation for various branched alkanes are estimated. It is concluded that the fragmentation occurs prior to the formation of radicals in an excited precursor species. (ii) The analysis of spin-echo kinetics in n-alkanes suggests that the alkyl radicals gain the emissive polarization in spur reactions. This initial polarization increases with shortening of the aliphatic chain. We suggest that the origin of this polarization is the ST mechanism operating in the pairs of alkyl radicals and hydrogen atoms generated in dissociation of excited alkane molecules. It is also found that a long-chain structure of alkyl radicals results in much higher rate of Heisenberg spin exchange relative to the recombination rate (up to 30 times). That suggests prominent steric effects in recombination or the occurrence of through-chain electron exchange. The significance of these results in the context of cross-linking in polyethylene and higher paraffins is discussed. (Author)

  15. The effect of environmental factors on stable isotopic composition of n-alkanes in Mediterranean olive oils

    Science.gov (United States)

    Pedentchouk, Nikolai; Mihailova, Alina; Abbado, Dimitri

    2014-05-01

    Traceability of the geographic origin of olive oils is an important issue from both commercial and health perspectives. This study evaluates the impact of environmental factors on stable C and H isotope compositions of n-alkanes in extra virgin olive oils from Croatia, France, Greece, Italy, Morocco, Portugal, Slovenia, and Spain. The data are used to investigate the applicability of stable isotope methodology for olive oil regional classification in the Mediterranean region. Analysis of stable C isotope composition of n-C29 alkane showed that extra virgin olive oils from Portugal and Spain have the most positive n-C29 alkane delta13C values. Conversely, olive oils from Slovenia, northern and central Italy are characterized by the most negative values. Overall, the n-C29 alkane delta13C values show a positive correlation with the mean air temperature during August-December and a negative correlation with the mean relative humidity during these months. Analysis of stable H isotope composition of n-C29 alkane revealed that the deltaD values are the most positive in olive oils from Greece and Morocco and the most negative in oils from northern Italy. The deltaD values of oils show significant correlation with all the analyses geographical parameters: the mean air temperature and relative humidity during August-December, the total amount of rainfall (the same months) and the annual deltaD values of precipitation. As predictor variables in the Categorical Data Analysis, the n-C29 alkane deltaD values show the most significant discriminative power, followed by the n-C29 alkane delta13C values. Overall, 93.4% of olive oil samples have been classified correctly into one of the production regions. Our findings suggest that an integrated analysis of C and H isotope compositions of n-alkanes extracted from extra virgin olive oil could become a useful tool for geographical provenancing of this highly popular food commodity.

  16. Characterization and Two-Dimensional Crystallization of Membrane Component AlkB of the Medium-Chain Alkane Hydroxylase System from Pseudomonas putida GPo1

    OpenAIRE

    Alonso, Hernan; Roujeinikova, Anna

    2012-01-01

    The alkane hydroxylase system of Pseudomonas putida GPo1 allows it to use alkanes as the sole source of carbon and energy. Bacterial alkane hydroxylases have tremendous potential as biocatalysts for the stereo- and regioselective transformation of a wide range of chemically inert unreactive alkanes into valuable reactive chemical precursors. We have produced and characterized the first 2-dimensional crystals of the integral membrane component of the P. putida alkane hydroxylase system, the no...

  17. Hydrogenation and hydrodeoxygenation of biomass-derived oxygenates to liquid alkanes for transportation fuels

    Directory of Open Access Journals (Sweden)

    Shaohui Sun

    2018-04-01

    Full Text Available An attractive approach for the production of transportation fuels from renewable biomass resources is to convert oxygenates into alkanes. In this paper, C5–C20 alkanes formed via the hydrogenation and hydrodeoxygenation of the oligomers of furfuryl alcohol(FA can be used as gasoline, diesel and jet fuel fraction. The first step of the process is the oligomers of FA convert into hydrogenated products over Raney Ni catalyst in a batch reactor. The second step of the process converts hydrogenated products to alkanes via hydrodeoxygenation over different bi-functional catalysts include hydrogenation and acidic deoxidization active sites. After this process, the oxygen content decreased from 22.1 wt% in the oligomers of FA to 0.58 wt% in the hydrodeoxygenation products.

  18. Shock tube measurements of the rate constants for seven large alkanes+OH

    KAUST Repository

    Badra, Jihad

    2015-01-01

    Reaction rate constants for seven large alkanes + hydroxyl (OH) radicals were measured behind reflected shock waves using OH laser absorption. The alkanes, n-hexane, 2-methyl-pentane, 3-methyl-pentane, 2,2-dimethyl-butane, 2,3-dimethyl-butane, 2-methyl-heptane, and 4-methyl-heptane, were selected to investigate the rates of site-specific H-abstraction by OH at secondary and tertiary carbons. Hydroxyl radicals were monitored using narrow-line-width ring-dye laser absorption of the R1(5) transition of the OH spectrum near 306.7 nm. The high sensitivity of the diagnostic enabled the use of low reactant concentrations and pseudo-first-order kinetics. Rate constants were measured at temperatures ranging from 880 K to 1440 K and pressures near 1.5 atm. High-temperature measurements of the rate constants for OH + n-hexane and OH + 2,2-dimethyl-butane are in agreement with earlier studies, and the rate constants of the five other alkanes with OH, we believe, are the first direct measurements at combustion temperatures. Using these measurements and the site-specific H-abstraction measurements of Sivaramakrishnan and Michael (2009) [1,2], general expressions for three secondary and two tertiary abstraction rates were determined as follows (the subscripts indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon): S20=1.58×10-11exp(-1550K/T)cm3molecule-1s-1(887-1327K)S30=2.37×10-11exp(-1850K/T)cm3molecule-1s-1(887-1327K)S21=4.5×10-12exp(-793.7K/T)cm3molecule-1s-1(833-1440K)T100=2.85×10-11exp(-1138.3K/T)cm3molecule-1s-1(878-1375K)T101=7.16×10-12exp(-993K/T)cm3molecule-1s-1(883-1362K) © 2014 The Combustion Institute.

  19. Effects of surfactants on bacteria and the bacterial degradation of alkanes in crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Bruheim, Per

    1998-12-31

    This thesis investigates the effects of surfactants on the bacterial degradation of alkanes in crude oil. Several alkane oxidising Gram positive and Gram negative were tested for their abilities to oxidise alkanes in crude oil emulsified with surfactants. The surfactants used to make the oil in water emulsions were either of microbial or chemical origin. Oxidation rates of resting bacteria oxidising various crude oil in water emulsions were measured by Warburg respirometry. The emulsions were compared with non-emulsified oil to see which was the preferred substrate. The bacteria were pregrown to both the exponential and stationary phase of growth before harvesting and preparation for the Warburg experiments. 123 refs., 4 figs., 14 tabs.

  20. Gluon Saturation and EIC

    Energy Technology Data Exchange (ETDEWEB)

    Sichtermann, Ernst

    2016-12-15

    The fundamental structure of nucleons and nuclear matter is described by the properties and dynamics of quarks and gluons in quantum chromodynamics. Electron-nucleon collisions are a powerful method to study this structure. As one increases the energy of the collisions, the interaction process probes regions of progressively higher gluon density. This density must eventually saturate. An high-energy polarized Electron-Ion Collider (EIC) has been proposed to observe and study the saturated gluon density regime. Selected measurements will be discussed, following a brief introduction.

  1. 40 CFR 721.10163 - Chloro fluoro alkane (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chloro fluoro alkane (generic). 721.10163 Section 721.10163 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...)(2) of this section. (2) The significant new uses are: (i) Industrial, commercial, and consumer...

  2. The (gas + liquid) critical properties and phase behaviour of some binary alkanol (C2-C5) + alkane (C5-C12) mixtures

    International Nuclear Information System (INIS)

    Morton, David W.; Lui, Matthew P.W.; Young, Colin L.

    2003-01-01

    Previously, the investigation of the (gas + liquid) critical properties of (alkanol + alkane) mixtures has focussed on (primary alkanol + straight chain alkane) mixtures. The experimental data available for (alkanol + alkane) mixtures, which include secondary or tertiary alcohols and/or branched chain alkanes, are extremely limited. This work extends the existing body of data on (alkanol + alkane) mixtures to include mixtures containing these components. Here the (gas + liquid) critical temperatures of 29 {alkanol (C 2 -C 5 ) + alkane (C 5 -C 12 )} mixtures are reported. All the (gas + liquid) critical lines for the binary mixtures studied are continuous, indicating they obey either Type I or Type II phase behaviour

  3. Degradation of n-alkanes and PAHs from the heavy crude oil using salt-tolerant bacterial consortia and analysis of their catabolic genes.

    Science.gov (United States)

    Gurav, Ranjit; Lyu, Honghong; Ma, Jianli; Tang, Jingchun; Liu, Qinglong; Zhang, Hairong

    2017-04-01

    In the present study, salt-tolerant strains, Dietzia sp. HRJ2, Corynebacterium variabile HRJ4, Dietzia cinnamea HRJ5 and Bacillus tequilensis HRJ6 were isolated from the Dagang oil field, China. These strains degraded n-alkanes and polycyclic aromatic hydrocarbons (PAHs) aerobically from heavy crude oil (HCO) in an experiment at 37 °C and 140 rpm. The GC/MS investigation for degradation of different chain lengths of n-alkanes (C8-C40) by individual strains showed the highest degradation of C8-C19 (HRJ5), C20-C30 (HRJ4) and C31-C40 (HRJ5), respectively. Moreover, degradation of 16 PAHs with individual strains demonstrated that the bicyclic and pentacyclic aromatic hydrocarbons (AHs) were mostly degraded by HRJ5, tricyclic and tetracyclic AHs by HRJ6 and hexacyclic AHs by HRJ2. However, the highest degradation of total petroleum hydrocarbons (TPHs), total saturated hydrocarbons (TSH), total aromatic hydrocarbons (TAH), n-alkanes (C8-C40) and 16 PAHs was achieved by a four-membered consortium (HRJ2 + 4 + 5 + 6) within 12 days, with the predominance of HRJ4 and HRJ6 strains which was confirmed by denaturing gradient gel electrophoresis. The abundance of alkB and nah genes responsible for catabolism of n-alkanes and PAHs was quantified using the qPCR. Maximum copy numbers of genes were observed in HRJ2 + 4 + 5 + 6 consortium (gene copies l -1 ) 2.53 × 10 4 (alkB) and 3.47 × 10 3 (nah) at 12 days, which corresponded to higher degradation rates of petroleum hydrocarbons. The superoxide dismutase (SOD) (total SOD (T-SOD), Cu 2+ Zn 2+ -SOD), catalase (CAT) and ascorbate peroxidase (APX) activities in Allium sativum and Triticum aestivum were lower in the HRJ2 + 4 + 5 + 6-treated HCO as compared to the plantlets exposed directly to HCO. The present results revealed the effective degradation of HCO-contaminated saline medium using the microbial consortium having greater metabolic diversity.

  4. n-Alkanes in sediments from the Yellow River Estuary, China: Occurrence, sources and historical sedimentary record.

    Science.gov (United States)

    Wang, Shanshan; Liu, Guijian; Yuan, Zijiao; Da, Chunnian

    2018-04-15

    A total of 21 surface sediments from the Yellow River Estuary (YRE) and a sediment core from the abandoned Old Yellow River Estuary (OYRE) were analyzed for n-alkanes using gas chromatography-mass spectrometry (GC-MS). n-Alkanes in the range C 12 -C 33 and C 13 -C 34 were identified in the surface sediments and the core, respectively. The homologous series were mainly bimodal distribution pattern without odd/even predominance in the YRE and OYRE. The total n-alkanes concentrations in the surface sediments ranged from 0.356 to 0.572mg/kg, with a mean of 0.434mg/kg on dry wt. Evaluation of n-alkanes proxies indicated that the aliphatic hydrocarbons in the surface sediments were derived mainly from a petrogenic source with a relatively low contribution of submerged/floating macrophytes, terrestrial and emergent plants. The dated core covered the time period 1925-2012 and the mean sedimentation rate was ca. 0.5cm/yr. The total n-alkanes concentrations in the core ranged from 0.0394 to 0.941mg/kg, with a mean of 0.180mg/kg. The temporal evolution of n-alkanes reflected the historical input of aliphatic hydrocarbons and was consistent with local and regional anthropogenic activity. In general, the investigation on the sediment core revealed a trend of regional environmental change and the role of anthropogenic activity in environmental change. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Bidirectional gene sequences with similar homology to functional proteins of alkane degrading bacterium pseudomonas fredriksbergensis DNA

    International Nuclear Information System (INIS)

    Megeed, A.A.

    2011-01-01

    The potential for two overlapping fragments of DNA from a clone of newly isolated alkanes degrading bacterium Pseudomonas frederiksbergensis encoding sequences with similar homology to two parts of functional proteins is described. One strand contains a sequence with high homology to alkanes monooxygenase (alkB), a member of the alkanes hydroxylase family, and the other strand contains a sequence with some homology to alcohol dehydrogenase gene (alkJ). Overlapping of the genes on opposite strands has been reported in eukaryotic species, and is now reported in a bacterial species. The sequence comparisons and ORFS results revealed that the regulation and the genes organization involved in alkane oxidation represented in Pseudomonas frederiksberghensis varies among the different known alkane degrading bacteria. The alk gene cluster containing homologues to the known alkane monooxygenase (alkB), and rubredoxin (alkG) are oriented in the same direction, whereas alcohol dehydrogenase (alkJ) is oriented in the opposite direction. Such genomes encode messages on both strands of the DNA, or in an overlapping but different reading frames, of the same strand of DNA. The possibility of creating novel genes from pre-existing sequences, known as overprinting, which is a widespread phenomenon in small viruses. Here, the origin and evolution of the gene overlap to bacteriophages belonging to the family Microviridae have been investigated. Such a phenomenon is most widely described in extremely small genomes such as those of viruses or small plasmids, yet here is a unique phenomenon. (author)

  6. Solid acid catalysts in heterogeneous n-alkanes hydroisomerisation ...

    African Journals Online (AJOL)

    As the current global environmental concerns have prompted regulations to reduce the level of aromatic compounds, particularly benzene and its derivatives in gasoline, ydroisomerisation of n-alkanes is becoming a major alternative for enhancing octane number. Series of solid acid catalysts comprising of Freidel crafts, ...

  7. Oxidative dehydrogenation of light alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Meiswinkel, A.; Thaller, C.; Bock, M.; Alvarado, L. [Linde AG, Pullach (Germany); Hartmann, D.; Veen, A.C. van; Lercher, J.A. [Technische Univ. Muenchen (Germany)

    2012-07-01

    The demand of light olefins increases steadily and the current steam cracking production is highly energy demanding. This motivates the development of alternative production processes like the oxidative dehydrogenation (ODH) of light alkanes operating at comparably low temperatures. Multi-component oxides are reported to show excellent catalytic performance in the ODH. Especially, MoVTeNbO oxides present high activity and selectivity in ODH of ethane. Synthesis of MoVTeNb oxides was done by a hydrothermal method. Qualitative and quantitative phase analysis were performed by X-ray diffraction and Rietveld refinement. Surface compositions were determined by Low energy ion scattering (LEIS). Catalytic tests were carried out in a fixed bed plug flow reactor using ethane and oxygen diluted in helium, as gaseous feed. Based on laboratory investigations a first upscale to a bench-top-pilot unit was performed in order to evaluate the large scale and long term feasibility of the process under technically relevant conditions. MoVTeNb oxides show high activity combined with excellent selectivity in the ODH of ethane to ethylene (S > 95% at X < 40%). Phase analysis reveals the presence of M1, M2 and amorphous phases. Literature reports the crystalline M1 phase as essential for the performance. Indeed, the crystalline M1 phase impacts on the activity via exposing V on the surface being apparently vital to achieve an active material. A correlation of the apparent activation energy with the surface vanadium composition of the catalysts is noticed, however, surprisingly with no major impact on the ethene selectivity. As this material was identified as most promising for a technical application a scale up from less than 1g to 50g of catalyst was performed in a bench-top-pilot unit. The reaction has a significant adiabatic temperature rise and the handling of the reaction heat is a major challenge for process engineering. Furthermore different diluent media such as Helium, Nitrogen

  8. Error of image saturation in the structured-light method.

    Science.gov (United States)

    Qi, Zhaoshuai; Wang, Zhao; Huang, Junhui; Xing, Chao; Gao, Jianmin

    2018-01-01

    In the phase-measuring structured-light method, image saturation will induce large phase errors. Usually, by selecting proper system parameters (such as the phase-shift number, exposure time, projection intensity, etc.), the phase error can be reduced. However, due to lack of a complete theory of phase error, there is no rational principle or basis for the selection of the optimal system parameters. For this reason, the phase error due to image saturation is analyzed completely, and the effects of the two main factors, including the phase-shift number and saturation degree, on the phase error are studied in depth. In addition, the selection of optimal system parameters is discussed, including the proper range and the selection principle of the system parameters. The error analysis and the conclusion are verified by simulation and experiment results, and the conclusion can be used for optimal parameter selection in practice.

  9. n-Alkane distributions as indicators of novel ecosystem development in western boreal forest soils

    Science.gov (United States)

    Norris, Charlotte; Dungait, Jennifer; Quideau, Sylvie

    2013-04-01

    Novel ecosystem development is occurring within the western boreal forest of Canada due to land reclamation following surface mining in the Athabasca Oil Sands Region. Sphagnum peat is the primary organic matter amendment used to reconstruct soils in the novel ecosystems. We hypothesised that ecosystem recovery would be indicated by an increasing similarity in the biomolecular characteristics of novel reconstructed soil organic matter (SOM) derived from peat to those of natural boreal ecosystems. In this study, we evaluated the use of the homologous series of very long chain (>C20) n-alkanes with odd-over-even predominance as biomarker signatures to monitor the re-establishment of boreal forests on reconstructed soils. The lipids were extracted from dominant vegetation inputs and SOM from a series of natural and novel ecosystem reference plots. We observed unique very long n-alkane signatures of the source vegetation, e.g. Sphagnum sp. was dominated by C31 and aspen (Populus tremuloides Michx.) leaves by C25. Greater concentrations of very long chain n-alkanes were extracted from natural than novel ecosystem SOM (puse of n-alkanes as biomarkers of ecosystem development is a promising method.

  10. n-Alkanes in surficial sediments of Visakhapatnam harbour, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Punyu, V.R.; Harji, R.R.; Bhosle, N.B.; Sawant, S.S.; Venkat, K.

    -alkanes mainly at C15, C17 and C19 Keywords. Sediments; lipids; n-alkanes; Visakhapatnam harbour. J. Earth Syst. Sci. 122, No. 2, April 2013, pp. 467–477 c© Indian Academy of Sciences 467 468 V R Punyu et al while terrestrial plants exhibit predominance of long... steel plant, a fertilizer plant and a lead and zinc smelter in the vicinity are discharged into this harbour. The harbour handles items such as man- ganese and iron ore, coal and oil products. Added to this, it receives most of the urban run...

  11. Thermodynamic parameters for the adsorption of volatile n-alkane ...

    African Journals Online (AJOL)

    alkanes hexane to nonane on ground dried water hyacinth (E. crassipes) root biomass were studied between 40 and 70°C column temperature using inverse gas chromatography, before and after treatment of the root biomass with mineral acid ...

  12. Distribution and sources of n-alkanes and polycyclic aromatic hydrocarbons in shellfish of the Egyptian Red Sea coast

    Directory of Open Access Journals (Sweden)

    Ahmed El Nemr

    2016-06-01

    Full Text Available Aromatic hydrocarbons and n-alkanes were analyzed in shellfish collected from 13 different sites along the Egyptian Red Sea coast. All samples were analyzed for n-alkanes (C8–C40 and polycyclic aromatic hydrocarbons (EPA list of PAHs. n-Alkanes in shellfish samples from 13 locations were found to be in the range of 71.0–701.1 ng/g with a mean value of 242.2 ± 192.1 ng/g dry wt. Different indices were calculated for the n-alkanes to assess their sources. These were carbon preference index (CPI, average chain length (ACL, terrigenous/aquatic ratio (TAR, natural n-alkane ratio (NAR and proxy ratio (Paq. Most of the collected samples of n-alkanes were discovered to be from natural sources. Aromatic hydrocarbons (16 PAHs from 13 sites varied between 1.3 and 160.9 ng/g with an average of 47.9 ± 45.5 ng/g dry wt. Benzo(apyrine (BaP, a cancer risk assessment, was calculated for the PAHs and resulted in ranges between 0.08 and 4.47 with an average of 1.25 ng/g dry wt.

  13. Evaluation of n-alkanes and their carbon isotope enrichments (d13C) as diet composition markers

    NARCIS (Netherlands)

    Derseh, M.B.; Pellikaan, W.F.; Tolera, A.; Hendriks, W.H.

    2011-01-01

    Plant cuticular n-alkanes have been successfully used as markers to estimate diet composition and intake of grazing herbivores. However, additional markers may be required under grazing conditions in botanically diverse vegetation. This study was conducted to describe the n-alkane profiles and the

  14. Stable isotope labeled n-alkanes to assess digesta passage kinetics through the digestive tract of ruminants

    NARCIS (Netherlands)

    Warner, D.; Ferreira, L.M.M.; Breuer, M.J.H.; Dijkstra, J.; Pellikaan, W.F.

    2013-01-01

    We describe the use of carbon stable isotope (13C) labeled n-alkanes as a potential internal tracer to assess passage kinetics of ingested nutrients in ruminants. Plant cuticular n-alkanes originating from intrinsically 13C labeled ryegrass plants were pulse dosed intraruminally in four

  15. Production of Low-Freezing-Point Highly Branched Alkanes through Michael Addition.

    Science.gov (United States)

    Jing, Yaxuan; Xia, Qineng; Liu, Xiaohui; Wang, Yanqin

    2017-12-22

    A new approach for the production of low-freezing-point, high-quality fuels from lignocellulose-derived molecules was developed with Michael addition as the key step. Among the investigated catalysts, CoCl 2 ⋅6 H 2 O was found most active for the Michael addition of 2,4-pentanedione with FA (single aldol adduct of furfural and acetone, 4-(2-furanyl)-3-butene-2-one). Over CoCl 2 ⋅6 H 2 O, a high carbon yield of C 13 oxygenates (about 75 %) can be achieved under mild conditions (353 K, 20 h). After hydrodeoxygenation, low-freezing-point (hydrodeoxygenation, high density (0.8415 g mL -1 ) and low-freezing-point (<223 K) branched alkanes with 18, 23 carbons within lubricant range were also obtained over a Pd/NbOPO 4 catalyst. These highly branched alkanes can be directly used as transportation fuels or additives. This work opens a new strategy for the synthesis of highly branched alkanes with low freezing point from renewable biomass. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Selective Hydrodeoxygenation of Vegetable Oils and Waste Cooking Oils to Green Diesel Using a Silica-Supported Ir-ReOx Bimetallic Catalyst.

    Science.gov (United States)

    Liu, Sibao; Simonetti, Trent; Zheng, Weiqing; Saha, Basudeb

    2018-05-09

    High yields of diesel-range alkanes are prepared by hydrodeoxygenation of vegetable oils and waste cooking oils over ReO x -modified Ir/SiO 2 catalysts under mild reaction conditions. The catalyst containing a Re/Ir molar ratio of 3 exhibits the best performance, achieving 79-85 wt % yield of diesel-range alkanes at 453 K and 2 MPa H 2 . The yield is nearly quantitative for the theoretical possible long-chain alkanes on the basis of weight of the converted oils. The catalyst retains comparable activity upon regeneration through calcination. Control experiments using probe molecules as model substrates suggest that C=C bonds of unsaturated triglycerides and free fatty acids are first hydrogenated to their corresponding saturated intermediates, which are then converted to aldehyde intermediates through hydrogenolysis of acyl C-O bonds and subsequently hydrogenated to fatty alcohols. Finally, long-chain alkanes without any carbon loss are formed by direct hydrogenolysis of the fatty alcohols. Small amounts of alkanes with one carbon fewer are also formed by decarbonylation of the aldehyde intermediates. A synergy between Ir and partially reduced ReO x sites is discussed to elucidate the high activity of Ir-ReO x /SiO 2. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The Calculation of Standard Enthalpies of Formation of Alkanes: Illustrating Molecular Mechanics and Spreadsheet Programs

    Science.gov (United States)

    Hawk, Eric Leigh

    1999-02-01

    How group increment methods may be used to predict standard enthalpies of formation of alkanes is outlined as an undergraduate computational chemistry experiment. The experiment requires input and output data sets. Although users may create their own data sets, both sets are provided. The input data set contains experimentally determined gas-phase standard enthalpies of formation and calculated steric energies for 10 alkanes. The steric energy for an alkane is calculated via a Molecular Mechanics approach employing Allinger's MM3 force field. Linear regression analysis on data contained in the input data set generates the coefficients that are used with the output data set to calculate standard enthalpies of formation for 15 alkanes. The average absolute error for the calculated standard enthalpies of formation is 1.22 kcal/mol. The experiment is highly suited to those interested in incorporating more computational chemistry in their curricula. In this regard, it is ideally suited for a physical chemistry laboratory, but it may be used in an organic chemistry course as well.

  18. Extraction of pentylbenzene from high molar mass alkanes (C{sub 14} and C{sub 17}) by N-methyl-2-pyrrolidone

    Energy Technology Data Exchange (ETDEWEB)

    Fandary, Mohamed S. [Chemical Engineering Department, College of Technological Studies, P.O. Box 3242, Salmyiah 22033 (Kuwait)]. E-mail: mfandary@yahoo.com; Al-Jimaz, Adel S. [Chemical Engineering Department, College of Technological Studies, P.O. Box 3242, Salmyiah 22033 (Kuwait); Al-Kandary, Jasem A. [Chemical Engineering Department, College of Technological Studies, P.O. Box 3242, Salmyiah 22033 (Kuwait); Fahim, Mohamed A. [Chemical Engineering Department, University of Kuwait, P.O. Box 5969, Safat 13060 (Kuwait)

    2006-04-15

    Equilibrium tie line data have been determined for the two ternary liquid systems: {l_brace}tetradecane, or heptadecane + pentylbenzene + N-methyl-2-pyrrolidone (NMP){r_brace} over a temperature range of (298 to 328) K. The two systems studied exhibit type I liquid + liquid phase diagram. The effect of temperature and n-alkane chain length upon solubility, selectivity, and distribution coefficients were investigated experimentally.

  19. Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation: Microcosm experiment on aged-contaminated soil

    International Nuclear Information System (INIS)

    Ingrid, Lenoir; Lounès-Hadj Sahraoui, Anissa; Frédéric, Laruelle; Yolande, Dalpé; Joël, Fontaine

    2016-01-01

    Very few studies reported the potential of arbuscular mycorrhizal symbiosis to dissipate hydrocarbons in aged polluted soils. The present work aims to study the efficiency of arbuscular mycorrhizal colonized wheat plants in the dissipation of alkanes and polycyclic aromatic hydrocarbons (PAHs). Our results demonstrated that the inoculation of wheat with Rhizophagus irregularis allowed a better dissipation of PAHs and alkanes after 16 weeks of culture by comparison to non-inoculated condition. These dissipations observed in the inoculated soil resulted from several processes: (i) a light adsorption on roots (0.5% for PAHs), (ii) a bioaccumulation in roots (5.7% for PAHs and 6.6% for alkanes), (iii) a transfer in shoots (0.4 for PAHs and 0.5% for alkanes) and mainly a biodegradation. Whereas PAHs and alkanes degradation rates were respectively estimated to 12 and 47% with non-inoculated wheat, their degradation rates reached 18 and 48% with inoculated wheat. The mycorrhizal inoculation induced an increase of Gram-positive and Gram-negative bacteria by 56 and 37% compared to the non-inoculated wheat. Moreover, an increase of peroxidase activity was assessed in mycorrhizal roots. Taken together, our findings suggested that mycorrhization led to a better hydrocarbon biodegradation in the aged-contaminated soil thanks to a stimulation of telluric bacteria and hydrocarbon metabolization in mycorrhizal roots. - Highlights: • Phytoremediation of aged-hydrocarbon polluted soils may be improved using arbuscular mycorrhizal fungi. • Inoculation of wheat with R. irregularis improved dissipation of PAH and alkanes. • Dissipation resulted from adsorption and bioaccumulation in wheat and mainly from biodegradation in soil. • Biodegradation was due to a stimulation of rhizosphere bacteria and an induction of root peroxidase. - Inoculation of wheat by an arbuscular mycorrhizal fungus improves biodegradation of alkanes and polycyclic aromatic hydrocarbons in an aged

  20. THE SEARCH FOR SUPER-SATURATION IN CHROMOSPHERIC EMISSION

    International Nuclear Information System (INIS)

    Christian, Damian J.; Arias, Tersi; Mathioudakis, Mihalis; Jess, David B.; Jardine, Moira

    2011-01-01

    We investigate if the super-saturation phenomenon observed at X-ray wavelengths for the corona exists in the chromosphere for rapidly rotating late-type stars. Moderate resolution optical spectra of fast-rotating EUV- and X-ray-selected late-type stars were obtained. Stars in α Per were observed in the northern hemisphere with the Isaac Newton 2.5 m telescope and Intermediate Dispersion Spectrograph. Selected objects from IC 2391 and IC 2602 were observed in the southern hemisphere with the Blanco 4 m telescope and R-C spectrograph at CTIO. Ca II H and K fluxes were measured for all stars in our sample. We find the saturation level for Ca II K at log (L CaK /L bol ) = -4.08. The Ca II K flux does not show a decrease as a function of increased rotational velocity or smaller Rossby number as observed in the X-ray. This lack of 'super-saturation' supports the idea of coronal stripping as the cause of saturation and super-saturation in stellar chromospheres and coronae, but the detailed underlying mechanism is still under investigation.

  1. Clay minerals and metal oxides strongly influence the structure of alkane-degrading microbial communities during soil maturation.

    Science.gov (United States)

    Steinbach, Annelie; Schulz, Stefanie; Giebler, Julia; Schulz, Stephan; Pronk, Geertje J; Kögel-Knabner, Ingrid; Harms, Hauke; Wick, Lukas Y; Schloter, Michael

    2015-07-01

    Clay minerals, charcoal and metal oxides are essential parts of the soil matrix and strongly influence the formation of biogeochemical interfaces in soil. We investigated the role of these parental materials for the development of functional microbial guilds using the example of alkane-degrading bacteria harbouring the alkane monooxygenase gene (alkB) in artificial mixtures composed of different minerals and charcoal, sterile manure and a microbial inoculum extracted from an agricultural soil. We followed changes in abundance and community structure of alkane-degrading microbial communities after 3 and 12 months of soil maturation and in response to a subsequent 2-week plant litter addition. During maturation we observed an overall increasing divergence in community composition. The impact of metal oxides on alkane-degrading community structure increased during soil maturation, whereas the charcoal impact decreased from 3 to 12 months. Among the clay minerals illite influenced the community structure of alkB-harbouring bacteria significantly, but not montmorillonite. The litter application induced strong community shifts in soils, maturated for 12 months, towards functional guilds typical for younger maturation stages pointing to a resilience of the alkane-degradation function potentially fostered by an extant 'seed bank'.

  2. Short-chain alkanes synergise responses of moth pests to their sex pheromones.

    Science.gov (United States)

    Gurba, Alexandre; Guerin, Patrick M

    2016-05-01

    The use of sex pheromones for mating disruption of moth pests of crops is increasing worldwide. Efforts are under way to augment the efficiency and reliability of this control method by adding molecules derived from host plants to the sex attractants in dispensers. We show how attraction of the European grapevine moth, Lobesia botrana Den. & Schiff., and the codling moth, Cydia pomonella L., males to underdosed levels of their sex pheromones is increased by adding heptane or octane over a range of release rates. Pheromone-alkane mixtures enhance male recruitment by up to 30%, reaching levels induced by calling females, and shorten the flight time to the sex attractant by a factor of 2. The findings show the promise of using short-chain alkanes as pheromone synergists for mating disruption of insect pests of food crops. Alkane-pheromone combinations are expected to increase the competitiveness of dispensers with females, and to reduce the amount of pheromone needed for the control of these pests. © 2015 Society of Chemical Industry.

  3. The use of polynuclear aromatic hydrocarbon (PAH) alkyl homologues in determining petroleum source identification and weathering

    International Nuclear Information System (INIS)

    Brown, J.S.; Boehm, P.D.; Sauer, T.C.; Wong, W.M.C.

    1993-01-01

    Techniques utilizing double ratio plots of selected polynuclear aromatic hydrocarbon (PAH) alkyl homologues were used to identify and distinguish crude oils and refined petroleum products from each other and to distinguish petroleum sources in complex pollutant regimes. Petroleum samples were fractionated by high performance liquid chromatography (HPLC) into saturated and aromatic (PAH) hydrocarbon fractions. The saturated hydrocarbon fractions were then analyzed by gas chromatography/flame ionization detection (GC/FID) to obtain a resolved/unresolved alkane fingerprint of each oil. The aromatic fractions of the oils were analyzed by gas chromatography/mass spectrometry (GC/MS) for PAH and selected alkyl homologues. Comparisons of the saturated hydrocarbon fingerprints indicated that some oils were indistinguishable based on the alkane fingerprint alone. Another double ratio plot of the alkyl chrysenes and alkyl dibenzothiophenes was effective in establishing the weathering of oil in environmental samples which were processed using the same analytical techniques, since the dibenzothiophenes are degraded more rapidly than the chrysenes. The application of selected ratios in oil spill source identification in complex environmental samples from Suisin Bay California and Boston Harbor are discussed. The use of ratios to measure the extent of weathering in oil spill samples from Prince William Sound and the Gulf of Alaska is examined

  4. Theoretical study of n-alkane adsorption on metal surfaces

    DEFF Research Database (Denmark)

    Morikawa, Yoshitada; Ishii, Hisao; Seki, Kazuhiko

    2004-01-01

    The interaction between n-alkane and metal surfaces has been studied by means of density-functional theoretical calculations within a generalized gradient approximation (GGA). We demonstrate that although the GGA cannot reproduce the physisorption energy well, our calculations can reproduce the e...

  5. Homology modeling and protein engineering of alkane monooxygenase in Burkholderia thailandensis MSMB121: in silico insights.

    Science.gov (United States)

    Jain, Chakresh Kumar; Gupta, Money; Prasad, Yamuna; Wadhwa, Gulshan; Sharma, Sanjeev Kumar

    2014-07-01

    The degradation of hydrocarbons plays an important role in the eco-balancing of petroleum products, pesticides and other toxic products in the environment. The degradation of hydrocarbons by microbes such as Geobacillus thermodenitrificans, Burkhulderia, Gordonia sp. and Acinetobacter sp. has been studied intensively in the literature. The present study focused on the in silico protein engineering of alkane monooxygenase (ladA)-a protein involved in the alkane degradation pathway. We demonstrated the improvement in substrate binding energy with engineered ladA in Burkholderia thailandensis MSMB121. We identified an ortholog of ladA monooxygenase found in B. thailandensis MSMB121, and showed it to be an enzyme involved in an alkane degradation pathway studied extensively in Geobacillus thermodenitrificans. Homology modeling of the three-dimensional structure of ladA was performed with a crystal structure (protein databank ID: 3B9N) as a template in MODELLER 9v11, and further validated using PROCHECK, VERIFY-3D and WHATIF tools. Specific amino acids were substituted in the region corresponding to amino acids 305-370 of ladA protein, resulting in an enhancement of binding energy in different alkane chain molecules as compared to wild protein structures in the docking experiments. The substrate binding energy with the protein was calculated using Vina (Implemented in VEGAZZ). Molecular dynamics simulations were performed to study the dynamics of different alkane chain molecules inside the binding pockets of wild and mutated ladA. Here, we hypothesize an improvement in binding energies and accessibility of substrates towards engineered ladA enzyme, which could be further facilitated for wet laboratory-based experiments for validation of the alkane degradation pathway in this organism.

  6. Flash Points of Secondary Alcohol and n-Alkane Mixtures.

    Science.gov (United States)

    Esina, Zoya N; Miroshnikov, Alexander M; Korchuganova, Margarita R

    2015-11-19

    The flash point is one of the most important characteristics used to assess the ignition hazard of mixtures of flammable liquids. To determine the flash points of mixtures of secondary alcohols with n-alkanes, it is necessary to calculate the activity coefficients. In this paper, we use a model that allows us to obtain enthalpy of fusion and enthalpy of vaporization data of the pure components to calculate the liquid-solid equilibrium (LSE) and vapor-liquid equilibrium (VLE). Enthalpy of fusion and enthalpy of vaporization data of secondary alcohols in the literature are limited; thus, the prediction of these characteristics was performed using the method of thermodynamic similarity. Additionally, the empirical models provided the critical temperatures and boiling temperatures of the secondary alcohols. The modeled melting enthalpy and enthalpy of vaporization as well as the calculated LSE and VLE flash points were determined for the secondary alcohol and n-alkane mixtures.

  7. Microbial communities in methane- and short chain alkane-rich hydrothermal sediments of Guaymas Basin

    Directory of Open Access Journals (Sweden)

    Frederick eDowell

    2016-01-01

    Full Text Available The hydrothermal sediments of Guaymas Basin, an active spreading center in the Gulf of California (Mexico, are rich in porewater methane, short-chain alkanes, sulfate and sulfide, and provide a model system to explore habitat preferences of microorganisms, including sulfate-dependent, methane- and short chain alkane-oxidizing microbial communities. In this study, sediments (above 60˚C covered with sulfur-oxidizing microbial mats surrounding a hydrothermal mound (termed Mat Mound were characterized by porewater geochemistry of methane, C2-C6 short-chain alkanes, sulfate, sulfide, sulfate reduction rate measurements, in-situ temperature gradients, bacterial and archaeal 16S rRNA gene clone libraries and V6 tag pyrosequencing. The most abundantly detected groups in the Mat mound sediments include anaerobic methane-oxidizing archaea of the ANME-1 lineage and its sister clade ANME-1Guaymas, the uncultured bacterial groups SEEP-SRB2 within the Deltaproteobacteria and the separately branching HotSeep-1 Group; these uncultured bacteria are candidates for sulfate-reducing alkane oxidation and for sulfate-reducing syntrophy with ANME archaea. The archaeal dataset indicates distinct habitat preferences for ANME-1, ANME-1-Guaymas and ANME-2 archaea in Guaymas Basin hydrothermal sediments. The bacterial groups SEEP-SRB2 and HotSeep-1 co-occur with ANME-1 and ANME-1Guaymas in hydrothermally active sediments underneath microbial mats in Guaymas Basin. We propose the working hypothesis that this mixed bacterial and archaeal community catalyzes the oxidation of both methane and short-chain alkanes, and constitutes a microbial community signature that is characteristic for hydrothermal and/or cold seep sediments containing both substrates.

  8. Extraction of toluene from aliphatic compounds using an ionic liquid as solvent: Influence of the alkane on the (liquid + liquid) equilibrium

    International Nuclear Information System (INIS)

    Gonzalez, Emilio J.; Calvar, Noelia; Dominguez, Irene; Dominguez, Angeles

    2011-01-01

    Research highlights: → An ionic liquid was analyzed as solvent for extraction of toluene from alkanes. → Liquid-liquid equilibrium data were measured at 298.15 K and atmospheric pressure. → Selectivity and solute distribution ratio were obtained and compared with literature. → The Othmer-Tobias equation was used to ascertain the experimental LLE data. → Experimental data were correlated using NRTL and UNIQUAC models. - Abstract: In this paper, the feasibility of using 1-ethyl-3-methylimidazolium ethylsulfate ionic liquid, [EMim][ESO 4 ], as solvent for the extraction of toluene from aliphatic compounds (hexane, heptane, octane, or nonane) was analyzed. (Liquid + liquid) equilibrium (LLE) data for the ternary systems {alkane (1) + toluene (2) + [EMim][ESO 4 ] (3)} were measured at T = 298.15 K and atmospheric pressure. Selectivity and solute distribution ratio were calculated from the experimental LLE data, and the obtained values were compared to those previously reported using other ionic liquids and sulfolane. The degree of consistency of the experimental LLE data was ascertained using the Othmer-Tobias equation. Finally, the experimental LLE data were satisfactorily correlated with NRTL and UNIQUAC models.

  9. Paleoclimatic implications of the hydrogen isotopic composition of terrigenous n-alkanes from Lake Yamzho, southern Tibetan Plateau

    International Nuclear Information System (INIS)

    Xia Zhonghuan; Xu Baiqing; Wu Guangjian; Zhu Liping; Muegler Ines; Gleixner, Gerd; Sachse, Dirk

    2009-01-01

    The hydrogen isotopic composition (δD) of leaf water used for biosynthesis of n-alkanes can be modified by climate. Therefore, the δD can be considered as potential paleolimatic proxy to explore. We compared measured δD values of alkanes (n-C 25 to n-C 31 ) extracted from a short sediment profile spanning the past 50 years with a 7-year resolution from Lake Yamzho, southern Tibetan Plateau. Climatic control was reconstructed using meteorological records of the nearby Langkazi and Lhasa weather stations. We found that the δD values of the n-alkanes correlated with the mean annular air temperature and significantly correlated with the mean growing season air temperature. On the other hand, the δD values show poor correlations with both rainfall amount and relative humidity. These results indicate that stable isotope composition of n-alkanes could be an excellent proxy for paleotemperature reconstruction. (author)

  10. Estimating skin blood saturation by selecting a subset of hyperspectral imaging data

    Science.gov (United States)

    Ewerlöf, Maria; Salerud, E. Göran; Strömberg, Tomas; Larsson, Marcus

    2015-03-01

    Skin blood haemoglobin saturation (?b) can be estimated with hyperspectral imaging using the wavelength (λ) range of 450-700 nm where haemoglobin absorption displays distinct spectral characteristics. Depending on the image size and photon transport algorithm, computations may be demanding. Therefore, this work aims to evaluate subsets with a reduced number of wavelengths for ?b estimation. White Monte Carlo simulations are performed using a two-layered tissue model with discrete values for epidermal thickness (?epi) and the reduced scattering coefficient (μ's ), mimicking an imaging setup. A detected intensity look-up table is calculated for a range of model parameter values relevant to human skin, adding absorption effects in the post-processing. Skin model parameters, including absorbers, are; μ's (λ), ?epi, haemoglobin saturation (?b), tissue fraction blood (?b) and tissue fraction melanin (?mel). The skin model paired with the look-up table allow spectra to be calculated swiftly. Three inverse models with varying number of free parameters are evaluated: A(?b, ?b), B(?b, ?b, ?mel) and C(all parameters free). Fourteen wavelength candidates are selected by analysing the maximal spectral sensitivity to ?b and minimizing the sensitivity to ?b. All possible combinations of these candidates with three, four and 14 wavelengths, as well as the full spectral range, are evaluated for estimating ?b for 1000 randomly generated evaluation spectra. The results show that the simplified models A and B estimated ?b accurately using four wavelengths (mean error 2.2% for model B). If the number of wavelengths increased, the model complexity needed to be increased to avoid poor estimations.

  11. Paleoclimate and Asian monsoon variability inferred from n-alkanes and their stable isotopes at lake Donggi Cona, NE Tibetan Plateau

    Science.gov (United States)

    Saini, Jeetendra; Guenther, Franziska; Mäusbacher, Roland; Gleixner, Gerd

    2015-04-01

    The Tibetan Plateau is one of the most extensive and sensitive region of elevated topography affecting global climate. The interplay between the Asian summer monsoon and the westerlies greatly influences the lake systems at the Tibetan Plateau. Despite a considerable number of research efforts in last decade, possible environmental reactions to change in monsoon dynamics are still not well understood. Here we present results from a sediment core of lake Donggi Cona, which dates back to late glacial period. Distinct organic geochemical proxies and stable isotopes are used to study the paleoenvironmental and hydrological changes in late glacial and Holocene period. Sedimentary n-alkanes of lake Donggi Cona are used as a proxy for paleoclimatic and monsoonal reconstruction. The hydrogen (δD) and carbon (δ13C) isotopes of n-alkanes are used as proxy for hydrological and phytoplankton productivity, respectively . Qualitative and quantitative analysis were performed for n-alkanes over the sediment core. δD proxy for sedimentary n-alkanes is used to infer lake water and rainfall signal. δD of (n-alkane C23) records the signal of the lake water, whereas δD of (n-alkane C29) record the precipitation signal, hence act as an appropriate proxy to track Asian monsoon. Long chain n-alkanes dominate over the sediment core while unsaturated mid chain n-alkenes have high abundance in some samples. From 18.4-13.8 cal ka BP, sample shows low organic productivity due to cold and arid climate. After 13.8-11.8 cal ka BP, slight increase in phytoplankton productivity indicate onset of weaker monsoon. From 11.8-6.8 cal ka BP, high content of organic matter indicates rise in productivity and strong monsoon with high inflow. After 6.8 cal ka BP, decrease in phytoplankton productivity indicating cooler climate and show terrestrial signal. Our results provide new insight into the variability of east Asian monsoon and changes in phytoplankton productivity for last 18.4 ka. Keywords: n-alkanes

  12. Role of cysteine residues in the structure, stability, and alkane producing activity of cyanobacterial aldehyde deformylating oxygenase.

    Directory of Open Access Journals (Sweden)

    Yuuki Hayashi

    Full Text Available Aldehyde deformylating oxygenase (AD is a key enzyme for alkane biosynthesis in cyanobacteria, and it can be used as a catalyst for alkane production in vitro and in vivo. However, three free Cys residues in AD may impair its catalytic activity by undesired disulfide bond formation and oxidation. To develop Cys-deficient mutants of AD, we examined the roles of the Cys residues in the structure, stability, and alkane producing activity of AD from Nostoc punctiforme PCC 73102 by systematic Cys-to-Ala/Ser mutagenesis. The C71A/S mutations reduced the hydrocarbon producing activity of AD and facilitated the formation of a dimer, indicating that the conserved Cys71, which is located in close proximity to the substrate-binding site, plays crucial roles in maintaining the activity, structure, and stability of AD. On the other hand, mutations at Cys107 and Cys117 did not affect the hydrocarbon producing activity of AD. Therefore, we propose that the C107A/C117A double mutant is preferable to wild type AD for alkane production and that the double mutant may be used as a pseudo-wild type protein for further improvement of the alkane producing activity of AD.

  13. Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis.

    Science.gov (United States)

    Chen, Yu; Li, Chen; Zhou, Zhengxi; Wen, Jianping; You, Xueyi; Mao, Youzhi; Lu, Chunzhe; Huo, Guangxin; Jia, Xiaoqiang

    2014-04-01

    In this study, two strains, Acinetobacter sp. XM-02 and Pseudomonas sp. XM-01, were isolated from soil samples polluted by crude oil at Bohai offshore. The former one could degrade alkane hydrocarbons (crude oil and diesel, 1:4 (v/v)) and crude oil efficiently; the latter one failed to grow on alkane hydrocarbons but could produce rhamnolipid (a biosurfactant) with glycerol as sole carbon source. Compared with pure culture, mixed culture of the two strains showed higher capability in degrading alkane hydrocarbons and crude oil of which degradation rate were increased from 89.35 and 74.32 ± 4.09 to 97.41 and 87.29 ± 2.41 %, respectively. In the mixed culture, Acinetobacter sp. XM-02 grew fast with sufficient carbon source and produced intermediates which were subsequently utilized for the growth of Pseudomonas sp. XM-01 and then, rhamnolipid was produced by Pseudomonas sp. XM-01. Till the end of the process, Acinetobacter sp. XM-02 was inhibited by the rapid growth of Pseudomonas sp. XM-01. In addition, alkane hydrocarbon degradation rate of the mixed culture increased by 8.06 to 97.41 % compared with 87.29 % of the pure culture. The surface tension of medium dropping from 73.2 × 10(-3) to 28.6 × 10(-3) N/m. Based on newly found cooperation between the degrader and the coworking strain, rational investigations and optimal strategies to alkane hydrocarbons biodegradation were utilized for enhancing crude oil biodegradation.

  14. Direct hydrodeoxygenation of raw woody biomass into liquid alkanes.

    Science.gov (United States)

    Xia, Qineng; Chen, Zongjia; Shao, Yi; Gong, Xueqing; Wang, Haifeng; Liu, Xiaohui; Parker, Stewart F; Han, Xue; Yang, Sihai; Wang, Yanqin

    2016-03-30

    Being the only sustainable source of organic carbon, biomass is playing an ever-increasingly important role in our energy landscape. The conversion of renewable lignocellulosic biomass into liquid fuels is particularly attractive but extremely challenging due to the inertness and complexity of lignocellulose. Here we describe the direct hydrodeoxygenation of raw woods into liquid alkanes with mass yields up to 28.1 wt% over a multifunctional Pt/NbOPO4 catalyst in cyclohexane. The superior performance of this catalyst allows simultaneous conversion of cellulose, hemicellulose and, more significantly, lignin fractions in the wood sawdust into hexane, pentane and alkylcyclohexanes, respectively. Investigation on the molecular mechanism reveals that a synergistic effect between Pt, NbOx species and acidic sites promotes this highly efficient hydrodeoxygenation of bulk lignocellulose. No chemical pretreatment of the raw woody biomass or separation is required for this one-pot process, which opens a general and energy-efficient route for converting raw lignocellulose into valuable alkanes.

  15. Relevance of carbon structure to formation of tar and liquid alkane during coal pyrolysis

    International Nuclear Information System (INIS)

    Liu, Peng; Le, Jiawei; Wang, Lanlan; Pan, Tieying; Lu, Xilan; Zhang, Dexiang

    2016-01-01

    Highlights: • Curve-fitting method was used to quantify the accurate contents of structural carbon. • Effect of carbon structure in coal with different rank on formation of pyrolysis tar was studied. • Numerical interrelation between carbon types in coal structure and tar yield is elaborated. • Effect of carbon structure on formation of liquid alkane during coal pyrolysis is discussed. - Abstract: The relevance of carbon structure to formation of tar and liquid alkane during coal pyrolysis were discussed extensively. The pyrolysis tests were carried out in a tube reactor at 873 K and keep 15 min. The carbon distribution in coals was investigated by solid state "1"3C nuclear magnetic resonance (N.M.R.). The curve-fitting method was used to quantify the accurate contents of structural carbon. The alkanes in coal tar were analyzed by Gas Chromatograph–Mass Spectrometer (GC–MS). The results show that oxygen-linked aromatic carbon decreases with the increasing of coal rank. The aliphatic carbon contents of Huainan (HN) coal are 44.20%, the highest among the four coals. The carbon types in coal structure have a significant influence on the formation of tar and liquid alkane. The coal tar yields are related to the aliphatic substituted aromatic carbon, CH_2/CH_3 ratio and oxygen-linked carbon in coal so that the increasing order of tar yield is Inner Mongolia lignite (IM, 6.30 wt.%) < Sinkiang coal (SK, 7.55 wt.%) < Shenmu coal (SM, 12.84 wt.%) < HN (16.29 wt.%). The highest contents of oxygen-linked aromatic carbon in IM lead to phenolic compound of 41.06% in IM-tar. The contents of alkane in SM-tar are the highest because the appropriate CH_2/CH_3 ratio and the highest aliphatic side chains on aromatic rings in SM leading to generate aliphatic hydrocarbon with medium molecular weight easily. The mechanism on formation of tar and liquid alkane plays an important role in guiding the industrialization of pyrolysis-based poly-generation producing tar with high

  16. Functional screening of aldehyde decarbonylases for long-chain alkane production by Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kang, Min-Kyoung; Zhou, Yongjin J.; Buijs, Nicolaas A.

    2017-01-01

    Background: Low catalytic activities of pathway enzymes are often a limitation when using microbial based chemical production. Recent studies indicated that the enzyme activity of aldehyde decarbonylase (AD) is a critical bottleneck for alkane biosynthesis in Saccharomyces cerevisiae. We therefore...... detected in other AD expressed yeast strains. Dynamic expression of SeADO and CwADO under GAL promoters increased alkane production to 0.20 mg/L/OD600 and no fatty alcohols, with even number chain lengths from C8 to C14, were detected in the cells. Conclusions: We demonstrated in vivo enzyme activities...

  17. Total internal reflection second-harmonic generation: probing the alkane water interface

    International Nuclear Information System (INIS)

    Conboy, J.C.; Daschbach, J.L.; Richmond, G.L.

    1994-01-01

    Total internal reflection Second-Harmonic Generation (SHG) has been used to study a series of neat n-alkane/water interfaces. Polarization and incident angular-dependent measurements of the SH response show good agreement with theoretical predictions. Analysis of the incident and polarization angular-dependent SH response allows for determination of the nonlinear optical properties of molecules comprising the interfacial region. Based on Kleinman symmetry, the measured surface nonlinear susceptibilities suggest a high degree of interfacial order for octane and decane with less order indicated by the odd carbon n-alkanes examined, heptane and nonane. The SH response in reflection and transmission has been measured under a Total Internal Reflection (TIR) of the fundamental. The measured nonlinear susceptibilities in each case are found to be identical. (orig.)

  18. Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation: Microcosm experiment on aged-contaminated soil.

    Science.gov (United States)

    Ingrid, Lenoir; Lounès-Hadj Sahraoui, Anissa; Frédéric, Laruelle; Yolande, Dalpé; Joël, Fontaine

    2016-06-01

    Very few studies reported the potential of arbuscular mycorrhizal symbiosis to dissipate hydrocarbons in aged polluted soils. The present work aims to study the efficiency of arbuscular mycorrhizal colonized wheat plants in the dissipation of alkanes and polycyclic aromatic hydrocarbons (PAHs). Our results demonstrated that the inoculation of wheat with Rhizophagus irregularis allowed a better dissipation of PAHs and alkanes after 16 weeks of culture by comparison to non-inoculated condition. These dissipations observed in the inoculated soil resulted from several processes: (i) a light adsorption on roots (0.5% for PAHs), (ii) a bioaccumulation in roots (5.7% for PAHs and 6.6% for alkanes), (iii) a transfer in shoots (0.4 for PAHs and 0.5% for alkanes) and mainly a biodegradation. Whereas PAHs and alkanes degradation rates were respectively estimated to 12 and 47% with non-inoculated wheat, their degradation rates reached 18 and 48% with inoculated wheat. The mycorrhizal inoculation induced an increase of Gram-positive and Gram-negative bacteria by 56 and 37% compared to the non-inoculated wheat. Moreover, an increase of peroxidase activity was assessed in mycorrhizal roots. Taken together, our findings suggested that mycorrhization led to a better hydrocarbon biodegradation in the aged-contaminated soil thanks to a stimulation of telluric bacteria and hydrocarbon metabolization in mycorrhizal roots. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Evaluation of the Seismic Characterision of Select Engineered Nanoparticles in Saturated Glass Beads

    Science.gov (United States)

    A laboratory testing apparatus was developed for the study of seismic body wave propagation through nanoparticles dispersed in pore fluid that is essentially saturating glass beads. First, the responses of water-saturated glass bead specimens were studied to establish baseline si...

  20. Use of n-alkanes and long-chain alcohols as faecal markers to estimate diet composition on small ruminants grazing/browsing mountain grasslands

    OpenAIRE

    Magalhães, Rui José Ribeiro Ferreira de

    2018-01-01

    Knowledge on the grazing/browsing behaviour, especially diet selection, of the different domestic herbivorous species under diverse vegetation communities is of particular importance for the development and application of appropriate grazing management strategies that increase the efficiency of the utilization of the existing vegetation and, consequently, the sustainability of the animal production system. Plant-wax components, namely alkanes and long-chain alcohols (LCOH), have been suggeste...

  1. Localized diffusive motion on two different time scales in solid alkane nanoparticles

    International Nuclear Information System (INIS)

    Wang, S.-K.; Mamontov, Eugene; Bai, M.; Hansen, F.Y.; Taub, H.; Copley, J.R.D.; Garcia Sakai, V.; Gasparovic, Goran; Jenkins, Timothy; Tyagi, M.; Herwig, Kenneth W.; Neumann, D.A.; Montfrooij, W.; Volkmann, U.G.

    2010-01-01

    High-energy-resolution quasielastic neutron scattering on three complementary spectrometers has been used to investigate molecular diffusive motion in solid nano- to bulk-sized particles of the alkane n-C32H66. The crystalline-to-plastic and plastic-to-fluid phase transition temperatures are observed to decrease as the particle size decreases. In all samples, localized molecular diffusive motion in the plastic phase occurs on two different time scales: a 'fast' motion corresponding to uniaxial rotation about the long molecular axis; and a 'slow' motion attributed to conformational changes of the molecule. Contrary to the conventional interpretation in bulk alkanes, the fast uniaxial rotation begins in the low-temperature crystalline phase.

  2. Experimental measurements and prediction of liquid densities for n-alkane mixtures

    International Nuclear Information System (INIS)

    Ramos-Estrada, Mariana; Iglesias-Silva, Gustavo A.; Hall, Kenneth R.

    2006-01-01

    We present experimental liquid densities for n-pentane, n-hexane and n-heptane and their binary mixtures from (273.15 to 363.15) K over the entire composition range (for the mixtures) at atmospheric pressure. A vibrating tube densimeter produces the experimental densities. Also, we present a generalized correlation to predict the liquid densities of n-alkanes and their mixtures. We have combined the principle of congruence with the Tait equation to obtain an equation that uses as variables: temperature, pressure and the equivalent carbon number of the mixture. Also, we present a generalized correlation for the atmospheric liquid densities of n-alkanes. The average absolute percentage deviation of this equation from the literature experimental density values is 0.26%. The Tait equation has an average percentage deviation of 0.15% from experimental density measurements

  3. FY 1999 report on the results of the technology development of next-generation chemical process; 1999 nendo jisedai kagaku process gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The R and D were conducted on the naphtha catalytic cracking, selective oxidation reaction of saturated hydrocarbon, new reaction mechanism utilization process, etc., as next-generation chemical process technology in FY 1999, and the results were summarized. As to the technology of naphtha catalytic cracking, developed was La203/p/ZMS-5 zeolite catalyst which is high in cracking activity and high in light-olefin selectivity. By the FS, it was confirmed that this is more excellent in case of the fixed bed reactor than in the present process. Concerning the technology of selective oxidation reaction of saturated hydrocarbon, the basic information/knowledge were obtained about the construction of catalytic principle toward the high selective catalytic partial oxidation, elucidation of a reaction mechanism in alkane oxidation and design of high functional catalysts, elucidation of a mechanism in butan oxidation, synthesis of alkane selective oxidation catalysts, etc. In relation to the technology of new reaction mechanism utilization process, the following were carried out: study of ethyl benzene dehydrogenation using the membrane reactor trially fabricated in the previous fiscal year, development of high efficiency hydrogen penetration membranes and low temperature high activity catalysts, study of the new process by membrane reactor. (NEDO)

  4. Modeling of Alkane Oxidation Using Constituents and Species

    Science.gov (United States)

    Bellan, Jasette; Harstad, Kenneth G.

    2010-01-01

    It is currently not possible to perform simulations of turbulent reactive flows due in particular to complex chemistry, which may contain thousands of reactions and hundreds of species. This complex chemistry results in additional differential equations, making the numerical solution of the equation set computationally prohibitive. Reducing the chemical kinetics mathematical description is one of several important goals in turbulent reactive flow modeling. A chemical kinetics reduction model is proposed for alkane oxidation in air that is based on a parallel methodology to that used in turbulence modeling in the context of the Large Eddy Simulation. The objective of kinetic modeling is to predict the heat release and temperature evolution. This kinetic mechanism is valid over a pressure range from atmospheric to 60 bar, temperatures from 600 K to 2,500 K, and equivalence ratios from 0.125 to 8. This range encompasses diesel, HCCI, and gas-turbine engines, including cold ignition. A computationally efficient kinetic reduction has been proposed for alkanes that has been illustrated for n-heptane using the LLNL heptane mechanism. This model is consistent with turbulence modeling in that scales were first categorized into either those modeled or those computed as progress variables. Species were identified as being either light or heavy. The heavy species were decomposed into defined 13 constituents, and their total molar density was shown to evolve in a quasi-steady manner. The light species behave either in a quasi-steady or unsteady manner. The modeled scales are the total constituent molar density, Nc, and the molar density of the quasi-steady light species. The progress variables are the total constituent molar density rate evolution and the molar densities of the unsteady light species. The unsteady equations for the light species contain contributions of the type gain/loss rates from the heavy species that are modeled consistent with the developed mathematical

  5. Variation in the Apparent Biosynthetic Fractionation for N-alkane δD Among Terrestrial Plants: Patterns, Mechanisms, and Implications

    Science.gov (United States)

    Johnson, J. E.; Tipple, B. J.; Betancourt, J. L.; Ehleringer, J. R.; Leavitt, S. W.; Monson, R. K.

    2016-12-01

    Long-chain normal alkanes (n-alkanes) are a component of the leaf cuticle of all terrestrial plants. Since the hydrogen in the n-alkanes is derived from the hydrogen in plants' water sources and is non-exchangeable, the stable hydrogen isotopic composition (δD) of the n-alkanes provides information about the δD of environmental waters. While this relationship creates opportunities for using n-alkane δD for process-based reconstructions of δD of environmental waters, progress in this direction is currently constrained by the observation that terrestrial plants exhibit a startlingly wide range of apparent biosynthetic fractionations. To understand the mechanisms responsible for variation in the apparent biosynthetic fractionations, we compared measurements and models of δD for n-C29 in a water-limited ecosystem where the timing of primary and secondary cuticle deposition is closely coupled to water availability (Tumamoc Hill, Tucson, Arizona, USA). During the 2014-2015 hydrologic year, the most widespread and abundant plant species at this site exhibited δD for n-C29 varying over a total range of 102‰. Discrete samples of leaf water collected at the same time as the n-C29 samples exhibited δD varying over a total range of only 53‰, but a continuous model of leaf water through the annual cycle predicted δD varying over a total range of 190‰. These results indicate that the observed variation in the apparent biosynthetic fractionation for n-C29 δD could be primarily attributable to leaf water dynamics that are temporally uncoupled from primary and secondary cuticle deposition. If a single biosynthetic fractionation does describe the relationship between the δD of n-alkanes and leaf water during intervals of cuticle deposition, it will facilitate process-based interpretations of n-alkane δD values in ecological, hydrological, and climatological studies of modern and ancient terrestrial environments.

  6. Measurement and modelling of high pressure density and interfacial tension of (gas + n-alkane) binary mixtures

    International Nuclear Information System (INIS)

    Pereira, Luís M.C.; Chapoy, Antonin; Burgass, Rod; Tohidi, Bahman

    2016-01-01

    Highlights: • (Density + IFT) measurements are performed in synthetic reservoir fluids. • Measured systems include CO_2, CH_4 and N_2 with n-decane. • Novel data are reported for temperatures up to 443 K and pressures up to 69 MPa. • Predictive models are tested in 16 (gas + n-alkane) systems. • Best modelling results are achieved with the Density Gradient Theory. - Abstract: The deployment of more efficient and economical extraction methods and processing facilities of oil and gas requires the accurate knowledge of the interfacial tension (IFT) of fluid phases in contact. In this work, the capillary constant a of binary mixtures containing n-decane and common gases such as carbon dioxide, methane and nitrogen was measured. Experimental measurements were carried at four temperatures (313, 343, 393 and 442 K) and pressures up to 69 MPa, or near the complete vaporisation of the organic phase into the gas-rich phase. To determine accurate IFT values, the capillary constants were combined with saturated phase density data measured with an Anton Paar densitometer and correlated with a model based on the Peng–Robinson 1978 equation of state (PR78 EoS). Correlated density showed an overall percentage absolute deviation (%AAD) to measured data of (0.2 to 0.5)% for the liquid phase and (1.5 to 2.5)% for the vapour phase of the studied systems and P–T conditions. The predictive capability of models to accurately describe both the temperature and pressure dependence of the saturated phase density and IFT of 16 (gas + n-alkane) binary mixtures was assessed in this work by comparison with data gathered from the literature and measured in this work. The IFT models considered include the Parachor, the Linear Gradient Theory (LGT) and the Density Gradient Theory (DGT) approaches combined with the Volume-Translated Predictive Peng–Robinson 1978 EoS (VT-PPR78 EoS). With no adjustable parameters, the VT-PPR78 EoS allowed a good description of both solubility and

  7. QSPR models based on molecular mechanics and quantum chemical calculations. 1. Construction of Boltzmann averaged descriptors for alkanes, alcohols, diols, ethers and cyclic compounds

    DEFF Research Database (Denmark)

    Dyekjær, Jane Dannow; Rasmussen, Kjeld; Jonsdottir, Svava Osk

    2002-01-01

    Values for nine descriptors for QSPR (quantitative structure-property relationships) modeling of physical properties of 96 alkanes, alcohols, ethers, diols, triols and cyclic alkanes and alcohols in conjunction with the program Codessa are presented. The descriptors are Boltzmann-averaged by sele......Values for nine descriptors for QSPR (quantitative structure-property relationships) modeling of physical properties of 96 alkanes, alcohols, ethers, diols, triols and cyclic alkanes and alcohols in conjunction with the program Codessa are presented. The descriptors are Boltzmann...

  8. Selective nonspecific solvation under dielectric saturation and fluorescence spectra of dye solutions in binary solvents.

    Science.gov (United States)

    Bakhshiev, N G; Kiselev, M B

    1991-09-01

    The influence of selective nonspecific solvation on the fluorescence spectra of three substitutedN-methylphthalimides in a binary solvent system consisting of a nonpolar (n-heptane) and a polar (pyridine) component has been studied under conditions close to dielectric saturation. The substantially nonlinearity of the effect is confirmation that the spectral shifts of fluorescence bands depend on the number of polar solvent molecules involved in solvating the dye molecule. The measured fluorescence spectral shifts determined by substituting one nonpolar solvent molecula with a polar one in the proximity of the dye molecule agree quantitatively with the forecasts of the previously proposed semiempirical theory which describes this nonlinear solvation phenomenon.

  9. High Amounts of n-Alkanes in the Composition of Asphodelus aestivus Brot. Flower Essential Oil from Cyprus.

    Science.gov (United States)

    Polatoğlu, Kaan; Demirci, Betül; Can Başer, Kemal Hüsnü

    2016-10-01

    There is only a couple of reports indicating essential oil composition of Asphodelus species in the literature. However, from the members of this genus many non-volatile secondary metabolites were isolated. In Cyprus, Asphodelus aestivus Brot. can be found abundantly in all regions of the island. This plant has various ethnobotanical uses in Cyprus. There is no report on the volatiles nor the essential oil composition of A. aestivus. The smell of A. aestivus flowers resembles that of a cat pee which caught our attention. Therefore, we have carried out GC, GC/MS analysis of the essential oil (yield: 0.01 v/w) obtained from Asphodelus aestivus flowers. Seventeen compounds were identified in the essential oil comprising 96.2% of the oil. The major components of the essential oil were hexadecanoic acid 35.6%, pentacosane 17.4%, tricosane 13.4% and heptacosane 8.4%. In our results, we expected to see sulfur containing cat pee odorants due to the odor of the flower whereas high amounts of n-alkanes, saturated fatty acids and minor amounts of acyclic diterpenes were observed.

  10. Stable hydrogen isotopic composition of n-alkanes in atmospheric aerosols as a tracer for the source region of terrestrial plant waxes

    Science.gov (United States)

    Yamamoto, S.; Kawamura, K.

    2009-12-01

    Studies on molecular composition and compound-specific carbon isotopic ratio (δ13C) of leaf wax n-alkanes in atmospheric aerosols have revealed a long-range atmospheric transport of terrestrial higher plant materials over the south Atlantic and western Pacific oceans. However, molecular and δ13C compositions of terrestrial plant waxes in the eastern part of the Asian continent are relatively constant reflecting C3-dominated vegetation, which makes it difficult to specify the source regions of plant materials in the atmospheric aerosols over the East Asia and northwest Pacific regions. Recent observation displays a large (>100‰) spatial variation in hydrogen isotopic composition (δD) of rainwater in East Asia. Because δD values of terrestrial higher plants sensitively reflect those of precipitation waters, δD of leaf waxes are expected to provide information on their source region. In this study, we measured the δD of n-alkanes in atmospheric aerosols from Tokyo to better understand the origin of leaf wax n-alkanes in atmospheric aerosols. The δD values of fossil fuel n-alkanes (C21 to C24) in Tokyo aerosols range from -65 to -94‰, which are in a range of those reported in marine crude oils. In contrast, the δD of higher molecular weight (C29 and C31) n-alkanes (δDHMW) show much larger values by ~70‰ than those of fossil fuel n-alkanes. Their values were found to exhibit concomitant variations with carbon preference index (CPI), suggesting that the δDHMW reflect the δD of leaf wax n-alkanes with a variable contribution from fossil fuel n-alkanes. Nevertheless, good positive correlation (r = 0.89, p < 0.01) between the δDHMW and CPI values enable us to remove the contribution of fossil fuels using a mass balance approach by assuming that CPI of fossil fuel is 1 and CPI of plant waxes is 5-15. Calculated n-alkane δD values averaged from -170 to -185‰ for C29 and from -155 to -168‰ for C31. These values are consistent with those reported from

  11. Catalytic total hydrodeoxygenation of biomass-derived polyfunctionalized substrates to alkanes.

    Science.gov (United States)

    Nakagawa, Yoshinao; Liu, Sibao; Tamura, Masazumi; Tomishige, Keiichi

    2015-04-13

    The total hydrodeoxygenation of carbohydrate-derived molecules to alkanes, a key reaction in the production of biofuel, was reviewed from the aspect of catalysis. Noble metals (or Ni) and acid are the main components of the catalysts, and group 6 or 7 metals such as Re are sometimes added as modifiers of the noble metal. The main reaction route is acid-catalyzed dehydration plus metal-catalyzed hydrogenation, and in some systems metal-catalyzed direct CO dissociation is involved. The appropriate active metal, acid strength, and reaction conditions depend strongly on the reactivity of the substrate. Reactions that use Pt or Pd catalysts supported on Nb-based acids or relatively weak acids are suitable for furanic substrates. Carbohydrates themselves and sugar alcohols undergo CC dissociation easily. The systems that use metal-catalyzed direct CO dissociations can give a higher yield of the corresponding alkane from carbohydrates and sugar alcohols. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates

    Energy Technology Data Exchange (ETDEWEB)

    Chheda, Juben N.; Dumesic, James A. [University of Wisconsin-Madison, Department of Chemical and Biological Engineering, Madison, WI 53706 (United States)

    2007-05-30

    We present results for the conversion of carbohydrate feedstocks to liquid alkanes by the combination of dehydration, aldol-condensation/hydrogenation, and dehydration/hydrogenation processing. With respect to the first dehydration step, we demonstrate that HMF can be produced in good selectivity from abundantly available polysaccharides (such as inulin, sucrose) containing fructose monomer units using a biphasic batch reactor system. The reaction system can be optimized to achieve good yields to 5-hydroxymethylfurfural (HMF) from fructose by varying the contents of aqueous-phase modifiers such as dimethylsulfoxide (DMSO) and 1-methyl-2-pyrrolidinone (NMP). Regarding the aldol-condensation/hydrogenation step, we present the development of stable, solid base catalysts in aqueous environments. We address the effects of various reaction parameters such as the molar ratio of reactants and temperature on overall product yield for sequential aldol-condensation and hydrogenation steps. Overall, our results show that it is technically possible to convert carbohydrate feedstocks to produce liquid alkanes by the combination of dehydration, aldol-condensation/hydrogenation, and dehydration/hydrogenation processing; however, further optimization of these processes is required to decrease the overall number of separate steps (and reactors) required in this conversion. (author)

  13. FY 2000 report on the results of the development of the next generation chemical process technology; 2000 nendo jisedai kagaku process gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The R and D were conducted on the next generation chemical process by which no energy losses are produced and the amount of the waste is made extremely small by the new catalytic reaction, the reaction using next generation separation/reaction membrane, etc., and the FY 2000 results were summed up. As to the development of the selective oxidation technology of saturated hydrocarbon, the basic knowledge/information were obtained on the following: construction of the catalytic principle toward the highly selective catalytic partial oxidation, elucidation of the reaction mechanism in alkane oxidation and design of the high functional catalyst, functional design in butane oxidation, characterization of the alkane oxidation catalyst and the application to the catalytic development, synthesis of the alkane selective oxidation catalyst, etc. Relating to the development of the process technology using the new reaction mechanism, a target value of equilibrium conversion of 10% or more was achieved using membrane reactor in the dehydrogenation of ethyl benzene. Further, as to the high performance selective membrane and low temperature active catalyst that are indispensable to the element technology, the continuous study was made, and at the same time themes in this study were arranged. (NEDO)

  14. Organometallic model complexes elucidate the active gallium species in alkane dehydrogenation catalysts based on ligand effects in Ga K-edge XANES

    Energy Technology Data Exchange (ETDEWEB)

    Getsoian, Andrew “Bean”; Das, Ujjal; Camacho-Bunquin, Jeffrey; Zhang, Guanghui; Gallagher, James R.; Hu, Bo; Cheah, Singfoong; Schaidle, Joshua A.; Ruddy, Daniel A.; Hensley, Jesse E.; Krause, Theodore R.; Curtiss, Larry A.; Miller, Jeffrey T.; Hock, Adam S.

    2016-01-01

    Gallium-modified zeolites are known catalysts for the dehydrogenation of alkanes, reactivity that finds industrial application in the aromatization of light alkanes by Ga-ZSM5. While the role of gallium cations in alkane activation is well known, the oxidation state and coordination environment of gallium under reaction conditions has been the subject of debate. Edge shifts in Ga K-edge XANES spectra acquired under reaction conditions have long been interpreted as evidence for reduction of Ga(III) to Ga(I). However, a change in oxidation state is not the only factor that can give rise to a change in the XANES spectrum. In order to better understand the XANES spectra of working catalysts, we have synthesized a series of molecular model compounds and grafted surface organometallic Ga species and compared their XANES spectra to those of gallium-based catalysts acquired under reducing conditions. We demonstrate that changes in the identity and number of gallium nearest neighbors can give rise to changes in XANES spectra similar to those attributed in literature to changes in oxidation state. Specifically, spectral features previously attributed to Ga(I) may be equally well interpreted as evidence for low-coordinate Ga(III) alkyl or hydride species. These findings apply both to gallium-impregnated zeolite catalysts and to silica-supported single site gallium catalysts, the latter of which is found to be active and selective for dehydrogenation of propane and hydrogenation of propylene.

  15. Light alkane (mixed feed) selective dehydrogenation using bi ...

    African Journals Online (AJOL)

    ... refinery processes and their catalytic dehydrogenation gives corresponding alkenes. ... was prepared by sequentional impregnation method and characterized by BET, ... Optimum propene selectivity is about 48 %, obtained at 600 oC and ...

  16. Biodegradation of crude oil and n-alkanes by fungi isolated from Oman

    Energy Technology Data Exchange (ETDEWEB)

    Elshafie, Abdulkadir [Department of Biology, College of Science, Sultan Qaboos University, P.O. Box 36 Al Khod, Muscat (Oman)], E-mail: Elshafie@squ.edu.om; AlKindi, Abdulaziz Yahya [Department of Biology, College of Science, Sultan Qaboos University, P.O. Box 36 Al Khod, Muscat (Oman); Al-Busaidi, Sultan [Oman Refinery Company Laboratories, LLC, P.O. Box 3568 Ruwi PC112 (Oman); Bakheit, Charles [Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, P.O. Box 36 Al Khod, Muscat (Oman); Albahry, S.N. [Department of Biology, College of Science, Sultan Qaboos University, P.O. Box 36 Al Khod, Muscat (Oman)

    2007-11-15

    Ten fungal species isolated from tar balls collected from the beaches of Oman were tested for their abilities to grow and degrade n-alkanes and crude oil. The abilities of Aspergillus niger, A. ochraceus and Penicillium chrysogenum to degrade n-alkanes (C13-C18), crude oil were compared and their mycelial biomass was measured. Significant differences were found in the utilization of C15, C16, C17 and C18 by the three fungi. Similarly, significant differences we found in the amount of biomass produced by the three fungi growing on C13, C17, C18 and crude oil. The correlation coefficient of biomass and oil utilization was not statistically significant for Aspergillus niger, significant for Aspergillus terreus and highly significant for P. chrysogenum.

  17. Biodegradation of crude oil and n-alkanes by fungi isolated from Oman

    International Nuclear Information System (INIS)

    Elshafie, Abdulkadir; AlKindi, Abdulaziz Yahya; Al-Busaidi, Sultan; Bakheit, Charles; Albahry, S.N.

    2007-01-01

    Ten fungal species isolated from tar balls collected from the beaches of Oman were tested for their abilities to grow and degrade n-alkanes and crude oil. The abilities of Aspergillus niger, A. ochraceus and Penicillium chrysogenum to degrade n-alkanes (C13-C18), crude oil were compared and their mycelial biomass was measured. Significant differences were found in the utilization of C15, C16, C17 and C18 by the three fungi. Similarly, significant differences we found in the amount of biomass produced by the three fungi growing on C13, C17, C18 and crude oil. The correlation coefficient of biomass and oil utilization was not statistically significant for Aspergillus niger, significant for Aspergillus terreus and highly significant for P. chrysogenum

  18. SATURATED ZONE IN-SITU TESTING

    Energy Technology Data Exchange (ETDEWEB)

    P.W. REIMUS

    2004-11-08

    The purpose of this scientific analysis is to document the results and interpretations of field experiments that test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain, Nevada. The test interpretations provide estimates of flow and transport parameters used in the development of parameter distributions for total system performance assessment (TSPA) calculations. These parameter distributions are documented in ''Site-Scale Saturated Zone Flow Model (BSC 2004 [DIRS 170037]), Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]), Saturated Zone Colloid Transport (BSC 2004 [DIRS 170006]), and ''Saturated Zone Flow and Transport Model Abstraction'' (BSC 2004 [DIRS 170042]). Specifically, this scientific analysis contributes the following to the assessment of the capability of the SZ to serve as part of a natural barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvial Testing Complex (ATC) located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass

  19. SATURATED ZONE IN-SITU TESTING

    International Nuclear Information System (INIS)

    REIMUS, P.W.

    2004-01-01

    The purpose of this scientific analysis is to document the results and interpretations of field experiments that test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain, Nevada. The test interpretations provide estimates of flow and transport parameters used in the development of parameter distributions for total system performance assessment (TSPA) calculations. These parameter distributions are documented in ''Site-Scale Saturated Zone Flow Model (BSC 2004 [DIRS 170037]), Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]), Saturated Zone Colloid Transport (BSC 2004 [DIRS 170006]), and ''Saturated Zone Flow and Transport Model Abstraction'' (BSC 2004 [DIRS 170042]). Specifically, this scientific analysis contributes the following to the assessment of the capability of the SZ to serve as part of a natural barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvial Testing Complex (ATC) located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, and colloid

  20. Crystallisation and chain conformation of long chain n-alkanes

    International Nuclear Information System (INIS)

    Gorce, J.

    2000-06-01

    Hydrocarbon chains are a basic component in a number of systems as diverse as biological membranes, phospholipids and polymers. A better understanding of the physical properties of n-alkane chains should provide a better understanding of these more complex systems. With this aim, vibrational spectroscopy has been extensively used. This technique, sensitive to molecular details, is the only one able to both identify and quantify conformational disorder present in paraffinic systems. To achieve this, methyl deformations have been widely used as ''internal standards'' for the normalisation of peak areas. However, in the case of n-alkanes with short chain length, such as n-C 44 H 90 for example, the infrared spectra recorded at liquid nitrogen temperature and reported here show the sensitivity of these latter peaks to the various crystal structures formed. Indeed, the main frequencies of the symmetric methyl bending mode were found between 1384 cm -1 and 1368 cm -1 as a function of the crystal form. Changes in the frequency of the first order of the L.A.M. present in the Raman spectra were also observed. At higher temperatures, non all-trans conformers, inferred from different infrared bands present in the wagging mode region, were found to be essentially placed at the end of the n-alkane chains. At the monoclinic phase transition, the concentration of end-gauche conformers, proportional to the area of the infrared band at 1342 cm -1 , increases abruptly. On the contrary, in the spectra recorded at liquid nitrogen temperature no such band is observed. We also studied the degree of disorder in two purely monodisperse long chain n-alkanes, namely n-C 198 H 398 and n-C 246 H 494 . The chain conformation as well as the tilt angle of the chains from the crystal surfaces were determined by means of low frequency Raman spectroscopy and S.A.X.S. measurements on solution-crystallised samples. The increase in the number of end-gauche conformers which was expected to occur with

  1. Solvent-free synthesis of C10 and C11 branched alkanes from furfural and methyl isobutyl ketone.

    Science.gov (United States)

    Yang, Jinfan; Li, Ning; Li, Guangyi; Wang, Wentao; Wang, Aiqin; Wang, Xiaodong; Cong, Yu; Zhang, Tao

    2013-07-01

    Our best results jet: C10 and C11 branched alkanes, with low freezing points, are synthesized through the aldol condensation of furfural and methyl isobutyl ketone from lignocellulose, which is then followed by hydrodeoxygenation. These jet-fuel-range alkanes are obtained in high overall yields (≈90%) under solvent-free conditions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Biodegradation of n-alkanes on oil-seawater interfaces at different temperatures and microbial communities associated with the degradation.

    Science.gov (United States)

    Lofthus, Synnøve; Netzer, Roman; Lewin, Anna S; Heggeset, Tonje M B; Haugen, Tone; Brakstad, Odd Gunnar

    2018-04-01

    Oil biodegradation studies have mainly focused on microbial processes in dispersions, not specifically on the interfaces between the oil and the seawater in the dispersions. In this study, a hydrophobic adsorbent system, consisting of Fluortex fabrics, was used to investigate biodegradation of n-alkanes and microbial communities on oil-seawater interfaces in natural non-amended seawater. The study was performed over a temperature range from 0 to 20 °C, to determine how temperature affected biodegradation at the oil-seawater interfaces. Biodegradation of n-alkanes were influenced both by seawater temperature and chain-length. Biotransformation rates of n-alkanes decreased by reduced seawater temperature. Low rate coefficients at a seawater temperature of 0 °C were probably associated with changes in physical-chemical properties of alkanes. The primary bacterial colonization of the interfaces was predominated by the family Oceanospirillaceae at all temperatures, demonstrating the wide temperature range of these hydrocarbonoclastic bacteria. The mesophilic genus Oleibacter was predominant at the seawater temperature of 20 °C, and the psychrophilic genus Oleispira at 5 and 0 °C. Upon completion of n-alkane biotransformation, other oil-degrading and heterotrophic bacteria became abundant, including Piscirickettsiaceae (Cycloclasticus), Colwelliaceae (Colwellia), Altermonadaceae (Altermonas), and Rhodobacteraceae. This is one of a few studies that describe the biodegradation of oil, and the microbial communities associated with the degradation, directly at the oil-seawater interfaces over a large temperature interval.

  3. Characterization and two-dimensional crystallization of membrane component AlkB of the medium-chain alkane hydroxylase system from Pseudomonas putida GPo1.

    Science.gov (United States)

    Alonso, Hernan; Roujeinikova, Anna

    2012-11-01

    The alkane hydroxylase system of Pseudomonas putida GPo1 allows it to use alkanes as the sole source of carbon and energy. Bacterial alkane hydroxylases have tremendous potential as biocatalysts for the stereo- and regioselective transformation of a wide range of chemically inert unreactive alkanes into valuable reactive chemical precursors. We have produced and characterized the first 2-dimensional crystals of the integral membrane component of the P. putida alkane hydroxylase system, the nonheme di-iron alkane monooxygenase AlkB. Our analysis reveals for the first time that AlkB reconstituted into a lipid bilayer forms trimers. Addition of detergents that do not disrupt the AlkB oligomeric state (decyl maltose neopentyl glycol [DMNG], lauryl maltose neopentyl glycol [LMNG], and octaethylene glycol monododecyl ether [C(12)E(8)]) preserved its activity at a level close to that of the detergent-free control sample. In contrast, the monomeric form of AlkB produced by purification in n-decyl-β-D-maltopyranoside (DM), n-dodecyl-β-D-maltopyranoside (DDM), octyl glucose neopentyl glycol (OGNG), and n-dodecyl-N,N-dimethylamine-N-oxide (LDAO) was largely inactive. This is the first indication that the physiologically active form of membrane-embedded AlkB may be a multimer. We present for the first time experimental evidence that 1-octyne acts as a mechanism-based inhibitor of AlkB. Therefore, despite the lack of any significant full-length sequence similarity with members of other monooxygenase classes that catalyze the terminal oxidation of alkanes, AlkB is likely to share a similar catalytic mechanism.

  4. Ligand-accelerated activation of strong C-H bonds of alkanes by a (salen)ruthenium(VI)-nitrido complex.

    Science.gov (United States)

    Man, Wai-Lun; Lam, William W Y; Kwong, Hoi-Ki; Yiu, Shek-Man; Lau, Tai-Chu

    2012-09-03

    Kinetic and mechanistic studies on the intermolecular activation of strong C-H bonds of alkanes by a (salen)ruthenium(VI) nitride were performed. The initial, rate-limiting step, the hydrogen atom transfer (HAT) from the alkane to Ru(VI)≡N, generates Ru(V)=NH and RC·HCH(2)R. The following steps involve N-rebound and desaturation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Multivariate statisticalmethods applied to interpretation of saturated biomarkers (Velebit oil field, SE Pannonian Basin, Serbia

    Directory of Open Access Journals (Sweden)

    TATJANA SOLEVIC

    2006-07-01

    Full Text Available Twenty-five crude oils originating from the Velebit oil field (SE Pannonian Basin, the most important oil field in Serbia, were investigated. Saturated biomarkers (n-alkanes, isoprenoids, steranes and triterpanes were analyzed by gas chromatography-mass spectrometry (GC-MS. Based on the distribution and abundance of these compounds, a large number of source and maturation parameters were calculated, particularly those most often used in correlation studies of oils. The examined samples were classified according to their origin and level of thermal maturity using factor, cluster and discriminant analyses. According to the source and maturation parameters, combined factor and cluster analyses using the Ward method enabled the categorization of the investigated oils into three groups. The cluster Ward analysis was shown to be of greater susceptibility and reliability. However, in addition to the two aforementioned methods, K-Means cluster analysis and discriminant analysis were shown to be necessary for a more precise and detailed categorization in the case of a large number of samples in one group. Consequently, it was concluded that factor and cluster K-Means andWard analyses can generally be used for the interpretation of saturated biomarkers in correlation studies of oils, but the observed results have to be checked, i.e., confirmed by discriminant analysis.

  6. Structural Exploration of the Two HBI Alkanes in the Chinese Maoming Oil Shale

    Science.gov (United States)

    Liao, J.; Lu, H.; Wang, Q.; Zhou, Y., Sr.

    2017-12-01

    The Maoming oil shale is notable for its high rate of oil production and abundant biomarker compounds. Apart from the odd-numbered C31 and C33botryococcanes dominant and characteristic, two highly branched isoprenoid (HBI) alkanes (Fig. 1) were exclusively occurred (Brassell et al., 1986). The first identification of the two HBI alkanes in the Maoming oil shale was based on a comparison with the mass spectrum of C20 HBI (2,6,10-trimethyl-7-(3-methylbutyl)dodecane) (Yon et al., 1982; Rowland et al., 1985 ) from Rozel Point crude oil. Brassell et al (1986) thought that the characteristic ions at m/z 308 and 336 could be indicative of an additional C10 alkyl side chain on top of the characteristic ions of m/z 168 and 197 for the C20-HBI. However, the structural speculation seemed suspicious for not only their mass spectrum but also their co-chromatography results were not identical to the later synthesized C30 HBI alkane (Rowland and Robson, 1990). In addition, the source attribution of diatoms indicated by two C30 HBIs was inconsistent with the species of B race of Botryococcus braunii indicated by the dominant distribution of botryococcanes. Thus, the thirty-year-old structural assignment of the two C30 HBI alkanes may require confirmation. At first, the monomers of two HBIs were prepared by preparative gas chromatography. The HR-EI MS (436.5003) illustrated a formula of C31H64 rather than carbon numbered C30 HBIs. Moreover, two novel polymethyl alkane structures (I, II) could be yielded by 1D and 2D NMR results (Fig. 2), which completely different from that of previously speculated C30-HBIs (Fig. 2). According to the elucidated structure, the characteristic ions at m/z 308, 336, 434 and other irons at m/z 127, 211, 225, 281, 336 were mainly corresponded to relevant cleavages. Hence, their mass spectra were basically consistent with the structure determined from the NMR data. The new structural skeleton in our results for the two compounds does not support the

  7. Selective fermentation of carbohydrate and protein fractions of Scenedesmus, and biohydrogenation of its lipid fraction for enhanced recovery of saturated fatty acids.

    Science.gov (United States)

    Lai, YenJung Sean; Parameswaran, Prathap; Li, Ang; Aguinaga, Alyssa; Rittmann, Bruce E

    2016-02-01

    Biofuels derived from microalgae have promise as carbon-neutral replacements for petroleum. However, difficulty extracting microalgae-derived lipids and the co-extraction of non-lipid components add major costs that detract from the benefits of microalgae-based biofuel. Selective fermentation could alleviate these problems by managing microbial degradation so that carbohydrates and proteins are hydrolyzed and fermented, but lipids remain intact. We evaluated selective fermentation of Scenedesmus biomass in batch experiments buffered at pH 5.5, 7, or 9. Carbohydrates were fermented up to 45% within the first 6 days, protein fermentation followed after about 20 days, and lipids (measured as fatty acid methyl esters, FAME) were conserved. Fermentation of the non-lipid components generated volatile fatty acids, with acetate, butyrate, and propionate being the dominant products. Selective fermentation of Scenedesmus biomass increased the amount of extractable FAME and the ratio of FAME to crude lipids. It also led to biohydrogenation of unsaturated FAME to more desirable saturated FAME (especially to C16:0 and C18:0), and the degree of saturation was inversely related to the accumulation of hydrogen gas after fermentation. Moreover, the microbial communities after selective fermentation were enriched in bacteria from families known to perform biohydrogenation, i.e., Porphyromonadaceae and Ruminococcaceae. Thus, this study provides proof-of-concept that selective fermentation can improve the quantity and quality of lipids that can be extracted from Scenedesmus. © 2015 Wiley Periodicals, Inc.

  8. Phase Behavior and Evaporation Profile of Tween 20 - Eugenol System. Effect of Different Alkane Chain Length and Solvent System

    International Nuclear Information System (INIS)

    Kassim, A.; Lim, W.H.; Kuangl, D.; Rusmawati, W.W.M.; Abdullah, A.H.; Teoh, S.P.

    2003-01-01

    The isotropic region of Tween 20/eugenol/n-alkane in aqueous systems was determined. The solubilisation trend of isotropic solution formed in the presence of eugenol was studied as a function of different alkyl chain length of n-alkane. The solubility of solvent in surfactant solution is dependent on their molecular polarity. An increase in n-alkane chain length (lower polarity) lead to smaller isotropic region which will affect the surfactant partitioning between the interface, the oil phase and the aqueous phase of the microemulsion as the oil chain length is varied. The changes of evaporation behaviour were affected strongly by the types of phases existed in the systems. The increment of n-alkane and water content led to higher evaporation rate. But the formation of w/o microemulsion would lower the evaporation rate because water molecules were trapped in the core of aggregates. In solubilisation system, evaporation rate is dependent on the solvent content and the interaction between Tween 20 and solvent molecules in the mixed composition. (author)

  9. Transient TAP approach to investigate adsorption and diffusion of small alkanes in porous sulfated zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Galinsky, M.; Breitkopf, C. [Technische Univ. Dresden (Germany). Inst. fuer Energietechnik

    2011-07-01

    Sulfated zirconias have attracted an interest as catalysts due to their ability to isomerize alkanes at low temperatures, e.g., under thermodynamically favored conditions. However, the fast deactivation during the reaction remains a problem. To improve the catalytic performance of such porous catalysts, it is necessary to understand all steps in the catalytic cycle, namely diffusion and adsorption in more detail. The transient TAP method was applied to investigate sorption and diffusion phenomena of different alkanes in three different morphologically structured sulfated zirconias to elucidate their catalytic performances in the n-butane isomerization. New theoretical models were developed to describe the experimental results of TAP single-pulse experiments. The application of these models to pulse response curves allowed the extraction of adsorption and desorption rate constants as well as diffusion coefficients. Via introducing a second sorption center, the new adsorption model is able to reproduce the sorption behavior for larger alkanes quantitatively better than former models, especially in the low-temperature region. Moreover, the heterogeneous distribution of active centers was taken into account. Temperature dependent measurements have been performed to calculate heats of adsorption for various alkanes at the two assumed adsorption sites. The impact of these values on the catalytic properties is discussed. With the help of the new diffusion model, the diffusion coefficients for the inter- and intrapellet volume could be determined. These values are used in a numerical simulation to check whether the reaction rate for the isomerization at the investigated sulfated zirconias is diffusion limited. (orig.)

  10. Squeezing molecular thin alkane lubrication films between curved solid surfaces with long-range elasticity: Layering transitions and wear

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, V. N.; Persson, B. N. J.

    2003-01-01

    The properties of alkane lubricants confined between two approaching solids are investigated by a model that accounts for the curvature and the elastic properties of the solid surfaces. We consider linear alkane molecules of different chain lengths, C3H8, C4H10, C8H18, C9H20, C10H22, C12H26 and C14...

  11. Quantum chemical analysis of thermodynamics of 2D cluster formation of alkanes at the water/vapor interface in the presence of aliphatic alcohols.

    Science.gov (United States)

    Vysotsky, Yu B; Kartashynska, E S; Belyaeva, E A; Fainerman, V B; Vollhardt, D; Miller, R

    2015-11-21

    Using the quantum chemical semi-empirical PM3 method it is shown that aliphatic alcohols favor the spontaneous clusterization of vaporous alkanes at the water surface due to the change of adsorption from the barrier to non-barrier mechanism. A theoretical model of the non-barrier mechanism for monolayer formation is developed. In the framework of this model alcohols (or any other surfactants) act as 'floats', which interact with alkane molecules of the vapor phase using their hydrophobic part, whereas the hydrophilic part is immersed into the water phase. This results in a significant increase of contact effectiveness of alkanes with the interface during the adsorption and film formation. The obtained results are in good agreement with the existing experimental data. To test the model the thermodynamic and structural parameters of formation and clusterization are calculated for vaporous alkanes C(n)H(2n+2) (n(CH3) = 6-16) at the water surface in the presence of aliphatic alcohols C(n)H(2n+1)OH (n(OH) = 8-16) at 298 K. It is shown that the values of clusterization enthalpy, entropy and Gibbs' energy per one monomer of the cluster depend on the chain lengths of corresponding alcohols and alkanes, the alcohol molar fraction in the monolayers formed, and the shift of the alkane molecules with respect to the alcohol molecules Δn. Two possible competitive structures of mixed 2D film alkane-alcohol are considered: 2D films 1 with single alcohol molecules enclosed by alkane molecules (the alcohols do not form domains) and 2D films 2 that contain alcohol domains enclosed by alkane molecules. The formation of the alkane films of the first type is nearly independent of the surfactant type present at the interface, but depends on their molar fraction in the monolayer formed and the chain length of the compounds participating in the clusterization, whereas for the formation of the films of the second type the interaction between the hydrophilic parts of the surfactant is

  12. Heritability of the Structures and 13C Fractionation in Tomato Leaf Wax Alkanes: A Genetic Model System to Inform Paleoenvironmental Reconstructions

    Directory of Open Access Journals (Sweden)

    Amanda L. D. Bender

    2017-06-01

    Full Text Available Leaf wax n-alkanes are broadly used to reconstruct paleoenvironmental information. However, the utility of n-alkanes as a paleoenvironmental proxy may be modulated by the extent to which biological as well as environmental factors influence the structural and isotopic variability of leaf waxes. In paleoclimate applications, there is usually an implicit assumption that most variation of leaf wax traits through a time series can be attributed to environmental change and that biological sources of variability within plant communities are small. For example, changes in hydrology affect the δ2H of waxes via rainwater and the δ13C of leaf waxes by changing plant communities. We measured the degree of genetic control over δ13C variation in leaf waxes within closely related species with an experimental greenhouse growth study. We measured the proportion of variability in structural and isotopic leaf wax traits that is attributable to genetic variation using a set of 76 introgression lines (ILs between two interfertile Solanum (tomato species: S. lycopersicum cv M82 (hereafter cv M82 and S. pennellii. Leaves of S. pennellii, a wild desert tomato relative, produced significantly more iso-alkanes than cv M82, a domesticated tomato cultivar adapted to water-replete conditions. We report a methylation index to summarize the ratio of branched (iso- and anteiso- to total alkanes. Between Solanum pennellii and cv M82, the iso-alkanes were found to be enriched in 13C by 1.2–1.4‰ over n-alkanes. The broad-sense heritability values (H2 of leaf wax traits describe the degree to which genetic variation contributes to variation of these traits. Variation of individual carbon isotopic compositions of alkanes were of low heritability (H2 = 0.13–0.19, suggesting that most variation in δ13C of leaf waxes in this study can be attributed to environmental variance. This supports the interpretation that variation in the δ13C of wax compounds recorded in sediments

  13. Heritability of the structures and 13C fractionation in tomato leaf wax alkanes: a genetic model system to inform paleoenvironmental reconstructions

    Science.gov (United States)

    Bender, Amanda L. D.; Chitwood, Daniel H.; Bradley, Alexander S.

    2017-06-01

    Leaf wax n-alkanes are broadly used to reconstruct paleoenvironmental information. However, the utility of n-alkanes as a paleoenvironmental proxy may be modulated by the extent to which biological as well as environmental factors influence the structural and isotopic variability of leaf waxes. In paleoclimate applications, there is usually an implicit assumption that most variation of leaf wax traits through a time series can be attributed to environmental change and that biological sources of variability within plant communities are small. For example, changes in hydrology affect the δ2H of waxes via rainwater and the δ13C of leaf waxes by changing plant communities. We measured the degree of genetic control over δ13C variation in leaf waxes within closely related species with an experimental greenhouse growth study. We measured the proportion of variability in structural and isotopic leaf wax traits that is attributable to genetic variation using a set of 76 introgression lines (ILs) between two interfertile Solanum (tomato) species: S. lycopersicum cv M82 (hereafter cv M82) and S. pennellii. Leaves of S. pennellii, a wild desert tomato relative, produced significantly more iso-alkanes than cv M82, a domesticated tomato cultivar adapted to water-replete conditions. We report a methylation index to summarize the ratio of branched (iso- and anteiso-) to total alkanes. Between S. pennellii and cv M82, the iso-alkanes were found to be enriched in 13C by 1.2-1.4‰ over n-alkanes. The broad-sense heritability values (H2) of leaf wax traits describe the degree to which genetic variation contributes to variation of these traits. Variation of individual carbon isotopic compositions of alkanes were of low heritability (H2 = 0.13-0.19), suggesting that most variation in δ13C of leaf waxes in this study can be attributed to environmental variance. This supports the interpretation that variation in the δ13C of wax compounds recorded in sediments reflects

  14. Geochemical Tracers and Rates of Short-Chain Alkane Production in Gulf of Mexico Cold Seep Sediments

    Science.gov (United States)

    Sibert, R.; Bernard, B. B.; Brooks, J. M.; Hunter, K.; Joye, S. B.

    2014-12-01

    The organic-rich cold seep sediments in the deep Gulf of Mexico commonly contain mixtures of light hydrocarbon gases either dissolved in pore fluids, adsorbed to sediment particles, trapped in methane ice, or as free gas. The dominant component in these natural gas mixtures is typically methane (C1), but ethane (C2) and propane (C3) are nearly always present in trace or major amounts. The ratio of C1:C2:C3 varies but C2 and C3 are typically present at single digit percent levels, whereas methane usually dominates at >80%. Methane production proceeds by at least two well-studied mechanisms: either 1) by thermocatalytic cracking of fossil organic matter, or 2) as a direct product of microbial metabolism, methanogenesis. In contrast, ethane and propane production in deep-sea sediments has been historically attributed only to thermocatalytic processes. However, limited data suggests production of C2/C3 compounds through the activity of archaea. Such studies of microbial- driven dynamics of C2/C3 gases (i.e. 'alkanogenesis') in cold seep sediments are rare. Furthermore, the identities of potential substrates are poorly constrained and no attempt has been made to quantify production rates of C2/C3 gases. However, carbon isotopic data on ethane and propane from deep cores from the Gulf of Mexico suggest alkanogenesis at depth in the sediment column and alkane oxidation in uppermost oxidant-rich sediments. Here, we present the results of a series of incubation experiments using sediment slurries culled from GC600, one of the most prolific natural oil and gas seeps in the Gulf of Mexico. Rates of both alkane production and oxidation were measured under a variety of conditions to assess the net rates of alkane production and elucidate the driving microbiological mechanisms and controls on the central processes of >C1 alkane cycling in cold seep sediments. Microbial processes are important both in terms of alkane production and oxidation, raising many questions as to the

  15. Conversion of raw lignocellulosic biomass into branched long-chain alkanes through three tandem steps.

    Science.gov (United States)

    Li, Chunrui; Ding, Daqian; Xia, Qineng; Liu, Xiaohui; Wang, Yanqin

    2016-07-07

    Synthesis of branched long-chain alkanes from renewable biomass has attracted intensive interest in recent years, but the feedstock for this synthesis is restricted to platform chemicals. Here, we develop an effective and energy-efficient process to convert raw lignocellulosic biomass (e.g., corncob) into branched diesel-range alkanes through three tandem steps for the first time. Furfural and isopropyl levulinate (LA ester) were prepared from hemicellulose and cellulose fractions of corncob in toluene/water biphasic system with added isopropanol, which was followed by double aldol condensation of furfural with LA ester into C15 oxygenates and the final hydrodeoxygenation of C15 oxygenates into branched long-chain alkanes. The core point of this tandem process is the addition of isopropanol in the first step, which enables the spontaneous transfer of levulinic acid (LA) into the toluene phase in the form of LA ester through esterification, resulting in LA ester co-existing with furfural in the same phase, which is the basis for double aldol condensation in the toluene phase. Moreover, the acidic aqueous phase and toluene can be reused and the residues, including lignin and humins in aqueous phase, can be separated and carbonized to porous carbon materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Selective phase masking to reduce material saturation in holographic data storage systems

    Science.gov (United States)

    Phillips, Seth; Fair, Ivan

    2014-09-01

    Emerging networks and applications require enormous data storage. Holographic techniques promise high-capacity storage, given resolution of a few remaining technical issues. In this paper, we propose a technique to overcome one such issue: mitigation of large magnitude peaks in the stored image that cause material saturation resulting in readout errors. We consider the use of ternary data symbols, with modulation in amplitude and phase, and use a phase mask during the encoding stage to reduce the probability of large peaks arising in the stored Fourier domain image. An appropriate mask is selected from a predefined set of pseudo-random masks by computing the Fourier transform of the raw data array as well as the data array multiplied by each mask. The data array or masked array with the lowest Fourier domain peak values is recorded. On readout, the recorded array is multiplied by the mask used during recording to recover the original data array. Simulations are presented that demonstrate the benefit of this approach, and provide insight into the appropriate number of phase masks to use in high capacity holographic data storage systems.

  17. Pd/NbOPO₄ multifunctional catalyst for the direct production of liquid alkanes from aldol adducts of furans.

    Science.gov (United States)

    Xia, Qi-Neng; Cuan, Qian; Liu, Xiao-Hui; Gong, Xue-Qing; Lu, Guan-Zhong; Wang, Yan-Qin

    2014-09-08

    Great efforts have been made to convert renewable biomass into transportation fuels. Herein, we report the novel properties of NbO(x)-based catalysts in the hydrodeoxygenation of furan-derived adducts to liquid alkanes. Excellent activity and stability were observed with almost no decrease in octane yield (>90% throughout) in a 256 h time-on-stream test. Experimental and theoretical studies showed that NbO(x) species play the key role in C-O bond cleavage. As a multifunctional catalyst, Pd/NbOPO4 plays three roles in the conversion of aldol adducts into alkanes: 1) The noble metal (in this case Pd) is the active center for hydrogenation; 2) NbO(x) species help to cleave the C-O bond, especially of the tetrahydrofuran ring; and 3) a niobium-based solid acid catalyzes the dehydration, thus enabling the quantitative conversion of furan-derived adducts into alkanes under mild conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Seasonal variation of the particle size distribution of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) in urban aerosol of Guangzhou, China.

    Science.gov (United States)

    Tang, X L; Bi, X H; Sheng, G Y; Tan, J H; Fu, J M

    2006-06-01

    Seasonal aerosol samples have been collected by Andersen Hi-Vol pumping system equipped with a five stage cascade impactor and a backup filter (size range: 10-7.2 microm, 7.2-3.0 microm, 3.0-1.5 microm, 1.5-0.95 microm, 0.95-0.49 microm, gas chromatography and PAHs were measured using gas chromatography/mass spectrometry analysis. The bimodal log-normal distributions of n-alkanes and semi-volatile PAHs were found, while for non-volatile PAHs that was unimodal, so much as the mode of semi-volatile PAHs was similar with that of the particles. The n-alkanes and PAHs were preferably associated with fine particles. C (max) (carbon number maximum) (C(22)-C(26)), CPI (carbon preference index) (1.12-1.21), U/R (unresolved to resolved components ratio) (7.42-10.7), wax% (0.9-3.12%) and the diagnostic ratios for PAHs revealed that vehicular emission was the major source of these organic compounds during the study periods, while the contribution of epicuticular waxes emitted by terrestrial plants was minor. CPI(2) (values for petrogenic hydrocarbons), CPI(3) (values for biogenic n-alkanes) and wax% revealed that the natural preferentially accumulated in the larger aerosol while the anthropogenic in the smaller. In addition, the different MMDs (mass median diameters) for n-alkanes and PAHs were observed in different seasons. The MMDs for n-alkanes and PAHs were higher in autumn/winter than those in spring/summer. The seasonal effect was related to the hydrocarbon content in the individual particulate fractions, showing a preferential association of n-alkanes and PAHs with larger particles in the autumn/winter season.

  19. Transport mechanisms and wetting dynamics in molecularly thin films of long-chain alkanes at solid/vapour interface : relation to the solid-liquid phase transition

    OpenAIRE

    Lazar, Paul

    2005-01-01

    Wetting and phase transitions play a very important role our daily life. Molecularly thin films of long-chain alkanes at solid/vapour interfaces (e.g. C30H62 on silicon wafers) are very good model systems for studying the relation between wetting behaviour and (bulk) phase transitions. Immediately above the bulk melting temperature the alkanes wet partially the surface (drops). In this temperature range the substrate surface is covered with a molecularly thin ordered, solid-like alkane film (...

  20. Determination of molecular diffusion coefficient in n-alkane binary mixtures: empirical correlations.

    Science.gov (United States)

    De Mezquia, D Alonso; Bou-Ali, M Mounir; Larrañaga, M; Madariaga, J A; Santamaría, C

    2012-03-08

    In this work we have measured the molecular diffusion coefficient of the n-alkane binary series nC(i)-nC(6), nC(i)-nC(10), and nC(i)-nC(12) at 298 K and 1 atm and a mass fraction of 0.5 by using the so-called sliding symmetric tubes technique. The results show that the diffusion coefficient at this concentration is proportional to the inverse viscosity of the mixture. In addition, we have also measured the diffusion coefficient of the systems nC(12)-nC(6), nC(12)-nC(7), and nC(12)-nC(8) as a function of concentration. From the data obtained, it is shown that the diffusion coefficient of the n-alkane binary mixtures at any concentration can be calculated from the molecular weight of the components and the dynamic viscosity of the corresponding mixture at 50% mass fraction.

  1. Free radical hydrogen atom abstraction from saturated hydrocarbons: A crossed-molecular-beams study of the reaction Cl + C{sub 3}H{sub 8} {yields} HCl + C{sub 3}H{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Blank, D.A.; Hemmi, N.; Suits, A.G.; Lee, Y.T. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    The abstraction of hydrogen atoms from saturated hydrocarbons are reactions of fundamental importance in combustion as well as often being the rate limiting step in free radical substitution reactions. The authors have begun studying these reactions under single collision conditions using the crossed molecular beam technique on beamline 9.0.2.1, utilizing VUV undulator radiation to selectively ionize the scattered hydrocarbon free radical products (C{sub x}H{sub 2x+1}). The crossed molecular beam technique involves two reactant molecular beams fixed at 90{degrees}. The molecular beam sources are rotatable in the plane defined by the two beams. The scattered neutral products travel 12.0 cm where they are photoionized using the VUV undulator radiation, mass selected, and counted as a function of time. In the authors initial investigations they are using halogen atoms as protypical free radicals to abstract hydrogen atoms from small alkanes. Their first study has been looking at the reaction of Cl + propane {r_arrow} HCl + propyl radical. In their preliminary efforts the authors have measured the laboratory scattering angular distribution and time of flight spectra for the propyl radical products at collision energies of 9.6 kcal/mol and 14.9 kcal/mol.

  2. Difference equation model for isothermal gas chromatography expresses retention behavior of homologues of n-alkanes excluding the influence of holdup time

    Science.gov (United States)

    Wu, Liejun; Chen, Yongli; Caccamise, Sarah A.L.; Li, Qing X.

    2012-01-01

    A difference equation (DE) model is developed using the methylene retention increment (Δtz) of n-alkanes to avoid the influence of gas holdup time (tM). The effects of the equation orders (1st–5th) on the accuracy of a curve fitting show that a linear equation (LE) is less satisfactory and it is not necessary to use a complicated cubic or higher order equation. The relationship between the logarithm of Δtz and the carbon number (z) of the n-alkanes under isothermal conditions closely follows the quadratic equation for C3–C30 n-alkanes at column temperatures of 24–260 °C. The first and second order forward differences of the expression (Δlog Δtz and Δ2log Δtz, respectively) are linear and constant, respectively, which validates the DE model. This DE model lays a necessary foundation for further developing a retention model to accurately describe the relationship between the adjusted retention time and z of n-alkanes. PMID:22939376

  3. Aromatization of alkanes over Pt promoted conventional and mesoporous gallosilicates of MEL zeolite

    Czech Academy of Sciences Publication Activity Database

    Akhtar, M. N.; Al-Yassir, N.; Al-Khattaf, S.; Čejka, Jiří

    2012-01-01

    Roč. 179, č. 1 (2012), s. 61-72 ISSN 0920-5861 Institutional research plan: CEZ:AV0Z40400503 Keywords : alkane aromatization * ZSM-11 * GaHZSM-11 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.980, year: 2012

  4. Short-chain alkane cycling in deep Gulf of Mexico cold-seep sediments

    Science.gov (United States)

    Sibert, R.; Joye, S. B.; Hunter, K.

    2015-12-01

    Mixtures of light hydrocarbon gases are common in deep Gulf of Mexico cold-seep sediments, and are typically dissolved in pore fluids, adsorbed to sediment particles, trapped in methane ice, or as free gas. The dominant component in these natural gas mixtures is usually methane (>80% C1), but ethane (C2) and propane (C3) are nearly always present in trace amounts (95% of the methane produced at depth never reaches the water column. Production of C1 and C2 in deep-sea sediments has been historically attributed only to thermocatalytic processes, though limited data suggests production of C2/C3 compounds through the activity of archaea at depth. Furthermore, carbon isotopic data on ethane and propane from deep cores of Gulf of Mexico sediments suggest alkanogenesis at >3 m depth in the sediment column and alkane oxidation in uppermost oxidant-rich sediments. Additional studies have also isolated microorganisms capable of oxidizing ethane and propane in the laboratory, but field studies of microbial-driven dynamics of C2/C3 gases in cold-seep sediments are rare. Here, we present the results of a series of incubation experiments using sediment slurries culled from surface sediments from one of the most prolific natural oil and gas seeps in the Gulf of Mexico. Rates of alkane oxidation were measured under a variety of conditions to assess the surface-driven microbial controls on C2/C3 cycling in cold-seep environments. Such microbial processes are important in terms of the possible 'oxidative overprinting' of alkane isotopic signatures produced at depth, possibly obscuring typical microbial isotopic signals.

  5. Predominance of even carbon-numbered n-alkanes from lacustrine sediments in Linxia Basin, NE Tibetan Plateau: Implications for climate change

    International Nuclear Information System (INIS)

    Wang Yongli; Fang Xiaomin; Zhang Tongwei; Li Yuanmao; Wu Yingqin; He Daxiang; Wang Youxiao

    2010-01-01

    Research highlights: → This study reports the first observation of predominant even carbon-numbered n-alkanes of sediments in the continuous lacustrine-sedimentary section (Maogou) from the Late Miocene to the Early Pliocene (13-4.4 Ma) in the Linxia Basin, NE Tibetan Plateau. → Certain types of special autochthonous bacteria are a possible source for the special distribution of even carbon-numbered n-alkanes in lacustrine sediments. → These bacteria may have a high production rate in weak oxic-anoxic and arid depositional environments, in which a variety of geochemical parameters have recorded palaeoclimate change. → A close correspondence among the low ratio of n-C 27 /n-C 31 , the heavy δ 13 C values of TOC and a strong even carbon-number predominance (low OEP 16-20 values) from approximately 6.5 to 4.4 Ma and at approximately 8 Ma in the studied section suggests that n-alkanes with a high predominance of even carbon-numbers may be treated as geochemical proxies for arid climate. - Abstract: This study reports the first observation of predominant even C-numbered n-alkanes from sediments in the continuous lacustrine-sedimentary section (Maogou) from the Late Miocene to the Early Pliocene (13-4.4 Ma) in the Linxia Basin, NE Tibetan Plateau. The n-alkanes showed a bimodal distribution that is characterised by a centre at n-C 16 -n-C 20 with maximum values at n-C 18 and n-C 27 -n-C 31 as well as at n-C 29 . The first mode shows a strong even C-number predominance (OEP 16-20 0.34-0.66). In contrast, the second mode has a strong odd C-number predominance (OEP 27-31 1.20-2.45). Certain types of special autochthonous bacteria are a possible source for this distribution of even C-numbered n-alkanes in lacustrine sediments. These bacteria may have a high production rate in weak oxic-anoxic and arid depositional environments, in which a variety of geochemical parameters have recorded palaeoclimate change.

  6. Anaerobic Coculture of Microalgae with Thermosipho globiformans and Methanocaldococcus jannaschii at 68°C Enhances Generation of n-Alkane-Rich Biofuels after Pyrolysis

    Science.gov (United States)

    Matsuyama, Shigeru; Igarashi, Kensuke; Utsumi, Motoo; Shiraiwa, Yoshihiro; Kuwabara, Tomohiko

    2013-01-01

    We tested different alga-bacterium-archaeon consortia to investigate the production of oil-like mixtures, expecting that n-alkane-rich biofuels might be synthesized after pyrolysis. Thermosipho globiformans and Methanocaldococcus jannaschii were cocultured at 68°C with microalgae for 9 days under two anaerobic conditions, followed by pyrolysis at 300°C for 4 days. Arthrospira platensis (Cyanobacteria), Dunaliella tertiolecta (Chlorophyta), Emiliania huxleyi (Haptophyta), and Euglena gracilis (Euglenophyta) served as microalgal raw materials. D. tertiolecta, E. huxleyi, and E. gracilis cocultured with the bacterium and archaeon inhibited their growth and CH4 production. E. huxleyi had the strongest inhibitory effect. Biofuel generation was enhanced by reducing impurities containing alkanenitriles during pyrolysis. The composition and amounts of n-alkanes produced by pyrolysis were closely related to the lipid contents and composition of the microalgae. Pyrolysis of A. platensis and D. tertiolecta containing mainly phospholipids and glycolipids generated short-carbon-chain n-alkanes (n-tridecane to n-nonadecane) and considerable amounts of isoprenoids. E. gracilis also produced mainly short n-alkanes. In contrast, E. huxleyi containing long-chain (31 and 33 carbon atoms) alkenes and very long-chain (37 to 39 carbon atoms) alkenones, in addition to phospholipids and glycolipids, generated a high yield of n-alkanes of various lengths (n-tridecane to n-pentatriacontane). The gas chromatography-mass spectrometry (GC-MS) profiles of these n-alkanes were similar to those of native petroleum crude oils despite containing a considerable amount of n-hentriacontane. The ratio of phytane to n-octadecane was also similar to that of native crude oils. PMID:23183975

  7. Measurement and modelling of hydrogen bonding in 1-alkanol plus n-alkane binary mixtures

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Jensen, Lars; Kofod, Jonas L.

    2007-01-01

    Two equations of state (simplified PC-SAFT and CPA) are used to predict the monomer fraction of 1-alkanols in binary mixtures with n-alkanes. It is found that the choice of parameters and association schemes significantly affects the ability of a model to predict hydrogen bonding in mixtures, eve...... studies, which is clarified in the present work. New hydrogen bonding data based on infrared spectroscopy are reported for seven binary mixtures of alcohols and alkanes. (C) 2007 Elsevier B.V. All rights reserved....... though pure-component liquid densities and vapour pressures are predicted equally accurately for the associating compound. As was the case in the study of pure components, there exists some confusion in the literature about the correct interpretation and comparison of experimental data and theoretical...

  8. Solid-Liquid equilibrium of n-alkanes using the Chain Delta Lattice Parameter model

    DEFF Research Database (Denmark)

    Coutinho, João A.P.; Andersen, Simon Ivar; Stenby, Erling Halfdan

    1996-01-01

    The formation of a solid phase in liquid mixtures with large paraffinic molecules is a phenomenon of interest in the petroleum, pharmaceutical, and biotechnological industries among onters. Efforts to model the solid-liquid equilibrium in these systems have been mainly empirical and with different...... degrees of success.An attempt to describe the equilibrium between the high temperature form of a paraffinic solid solution, commonly known as rotator phase, and the liquid phase is performed. The Chain Delta Lattice Parameter model (CDLP) is developed allowing a successful description of the solid-liquid...... equilibrium of n-alkanes ranging from n-C_20 to n-C_40.The model is further modified to achieve a more correct temperature dependence because it severely underestimates the excess enthalpy. It is shown that the ratio of excess enthalpy and entropy for n-alkane solid solutions, as happens for other solid...

  9. Improved models for the prediction of activity coefficients in nearly athermal mixtures: Part I. Empirical modifications of free-volume models

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios M.; Coutsikos, Philipos; Tassios, Dimitrios

    1994-01-01

    Mixtures containing exclusively normal, branched and cyclic alkanes, as well as saturated hydrocarbon polymers (e.g. poly(ethylene) and poly(isobutylene)), are known to exhibit almost athermal behavior. Several new activity coefficient models containing both combinatorial and free-volume contribu......Mixtures containing exclusively normal, branched and cyclic alkanes, as well as saturated hydrocarbon polymers (e.g. poly(ethylene) and poly(isobutylene)), are known to exhibit almost athermal behavior. Several new activity coefficient models containing both combinatorial and free...

  10. Adsorption of small hydrocarbons on rutile TiO2(110)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Long; Smith, R. Scott; Kay, Bruce D.; Dohnalek, Zdenek

    2016-08-01

    Temperature programmed desorption and molecular beam scattering were used to study the adsorption and desorption of small hydrocarbons (n-alkanes, 1-alkenes and 1-alkynes with 1 - 4 carbon atoms of C1-C4) on rutile TiO2(110). We show that the sticking coefficients for all the hydrocarbons are close to unity (> 0.95) at an adsorption temperature of 60 K. The desorption energies for hydrocarbons of the same chain length increase from n-alkanes to 1-alkenes and to 1-alkynes. This trend is likely a consequence of an additional dative bonding of the alkene and alkyne π system to the coordinatively unsaturated Ti5c sites. Similar to previous studies on the adsorption of n-alkanes on metal and metal oxide surfaces, we find the desorption energies within each group (n-alkanes vs. 1-alkenes vs. 1-alkynes) from Ti5c sites increase linearly with the chain length. The absolute saturation coverages of each hydrocarbon on Ti5c sites were also determined. The saturation coverage of CH4, is found to be ~ 2/3 monolayer (ML). The saturation coverages of C2-C4 hydrocarbons are found nearly independent of the chain length with values of ~1/2 ML for n-alkanes and 1-alkenes and 2/3 ML for 1-alkynes. This result is surprising considering their similar sizes.

  11. Selective oxidation of alkanes and/or alkenes to valuable oxygenates

    Science.gov (United States)

    Lin, Manhua [Maple Glen, PA; Pillai, Krishnan S [North Brunwick, NJ

    2011-02-15

    A catalyst, its method of preparation and its use for producing at least one of methacrolein and methacrylic acid, for example, by subjecting isobutane or isobutylene or a mixture thereof to a vapor phase catalytic oxidation in the presence of air or oxygen. In the case where isobutane alone is subjected to a vapor phase catalytic oxidation in the presence of air or oxygen, the product is at least one of isobutylene, methacrolein and methacrylic acid. The catalyst comprises a compound having the formula A.sub.aB.sub.bX.sub.xY.sub.yZ.sub.zO.sub.o wherein A is one or more elements selected from the group of Mo, W and Zr, B is one or more elements selected from the group of Bi, Sb, Se, and Te, X is one or more elements selected from the group of Al, Bi, Ca, Ce, Co, Fe, Ga, Mg, Ni, Nb, Sn, W and Zn, Y is one or more elements selected from the group of Ag, Au, B, Cr, Cs, Cu, K, La, Li, Mg, Mn, Na, Nb, Ni, P, Pb, Rb, Re, Ru, Sn, Te, Ti, V and Zr, and Z is one or more element from the X or Y groups or from the following: As, Ba, Pd, Pt, Sr, or mixtures thereof, and wherein a=1, 0.05

  12. Excess Molar Volumes of (an Alkane + 1-Chloroalkane) at T = 298.15 K

    Czech Academy of Sciences Publication Activity Database

    Kovács, Éva; Aim, Karel; Linek, Jan

    2001-01-01

    Roč. 33, č. 1 (2001), s. 33-45 ISSN 0021-9614 R&D Projects: GA ČR GA203/00/0600 Institutional research plan: CEZ:AV0Z4072921 Keywords : alkane * binary mixtures * densities Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.956, year: 2001

  13. QSPR models based on molecular mechanics and quantum chemical calculations. 2. Thermodynamic properties of alkanes, alcohols, polyols, and ethers

    DEFF Research Database (Denmark)

    Dyekjær, Jane Dannow; Jonsdottir, Svava Osk

    2003-01-01

    Quantitative Structure-Property Relationship (QSPR) models for prediction of various thermodynamic properties of simple organic compounds have been developed. A number of new descriptors are proposed and used alongside with descriptors available within the Codessa program. An important feature...... for alkanes, alcohols, diols, ethers, and oxyalcohols, including cyclic alkanes and alcohols. Several good models, having good predictability, have been developed. To enhance the applicability of the QSPR models, simpler expressions for each descriptor have also been developed. This allows for the prediction...

  14. High frequency of Thermodesulfovibrio spp. and Anaerolineaceae in association with Methanoculleus spp. in a long-term incubation of n-alkanes-degrading methanogenic enrichment culture

    Directory of Open Access Journals (Sweden)

    Bo Liang

    2016-09-01

    Full Text Available In the present study, the microbial community and functional gene composition of a long-term active alkane-degrading methanogenic culture was established after two successive enrichment culture transfers and incubated for a total period of 1750 days. Molecular analysis was conducted after the second transfer (incubated for 750 days for both the active alkanes-degrading methanogenic enrichment cultures (T2-AE and the background control (T2-BC. A net increase of methane as the end product was detected in the headspace of the enrichment cultures amended with long-chain n-alkanes and intermediate metabolites, including octadecanoate, hexadecanoate, isocaprylate, butyrate, isobutyrate, propionate, acetate and formate were measured in the liquid cultures. The composition of microbial community shifted through the successive transfers over time of incubation. Sequences of bacterial and archaeal 16S rRNA gene (16S rDNA and mcrA functional gene indicated that bacterial sequences affiliated to Thermodesulfovibrio spp. and Anaerolineaceae and archaeal sequences falling within the genus Methanoculleus were the most frequently encountered and thus represented the dominant members performing the anaerobic degradation of long-chain n-alkanes and methanogenesis. In addition, the presence of assA functional genes encoding the alkylsuccinate synthase α subunit indicated that fumarate addition mechanism could be considered as a possible initial activation step of n-alkanes in the present study. The succession pattern of microbial communities indicates that Thermodesulfovibrio spp. could be a generalist participating in the metabolism of intermediates, while Anaerolineaceae plays a key role in the initial activation of long-chain n-alkane biodegradation.

  15. Toxics release inventory: List of toxic chemicals within the polychlorinated alkanes category and guidance for reporting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    Section 313 of the Emergency Planning and Community Right-to-Know Act of 1986 (EPCRA) requires certain facilities manufacturing, processing, or otherwise using listed toxic chemicals to report their environmental releases of such chemicals annually. On November 30, 1994 EPA added 286 chemicals and chemical categories. Six chemical categories (nicotine and salts, strychnine and salts, polycyclic aromatic compounds, water dissociable nitrate compounds, diisocyanates, and polychlorinated alkanes) are included in these additions. At the time of the addition, EPA indicated that the Agency would develop, as appropriate, interpretations and guidance that the Agency determines are necessary to facilitate accurate reporting for these categories. This document constitutes such guidance for the polychlorinated alkanes category.

  16. Striking difference between alkane and olefin metathesis using the well-defined precursor [≡Si-O-WMe5]: Indirect evidence in favour of a bifunctional catalyst W alkylidene-hydride

    KAUST Repository

    Riache, Nassima; Callens, Emmanuel; Espinas, Jeff; Dé ry, Alexandre; Samantaray, Manoja; Dey, Raju; Basset, Jean-Marie

    2015-01-01

    Metathesis of linear alkanes catalyzed by the well-defined precursor (≡Si-O-WMe5) affords a wide distribution of linear alkanes from methane up to triacontane. Olefin metathesis using the same catalyst and under the same reaction conditions gives a very striking different distribution of linear α-olefins and internal olefins. This shows that olefin and alkane metathesis processes occur via very different pathways.

  17. ESR study of n-alkane cation structure and photodecomposition in γ-irradiated frozen solutions of CF3CCl3

    International Nuclear Information System (INIS)

    Tabata, M.; Lund, A.

    1984-01-01

    Cations of several n-alkanes produced by γ-irradiation at 77 K of a CF 3 CCl 3 matrix containing 0.1 to 2 mole% of solute have been investigated with special emphasis on their photo-induced decomposition. A general route of reaction of n-alkane cations containing 4 to 7 chain carbon atoms involves the formation of 2-butene cation probably in a process of the type Csub(n)H + sub(2n+2) -> 2-C 4 H 8 + + Csub(n-4)Hsub(2n-6). This reaction is exothermic, but does not occur thermally over the temperature interval 77 to 140 K. The variation of the ESR spectral data of the parent cations have been investigated over the temperature interval 4 to 140 K and have been compared with data obtained using other matrices. It is concluded that the assumption of an extended conformation of the n-alkane cation is not always valid and that the structure is sensitive to matrix and temperature effects. (author)

  18. Saturated Zone In-Situ Testing

    International Nuclear Information System (INIS)

    Reimus, P. W.; Umari, M. J.

    2003-01-01

    The purpose of this scientific analysis is to document the results and interpretations of field experiments that have been conducted to test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain. The test interpretations provide estimates of flow and transport parameters that are used in the development of parameter distributions for Total System Performance Assessment (TSPA) calculations. These parameter distributions are documented in the revisions to the SZ flow model report (BSC 2003 [ 162649]), the SZ transport model report (BSC 2003 [ 162419]), the SZ colloid transport report (BSC 2003 [162729]), and the SZ transport model abstraction report (BSC 2003 [1648701]). Specifically, this scientific analysis report provides the following information that contributes to the assessment of the capability of the SZ to serve as a barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvium Testing Complex (ATC), which is located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, and

  19. Saturated Zone In-Situ Testing

    Energy Technology Data Exchange (ETDEWEB)

    P. W. Reimus; M. J. Umari

    2003-12-23

    The purpose of this scientific analysis is to document the results and interpretations of field experiments that have been conducted to test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain. The test interpretations provide estimates of flow and transport parameters that are used in the development of parameter distributions for Total System Performance Assessment (TSPA) calculations. These parameter distributions are documented in the revisions to the SZ flow model report (BSC 2003 [ 162649]), the SZ transport model report (BSC 2003 [ 162419]), the SZ colloid transport report (BSC 2003 [162729]), and the SZ transport model abstraction report (BSC 2003 [1648701]). Specifically, this scientific analysis report provides the following information that contributes to the assessment of the capability of the SZ to serve as a barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvium Testing Complex (ATC), which is located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, and

  20. An instrument for the examination of nucleation from solution and its applications to the study of precipitation from diesel fuels and solutions of n-alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Gerson, A R; Roberts, K J; Sherwood, J N [Strathclyde Univ., Glasgow (UK). Dept. of Pure and Applied Chemistry

    1991-03-01

    An automated apparatus has been designed and constructed to measure precipitation and dissolution of solids from solution at varying automatically predetermined rates of heating and cooling. The appearance and disappearance of crystals are detected by means of a fibre optic turbidity sensor attached to a Sybron/Brinkman colorimeter. Temperature is measured by a Pt resistance thermometer attached to a constant current source. Both of these measurements are recorded by a personal computer via an analog to digital converter. The temperature of the system and its variation is controlled from the personal computer via a digital to analog interface attached to the control head of a Haake F3Q cryostat. The system has been used for measurements of precipitation and dissolution temperatures for diesel waxes with and without nucleation additives. Studies have been made of the nucleation of a single n-alkane from solution. From these measurements, saturation curves, orders of reactions, interfacial tensions and the critical radii of nuclei can be assessed. (orig.).

  1. Studies of non-isothermal flow in saturated and partially saturated porous media

    International Nuclear Information System (INIS)

    Ho, C.K.; Maki, K.S.; Glass, R.J.

    1993-01-01

    Physical and numerical experiments have been performed to investigate the behavior of nonisothermal flow in two-dimensional saturated and partially saturated porous media. The physical experiments were performed to identify non-isothermal flow fields and temperature distributions in fully saturated, half-saturated, and residually saturated two-dimensional porous media with bottom heating and top cooling. Two counter-rotating liquid-phase convective cells were observed to develop in the saturated regions of all three cases. Gas-phase convection was also evidenced in the unsaturated regions of the partially saturated experiments. TOUGH2 numerical simulations of the saturated case were found to be strongly dependent on the assumed boundary conditions of the physical system. Models including heat losses through the boundaries of the test cell produced temperature and flow fields that were in better agreement with the observed temperature and flow fields than models that assumed insulated boundary conditions. A sensitivity analysis also showed that a reduction of the bulk permeability of the porous media in the numerical simulations depressed the effects of convection, flattening the temperature profiles across the test cell

  2. Short-chain alkanes fuel mussel and sponge Cycloclasticus symbionts from deep-sea gas and oil seeps.

    Science.gov (United States)

    Rubin-Blum, Maxim; Antony, Chakkiath Paul; Borowski, Christian; Sayavedra, Lizbeth; Pape, Thomas; Sahling, Heiko; Bohrmann, Gerhard; Kleiner, Manuel; Redmond, Molly C; Valentine, David L; Dubilier, Nicole

    2017-06-19

    Cycloclasticus bacteria are ubiquitous in oil-rich regions of the ocean and are known for their ability to degrade polycyclic aromatic hydrocarbons (PAHs). In this study, we describe Cycloclasticus that have established a symbiosis with Bathymodiolus heckerae mussels and poecilosclerid sponges from asphalt-rich, deep-sea oil seeps at Campeche Knolls in the southern Gulf of Mexico. Genomic and transcriptomic analyses revealed that, in contrast to all previously known Cycloclasticus, the symbiotic Cycloclasticus appears to lack the genes needed for PAH degradation. Instead, these symbionts use propane and other short-chain alkanes such as ethane and butane as carbon and energy sources, thus expanding the limited range of substrates known to power chemosynthetic symbioses. Analyses of short-chain alkanes in the environment of the Campeche Knolls symbioses revealed that these are present at high concentrations (in the μM to mM range). Comparative genomic analyses revealed high similarities between the genes used by the symbiotic Cycloclasticus to degrade short-chain alkanes and those of free-living Cycloclasticus that bloomed during the Deepwater Horizon oil spill. Our results indicate that the metabolic versatility of bacteria within the Cycloclasticus clade is higher than previously assumed, and highlight the expanded role of these keystone species in the degradation of marine hydrocarbons.

  3. Alkane and polycyclic aromatic hydrocarbons in sediments and benthic invertebrates of the northern Chukchi Sea

    Science.gov (United States)

    Harvey, H. Rodger; Taylor, Karen A.

    2017-10-01

    The Hanna Shoal region represents an important northern gateway for transport and deposition in the Chukchi Sea. This study determined the concentration and distribution of organic contaminants (aliphatic hydrocarbon and polycyclic aromatic hydrocarbons, PAHs) in surface sediments from 34 sites across Hanna Shoal. Up to 31 total PAHs, including parent and alkyl homologues were detected with total concentrations ranging from a low of 168 ng g-1 the western flank of Hanna Shoal (station H34) to 1147 ng g-1 at station in Barrow Canyon (station BarC5). Alkyl PAHs were more abundant than parent structures and accounted for 53-64% of the summed concentrations suggesting overall at background levels (< 1600 ng g-1) in sediments. Alkane (C15-C33) hydrocarbons ranged from 4.3 μg g-1 on the southern flank of Hanna shoal to 31 μg g-1 at a northern station. Sediments were often dominated by short chain (C15-C22) alkanes with overall terrestrial aquatic ratios (TAR) for the region averaging 0.20. Based on the ratio of Fl/(Fl+ Py) and BaF/(Baf+BeP) verses (BA/BA+Ch) in sediments, PAHs are largely derived from petrogenic sources with minor amounts of mixed combustion sources. A diversity of PAHs were detected in the northern whelk Neptunea heros foot muscle with total concentrations ranging from 0.14 to 1.5 μg g-1 dry tissue wt. Larger (and presumably older) animals showed higher levels of PAH per unit muscle tissue, suggesting that animals may bioaccumulate PAHs over time, with low but increasing concentrations also present in internal and external eggs. Alkane hydrocarbons were also higher in whelks with distributions similar to that seen in sediments. The mussel Muscularus discors collected in Barrow Canyon showed constrained distributions and substantially lower concentrations of both PAHs and alkanes than the surrounding surface sediments.

  4. Predominance of even carbon-numbered n-alkanes from lacustrine sediments in Linxia Basin, NE Tibetan Plateau: Implications for climate change

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yongli [Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000 (China)] [Institute of Tibetan and Plateau Research, Chinese Academy of Sciences, Beijing 100085 (China); Fang Xiaomin, E-mail: fangxm@itpcas.ac.cn [Institute of Tibetan and Plateau Research, Chinese Academy of Sciences, Beijing 100085 (China)] [Key Laboratory of Western Resources and Environment of Education Ministry, College at Earth and Environment Sciences, University of Lanzhou, Lanzhou 730000 (China); Zhang Tongwei [Key Laboratory of Western Resources and Environment of Education Ministry, College at Earth and Environment Sciences, University of Lanzhou, Lanzhou 730000 (China); Li Yuanmao; Wu Yingqin; He Daxiang; Wang Youxiao [Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2010-10-15

    Research highlights: {yields} This study reports the first observation of predominant even carbon-numbered n-alkanes of sediments in the continuous lacustrine-sedimentary section (Maogou) from the Late Miocene to the Early Pliocene (13-4.4 Ma) in the Linxia Basin, NE Tibetan Plateau. {yields} Certain types of special autochthonous bacteria are a possible source for the special distribution of even carbon-numbered n-alkanes in lacustrine sediments. {yields} These bacteria may have a high production rate in weak oxic-anoxic and arid depositional environments, in which a variety of geochemical parameters have recorded palaeoclimate change. {yields} A close correspondence among the low ratio of n-C{sub 27}/n-C{sub 31}, the heavy {delta}{sup 13}C values of TOC and a strong even carbon-number predominance (low OEP{sub 16-20} values) from approximately 6.5 to 4.4 Ma and at approximately 8 Ma in the studied section suggests that n-alkanes with a high predominance of even carbon-numbers may be treated as geochemical proxies for arid climate. - Abstract: This study reports the first observation of predominant even C-numbered n-alkanes from sediments in the continuous lacustrine-sedimentary section (Maogou) from the Late Miocene to the Early Pliocene (13-4.4 Ma) in the Linxia Basin, NE Tibetan Plateau. The n-alkanes showed a bimodal distribution that is characterised by a centre at n-C{sub 16}-n-C{sub 20} with maximum values at n-C{sub 18} and n-C{sub 27}-n-C{sub 31} as well as at n-C{sub 29}. The first mode shows a strong even C-number predominance (OEP{sub 16-20} 0.34-0.66). In contrast, the second mode has a strong odd C-number predominance (OEP{sub 27-31} 1.20-2.45). Certain types of special autochthonous bacteria are a possible source for this distribution of even C-numbered n-alkanes in lacustrine sediments. These bacteria may have a high production rate in weak oxic-anoxic and arid depositional environments, in which a variety of geochemical parameters have recorded

  5. Optimized reaction mechanism rate rules for ignition of normal alkanes

    KAUST Repository

    Cai, Liming

    2016-08-11

    The increasing demand for cleaner combustion and reduced greenhouse gas emissions motivates research on the combustion of hydrocarbon fuels and their surrogates. Accurate detailed chemical kinetic models are an important prerequisite for high fidelity reacting flow simulations capable of improving combustor design and operation. The development of such models for many new fuel components and/or surrogate molecules is greatly facilitated by the application of reaction classes and rate rules. Accurate and versatile rate rules are desirable to improve the predictive accuracy of kinetic models. A major contribution in the literature is the recent work by Bugler et al. (2015), which has significantly improved rate rules and thermochemical parameters used in kinetic modeling of alkanes. In the present study, it is demonstrated that rate rules can be used and consistently optimized for a set of normal alkanes including n-heptane, n-octane, n-nonane, n-decane, and n-undecane, thereby improving the predictive accuracy for all the considered fuels. A Bayesian framework is applied in the calibration of the rate rules. The optimized rate rules are subsequently applied to generate a mechanism for n-dodecane, which was not part of the training set for the optimized rate rules. The developed mechanism shows accurate predictions compared with published well-validated mechanisms for a wide range of conditions.

  6. Jet-stirred reactor oxidation of alkane-rich FACE gasoline fuels

    KAUST Repository

    Chen, Bingjie

    2016-06-23

    Understanding species evolution upon gasoline fuel oxidation can aid in mitigating harmful emissions and improving combustion efficiency. Experimentally measured speciation profiles are also important targets for surrogate fuel kinetic models. This work presents the low- and high-temperature oxidation of two alkane-rich FACE gasolines (A and C, Fuels for Advanced Combustion Engines) in a jet-stirred reactor at 10. bar and equivalence ratios from 0.5 to 2 by probe sampling combined with gas chromatography and Fourier Transformed Infrared Spectrometry analysis. Detailed speciation profiles as a function of temperature are presented and compared to understand the combustion chemistry of these two real fuels. Simulations were conducted using three surrogates (i.e., FGA2, FGC2, and FRF 84), which have similar physical and chemical properties as the two gasolines. The experimental results reveal that the reactivity and major product distributions of these two alkane-rich FACE fuels are very similar, indicating that they have similar global reactivity despite their different compositions. The simulation results using all the surrogates capture the two-stage oxidation behavior of the two FACE gasolines, but the extent of low temperature reactivity is over-predicted. The simulations were analyzed, with a focus on the n-heptane and n-butane sub-mechanisms, to help direct the future model development and surrogate fuel formulation strategies.

  7. Jet-stirred reactor oxidation of alkane-rich FACE gasoline fuels

    KAUST Repository

    Chen, Bingjie; Togbé , Casimir; Wang, Zhandong; Dagaut, Philippe; Sarathy, Mani

    2016-01-01

    Understanding species evolution upon gasoline fuel oxidation can aid in mitigating harmful emissions and improving combustion efficiency. Experimentally measured speciation profiles are also important targets for surrogate fuel kinetic models. This work presents the low- and high-temperature oxidation of two alkane-rich FACE gasolines (A and C, Fuels for Advanced Combustion Engines) in a jet-stirred reactor at 10. bar and equivalence ratios from 0.5 to 2 by probe sampling combined with gas chromatography and Fourier Transformed Infrared Spectrometry analysis. Detailed speciation profiles as a function of temperature are presented and compared to understand the combustion chemistry of these two real fuels. Simulations were conducted using three surrogates (i.e., FGA2, FGC2, and FRF 84), which have similar physical and chemical properties as the two gasolines. The experimental results reveal that the reactivity and major product distributions of these two alkane-rich FACE fuels are very similar, indicating that they have similar global reactivity despite their different compositions. The simulation results using all the surrogates capture the two-stage oxidation behavior of the two FACE gasolines, but the extent of low temperature reactivity is over-predicted. The simulations were analyzed, with a focus on the n-heptane and n-butane sub-mechanisms, to help direct the future model development and surrogate fuel formulation strategies.

  8. Using a chemiresistor-based alkane sensor to distinguish exhaled breaths of lung cancer patients from subjects with no lung cancer.

    Science.gov (United States)

    Tan, Jiunn-Liang; Yong, Zheng-Xin; Liam, Chong-Kin

    2016-10-01

    Breath alkanes are reported to be able to discriminate lung cancer patients from healthy people. A simple chemiresistor-based sensor was designed to respond to alkanes by a change in resistance measured by a digital multimeter connected to the sensor. In preclinical experiments, the sensor response was found to have a strong positive linear relationship with alkane compounds and not responsive to water. This study aimed to determine the ability of the alkane sensor to distinguish the exhaled breaths of lung cancer patients from that of chronic obstructive pulmonary disease (COPD) patients and control subjects without lung cancer. In this cross-sectional study, 12 treatment-naive patients with lung cancer, 12 ex- or current smokers with COPD and 13 never-smokers without lung disease were asked to exhale through a drinking straw into a prototype breath-in apparatus made from an empty 125 mL Vitagen ® bottle with the chemiresistor sensor attached at its inside bottom to measure the sensor peak output (percentage change of baseline resistance measured before exhalation to peak resistance) and the time taken for the baseline resistance to reach peak resistance. Analysis of multivariate variance and post-hoc Tukey test revealed that the peak output and the time to peak values for the lung cancer patients were statistically different from that for both the COPD patients and the controls without lung disease, Pillai's Trace =0.393, F=3.909, df = (4, 64), P=0.007. A 2.20% sensor peak output and a 90-s time to peak gave 83.3% sensitivity and 88% specificity in diagnosing lung cancer. Tobacco smoking did not affect the diagnostic accuracy of the sensor. The alkane sensor could discriminate patients with lung cancer from COPD patients and people without lung disease. Its potential utility as a simple, cheap and non-invasive test for early lung cancer detection needs further studies.

  9. Application of statistical experimental methodology to optimize bioremediation of n-alkanes in aquatic environment

    International Nuclear Information System (INIS)

    Zahed, Mohammad Ali; Aziz, Hamidi Abdul; Mohajeri, Leila; Mohajeri, Soraya; Kutty, Shamsul Rahman Mohamed; Isa, Mohamed Hasnain

    2010-01-01

    Response surface methodology (RSM) was employed to optimize nitrogen and phosphorus concentrations for removal of n-alkanes from crude oil contaminated seawater samples in batch reactors. Erlenmeyer flasks were used as bioreactors; each containing 250 mL dispersed crude oil contaminated seawater, indigenous acclimatized microorganism and different amounts of nitrogen and phosphorus based on central composite design (CCD). Samples were extracted and analyzed according to US-EPA protocols using a gas chromatograph. During 28 days of bioremediation, a maximum of 95% total aliphatic hydrocarbons removal was observed. The obtained Model F-value of 267.73 and probability F < 0.0001 implied the model was significant. Numerical condition optimization via a quadratic model, predicted 98% n-alkanes removal for a 20-day laboratory bioremediation trial using nitrogen and phosphorus concentrations of 13.62 and 1.39 mg/L, respectively. In actual experiments, 95% removal was observed under these conditions.

  10. Time-Resolved WAXD and SAXS Investigations on Butyl Branched Alkane at Elevated Pressures

    NARCIS (Netherlands)

    Rastogi, A.; Hobbs, J.K.; Rastogi, S.

    2002-01-01

    The crystallization behavior and the morphological aspect of the butyl branched alkane C96H193CH(C4H9)C94H189 have been investigated using time-resolved wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) at atmospheric and elevated pressures. The solution crystallized sample

  11. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms

    OpenAIRE

    Kang, Min Kyoung; Nielsen, Jens

    2017-01-01

    Advancement in metabolic engineering of microorganisms has enabled bio-based production of a range of chemicals, and such engineered microorganism can be used for sustainable production leading to reduced carbon dioxide emission there. One area that has attained much interest is microbial hydrocarbon biosynthesis, and in particular, alkanes and alkenes are important high-value chemicals as they can be utilized for a broad range of industrial purposes as well as ?drop-in? biofuels. Some microo...

  12. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hader, J.; Moloney, J. V. [Nonlinear Control Strategies, Inc., 3542 N. Geronimo Ave., Tucson, Arizona 85705 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Yang, H.-J.; Scheller, M. [College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Koch, S. W. [Department of Physics and Materials Sciences Center, Philipps Universität Marburg, Renthof 5, 35032 Marburg (Germany)

    2016-02-07

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap, the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.

  13. n-Alkane and clofibrate, a peroxisome proliferator, activate transcription of ALK2 gene encoding cytochrome P450alk2 through distinct cis-acting promoter elements in Candida maltosa

    International Nuclear Information System (INIS)

    Kogure, Takahisa; Takagi, Masamichi; Ohta, Akinori

    2005-01-01

    The ALK2 gene, encoding one of the n-alkane-hydroxylating cytochromes P450 in Candida maltosa, is induced by n-alkanes and a peroxisome proliferator, clofibrate. Deletion analysis of this gene's promoter revealed two cis-acting elements-an n-alkane-responsive element (ARE2) and a clofibrate-responsive element (CRE2)-that partly overlap in sequence but have distinct functions. ARE2-mediated activation responded to n-alkanes but not to clofibrate and was repressed by glucose. CRE2-mediated activation responded to polyunsaturated fatty acids and steroid hormones as well as to peroxisome proliferators but not to n-alkanes, and it was not repressed by glucose. Both elements mediated activation by oleic acid. Mutational analysis demonstrated that three CCG sequences in CRE2 were critical to the activation by clofibrate as well as to the in vitro binding of a specific protein to this element. These findings suggest that ALK2 is induced by peroxisome proliferators and steroid hormones through a specific CRE2-mediated regulatory mechanism

  14. Prediction of the Flash Point of Binary and Ternary Straight-Chain Alkane Mixtures

    Directory of Open Access Journals (Sweden)

    X. Li

    2014-01-01

    Full Text Available The flash point is an important physical property used to estimate the fire hazard of a flammable liquid. To avoid the occurrence of fire or explosion, many models are used to predict the flash point; however, these models are complex, and the calculation process is cumbersome. For pure flammable substances, the research for predicting the flash point is systematic and comprehensive. For multicomponent mixtures, especially a hydrocarbon mixture, the current research is insufficient to predict the flash point. In this study, a model was developed to predict the flash point of straight-chain alkane mixtures using a simple calculation process. The pressure, activity coefficient, and other associated physicochemical parameters are not required for the calculation in the proposed model. A series of flash points of binary and ternary mixtures of straight-chain alkanes were determined. The results of the model present consistent experimental results with an average absolute deviation for the binary mixtures of 0.7% or lower and an average absolute deviation for the ternary mixtures of 1.03% or lower.

  15. Re-evaluating the isotopic divide between angiosperms and gymnosperms using n-alkane δ13C values

    Science.gov (United States)

    Bush, R. T.; McInerney, F. A.

    2009-12-01

    Angiosperm δ13C values are typically 1-3‰ more negative than those of co-occurring gymnosperms. This is known for both bulk leaf and compound-specific values from n-alkanes, which are stable, straight-chain hydrocarbons (C23-C35) found in the epicuticular leaf wax of vascular plants. For n-alkanes, there is a second distinction between the δ13C values of angiosperms and gymnosperms—δ13C values generally decrease with increasing chain-length in angiosperms, while in gymnosperms they increase. These two distinctions have been used to support the ‘plant community change hypothesis’ explaining the difference between the terrestrial and marine carbon isotope excursions during the Paleocene-Eocene Thermal Maximum (PETM.) Preserved n-alkanes from terrestrial paleosols in the Bighorn Basin, Wyoming reveal a negative carbon isotope excursion during the PETM of 4-5‰, which is 1-2‰ greater than the excursion recorded by marine carbonates. The local plant community, known from macrofossils as well as palynoflora, shifted from a deciduous, mixed angiosperm/gymnosperm flora to a suite of evergreen angiosperm species during the PETM. At the end of the PETM, the community returned to a mixed deciduous flora very similar to the original. This change in the plant community could thus magnify the terrestrial negative carbon isotope excursion to the degree necessary to explain its divergence from the marine record. However, the comparison between modern angiosperms and gymnosperms has been made mostly between broadleaf, deciduous angiosperms and evergreen, coniferous gymnosperms. New data analyzing deciduous, coniferous gymnosperms, including Metasequoia glyptostroboides and Taxodium distichum, suggests that the division previously ascribed to taxonomy may actually be based on leaf habit and physiology, specifically broadleaf, deciduous versus needle-leaf, evergreen plants. If differences in n-alkane δ13C values can be described not as angiosperms versus gymnosperms

  16. Critical wetting of n-alkanes on water; Mouillage critique des alcanes sur l`eau

    Energy Technology Data Exchange (ETDEWEB)

    Ragil, K

    1996-10-18

    This study concerns the wetting properties of n-alkanes on water under thermodynamic equilibrium conditions, a problem that is interesting for the petroleum industry as well as for the fundamental understanding of wetting phenomena. An experimental study using ellipsometry reveals that pentane on water undergoes a continuous or critical wetting transition at a temperature equal to 53.1 deg. C. This is the first experimental observation of such a transition, confirming theoretical predictions made on this subject over ten years. This transition is characterized by a continuous and reversible evolution of the thickness of the film of pentane with temperature from a thick (but finite film) to a macroscopic film. The critical wetting transition occurs when the Hamaker constant of the system, which gives the net interaction between the two interfaces bounding the wetting layer of pentane in terms of the van der Waals forces, changes sign. A theoretical approach based on the Cahn-Landau theory, which takes into account long range forces (van der Waals forces), enables us to explain the mechanism of the critical wetting transition and to show that a first-order wetting transition should precede it. Because of their similar dispersive properties, linear alkanes could all be able to show such a succession of transitions. An ellipsometry study performed on a brine/hexane/vapor system confirms that a discontinuous transition from a thin microscopic film to a thick but finite adsorbed film takes place. THis study demonstrates that the wetting of alkanes on water is determined by subtle interplay between short range and long range forces, which can lead to an intermediary state between partial and complete wetting. (author)

  17. Thermodynamic study of alkane-α,ω-diamines - evidence of odd-even pattern of sublimation properties

    Czech Academy of Sciences Publication Activity Database

    Fulem, Michal; Růžička, K.; Červinka, C.; Bazyleva, A.; Della Gatta, G.

    2014-01-01

    Roč. 371, Jun (2014), s. 93-105 ISSN 0378-3812 Institutional support: RVO:68378271 Keywords : alkane-diamines * odd–even effect * vapor pressure * sublimation and vaporization thermodynamic properties * statistical thermodynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.200, year: 2014

  18. Chemical Exchange Saturation Transfer (CEST): what is in a name and what isn’t?

    Science.gov (United States)

    van Zijl, Peter C.M.; Yadav, Nirbhay N.

    2011-01-01

    Chemical exchange saturation transfer (CEST) imaging is a relatively new MRI contrast approach in which exogenous or endogenous compounds containing either exchangeable protons or exchangeable molecules are selectively saturated and, after transfer of this saturation, detected indirectly through the water signal with enhanced sensitivity. The focus of this review is on basic MR principles underlying CEST and similarities to and differences with conventional magnetization transfer contrast (MTC). In CEST MRI, transfer of magnetization is studied in mobile compounds instead of semisolids. Similar to MTC, CEST has contributions of both chemical exchange and dipolar cross-relaxation, but the latter can often be neglected if exchange is fast. Contrary to MTC, CEST imaging requires sufficiently slow exchange on the MR time scale to allow selective irradiation of the protons of interest. As a consequence, magnetic labeling is not limited to radio-frequency saturation but can be expanded with slower frequency-selective approaches such as inversion, gradient dephasing and frequency labeling. The basic theory, design criteria, and experimental issues for exchange transfer imaging are discussed. A new classification for CEST agents based on exchange type is proposed. The potential of this young field is discussed, especially with respect to in vivo application and translation to humans. PMID:21337419

  19. Oxidative addition of C--H bonds in organic molecules to transition metal centers

    International Nuclear Information System (INIS)

    Bergman, R.G.

    1989-04-01

    Alkanes are among the most chemically inert organic molecules. They are reactive toward a limited range of reagents, such as highly energetic free radicals and strongly electrophilic and oxidizing species. This low reactivity is a consequence of the C--H bond energies in most saturated hydrocarbons. These values range from 90 to 98 kcal/mole for primary and secondary C--H bonds; in methane, the main constituent of natural gas, the C--H bond energy is 104 kcal/mole. This makes methane one of the most common but least reactive organic molecules in nature. This report briefly discusses the search for metal complexes capable of undergoing the C--H oxidative addition process allowing alkane chemistry to be more selective than that available using free radical reagents. 14 refs

  20. Predictions of homogeneous nucleation rates for n-alkanes accounting for the diffuse phase interface and capillary waves.

    Science.gov (United States)

    Planková, Barbora; Vinš, Václav; Hrubý, Jan

    2017-10-28

    Homogeneous droplet nucleation has been studied for almost a century but has not yet been fully understood. In this work, we used the density gradient theory (DGT) and considered the influence of capillary waves (CWs) on the predicted size-dependent surface tensions and nucleation rates for selected n-alkanes. The DGT model was completed by an equation of state (EoS) based on the perturbed-chain statistical associating fluid theory and compared to the classical nucleation theory and the Peng-Robinson EoS. It was found that the critical clusters are practically free of CWs because they are so small that even the smallest wavelengths of CWs do not fit into their finite dimensions. The CWs contribute to the entropy of the system and thus decrease the surface tension. A correction for the effect of CWs on the surface tension is presented. The effect of the different EoSs is relatively small because by a fortuitous coincidence their predictions are similar in the relevant range of critical cluster sizes. The difference of the DGT predictions to the classical nucleation theory computations is important but not decisive. Of the effects investigated, the most pronounced is the suppression of CWs which causes a sizable decrease of the predicted nucleation rates. The major difference between experimental nucleation rate data and theoretical predictions remains in the temperature dependence. For normal alkanes, this discrepancy is much stronger than observed, e.g., for water. Theoretical corrections developed here have a minor influence on the temperature dependency. We provide empirical equations correcting the predicted nucleation rates to values comparable with experiments.

  1. Predictions of homogeneous nucleation rates for n-alkanes accounting for the diffuse phase interface and capillary waves

    Science.gov (United States)

    Planková, Barbora; Vinš, Václav; Hrubý, Jan

    2017-10-01

    Homogeneous droplet nucleation has been studied for almost a century but has not yet been fully understood. In this work, we used the density gradient theory (DGT) and considered the influence of capillary waves (CWs) on the predicted size-dependent surface tensions and nucleation rates for selected n-alkanes. The DGT model was completed by an equation of state (EoS) based on the perturbed-chain statistical associating fluid theory and compared to the classical nucleation theory and the Peng-Robinson EoS. It was found that the critical clusters are practically free of CWs because they are so small that even the smallest wavelengths of CWs do not fit into their finite dimensions. The CWs contribute to the entropy of the system and thus decrease the surface tension. A correction for the effect of CWs on the surface tension is presented. The effect of the different EoSs is relatively small because by a fortuitous coincidence their predictions are similar in the relevant range of critical cluster sizes. The difference of the DGT predictions to the classical nucleation theory computations is important but not decisive. Of the effects investigated, the most pronounced is the suppression of CWs which causes a sizable decrease of the predicted nucleation rates. The major difference between experimental nucleation rate data and theoretical predictions remains in the temperature dependence. For normal alkanes, this discrepancy is much stronger than observed, e.g., for water. Theoretical corrections developed here have a minor influence on the temperature dependency. We provide empirical equations correcting the predicted nucleation rates to values comparable with experiments.

  2. The ORF slr0091 of Synechocystis sp. PCC6803 encodes a high-light induced aldehyde dehydrogenase converting apocarotenals and alkanals

    KAUST Repository

    Trautmann, Danika

    2013-07-05

    Oxidative cleavage of carotenoids and peroxidation of lipids lead to apocarotenals and aliphatic aldehydes called alkanals, which react with vitally important compounds, promoting cytotoxicity. Although many enzymes have been reported to deactivate alkanals by converting them into fatty acids, little is known about the mechanisms used to detoxify apocarotenals or the enzymes acting on them. Cyanobacteria and other photosynthetic organisms must cope with both classes of aldehydes. Here we report that the Synechocystis enzyme SynAlh1, encoded by the ORF slr0091, is an aldehyde dehydrogenase that mediates oxidation of both apocarotenals and alkanals into the corresponding acids. Using a crude lysate of SynAlh1-expressing Escherichia coli cells, we show that SynAlh1 converts a wide range of apocarotenals and alkanals, with a preference for apocarotenals with defined chain lengths. As suggested by in vitro incubations and using engineered retinal-forming E. coli cells, we found that retinal is not a substrate for SynAlh1, making involvement in Synechocystis retinoid metabolism unlikely. The transcript level of SynAlh1 is induced by high light and cold treatment, indicating a role in the stress response, and the corresponding gene is a constituent of a stress-related operon. The assumptions regarding the function of SynAlh are further supported by the surprisingly high homology to human and plant aldehyde dehydrogenase that have been assigned to aldehyde detoxification. SynAlh1 is the first aldehyde dehydrogenase that has been shown to form both apocarotenoic and fatty acids. This dual function suggests that its eukaryotic homologs may also be involved in apocarotenal metabolism, a function that has not been considered so far. Aldehyde dehydrogenases play an important role in detoxification of reactive aldehydes. Here, we report on a cyanbacterial enzyme capable in converting two classes of lipid-derived aldehydes, apocaotenals and alkanals. The corresponding gene is a

  3. Ignition of alkane-rich FACE gasoline fuels and their surrogate mixtures

    KAUST Repository

    Sarathy, Mani

    2015-01-01

    Petroleum derived gasoline is the most used transportation fuel for light-duty vehicles. In order to better understand gasoline combustion, this study investigated the ignition propensity of two alkane-rich FACE (Fuels for Advanced Combustion Engines) gasoline test fuels and their corresponding PRF (primary reference fuel) blend in fundamental combustion experiments. Shock tube ignition delay times were measured in two separate facilities at pressures of 10, 20, and 40 bar, temperatures from 715 to 1500 K, and two equivalence ratios. Rapid compression machine ignition delay times were measured for fuel/air mixtures at pressures of 20 and 40 bar, temperatures from 632 to 745 K, and two equivalence ratios. Detailed hydrocarbon analysis was also performed on the FACE gasoline fuels, and the results were used to formulate multi-component gasoline surrogate mixtures. Detailed chemical kinetic modeling results are presented herein to provide insights into the relevance of utilizing PRF and multi-component surrogate mixtures to reproduce the ignition behavior of the alkane-rich FACE gasoline fuels. The two FACE gasoline fuels and their corresponding PRF mixture displayed similar ignition behavior at intermediate and high temperatures, but differences were observed at low temperatures. These trends were mimicked by corresponding surrogate mixture models, except for the amount of heat release in the first stage of a two-stage ignition events, when observed. © 2014 The Combustion Institute.

  4. Distribution and origins of n-alkanes, hopanes, and steranes in rivers and marine sediments from Southwest Caspian coast, Iran: implications for identifying petroleum hydrocarbon inputs.

    Science.gov (United States)

    Shirneshan, Golshan; Bakhtiari, Alireza Riyahi; Memariani, Mahmoud

    2016-09-01

    The occurrence of n-alkanes and biomarkers (hopane and sterane) in surface sediments from Southwestern coasts of Caspian Sea and 28 rivers arriving to this lake, determined with a gas chromatography-mass spectrometry method, was used to assess the impacts of anthropogenic activities in the studied area. The concentrations of total n-alkanes (Σ21 n-alkane) in costal and riverine sediments varied from 249.2 to 3899.5 and 56 to 1622.4 μg g(-1), respectively. An evaluation of the source diagnostic indices indicated that petroleum related sources (petrogenic) were mainly contributed to n-alkanes in costal and most riverine sediments. Only the hydrocarbons in sediment of 3 rivers were found to be mainly of biogenic origin. Principal component analysis using hopane diagnostic ratios in costal and riverine sediments, and Anzali, Turkmenistan, and Azerbaijan oils were used to identify the sources of hydrocarbons in sediments. It was indicated that the anthropogenic contributions in most of the costal sediment samples are dominated with inputs of oil spills from Turkmenistan and Azerbaijan countries.

  5. Stabilization of Neutral Systems with Saturating Actuators

    Directory of Open Access Journals (Sweden)

    F. El Haoussi

    2012-01-01

    to determine stabilizing state-feedback controllers with large domain of attraction, expressed as linear matrix inequalities, readily implementable using available numerical tools and with tuning parameters that make possible to select the most adequate solution. These conditions are derived by using a Lyapunov-Krasovskii functional on the vertices of the polytopic description of the actuator saturations. Numerical examples demonstrate the effectiveness of the proposed technique.

  6. Gluon saturation in a saturated environment

    International Nuclear Information System (INIS)

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2011-01-01

    A bootstrap equation for self-quenched gluon shadowing leads to a reduced magnitude of broadening for partons propagating through a nucleus. Saturation of small-x gluons in a nucleus, which has the form of transverse momentum broadening of projectile gluons in pA collisions in the nuclear rest frame, leads to a modification of the parton distribution functions in the beam compared with pp collisions. In nucleus-nucleus collisions all participating nucleons acquire enhanced gluon density at small x, which boosts further the saturation scale. Solution of the reciprocity equations for central collisions of two heavy nuclei demonstrate a significant, up to several times, enhancement of Q sA 2 , in AA compared with pA collisions.

  7. A novel growth mode of alkane films on a SiO2 surface

    DEFF Research Database (Denmark)

    Mo, H.; Taub, H.; Volkmann, U.G.

    2003-01-01

    on the SiO2 surface with the long-axis of the C32 molecules oriented parallel to the interface followed by a C32 monolayer with the long-axis perpendicular to it. Finally, preferentially oriented bulk particles nucleate having two different crystal structures. This growth model differs from that found...... previously for shorter alkanes deposited from the vapor phase onto solid surfaces....

  8. Plant Wax n-Alkane and n-Alkanoic Acid Signatures Overprinted by Microbial Contributions and Old Carbon in Meromictic Lake Sediments

    Science.gov (United States)

    Makou, Matthew; Eglinton, Timothy; McIntyre, Cameron; Montluçon, Daniel; Antheaume, Ingrid; Grossi, Vincent

    2018-01-01

    Specific n-alkanes and n-alkanoic acids are commonly used as biomarkers in paleoenvironmental reconstruction, yet any individual homologue may originate from multiple biological sources. Here we improve source and age controls for these compounds in meromictic systems by measuring the radiocarbon (14C) ages of specific homologues preserved in twentieth century Lake Pavin (France) sediments. In contrast to many studies, 14C ages generally decreased with increasing carbon chain length, from 7.3 to 2.6 ka for the C14-C30 n-alkanoic acids and from 9.2 to 0.3 ka for the C21-C33 n-alkanes. Given a known hard water effect, these values suggest that aquatic microbial sources predominate and contributed to most of the homologues measured. Only the longest chain n-alkanes exclusively represent inputs of higher plant waxes, which were previously sequestered in soils over centennial to millennial timescales prior to transport and deposition. These findings suggest that biomarker source and age should be carefully established for lacustrine settings.

  9. Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains

    International Nuclear Information System (INIS)

    Yousaf, Sohail; Afzal, Muhammad; Reichenauer, Thomas G.; Brady, Carrie L.; Sessitsch, Angela

    2011-01-01

    The genus Enterobacter comprises a range of beneficial plant-associated bacteria showing plant growth promotion. Enterobacter ludwigii belongs to the Enterobacter cloacae complex and has been reported to include human pathogens but also plant-associated strains with plant beneficial capacities. To assess the role of Enterobacter endophytes in hydrocarbon degradation, plant colonization, abundance and expression of CYP153 genes in different plant compartments, three plant species (Italian ryegrass, birdsfoot trefoil and alfalfa) were grown in sterile soil spiked with 1% diesel and inoculated with three endophytic E. ludwigii strains. Results showed that all strains were capable of hydrocarbon degradation and efficiently colonized the rhizosphere and plant interior. Two strains, ISI10-3 and BRI10-9, showed highest degradation rates of diesel fuel up to 68% and performed best in combination with Italian ryegrass and alfalfa. All strains expressed the CYP153 gene in all plant compartments, indicating an active role in degradation of diesel in association with plants. - Highlights: → E. ludwigii strains efficiently colonized plants in a non-sterile soil environment. → E. ludwigii strains efficiently expressed alkane degradation genes in plants. → E. ludwigii efficiently degraded alkane contaminations and promoted plant growth. → E. ludwigii interacted more effectively with Italian ryegrass than with other plants. → Degradation activity varied with plant and microbial genotype as well as with time. - Enterobacter ludwigii strains belonging to the E. cloacae complex are able to efficiently degrade alkanes when associated with plants and to promote plant growth.

  10. Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains

    Energy Technology Data Exchange (ETDEWEB)

    Yousaf, Sohail [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria); Afzal, Muhammad [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria); National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad (Pakistan); Reichenauer, Thomas G. [AIT Austrian Institute of Technology GmbH, Environmental Resources and Technologies Unit, A-2444 Seibersdorf (Austria); Brady, Carrie L. [Forestry and Agricultural Biotechnology Institute, Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria (South Africa); Sessitsch, Angela, E-mail: angela.sessitsch@ait.ac.at [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria)

    2011-10-15

    The genus Enterobacter comprises a range of beneficial plant-associated bacteria showing plant growth promotion. Enterobacter ludwigii belongs to the Enterobacter cloacae complex and has been reported to include human pathogens but also plant-associated strains with plant beneficial capacities. To assess the role of Enterobacter endophytes in hydrocarbon degradation, plant colonization, abundance and expression of CYP153 genes in different plant compartments, three plant species (Italian ryegrass, birdsfoot trefoil and alfalfa) were grown in sterile soil spiked with 1% diesel and inoculated with three endophytic E. ludwigii strains. Results showed that all strains were capable of hydrocarbon degradation and efficiently colonized the rhizosphere and plant interior. Two strains, ISI10-3 and BRI10-9, showed highest degradation rates of diesel fuel up to 68% and performed best in combination with Italian ryegrass and alfalfa. All strains expressed the CYP153 gene in all plant compartments, indicating an active role in degradation of diesel in association with plants. - Highlights: > E. ludwigii strains efficiently colonized plants in a non-sterile soil environment. > E. ludwigii strains efficiently expressed alkane degradation genes in plants. > E. ludwigii efficiently degraded alkane contaminations and promoted plant growth. > E. ludwigii interacted more effectively with Italian ryegrass than with other plants. > Degradation activity varied with plant and microbial genotype as well as with time. - Enterobacter ludwigii strains belonging to the E. cloacae complex are able to efficiently degrade alkanes when associated with plants and to promote plant growth.

  11. Kinetics and mechanistic study of n-alkane hydroisomerization reaction on Pt-doped γ-alumina catalyst

    Directory of Open Access Journals (Sweden)

    Abhishek Dhar

    2017-12-01

    Full Text Available The catalysts γ-alumina (GA, the reference catalyst and Pt doped γ-alumina (PGA-s were synthesized using a simple sol-gel technique, in which at first preparation of porous base (GA, then impregnation of platinum salt over the base and finally reduction of platinum in the surface of the support were done. These catalysts prepared in different mole ratios of Pt:Al as 2:1, 1:1 and 1:2 are named as PGA-1, PGA-2 and PGA-3 respectively. The isomerization of n-alkanes (n-hexane, n-heptane and n-octane were investigated over the synthesized catalysts. The 2-methyl pentane (2-MP, 2,2-dimethyl pentane (2,2-DMP and 2,3-dimethyl hexane (2,3-DMH are the major products of respective isomerization of n-hexane, n-heptane and n-octane, besides a small amount of other branched isomers are also produced. The product distribution is comparable to that reported for Pt based other catalysts. The optimal mole ratios of Pt:Al is 1:1 (PGA-2 gives quite good catalytic activity for isomerization of n-alkane. Even through in reusability study, PGA-2 gives better performance than others. We have mainly focused on kinetic study, reaction mechanism behind isomerization and calculated the order of reactions and activation energies of the isomerization reactions in the present work. Keywords: Isomerization, n-alkanes, Catalyst, Reaction mechanism, Kinetics study, Activation energy

  12. Lipid order, saturation and surface property relationships: a study of human meibum saturation.

    Science.gov (United States)

    Mudgil, Poonam; Borchman, Douglas; Yappert, Marta C; Duran, Diana; Cox, Gregory W; Smith, Ryan J; Bhola, Rahul; Dennis, Gary R; Whitehall, John S

    2013-11-01

    Tear film stability decreases with age however the cause(s) of the instability are speculative. Perhaps the more saturated meibum from infants may contribute to tear film stability. The meibum lipid phase transition temperature and lipid hydrocarbon chain order at physiological temperature (33 °C) decrease with increasing age. It is reasonable that stronger lipid-lipid interactions could stabilize the tear film since these interactions must be broken for tear break up to occur. In this study, meibum from a pool of adult donors was saturated catalytically. The influence of saturation on meibum hydrocarbon chain order was determined by infrared spectroscopy. Meibum is in an anhydrous state in the meibomian glands and on the surface of the eyelid. The influence of saturation on the surface properties of meibum was determined using Langmuir trough technology. Saturation of native human meibum did not change the minimum or maximum values of hydrocarbon chain order so at temperatures far above or below the phase transition of human meibum, saturation does not play a role in ordering or disordering the lipid hydrocarbon chains. Saturation did increase the phase transition temperature in human meibum by over 20 °C, a relatively high amount. Surface pressure-area studies showing the late take off and higher maximum surface pressure of saturated meibum compared to native meibum suggest that the saturated meibum film is quite molecularly ordered (stiff molecular arrangement) and elastic (molecules are able to rearrange during compression and expansion) compared with native meibum films which are more fluid agreeing with the infrared spectroscopic results of this study. In saturated meibum, the formation of compacted ordered islands of lipids above the surfactant layer would be expected to decrease the rate of evaporation compared to fluid and more loosely packed native meibum. Higher surface pressure observed with films of saturated meibum compared to native meibum

  13. Degradation of Hydrocarbons by Members of the Genus Candida II. Oxidation of n-Alkanes and 1-Alkenes by Candida lipolytica

    Science.gov (United States)

    Klug, M. J.; Markovetz, A. J.

    1967-01-01

    Candida lipolytica ATCC 8661 was grown in a mineral-salts hydrocarbon medium. n-Alkanes and 1-alkenes with 14 through 18 carbon atoms were used as substrates. Ether extracts of culture fluids and cells obtained from cultures grown on the various substrates were analyzed by thin-layer and gas-liquid chromatography. Analyses of fluids from cultures grown on n-alkanes indicated a predominance of fatty acids and alcohols of the same chain length as the substrate. In addition, numerous other fatty acids and alcohols were present. Analyses of saponifiable and nonsaponifiable material obtained from the cells revealed essentially the same products. The presence of primary and secondary alcohols, as well as fatty acids, of the same chain length as the n-alkane substrate suggested that attack on both the methyl and α-methylene group was occurring. The significance of these two mechanisms in the degradation of n-alkanes by this organism was not evident from the data presented. Analyses of fluids from cultures grown on 1-alkenes indicated the presence of 1,2-diols, as well as ω-unsaturated fatty acids, of the same chain length as the substrate. Alcohols present were all unsaturated. Saponifiable and nonsaponifiable material obtained from cells contained essentially the same products. The presence of 1,2-diols and ω-unsaturated fatty acids of the same chain length as the substrate from cultures grown on 1-alkenes indicated that both the terminal methyl group and the terminal double bond were being attacked. PMID:6025303

  14. Determination of saturation functions and wettability for chalk based on measured fluid saturations

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, D.; Bech, N.; Moeller Nielsen, C.

    1998-08-01

    The end effect of displacement experiments on low permeable porous media is used for determination of relative permeability functions and capillary pressure functions. Saturation functions for a drainage process are determined from a primary drainage experiment. A reversal of the flooding direction creates an intrinsic imbibition process in the sample, which enables determination if imbibition saturation functions. The saturation functions are determined by a parameter estimation technique. Scanning effects are modelled by the method of Killough. Saturation profiles are determined by NMR. (au)

  15. Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil

    International Nuclear Information System (INIS)

    Andria, Verania; Reichenauer, Thomas G.; Sessitsch, Angela

    2009-01-01

    For phytoremediation of organic contaminants, plants have to host an efficiently degrading microflora. To assess the role of endophytes in alkane degradation, Italian ryegrass was grown in sterile soil with 0, 1 or 2% diesel and inoculated either with an alkane degrading bacterial strain originally derived from the rhizosphere of Italian ryegrass or with an endophyte. We studied plant colonization of these strains as well as the abundance and expression of alkane monooxygenase (alkB) genes in the rhizosphere, shoot and root interior. Results showed that the endophyte strain better colonized the plant, particularly the plant interior, and also showed higher expression of alkB genes suggesting a more efficient degradation of the pollutant. Furthermore, plants inoculated with the endophyte were better able to grow in the presence of diesel. The rhizosphere strain colonized primarily the rhizosphere and showed low alkB gene expression in the plant interior. - Bacterial alkane degradation genes are expressed in the rhizosphere and in the plant interior.

  16. Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Andria, Verania [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria); Reichenauer, Thomas G. [AIT Austrian Institute of Technology GmbH, Unit of Environmental Resources and Technologies, A-2444 Seibersdorf (Austria); Sessitsch, Angela, E-mail: angela.sessitsch@ait.ac.a [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria)

    2009-12-15

    For phytoremediation of organic contaminants, plants have to host an efficiently degrading microflora. To assess the role of endophytes in alkane degradation, Italian ryegrass was grown in sterile soil with 0, 1 or 2% diesel and inoculated either with an alkane degrading bacterial strain originally derived from the rhizosphere of Italian ryegrass or with an endophyte. We studied plant colonization of these strains as well as the abundance and expression of alkane monooxygenase (alkB) genes in the rhizosphere, shoot and root interior. Results showed that the endophyte strain better colonized the plant, particularly the plant interior, and also showed higher expression of alkB genes suggesting a more efficient degradation of the pollutant. Furthermore, plants inoculated with the endophyte were better able to grow in the presence of diesel. The rhizosphere strain colonized primarily the rhizosphere and showed low alkB gene expression in the plant interior. - Bacterial alkane degradation genes are expressed in the rhizosphere and in the plant interior.

  17. Molecular dynamics simulations of melting behavior of alkane as phase change materials slurry

    International Nuclear Information System (INIS)

    Rao Zhonghao; Wang Shuangfeng; Wu Maochun; Zhang Yanlai; Li Fuhuo

    2012-01-01

    Highlights: ► The melting behavior of phase change materials slurry was investigated by molecular dynamics simulation method. ► Four different PCM slurry systems including pure water and water/n-nonadecane composite were constructed. ► Amorphous structure and periodic boundary conditions were used in the molecular dynamics simulations. ► The simulated melting temperatures are very close to the published experimental values. - Abstract: The alkane based phase change materials slurry, with high latent heat storage capacity, is effective to enhance the heat transfer rate of traditional fluid. In this paper, the melting behavior of composite phase change materials slurry which consists of n-nonadecane and water was investigated by using molecular dynamics simulation. Four different systems including pure water and water/n-nonadecane composite were constructed with amorphous structure and periodic boundary conditions. The results showed that the simulated density and melting temperature were very close to the published experimental values. Mixing the n-nonadecane into water decreased the mobility but increased the energy storage capacity of composite systems. To describe the melting behavior of alkane based phase change materials slurry on molecular or atomic scale, molecular dynamics simulation is an effective method.

  18. Polycyclic aromatic hydrocarbons (PAHs) and n-Alkanes in beaked sea snake Enhydrina schistose (Daudin, 1803) from the Mandovi Estuary, Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Mote, S.; RanjeetKumar; Naik, B.G.; Ingole, B.S.

    , occur in high abundances (Voris H K 1985; Aaron Lobo et al. 2004) Present study demonstrates the tissue specific distribution of 15 EPA priority PAHs and 27 n-alkanes compounds in two individuals of E. schistose. We used GC-MS for analysis, which... in 20 ml dichloromethane/hexane (1:3 v/v) with surrogate internal standard (SIS) 20 ppm-200μl Tetracosane-d50 for alkane, 5ppm-200μl Chrysene-d12 for PAHs were spiked and transferred to 5% H2O deactivated silica gel column (1 cm i.dx 9 cm). Elution...

  19. Comparative tests on the biodegradation of secondary alkane sulphonate, using 14C-labelled preparations

    International Nuclear Information System (INIS)

    Loetzsch, K.; Neufahrt, A.; Taeuber, G.

    1979-01-01

    The biodegradability of 14 C-labelled and unlabelled secondary alkane sulphonates (SAS) and an unlabelled alkyl benzene sulphonate as well as ar ring-labelled sodium-4-(dodecyl-(4'))-benzene sulphonate (LAS) was tested over a period of 12 days with slight germ introduction under aerobic conditions (Hach apparatus). In the 'one-pot method' (simultaneous determination of MBAS, DOC and BSB) with the unlabelled A-surfactants, it was shown that biodegradation of both substances started at different speeds and is almost finished after 15 days in the case of SAS and after 30 days in the case of LAS. The tests with radioactively labelled secondary alkane sulphonate showed that the greater part of the surfactant carbon is quickly degraded to CO 2 . It therefore behaves like uniformly labelled stearate or like a stearyl alcohol ethoxylate uniformly labelled in the alkyl chain. Both were included in the tests as reference substances. The dissimilation processes of the ring-labelled linear alkyl benzene sulphonate are delayed. Here, CO 2 formation started only after a few days. (orig.) [de

  20. Enhanced CAH dechlorination in a low permeability, variably-saturated medium

    Science.gov (United States)

    Martin, J.P.; Sorenson, K.S.; Peterson, L.N.; Brennan, R.A.; Werth, C.J.; Sanford, R.A.; Bures, G.H.; Taylor, C.J.; ,

    2002-01-01

    An innovative pilot-scale field test was performed to enhance the anaerobic reductive dechlorination (ARD) of chlorinated aliphatic hydrocarbons (CAHs) in a low permeability, variably-saturated formation. The selected technology combines the use of a hydraulic fracturing (fracking) technique with enhanced bioremediation through the creation of highly-permeable sand- and electron donor-filled fractures in the low permeability matrix. Chitin was selected as the electron donor because of its unique properties as a polymeric organic material and based on the results of lab studies that indicated its ability to support ARD. The distribution and impact of chitin- and sand-filled fractures to the system was evaluated using hydrologic, geophysical, and geochemical parameters. The results indicate that, where distributed, chitin favorably impacted redox conditions and supported enhanced ARD of CAHs. These results indicate that this technology may be a viable and cost-effective approach for remediation of low-permeability, variably saturated systems.

  1. Fat-saturated diffusion-weighted imaging with three-dimensional MP-RAGE sequence

    International Nuclear Information System (INIS)

    Numano, Tomokazu; Homma, Kazuhiro; Takahashi, Nobuyuki; Hirose, Takeshi

    2005-01-01

    Image misrepresentation due to chemical shifts can create image artifacts on MR images. Distinguishing the organization and affected area can be difficult due to the chemical shift artifacts. Chemical shift selective (CHESS) is a method of decreasing chemical shift artifacts. In this study we have developed a new sequence for fat-saturated three-dimensional diffusion weighted MR imaging. This imaging was done during in vivo studies using an animal experiment MR imaging system at 2.0 T. In this sequence a preparation phase with a ''CHESS-90 deg RF-Motion Proving Gradient (MPG-180 deg RF-MPG-90 deg RF pulse train) was used to sensitize the magnetization to fat-saturated diffusion. Centric k-space acquisition order is necessary to minimize saturation effects from tissues with short relaxation times. From experimental results obtained with a phantom, the effect of the diffusion weighting and the effect of the fat-saturation were confirmed. From rat experimental results, fat-saturated diffusion weighted image data (0.55 x 0.55 x 0.55 mm 3 : voxel size) were obtained. This sequence was useful for in vivo imaging. (author)

  2. Top-gated chemical vapor deposition grown graphene transistors with current saturation.

    Science.gov (United States)

    Bai, Jingwei; Liao, Lei; Zhou, Hailong; Cheng, Rui; Liu, Lixin; Huang, Yu; Duan, Xiangfeng

    2011-06-08

    Graphene transistors are of considerable interest for radio frequency (rf) applications. In general, transistors with large transconductance and drain current saturation are desirable for rf performance, which is however nontrivial to achieve in graphene transistors. Here we report high-performance top-gated graphene transistors based on chemical vapor deposition (CVD) grown graphene with large transconductance and drain current saturation. The graphene transistors were fabricated with evaporated high dielectric constant material (HfO(2)) as the top-gate dielectrics. Length scaling studies of the transistors with channel length from 5.6 μm to 100 nm show that complete current saturation can be achieved in 5.6 μm devices and the saturation characteristics degrade as the channel length shrinks down to the 100-300 nm regime. The drain current saturation was primarily attributed to drain bias induced shift of the Dirac points. With the selective deposition of HfO(2) gate dielectrics, we have further demonstrated a simple scheme to realize a 300 nm channel length graphene transistors with self-aligned source-drain electrodes to achieve the highest transconductance of 250 μS/μm reported in CVD graphene to date.

  3. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. I. Structure

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Flemming Yssing; Diama, A.

    2007-01-01

    their backbone and squalane has, in addition, six methyl side groups. Upon adsorption, there are significant differences as well as similarities in the behavior of these molecular films. Both molecules form ordered structures at low temperatures; however, while the melting point of the two-dimensional (2D......The structure of a monolayer film of the branched alkane squalane (C30H62) adsorbed on graphite has been studied by neutron diffraction and molecular dynamics (MD) simulations and compared with a similar study of the n-alkane tetracosane (n-C24H52). Both molecules have 24 carbon atoms along...... temperature. The neutron diffraction data show that the translational order in the squalane monolayer is significantly less than in the tetracosane monolayer. The authors' MD simulations suggest that this is caused by a distortion of the squalane molecules upon adsorption on the graphite surface. When...

  4. Catalytic conversion of light alkanes. Final report, January 1, 1990--October 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    During the course of the first three years of the Cooperative Agreement (Phase I-III), we uncovered a family of metal perhaloporphyrin complexes which had unprecedented activity for the selective air-oxidation of fight alkanes to alcohols. The reactivity of fight hydrocarbon substrates with air or oxygen was in the order: isobutane>propane>ethane>methane, in accord with their homolytic bond dissociation energies. Isobutane was so reactive that the proof-of concept stage of a process for producing tert-butyl alcohol from isobutane was begun (Phase V). It was proposed that as more active catalytic systems were developed (Phases IV, VI), propane, then ethane and finally methane oxidations will move into this stage (Phases VII through IX). As of this writing, however, the program has been terminated during the later stages of Phases V and VI so that further work is not anticipated. We made excellent progress during 1994 in generating a class of less costly new materials which have the potential for high catalytic activity. New routes were developed for replacing costly perfluorophenyl groups in the meso-position of metalloporphyrin catalysts with far less expensive and lower molecular weight perfluoromethyl groups.

  5. Whole-cell bio-oxidation of n-dodecane using the alkane hydroxylase system of P. putida GPo1 expressed in E. coli

    DEFF Research Database (Denmark)

    Grant, Chris; Woodley, John; Baganz, Frank

    2011-01-01

    , successful n-dodecane oxidation for the production of 1-dodecanol or dodecanoic acid has proven elusive in the past when using alkB-expressing recombinants. This article demonstrates, for the first time in vivo, by using the Escherichia coli GEC137 pGEc47ΔJ strain, that n-dodecane oxidation using this enzyme......The alkane-1-monoxygenase (alkB) complex of Pseudomonas putida GPo1 has been extensively studied in the past and shown to be capable of oxidising aliphatic C5–C12 alkanes to primary alcohols both in the wild-type organism by growth on C5–C12 alkanes as sole carbon source and in vitro. Despite this...... aqueous phase and 200mL of n-dodecane as a second phase. The maximum volumetric rate of combined alcohol and acid production achieved was 1.9g/Lorganic/h (0.35g/Ltotal/h). The maximum specific activity of combined alcohol and acid production was 7-fold lower on n-dodecane (3.5μmol/min/gdcw) than on n...

  6. Carbon and hydrogen isotopic composition of methane and C2+ alkanes in electrical spark discharge: implications for identifying sources of hydrocarbons in terrestrial and extraterrestrial settings.

    Science.gov (United States)

    Telling, Jon; Lacrampe-Couloume, Georges; Sherwood Lollar, Barbara

    2013-05-01

    The low-molecular-weight alkanes--methane, ethane, propane, and butane--are found in a wide range of terrestrial and extraterrestrial settings. The development of robust criteria for distinguishing abiogenic from biogenic alkanes is essential for current investigations of Mars' atmosphere and for future exobiology missions to other planets and moons. Here, we show that alkanes synthesized during gas-phase radical recombination reactions in electrical discharge experiments have values of δ(2)H(methane)>δ(2)H(ethane)>δ(2)H(propane), similar to those of the carbon isotopes. The distribution of hydrogen isotopes in gas-phase radical reactions is likely due to kinetic fractionations either (i) from the preferential incorporation of (1)H into longer-chain alkanes due to the more rapid rate of collisions of the smaller (1)H-containing molecules or (ii) by secondary ion effects. Similar δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns may be expected in a range of extraterrestrial environments where gas-phase radical reactions dominate, including interstellar space, the atmosphere and liquid hydrocarbon lakes of Saturn's moon Titan, and the outer atmospheres of Jupiter, Saturn, Neptune, and Uranus. Radical recombination reactions at high temperatures and pressures may provide an explanation for the combined reversed δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns of terrestrial alkanes documented at a number of high-temperature/pressure crustal sites.

  7. Updated European Union Risk Assessment Report of Alkanes, C10-13, Chloro

    OpenAIRE

    2008-01-01

    A risk assessment of alkanes, C10-13, chloro (short-chain chlorinated paraffins or SCCPs) produced in accordance with Council Regulation (EEC) 793/93 was published in October 1999 . Subsequent marketing and use restrictions for two uses (metal working and use for fat liquoring of leather) have come into force in the European Union through Directive 2002/45/EC . This Directive also states that all remaining uses of short-chain chlorinated paraffins will be reviewed by the European Commission ...

  8. Mechanics of non-saturated soils

    International Nuclear Information System (INIS)

    Coussy, O.; Fleureau, J.M.

    2002-01-01

    This book presents the different ways to approach the mechanics of non saturated soils, from the physico-chemical aspect to the mechanical aspect, from the experiment to the theoretical modeling, from the laboratory to the workmanship, and from the microscopic scale to the macroscopic one. Content: water and its representation; experimental bases of the behaviour of non-saturated soils; transfer laws in non-saturated environment; energy approach of the behaviour of non-saturated soils; homogenization for the non-saturated soils; plasticity and hysteresis; dams and backfilling; elaborated barriers. (J.S.)

  9. MPN- and Real-Time-Based PCR Methods for the Quantification of Alkane Monooxygenase Homologous Genes (alkB) in Environmental Samples

    Science.gov (United States)

    Pérez-de-Mora, Alfredo; Schulz, Stephan; Schloter, Michael

    Hydrocarbons are major contaminants of soil ecosystems as a result of uncontrolled oil spills and wastes disposal into the environment. Ecological risk assessment and remediation of affected sites is often constrained due to lack of suitable prognostic and diagnostic tools that provide information of abiotic-biotic interactions occurring between contaminants and biological targets. Therefore, the identification and quantification of genes involved in the degradation of hydrocarbons may play a crucial role for evaluating the natural attenuation potential of contaminated sites and the development of successful bioremediation strategies. Besides other gene clusters, the alk operon has been identified as a major player for alkane degradation in different soils. An oxygenase gene (alkB) codes for the initial step of the degradation of aliphatic alkanes under aerobic conditions. In this work, we present an MPN- and a real-time PCR method for the quantification of the bacterial gene alkB (coding for rubredoxin-dependent alkane monooxygenase) in environmental samples. Both approaches enable a rapid culture-independent screening of the alkB gene in the environment, which can be used to assess the intrinsic natural attenuation potential of a site or to follow up the on-going progress of bioremediation assays.

  10. Selecting a Regression Saturated by Indicators

    DEFF Research Database (Denmark)

    Hendry, David F.; Johansen, Søren; Santos, Carlos

    We consider selecting a regression model, using a variant of Gets, when there are more variables than observations, in the special case that the variables are impulse dummies (indicators) for every observation. We show that the setting is unproblematic if tackled appropriately, and obtain the fin...... the finite-sample distribution of estimators of the mean and variance in a simple location-scale model under the null that no impulses matter. A Monte Carlo simulation confirms the null distribution, and shows power against an alternative of interest....

  11. Selecting a Regression Saturated by Indicators

    DEFF Research Database (Denmark)

    Hendry, David F.; Johansen, Søren; Santos, Carlos

    We consider selecting a regression model, using a variant of Gets, when there are more variables than observations, in the special case that the variables are impulse dummies (indicators) for every observation. We show that the setting is unproblematic if tackled appropriately, and obtain the fin...... the finite-sample distribution of estimators of the mean and variance in a simple location-scale model under the null that no impulses matter. A Monte Carlo simulation confirms the null distribution, and shows power against an alternative of interest...

  12. Comparison of quantification methods for the analysis of polychlorinated alkanes using electron capture negative ionization mass spectrometry.

    NARCIS (Netherlands)

    Rusina, T.; Korytar, P.; de Boer, J.

    2011-01-01

    Four quantification methods for short-chain chlorinated paraffins (SCCPs) or polychlorinated alkanes (PCAs) using gas chromatography electron capture negative ionisation low resolution mass spectrometry (GC-ECNI-LRMS) were investigated. The method based on visual comparison of congener group

  13. Comparison of quantification methods for the analysis of polychlorinated alkanes using electron capture negative ionisation mass spectrometry

    NARCIS (Netherlands)

    Rusina, T.; Korytar, P.; Boer, de J.

    2011-01-01

    Four quantification methods for short-chain chlorinated paraffins (SCCPs) or polychlorinated alkanes (PCAs) using gas chromatography electron capture negative ionisation low resolution mass spectrometry (GC-ECNI-LRMS) were investigated. The method based on visual comparison of congener group

  14. Even-odd alternation of the formation of dimer isomers in irradiated polycrystalline alkanes: evidence from product analysis

    International Nuclear Information System (INIS)

    Baudson, T.; Tilquin, B.

    1984-01-01

    Recent ESR studies on n-alkanes from n-C 11 to n-C 25 have shown that a prominent chain end (-CH 2 -CH 2 ) alkyl radical is formed in odd members of the series. In this preliminary discussion of our study, we shall report the capillary chromatogram in the dimer isomers range for n-alkanes ranging from n-C 11 to n-C 17 irradiated at 80 kGy. Dimer isomers, produced in part by the combination of chain end radicals, are eluted at the end chromatogram. The combination of two chain end radicals gives the dimer (D 11 ) isomer eluted at the last place. It is shown that dimers produced by the combination of chain end alkyl radicals are more important for the odd members of the series than for the even members. (author)

  15. Transfer Rate Edited experiment for the selective detection of Chemical Exchange via Saturation Transfer (TRE-CEST).

    Science.gov (United States)

    Friedman, Joshua I; Xia, Ding; Regatte, Ravinder R; Jerschow, Alexej

    2015-07-01

    Chemical Exchange Saturation Transfer (CEST) magnetic resonance experiments have become valuable tools in magnetic resonance for the detection of low concentration solutes with far greater sensitivity than direct detection methods. Accurate measures of rates of chemical exchange provided by CEST are of particular interest to biomedical imaging communities where variations in chemical exchange can be related to subtle variations in biomarker concentration, temperature and pH within tissues using MRI. Despite their name, however, traditional CEST methods are not truly selective for chemical exchange and instead detect all forms of magnetization transfer including through-space NOE. This ambiguity crowds CEST spectra and greatly complicates subsequent data analysis. We have developed a Transfer Rate Edited CEST experiment (TRE-CEST) that uses two different types of solute labeling in order to selectively amplify signals of rapidly exchanging proton species while simultaneously suppressing 'slower' NOE-dominated magnetization transfer processes. This approach is demonstrated in the context of both NMR and MRI, where it is used to detect the labile amide protons of proteins undergoing chemical exchange (at rates⩾30s(-1)) while simultaneously eliminating signals originating from slower (∼5s(-1)) NOE-mediated magnetization transfer processes. TRE-CEST greatly expands the utility of CEST experiments in complex systems, and in-vivo, in particular, where it is expected to improve the quantification of chemical exchange and magnetization transfer rates while enabling new forms of imaging contrast. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Transfer Rate Edited experiment for the selective detection of Chemical Exchange via Saturation Transfer (TRE-CEST)

    Science.gov (United States)

    Friedman, Joshua I.; Xia, Ding; Regatte, Ravinder R.; Jerschow, Alexej

    2015-07-01

    Chemical Exchange Saturation Transfer (CEST) magnetic resonance experiments have become valuable tools in magnetic resonance for the detection of low concentration solutes with far greater sensitivity than direct detection methods. Accurate measures of rates of chemical exchange provided by CEST are of particular interest to biomedical imaging communities where variations in chemical exchange can be related to subtle variations in biomarker concentration, temperature and pH within tissues using MRI. Despite their name, however, traditional CEST methods are not truly selective for chemical exchange and instead detect all forms of magnetization transfer including through-space NOE. This ambiguity crowds CEST spectra and greatly complicates subsequent data analysis. We have developed a Transfer Rate Edited CEST experiment (TRE-CEST) that uses two different types of solute labeling in order to selectively amplify signals of rapidly exchanging proton species while simultaneously suppressing 'slower' NOE-dominated magnetization transfer processes. This approach is demonstrated in the context of both NMR and MRI, where it is used to detect the labile amide protons of proteins undergoing chemical exchange (at rates ⩾ 30 s-1) while simultaneously eliminating signals originating from slower (∼5 s-1) NOE-mediated magnetization transfer processes. TRE-CEST greatly expands the utility of CEST experiments in complex systems, and in-vivo, in particular, where it is expected to improve the quantification of chemical exchange and magnetization transfer rates while enabling new forms of imaging contrast.

  17. Mechanism of trans-vinylene groups formation in the radiolysis of polyethylene and n-alkanes

    International Nuclear Information System (INIS)

    Borzov, S.M.; Sukhov, F.F.; Slovokhotova, N.A.

    1984-01-01

    Infrared spectra of polyethylene and some n-alkanes were studied after their irradiation at 20 K with 1-MeV electrons and subsequent heating to 160 K. The mechanism of trans-vinylene groups formation is suggested, which takes into account the decay of excited states of molecules in primary processes and the intra-chain recombination of free radicals in post-irradiation reactions. (author)

  18. Possible room temperature superconductivity in conductors obtained by bringing alkanes into contact with a graphite surface

    Directory of Open Access Journals (Sweden)

    Yasushi Kawashima

    2013-05-01

    Full Text Available Electrical resistances of conductors obtained by bringing alkanes into contact with a graphite surface have been investigated at room temperatures. Ring current in a ring-shaped container into which n-octane-soaked thin graphite flakes were compressed did not decay for 50 days at room temperature. After two HOPG plates were immersed into n-heptane and n-octane at room temperature, changes in resistances of the two samples were measured by four terminal technique. The measurement showed that the resistances of these samples decrease to less than the smallest resistance that can be measured with a high resolution digital voltmeter (0.1μV. The observation of persistent currents in the ring-shaped container suggests that the HOPG plates immersed in n-heptane and n-octane really entered zero-resistance state at room temperature. These results suggest that room temperature superconductor may be obtained by bringing alkanes into contact with a graphite surface.

  19. Growth of n-alkane films on a single-crystal substrate

    DEFF Research Database (Denmark)

    Wu, Z. U.; Ehrlich, S. N.; Matthies, B.

    2001-01-01

    The structure and growth mode of alkane films (n-C/sub n/H/sub 2n+2/; n=4, 6, 7) adsorbed on a Ag(111) surface have been investigated by synchrotron X-ray scattering. New models are proposed for the butane (n=4) and hexane (n=6) monolayer and butane bilayer structures. Specular reflectivity scans...... reveal that growth of all films is preempted between two and three layers by nucleation of bulk particles oriented with a single bulk crystal plane parallel to the film. In the case of butane, the bulk particles also have a fixed azimuthal relationship with the film resulting in complete epitaxy....

  20. Changes in the n-alkane composition of avocado pulp oil ( Persea americana, Mill. during fruit ripening

    Directory of Open Access Journals (Sweden)

    Giuffrè, A. M.

    2005-03-01

    Full Text Available The n-alkane composition of Avocado pulp oil (cv. Hass was investigated during fruit ripening. Three samples of fruit were harvested on March 3, 2003, March 18, 2003 and April 2, 2003. Glass gravity column chromatography was employed to separate n-alkanes from other minor components contained in the unsaponifiable fraction. Gas chromatography was used to analyze the eluate. Fourteen compounds were detected ranging from n -C21 to n -C34; mainly n -C24, followed by n -C25 and then by n -C23. Quantities of n -C21, n -C22, n -C23, n -C27 and n -C28 progressively increased during ripening, whereas n -C24, n -C25, n -C26, n -C29, n -C30 and n -C34 decreased from the first harvest date to the third harvest date. While odd-numbered carbon n-alkanes increased (52.38 %, 52.85 % and 53.06 % for the three samples respectively, even-numbered carbon n-alkanes decreased as the fruit ripened (47.62 %, 47.15 % and 46.94 %. The total n-alkane content decreased during ripening, from 25.20 mg/Kg (first harvest date to 16.77 mg/Kg (third harvest date. In order to minimize.Se ha analizado la composición en hidrocarburos lineales saturados del aceite de la pulpa de aguacate (variedad Hass. Tres muestras fueron recolectadas: el 3 de marzo 2003, el 18 de marzo 2003 y el 2 de abril 2003. La separación de los hidrocarburos lineales saturados se realizó mediante fraccionamiento del insaponificable por cromatografía gravimétrica de adsorción en columna y la determinación de los mismos hidrocarburos por cromatografía gaseosa. 14 compuestos fueron detectados del n- C21 al n- C34. El n- C24 fue el mayoritario, seguido del n- C25 y el n- C23. El porcentaje de n- C21, n- C22, n- C23, n- C27 y n- C28, aumentó durante la maduración, mientras que el porcentaje de n- C24, n- C25, n- C26, n- C29, n- C30 y C34 disminuyó desde el 3 de marzo 2003 hasta el 2 de abril 2003. Los hidrocarburos lineales saturados con número impar de átomos de carbono aumentaron (52.38 %, 52

  1. Biosynthesis of medium chain length alkanes for bio-aviation fuel by metabolic engineered Escherichia coli.

    Science.gov (United States)

    Wang, Meng; Nie, Kaili; Cao, Hao; Xu, Haijun; Fang, Yunming; Tan, Tianwei; Baeyens, Jan; Liu, Luo

    2017-09-01

    The aim of this work was to study the synthesis of medium-chain length alkanes (MCLA), as bio-aviation product. To control the chain length of alkanes and increase the production of MCLA, Escherichia coli cells were engineered by incorporating (i) a chain length specific thioesterase from Umbellularia californica (UC), (ii) a plant origin acyl carrier protein (ACP) gene and (iii) the whole fatty acid synthesis system (FASs) from Jatropha curcas (JC). The genetic combination was designed to control the product spectrum towards optimum MCLA. Decanoic, lauric and myristic acid were produced at concentrations of 0.011, 0.093 and 1.657mg/g, respectively. The concentration of final products nonane, undecane and tridecane were 0.00062mg/g, 0.0052mg/g, and 0.249mg/g respectively. Thioesterase from UC controlled the fatty acid chain length in a range of 10-14 carbons and the ACP gene with whole FASs from JC significantly increased the production of MCLA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Third O2 addition reactions promote the low-temperature auto-ignition of n-alkanes

    KAUST Repository

    Wang, Zhandong

    2016-01-20

    Comprehensive low-temperature oxidation mechanisms are needed to accurately predict fuel auto-ignition properties. This paper studies the effects of a previously unconsidered third O2 addition reaction scheme on the simulated auto-ignition of n-alkanes. We demonstrate that this extended low-temperature oxidation scheme has a minor effect on the simulation of n-pentane ignition; however, its addition significantly improves the prediction of n-hexane auto-ignition under low-temperature rapid compression machine conditions. Additional simulations of n-hexane in a homogeneous charge compression ignition engine show that engine-operating parameters (e.g., intake temperature and combustion phasing) are significantly altered when the third O2 addition kinetic mechanism is considered. The advanced combustion phasing is initiated by the formation and destruction of additional radical chain-branching intermediates produced in the third O2 addition process, e.g. keto-dihydroperoxides and/or keto-hydroperoxy cyclic ethers. Our results indicate that third O2 addition reactions accelerate low-temperature radical chain branching at conditions of relevance to advance engine technologies, and therefore these chemical pathways should also be considered for n-alkanes with 6 or more carbon atoms. © 2015 The Combustion Institute.

  3. Femoral venous oxygen saturation is no surrogate for central venous oxygen saturation

    NARCIS (Netherlands)

    van Beest, Paul A.; van der Schors, Alice; Liefers, Henriëtte; Coenen, Ludo G. J.; Braam, Richard L.; Habib, Najib; Braber, Annemarije; Scheeren, Thomas W. L.; Kuiper, Michaël A.; Spronk, Peter E.

    2012-01-01

    Objective: The purpose of our study was to determine if central venous oxygen saturation and femoral venous oxygen saturation can be used interchangeably during surgery and in critically ill patients. Design: Prospective observational controlled study. Setting: Nonacademic university-affiliated

  4. Applications of Doppler-free saturation spectroscopy for edge physics studies (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Martin, E. H., E-mail: martineh@ornl.gov; Caughman, J. B. O.; Isler, R. C.; Bell, G. L. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Zafar, A. [Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2016-11-15

    Doppler-free saturation spectroscopy provides a very powerful method to obtain detailed information about the electronic structure of the atom through measurement of the spectral line profile. This is achieved through a significant decrease in the Doppler broadening and essentially an elimination of the instrument broadening inherent to passive spectroscopic techniques. In this paper we present the technique and associated physics of Doppler-free saturation spectroscopy in addition to how one selects the appropriate transition. Simulations of H{sub δ} spectra are presented to illustrate the increased sensitivity to both electric field and electron density measurements.

  5. Femoral venous oxygen saturation is no surrogate for central venous oxygen saturation

    NARCIS (Netherlands)

    van Beest, Paul A.; van der Schors, Alice; Liefers, Henriette; Coenen, Ludo G. J.; Braam, Richard L.; Habib, Najib; Braber, Annemarije; Scheeren, Thomas W. L.; Kuiper, Michael A.; Spronk, Peter E.

    2012-01-01

    Objective:  The purpose of our study was to determine if central venous oxygen saturation and femoral venous oxygen saturation can be used interchangeably during surgery and in critically ill patients. Design:  Prospective observational controlled study. Setting:  Nonacademic university-affiliated

  6. Hopane, sterane and n-alkane distributions in shallow sediments hosting high arsenic groundwaters in Cambodia

    International Nuclear Information System (INIS)

    Dongen, Bart E. van; Rowland, Helen A.L.; Gault, Andrew G.; Polya, David A.; Bryant, Charlotte; Pancost, Richard D.

    2008-01-01

    The presence of elevated As in ground waters exploited for drinking water and irrigation in South-East Asia is causing serious impacts on human health. A key mechanism that causes the mobilization of As in these waters is microbially mediated reductive transformation of As-bearing Fe(III) hydrated oxides and the role of degradable organic matter (OM) in this process is widely recognized. A number of different types of OM that drive As release in these aquifers have been suggested, including petroleum derived hydrocarbons naturally seeping into shallow sediments from deeper thermally mature source rocks. However, the amount of information on the characteristics of the OM in South-East Asian aquifers is limited. Here the organic geochemical analyses of the saturated hydrocarbon fractions and radiocarbon analysis, of two additional sites in SE Asia are reported. The results show that the OM in a given sedimentary horizon likely derives from multiple sources including naturally occurring petroleum. The importance of naturally occurring petroleum as one of the sources was clearly indicated by the n-alkane CPI of approximately 1, the presence of an unresolved complex mixture, and hopane (dominated by 17α(H),21β(H) hopanes) and sterane distribution patterns. The results also indicate that the OM in these aquifers varies tremendously in content, character and potential bioavailability. Furthermore, the presence of petroleum derived OM in sediments at both sites doubles the number of locations where their presence has been observed in association with As-rich, shallow aquifers, suggesting that the role of petroleum derived OM in microbially mediated As release might occur over a wider range of geographical locations than previously thought

  7. Predictive Local Composition Models for Solid/Liquid Equilibrium in n-Alkane Systems: Wilson Equation for Multicomponent Systems

    DEFF Research Database (Denmark)

    Coutinho, João A.P.; Stenby, Erling Halfdan

    1996-01-01

    The predictive local composition model is applied to multicomponent hydrocarbon systems with long-chain n-alkanes as solutes. The results show that it can successfully be extended to highorder systems and accurately predict the solid appearance temperature, also known as cloud point, in solutions...

  8. Molecular dynamics insight to phase transition in n-alkanes with carbon nanofillers

    Directory of Open Access Journals (Sweden)

    Monisha Rastogi

    2015-05-01

    Full Text Available The present work aims to investigate the phase transition, dispersion and diffusion behavior of nanocomposites of carbon nanotube (CNT and straight chain alkanes. These materials are potential candidates for organic phase change materials(PCMs and have attracted flurry of research recently. Accurate experimental evaluation of the mass, thermal and transport properties of such composites is both difficult as well as economically taxing. Additionally it is crucial to understand the factors that results in modification or enhancement of their characteristic at atomic or molecular level. Classical molecular dynamics approach has been extended to elucidate the same. Bulk atomistic models have been generated and subjected to rigorous multistage equilibration. To reaffirm the approach, both canonical and constant-temperature, constant- pressure ensembles were employed to simulate the models under consideration. Explicit determination of kinetic, potential, non-bond and total energy assisted in understanding the enhanced thermal and transport property of the nanocomposites from molecular point of view. Crucial parameters including mean square displacement and simulated self diffusion coefficient precisely define the balance of the thermodynamic and hydrodynamic interactions. Radial distribution function also reflected the density variation, strength and mobility of the nanocomposites. It is expected that CNT functionalization could improve the dispersion within n-alkane matrix. This would further ameliorate the mass and thermal properties of the composite. Additionally, the determined density was in good agreement with experimental data. Thus, molecular dynamics can be utilized as a high throughput technique for theoretical investigation of nanocomposites PCMs.

  9. Molecular dynamics insight to phase transition in n-alkanes with carbon nanofillers

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Monisha [School of Engineering, Indian Institute of Technology Mandi, Himachal Pradesh 175 001 (India); Vaish, Rahul, E-mail: rahul@iitmandi.ac.in [School of Engineering, Indian Institute of Technology Mandi, Himachal Pradesh 175 001 (India); Materials Research Centre, Indian Institute of Science, Bangalore 560 012 (India)

    2015-05-15

    The present work aims to investigate the phase transition, dispersion and diffusion behavior of nanocomposites of carbon nanotube (CNT) and straight chain alkanes. These materials are potential candidates for organic phase change materials(PCMs) and have attracted flurry of research recently. Accurate experimental evaluation of the mass, thermal and transport properties of such composites is both difficult as well as economically taxing. Additionally it is crucial to understand the factors that results in modification or enhancement of their characteristic at atomic or molecular level. Classical molecular dynamics approach has been extended to elucidate the same. Bulk atomistic models have been generated and subjected to rigorous multistage equilibration. To reaffirm the approach, both canonical and constant-temperature, constant- pressure ensembles were employed to simulate the models under consideration. Explicit determination of kinetic, potential, non-bond and total energy assisted in understanding the enhanced thermal and transport property of the nanocomposites from molecular point of view. Crucial parameters including mean square displacement and simulated self diffusion coefficient precisely define the balance of the thermodynamic and hydrodynamic interactions. Radial distribution function also reflected the density variation, strength and mobility of the nanocomposites. It is expected that CNT functionalization could improve the dispersion within n-alkane matrix. This would further ameliorate the mass and thermal properties of the composite. Additionally, the determined density was in good agreement with experimental data. Thus, molecular dynamics can be utilized as a high throughput technique for theoretical investigation of nanocomposites PCMs.

  10. Using Amines and Alkanes as Thermal-Runaway Retardants for Lithium-Ion Battery

    Science.gov (United States)

    Shi, Yang

    Thermal runaway imposes major challenges to large-scale lithium-ion batteries (LIBs). The working temperature of a LIB is usually around room temperature. However, upon mechanical abuse such as an impact or nail penetration, LIB cell components may fail and internal short circuits could be formed. As a result, a series of exothermic electrochemical reactions and decompositions would take place and the local temperature can rapidly increase. In this thesis, a few novel techniques are investigated to mitigate thermal runaway of LIBs. Mechanically triggered approach has been employed. Thermal-runaway retardant (TRR) is encapsulated in mechanically responsive packages made of materials inert to the battery environment, and upon external mechanical loadings the packages can be broken apart and release the TRR. This mechanism allows for the use of aggressive chemicals to suppress the short circuit discharge and reduce the subsequent exothermic phenomena, immediately after the battery is damaged even before temperature increase begins. The best TRR candidates are identified to be amines and alkanes. Among amines, secondary amines and tertiary amines perform better than primary amines. The reduction in electrolyte ionic conductivity and the displacement of electrolyte are the thermal-runaway-mitigation mechanisms of the secondary and the tertiary amines, respectively. Pentadecane is the best candidate among the alkanes under investigation, with the major working mechanism being electrolyte displacement. Impact tests on large pouch cells and high-energy battery chemistry were also performed; the results were quite encouraging.

  11. Gas chromatographic-mass spectrometric investigation of n-alkanes and carboxylic acids in bottom sediments of the northern Caspian Sea

    Science.gov (United States)

    Kenzhegaliev, Akimgali; Zhumagaliev, Sagat; Kenzhegalieva, Dina; Orazbayev, Batyr

    2018-03-01

    Prior to the start of experimental oil production in the Kashagan field (northern part of the Caspian Sea), n-alkanes and carboxylic acids contained in samples obtained from bottom sediments in the area of artificial island "D" were investigated by gas chromatography-mass spectrometry. Concentrations of 10 n-alkanes (composed of C10-C13, C15-C20) and 11 carboxylic acids (composed of C6-C12, C14-C16) were identified and measured. Concentrations of individual alkanes and carboxylic acids in bottom sediments of the various samples varied between 0.001 ÷ 0.88 μg/g and 0.001 ÷ 1.94 μg/g, respectively. Mass spectra, in particular the M+ molecular ion peak and the most intense peaks of fragment ions, are given. The present study illustrates the stability of molecular ions to electronic ionisation and the main fragment ions to the total ion current and shows that the initial fragmentation of alkanes implies radical cleavage of C2H5 rather than CH3. All aliphatic monocarboxylic acids studied were characterised by McLafferty rearrangement leading to the formation of F4 cation-radical with m/z 60 and F3 cation-radical with m/z 88 in the case of ethylhexanoic acid. The formation of oxonium ions presents another important aspect of acid fragmentation. Using mass numbers of oxonium ions and rearrangement ions allows determination of the substitution character in α- and β- C atoms. The essence of our approach is to estimate the infiltration of hydrocarbon fluids from the enclosing formation into sea water, comprising an analysis of derivatives of organic compounds in bottom sediments. Thus, concentrations of derived organic molecules can serve as a basis for estimates of the depth at which hydrocarbon fluids leak, i.e., to serve as an auxiliary technique in the search for hydrocarbon deposits and to repair well leaks.

  12. Prediction of the vapor–liquid equilibria and speed of sound in binary systems of 1-alkanols and n-alkanes with the simplified PC-SAFT equation of state

    DEFF Research Database (Denmark)

    Liang, Xiaodong; Thomsen, Kaj; Yan, Wei

    2013-01-01

    (or other derivative properties) with satisfactory accuracy over wide temperature, pressure and composition conditions. This work presents the prediction of the vapor–liquid equilibria and speed of sound in binary mixtures of 1-alkanols and n-alkanes using the simplified PC-SAFT equation of state...... of sound with a satisfactory accuracy for 1-alkanols and n-alkanes binary systems within the PC-SAFT framework....

  13. Shear weakening for different lithologies observed at different saturation stages

    Science.gov (United States)

    Diethart-Jauk, Elisabeth; Gegenhuber, Nina

    2018-01-01

    For this study, samples from different lithologies ("Leitha"-limestone, "Dachstein"-limestone, "Haupt"-dolomite, "Bunt"-sandstone, Grey Berea sandstone, granite, quartzite and basalt) were selected. Samples were dried at 70 °C, respectively 105 °C and were saturated with brine. Mass, porosity, permeability, compressional and shear wave velocity were determined from dry and brine saturated samples at laboratory conditions, based on an individual measurement program. Shear modulus was calculated to find out, if shear weakening exists for the dataset. Shear weakening means that shear modulus of dry samples is higher than of saturated samples, but it is assumed that shear modulus is unaffected by saturation. "Dachstein"-limestone and basalt show shear weakening, quartzite samples show both weakening and hardening. Granite samples are affected by temperature, after drying with 105 °C no change can be observed anymore. "Bunt"-sandstone samples show a change in the shear modulus in a small extent, although they may contain clay minerals. The other lithologies show no effect. Explanations for carbonate samples can be the complicated pore structure, for basalt it could be that weathering creates clay minerals which are known as causes for a change of the shear modulus. Fluid viscosity can also be an important factor.

  14. Rationalization and Prediction of the Equivalent Alkane Carbon Number (EACN) of Polar Hydrocarbon Oils with COSMO-RS σ-Moments.

    Science.gov (United States)

    Lukowicz, Thomas; Benazzouz, Adrien; Nardello-Rataj, Véronique; Aubry, Jean-Marie

    2015-10-20

    The equivalent alkane carbon numbers (EACNs) of 20 polar hydrocarbon oils are determined by the fishtail method. These values supplemented by 43 already reported EACNs of other hydrocarbons are rationalized by using the COSMO-RS σ-moments as descriptors for a QSPR analysis. A reliable model, with only two meaningful physicochemical parameters, namely the surface area (M0(X)) and the overall polarity (M2(X)) of the oil X, is able to predict the EACN values of a large variety of oils including (cyclo)alkanes, (cyclo)alkenes, terpenes, aromatics, alkynes, and chloroalkanes and to rationalize structural effects on EACNs. Furthermore, the dependence of the EACN of homologous oils on the chain length provides some molecular insight into how the different oils penetrate into the interfacial film of surfactants.

  15. A nonequilibrium simulation method for calculating tracer diffusion coefficients of small solutes in n-alkane liquids and polymers

    NARCIS (Netherlands)

    van der Vegt, N.F.A.; Briels, Willem J.; Wessling, Matthias; Strathmann, H.

    1998-01-01

    The tracer diffusion coefficients of methane in n-alkane liquids of increasing chain length were calculated by measuring the friction from short time nonequilibrium molecular dynamics simulations. The frictional constant was calculated from the exponentially decaying distance between two methane

  16. Influences of the molecular fuel structure on combustion reactions towards soot precursors in selected alkane and alkene flames.

    Science.gov (United States)

    Ruwe, Lena; Moshammer, Kai; Hansen, Nils; Kohse-Höinghaus, Katharina

    2018-04-25

    In this study, we experimentally investigate the high-temperature oxidation kinetics of n-pentane, 1-pentene and 2-methyl-2-butene (2M2B) in a combustion environment using flame-sampling molecular beam mass spectrometry. The selected C5 fuels are prototypes for linear and branched, saturated and unsaturated fuel components, featuring different C-C and C-H bond structures. It is shown that the formation tendency of species, such as polycyclic aromatic hydrocarbons (PAHs), yielded through mass growth reactions increases drastically in the sequence n-pentane fuel-dependent reaction sequences of the gas-phase combustion mechanism that provide explanations for the observed difference in the PAH formation tendency. First, we investigate the fuel-structure-dependent formation of small hydrocarbon species that are yielded as intermediate species during the fuel decomposition, because these species are at the origin of the subsequent mass growth reaction pathways. Second, we review typical PAH formation reactions inspecting repetitive growth sequences in dependence of the molecular fuel structure. Third, we discuss how differences in the intermediate species pool influence the formation reactions of key aromatic ring species that are important for the PAH growth process underlying soot formation. As a main result it was found that for the fuels featuring a C[double bond, length as m-dash]C double bond, the chemistry of their allylic fuel radicals and their decomposition products strongly influences the combination reactions to the initially formed aromatic ring species and as a consequence, the PAH formation tendency.

  17. Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes

    Science.gov (United States)

    Cappelletti, Martina; Presentato, Alessandro; Milazzo, Giorgio; Turner, Raymond J.; Fedi, Stefano; Frascari, Dario; Zannoni, Davide

    2015-01-01

    Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane) were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxidation products such as 1- and 2-propanol, whereas 1-butanol was the only terminal oxidation product detected from n-butane metabolism. Two gene clusters, prmABCD and smoABCD—coding for Soluble Di-Iron Monooxgenases (SDIMOs) involved in gaseous n-alkanes oxidation—were detected in the BCP1 genome. By means of Reverse Transcriptase-quantitative PCR (RT-qPCR) analysis, a set of substrates inducing the expression of the sdimo genes in BCP1 were assessed as well as their transcriptional repression in the presence of sugars, organic acids, or during the cell growth on rich medium (Luria–Bertani broth). The transcriptional start sites of both the sdimo gene clusters were identified by means of primer extension experiments. Finally, proteomic studies revealed changes in the protein pattern induced by growth on gaseous- (n-butane) and/or liquid (n-hexane) short-chain n-alkanes as compared to growth on succinate. Among the differently expressed protein spots, two chaperonins and an isocytrate lyase were identified along with oxidoreductases involved in oxidation reactions downstream of the initial monooxygenase reaction step. PMID:26029173

  18. Formation of alkanes alkylcycloalkanes and alkylbenzenes during the catalytic hydrocracking of vegetable oils

    Energy Technology Data Exchange (ETDEWEB)

    Filho, G.N. da Rocha; Brodzki, D.; Djega-Mariadassou, G. (Universite Pierre et Marie Curie, Paris (France). Lab. Reactivite de Surface et Structure)

    1993-04-01

    Catalytic hydrocracking of vegetable oils was performed in the presence of a NiMo/[gamma]-Al[sub 2]O[sub 3] catalyst sulfided in situ with elemental sulfur under hydrogen pressure. Various vegetable oils were selected to study the effect of the degree of saturation and lateral chain length: [ital Passiflora edulis] (maracuja), [ital Astrocaryum vulgare] (tucuma), [ital Mauritia flexuosa] (buriti), [ital Orbygnya martiana] (babassu) and soybean. The effects of reaction temperature and hydrogen pressure in cyclization were studied. Carboxylic acids were used as model compounds. 29 refs., 5 figs., 5 tabs.

  19. Molecular adsorption of alkanes on platinum surfaces: A predictive theoretical model

    International Nuclear Information System (INIS)

    Stinnett, J.A.; Madix, R.J.

    1996-01-01

    The adsorption probabilities of methane and propane on Pt(111), and propane on Pt(110)-(1x2) have been successfully predicted for a wide range of incident energies and angles with classical stochastic trajectory simulations, using a pairwise additive Morse methyl endash platinum potential previously developed from the measured trapping probabilities of ethane on Pt(111). These predictions, along with those for ethane adsorption on Pt(110)endash(1x2), comprise a unified model for the molecular adsorption of alkanes on platinum surfaces. The simulations show the initial trapping probabilities of methane and propane on Pt(111) are determined to within approximately 10% by the fate of the first bounce. They also indicate that at normal incidence on Pt(111) energy conversions from perpendicular translational motion to both cartwheeling rotation and lattice phonons play increasingly important roles in increasing the trapping probability as the alkane increases in size and molecular weight. For methane itself excitation of parallel translational momentum after the first bounce serves as the most effective energy storage mechanism which facilitates trapping, whereas for propane cartwheel rotational motion plays the dominant role. Excessive excitation of these modes of motion, however, can cause scattering on subsequent bounces by reconversion of the energy into perpendicular translational energy. Collisions of methane with the hollow and bridge sites on the Pt(111) surface appear less effective in trapping than do atop sites. The simulations also suggest excitation of the C endash C endash C bending mode of propane has little effect on the trapping of propane on platinum surfaces for beam energies below 55 kJ/mol. copyright 1996 American Institute of Physics

  20. The detection and phylogenetic analysis of the alkane 1-monooxygenase gene of members of the genus Rhodococcus.

    Science.gov (United States)

    Táncsics, András; Benedek, Tibor; Szoboszlay, Sándor; Veres, Péter G; Farkas, Milán; Máthé, István; Márialigeti, Károly; Kukolya, József; Lányi, Szabolcs; Kriszt, Balázs

    2015-02-01

    Naturally occurring and anthropogenic petroleum hydrocarbons are potential carbon sources for many bacteria. The AlkB-related alkane hydroxylases, which are integral membrane non-heme iron enzymes, play a key role in the microbial degradation of many of these hydrocarbons. Several members of the genus Rhodococcus are well-known alkane degraders and are known to harbor multiple alkB genes encoding for different alkane 1-monooxygenases. In the present study, 48 Rhodococcus strains, representing 35 species of the genus, were investigated to find out whether there was a dominant type of alkB gene widespread among species of the genus that could be used as a phylogenetic marker. Phylogenetic analysis of rhodococcal alkB gene sequences indicated that a certain type of alkB gene was present in almost every member of the genus Rhodococcus. These alkB genes were common in a unique nucleotide sequence stretch absent from other types of rhodococcal alkB genes that encoded a conserved amino acid motif: WLG(I/V/L)D(G/D)GL. The sequence identity of the targeted alkB gene in Rhodococcus ranged from 78.5 to 99.2% and showed higher nucleotide sequence variation at the inter-species level compared to the 16S rRNA gene (93.9-99.8%). The results indicated that the alkB gene type investigated might be applicable for: (i) differentiating closely related Rhodococcus species, (ii) properly assigning environmental isolates to existing Rhodococcus species, and finally (iii) assessing whether a new Rhodococcus isolate represents a novel species of the genus. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. Size distributions of n-alkanes, fatty acids and fatty alcohols in springtime aerosols from New Delhi, India.

    Science.gov (United States)

    Kang, Mingjie; Fu, Pingqing; Aggarwal, Shankar G; Kumar, Sudhanshu; Zhao, Ye; Sun, Yele; Wang, Zifa

    2016-12-01

    Size-segregated aerosol samples were collected in New Delhi, India from March 6 to April 6, 2012. Homologous series of n-alkanes (C 19 C 33 ), n-fatty acids (C 12 C 30 ) and n-alcohols (C 16 C 32 ) were measured using gas chromatography/mass spectrometry. Results showed a high-variation in the concentrations and size distributions of these chemicals during non-haze, haze, and dust storm days. In general, n-alkanes, n-fatty acids and n-alcohols presented a bimodal distribution, peaking at 0.7-1.1 μm and 4.7-5.8 μm for fine modes and coarse modes, respectively. Overall, the particulate matter mainly existed in the coarse mode (≥2.1 μm), accounting for 64.8-68.5% of total aerosol mass. During the haze period, large-scale biomass burning emitted substantial fine hydrophilic smoke particles into the atmosphere, which leads to relatively larger GMDs (geometric mean diameter) of n-alkanes in the fine mode than those during the dust storms and non-haze periods. Additionally, the springtime dust storms transported a large quantity of coarse particles from surrounding or local areas into the atmosphere, enhancing organic aerosol concentration and inducing a remarkable size shift towards the coarse mode, which are consistent with the larger GMDs of most organic compounds especially in total and coarse modes. Our results suggest that fossil fuel combustion (e.g., vehicular and industrial exhaust), biomass burning, residential cooking, and microbial activities could be the major sources of lipid compounds in the urban atmosphere in New Delhi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A study of binuclear zirconium hydride catalysts of the hydrogenolysis of alkanes by the density functional theory method

    Science.gov (United States)

    Ustynyuk, L. Yu.; Fast, A. S.; Ustynyuk, Yu. A.; Lunin, V. V.

    2012-06-01

    Binuclear hydride centers containing two Zr(IV) atoms are suggested as promising catalysts for the hydrogenolysis of alkanes under mild conditions ( T model compounds L2(H)Zr(X)2Zr(H)L2 (X = H, L = OSi≡ ( 4a), X = L = OMe ( 4d)), L(H)Zr(O)2Zr(H)L (L = OSi≡ ( 4b), Cp( 4c)) and (≡SiO)2(H)Zr-O-Zr(H)(OSi≡)2 ( 4e and 4f) with the propane molecule were studied using the density functional theory method. The results show that centers of the 4a, 4e, and 4f types and especially 4b are promising catalysts of the hydrogenolysis of alkanes due to a high degree of unsaturation of two Zr atoms and their sequential participation in the splitting of the C-C bond and hydrogenation of ethylene formed as a result of splitting.

  3. Automatic NAA. Saturation activities

    International Nuclear Information System (INIS)

    Westphal, G.P.; Grass, F.; Kuhnert, M.

    2008-01-01

    A system for Automatic NAA is based on a list of specific saturation activities determined for one irradiation position at a given neutron flux and a single detector geometry. Originally compiled from measurements of standard reference materials, the list may be extended also by the calculation of saturation activities from k 0 and Q 0 factors, and f and α values of the irradiation position. A systematic improvement of the SRM approach is currently being performed by pseudo-cyclic activation analysis, to reduce counting errors. From these measurements, the list of saturation activities is recalculated in an automatic procedure. (author)

  4. Analysis of polychlorinated n-alkanes in environmental samples.

    Science.gov (United States)

    Santos, F J; Parera, J; Galceran, M T

    2006-10-01

    Polychlorinated n-alkanes (PCAs), also known as chlorinated paraffins (CPs), are highly complex technical mixtures that contain a huge number of structural isomers, theoretically more than 10,000 diastereomers and enantiomers. As a consequence of their persistence, tendency to bioaccumulation, and widespread and unrestricted use, PCAs have been found in aquatic and terrestrial food webs, even in rural and remote areas. Recently, these compounds have been included in regulatory programs of several international organizations, including the US Environmental Protection Agency and the European Union. Consequently, there is a growing demand for reliable methods with which to analyze PCAs in environmental samples. Here, we review current trends and recent developments in the analysis of PCAs in environmental samples such as air, water, sediment, and biota. Practical aspects of sample preparation, chromatographic separation, and detection are covered, with special emphasis placed on analysis of PCAs using gas chromatography-mass spectrometry. The advantages and limitations of these techniques as well as recent improvements in quantification procedures are discussed.

  5. Research advances in the catalysts for the selective oxidation of ethane to aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhe; ZHAO Zhen; XU Chunming

    2005-01-01

    Selective oxidation of ethane to aldehydes is one of the most difficult processes in the catalysis researches of low alkanes. The development of selective oxidation of ethane to aldehydes (formaldehyde, acetaldehyde and acrolein) is discussed. The latest progress of the catalysts, including bulk or supported metal oxide catalysts, highly dispersed and isolated active sites catalysts, and the photo-catalytic ethane oxidation catalysts, partial oxidation of ethane in the gas phase, and the proposed reaction pathways from ethane to aldehydes are involved.

  6. Modelling and parameter estimation in reactive continuous mixtures: the catalytic cracking of alkanes - part II

    Directory of Open Access Journals (Sweden)

    F. C. PEIXOTO

    1999-09-01

    Full Text Available Fragmentation kinetics is employed to model a continuous reactive mixture of alkanes under catalytic cracking conditions. Standard moment analysis techniques are employed, and a dynamic system for the time evolution of moments of the mixture's dimensionless concentration distribution function (DCDF is found. The time behavior of the DCDF is recovered with successive estimations of scaled gamma distributions using the moments time data.

  7. Size-distributions of n-alkanes, PAHs and hopanes and their sources in the urban, mountain and marine atmospheres over East Asia

    Directory of Open Access Journals (Sweden)

    Z. Wang

    2009-11-01

    Full Text Available Size-segregated (9 stages n-alkanes, polycyclic aromatic hydrocarbons (PAHs and hopanes in the urban (Baoji city in inland China, mountain (Mt. Tai in east coastal China and marine (Okinawa Island, Japan atmospheres over East Asia were studied using a GC/MS technique. Ambient concentrations of n-alkanes (1698±568 ng m−3 in winter and 487±145 ng m−3 in spring, PAHs (536±80 and 161±39 ng m−3, and hopanes (65±24 and 20±2.4 ng m−3 in the urban air are 1–2 orders of magnitude higher than those in the mountain aerosols and 2–3 orders of magnitude higher than those in the marine samples. Mass ratios of n-alkanes, PAHs and hopanes clearly demonstrate coal-burning emissions as their major source. Size distributions of fossil fuel derived n-alkane, PAHs and hopanes were found to be unimodal in most cases, peaking at 0.7–1.1 μm size. In contrast, plant wax derived n-alkanes presented a bimodal distribution with two peaks at the sizes of 0.7–1.1 μm and >4.7 μm in the summer mountain and spring marine samples. Among the three types of samples, geometric mean diameter (GMD of the organics in fine mode (<2.1 μm was found to be smallest (av. 0.63 μm in spring for the urban samples and largest (1.01 μm for the marine samples, whereas the GMD in coarse mode (≥2.1 μm was found to be smallest (3.48 μm for the marine aerosols and largest (4.04 μm for the urban aerosols. The fine mode GMDs of the urban and mountain samples were larger in winter than in spring and summer. Moreover, GMDs of 3- and 4-ring PAHs were larger than those of 5- and 6-ring PAHs in the three types of atmospheres. Such differences in GMDs can be interpreted by the repartitioning of organic compounds and the coagulation and hygroscopic growth of particles during a long-range transport from the inland continent to the marine area, as well as the difference in their sources among the three regions.

  8. Isolation of the alkane inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis

    Science.gov (United States)

    The gene for the alkane-inducible cytochrome P450, P450alk, has been isolated from the yeast Candida tropicalis by immunoscreening a λgt11 library. Isolation of the gene has been identified on the basis of its inducibility and partial DNA sequence. Transcripts of this gene were i...

  9. Influence of compost amendments on the diversity of alkane degrading bacteria in hydrocarbon contaminated soils

    Directory of Open Access Journals (Sweden)

    Michael eSchloter

    2014-03-01

    Full Text Available Alkane degrading microorganisms play an important role for bioremediation of petrogenic contaminated environments. In this study, we investigated the effects of compost addition on the diversity of alkane monooxygenase gene (alkB harboring bacteria in oil-contaminated soil originated from an industrial zone in Celje, Slovenia, to improve our understanding about the bacterial community involved in alkane degradation and the effects of amendments. Soil without any amendments (control soil and soil amended with compost of different maturation stages, i 1 year and ii 2 weeks, were incubated under controlled conditions in a microcosm experiment and sampled after 0, 6, 12 and 36 weeks of incubation. By using quantitative real-time PCR higher number of alkB genes could be detected in soil samples with compost compared to the control soil after 6, 12 and 36 weeks mainly if the less maturated compost was added. To get an insight into the composition of the alkB harboring microbial communities, we performed next generation sequencing of alkB gene fragment amplicons. Richness and diversity of alkB gene harboring prokaryotes was higher in soil mixed with compost compared to control soil after 6, 12 and 36 weeks again with stronger effects of the less maturated compost. Comparison of communities detected in different samples and time points based on principle component analysis revealed that the addition of compost in general stimulated the abundance of alkB harboring Actinobacteria during the experiment independent from the maturation stage of the compost compared to the control soils. In addition alkB harboring proteobacteria like Shewanella or Hydrocarboniphaga as well as proteobacteria of the genus Agrobacterium responded positively to the addition of compost to soil The amendment of the less maturated compost resulted in addition in a large increase of alkB harboring bacteria of the Cytophaga group (Microscilla mainly at the early sampling

  10. Fault tolerant control of systems with saturations

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2013-01-01

    This paper presents framework for fault tolerant controllers (FTC) that includes input saturation. The controller architecture known from FTC is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization is extended to handle input saturation. Applying this controller architecture in connec......This paper presents framework for fault tolerant controllers (FTC) that includes input saturation. The controller architecture known from FTC is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization is extended to handle input saturation. Applying this controller architecture...... in connection with faulty systems including input saturation gives an additional YJBK transfer function related to the input saturation. In the fault free case, this additional YJBK transfer function can be applied directly for optimizing the feedback loop around the input saturation. In the faulty case......, the design problem is a mixed design problem involved both parametric faults and input saturation....

  11. (Liquid + liquid) equilibria for the ternary mixtures (alkane + toluene + ionic liquid) at T = 298.15 K: Influence of the anion on the phase equilibria

    International Nuclear Information System (INIS)

    Seoane, Raquel G.; Gómez, Elena; González, Emilio J.; Domínguez, Ángeles

    2012-01-01

    Highlights: ► [BMpyr][NTF 2 ] and [BMpyr][TFO] were studied as solvents to extract aromatics from alkanes. ► (Liquid + liquid) equilibrium data were measured at 298.15 K for six ternary systems. ► Selectivity and solute distribution ratio were calculated and compared. ► The influence of the structure of anion of the ionic liquid was analyzed. ► Experimental data were satisfactorily correlated using NRTL model. - Abstract: (Liquid + liquid) equilibrium data for the ionic liquids 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [BMpyr][NTf 2 ], and 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate, [BMpyr][TFO], with toluene, and heptane or cyclohexane were determined at T = 298.15 K and atmospheric pressure. In order to check if these ILs can be used as potential solvents for the extraction of toluene from aliphatic compounds, the ability of the ILs as solvents was evaluated in terms of selectivity and solute distribution ratio. The experimental data were correlated accurately with the Non Random Two-Liquid model.

  12. Secretive production of long-chain fatty acids, triacylglycerols and n-alkane-2-ones by fermentation processes; Hakkoho ni yoru ekitai nenryo no seisan wa kanoka (shishitsu no bunpi seisan)

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, S. [University of Fukuyama, Hiroshima (Japan). Faculty of Engineering

    1995-10-20

    Secretive production of lipids, which are useful source for engine-driving fuel, by microbial process using carbohydrate biomasses as substrate has been investigated in our laboratory. This review consists of four parts concerning breedings and selection of lipid-secretive microorganisms : (1) breedings of long-chain fatty acid-secretive strains from Candida lipolytica L-1 by a step-wise mutagenesis process, (2) selection of a triacylglycerol (TG)-secretive and accumulative yeast strain Trichosporon sp. SH45Y, (3) breedings of mutants, SH45Y-derivatieves, having potent ability to produce TG secretively from glucose, a typical biomass charbohydrate, and (4) selection of microorganisms which produce liquid-n-alkane in culture medium by utilizing long-chain fatty acids and TG; a strain of Penicillium decumbens can produce liquid alkalis with a yield of approximately 60 % in weight from palm kernel oil, a commercial TG. 10 refs., 7 figs., 7 tabs.

  13. Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes

    Directory of Open Access Journals (Sweden)

    Martina eCappelletti

    2015-05-01

    Full Text Available Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxidation products such as 1- and 2-propanol, whereas 1-butanol was the only terminal oxidation product detected from butane metabolism. Two gene clusters, prmABCD and smoABCD – coding for soluble di-iron monooxgenases (SDIMOs involved in gaseous n-alkanes oxidation – were detected in the BCP1 genome. By means of reverse transcriptase-quantitative PCR (RT-qPCR analysis, a set of substrates inducing the expression of the sdimo genes in BCP1 were assessed as well as their transcriptional repression in the presence of sugars, organic acids or during the cell growth on rich medium (Luria Bertani broth. The transcriptional start sites of both the sdimo gene clusters were identified by means of primer extension experiments. Finally, proteomic studies revealed changes in the protein pattern induced by growth on gaseous- (n-butane and/or liquid (n-hexane short-chain n-alkanes as compared to growth on succinate. Among the differently expressed protein spots, two chaperonins and an isocytrate lyase were identified along with oxidoreductases involved in oxidation reactions downstream of the initial monooxygenase reaction step.

  14. Precursor of fragment radicals in the radiolysis of normal alkanes. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Isildar, M; Schuler, R H [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Chemistry

    1978-01-01

    It is found that the yields of fragment radicals produced in the radiolysis of n-hexane are not significantly affected by the changes in the ion recombination processes that occur when HI is added to the system. From this observation it is concluded that in the radiolysis of normal alkanes, carbon-carbon bond rupture results predominantly either from high energy processes that do not directly involve ionic precursors or, more likely, from the dissociation of the initial ions at very early times (< 10/sup -11/s) before a substantial fraction of the geminate ions undergo neutralization.

  15. Comparison of pulseoximetry oxygen saturation and arterial oxygen saturation in open heart intensive care unit

    Directory of Open Access Journals (Sweden)

    Alireza Mahoori

    2013-08-01

    Full Text Available Background: Pulseoximetry is widely used in the critical care setting, currently used to guide therapeutic interventions. Few studies have evaluated the accuracy of SPO2 (puls-eoximetry oxygen saturation in intensive care unit after cardiac surgery. Our objective was to compare pulseoximetry with arterial oxygen saturation (SaO2 during clinical routine in such patients, and to examine the effect of mild acidosis on this relationship.Methods: In an observational prospective study 80 patients were evaluated in intensive care unit after cardiac surgery. SPO2 was recorded and compared with SaO2 obtained by blood gas analysis. One or serial arterial blood gas analyses (ABGs were performed via a radial artery line while a reliable pulseoximeter signal was present. One hundred thirty seven samples were collected and for each blood gas analyses, SaO2 and SPO2 we recorded.Results: O2 saturation as a marker of peripheral perfusion was measured by Pulseoxim-etry (SPO2. The mean difference between arterial oxygen saturation and pulseoximetry oxygen saturation was 0.12%±1.6%. A total of 137 paired readings demonstrated good correlation (r=0.754; P<0.0001 between changes in SPO2 and those in SaO2 in samples with normal hemoglobin. Also in forty seven samples with mild acidosis, paired readings demonstrated good correlation (r=0.799; P<0.0001 and the mean difference between SaO2 and SPO2 was 0.05%±1.5%.Conclusion: Data showed that in patients with stable hemodynamic and good signal quality, changes in pulseoximetry oxygen saturation reliably predict equivalent changes in arterial oxygen saturation. Mild acidosis doesn’t alter the relation between SPO2 and SaO2 to any clinically important extent. In conclusion, the pulse oximeter is useful to monitor oxygen saturation in patients with stable hemodynamic.

  16. Occurrence of diverse alkane hydroxylase alkB genes in indigenous oil-degrading bacteria of Baltic Sea surface water.

    Science.gov (United States)

    Viggor, Signe; Jõesaar, Merike; Vedler, Eve; Kiiker, Riinu; Pärnpuu, Liis; Heinaru, Ain

    2015-12-30

    Formation of specific oil degrading bacterial communities in diesel fuel, crude oil, heptane and hexadecane supplemented microcosms of the Baltic Sea surface water samples was revealed. The 475 sequences from constructed alkane hydroxylase alkB gene clone libraries were grouped into 30 OPFs. The two largest groups were most similar to Pedobacter sp. (245 from 475) and Limnobacter sp. (112 from 475) alkB gene sequences. From 56 alkane-degrading bacterial strains 41 belonged to the Pseudomonas spp. and 8 to the Rhodococcus spp. having redundant alkB genes. Together 68 alkB gene sequences were identified. These genes grouped into 20 OPFs, half of them being specific only to the isolated strains. Altogether 543 diverse alkB genes were characterized in the brackish Baltic Sea water; some of them representing novel lineages having very low sequence identities with corresponding genes of the reference strains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Diversity of alkane hydroxylase genes on the rhizoplane of grasses planted in petroleum-contaminated soils

    OpenAIRE

    Tsuboi, Shun; Yamamura, Shigeki; Nakajima-Kambe, Toshiaki; Iwasaki, Kazuhiro

    2015-01-01

    The study investigated the diversity and genotypic features of alkane hydroxylase genes on rhizoplanes of grasses planted in artificial petroleum-contaminated soils to acquire new insights into the bacterial communities responsible for petroleum degradation in phytoremediation. Four types of grass (Cynodon dactylon, two phenotypes of Zoysia japonica, and Z. matrella) were used. The concentrations of total petroleum hydrocarbon effectively decreased in the grass-planted systems compared with t...

  18. Oxygen Saturation in the Dental Pulp of Maxillary Premolars in Different Age Groups - Part 1.

    Science.gov (United States)

    Estrela, Carlos; Serpa, Giuliano C; Alencar, Ana Helena G; Bruno, Kely F; Barletta, Fernando B; Felippe, Wilson T; Estrela, Cyntia R A; Souza, João B

    2017-01-01

    The aim of this study was to determine oxygen saturation levels in the dental pulp of maxillary premolars in different age groups. A total of 120 human maxillary premolars with normal dental pulps were selected covering the following age groups: 20-24, 25-29, 30-34, 35-39 and 40-44 years (n=24 each group). Oxygen saturation was assessed using pulse oximetry. Analysis of variance was used to assess differences in oxygen saturation levels and Tukey's test was used to identify the age groups that differed from each other. Significance was set at 0.05. Mean oxygen saturation of 120 premolars was 86.20% considering all age groups. Significantly reduced levels were found in the oldest group compared to the other groups: 40 to 44 years - 80.00% vs. 89.71, 87.67, 88.71, and 84.80% for age groups 20-24, 25-29, 30-34, 35-39 years, respectively. The mean oxygen saturation levels were similar between 20 and 39 years of age (86.20%) in the whole sample, but reduced significantly in the 40-44-year age group, suggesting that older patients present lower oxygen saturation results even in the absence of pulp tissue injury.

  19. Validation of a δ2Hn-alkane-δ18Ohemicellulose based paleohygrometer: Implications from a climate chamber experiment

    Science.gov (United States)

    Hepp, Johannes; Kathrin Schäfer, Imke; Tuthorn, Mario; Wüthrich, Lorenz; Zech, Jana; Glaser, Bruno; Juchelka, Dieter; Rozanski, Kazimierz; Zech, Roland; Mayr, Christoph; Zech, Michael

    2017-04-01

    Leaf wax-derived biomarkers, e.g. long chain n-alkanes and fatty acids, and their hydrogen isotopic composition are proved to be of a value in paleoclimatology/-hydrology research. However, the alteration of the isotopic signal as a result of the often unknown amount of leaf water enrichment challenges a direct reconstruction of the isotopic composition of paleoprecipitation. The coupling of ^2H/^1H results of leaf wax-derived biomarkers with 18O/16O results of hemicellulose-derived sugars has the potential to overcome this limitation and additionally allows reconstructing relative air humidity (RH) (Zech et al., 2013). This approach was recently validated by Tuthorn et al. (2015) by applying it to topsoil samples along a climate transect in Argentina. Accordingly, the biomarker-derived RH values correlate significantly with modern actual RH values from the respective study sites, showing the potential of the established 'paleohygrometer' approach. However, a climate chamber validation study to answer open questions regarding this approach, e.g. how robust biosynthetic fractionation factors are, is still missing. Here we present coupled δ2Hn-alkane-δ18Ohemicellulose results obtained for leaf material from a climate chamber experiment, in which Eucalyptus globulus, Vicia faba and Brassica oleracea were grown under controlled conditions (Mayr, 2003). First, the 2H and 18O enrichment of leaf water strongly reflects actual RH values of the climate chambers. Second, the biomarker-based reconstructed RH values correlate well with the actual RH values of the respective climate chamber, validating the proposed 'paleohygrometer' approach. And third, the calculated fractionation factors between the investigated leaf biomarkers (n-C29 and n-C31 for alkanes; arabinose and xylose for hemicellulose) and leaf water are close to the expected once reviewed from the literature (+27\\permil for hemicellulose; -155\\permil for n-alkanes). Nevertheless, minor dependencies of these

  20. Anomaly in the Chain Length Dependence of n-Alkane Diffusion in ZIF-4 Metal-Organic Frameworks.

    Science.gov (United States)

    Hwang, Seungtaik; Gopalan, Arun; Hovestadt, Maximilian; Piepenbreier, Frank; Chmelik, Christian; Hartmann, Martin; Snurr, Randall Q; Kärger, Jörg

    2018-03-15

    Molecular diffusion is commonly found to slow down with increasing molecular size. Deviations from this pattern occur in some host materials with pore sizes approaching the diameters of the guest molecules. A variety of theoretical models have been suggested to explain deviations from this pattern, but robust experimental data are scarcely available. Here, we present such data, obtained by monitoring the chain length dependence of the uptake of n- alkanes in the zeolitic imidazolate framework ZIF-4. A monotonic decrease in diffusivity from ethane to n- butane was observed, followed by an increase for n- pentane, and another decrease for n- hexane. This observation was confirmed by uptake measurements with n- butane/ n -pentane mixtures, which yield faster uptake of n- pentane. Further evidence is provided by the observation of overshooting effects, i.e., by transient n- pentane concentrations exceeding the (eventually attained) equilibrium value. Accompanying grand canonical Monte Carlo simulations reveal, for the larger n- alkanes, significant differences between the adsorbed and gas phase molecular configurations, indicating strong confinement effects within ZIF-4, which, with increasing chain length, may be expected to give rise to configurational shifts facilitating molecular propagation at particular chain lengths.

  1. Anomaly in the Chain Length Dependence of n-Alkane Diffusion in ZIF-4 Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Seungtaik Hwang

    2018-03-01

    Full Text Available Molecular diffusion is commonly found to slow down with increasing molecular size. Deviations from this pattern occur in some host materials with pore sizes approaching the diameters of the guest molecules. A variety of theoretical models have been suggested to explain deviations from this pattern, but robust experimental data are scarcely available. Here, we present such data, obtained by monitoring the chain length dependence of the uptake of n-alkanes in the zeolitic imidazolate framework ZIF-4. A monotonic decrease in diffusivity from ethane to n-butane was observed, followed by an increase for n-pentane, and another decrease for n-hexane. This observation was confirmed by uptake measurements with n-butane/n-pentane mixtures, which yield faster uptake of n-pentane. Further evidence is provided by the observation of overshooting effects, i.e., by transient n-pentane concentrations exceeding the (eventually attained equilibrium value. Accompanying grand canonical Monte Carlo simulations reveal, for the larger n-alkanes, significant differences between the adsorbed and gas phase molecular configurations, indicating strong confinement effects within ZIF-4, which, with increasing chain length, may be expected to give rise to configurational shifts facilitating molecular propagation at particular chain lengths.

  2. nitrogen saturation in stream ecosystems

    OpenAIRE

    Earl, S. R.; Valett, H. M.; Webster, J. R.

    2006-01-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer ((NO3)-N-15-N) to measure uptake. Experiments were conducted in streams spanning a gradient ...

  3. Semiconductor saturable absorbers for ultrafast terahertz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    states, due to conduction band onparabolicity and scattering into satellite valleys in strong THz fields. Saturable absorber parameters, such as linear and nonsaturable transmission, and saturation fluence, are extracted by fits to a classic saturable absorber model. Further, we observe THz pulse......We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum...

  4. High or low oxygen saturation and severe retinopathy of prematurity: a meta-analysis.

    Science.gov (United States)

    Chen, Minghua L; Guo, Lei; Smith, Lois E H; Dammann, Christiane E L; Dammann, Olaf

    2010-06-01

    Low oxygen saturation appears to decrease the risk of severe retinopathy of prematurity (ROP) in preterm newborns when administered during the first few weeks after birth. High oxygen saturation seems to reduce the risk at later postmenstrual ages (PMAs). However, previous clinical studies are not conclusive individually. To perform a systematic review and meta-analysis to report the association between severe ROP incidence of premature infants with high or low target oxygen saturation measured by pulse oximetry. Studies were identified through PubMed and Embase literature searches through May 2009 by using the terms "retinopathy of prematurity and oxygen" or "retinopathy of prematurity and oxygen therapy." We selected 10 publications addressing the association between severe ROP and target oxygen saturation measured by pulse oximetry. Using a random-effects model we calculated the summary-effect estimate. We visually inspected funnel plots to examine possible publication bias. Low oxygen saturation (70%-96%) in the first several postnatal weeks was associated with a reduced risk of severe ROP (risk ratio [RR]: 0.48 [95% confidence interval (CI): 0.31-0.75]). High oxygen saturation (94%-99%) at > or = 32 weeks' PMA was associated with a decreased risk for progression to severe ROP (RR: 0.54 [95% CI: 0.35-0.82]). Among preterm infants with a gestational age of large randomized clinical trial with long-term developmental follow-up is warranted to confirm this meta-analytic result.

  5. Quantifying alkane emissions in the Eagle Ford Shale using boundary layer enhancement

    Science.gov (United States)

    Roest, Geoffrey; Schade, Gunnar

    2017-09-01

    The Eagle Ford Shale in southern Texas is home to a booming unconventional oil and gas industry, the climate and air quality impacts of which remain poorly quantified due to uncertain emission estimates. We used the atmospheric enhancement of alkanes from Texas Commission on Environmental Quality volatile organic compound monitors across the shale, in combination with back trajectory and dispersion modeling, to quantify C2-C4 alkane emissions for a region in southern Texas, including the core of the Eagle Ford, for a set of 68 days from July 2013 to December 2015. Emissions were partitioned into raw natural gas and liquid storage tank sources using gas and headspace composition data, respectively, and observed enhancement ratios. We also estimate methane emissions based on typical ethane-to-methane ratios in gaseous emissions. The median emission rate from raw natural gas sources in the shale, calculated as a percentage of the total produced natural gas in the upwind region, was 0.7 % with an interquartile range (IQR) of 0.5-1.3 %, below the US Environmental Protection Agency's (EPA) current estimates. However, storage tanks contributed 17 % of methane emissions, 55 % of ethane, 82 % percent of propane, 90 % of n-butane, and 83 % of isobutane emissions. The inclusion of liquid storage tank emissions results in a median emission rate of 1.0 % (IQR of 0.7-1.6 %) relative to produced natural gas, overlapping the current EPA estimate of roughly 1.6 %. We conclude that emissions from liquid storage tanks are likely a major source for the observed non-methane hydrocarbon enhancements in the Northern Hemisphere.

  6. Terrestrial environmental changes around the Gulf of Aden over the last 210 kyr deduced from the sediment n-alkane record: Implications for the dispersal of Homo sapiens

    Science.gov (United States)

    Isaji, Yuta; Kawahata, Hodaka; Ohkouchi, Naohiko; Murayama, Masafumi; Tamaki, Kensaku

    2015-03-01

    We analyzed long-chain (C25-C36) n-alkanes and pollen grains in sediments from the Gulf of Aden covering the last 212 kyr to reconstruct the surrounding terrestrial environment, a critical region for the dispersal of Homo sapiens. Substantial increases in the flux of n-alkanes during 200-185, 120-95, and 70-50 ka were interpreted to indicate enhanced vegetation biomass in the Arabian Peninsula and the northern part of the Horn of Africa or increase in lithogenic material inputs. Periods of enhanced n-alkane flux occurred during or immediately after pluvial episodes, indicating that the increased precipitation may have induced substantially enhanced vegetation biomass, creating favorable conditions for Homo sapiens. Additionally, vegetation may have increased due to moderate precipitation unrecorded by speleothems or in accordance with the lowering of sea level, indicating that the dispersal might have been possible even after the shift to an arid environment indicated by the speleothems.

  7. Nitrogen saturation in stream ecosystems.

    Science.gov (United States)

    Earl, Stevan R; Valett, H Maurice; Webster, Jackson R

    2006-12-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer (15NO3-N) to measure uptake. Experiments were conducted in streams spanning a gradient of background N concentration. Uptake increased in four of six streams as NO3-N was incrementally elevated, indicating that these streams were not saturated. Uptake generally corresponded to Michaelis-Menten kinetics but deviated from the model in two streams where some other growth-critical factor may have been limiting. Proximity to saturation was correlated to background N concentration but was better predicted by the ratio of dissolved inorganic N (DIN) to soluble reactive phosphorus (SRP), suggesting phosphorus limitation in several high-N streams. Uptake velocity, a reflection of uptake efficiency, declined nonlinearly with increasing N amendment in all streams. At the same time, uptake velocity was highest in the low-N streams. Our conceptual model of N transport, uptake, and uptake efficiency suggests that, while streams may be active sites of N uptake on the landscape, N saturation contributes to nonlinear changes in stream N dynamics that correspond to decreased uptake efficiency.

  8. The ORF slr0091 of Synechocystis sp. PCC6803 encodes a high-light induced aldehyde dehydrogenase converting apocarotenals and alkanals

    KAUST Repository

    Trautmann, Danika; Beyer, Peter D.; Al-Babili, Salim

    2013-01-01

    Alh1 converts a wide range of apocarotenals and alkanals, with a preference for apocarotenals with defined chain lengths. As suggested by in vitro incubations and using engineered retinal-forming E. coli cells, we found that retinal is not a substrate

  9. Brain oxygen saturation assessment in neonates using T2-prepared blood imaging of oxygen saturation and near-infrared spectroscopy

    DEFF Research Database (Denmark)

    Alderliesten, Thomas; De Vis, Jill B; Lemmers, Petra Ma

    2017-01-01

    saturation in the sagittal sinus (R(2 )= 0.49, p = 0.023), but no significant correlations could be demonstrated with frontal and whole brain cerebral blood flow. These results suggest that measuring oxygen saturation by T2-prepared blood imaging of oxygen saturation is feasible, even in neonates. Strong...... sinus. A strong linear relation was found between the oxygen saturation measured by magnetic resonance imaging and the oxygen saturation measured by near-infrared spectroscopy (R(2 )= 0.64, p ..., and magnetic resonance imaging measures of frontal cerebral blood flow, whole brain cerebral blood flow and venous oxygen saturation in the sagittal sinus (R(2 )= 0.71, 0.50, 0.65; p 

  10. Literature study and experimental investigations into the production of organic iodine compounds from alkane-vapour/air mixtures with radioiodine in the radiation field

    International Nuclear Information System (INIS)

    Leskopf, W.; Holl, S.; Bleier, K.

    1992-01-01

    It was assumed in these investigations that these compounds originated in the gas phase by irradiation induced reactions with radioiodine. Alkane(methane, ethane, propane, n-butane) vapour/air mixtures were radiolysed with iodine in a Co-60 gamma source. The parameter varied were the concentrations of iodine (6.85 E-09 mol/ml - 3.43 E-06 mol/ml) and of the alkanes (1.81 E-05 mol/ml - 3.72 E-10 mol/ml) as well as the irradiation doses (4.45 E + 02 Gy - 1.17 E + 05 Gy). The gaseous reaction mixtures were analysed qualitatively and quantitatively by an ECD- and a MSD-detector for iodine compounds difficult to separate. (orig.) [de

  11. Space Charge Saturated Sheath Regime and Electron Temperature Saturation in Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Y.; Staack, D.; Smirnov, A.; Fisch, N.J.

    2005-01-01

    Secondary electron emission in Hall thrusters is predicted to lead to space charge saturated wall sheaths resulting in enhanced power losses in the thruster channel. Analysis of experimentally obtained electron-wall collision frequency suggests that the electron temperature saturation, which occurs at high discharge voltages, appears to be caused by a decrease of the Joule heating rather than by the enhancement of the electron energy loss at the walls due to a strong secondary electron emission

  12. T2-prepared velocity selective labelling : A novel idea for full-brain mapping of oxygen saturation

    NARCIS (Netherlands)

    Alderliesten, Thomas; De Vis, Jill B; Lemmers, Petra M A; van Bel, Frank; Benders, Manon J N L; Hendrikse, Jeroen; Petersen, Esben T

    2016-01-01

    BACKGROUND AND AIM: Disturbances in cerebral oxygenation saturation (SO2) have been linked to adverse outcome in adults, children, and neonates. In intensive care, the cerebral SO2 is increasingly being monitored by Near-InfraRed Spectroscopy (NIRS). Unfortunately NIRS has a limited penetration

  13. Saturated Zone Colloid-Facilitated Transport

    International Nuclear Information System (INIS)

    Wolfsberg, A.; Reimus, P.

    2001-01-01

    The purpose of the Saturated Zone Colloid-Facilitated Transport Analysis and Modeling Report (AMR), as outlined in its Work Direction and Planning Document (CRWMS MandO 1999a), is to provide retardation factors for colloids with irreversibly-attached radionuclides, such as plutonium, in the saturated zone (SZ) between their point of entrance from the unsaturated zone (UZ) and downgradient compliance points. Although it is not exclusive to any particular radionuclide release scenario, this AMR especially addresses those scenarios pertaining to evidence from waste degradation experiments, which indicate that plutonium and perhaps other radionuclides may be irreversibly attached to colloids. This report establishes the requirements and elements of the design of a methodology for calculating colloid transport in the saturated zone at Yucca Mountain. In previous Total Systems Performance Assessment (TSPA) analyses, radionuclide-bearing colloids were assumed to be unretarded in their migration. Field experiments in fractured tuff at Yucca Mountain and in porous media at other sites indicate that colloids may, in fact, experience retardation relative to the mean pore-water velocity, suggesting that contaminants associated with colloids should also experience some retardation. Therefore, this analysis incorporates field data where available and a theoretical framework when site-specific data are not available for estimating plausible ranges of retardation factors in both saturated fractured tuff and saturated alluvium. The distribution of retardation factors for tuff and alluvium are developed in a form consistent with the Performance Assessment (PA) analysis framework for simulating radionuclide transport in the saturated zone. To improve on the work performed so far for the saturated-zone flow and transport modeling, concerted effort has been made in quantifying colloid retardation factors in both fractured tuff and alluvium. The fractured tuff analysis used recent data

  14. Reaction of hydrogen atoms produced by radiolysis and photolysis in solid phase at 4 and 77 K

    International Nuclear Information System (INIS)

    Miyazaki, Tetsuo

    1991-01-01

    The behavior of H atoms in the solid phase has been reviewed with special attention to comparison of H atoms produced by radiolysis with those produced by photolysis. The paper consists of three parts. I -Production of H atoms: (1) the experimental results which indicate H-atom formation in the radiolysis of solid alkane are summarized; (2) ESR saturation behavior of trapped H atoms depends upon the method of H-atom-production, i.e. photolysis or radiolysis, and upon the initial energy of H atoms in the photolysis. II - Diffusion of H atoms: (1) activation energies for thermally-activated diffusion of H atoms are shown; (2) quantum diffusion of H atoms in solid H 2 is explained in terms of repetition of tunneling reaction H 2 + H → H + H 2 . III -Reaction of H atoms: (1) reactions and trapping processes of hot H atoms have been shown in solid methane and argon by use of hot H atoms with specified initial energy; (2) when H atoms are produced by the radiolysis of solvent alkane or by the photolysis of HI in the alkane mixtures at 77 K, the H atoms react very selectively with solute alkane at low concentration. The selective reaction of the H atom has been found in eight matrices; (3) activation energy for a hydrogen-atom-abstraction reaction by thermal H atoms at low temperatures is less than than several kJ mol -1 because of quantum tunneling. The absolute rate constants for H 2 (D 2 , HD) + H(D) tunneling reactions have been determined experimentally in solid hydrogen at 4.2K; (4) theoretical studies for tunneling reactions H 2 (D 2 ,HD) + H(D) at ultralow temperatures were reviewed. The calculated rate constants were compared with the rate constants obtained experimentally. (author)

  15. Evaluation of Regression and Neuro_Fuzzy Models in Estimating Saturated Hydraulic Conductivity

    Directory of Open Access Journals (Sweden)

    J. Behmanesh

    2015-06-01

    Full Text Available Study of soil hydraulic properties such as saturated and unsaturated hydraulic conductivity is required in the environmental investigations. Despite numerous research, measuring saturated hydraulic conductivity using by direct methods are still costly, time consuming and professional. Therefore estimating saturated hydraulic conductivity using rapid and low cost methods such as pedo-transfer functions with acceptable accuracy was developed. The purpose of this research was to compare and evaluate 11 pedo-transfer functions and Adaptive Neuro-Fuzzy Inference System (ANFIS to estimate saturated hydraulic conductivity of soil. In this direct, saturated hydraulic conductivity and physical properties in 40 points of Urmia were calculated. The soil excavated was used in the lab to determine its easily accessible parameters. The results showed that among existing models, Aimrun et al model had the best estimation for soil saturated hydraulic conductivity. For mentioned model, the Root Mean Square Error and Mean Absolute Error parameters were 0.174 and 0.028 m/day respectively. The results of the present research, emphasises the importance of effective porosity application as an important accessible parameter in accuracy of pedo-transfer functions. sand and silt percent, bulk density and soil particle density were selected to apply in 561 ANFIS models. In training phase of best ANFIS model, the R2 and RMSE were calculated 1 and 1.2×10-7 respectively. These amounts in the test phase were 0.98 and 0.0006 respectively. Comparison of regression and ANFIS models showed that the ANFIS model had better results than regression functions. Also Nuro-Fuzzy Inference System had capability to estimatae with high accuracy in various soil textures.

  16. Flash kinetics in liquefied noble gases: Studies of alkane activation and ligand dynamics at rhodium carbonyl centers, and a search for xenon-carbene adducts

    Energy Technology Data Exchange (ETDEWEB)

    Yeston, Jake Simon [Univ. of California, Berkeley, CA (United States)

    2001-01-01

    A general introduction is given to place the subsequent chapters in context for the nonspecialist. Results are presented from a low temperature infrared (IR) flash kinetic study of C-H bond activation via photoinduced reaction of Cp*Rh(CO)2 (1) with linear and cyclic alkanes in liquid krypton and liquid xenon solution. No reaction was observed with methane; for all other hydrocarbons studied, the rate law supports fragmentation of the overall reaction into an alkane binding step followed by an oxidative addition step. For the binding step, larger alkanes within each series (linear and cyclic) interact more strongly than smaller alkanes with the Rh center. The second step, oxidative addition of the C-H bond across Rh, exhibits very little variance in the series of linear alkanes, while in the cyclic series the rate decreases with increasing alkane size. Results are presented from an IR flash kinetic study of the photoinduced chemistry of Tp*Rh(CO)2 (5; Tp* = hydridotris(3,5-dimethylpyrazolyl)borato) in liquid xenon solution at –50 °C. IR spectra of the solution taken 2 μs after 308 nm photolysis exhibit two transient bands at 1972-1980 cm-1 and 1992-2000 cm-1, respectively. These bands were assigned to (η3-Tp*)Rh(CO)•Xe and (η2-Tp*)Rh(CO)•Xe solvates on the basis of companion studies using Bp*Rh(CO)2 (9; Bp* = dihydridobis(3,5-dimethyl pyrazolyl)borato). Preliminary kinetic data for reaction of 5 with cyclohexane in xenon solution indicate that both transient bands still appear and that their rates of decay correlate with formation of the product Tp*Rh(CO)(C6H11)(H). The preparation and reactivity of the new complex Bp*Rh(CO)(pyridine) (11) are described. The complex reacts with CH3I to yield the novel Rh carbene hydride complex HB(Me2pz)2Rh(H)(I)(C5H5N)(C(O)Me) (12), resulting from formal addition of CH

  17. Effects of chain length, chlorination degree, and structure on the octanol-water partition coefficients of polychlorinated n-alkanes.

    Science.gov (United States)

    Hilger, Bettina; Fromme, Hermann; Völkel, Wolfgang; Coelhan, Mehmet

    2011-04-01

    Log octanol-water partition coefficients (log Kow) of 40 synthesized polychlorinated n-alkanes (PCAs) with different chlorination degrees were determined using reversed-phase high performance liquid chromatography (RP-HPLC). In addition, log Kow values of a technical mixture namely Cereclor 63L as well as 15 individual in house synthesized C10, C11, and C12 chloroalkanes with known chlorine positions were estimated. Based on these results, the effects of chain length, chlorination degree, and structure were explored. The estimated log Kow values ranged from 4.10 (polychlorinated n-decanes with 50.2% chlorine content) to 11.34 (polychlorinated n-octacosanes with 54.8% chlorine content) for PCAs and from 3.82 (1,2,5,6,9,10-hexachlorodecane) to 7.75 (1,1,1,3,9,11,11,11-octachlorododecane) for the individual chloroalkanes studied. The results showed that log Kow value was influenced linearly at a given chlorine content by chain length, while a polynominal effect was observed in dependence on the chlorination degree of an alkane chain. Chlorine substitution pattern influenced markedly the log Kow value of chloroalkanes.

  18. The translational repressor Crc controls the Pseudomonas putida benzoate and alkane catabolic pathways using a multi-tier regulation strategy.

    Science.gov (United States)

    Hernández-Arranz, Sofía; Moreno, Renata; Rojo, Fernando

    2013-01-01

    Metabolically versatile bacteria usually perceive aromatic compounds and hydrocarbons as non-preferred carbon sources, and their assimilation is inhibited if more preferable substrates are available. This is achieved via catabolite repression. In Pseudomonas putida, the expression of the genes allowing the assimilation of benzoate and n-alkanes is strongly inhibited by catabolite repression, a process controlled by the translational repressor Crc. Crc binds to and inhibits the translation of benR and alkS mRNAs, which encode the transcriptional activators that induce the expression of the benzoate and alkane degradation genes respectively. However, sequences similar to those recognized by Crc in benR and alkS mRNAs exist as well in the translation initiation regions of the mRNA of several structural genes of the benzoate and alkane pathways, which suggests that Crc may also regulate their translation. The present results show that some of these sites are functional, and that Crc inhibits the induction of both pathways by limiting not only the translation of their transcriptional activators, but also that of genes coding for the first enzyme in each pathway. Crc may also inhibit the translation of a gene involved in benzoate uptake. This multi-tier approach probably ensures the rapid regulation of pathway genes, minimizing the assimilation of non-preferred substrates when better options are available. A survey of possible Crc sites in the mRNAs of genes associated with other catabolic pathways suggested that targeting substrate uptake, pathway induction and/or pathway enzymes may be a common strategy to control the assimilation of non-preferred compounds. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  19. One-of-A-Kind: A Microporous Metal-Organic Framework Capable of Adsorptive Separation of Linear, Mono- and Di-branched Alkane Isomers via Temperature- and Adsorbate-Dependent Molecular Sieving

    KAUST Repository

    Wang, Hao

    2018-03-29

    Separation of alkane isomers represents a crucial process in the petrochemical industry in order to achieve high octane rating of gasoline. Herein, we report the first example of complete separation of linear, monobranched and dibranched alkane isomers by a single adsorbent. A calcium-based robust microporous metal-organic framework, Ca(H2tcpb) (tcpb = 1,2,4,5-tetrakis(4-carboxyphenyl)-benzene) exhibits unique molecular exclusion behavior which enables full separation of binary or ternary mixtures of alkane isomers into pure form of each isomerate. The successful separation of monobranched and dibranched hexane isomers will not only lead to the production of higher quality gasoline with maximum possible octane numbers but also fill the gap in the current separation technology. Exploration of separation mechanism indicates that structural flexibility and adsorbate-dependent structure change of the porous framework plays a vital role for the observed temperature-dependent molecular sieving property of the adsorbent.

  20. Quantum chemical and conventional TST calculations of rate constants for the OH + alkane reaction

    International Nuclear Information System (INIS)

    Bravo-Perez, Graciela; Alvarez-Idaboy, J. Raul; Jimenez, Annia Galano; Cruz-Torres, Armando

    2005-01-01

    Reactions of OH with methane, ethane, propane, i-butane, and n-butane have been modeled using ab initio (MP2) and hybrid DFT (BHandHLYP) methods, and the 6-311G(d,p) basis set. Furthermore, single-point calculations at the CCSD(T) level were carried out at the optimized geometries. The rate constants have been calculated using the conventional transition-state theory (CTST). Arrhenius equations are proposed in the temperature range of 250-650 K. Hindered Internal Rotation partition functions calculations were explicitly carried out and included in the total partition functions. These corrections showed to be relevant in the determination of the pre-exponential parameters, although not so important as in the NO 3 + alkane reactions [G. Bravo-Perez, J.R. Alvarez-Idaboy, A. Cruz-Torres, M.E. Ruiz, J. Phys. Chem. A 106 (2002) 4645]. The explicit participation of the tunnel effect has been taken into account. The calculated rate coefficients provide a very good agreement with the experimental data. The best agreement for the overall alkane + OH reactions seemed to occur when the BHandHLYP geometries and partition functions are used. For propane and i-butane, in addition to the respective secondary and tertiary H-abstraction channels, the primary one has been considered. These pathways are confirmed to be significant in spite of the large differences in activation energies between primary and secondary or primary and tertiary channels, respectively of propane and i-butane reactions and should not be disregarded

  1. Assessing species saturation: conceptual and methodological challenges.

    Science.gov (United States)

    Olivares, Ingrid; Karger, Dirk N; Kessler, Michael

    2018-05-07

    Is there a maximum number of species that can coexist? Intuitively, we assume an upper limit to the number of species in a given assemblage, or that a lineage can produce, but defining and testing this limit has proven problematic. Herein, we first outline seven general challenges of studies on species saturation, most of which are independent of the actual method used to assess saturation. Among these are the challenge of defining saturation conceptually and operationally, the importance of setting an appropriate referential system, and the need to discriminate among patterns, processes and mechanisms. Second, we list and discuss the methodological approaches that have been used to study species saturation. These approaches vary in time and spatial scales, and in the variables and assumptions needed to assess saturation. We argue that assessing species saturation is possible, but that many studies conducted to date have conceptual and methodological flaws that prevent us from currently attaining a good idea of the occurrence of species saturation. © 2018 Cambridge Philosophical Society.

  2. Misconceptions in Reporting Oxygen Saturation

    NARCIS (Netherlands)

    Toffaletti, John; Zijlstra, Willem G.

    2007-01-01

    BACKGROUND: We describe some misconceptions that have become common practice in reporting blood gas and cooximetry results. In 1980, oxygen saturation was incorrectly redefined in a report of a new instrument for analysis of hemoglobin (Hb) derivatives. Oxygen saturation (sO(2)) was redefined as the

  3. Generation of Polar Semi-Saturated Bicyclic Pyrazoles for Fragment-Based Drug Discovery Campaigns.

    Science.gov (United States)

    Luise, Nicola; Wyatt, Paul

    2018-05-07

    Synthesising polar semi-saturated bicyclic heterocycles can lead to better starting points for fragment-based drug discovery (FBDD) programs. This communication highlights the application of diverse chemistry to construct bicyclic systems from a common intermediate, where pyrazole, a privileged heteroaromatic able to bind effectively to biological targets, is fused to diverse saturated counterparts. The generated fragments can be further developed either after confirmation of their binding pose or early in the process, as their synthetic intermediates. Essential quality control (QC) for selection of small molecules to add to a fragment library is discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Landsliding in partially saturated materials

    Science.gov (United States)

    Godt, J.W.; Baum, R.L.; Lu, N.

    2009-01-01

    [1] Rainfall-induced landslides are pervasive in hillslope environments around the world and among the most costly and deadly natural hazards. However, capturing their occurrence with scientific instrumentation in a natural setting is extremely rare. The prevailing thinking on landslide initiation, particularly for those landslides that occur under intense precipitation, is that the failure surface is saturated and has positive pore-water pressures acting on it. Most analytic methods used for landslide hazard assessment are based on the above perception and assume that the failure surface is located beneath a water table. By monitoring the pore water and soil suction response to rainfall, we observed shallow landslide occurrence under partially saturated conditions for the first time in a natural setting. We show that the partially saturated shallow landslide at this site is predictable using measured soil suction and water content and a novel unified effective stress concept for partially saturated earth materials. Copyright 2009 by the American Geophysical Union.

  5. Spacecraft reorientation control in presence of attitude constraint considering input saturation and stochastic disturbance

    Science.gov (United States)

    Cheng, Yu; Ye, Dong; Sun, Zhaowei; Zhang, Shijie

    2018-03-01

    This paper proposes a novel feedback control law for spacecraft to deal with attitude constraint, input saturation, and stochastic disturbance during the attitude reorientation maneuver process. Applying the parameter selection method to improving the existence conditions for the repulsive potential function, the universality of the potential-function-based algorithm is enhanced. Moreover, utilizing the auxiliary system driven by the difference between saturated torque and command torque, a backstepping control law, which satisfies the input saturation constraint and guarantees the spacecraft stability, is presented. Unlike some methods that passively rely on the inherent characteristic of the existing controller to stabilize the adverse effects of external stochastic disturbance, this paper puts forward a nonlinear disturbance observer to compensate the disturbance in real-time, which achieves a better performance of robustness. The simulation results validate the effectiveness, reliability, and universality of the proposed control law.

  6. Recipe for residual oil saturation determination

    Energy Technology Data Exchange (ETDEWEB)

    Guillory, A.J.; Kidwell, C.M.

    1979-01-01

    In 1978, Shell Oil Co., in conjunction with the US Department of Energy, conducted a residual oil saturation study in a deep, hot high-pressured Gulf Coast Reservoir. The work was conducted prior to initiation of CO/sub 2/ tertiary recovery pilot. Many problems had to be resolved prior to and during the residual oil saturation determination. The problems confronted are outlined such that the procedure can be used much like a cookbook in designing future studies in similar reservoirs. Primary discussion centers around planning and results of a log-inject-log operation used as a prime method to determine the residual oil saturation. Several independent methods were used to calculate the residual oil saturation in the subject well in an interval between 12,910 ft (3935 m) and 12,020 ft (3938 m). In general, these numbers were in good agreement and indicated a residual oil saturation between 22% and 24%. 10 references.

  7. Tracking Controller for Intrinsic Output Saturated Systems in Presence of Amplitude and Rate Input Saturations

    DEFF Research Database (Denmark)

    Chater, E.; Giri, F.; Guerrero, Josep M.

    2014-01-01

    We consider the problem of controlling plants that are subject to multiple saturation constraints. Especially, we are interested in linear systems whose input is subject to amplitude and rate constraints of saturation type. Furthermore, the considered systems output is also subject to an intrinsi...

  8. Cooperative catalysis for the direct hydrodeoxygenation of vegetable oils into diesel-range alkanes over Pd/NbOPO4.

    Science.gov (United States)

    Xia, Qineng; Zhuang, Xiaojing; Li, Molly Meng-Jung; Peng, Yung-Kang; Liu, Guoliang; Wu, Tai-Sing; Soo, Yun-Liang; Gong, Xue-Qing; Wang, Yanqin; Tsang, Shik Chi Edman

    2016-04-14

    Near quantitative carbon yields of diesel-range alkanes were achieved from the hydrodeoxygenation of triglycerides over Pd/NbOPO4 under mild conditions with no catalyst deactivation: catalyst characterization and theoretical calculations suggest that the high hydrodeoxygenation activity originated from the synergistic effect of Pd and strong Lewis acidity on the unique structure of NbOPO4.

  9. Dehalogenimonas alkenigignens sp. nov., a chlorinated-alkane-dehalogenating bacterium isolated from groundwater.

    Science.gov (United States)

    Bowman, Kimberly S; Nobre, M Fernanda; da Costa, Milton S; Rainey, Fred A; Moe, William M

    2013-04-01

    Two strictly anaerobic bacterial strains, designated IP3-3(T) and SBP-1, were isolated from groundwater contaminated by chlorinated alkanes and alkenes at a Superfund Site located near Baton Rouge, Louisiana (USA). Both strains reductively dehalogenate a variety of polychlorinated aliphatic alkanes, including 1,2-dichloroethane, 1,2-dichloropropane, 1,1,2,2-tetrachloroethane, 1,1,2-trichloroethane and 1,2,3-trichloropropane, when provided with hydrogen as the electron donor. To clarify their taxonomic position, strains IP3-3(T) and SBP-1 were characterized using a polyphasic approach. Both IP3-3(T) and SBP-1 are mesophilic, non-spore-forming, non-motile and Gram-stain-negative. Cells of both strains are irregular cocci with diameters of 0.4-1.1 µm. Both are resistant to ampicillin and vancomycin. The genomic DNA G+C contents of strains IP3-3(T) and SBP-1 are 55.5±0.4 and 56.2±0.2 mol% (HPLC), respectively. Major cellular fatty acids include C18 : 1ω9c, C16 : 0, C14 : 0 and C16 : 1ω9c. 16S rRNA gene sequence based phylogenetic analyses indicated that the strains cluster within the phylum Chloroflexi most closely related to but distinct from the species Dehalogenimonas lykanthroporepellens (96.2 % pairwise similarity) and Dehalococcoides mccartyi (90.6 % pairwise similarity). Physiological and chemotaxonomic traits as well as phylogenetic analysis support the conclusion that these strains represent a novel species within the genus Dehalogenimonas for which the name Dehalogenimonas alkenigignens sp. nov. is proposed. The type strain is IP3-3(T) ( = JCM 17062(T) = NRRL B-59545(T)).

  10. Quantifying alkane emissions in the Eagle Ford Shale using boundary layer enhancement

    Directory of Open Access Journals (Sweden)

    G. Roest

    2017-09-01

    Full Text Available The Eagle Ford Shale in southern Texas is home to a booming unconventional oil and gas industry, the climate and air quality impacts of which remain poorly quantified due to uncertain emission estimates. We used the atmospheric enhancement of alkanes from Texas Commission on Environmental Quality volatile organic compound monitors across the shale, in combination with back trajectory and dispersion modeling, to quantify C2–C4 alkane emissions for a region in southern Texas, including the core of the Eagle Ford, for a set of 68 days from July 2013 to December 2015. Emissions were partitioned into raw natural gas and liquid storage tank sources using gas and headspace composition data, respectively, and observed enhancement ratios. We also estimate methane emissions based on typical ethane-to-methane ratios in gaseous emissions. The median emission rate from raw natural gas sources in the shale, calculated as a percentage of the total produced natural gas in the upwind region, was 0.7 % with an interquartile range (IQR of 0.5–1.3 %, below the US Environmental Protection Agency's (EPA current estimates. However, storage tanks contributed 17 % of methane emissions, 55 % of ethane, 82 % percent of propane, 90 % of n-butane, and 83 % of isobutane emissions. The inclusion of liquid storage tank emissions results in a median emission rate of 1.0 % (IQR of 0.7–1.6 % relative to produced natural gas, overlapping the current EPA estimate of roughly 1.6 %. We conclude that emissions from liquid storage tanks are likely a major source for the observed non-methane hydrocarbon enhancements in the Northern Hemisphere.

  11. Low temperature hydrogenolysis of waxes to diesel range gasoline and light alkanes: Comparison of catalytic properties of group 4, 5 and 6 metal hydrides supported on silica-alumina

    KAUST Repository

    Norsic, Sébastien

    2012-01-01

    A series of metal hydrides (M = Zr, Hf, Ta, W) supported on silica-alumina were studied for the first time in hydrogenolysis of light alkanes in a continuous flow reactor. It was found that there is a difference in the reaction mechanism between d 0 metal hydrides of group 4 and d 0 ↔ d 2 metal hydrides of group 5 and group 6. Furthermore, the potential application of these catalysts has been demonstrated by the transformation of Fischer-Tropsch wax in a reactive distillation set-up into typical gasoline and diesel molecules in high selectivity (up to 86 wt%). Current results show that the group 4 metal hydrides have a promising yield toward liquid fuels.

  12. Heat conduction in chain polymer liquids: molecular dynamics study on the contributions of inter- and intramolecular energy transfer.

    Science.gov (United States)

    Ohara, Taku; Yuan, Tan Chia; Torii, Daichi; Kikugawa, Gota; Kosugi, Naohiro

    2011-07-21

    In this paper, the molecular mechanisms which determine the thermal conductivity of long chain polymer liquids are discussed, based on the results observed in molecular dynamics simulations. Linear n-alkanes, which are typical polymer molecules, were chosen as the target of our studies. Non-equilibrium molecular dynamics simulations of bulk liquid n-alkanes under a constant temperature gradient were performed. Saturated liquids of n-alkanes with six different chain lengths were examined at the same reduced temperature (0.7T(c)), and the contributions of inter- and intramolecular energy transfer to heat conduction flux, which were identified as components of heat flux by the authors' previous study [J. Chem. Phys. 128, 044504 (2008)], were observed. The present study compared n-alkane liquids with various molecular lengths at the same reduced temperature and corresponding saturated densities, and found that the contribution of intramolecular energy transfer to the total heat flux, relative to that of intermolecular energy transfer, increased with the molecular length. The study revealed that in long chain polymer liquids, thermal energy is mainly transferred in the space along the stiff intramolecular bonds. This finding implies a connection between anisotropic thermal conductivity and the orientation of molecules in various organized structures with long polymer molecules aligned in a certain direction, which includes confined polymer liquids and self-organized structures such as membranes of amphiphilic molecules in water.

  13. Saturation and linear transport equation

    International Nuclear Information System (INIS)

    Kutak, K.

    2009-03-01

    We show that the GBW saturation model provides an exact solution to the one dimensional linear transport equation. We also show that it is motivated by the BK equation considered in the saturated regime when the diffusion and the splitting term in the diffusive approximation are balanced by the nonlinear term. (orig.)

  14. Excess molar volumes of the ternary system {methylcyclohexane (1)+cyclohexane (2)+n-alkanes (3)} at T=298.15 K

    International Nuclear Information System (INIS)

    Iloukhani, Hossein; Rezaei-Sameti, Mahdi

    2005-01-01

    Densities were experimentally determined in the whole range of composition at T=298.15 K for the ternary system {methylcyclohexane (1)+cyclohexane (2)+n-alkanes (3)} and for the seven corresponding binary systems. The n-alkanes include n-hexane, n-heptane, and n-octane. Excess molar volumes, V E , were calculated for the binaries and ternaries systems. The V 123 E data are positive over the entire range of composition for the systems {methylcyclohexane (1)+cyclohexane (2)+n-heptane (3) or n-octane (3)} at three fixed compositions (f m =X 1 /X 2 ). For the system {methylcyclohexane (1)+cyclohexane (2)+n-hexane (3)}, the V E values showed positive for f m =0.3 and negative for f m =3. The V E data exhibit, an inversion in sign in the mixture containing f m =1 for later ternary system. Several empirical expressions are used to predict and correlate the ternary excess molar volumes from experimental results on the constituted binaries and analyzed to gain insight about liquid mixture interactions

  15. Trimethylamine (fishy odor) adsorption by biomaterials: effect of fatty acids, alkanes, and aromatic compounds in waxes.

    Science.gov (United States)

    Boraphech, Phattara; Thiravetyan, Paitip

    2015-03-02

    Thirteen plant leaf materials were selected to be applied as dried biomaterial adsorbents for polar gaseous trimethylamine (TMA) adsorption. Biomaterial adsorbents were efficient in adsorbing gaseous TMA up to 100% of total TMA (100 ppm) within 24 h. Sansevieria trifasciata is the most effective plant leaf material while Plerocarpus indicus was the least effective in TMA adsorption. Activated carbon (AC) was found to be lower potential adsorbent to adsorb TMA when compared to biomaterial adsorbents. As adsorption data, the Langmuir isotherm supported that the gaseous TMA adsorbed monolayer on the adsorbent surface and was followed pseudo-second order kinetic model. Wax extracted from plant leaf could also adsorb gaseous TMA up to 69% of total TMA within 24 h. Another 27-63% of TMA was adsorbed by cellulose and lignin that naturally occur in high amounts in plant leaf. Subsequently, the composition appearing in biomaterial wax showed a large quantity of short-chain fatty acids (≤C18) especially octadecanoic acid (C18), and short-chain alkanes (C12-C18) as well as total aromatic components dominated in the wax, which affected TMA adsorption. Hence, it has been demonstrated that plant biomaterial is a superior biosorbent for TMA removal.

  16. Thermodiffusion in multicomponent n-alkane mixtures.

    Science.gov (United States)

    Galliero, Guillaume; Bataller, Henri; Bazile, Jean-Patrick; Diaz, Joseph; Croccolo, Fabrizio; Hoang, Hai; Vermorel, Romain; Artola, Pierre-Arnaud; Rousseau, Bernard; Vesovic, Velisa; Bou-Ali, M Mounir; Ortiz de Zárate, José M; Xu, Shenghua; Zhang, Ke; Montel, François; Verga, Antonio; Minster, Olivier

    2017-01-01

    Compositional grading within a mixture has a strong impact on the evaluation of the pre-exploitation distribution of hydrocarbons in underground layers and sediments. Thermodiffusion, which leads to a partial diffusive separation of species in a mixture due to the geothermal gradient, is thought to play an important role in determining the distribution of species in a reservoir. However, despite recent progress, thermodiffusion is still difficult to measure and model in multicomponent mixtures. In this work, we report on experimental investigations of the thermodiffusion of multicomponent n -alkane mixtures at pressure above 30 MPa. The experiments have been conducted in space onboard the Shi Jian 10 spacecraft so as to isolate the studied phenomena from convection. For the two exploitable cells, containing a ternary liquid mixture and a condensate gas, measurements have shown that the lightest and heaviest species had a tendency to migrate, relatively to the rest of the species, to the hot and cold region, respectively. These trends have been confirmed by molecular dynamics simulations. The measured condensate gas data have been used to quantify the influence of thermodiffusion on the initial fluid distribution of an idealised one dimension reservoir. The results obtained indicate that thermodiffusion tends to noticeably counteract the influence of gravitational segregation on the vertical distribution of species, which could result in an unstable fluid column. This confirms that, in oil and gas reservoirs, the availability of thermodiffusion data for multicomponent mixtures is crucial for a correct evaluation of the initial state fluid distribution.

  17. Uso de n-alcanos na estimativa da composição botânica da dieta em ovinos alimentados com diferentes proporções de Brachiaria decumbens Stapf e Arachis pintoi Koprov e Gregory Use of n-alkanes to estimate the dietary botanical composition in sheep fed different proportions of Brachiaria decumbens Stapf and Arachis pintoi Koprov and Gregory

    Directory of Open Access Journals (Sweden)

    Nelson Massaru Fukumoto

    2007-08-01

    Koprov & Gregory cv. Amarillo and Brachiaria decumbens Stapf (0, 15, 30, 45 e 60% of Arachis pintoi. Twenty lambs were used in a completely randomized design with 10 days for diet adaptation and 5 days for fecal collection. Both fecal composites and hay samples were analyzed for n-alkane concentration. Dietary forage proportions were estimated from measured concentrations of n-alkanes in feces and forage by the least square sum of deviations. Multivariate analyses and canonical variables were used to select the most discriminatory alkane with the obtained data submitted to analysis of variance. Means were compared using the "t" test and the adjustments of the estimated values in relation to the observed were done by linear regression. The canonical variables indicated that the alkanes C35, C33, C30, C31, C27, C29 and C36 had the greatest discriminatory potential. Therefore, the use of all these alkanes in the calculation was more accurate and precise (P <0.05 than the use of a combination of 2 or 3 alkanes to estimate the proportion of A. pintoi in the diet. The best adjustment of the regression was also found for these alkanes. The "t" test for the intercept of the equation (a and the regression coefficient (b showed that a = 0 and b = 1, indicating that the estimated values are equivalent to the observed. The multivariate analysis appears to be an important tool to select n-alkanes for diet evaluation.

  18. Energy dependent saturable and reverse saturable absorption in cube-like polyaniline/polymethyl methacrylate film

    Energy Technology Data Exchange (ETDEWEB)

    Thekkayil, Remyamol [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695 547 (India); Philip, Reji [Light and Matter Physics Group, Raman Research Institute, C.V. Raman Avenue, Bangalore 560 080 (India); Gopinath, Pramod [Department of Physics, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695 547 (India); John, Honey, E-mail: honey@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695 547 (India)

    2014-08-01

    Solid films of cube-like polyaniline synthesized by inverse microemulsion polymerization method have been fabricated in a transparent PMMA host by an in situ free radical polymerization technique, and are characterized by spectroscopic and microscopic techniques. The nonlinear optical properties are studied by open aperture Z-scan technique employing 5 ns (532 nm) and 100 fs (800 nm) laser pulses. At the relatively lower laser pulse energy of 5 μJ, the film shows saturable absorption both in the nanosecond and femtosecond excitation domains. An interesting switchover from saturable absorption to reverse saturable absorption is observed at 532 nm when the energy of the nanosecond laser pulses is increased. The nonlinear absorption coefficient increases with increase in polyaniline concentration, with low optical limiting threshold, as required for a good optical limiter. - Highlights: • Synthesized cube-like polyaniline nanostructures. • Fabricated polyaniline/PMMA nanocomposite films. • At 5 μJ energy, saturable absorption is observed both at ns and fs regime. • Switchover from SA to RSA is observed as energy of laser beam increases. • Film (0.1 wt % polyaniline) shows high β{sub eff} (230 cm GW{sup −1}) and low limiting threshold at 150 μJ.

  19. Gas-Phase Reactions of Doubly Charged Lanthanide Cations with Alkanes and Alkenes. Trends in Metal(2+) Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, John K.; Marcalo, Joaquim; Santos, Marta; Pires de Matos, Antonio; Haire, Richard G.

    2008-12-08

    The gas-phase reactivity of doubly-charged lanthanide cations, Ln2+ (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), with alkanes (methane, ethane, propane, n-butane) and alkenes (ethene, propene, 1-butene) was studied by Fourier transform ion cyclotron resonance mass spectrometry. The reaction products consisted of different combinations of doubly-charged organometallic ions?adducts or species formed via metal-ion-induced hydrogen, dihydrogen, alkyl, or alkane eliminations from the hydrocarbons?and singly-charged ions that resulted from electron, hydride, or methide transfers from the hydrocarbons to the metal ions. The only lanthanide cations capable of activating the hydrocarbons to form doubly-charged organometallic ions were La2+, Ce2+, Gd2+, and Tb2+, which have ground-state or low-lying d1 electronic configurations. Lu2+, with an accessible d1 electronic configuration but a rather high electron affinity, reacted only through transfer channels. The remaining Ln2+ reacted via transfer channels or adduct formation. The different accessibilities of d1 electronic configurations and the range of electron affinities of the Ln2+ cations allowed for a detailed analysis of the trends for metal(2+) reactivity and the conditions for occurrence of bond activation, adduct formation, and electron, hydride, and methide transfers.

  20. Problems of selectivity in liquid-phase oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Emanuel, N M

    1978-07-01

    Based on a kinetic analysis of a generalized scheme for radical-chain process and on published experimental results, factors determining the selectivities of various liquid-phase oxidations of organic compounds are examined, including the kinetic chain length, molecular and chain decomposition of products, and competing routes in the initiated oxidation or autoxidation of hydrocarbons to peroxides. Also discussed are selective inhibition of undesirable routes in chain reactions, e.g., styrene and acetaldehyde co-oxidation; activation of molecular oxygen by variable-valence metal compounds used as homogeneous catalysts; modeling of fermentative processes by oxidation of hydrocarbons in complex catalytic systems, e.g., hydroxylation of alkanes, epoxidation or carbonylation of olefins, or oxidation of alcohols and ketones to acids; and the mechanisms of heterogeneous catalysis in liquid-phase reactions, e.g., oxidation of alkylaromatic hydrocarbons to peroxides and co-oxidation of propylene and acetaldehyde.

  1. SAXS study of transient pre-melting in chain-folded alkanes

    International Nuclear Information System (INIS)

    Ungar, G.; Wills, H.H.

    1990-01-01

    A pronounced pre-melting effect is observed in chain-folded crystals of pure monodisperse n-alkane C 246 H 494 . The effect is reversible on a short time scale, but at longer times the once-folded chain crystals are irreversibly lost as slow chain extension proceeds by solid diffusion well below the melting point. The melting process is thus monitored by rapid time-resolved small-angle X-ray (SAXS) measurements, using synchrotron radiation. The results show that the observed pronounced broadening of the DSC melting endotherm for chain-folded crystals is entirely due to genuine pre-melting of lamellar surfaces. Although a significant portion of material is already molten below the final melting point of chain-folded crystals T F , no recrystallization in the chain-extended form can occur until the cores of the crystalline lamellae melt at T F . Pre-melting of extended chain crystals is significantly less pronounced than that of folded chain crystals

  2. The role of alkenes produced during hydrous pyrolysis of a shale

    Energy Technology Data Exchange (ETDEWEB)

    Leif, R.N.; Simoneit, B.R.T. [Oregon State Univ., Corvallis, OR (United States). College of Oceanic and Atmospheric Sciences

    2000-07-01

    Hydrous pyrolysis experiments conducted on Messel shale with D{sub 2}O demonstrated that a large amount of deuterium becomes incorporated into the hydrocarbons generated from the shale kerogen. In order to understand the pathway of deuterium (and protium) exchange and the role of water during hydrous pyrolysis, we conducted a series of experiments using aliphatic compounds (1,13-tetradecadiene, 1-hexadecene, eicosane and dotriacontane) as probe molecules. These compounds were pyrolyzed in D{sub 2}O, shale/D{sub 2}O, and shale/H{sub 2}O and the products analyzed by GC-MS. In the absence of powdered shale, the incorporation of deuterium from D{sub 2}O occurred only in olefinic compounds via double bond isomerization. The presence of shale accelerated deuterium incorporation into the olefins and resulted in a minor amount of deuterium incorporation in the saturated n-alkanes. The pattern of deuterium substitution of the diene closely matched the deuterium distribution observed in the n-alkanes generated from the shale kerogen in the D{sub 2}O/shale pyrolyses. The presence of the shale also resulted in reduction (hydrogenation) of olefins to saturated n-alkanes with concomitant oxidation of olefins to ketones. These results show that under hydrous pyrolysis conditions, kerogen breakdown generates n-alkanes and terminal n-alkenes by free radical hydrocarbon cracking of the aliphatic kerogen structure. The terminal n-alkenes rapidly isomerize to internal alkenes via acid-catalyzed isomerization under hydrothermal conditions, a significant pathway of deuterium (and protium) exchange between water and the hydrocarbons. These n-alkenes simultaneously undergo reduction to n-alkanes (major) or oxidation to ketones (minor) via alcohols formed by the hydration of the alkenes. (Author)

  3. Abundance and diversity of n-alkane-degrading bacteria in a forest soil co-contaminated with hydrocarbons and metals: a molecular study on alkB homologous genes.

    Science.gov (United States)

    Pérez-de-Mora, Alfredo; Engel, Marion; Schloter, Michael

    2011-11-01

    Unraveling functional genes related to biodegradation of organic compounds has profoundly improved our understanding of biological remediation processes, yet the ecology of such genes is only poorly understood. We used a culture-independent approach to assess the abundance and diversity of bacteria catalyzing the degradation of n-alkanes with a chain length between C(5) and C(16) at a forest site co-contaminated with mineral oil hydrocarbons and metals for nearly 60 years. The alkB gene coding for a rubredoxin-dependent alkane monooxygenase enzyme involved in the initial activation step of aerobic aliphatic hydrocarbon metabolism was used as biomarker. Within the area of study, four different zones were evaluated: one highly contaminated, two intermediately contaminated, and a noncontaminated zone. Contaminant concentrations, hydrocarbon profiles, and soil microbial respiration and biomass were studied. Abundance of n-alkane-degrading bacteria was quantified via real-time PCR of alkB, whereas genetic diversity was examined using molecular fingerprints (T-RFLP) and clone libraries. Along the contamination plume, hydrocarbon profiles and increased respiration rates suggested on-going natural attenuation at the site. Gene copy numbers of alkB were similar in contaminated and control areas. However, T-RFLP-based fingerprints suggested lower diversity and evenness of the n-alkane-degrading bacterial community in the highly contaminated zone compared to the other areas; both diversity and evenness were negatively correlated with metal and hydrocarbon concentrations. Phylogenetic analysis of alkB denoted a shift of the hydrocarbon-degrading bacterial community from Gram-positive bacteria in the control zone (most similar to Mycobacterium and Nocardia types) to Gram-negative genotypes in the contaminated zones (Acinetobacter and alkB sequences with little similarity to those of known bacteria). Our results underscore a qualitative rather than a quantitative response of

  4. Potential for saturated ground-water system contamination at the Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Stone, R.; Ruggieri, M.R.; Rogers, L.L.; Emerson, D.O.; Buddemeier, R.W.

    1982-01-01

    A program of hydrogeologic investigation has been carried out to determine the likelihood of contaminant movement to the saturated zone from near the ground surface at Lawrence Livermore National Laboratory (LLNL). A companion survey of potential contaminant sources was also conducted at the LLNL. Water samples from selected LLNL wells were analyzed to test the water quality in the uppermost part of the saturated zone, which is from 14 to 48 m (45 to 158 ft) beneath the surface. Only nitrate and tritium were found in concentrations above natural background. In one well, the nitrate was slightly more concentrated than the drinking water limit. The nitrate source has not been found. The tritium in all ground-water samples from wells was found far less concentrated than the drinking water limit. The extent of infiltration of surface water was traced with environmental tritium. The thickness and stratigraphy of the unsaturated zone beneath the LLNL, and nearby area, was determined with specially constructed wells and boreholes. Well hydrograph analysis indicated where infiltration of surface water reached the saturated ground-water system. The investigation indicates that water infiltrating from the surface, through alluvial deposits, reaches the saturated zone along the course of Arroyo Seco, Arroyo Las Positas, and from the depression near the center of the site where seasonal water accumulates. Several potential contaminant sources were identified, and it is likely that contaminants could move from near the ground surface to the saturated zone beneath LLNL. Additional ground-water sampling and analysis will be performed and ongoing investigations will provide estimates of the speed with which potential contaminants can flow laterally in the saturated zone beneath LLNL. 34 references, 61 figures, 16 tables

  5. Scale-dependent gas hydrate saturation estimates in sand reservoirs in the Ulleung Basin, East Sea of Korea

    Science.gov (United States)

    Lee, Myung Woong; Collett, Timothy S.

    2013-01-01

    Through the use of 2-D and 3-D seismic data, several gas hydrate prospects were identified in the Ulleung Basin, East Sea of Korea and thirteen drill sites were established and logging-while-drilling (LWD) data were acquired from each site in 2010. Sites UBGH2–6 and UBGH2–10 were selected to test a series of high amplitude seismic reflections, possibly from sand reservoirs. LWD logs from the UBGH2–6 well indicate that there are three significant sand reservoirs with varying thickness. Two upper sand reservoirs are water saturated and the lower thinly bedded sand reservoir contains gas hydrate with an average saturation of 13%, as estimated from the P-wave velocity. The well logs at the UBGH2–6 well clearly demonstrated the effect of scale-dependency on gas hydrate saturation estimates. Gas hydrate saturations estimated from the high resolution LWD acquired ring resistivity (vertical resolution of about 5–8 cm) reaches about 90% with an average saturation of 28%, whereas gas hydrate saturations estimated from the low resolution A40L resistivity (vertical resolution of about 120 cm) reaches about 25% with an average saturation of 11%. However, in the UBGH2–10 well, gas hydrate occupies a 5-m thick sand reservoir near 135 mbsf with a maximum saturation of about 60%. In the UBGH2–10 well, the average and a maximum saturation estimated from various well logging tools are comparable, because the bed thickness is larger than the vertical resolution of the various logging tools. High resolution wireline log data further document the role of scale-dependency on gas hydrate calculations.

  6. Serum albumin--a non-saturable carrier

    DEFF Research Database (Denmark)

    Brodersen, R; Honoré, B; Larsen, F G

    1984-01-01

    The shape of binding isotherms for sixteen ligands to human serum albumin showed no signs of approaching saturation at high ligand concentrations. It is suggested that ligand binding to serum albumin is essentially different from saturable binding of substrates to enzymes, of oxygen to haemoglobi...

  7. Saturation and forward jets at HERA

    International Nuclear Information System (INIS)

    Marquet, C.; Peschanski, R.; Royon, C.

    2004-01-01

    We analyse forward-jet production at HERA in the framework of the Golec-Biernat and Wusthoff saturation models. We obtain a good description of the forward-jet cross-sections measured by the H1 and ZEUS Collaborations in the two-hard-scale region (k T∼ Q >> Λ QCD ) with two different parametrizations with either significant or weak saturation effects. The weak saturation parametrization gives a scale compatible with the one found for the proton structure function F2. We argue that Mueller-Navelet jets at the Tevatron and the LHC could help distinguishing between both options

  8. Correcting saturation of detectors for particle/droplet imaging methods

    International Nuclear Information System (INIS)

    Kalt, Peter A M

    2010-01-01

    Laser-based diagnostic methods are being applied to more and more flows of theoretical and practical interest and are revealing interesting new flow features. Imaging particles or droplets in nephelometry and laser sheet dropsizing methods requires a trade-off of maximized signal-to-noise ratio without over-saturating the detector. Droplet and particle imaging results in lognormal distribution of pixel intensities. It is possible to fit a derived lognormal distribution to the histogram of measured pixel intensities. If pixel intensities are clipped at a saturated value, it is possible to estimate a presumed probability density function (pdf) shape without the effects of saturation from the lognormal fit to the unsaturated histogram. Information about presumed shapes of the pixel intensity pdf is used to generate corrections that can be applied to data to account for saturation. The effects of even slight saturation are shown to be a significant source of error on the derived average. The influence of saturation on the derived root mean square (rms) is even more pronounced. It is found that errors on the determined average exceed 5% when the number of saturated samples exceeds 3% of the total. Errors on the rms are 20% for a similar saturation level. This study also attempts to delineate limits, within which the detector saturation can be accurately corrected. It is demonstrated that a simple method for reshaping the clipped part of the pixel intensity histogram makes accurate corrections to account for saturated pixels. These outcomes can be used to correct a saturated signal, quantify the effect of saturation on a derived average and offer a method to correct the derived average in the case of slight to moderate saturation of pixels

  9. FY 2000 report on the promotion projects by Research Institute of Innovative Technology for the Earth. Proceedings of the international seminar (Reports presented to the international workshop for selective oxidation catalysts); 2000 nendo chikyu kankyo sangyo gijutsu kaihatsu suishin jigyo kokusai seminar jigyo shiryo. Sentaku sanka shokubai kokusai workshop hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of the international workshop for selective oxidation catalysts, promoted by RITE. The session of methane activation includes a comprehensive lecture on designs of selective alkane oxidation catalysts developed since the 1980s, describing the simplified catalyst design procedures and, at the same time, pointing out the vapor-phase reactions governing the overall reactions at high temperature. The session of alkane oxidation includes a lecture on oxidation of ethane into acrolein in the presence of a silica catalyst supporting isolated active sites, stressing necessity for controlling the vapor-phase reactions and importance of isolating the active sites. The session of crystalline materials includes a lecture on Ti-siting in Ti-containing molecular sieve and selective oxidation catalyst functions, concentrating discussion on oxidation with H{sub 2}O{sub 2} as the oxidant on TS-1. The session of engineering hybrid includes a lecture on catalytic partial oxidation of alkanes in millisecond reactors, describing that possibility of controlling the vapor-phase reactions in the presence of monolith, porous-plate catalysts in a reactor through which the reactant gases pass in a very short time, of the order of millisecond. (NEDO)

  10. Ultrafast THz Saturable Absorption in Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2011-01-01

    We demonstrate THz saturable absorption in n-doped semiconductors GaAs, GaP, and Ge in a nonlinear THz time-domain spectroscopy experiment. Saturable absorption is caused by sample conductivity modulation due to electron heating and satellite valley scattering in the field of a strong THz pulse....

  11. Nitrous oxide: Saturation properties and the phase diagram

    International Nuclear Information System (INIS)

    Ferreira, A.G.M.; Lobo, L.Q.

    2009-01-01

    The experimental values of the coordinates of the triple point and of the critical point of nitrous oxide registered in the literature were assessed and those judged as most reliable have been selected. Empirical equations have been found for the vapour pressure, sublimation and fusion curves. The virial coefficients and saturation properties as functions of temperature along the equilibrium curves are described by reduced equations. They were used in arriving at the molar enthalpies at the triple point and the normal boiling temperature. Equations for the sublimation and fusion curves resulting from the exactly integrated Clapeyron equation compare favourably with the results from the empirical treatment and the experimental data.

  12. Excess enthalpies of binary mixtures of 1-hexene with some branched alkanes at the temperature 298.15 K

    International Nuclear Information System (INIS)

    Wang, Zhaohui; Benson, George C.; Lu, Benjamin C.-Y.

    2004-01-01

    Measurements of excess molar enthalpies at the temperature 298.15 K in a flow microcalorimeter are reported for the five binary mixtures formed by mixing 1-hexene with the branched alkanes: 2-methylpentane, 3-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, and 2,2,4-trimethylpentane. Smooth Redlich-Kister representations of the results are described. It was found that the Liebermann-Fried model also provided good representations of the results

  13. Electrical conductivity modeling in fractal non-saturated porous media

    Science.gov (United States)

    Wei, W.; Cai, J.; Hu, X.; Han, Q.

    2016-12-01

    The variety of electrical conductivity in non-saturated conditions is important to study electric conduction in natural sedimentary rocks. The electrical conductivity in completely saturated porous media is a porosity-function representing the complex connected behavior of single conducting phases (pore fluid). For partially saturated conditions, the electrical conductivity becomes even more complicated since the connectedness of pore. Archie's second law is an empirical electrical conductivity-porosity and -saturation model that has been used to predict the formation factor of non-saturated porous rock. However, the physical interpretation of its parameters, e.g., the cementation exponent m and the saturation exponent n, remains questionable. On basis of our previous work, we combine the pore-solid fractal (PSF) model to build an electrical conductivity model in non-saturated porous media. Our theoretical porosity- and saturation-dependent models contain endmember properties, such as fluid electrical conductivities, pore fractal dimension and tortuosity fractal dimension (representing the complex degree of electrical flowing path). We find the presented model with non-saturation-dependent electrical conductivity datasets indicate excellent match between theory and experiments. This means the value of pore fractal dimension and tortuosity fractal dimension change from medium to medium and depends not only on geometrical properties of pore structure but also characteristics of electrical current flowing in the non-saturated porous media.

  14. Site-Scale Saturated Zone Flow Model

    International Nuclear Information System (INIS)

    G. Zyvoloski

    2003-01-01

    The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca Mountain using FEHM V 2.20 are being

  15. Viscosity and Liquid Density of Asymmetric n-Alkane Mixtures: Measurement and Modelling

    DEFF Research Database (Denmark)

    Queimada, António J.; Marrucho, Isabel M.; Coutinho, João A.P.

    2005-01-01

    Viscosity and liquid density Measurements were performed, at atmospheric pressure. in pure and mixed n-decane. n-eicosane, n-docosane, and n-tetracosane from 293.15 K (or above the melting point) up to 343.15 K. The viscosity was determined with a rolling ball viscometer and liquid densities...... with a vibrating U-tube densimeter. Pure component results agreed, oil average, with literature values within 0.2% for liquid density and 3% for viscosity. The measured data were used to evaluate the performance of two models for their predictions: the friction theory coupled with the Peng-Robinson equation...... of state and a corresponding states model recently proposed for surface tension, viscosity, vapor pressure, and liquid densities of the series of n-alkanes. Advantages and shortcoming of these models are discussed....

  16. Bulk and compound-specific isotope analysis of long-chain n-alkanes from a 85,000 year sediment core from Lake Peten Petén Itzá, Guatemala

    Science.gov (United States)

    Mays, J.; Brenner, M.; Curtis, J. H.; Curtis, K.; Hodell, D. A.; Correa-Metrio, A.; Escobar, J.; Dutton, A. L.; Zimmerman, A. R.; Guilderson, T. P.

    2013-12-01

    Sediment core PI-6 from Lake Petén Itzá, Guatemala possesses an 85-ka record of climate from lowland Central America. Variations in sediment lithology suggest large, abrupt changes in precipitation during the last glacial and deglacial periods, and into the early Holocene. Study of cores from nearby Lake Quexil demonstrated the utility of using the carbon isotopic composition of leaf wax n-alkanes to infer changes in terrestrial vegetation (Huang et al. 2001). Forty-nine samples were taken from composite Petén Itzá core PI-6 to measure carbon isotopes of bulk organic carbon and long-chain n alkanes. Changes in δ13C values indicate shifts in the relative proportion of C3 to C4 biomass. The record shows largest δ13C variations are associated with Heinrich Events. Carbon isotope values in sediments deposited during the Last Glacial Maximum (LGM) indicate moderate precipitation and little rainfall fluctuation. The deglacial was a period of pronounced climate variability, e.g. the Bölling-Allerod and Younger Dryas. Arid times of the deglacial were inferred from samples with the greatest δ13C values in organic matter, reflecting the largest proportion of C4 plants. Such inferences are supported by stable isotope measurements on ostracod shells and analysis of pollen from the same sample depths in core PI-6. Carbon stable isotope measures on bulk organic carbon and n alkane compounds show similar trends throughout the record and the C:N ratio of Petén Itzá sediments indicates a predominantly allochthonous source for bulk organic matter. Hence, isotope measures on bulk organic carbon (δ13CTOC) in sediments from this lake are sufficient to infer climate-driven shifts in vegetation, making n-alkane extraction and isotope analysis superfluous.

  17. Observability of linear systems with saturated outputs

    NARCIS (Netherlands)

    Koplon, R.; Sontag, E.D.; Hautus, M.L.J.

    1994-01-01

    We present necessary and sufficient conditions for observability of the class of output-saturated systems. These are linear systems whose output passes through a saturation function before it can be measured.

  18. Self-consistent molecular dynamics calculation of diffusion in higher n-alkanes.

    Science.gov (United States)

    Kondratyuk, Nikolay D; Norman, Genri E; Stegailov, Vladimir V

    2016-11-28

    Diffusion is one of the key subjects of molecular modeling and simulation studies. However, there is an unresolved lack of consistency between Einstein-Smoluchowski (E-S) and Green-Kubo (G-K) methods for diffusion coefficient calculations in systems of complex molecules. In this paper, we analyze this problem for the case of liquid n-triacontane. The non-conventional long-time tails of the velocity autocorrelation function (VACF) are found for this system. Temperature dependence of the VACF tail decay exponent is defined. The proper inclusion of the long-time tail contributions to the diffusion coefficient calculation results in the consistency between G-K and E-S methods. Having considered the major factors influencing the precision of the diffusion rate calculations in comparison with experimental data (system size effects and force field parameters), we point to hydrogen nuclear quantum effects as, presumably, the last obstacle to fully consistent n-alkane description.

  19. SATURATION OF MAGNETOROTATIONAL INSTABILITY THROUGH MAGNETIC FIELD GENERATION

    International Nuclear Information System (INIS)

    Ebrahimi, F.; Prager, S. C.; Schnack, D. D.

    2009-01-01

    The saturation mechanism of magnetorotational instability (MRI) is examined through analytical quasi-linear theory and through nonlinear computation of a single mode in a rotating disk. We find that large-scale magnetic field is generated through the α-effect (the correlated product of velocity and magnetic field fluctuations) and causes the MRI mode to saturate. If the large-scale plasma flow is allowed to evolve, the mode can also saturate through its flow relaxation. In astrophysical plasmas, for which the flow cannot relax because of gravitational constraints, the mode saturates through field generation only.

  20. Preferential activation of primary C–H bonds in the reactions of small alkanes with the diatomic MgO+. cation

    Czech Academy of Sciences Publication Activity Database

    Schröder, Detlef; Roithová, J.; Alikhani, E.; Kwapien, K.; Sauer, J.

    2010-01-01

    Roč. 16, č. 13 (2010), s. 4110-4119 ISSN 0947-6539 R&D Projects: GA AV ČR KJB400550704; GA ČR GA203/08/1487 Grant - others: ERC (XE) HORIZOMS AdG226373 Institutional research plan: CEZ:AV0Z40550506 Keywords : alkanes * C-H activation * density functional calculations * magnesium oxide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.476, year: 2010

  1. A QSPR STUDY OF NORMAL BOILING POINT OF ORGANIC COMPOUNDS (ALIPHATIC ALKANES USING MOLECULAR DESCRIPTORS

    Directory of Open Access Journals (Sweden)

    B. Souyei

    2013-12-01

    Full Text Available A quantitative structure–property relationship (QSPR study is carried out to develop correlations that relate the molecular structures of organic compounds (Aliphatic Alkanes to their normal boiling point (NBP and two correlations were proposed for constitutionals and connectivity indices Models. The correlations are simple in application with good accuracy, which provide an easy, direct and relatively accurate way to calculate NBP. Such calculation gives us a model that gives results in remarkable correlations with the descriptors of blokes constitutionals (CON, and connectivity indices (CI (R2 = 0.950, δ = 0.766 (R2 = 0.969, δ = 0.782 respectively.

  2. In vivo detection of hemoglobin oxygen saturation and carboxyhemoglobin saturation with multiwavelength photoacoustic microscopy.

    Science.gov (United States)

    Chen, Zhongjiang; Yang, Sihua; Xing, Da

    2012-08-15

    A method for noninvasively detecting hemoglobin oxygen saturation (SO2) and carboxyhemoglobin saturation (SCO) in subcutaneous microvasculature with multiwavelength photoacoustic microscopy is presented. Blood samples mixed with different concentrations of carboxyhemoglobin were used to test the feasibility and accuracy of photoacoustic microscopy compared with the blood-gas analyzer. Moreover, fixed-point detection of SO2 and SCO in mouse ear was obtained, and the changes from normoxia to carbon monoxide hypoxia were dynamically monitored in vivo. Experimental results demonstrate that multiwavelength photoacoustic microscopy can detect SO2 and SCO, which has future potential clinical applications.

  3. Saturation of bentonite dependent upon temperature

    International Nuclear Information System (INIS)

    Hausmannova, Lucie; Vasicek, Radek

    2010-01-01

    Document available in extended abstract form only. The fundamental idea behind the long-term safe operation of a deep repository is the use of the Multi-barrier system principle. Barriers may well differ according to the type of host rock in which the repository is located. It is assumed that the buffer in the granitic host rock environment will consist of swelling clays which boast the ideal properties for such a function i.e. low permeability, high swelling pressure, self-healing ability etc. all of which are affected primarily by mineralogy and dry density. Water content plays a crucial role in the activation of swelling pressure as well as, subsequently, in the potential self healing of the various contact areas of the numerous buffer components made from bentonite. In the case of a deep repository, a change in water content is not only connected with the possible intake of water from the host rock, but also with its redistribution owing to changes in temperature after the insertion of the heat source (disposal waste package containing spent fuel) into the repository 'nest'. The principal reason for the experimental testing of this high dry density material is the uncertainty with regard to its saturation ability (final water content or the degree of saturation) at higher temperatures. The results of the Mock-Up-CZ experiment showed that when the barrier is constantly supplied with a saturation medium over a long time period the water content in the barrier as well as the degree of saturation settle independently of temperature. The Mock-Up-CZ experiment was performed at temperatures of 30 deg. - 90 deg. C in the barrier; therefore it was decided to experimentally verify this behaviour by means of targeted laboratory tests. A temperature of 110 deg. C was added to the set of experimental temperatures resulting in samples being tested at 25 deg. C, 95 deg. C and 110 deg. C. The degree of saturation is defined as the ratio of pore water volume to pore

  4. Minimum K_2,3-saturated Graphs

    OpenAIRE

    Chen, Ya-Chen

    2010-01-01

    A graph is K_{2,3}-saturated if it has no subgraph isomorphic to K_{2,3}, but does contain a K_{2,3} after the addition of any new edge. We prove that the minimum number of edges in a K_{2,3}-saturated graph on n >= 5 vertices is sat(n, K_{2,3}) = 2n - 3.

  5. Determination of residual oil saturation from time-lapse pulsed neutron capture logs in a large sandstone reservoir

    International Nuclear Information System (INIS)

    Syed, E.V.; Salaita, G.N.; McCaffery, F.G.

    1991-01-01

    Cased hole logging with pulsed neutron tools finds extensive use for identifying zones of water breakthrough and monitoring oil-water contacts in oil reservoirs being depleted by waterflooding or natural water drive. Results of such surveys then find direct use for planning recompletions and water shutoff treatments. Pulsed neutron capture (PNC) logs are useful for estimating water saturation changes behind casing in the presence of a constant, high-salinity environment. PNC log surveys run at different times, i.e., in a time-lapse mode, are particularly amenable to quantitative analysis. The combined use of the original open hole and PNC time-lapse log information can then provide information on remaining or residual oil saturations in a reservoir. This paper reports analyses of historical pulsed neutron capture log data to assess residual oil saturation in naturally water-swept zones for selected wells from a large sandstone reservoir in the Middle East. Quantitative determination of oil saturations was aided by PNC log information obtained from a series of tests conducted in a new well in the same field

  6. Correlation and prediction of mixing thermodynamic properties of ester-containing systems: Ester + alkane and ester + ester binary systems and the ternary dodecane + ethyl pentanoate + ethyl ethanoate

    International Nuclear Information System (INIS)

    Pérez, Noelia; Fernández, Luís; Ortega, Juan; Toledo, Francisco J.; Wisniak, Jaime

    2012-01-01

    Highlights: ► Excess enthalpies and volumes were measured for ester–ester–alkane. ► Mixing behaviour for ester–ester, ester–alkane and ester–ester–alkane are analyzed. ► Correlations with a new polynomial model reproduce well the mixing properties. ► UNIFAC predictions for h E result acceptable excluding the ester–ester mixtures. - Abstract: Excess thermodynamic properties V m E and H m E , have been measured for the ternary mixture dodecane + ethyl pentanoate + ethyl ethanoate and for the corresponding binaries dodecane + ethyl pentanoate, dodecane + ethyl ethanoate, ethyl pentanoate + ethyl ethanoate at 298.15 K. All mixtures show endothermic and expansive effects. Experimental results are correlated with a suitable equation whose final form for the excess ternary quantity M E contains the particular contributions of the three binaries (i–j) and a last term corresponding to the ternary, all of them obtained considering fourth-order interactions. The fit goodness for all mixtures is good and comparable to others equations taken from the literature. In this work the dissolution model for the binaries and ternary is analyzed with a special attention to ester–ester binaries whose behaviour is discussed. The application of the UNIFAC group contribution model to estimate the H m E yields acceptable results for the binaries (with the exception of ester–ester) and for the ternary mixture.

  7. Experimental techniques for characterising water in wood covering the range from dry to fully water-saturated

    DEFF Research Database (Denmark)

    Thybring, Emil Engelund; Kymäläinen, Maija; Rautkari, Lauri

    2018-01-01

    focuses on selected experimental techniques that can give deeper insights into various aspects of water in wood in the entire moisture domain from dry to fully water-saturated. These techniques fall into three broad categories: (1) gravimetric techniques that determine how much water is absorbed, (2...

  8. Scintillation probe with photomultiplier tube saturation indicator

    International Nuclear Information System (INIS)

    Ruch, J.F.; Urban, D.J.

    1996-01-01

    A photomultiplier tube saturation indicator is formed by supplying a supplemental light source, typically an light emitting diode (LED), adjacent to the photomultiplier tube. A switch allows the light source to be activated. The light is forwarded to the photomultiplier tube by an optical fiber. If the probe is properly light tight, then a meter attached to the indicator will register the light from the LED. If the probe is no longer light tight, and the saturation indicator is saturated, no signal will be registered when the LED is activated. 2 figs

  9. A Study of Picosecond Dehalogenation of Chlorobenzene Anions in Liquids of Positronium Inhibition Measurements

    DEFF Research Database (Denmark)

    Wikander, G.; Mogensen, O. E.

    1982-01-01

    on intramolecular electron transfer with subsequent dehalogenation of the molecular anion on a picosecond timescale. The divergence in inhibitor efficiency obtained for the chlorobenzenes when dissolved in aromatic solvents compared to the same solutes when dissolved in a saturated alkane appears most probably...

  10. Long n-alkanes isomerization by medium pore zeolites with pore mouth and key lock mechanisms; Isomerisation des paraffines longues par des zeolithes a pores moyens selon les mecanismes ouverture de pore et cle serrure

    Energy Technology Data Exchange (ETDEWEB)

    Claude, M.

    1999-10-01

    Skeletal isomerization of long n-alkanes is practiced to improve cold flow properties of diesel and lubricant fractions. In this work, model long n-alkanes (n-C{sub 10} - n-C{sub 24}) were hydro-isomerized in a fixed bed down flow vapour phase reactor loaded with bifunctional Pt/H-ZSM-22 zeolite catalyst. The skeletal isomers were analysed and identified with GC/MS. High isomer yields were obtained. The distribution of positional mono-methyl-branched isomers obtained from n-C{sub 12} to n-C{sub 24} are typically bimodal. This is explained by adsorption and reaction of the alkanes in pore mouths and locks on the external surface of the zeolite crystals. The pore mouth mode favours branching at C{sub 2} and C{sub 3}. The 'key lock' type proceeds by penetration of the two ends of the hydrocarbon chain into a different pore opening and favours more central mono-branching of the chain. The contribution of the key lock mode increases with increasing chain length and with the reaction temperature. The preferentially formed dimethyl-branched isomers have a separation between branchings of three up to fourteen carbon atoms. The formation of the second methyl-branching occurs preferentially from a centrally branched mono-methyl-branched isomer, so that the second branching is generated always more toward the end of the chain. Owing to the differences in adsorption entropy among the locks, at higher temperatures the largest lock is preferred and the distance between the two branching along the carbon chain in the preferred isomers is biggest. Thus the work resulted in the formulation of structure-selectivity relationships. n-C{sub 18} was hydro-isomerized on other zeolites. The nature and distribution of the isomers obtained suggest that the tubular 10-ring zeolites ZSM-23, ZSM-35 and SAPO-11 also operate according to pore mouth and key lock concepts. Zeolites with 12-rings show typical product patterns for catalysis in absence of steric hindrance. (author)

  11. Negative photoion spectroscopy of the core-excited bromo-chloro-alkanes, Br(CH2)nCl, n = 1-4

    International Nuclear Information System (INIS)

    Scully, S W J; Mackie, R A; Browning, R; Dunn, K F; Latimer, C J

    2004-01-01

    Polar photodissociation of a set of bromo-chloro-alkanes in the vicinity of the Br 3d core edge has been observed for the first time. It is shown that negative photoion spectroscopy is a powerful tool for investigating the various decay mechanisms of core-excited molecules. Analysis of these results indicates that the observed polar photodissociation arises from two competing spectator Auger decay processes in which the molecule can dissociate either before or after the core hole relaxation

  12. Simulation of the saturation process of a radwaste storage cell

    International Nuclear Information System (INIS)

    Robbe, M.F.; Clouard, A.

    2001-01-01

    This paper presents a simulation of the saturation of the barrier and the plug of a storage cell by the surrounding host rock. Generally speaking, the unsaturated barrier and plug start saturating immediately in the vicinity of the quasi-saturated host rock. Then the saturation front propagates towards the canisters and the symmetry axis. Apart from the part in contact with the plug, the barrier is saturated at about 30 years. The part of the barrier near the plug is saturated around 80 years. If the top of the plug is saturated very soon, the part in the corner near the gallery and the symmetry axis is not completely saturated after 100 years. In the site, we observe a small desaturation during the first month, at the limit with the plug and the barrier, and especially in the corner limited by both FoCa clay pieces. This transient phenomenon may be assigned to the time difference between the immediate suction of water by the unsaturated materials and the delayed water flows coming from the saturated host rock to compensate the water suction. The purpose of this computation was at once to estimate the time necessary for the saturation of the clay layers surrounding the radwaste canisters and to evaluate the hydro-mechanical behaviour of the storage cell during the saturation process. Therefore a mechanical simulation was performed using the present hydraulic results to initiate the mechanical computation. (authors)

  13. Elastoplastic model for unsaturated, quasi-saturated and fully saturated fine soils

    Directory of Open Access Journals (Sweden)

    Lai Ba Tien

    2016-01-01

    Full Text Available In unsaturated soils, the gaseous phase is commonly assumed to be continuous. This assumption is no more valid at high saturation ratio. In that case, air bubbles and pockets can be trapped in the porous network by the liquid phase and the gas phase becomes discontinuous. This trapped air reduces the apparent compressibility of the pore fluid and affect the mechanical behavior of the soil. Although it is trapped in the pores, its dissolution can take place. Dissolved air can migrate through the pore space, either by following the flow of the fluid or by diffusion. In this context, this paper present a hydro mechanical model that separately considers the kinematics and the mechanical behavior of each fluid species (eg liquid water, dissolved air, gaseous air and the solid matrix. This new model was implemented in a C++ code. Some numerical simulations are performed to demonstrate the ability of this model to reproduce a continuous transition of unsaturated to saturated states.

  14. Saturation Detection-Based Blocking Scheme for Transformer Differential Protection

    Directory of Open Access Journals (Sweden)

    Byung Eun Lee

    2014-07-01

    Full Text Available This paper describes a current differential relay for transformer protection that operates in conjunction with a core saturation detection-based blocking algorithm. The differential current for the magnetic inrush or over-excitation has a point of inflection at the start and end of each saturation period of the transformer core. At these instants, discontinuities arise in the first-difference function of the differential current. The second- and third-difference functions convert the points of inflection into pulses, the magnitudes of which are large enough to detect core saturation. The blocking signal is activated if the third-difference of the differential current is larger than the threshold and is maintained for one cycle. In addition, a method to discriminate between transformer saturation and current transformer (CT saturation is included. The performance of the proposed blocking scheme was compared with that of a conventional harmonic blocking method. The test results indicate that the proposed scheme successfully discriminates internal faults even with CT saturation from the magnetic inrush, over-excitation, and external faults with CT saturation, and can significantly reduce the operating time delay of the relay.

  15. CHARACTERIZATION OF THE ALKANE-INDUCIBLE CYTOCHROME P450 (P450ALK) GENE FROM THE YEAST CANDIDA TROPICALIS: IDENTIFICATION OF A NEW P450 FAMILY

    Science.gov (United States)

    The P450alk gene, which is inducible by the assimilation of alkane in Candida tropicalis, was sequenced and characterized. Structural features described in promoter and terminator regions of Saccharomyces yeast genes are present in the P450alk gene and some particular structures ...

  16. Criteria for saturated magnetization loop

    International Nuclear Information System (INIS)

    Harres, A.; Mikhov, M.; Skumryev, V.; Andrade, A.M.H. de; Schmidt, J.E.; Geshev, J.

    2016-01-01

    Proper estimation of magnetization curve parameters is vital in studying magnetic systems. In the present article, criteria for discrimination non-saturated (minor) from saturated (major) hysteresis loops are proposed. These employ the analysis of (i) derivatives of both ascending and descending branches of the loop, (ii) remanent magnetization curves, and (iii) thermomagnetic curves. Computational simulations are used in order to demonstrate their validity. Examples illustrating the applicability of these criteria to well-known real systems, namely Fe_3O_4 and Ni fine particles, are provided. We demonstrate that the anisotropy-field value estimated from a visual examination of an only apparently major hysteresis loop could be more than two times lower than the real one. - Highlights: • Proper estimation of hysteresis-loop parameters is vital in magnetic studies. • We propose criteria for discrimination minor from major hysteresis loops. • The criteria analyze magnetization, remanence and ZFC/FC curves and/or their derivatives. • Examples of their application on real nanoparticles systems are given. • Using the criteria could avoid twofold or bigger saturation-field underestimation errors.

  17. Criteria for saturated magnetization loop

    Energy Technology Data Exchange (ETDEWEB)

    Harres, A. [Departamento de Física, UFSM, Santa Maria, 97105-900 Rio Grande do Sul (Brazil); Mikhov, M. [Faculty of Physics, University of Sofia, 1164 Sofia (Bulgaria); Skumryev, V. [Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona (Spain); Departament de Física, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Andrade, A.M.H. de; Schmidt, J.E. [Instituto de Física, UFRGS, Porto Alegre, 91501-970 Rio Grande do Sul (Brazil); Geshev, J., E-mail: julian@if.ufrgs.br [Departament de Física, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Instituto de Física, UFRGS, Porto Alegre, 91501-970 Rio Grande do Sul (Brazil)

    2016-03-15

    Proper estimation of magnetization curve parameters is vital in studying magnetic systems. In the present article, criteria for discrimination non-saturated (minor) from saturated (major) hysteresis loops are proposed. These employ the analysis of (i) derivatives of both ascending and descending branches of the loop, (ii) remanent magnetization curves, and (iii) thermomagnetic curves. Computational simulations are used in order to demonstrate their validity. Examples illustrating the applicability of these criteria to well-known real systems, namely Fe{sub 3}O{sub 4} and Ni fine particles, are provided. We demonstrate that the anisotropy-field value estimated from a visual examination of an only apparently major hysteresis loop could be more than two times lower than the real one. - Highlights: • Proper estimation of hysteresis-loop parameters is vital in magnetic studies. • We propose criteria for discrimination minor from major hysteresis loops. • The criteria analyze magnetization, remanence and ZFC/FC curves and/or their derivatives. • Examples of their application on real nanoparticles systems are given. • Using the criteria could avoid twofold or bigger saturation-field underestimation errors.

  18. PRO-QUEST: a rapid assessment method based on progressive saturation for quantifying exchange rates using saturation times in CEST.

    Science.gov (United States)

    Demetriou, Eleni; Tachrount, Mohamed; Zaiss, Moritz; Shmueli, Karin; Golay, Xavier

    2018-03-05

    To develop a new MRI technique to rapidly measure exchange rates in CEST MRI. A novel pulse sequence for measuring chemical exchange rates through a progressive saturation recovery process, called PRO-QUEST (progressive saturation for quantifying exchange rates using saturation times), has been developed. Using this method, the water magnetization is sampled under non-steady-state conditions, and off-resonance saturation is interleaved with the acquisition of images obtained through a Look-Locker type of acquisition. A complete theoretical framework has been set up, and simple equations to obtain the exchange rates have been derived. A reduction of scan time from 58 to 16 minutes has been obtained using PRO-QUEST versus the standard QUEST. Maps of both T 1 of water and B 1 can simply be obtained by repetition of the sequence without off-resonance saturation pulses. Simulations and calculated exchange rates from experimental data using amino acids such as glutamate, glutamine, taurine, and alanine were compared and found to be in good agreement. The PRO-QUEST sequence was also applied on healthy and infarcted rats after 24 hours, and revealed that imaging specificity to ischemic acidification during stroke was substantially increased relative to standard amide proton transfer-weighted imaging. Because of the reduced scan time and insensitivity to nonchemical exchange factors such as direct water saturation, PRO-QUEST can serve as an excellent alternative for researchers and clinicians interested to map pH changes in vivo. © 2018 International Society for Magnetic Resonance in Medicine.

  19. Fabrication and characterization of graphene/molecule/graphene vertical junctions with aryl alkane monolayers

    Science.gov (United States)

    Jeong, Inho; Song, Hyunwook

    2017-11-01

    In this study, we fabricated and characterized graphene/molecule/graphene (GMG) vertical junctions with aryl alkane monolayers. The constituent molecules were chemically self-assembled via electrophilic diazonium reactions into a monolayer on the graphene bottom electrode, while the other end physically contacted the graphene top electrode. A full understanding of the transport properties of molecular junctions is a key step in the realization of molecular-scale electronic devices and requires detailed microscopic characterization of the junction's active region. Using a multiprobe approach combining a variety of transport techniques, we elucidated the transport mechanisms and electronic structure of the GMG junctions, including temperature- and length-variable transport measurements, and transition voltage spectroscopy. These results provide criteria to establish a valid molecular junction and to determine the most probable transport characteristics of the GMG junctions.

  20. Analysis of an SEIR Epidemic Model with Saturated Incidence and Saturated Treatment Function

    Directory of Open Access Journals (Sweden)

    Jinhong Zhang

    2014-01-01

    Full Text Available The dynamics of SEIR epidemic model with saturated incidence rate and saturated treatment function are explored in this paper. The basic reproduction number that determines disease extinction and disease survival is given. The existing threshold conditions of all kinds of the equilibrium points are obtained. Sufficient conditions are established for the existence of backward bifurcation. The local asymptotical stability of equilibrium is verified by analyzing the eigenvalues and using the Routh-Hurwitz criterion. We also discuss the global asymptotical stability of the endemic equilibrium by autonomous convergence theorem. The study indicates that we should improve the efficiency and enlarge the capacity of the treatment to control the spread of disease. Numerical simulations are presented to support and complement the theoretical findings.

  1. Saturation of the turbulent dynamo.

    Science.gov (United States)

    Schober, J; Schleicher, D R G; Federrath, C; Bovino, S; Klessen, R S

    2015-08-01

    The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales. This process ends when the peak reaches a characteristic wave number k☆ which is determined by the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation levels between 43.8% and 1.3% for Pm≫1 and between 2.43% and 0.135% for Pm≪1, where the higher values refer to incompressible turbulence and the lower ones to highly compressible turbulence.

  2. Automatic selection of indicators in a fully saturated regression

    DEFF Research Database (Denmark)

    Hendry, David F.; Johansen, Søren; Santos, Carlos

    2008-01-01

    We consider selecting a regression model, using a variant of Gets, when there are more variables than observations, in the special case that the variables are impulse dummies (indicators) for every observation. We show that the setting is unproblematic if tackled appropriately, and obtain the fin...... the finite-sample distribution of estimators of the mean and variance in a simple location-scale model under the null that no impulses matter. A Monte Carlo simulation confirms the null distribution, and shows power against an alternative of interest....

  3. Evaluation of equations of state for simultaneous representation of phase equilibrium and critical phenomena

    DEFF Research Database (Denmark)

    Pinto Coelho Muniz Vinhal, Andre; Yan, Wei; Kontogeorgis, Georgios

    2017-01-01

    of the Cubic-Plus-Association (CPA) equation of state (EoS). We obtained new parameters for methanol and alkanes from n-hexane to n-decane. The comparison with the original parameters showed that this procedure is important for associating compounds, since for inert species the equation reduces to the Soave......-Redlich-Kwong (SRK) EoS. The application of the rescaled parameters improved the critical point representation of pure fluids at the expense of the saturated liquid phase volume description. In the case of binary mixtures containing methanol and n-alkanes, the association model with the new parameters satisfactorily...

  4. Rhodium trichloride as a homogeneous catalyst for isotopic hydrogen exchange. Comparison with heterogeneous rhodium in the deuteriation of aromatic compounds and alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Blake, M R; Garnett, J L; Gregor, I K; Hannan, W; Hoa, K; Long, M A [New South Wales Univ., Kensington (Australia)

    1975-12-03

    The use of rhodium trichloride as a homogeneous catalyst for the exchange of aromatic compounds and alkanes is described; comparison of the results with corresponding data from heterogeneous rhodium metal and other homogeneous systems, e.g., platinum and iridium, supports the proposal that specific type of ..pi..-complex mechanisms are common to all such exchange systems.

  5. On the water saturation calculation in hydrocarbon sandstone reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Stalheim, Stein Ottar

    2002-07-01

    The main goal of this work was to identify the most important uncertainty sources in water saturation calculation and examine the possibility for developing new S{sub w} - equations or possibility to develop methods to remove weaknesses and uncertainties in existing S{sub w} - equations. Due to the need for industrial applicability of the equations we aimed for results with the following properties: The accuracy in S{sub w} should increase compared with existing S{sub w} - equations. The equations should be simple to use in petrophysical evaluations. The equations should be based on conventional logs and use as few as possible input parameters. The equations should be numerical stable. This thesis includes an uncertainty and sensitivity analysis of the most common S{sub w} equations. The results are addressed in chapter 3 and were intended to find the most important uncertainty sources in water saturation calculation. To increase the knowledge of the relationship between R{sub t} and S{sub w} in hydrocarbon sandstone reservoirs and to understand how the pore geometry affects the conductivity (n and m) of the rock a theoretical study was done. It was also an aim to examine the possibility for developing new S{sub w} - equations (or investigation an effective medium model) valid inhydrocarbon sandstone reservoirs. The results are presented in paper 1. A new equation for water saturation calculation in clean sandstone oil reservoirs is addressed in paper 2. A recommendation for best practice of water saturation calculation in non water wet formation is addressed in paper 3. Finally a new equation for water saturation calculation in thinly interbedded sandstone/mudstone reservoirs is presented in paper 4. The papers are titled: 1) Is the saturation exponent n a constant. 2) A New Model for Calculating Water Saturation In 3) Influence of wettability on water saturation modeling. 4) Water Saturation Calculations in Thinly Interbedded Sandstone/mudstone Reservoirs. A

  6. Vapor phase nucleation of the short-chain n-alkanes (n-pentane, n-hexane and n-heptane): Experiments and Monte Carlo simulations

    Science.gov (United States)

    Ogunronbi, Kehinde E.; Sepehri, Aliasghar; Chen, Bin; Wyslouzil, Barbara E.

    2018-04-01

    We measured the nucleation rates of n-pentane through n-heptane in a supersonic nozzle at temperatures ranging from ca. 109 K to 168 K. For n-pentane and n-hexane, these are the first nucleation rate measurements that have been made, and the trends in the current data agree well with those in the earlier work of Ghosh et al. [J. Chem. Phys. 132, 024307 (2010)] for longer chain alkanes. Complementary Monte Carlo simulations, using the transferable potentials for phase equilibria-united atom potentials, suggest that despite the high degree of supercooling, the critical clusters remain liquid like under experimental conditions for n-pentane through n-heptane, but adopt more ordered structures for n-octane and n-nonane. For all three alkanes, the experimental and simulated nucleation rates are offset by ˜3 orders of magnitude when plotted as a function of ln S/(Tc/T - 1)1.5. Explicitly accounting for the surface tension difference between the real and model substances, or alternatively using the Hale [Phys. Rev. A 33, 4156 (1986); Metall. Mater. Trans. A 23, 1863 (1992)] scaling parameter, Ω, consistent with the model potential, increases the offset to ˜6 orders of magnitude.

  7. Magnetic field saturation in the Riga dynamo experiment.

    Science.gov (United States)

    Gailitis, A; Lielausis, O; Platacis, E; Dement'ev, S; Cifersons, A; Gerbeth, G; Gundrum, T; Stefani, F; Christen, M; Will, G

    2001-04-02

    After the dynamo experiment in November 1999 [A. Gailitis et al., Phys. Rev. Lett. 84, 4365 (2000)] had shown magnetic field self-excitation in a spiraling liquid metal flow, in a second series of experiments emphasis was placed on the magnetic field saturation regime as the next principal step in the dynamo process. The dependence of the strength of the magnetic field on the rotation rate is studied. Various features of the saturated magnetic field are outlined and possible saturation mechanisms are discussed.

  8. Heat and Mass Transfer during Solid-Liquid Phase Transition of n-Alkanes in the C{sub 16} to C{sub 19} Range

    Energy Technology Data Exchange (ETDEWEB)

    Holmen, Rune

    2002-07-01

    The main goal of this project has been to study heat and mass transfer during solid-liquid phase transition of n-alkanes in the in the C{sub 16} to C{sub 19} range. Phase transitions of both mixtures and pure components have been investigated. All experiments and simulations have been performed without any convection. Thermal conductivities have been determined at the melting point for solid and liquid unbranched alkanes ranging from C{sub 16} to C{sub 19}. An assessment of the error of the method has been performed. The measurements of solid conductivities are in accordance with measurements reported previously and confirm the applicability of the method. Liquid conductivities are higher than extrapolated values from the literature. The enhanced conductivity is believed to be caused by structural changes close to the melting point which is not taken into account when extrapolating values from the literature. Experiments have been performed for the purpose of investigating the freezing of mixtures of n-alkanes in the C{sub 16}-C{sub 19} range. The positions of the solid-liquid interfaces have been measured as freezing occurred. Calculations of the ratio of liquid and solid conductivities show that the solid structure of mixtures of the investigated n-alkanes is predominantly in a rotator structure at the temperatures investigated. There are indications of a transformation into an orthorhombic structure at lower temperatures. The temperatures on the solid-liquid interface have been measured, and compared with calculated values from chapter 4. The temperature of the interface is represented better by the measured interfacial temperatures than by the calculated interfacial temperatures. The experimental results indicate that the diffusion of heat is the limiting mechanism of phase transition. This result in a homogeneous liquid composition. A numerical model has been developed in order to simulate the experimental freezing of mixtures. The model represents the results

  9. Effects of molecular structure on microscopic heat transport in chain polymer liquids

    International Nuclear Information System (INIS)

    Matsubara, Hiroki; Kikugawa, Gota; Ohara, Taku; Bessho, Takeshi; Yamashita, Seiji

    2015-01-01

    In this paper, we discuss the molecular mechanism of the heat conduction in a liquid, based on nonequilibrium molecular dynamics simulations of a systematic series of linear- and branched alkane liquids, as a continuation of our previous study on linear alkane [T. Ohara et al., J. Chem. Phys. 135, 034507 (2011)]. The thermal conductivities for these alkanes in a saturated liquid state at the same reduced temperature (0.7T c ) obtained from the simulations are compared in relation to the structural difference of the liquids. In order to connect the thermal energy transport characteristics with molecular structures, we introduce the new concept of the interatomic path of heat transfer (atomistic heat path, AHP), which is defined for each type of inter- and intramolecular interaction. It is found that the efficiency of intermolecular AHP is sensitive to the structure of the first neighbor shell, whereas that of intramolecular AHP is similar for different alkane species. The dependence of thermal conductivity on different lengths of the main and side chain can be understood from the natures of these inter- and intramolecular AHPs

  10. Effects of molecular structure on microscopic heat transport in chain polymer liquids

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Hiroki, E-mail: matsubara@microheat.ifs.tohoku.ac.jp; Kikugawa, Gota; Ohara, Taku [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Bessho, Takeshi; Yamashita, Seiji [Higashifuji Technical Center, Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka 410-1193 (Japan)

    2015-04-28

    In this paper, we discuss the molecular mechanism of the heat conduction in a liquid, based on nonequilibrium molecular dynamics simulations of a systematic series of linear- and branched alkane liquids, as a continuation of our previous study on linear alkane [T. Ohara et al., J. Chem. Phys. 135, 034507 (2011)]. The thermal conductivities for these alkanes in a saturated liquid state at the same reduced temperature (0.7T{sub c}) obtained from the simulations are compared in relation to the structural difference of the liquids. In order to connect the thermal energy transport characteristics with molecular structures, we introduce the new concept of the interatomic path of heat transfer (atomistic heat path, AHP), which is defined for each type of inter- and intramolecular interaction. It is found that the efficiency of intermolecular AHP is sensitive to the structure of the first neighbor shell, whereas that of intramolecular AHP is similar for different alkane species. The dependence of thermal conductivity on different lengths of the main and side chain can be understood from the natures of these inter- and intramolecular AHPs.

  11. Comparing Different Strategies in Directed Evolution of Enzyme Stereoselectivity: Single- versus Double-Code Saturation Mutagenesis.

    Science.gov (United States)

    Sun, Zhoutong; Lonsdale, Richard; Li, Guangyue; Reetz, Manfred T

    2016-10-04

    Saturation mutagenesis at sites lining the binding pockets of enzymes constitutes a viable protein engineering technique for enhancing or inverting stereoselectivity. Statistical analysis shows that oversampling in the screening step (the bottleneck) increases astronomically as the number of residues in the randomization site increases, which is the reason why reduced amino acid alphabets have been employed, in addition to splitting large sites into smaller ones. Limonene epoxide hydrolase (LEH) has previously served as the experimental platform in these methodological efforts, enabling comparisons between single-code saturation mutagenesis (SCSM) and triple-code saturation mutagenesis (TCSM); these employ either only one or three amino acids, respectively, as building blocks. In this study the comparative platform is extended by exploring the efficacy of double-code saturation mutagenesis (DCSM), in which the reduced amino acid alphabet consists of two members, chosen according to the principles of rational design on the basis of structural information. The hydrolytic desymmetrization of cyclohexene oxide is used as the model reaction, with formation of either (R,R)- or (S,S)-cyclohexane-1,2-diol. DCSM proves to be clearly superior to the likewise tested SCSM, affording both R,R- and S,S-selective mutants. These variants are also good catalysts in reactions of further substrates. Docking computations reveal the basis of enantioselectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Pronounced Environmental Effects on Injection Currents in EGaln Tunneling Junctions Comprising Self-Assembled Monolayers

    NARCIS (Netherlands)

    Carlotti, Marco; Degen, Maarten; Zhang, Yanxi; Chiechi, Ryan C.

    2016-01-01

    Large-area tunneling junctions using eutectic Ga-In (EGaIn) as a top contact have proven to be a robust, reproducible, and technologically relevant platform for molecular electronics. Thus far, the majority of studies have focused on saturated molecules with backbones consisting mainly of alkanes in

  13. Temperature dependence of charge-transfer fluorescence from extended and U-shaped donor-bridge-acceptor systems in glass-forming solvents.

    NARCIS (Netherlands)

    Goes, M.; de Groot, M.; Koeberg, M.; Verhoeven, J.W.; Lokan, N.R.; Shephard, M.J.; Paddon-Row, M.N.

    2001-01-01

    Abstract: The behavior is reported of three fluorescent D-bridge-A systems that display a fascinating temperature dependence in glass forming solvents over the temperature range between 77 and 293 K. In two of these systems, a rigid, saturated alkane bridge maintains an extended conformation, and as

  14. The role of meson dynamics in nuclear matter saturation

    International Nuclear Information System (INIS)

    Goncalves, E.

    1988-01-01

    The problem of the saturation of nuclea matter in the non-relativistic limit of the model proposed by J.D. Walecka is studied. In the original context nuclear matter saturation is obtained as a direct consequence of relativistic effects and both scalar and vector mesons are treated statically. In the present work we investigate the effect of the meson dynamics for the saturation using a Born-Oppenheimer approximation for the ground state. An upper limit for the saturation curve of nuclear matter and are able to decide now essential is the relativistic treatment of the nucleons for this problem, is obtained. (author) [pt

  15. Some aspects of electron dynamics in solid alkanes

    International Nuclear Information System (INIS)

    Cheng, I.I.; Funabashi, K.

    1975-01-01

    The excess electron mobility in 3-methylpentane (3MP) is in the range of 0.02-0.1 cm 2 /v.s. for 4.2-85 0 K. The mobility is nearly independent of temperature below 35 0 K, while the activation energy is about 0.01 eV for 35 0 K-85 0 K. The magnitude of mobility and its temperature dependence are consistent with the hopping and tunneling motion of electron between trapped (or localized) states. The decay kinetics of the absorption spectrum of trapped electrons in 3MP also suggest the presence of many trapping sites, and a small mean free path of retrapping for a quasi-free electron. It is conjectured that the electron-transport in 3MP glass is the phonon-assisted hopping or tunneling and the mean free path (or the mobility) at the quasi-free state is not as large as 100 A (or 150 cm 2 /v.s.). The mean free path of scattering for an excess electron at the quasi-free level in various alkane glasses can be found approximately from measurement of attenuation constants for electron beams (Chang and Berry). The relationship of these attenuation constants with V 0 (quasi-free state) will be discussed. The effect of electron-phonon coupling on the effective mass of excess electrons will also be discussed in terms of a simple model. The effective mass is a sensitive function of the ratio of the relaxation energy to the phonon energy

  16. Interger multiplication with overflow detection or saturation

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, M.J.; Balzola, P.I.; Akkas, A.; Brocato, R.W.

    2000-01-11

    High-speed multiplication is frequently used in general-purpose and application-specific computer systems. These systems often support integer multiplication, where two n-bit integers are multiplied to produce a 2n-bit product. To prevent growth in word length, processors typically return the n least significant bits of the product and a flag that indicates whether or not overflow has occurred. Alternatively, some processors saturate results that overflow to the most positive or most negative representable number. This paper presents efficient methods for performing unsigned or two's complement integer multiplication with overflow detection or saturation. These methods have significantly less area and delay than conventional methods for integer multiplication with overflow detection and saturation.

  17. Comparison of orthologous cyanobacterial aldehyde deformylating oxygenases in the production of volatile C3-C7 alkanes in engineered E. coli

    Directory of Open Access Journals (Sweden)

    Pekka Patrikainen

    2017-12-01

    Full Text Available Aldehyde deformylating oxygenase (ADO is a unique enzyme found exclusively in photosynthetic cyanobacteria, which natively converts acyl aldehyde precursors into hydrocarbon products embedded in cellular lipid bilayers. This capacity has opened doors for potential biotechnological applications aiming at biological production of diesel-range alkanes and alkenes, which are compatible with the nonrenewable petroleum-derived end-products in current use. The development of production platforms, however, has been limited by the relative inefficiency of ADO enzyme, promoting research towards finding new strategies and information to be used for rational design of enhanced pathways for hydrocarbon over-expression. In this work we present an optimized approach to study different ADO orthologs derived from different cyanobacterial species in an in vivo set-up in Escherichia coli. The system enabled comparison of alternative ADOs for the production efficiency of short-chain volatile C3-C7 alkanes, propane, pentane and heptane, and provided insight on the differences in substrate preference, catalytic efficiency and limitations associated with the enzymes. The work concentrated on five ADO orthologs which represent the most extensively studied cyanobacterial species in the field, and revealed distinct differences between the enzymes. In most cases the ADO from Nostoc punctiforme PCC 73102 performed the best in respect to yields and initial rates for the production of the volatile hydrocarbons. At the other extreme, the system harboring the ADO form Synechococcus sp. RS9917 produced very low amounts of the short-chain alkanes, primarily due to poor accumulation of the enzyme in E. coli. The ADOs from Synechocystis sp. PCC 6803 and Prochlorococcus marinus MIT9313, and the corresponding variant A134F displayed less divergence, although variation between chain-length preferences could be observed. The results confirmed the general trend of ADOs having

  18. (Liquid + liquid) equilibrium at T = 298.15 K for ternary mixtures of alkane + aromatic compounds + imidazolium-based ionic liquids

    International Nuclear Information System (INIS)

    Domínguez, Irene; Requejo, Patricia F.; Canosa, José; Domínguez, Ángeles

    2014-01-01

    Highlights: • The LLE ternary phase diagrams with 2 imidazolium-based ionic liquids were measured. • The LLE data were experimental determined at T = 298.15 K and p = 1 atm. • Mixtures of (octane or nonane) and (benzene or toluene or ethylbenzene) were studied. • LLE experimental data were correlated with NRTL and UNIQUAC thermodynamic models. - Abstract: Ionic liquids, with their unique and tunable properties, can be an advantageous alternative as extractive solvents in separation processes involving systems containing aliphatic and aromatic hydrocarbons. In this work, (liquid + liquid) equilibrium (LLE) data for the ternary systems {nonane (1) + benzene (2) + 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [BMim][NTf 2 ] (3)}, {octane (1) + benzene (2) + 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide, [PMim][NTf 2 ] (3)}, and {nonane (1) + aromatic compound (benzene or toluene or ethylbenzene) (2) + [PMim][NTf 2 ] (3)} were determined at T = 298.15 K and atmospheric pressure. Selectivity and solute distribution ratio, derived from the equilibrium data, were used to determine if this ionic liquid can be considered as a potential solvent for the separation of aromatic compounds (benzene, toluene, and ethylbenzene) from alkanes (octane and nonane). The experimental data were satisfactorily correlated with NRTL and UNIQUAC models

  19. Determination of diagnostic standards on saturated soil extracts for cut roses grown in greenhouses.

    Science.gov (United States)

    Franco-Hermida, John Jairo; Quintero, María Fernanda; Cabrera, Raúl Iskander; Guzman, José Miguel

    2017-01-01

    This work comprises the theoretical determination and validation of diagnostic standards for the analysis of saturated soil extracts for cut rose flower crops (Rosa spp.) growing in the Bogota Plateau, Colombia. The data included 684 plant tissue analyses and 684 corresponding analyses of saturated soil extracts, all collected between January 2009 and June 2013. The tissue and soil samples were selected from 13 rose farms, and from cultivars grafted on the 'Natal Briar' rootstock. These concurrent samples of soil and plant tissues represented 251 production units (locations) of approximately 10,000 m2 distributed across the study area. The standards were conceived as a tool to improve the nutritional balance in the leaf tissue of rose plants and thereby define the norms for expressing optimum productive potential relative to nutritional conditions in the soil. To this end, previously determined diagnostic standard for rose leaf tissues were employed to obtain rates of foliar nutritional balance at each analyzed location and as criteria for determining the diagnostic norms for saturated soil extracts. Implementing this methodology to foliar analysis, showed a higher significant correlation for diagnostic indices. A similar behavior was observed in saturated soil extracts analysis, becoming a powerful tool for integrated nutritional diagnosis. Leaf analyses determine the most limiting nutrients for high yield and analyses of saturated soil extracts facilitate the possibility of correcting the fertigation formulations applied to soils or substrates. Recommendations are proposed to improve the balance in soil-plant system with which the possibility of yield increase becomes more probable. The main recommendations to increase and improve rose crop flower yields would be: continuously check pH values of SSE, reduce the amounts of P, Fe, Zn and Cu in fertigation solutions and carefully analyze the situation of Mn in the soil-plant system.

  20. Thermal conductivity of water-saturated rocks from the KTB pilot hole at temperatures of 25 to 300°C

    Science.gov (United States)

    Pribnow, D.; Williams, C.F.; Sass, J.H.; Keating, R.

    1996-01-01

    The conductivitites of selected gneiss (two) and amphibolite (one) core samples have been measured under conditions of elevated temperature and pressure with a needle-probe. Water-saturated thermal conductivity measurements spanning temperatures from 25 to 300??C and hydrostatic pressures of 0.1 and 34 MPa confirm the general decrease in conductivity with increasing temperature but deviate significantly from results reported from measurements on dry samples over the same temperature range. The thermal conductivity of water-saturated amphibolite decreases with temperature at a rate approximately 40% less than the rate for dry amphibolite, and the conductivity of water-saturated gneiss decreases at a rate approximately 20% less than the rate for dry gneiss. The available evidence points to thermal cracking as the primary cause of the more rapid decrease in dry thermal conductivity with temperature. The effects of thermal cracking were also observed in the water-saturated samples but resulted in a net decrease in room-temperature conductivity of less than 3%. These results highlight the importance of duplicating in-situ conditions when determining thermal conductivity for the deep crust.

  1. Retinal oxygen saturation before and after glaucoma surgery.

    Science.gov (United States)

    Nitta, Eri; Hirooka, Kazuyuki; Shimazaki, Takeru; Sato, Shino; Ukegawa, Kaori; Nakano, Yuki; Tsujikawa, Akitaka

    2017-08-01

    This study compared retinal vessel oxygen saturation before and after glaucoma surgery. Retinal oxygen saturation in glaucoma patients was measured using a non-invasive spectrophotometric retinal oximeter. Adequate image quality was found in 49 of the 108 consecutive glaucoma patients recruited, with 30 undergoing trabeculectomy, 11 EX-PRESS and eight trabeculotomy. Retinal oxygen saturation measurements in the retinal arterioles and venules were performed at 1 day prior to and at approximately 10 days after surgery. Statistical analysis was performed using a Student's t-test. After glaucoma surgery, intraocular pressure (IOP) decreased from 19.8 ± 7.7 mmHg to 9.0 ± 5.7 mmHg (p glaucoma surgery had an effect on the retinal venous oxygen saturation. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  2. Delayed system control in presence of actuator saturation

    Directory of Open Access Journals (Sweden)

    A. Mahjoub

    2014-09-01

    Full Text Available The paper is introducing a new design method for systems’ controllers with input delay and actuator saturations and focuses on how to force the system output to track a reference input not necessarily saturation-compatible. We propose a new norm based on the way we quantify tracking performance as a function of saturation errors found using the same norm. The newly defined norm is related to signal average power making possible to account for most common reference signals e.g. step, periodic. It is formally shown that, whatever the reference shape and amplitude, the achievable tracking quality is determined by a well defined reference tracking mismatch error. This latter depends on the reference rate and its compatibility with the actuator saturation constraint. In fact, asymptotic output-reference tracking is achieved in the presence of constraint-compatible step-like references.

  3. Supercritical fluid chromatography hyphenated with twin comprehensive two-dimensional gas chromatography for ultimate analysis of middle distillates.

    Science.gov (United States)

    Adam, Frédérick; Thiébaut, Didier; Bertoncini, Fabrice; Courtiade, Marion; Hennion, Marie-Claire

    2010-02-19

    This paper reports the conditions of online hyphenation of supercritical fluid chromatography (SFC) with twin comprehensive two-dimensional gas chromatography (twin-GCxGC) for detailed characterization of middle distillates; this is essential for a better understanding of reactions involved in refining processes. In this configuration, saturated and unsaturated compounds that have been fractionated by SFC are transferred on two different GC x GC columns sets (twin-GCxGC) placed in the same GC oven. Cryogenic focusing is used for transfer of fractions into the first dimension columns before simultaneous GCxGC analysis of both saturated and unsaturated fractions. The benefits of SFC-twin-GC x GC are demonstrated for the extended alkane, iso-alkane, alkene, naphthenes and aromatics analysis (so-called PIONA analysis) of diesel samples which can be achieved in one single injection. For that purpose, saturated and unsaturated compounds have been separated by SFC using a silver loaded silica column prior to GC x GC analysis. Alkenes and naphthenes are quantitatively recovered in the unsaturated and saturated fractions, respectively, allowing their identification in various diesel samples. Thus, resolution between each class of compounds is significantly improved compared to a single GCxGC run, and for the first time, an extended PIONA analysis of diesel samples is presented. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Analysis of Endogenous Alkanes and Aldehydes in the Exhaled Breath of Workers Exposed to Silica Containing Dust

    Directory of Open Access Journals (Sweden)

    Mahdi Jalali

    2015-03-01

    Full Text Available Background & Objectives : Silica is one of the most air pollutant in workplaces which long-term occupational exposure to silica is associated with an increased risk for respiratory diseases such as silicosis. Silicosis is an oxidative stress related disease and can lead to the development of lung cancer. This study aims to analysis of endogenous alkanes and aldehydes in the exhaled breath of workers exposed to silica containing dusts. Methods: In this study, the exhaled breath of 20 workers exposed to silica containing dust (case group, 20 healthy non-smokers and 25 healthy smokers (control group were analyzed. The breath samples using 3-liter Tedlar bags were collected. The volatile organic compounds (VOCs were extracted with solid phase micro-extraction (SPME and analyzed using gas chromatography-mass spectrometry (GC- MS. Result: Totally, thirty nine VOCs were found in all breath samples (at least once. Aldehydes and alkanes such as acetaldehyde, hexanal, nonanal, decane, pentadecane, 2-methle propane, 3-methyle pentane and octane were detected in the exhaled breath subjects. Among the these compounds, mean peak area of acetaldehyde, hexanal, nonanal, decane and pentadecane were higher in the exhaled breath of an case group than control groups (Pvalue<0.05 . Conclusions : The use of exhaled breath analysis as well as new media in the occupational toxicology and exposure biomarker assessment studies. It seems that acetaldehyde, hexanal, nonanal, decane and pentadecane can be considered as useful breath biomarkers for exposure assessment of silica containing dust. However, additional studies are needed to confirm thes results.

  5. Activity and selectivity control through periodic composition forcing over Fischer-Tropsch catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Silveston, P L; Hudgins, R R; Adesina, A A; Ross, G S; Feimer, J L

    1986-01-01

    Data collected under steady-state and periodic composition forcing of the Fischer-Tropsch synthesis over three commonly used catalysts demonstrate that both activity and selectivity can be changed by the latter operating mode. Synthesis of hydrocarbons up to C/sub 7/are favored at the expense of the higher carbon numbers for the Co catalyst, while for the Ru catalyst, only the C/sub 3/ and lower species are favored. Only methane production is stimulated with the Fe catalyst. Fe and Ru catalysts shift production from alkenes to alkanes. Transient data is interpreted in the paper.

  6. Low-energy electron transmission and secondary-electron emission experiments on crystalline and molten long-chain alkanes

    International Nuclear Information System (INIS)

    Ueno, N.; Sugita, K.; Seki, K.; Inokuchi, H.

    1986-01-01

    This paper describes the results of low-energy electron transmission and secondary-electron emission experiments on thin films of long-chain alkanes deposited on metal substrates. The spectral changes due to crystal-melt phase transition were measured in situ in both experiments. The ground-state energy V 0 of the quasifree electron in crystalline state was determined to be 0.5 +- 0.1 eV. The value of V 0 for the molten state was found to be negative. Further, in the crystalline state evidence is found for a direct correspondence between the transmission maxima and the high value of the density of states in the conduction bands

  7. Study of the ionization of alkane-electron scavenger reactant mixtures irradiated by 60Co gamma rays

    International Nuclear Information System (INIS)

    Bonnet, Jacques.

    1977-01-01

    This study deals with ionization of alkane-electron scavenger reactant mixtures, irradiated by 60 Co γ-rays. It is shown that the extrapolated free-ion yields (extrapolated yield method) decrease with the reactant concentration. On the basis of ONSAGER model and theoretical treatment of MOZUMDER, the cross sections of epithermal electron attachment in hexane, cyclohexane, 2,2-dimethylbutane, cyclopentane, 2,2,4-trimethylpentane for CCl 4 , C 7 F 14 , C 6 H 5 Br, C 6 H 5 Cl, C 6 F 14 , (C 6 H 5 ) 2 are determined. A comparison between gas-phase and liquid-phase cross sections is established [fr

  8. Arterial blood oxygen saturation during blood pressure cuff-induced hypoperfusion

    International Nuclear Information System (INIS)

    Kyriacou, P A; Shafqat, K; Pal, S K

    2007-01-01

    Pulse oximetry has been one of the most significant technological advances in clinical monitoring in the last two decades. Pulse oximetry is a non-invasive photometric technique that provides information about the arterial blood oxygen saturation (SpO 2 ) and heart rate, and has widespread clinical applications. When peripheral perfusion is poor, as in states of hypovolaemia, hypothermia and vasoconstriction, oxygenation readings become unreliable or cease. The problem arises because conventional pulse oximetry sensors must be attached to the most peripheral parts of the body, such as finger, ear or toe, where pulsatile flow is most easily compromised. Pulse oximeters estimate arterial oxygen saturation by shining light at two different wavelengths, red and infrared, through vascular tissue. In this method the ac pulsatile photoplethysmographic (PPG) signal associated with cardiac contraction is assumed to be attributable solely to the arterial blood component. The amplitudes of the red and infrared ac PPG signals are sensitive to changes in arterial oxygen saturation because of differences in the light absorption of oxygenated and deoxygenated haemoglobin at these two wavelengths. From the ratios of these amplitudes, and the corresponding dc photoplethysmographic components, arterial blood oxygen saturation (SpO 2 ) is estimated. Hence, the technique of pulse oximetry relies on the presence of adequate peripheral arterial pulsations, which are detected as photoplethysmographic (PPG) signals. The aim of this study was to investigate the effect of pressure cuff-induced hypoperfusion on photoplethysmographic signals and arterial blood oxygen saturation using a custom made finger blood oxygen saturation PPG/SpO 2 sensor and a commercial finger pulse oximeter. Blood oxygen saturation values from the custom oxygen saturation sensor and a commercial finger oxygen saturation sensor were recorded from 14 healthy volunteers at various induced brachial pressures. Both pulse

  9. Arterial blood oxygen saturation during blood pressure cuff-induced hypoperfusion

    Science.gov (United States)

    Kyriacou, P. A.; Shafqat, K.; Pal, S. K.

    2007-10-01

    Pulse oximetry has been one of the most significant technological advances in clinical monitoring in the last two decades. Pulse oximetry is a non-invasive photometric technique that provides information about the arterial blood oxygen saturation (SpO2) and heart rate, and has widespread clinical applications. When peripheral perfusion is poor, as in states of hypovolaemia, hypothermia and vasoconstriction, oxygenation readings become unreliable or cease. The problem arises because conventional pulse oximetry sensors must be attached to the most peripheral parts of the body, such as finger, ear or toe, where pulsatile flow is most easily compromised. Pulse oximeters estimate arterial oxygen saturation by shining light at two different wavelengths, red and infrared, through vascular tissue. In this method the ac pulsatile photoplethysmographic (PPG) signal associated with cardiac contraction is assumed to be attributable solely to the arterial blood component. The amplitudes of the red and infrared ac PPG signals are sensitive to changes in arterial oxygen saturation because of differences in the light absorption of oxygenated and deoxygenated haemoglobin at these two wavelengths. From the ratios of these amplitudes, and the corresponding dc photoplethysmographic components, arterial blood oxygen saturation (SpO2) is estimated. Hence, the technique of pulse oximetry relies on the presence of adequate peripheral arterial pulsations, which are detected as photoplethysmographic (PPG) signals. The aim of this study was to investigate the effect of pressure cuff-induced hypoperfusion on photoplethysmographic signals and arterial blood oxygen saturation using a custom made finger blood oxygen saturation PPG/SpO2 sensor and a commercial finger pulse oximeter. Blood oxygen saturation values from the custom oxygen saturation sensor and a commercial finger oxygen saturation sensor were recorded from 14 healthy volunteers at various induced brachial pressures. Both pulse

  10. Evaluation of Nd:YAG laser on partial oxygen saturation of pulpal blood in anterior hypersensitive teeth.

    Science.gov (United States)

    Birang, Reza; Kaviani, Naser; Mohammadpour, Mehdi; Abed, Ahmad Moghareh; Gutknecht, Norbert; Mir, Maziar

    2008-07-01

    Dentine hypersensitivity has of long been known to be a common clinical problem in dental practices. Lasers have recently come to play a prominent role in the treatment of this disorder. They might, however, cause dental pulp damage. This study was conducted to evaluate the effect of Nd:yttrium-aluminum-garnet (YAG) laser on partial oxygen saturation of pulpal blood in sensitive anterior teeth. In this clinical trial, 65 hypersensitive teeth were selected and randomly allocated to two groups. The study group involved Nd:YAG laser treatment, while no treatment was employed for the control group. Using a pulse oximetry system, evaluations were preformed of the partial oxygen saturation in the pulpal blood before, immediately after, 1 week after, and 1 month after the treatment. The results were analyzed using the SPSS software and repeated-measures analysis of variance and paired-samples t tests. The mean partial oxygen saturation of the blood was found to be 85.4% in the study group, which was not significantly different from that of the control group. No significant differences were observed in the control group between the means obtained from pretreatment and post-treatment intervals (P > 0.05). The Post-treatment partial oxygen saturation mean rose to 89.3% (P = 0.001) and remained constant throughout the following week after it. However, no significant differences were found between the pretreatment partial oxygen saturation mean and the same measurement 1 month after treatment (P = 0.702). Nd:YAG laser therapy for dentine desensitization of anterior teeth caused no persistent changes in the partial oxygen saturation of pulpal blood. It may, therefore, be concluded that the diffusion of heat induced by the Nd:YAG laser into the pulp within the limit of the desensitization parameters cause no irreversible damages in the dental pulp.

  11. Potencial discriminatório dos N-alcanos em plantas forrageiras tropicais por análises multivariadas Discriminatory potential of the N-alkanes in tropical forages by multivariate analysis

    Directory of Open Access Journals (Sweden)

    Cristiano Côrtes

    2005-08-01

    Full Text Available O potencial dos n-alcanos em discriminar frações ou espécies de gramíneas (Brachiaria brizantha Stapf. cv. Marandu, Cynodon dactylon Pers. cv. Coast-cross 1 e Panicum maximum Jacq. cv. Tanzânia 1 e leguminosas tropicais (Arachis pintoi Koprov & Gregory. cv. Amarillo e Glycine wightii Verdc. Soja Perene foi avaliado neste estudo. As forrageiras foram amostradas na primavera, no verão e inverno, com quatro repetições por espécie. Utilizaram-se nas análises os n-alcanos C24 a C35, sendo o C32 e C34 padrões internos. As concentrações dos n-alcanos nas diferentes espécies e respectivas frações (lâminas foliares, haste porções superior e inferior e matéria morta, para gramíneas; folhas, caule porções superior e inferior e matéria morta para leguminosas foram avaliadas mediante análises multivariadas. O potencial discriminatório dos n-alcanos foi determinado pela análise de variáveis canônicas. As espécies e frações foram divididas em grupos por meio da análise de agrupamento. Os alcanos com menor potencial discriminatório foram: C26, C29, C25, C27 e C28 (primavera, C26, C28, C27, C30 e C29 (verão e C28, C26, C25, C29 e C27 (inverno. Nos períodos de primavera e inverno, a técnica de n-alcanos permitiu distinguir a lâmina foliar do coastcross das hastes superior e inferior, bem como das gramíneas e leguminosas. Em pastagens exclusivas de Brachiaria brizantha, no período de verão, seria possível discriminar as frações de importância nutricional, lâmina foliar e haste superior, pela determinação dos n-alcanos. As análises multivariadas, as variáveis canônicas e a análise de agrupamento representam boas alternativas de cálculo para melhorar a aplicabilidade da técnica dos n-alcanos na discriminação das dietas de herbívoros.The discriminatory potential of n-alkanes in tropical grasses (Brachiaria brizantha Stapf. cv. Marandu, Cynodon dactylon Pers. cv. Coast-cross 1 and Panicum maximum Jacq. cv. Tanz

  12. Nonlinear acoustics of water-saturated marine sediments

    DEFF Research Database (Denmark)

    Jensen, Leif Bjørnø

    1976-01-01

    Interest in the acoustic qualities of water-saturated marine sediments has increased considerably during recent years. The use of sources of high-intensity sound in oil propsecting, in geophysical and geological studies of bottom and subbottom materials and profiles and recently in marine...... archaeology has emphasized the need of information about the nonlinear acoustic qualities of water-saturated marine sediments. While the acoustic experiments and theoretical investigations hitherto performed have concentrated on a determination of the linear acoustic qualities of water-saturated marine...... sediments, their parameters of nonlinear acoustics are still unexplored. The strong absorption, increasing about linearly with frequency, found in most marine sediments and the occurrence of velocity dispersion by some marine sediments restrict the number of nonlinear acoustic test methods traditionally...

  13. The effect of sensory stimulation provided by family on arterial blood oxygen saturation in critical care patients.

    Science.gov (United States)

    Yousefi, Hojatollah; Naderi, Mojgan; Daryabeigi, Reza

    2015-01-01

    Stressors in the intensive care unit (ICU) impair patients' comfort, excite the stress response, and increase oxygen consumption in their body. Non-medical interventions are recommended by several studies as a treatment to improve comfort in the ICU patients. Sensory stimulation is one of the most important interventions. Since arterial blood oxygen saturation is an important index of patients' clinical and respiratory condition, this study aimed to investigate the effect of sensory stimulation provided by family on arterial blood oxygen saturation in critical care patients. This study is a clinical trial conducted on 64 patients hospitalized in the ICU wards of Al-Zahra and Kashani hospitals in Isfahan, Iran in 2012 and 2013. The patients were selected by simple sampling method and were randomly assigned to two groups (study and control). Patients' arterial blood oxygen saturations were measured 10 min before, immediately after, 10 min and 30 min after sensory stimulation in the study group, and simultaneously in the control group without any intervention. Repeated measures analysis of variance (ANOVA) showed a significant difference in the mean of arterial blood oxygen saturation levels 10 min before, immediately after, 10 min and 30 min after sensory stimulation in the study group (P 0.18). Application of sensory stimulations as a nursing and non-medical intervention by the family members improves comfort and increases the level of blood oxygen saturation in critical care patients.

  14. Saturation and postsaturation phenomena of Rayleigh-Taylor instability with adjacent modes

    International Nuclear Information System (INIS)

    Ikegawa, Tadashi; Nishihara, Katsunobu

    2003-01-01

    A weakly nonlinear theory has been developed for the classical Rayleigh-Taylor instability with a finite bandwidth taken into account self-consistently. The theory includes up to third order nonlinearity, which results in the saturation of linear growth and determines subsequent weakly nonlinear growth. Analytical results are shown to agree fairly well with two-dimensional hydrodynamic simulations. There are generally many local peaks of a perturbation with a finite bandwidth due to the interference of modes. Since a local amplitude is determined from phases among the modes as well as the bandwidth, we have investigated an onset of the linear growth saturation and the subsequent weakly nonlinear growth for different bandwidths and phases. It is shown that the saturation of the linear growth occurs locally, i.e., each of the local maximum amplitudes (LMAs) grows exponentially until it reaches almost the same saturation amplitude. In the random phase case, the root mean square amplitude thus saturates with almost the same amplitude as the LMA, after most of the LMAs have saturated. The saturation amplitude of the LMA is found to be independent of the bandwidth and depends on the Atwood number. We derive a formula of the saturation amplitude of modes based on the results obtained, and discuss its relation with Haan's formula [Phys. Rev. A 39, 5812 (1989)]. The LMAs grow linearly in time after the saturation and their speeds are approximated by the product of the linear growth rate and the saturation amplitude. We investigate the Atwood number dependence of both the saturation amplitude and the weakly nonlinear growth

  15. Comparison of empirical models and laboratory saturated hydraulic ...

    African Journals Online (AJOL)

    Numerous methods for estimating soil saturated hydraulic conductivity exist, which range from direct measurement in the laboratory to models that use only basic soil properties. A study was conducted to compare laboratory saturated hydraulic conductivity (Ksat) measurement and that estimated from empirical models.

  16. Bulk elastic wave propagation in partially saturated porous solids

    International Nuclear Information System (INIS)

    Berryman, J.G.; Thigpen, L.; Chin, R.C.Y.

    1988-01-01

    The linear equations of motion that describe the behavior of small disturbances in a porous solid containing both liquid and gas are solved for bulk wave propagation. The equations have been simplified by neglecting effects due to changes in capillary pressure. With this simplifying assumption, the equations reduce to two coupled (vector) equations of the form found in Biot's equations (for full saturation) but with more complicated coefficients. As in fully saturated solids, two shear waves with the same speed but different polarizations exist as do two compressional waves with distinct speeds. Attenuation effects can be enhanced in the partially saturated solid, depending on the distribution of gas in the pore space. Two models of the liquid/gas spatial distribution are considered: a segregated-fluids model and a mixed-fluids model. The two models predict comparable attentuation when the gas saturation is low, but the segregated-fluids model predicts a more rapid roll-off of attenuation as the gas saturation increases

  17. Thermochemistry analyses for transformation of C6 glucose compound into C9, C12 and C15 alkanes using density functional theory

    Science.gov (United States)

    Verma, Anand Mohan; Kishore, Nanda

    2017-02-01

    The hydrolysis of cellulose fraction of biomass yields C6 glucose which further can be transformed into long-chain hydrocarbons by C-C coupling. In this study, C6 glucose is transformed into three chain alkanes, namely, C9, C12 and C15 using C-C coupling reactions under the gas and aqueous phase milieus. The geometry optimisation and vibrational frequency calculations are carried out at well-known hybrid-GGA functional, B3LYP with the basis set of 6-31+g(d,p) under the density functional theory framework. The single point energetics are calculated at M05-2X/6-311+g(3df,2p) level of theory. All thermochemical properties are calculated over a wide range of temperature between 300 and 900 K at an interval of 100 K. The thermochemistry suggested that the aqueous phase behaviour is suitable for the hydrolysis of sugar into long-chain alkanes compared to gas-phase environment. The hydrodeoxygenation reactions under each reaction pathway are found as most favourable reactions in both phases; however, aqueous phase dominates over gas phase in all discussed thermodynamic parameters.

  18. Shearing of saturated clays in rock joints at high confining pressures

    International Nuclear Information System (INIS)

    Wang, C.; Mao, N.

    1979-01-01

    Saturated clays are sheared between rock joints at various pore water pressures and at confining pressures up to 3 kb (300 Mpa). Sliding on these joints is stable. For a given clay, the shear stress required to initiate sliding increases linearly with the effective normal stress across the sliding surface, with a slope of 0.08 +- 0.01 for joints filled with saturated montmorillonite, 0.12 +- 0.01 with saturated chlorite, 0.15 +- 0.01 with saturated kaolinite, and 0.22 +- 0.02 with saturated silty illite. Thus at high confining pressures the shear stress required to initiate sliding on joints filled with saturated clays are very much smaller than that required to initiate sliding on clean rock joints or on joints filled with dry gouge materials. In the crust, saturation of gouge materials along active faults would greatly lower the frictional resistance to faulting and would stabilize fault movement. Different fault behaviors such as stable creep along some faults and intermittent but sudden slip along others may reflect in part different degrees of saturation of fault zones at depth

  19. Determination of n-alkanes in C. annuum (bell pepper) fruit and seed using GC-MS: comparison of extraction methods and application to samples of different geographical origin

    NARCIS (Netherlands)

    de Rijke, E.; Fellner, C.; Westerveld, J.; Lopatka, M.; Cerli, C.; Kalbitz, K.; de Koster, C.G.

    2015-01-01

    An efficient extraction and analysis method was developed for the isolation and quantification of n-alkanes from bell peppers of different geographical locations. Five extraction techniques, i.e., accelerated solvent extraction (ASE), ball mill extraction, ultrasonication, rinsing, and shaking, were

  20. Friedel-Crafts reaction of benzyl fluorides: selective activation of C-F bonds as enabled by hydrogen bonding.

    Science.gov (United States)

    Champagne, Pier Alexandre; Benhassine, Yasmine; Desroches, Justine; Paquin, Jean-François

    2014-12-08

    A Friedel-Crafts benzylation of arenes with benzyl fluorides has been developed. The reaction produces 1,1-diaryl alkanes in good yield under mild conditions without the need for a transition metal or a strong Lewis acid. A mechanism involving activation of the C-F bond through hydrogen bonding is proposed. This mode of activation enables the selective reaction of benzylic C-F bonds in the presence of other benzylic leaving groups. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A demonstration experiment for studying the properties of saturated vapor

    Science.gov (United States)

    Grebenev, Igor V.; Lebedeva, Olga V.; Polushkina, Svetlana V.

    2017-11-01

    The paper proposes an important demonstration experiment that can be used at secondary schools in physics. The described experiment helps students learn the main concepts of the topic ‘saturated vapor’, namely, evaporation, condensation, dynamic equilibrium, saturation vapor, partial pressure, and the dependence of saturated vapor pressure on temperature.

  2. A new theoretical interpretation of Archie's saturation exponent

    Directory of Open Access Journals (Sweden)

    P. W. J. Glover

    2017-07-01

    Full Text Available This paper describes the extension of the concepts of connectedness and conservation of connectedness that underlie the generalized Archie's law for n phases to the interpretation of the saturation exponent. It is shown that the saturation exponent as defined originally by Archie arises naturally from the generalized Archie's law. In the generalized Archie's law the saturation exponent of any given phase can be thought of as formally the same as the phase (i.e. cementation exponent, but with respect to a reference subset of phases in a larger n-phase medium. Furthermore, the connectedness of each of the phases occupying a reference subset of an n-phase medium can be related to the connectedness of the subset itself by Gi = GrefSini. This leads naturally to the idea of the term Sini for each phase i being a fractional connectedness, where the fractional connectednesses of any given reference subset sum to unity in the same way that the connectednesses sum to unity for the whole medium. One of the implications of this theory is that the saturation exponent of any phase can be now be interpreted as the rate of change of the fractional connectedness with saturation and connectivity within the reference subset.

  3. High speed drying of saturated steam

    International Nuclear Information System (INIS)

    Marty, C.; Peyrelongue, J.P.

    1993-01-01

    This paper describes the development of the drying process for the saturated steam used in the PWR nuclear plant turbines in order to prevent negative effects of water on turbine efficiency, maintenance costs and equipment lifetime. The high speed drying concept is based on rotating the incoming saturated steam in order to separate water which is more denser than the steam; the water film is then extracted through an annular slot. A multicellular modular equipment has been tested. Applications on high and low pressure extraction of various PWR plants are described (Bugey, Loviisa)

  4. Molybdenite saturation in silicic magmas: Occurrence and petrological implications

    Science.gov (United States)

    Audetat, A.; Dolejs, D.; Lowenstern, J. B.

    2011-01-01

    We identified molybdenite (MoS2) as an accessory magmatic phase in 13 out of 27 felsic magma systems examined worldwide. The molybdenite occurs as small (molybdenite-saturated samples reveal 1-13 ppm Mo in the melt and geochemical signatures that imply a strong link to continental rift basalt-rhyolite associations. In contrast, arc-associated rhyolites are rarely molybdenite-saturated, despite similar Mo concentrations. This systematic dependence on tectonic setting seems to reflect the higher oxidation state of arc magmas compared with within-plate magmas. A thermodynamic model devised to investigate the effects of T, f O2 and f S2 on molybdenite solubility reliably predicts measured Mo concentrations in molybdenite-saturated samples if the magmas are assumed to have been saturated also in pyrrhotite. Whereas pyrrhotite microphenocrysts have been observed in some of these samples, they have not been observed from other molybdenite-bearing magmas. Based on the strong influence of f S2 on molybdenite solubility we calculate that also these latter magmas must have been at (or very close to) pyrrhotite saturation. In this case the Mo concentration of molybdenite-saturated melts can be used to constrain both magmatic f O2 and f S2 if temperature is known independently (e.g. by zircon saturation thermometry). Our model thus permits evaluation of magmatic f S2, which is an important variable but is difficult to estimate otherwise, particularly in slowly cooled rocks. ?? The Author 2011. Published by Oxford University Press. All rights reserved.

  5. Using Odd-Alkanes as a Carbon Source to Increase the Content of Nutritionally Important Fatty Acids in Candida krusei, Trichosporon cutaneum, and Yarrowia lipolytica

    Czech Academy of Sciences Publication Activity Database

    Matátková, O.; Gharwalová, L.; Zimola, M.; Řezanka, Tomáš; Masák, J.; Kolouchová, I.

    2017-01-01

    Roč. 2017, October (2017), s. 1-9, č. článku 8195329. ISSN 1687-8760 R&D Projects: GA ČR(CZ) GA17-00027S Institutional support: RVO:61388971 Keywords : HYDROCARBON-UTILIZING MICROORGANISMS * CHAIN N-ALKANES * POTENTIAL APPLICATIONS Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 0.901, year: 2016

  6. Nuclear determination of saturation profiles in core plugs

    International Nuclear Information System (INIS)

    Sletsgaard, J.; Oelgaard, P.L.

    1997-01-01

    A method to determine liquid saturations in core plugs during flooding is of importance when the relative permeability and capillary pressure function are to be determined. This part of the EFP-95 project uses transmission of γ-radiation to determine these saturations. In γ-transmission measurements, the electron density of the given substance is measured. This is an advantage as compared to methods that use electric conductivity, since neither oil nor gas conducts electricity. At the moment a single 137 Cs-source is used, but a theoretical investigation of whether it is possible to determine three saturations, using two radioactive sources with different γ-energies, has been performed. Measurements were made on three core plugs. To make sure that the measurements could be reproduced, all the plugs had a point of reference, i.e. a mark so that it was possible to place the plug same way every time. Two computer programs for calculation of saturation and porosity and the experimental setup are listed. (EG)

  7. Arterial blood oxygen saturation during blood pressure cuff-induced hypoperfusion

    Energy Technology Data Exchange (ETDEWEB)

    Kyriacou, P A [School of Engineering and Mathematical Sciences, City University, London EC1V 0HB (United Kingdom); Shafqat, K [School of Engineering and Mathematical Sciences, City University, London EC1V 0HB (United Kingdom); Pal, S K [St Andrew' s Centre for Plastic Surgery and Burns, Broomfield Hospital, Chelmsford, CM1 7ET (United Kingdom)

    2007-10-15

    Pulse oximetry has been one of the most significant technological advances in clinical monitoring in the last two decades. Pulse oximetry is a non-invasive photometric technique that provides information about the arterial blood oxygen saturation (SpO{sub 2}) and heart rate, and has widespread clinical applications. When peripheral perfusion is poor, as in states of hypovolaemia, hypothermia and vasoconstriction, oxygenation readings become unreliable or cease. The problem arises because conventional pulse oximetry sensors must be attached to the most peripheral parts of the body, such as finger, ear or toe, where pulsatile flow is most easily compromised. Pulse oximeters estimate arterial oxygen saturation by shining light at two different wavelengths, red and infrared, through vascular tissue. In this method the ac pulsatile photoplethysmographic (PPG) signal associated with cardiac contraction is assumed to be attributable solely to the arterial blood component. The amplitudes of the red and infrared ac PPG signals are sensitive to changes in arterial oxygen saturation because of differences in the light absorption of oxygenated and deoxygenated haemoglobin at these two wavelengths. From the ratios of these amplitudes, and the corresponding dc photoplethysmographic components, arterial blood oxygen saturation (SpO{sub 2}) is estimated. Hence, the technique of pulse oximetry relies on the presence of adequate peripheral arterial pulsations, which are detected as photoplethysmographic (PPG) signals. The aim of this study was to investigate the effect of pressure cuff-induced hypoperfusion on photoplethysmographic signals and arterial blood oxygen saturation using a custom made finger blood oxygen saturation PPG/SpO{sub 2} sensor and a commercial finger pulse oximeter. Blood oxygen saturation values from the custom oxygen saturation sensor and a commercial finger oxygen saturation sensor were recorded from 14 healthy volunteers at various induced brachial pressures

  8. Flow chemistry and polymer-supported pseudoenantiomeric acylating agents enable parallel kinetic resolution of chiral saturated N-heterocycles

    Science.gov (United States)

    Kreituss, Imants; Bode, Jeffrey W.

    2017-05-01

    Kinetic resolution is a common method to obtain enantioenriched material from a racemic mixture. This process will deliver enantiopure unreacted material when the selectivity factor of the process, s, is greater than 1; however, the scalemic reaction product is often discarded. Parallel kinetic resolution, on the other hand, provides access to two enantioenriched products from a single racemic starting material, but suffers from a variety of practical challenges regarding experimental design that limit its applications. Here, we describe the development of a flow-based system that enables practical parallel kinetic resolution of saturated N-heterocycles. This process provides access to both enantiomers of the starting material in good yield and high enantiopurity; similar results with classical kinetic resolution would require selectivity factors in the range of s = 100. To achieve this, two immobilized quasienantiomeric acylating agents were designed for the asymmetric acylation of racemic saturated N-heterocycles. Using the flow-based system we could efficiently separate, recover and reuse the polymer-supported reagents. The amide products could be readily separated and hydrolysed to the corresponding amines without detectable epimerization.

  9. On the propagation of a coupled saturation and pressure front

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, D. W.

    2010-12-01

    Using an asymptotic technique, valid for a medium with smoothly varying heterogeneity, I derive an expression for the velocity of a propagating, coupled saturation and pressure front. Due to the nonlinearity of the governing equations, the velocity of the propagating front depends upon the magnitude of the saturation and pressure changes across the front in addition to the properties of the medium. Thus, the expression must be evaluated in conjunction with numerical reservoir simulation. The propagation of the two-phase front is governed by the background saturation distribution, the saturation-dependent component of the fluid mobility, the porosity, the permeability, the capillary pressure function, the medium compressibility, and the ratio of the slopes of the relative permeability curves. Numerical simulation of water injection into a porous layer saturated with a nonaqueous phase liquid indicates that two modes of propagation are important. The fastest mode of propagation is a pressure-dominated disturbance that travels through the saturated layer. This is followed, much later, by a coupled mode with a large saturation change. These two modes are also observed in a simulation using a heterogeneous porous layer. A comparison between the propagation times estimated from the results of the numerical simulation and predictions from the asymptotic expression indicates overall agreement.

  10. Atmospheric sugar alcohols: evaporation rates and saturation vapor pressures

    DEFF Research Database (Denmark)

    Bilde, Merete; Zardini, Alessandro Alessio; Hong, Juan

    alcohols. These polyols are common in the water soluble fraction of atmospheric aerosols. In our experimental system sub-micron particles are generated by nebulization from aqueous solution, and a mono disperse fraction of the aerosol is selected using a differential mobility analyzer. The particles......The atmospheric partitioning between gas and condensed phase of organic molecules is poorly understood, and discrepancies exist between predicted and observed concentrations of secondary organic aerosols. A key problem is the lack of information about thermodynamic properties of semi- and low...... volatile organic molecules. Saturation vapor pressure and the associated temperature dependence (dH) are key parameters for improving predictive atmospheric models. In this work we combine experiments and thermodynamic modeling to investigate these parameters for a series of polyols, so-called sugar...

  11. Semiconductor saturable absorbers for ultrafast THz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths.......We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths....

  12. Oh Magadi! Interpreting isoGDGTs and n-alkanes in a saline tropical lake: Lake Magadi, Kenya

    Science.gov (United States)

    Ferland, T. M.; Werne, J. P.; Castañeda, I. S.; Cohen, A. S.; Lowenstein, T. K.; Deocampo, D.; Renaut, R.; Bernhart, O. R.

    2017-12-01

    The Hominin Sites and Paleolakes Drilling Project (HSPDP) seeks to understand the paleoclimatic and paleoenvironmental context of hominin adaptation and evolution by analysis of paleolacustrine cores taken near key hominin fossil and artifact localities in Kenya and Ethiopia. We present biomarker and compound specific isotope data from a 200 m drill core from Lake Magadi, Kenya. Located 20 km from the Koora Plain in the southern Kenya Rift, and adjacent to the Olorgesailie basin, Lake Magadi is in one of the richest Early-Late Pleistocene archaeological localities in Africa, a region that has been key in debates about the relationship between climate and evolution. Present-day Lake Magadi is a saline pan, a descendant of a series of paleolakes that have occupied its drainage basin and progressively dried for approximately one million years. Nearly 70% of samples analyzed for n-alkanes recorded a robust terrestrial signal. The majority of samples did not contain the complete suite of branched GDGTs necessary to reconstruct temperature from the Methylation of Branched Tetraethers and Cyclisation of Branched Tetraethers (MBT/CBT; Weijers et al., 2007) proxy. The TetraEther indeX with 86 carbon atoms (TEX86; Schouten et al., 2002) temperature proxy was established for 90% of samples analyzed for isoGDGTs, however the Methane and Ring Indices (Zhang et al., 2011; Zhang et al., 2016) suggest that the TEX86 is not applicable to temperature reconstruction at Magadi. Despite this, the Magadi TEX86 temperature reconstruction appears to agree with not only the trends in our n-alkane data but with other regional and global records, including the GRIP-2 δ18O record. We compare our temperature data to other records in the region, and investigate influences on our TEX86 data including microbial community turnover and lake drying.

  13. Biofilter design for effective nitrogen removal from stormwater - influence of plant species, inflow hydrology and use of a saturated zone.

    Science.gov (United States)

    Payne, Emily G I; Pham, Tracey; Cook, Perran L M; Fletcher, Tim D; Hatt, Belinda E; Deletic, Ana

    2014-01-01

    The use of biofilters to remove nitrogen and other pollutants from urban stormwater runoff has demonstrated varied success across laboratory and field studies. Design variables including plant species and use of a saturated zone have large impacts upon performance. A laboratory column study of 22 plant species and designs with varied outlet configuration was conducted across a 1.5-year period to further investigate the mechanisms and influences driving biofilter nitrogen processing. This paper presents outflow concentrations of total nitrogen from two sampling events across both 'wet' and 'dry' frequency dosing, and from sampling across two points in the outflow hydrograph. All plant species were effective under conditions of frequent dosing, but extended drying increased variation between species and highlighted the importance of a saturated zone in maintaining biofilter function. The saturated zone also effectively treated the volume of stormwater stored between inflow events, but this extended detention provided no additional benefit alongside the rapid processing of the highest performing species. Hence, the saturated zone reduced performance differences between plant species, and potentially acts as an 'insurance policy' against poor sub-optimal plant selection. The study shows the importance of biodiversity and inclusion of a saturated zone in protecting against climate variability.

  14. Methanogenic paraffin degradation proceeds via alkane addition to fumarate by 'Smithella' spp. mediated by a syntrophic coupling with hydrogenotrophic methanogens.

    Science.gov (United States)

    Wawrik, Boris; Marks, Christopher R; Davidova, Irene A; McInerney, Michael J; Pruitt, Shane; Duncan, Kathleen E; Suflita, Joseph M; Callaghan, Amy V

    2016-09-01

    Anaerobic microbial biodegradation of recalcitrant, water-insoluble substrates, such as paraffins, presents unique metabolic challenges. To elucidate this process, a methanogenic consortium capable of mineralizing long-chain n-paraffins (C28 -C50 ) was enriched from San Diego Bay sediment. Analysis of 16S rRNA genes indicated the dominance of Syntrophobacterales (43%) and Methanomicrobiales (26%). Metagenomic sequencing allowed draft genome assembly of dominant uncultivated community members belonging to the bacterial genus Smithella and the archaeal genera Methanoculleus and Methanosaeta. Five contigs encoding homologs of the catalytic subunit of alkylsuccinate synthase (assA) were detected. Additionally, mRNA transcripts for these genes, including a homolog binned within the 'Smithella' sp. SDB genome scaffold, were detected via RT-PCR, implying that paraffins are activated via 'fumarate addition'. Metabolic reconstruction and comparison with genome scaffolds of uncultivated n-alkane degrading 'Smithella' spp. are consistent with the hypothesis that syntrophically growing 'Smithella' spp. may achieve reverse electron transfer by coupling the reoxidation of ETFred to a membrane-bound FeS oxidoreductase functioning as an ETF:menaquinone oxidoreductase. Subsequent electron transfer could proceed via a periplasmic formate dehydrogenase and/or hydrogenase, allowing energetic coupling to hydrogenotrophic methanogens such as Methanoculleus. Ultimately, these data provide fundamental insight into the energy conservation mechanisms that dictate interspecies interactions salient to methanogenic alkane mineralization. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Activation of the C-H bond: catalytic hydroxylation of hydrocarbons by new cobaltic alkylperoxydic complexes; selective and catalytic cycloalkane dehydrogenation in presence of uranium for hydrogen transfer

    International Nuclear Information System (INIS)

    Brazi, E.

    1987-01-01

    The aim of the thesis is to improve efficiency and selectivity of chemical reactions for alkane transformations. In the first part decomposition of hydroperoxides and hydrocarbon hydroxylation by cobalt complexes is studied. In the second part cycloalkanes are dehydrogenated into aromatics with a Pt catalyst, trapping hydrogen by uranium. Uranium hydride UH 3 can yield very pure hydrogen at reasonable temperature [fr

  16. Line selection in celestial masers

    International Nuclear Information System (INIS)

    Middleton, M.S.

    1978-09-01

    The primary themes of this work concern the applicability of the Cook (1975) filter mechanism to line selection in hydroxyl masers, and the question of whether interstellar hydroxyl, water, and silicon monoxide masers are saturated. Whether the Cook filter is operative in celestial masers has not thus far been decided, even though it has been shown that such an effect might be occurring. The theory in its present form does not account for line broadening, nor have its consequences with regard to microwave maser emission from excited states of hydroxyl been explored. Both these topics are discussed and the findings are compared with the observations of NGC 6334A, a source which is interesting because of the strong evidence for Zeeman splitting which can be seen in some of its observed spectra. The question of whether interstellar masers are saturated has been much discussed, but a simple method for determining the state of saturation of observed masers does not exist. In particular, the importance of background radiation and of different cloud geometries on the state of saturation of interstellar masers up to now has not been fully appreciated. Both these topics are discussed. (author)

  17. Ultrafast THz Saturable Absorption in Doped Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2011-01-01

    We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields.......We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields....

  18. Saturable absorption in detonation nanodiamond dispersions

    Science.gov (United States)

    Vanyukov, Viatcheslav; Mikheev, Gennady; Mogileva, Tatyana; Puzyr, Alexey; Bondar, Vladimir; Lyashenko, Dmitry; Chuvilin, Andrey

    2017-07-01

    We report on a saturable absorption in aqueous dispersions of nanodiamonds with femtosecond laser pulse excitation at a wavelength of 795 nm. The open aperture Z-scan experiments reveal that in a wide range of nanodiamond particle sizes and concentrations, a light-induced increase of transmittance occurs. The transmittance increase originates from the saturation of light absorption and is associated with a light absorption at 1.5 eV by graphite and dimer chains (Pandey dimer chains). The obtained key nonlinear parameters of nanodiamond dispersions are compared with those of graphene and carbon nanotubes, which are widely used for the mode-locking.

  19. On the saturation of astrophysical dynamos

    DEFF Research Database (Denmark)

    Dorch, Bertil; Archontis, Vasilis

    2004-01-01

    In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and we study the dynamo's mode of operation during both the linear and non-linear saturation regimes. It turns out that in addition to a high growth rate in the li......In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and we study the dynamo's mode of operation during both the linear and non-linear saturation regimes. It turns out that in addition to a high growth rate...

  20. The viscosity of the refrigerant 1,1-difluoroethane along the saturation line

    Science.gov (United States)

    van der Gulik, P. S.

    1993-07-01

    The viscosity coefficient of the refrigerant R152a (1,1-difluoroethane) has been measured along the saturation line both in the saturated liquid and in the saturated vapor. The data have been obtained every 10 K from 243 up to 393 K by means of a vibrating-wire viscometer using the free damped oscillation method. The density along the saturation line was calculated from the equation of state given by Tamatsu et al. with application of the saturated vapor-pressure correlation given by Higashi et al. An interesting result is that in the neighborhood of the critical point, the kinematic viscosity of the saturated liquid seems to coincide with that of the saturated vapor. The results for the saturated liquid are in satisfying agreement with those of Kumagai and Takahashi and of Phillips and Murphy. A comparison of the saturatedvaport data with the unsaturated-vapor data of Takahashi et al. shows some discrepancies.

  1. Experimental and numerical study on thermal conductivity of partially saturated unconsolidated sands

    Science.gov (United States)

    Lee, Youngmin; Keehm, Youngseuk; Kim, Seong-Kyun; Shin, Sang Ho

    2016-04-01

    A class of problems in heat flow applications requires an understanding of how water saturation affects thermal conductivity in the shallow subsurface. We conducted a series of experiments using a sand box to evaluate thermal conductivity (TC) of partially saturated unconsolidated sands under varying water saturation (Sw). We first saturated sands fully with water and varied water saturation by drainage through the bottom of the sand box. Five water-content sensors were integrated vertically into the sand box to monitor water saturation changes and a needle probe was embedded to measure thermal conductivity of partially saturated sands. The experimental result showed that thermal conductivity decreases from 2.5 W/mK for fully saturated sands to 0.7 W/mK when water saturation is 5%. We found that the decreasing trend is quite non-linear: highly sensitive at very high and low water saturations. However, the boundary effects on the top and the bottom of the sand box seemed to be responsible for this high nonlinearity. We also found that the determination of water saturation is quite important: the saturation by averaging values from all five sensors and that from the sensor at the center position, showed quite different trends in the TC-Sw domain. In parallel, we conducted a pore-scale numerical modeling, which consists of the steady-state two-phase Lattice-Boltzmann simulator and FEM thermal conduction simulator on digital pore geometry of sand aggregation. The simulation results showed a monotonous decreasing trend, and are reasonably well matched with experimental data when using average water saturations. We concluded that thermal conductivity would decrease smoothly as water saturation decreases if we can exclude boundary effects. However, in dynamic conditions, i.e. imbibition or drainage, the thermal conductivity might show hysteresis, which can be investigated with pore-scale numerical modeling with unsteady-state two-phase flow simulators in our future work.

  2. [Bis(TrimethylsilylMethyl]Lithium and -Sodium: Solubility in Alkanes and Complexes with O- and N- Donor Ligands

    Directory of Open Access Journals (Sweden)

    Markus von Pilgrim

    2017-06-01

    Full Text Available In contrast to alkyl compounds of lithium, which play an important role in organometallic chemistry, the corresponding heavier alkali metal compounds are less investigated. These compounds are mostly insoluble in inert solvents or undergo solvolysis in coordinating solvents due to their high reactivity. An exception from this typical behavior is demonstrated by bis(trimethylsilylmethylsodium. This study examines alkane solutions of bis(trimethylsilylmethyllithium and -sodium by NMR spectroscopic and cryoscopic methods. In addition, structural studies by X-ray crystallography of the corresponding compounds coordinated by O- and N- ligands (tetrahydrofuran and tetramethylethylenediamine present possible structural motifs of the uncoordinated compounds in solution.

  3. The effect of rock electrical parameters on the calculation of reservoir saturation

    International Nuclear Information System (INIS)

    Li, Xiongyan; Qin, Ruibao; Liu, Chuncheng; Mao, Zhiqiang

    2013-01-01

    The error in calculating a reservoir saturation caused by the error in the cementation exponent, m, and the saturation exponent, n, should be analysed. In addition, the influence of m and n on the reservoir saturation should be discussed. Based on the Archie formula, the effect of variables m and n on the reservoir saturation is analysed, while the formula for the error in calculating the reservoir saturation, caused by the error in m and n, is deduced, and the main factors affecting the error in reservoir saturation are illustrated. According to the physical meaning of m and n, it can be interpreted that they are two independent parameters, i.e., there is no connection between m and n. When m and n have the same error, the impact of the variables on the calculation of the reservoir saturation should be compared. Therefore, when the errors of m and n are respectively equal to 0.2, 0.4 and 0.6, the distribution range of the errors in calculating the reservoir saturation is analysed. However, in most cases, the error of m and n is about 0.2. When the error of m is 0.2, the error in calculating the reservoir saturation ranges from 0% to 35%. Meanwhile, when the error in n is 0.2, the error in calculating the reservoir saturation is almost always below 5%. On the basis of loose sandstone, medium sandstone, tight sandstone, conglomerate, tuff, breccia, basalt, andesite, dacite and rhyolite, this paper first analyses the distribution range and change amplitude of m and n. Second, the impact of m and n on the calculation of reservoir saturation is elaborated upon. With regard to each lithology, the distribution range and change amplitude of m are greater than those of n. Therefore, compared with n, the effect of m on the reservoir saturation is stronger. The influence of m and n on the reservoir saturation is determined, and the error in calculating the reservoir saturation caused by the error of m and n is calculated. This is theoretically and practically significant for

  4. Soil aquifer treatment of artificial wastewater under saturated conditions

    KAUST Repository

    Essandoh, H. M K; Tizaoui, Chedly; Mohamed, Mostafa H A; Amy, Gary L.; Brdjanovic, Damir

    2011-01-01

    A 2000 mm long saturated laboratory soil column was used to simulate soil aquifer treatment under saturated conditions to assess the removal of chemical and biochemical oxygen demand (COD and BOD), dissolved organic carbon (DOC), nitrogen

  5. Saturated Zone Flow and Transport Expert Elicitation Project

    Energy Technology Data Exchange (ETDEWEB)

    Coppersmith, Kevin J.; Perman, Roseanne C.

    1998-01-01

    This report presents results of the Saturated Zone Flow and Transport Expert Elicitation (SZEE) project for Yucca Mountain, Nevada. This project was sponsored by the US Department of Energy (DOE) and managed by Geomatrix Consultants, Inc. (Geomatrix), for TRW Environmental Safety Systems, Inc. The DOE's Yucca Mountain Site Characterization Project (referred to as the YMP) is intended to evaluate the suitability of the site for construction of a mined geologic repository for the permanent disposal of spent nuclear fuel and high-level radioactive waste. The SZEE project is one of several that involve the elicitation of experts to characterize the knowledge and uncertainties regarding key inputs to the Yucca Mountain Total System Performance Assessment (TSPA). The objective of the current project was to characterize the uncertainties associated with certain key issues related to the saturated zone system in the Yucca Mountain area and downgradient region. An understanding of saturated zone processes is critical to evaluating the performance of the potential high-level nuclear waste repository at Yucca Mountain. A major goal of the project was to capture the uncertainties involved in assessing the saturated flow processes, including uncertainty in both the models used to represent the physical processes controlling saturated zone flow and transport, and the parameter values used in the models. So that the analysis included a wide range of perspectives, multiple individual judgments were elicited from members of an expert panel. The panel members, who were experts from within and outside the Yucca Mountain project, represented a range of experience and expertise. A deliberate process was followed in facilitating interactions among the experts, in training them to express their uncertainties, and in eliciting their interpretations. The resulting assessments and probability distributions, therefore, provide a reasonable aggregate representation of the knowledge and

  6. Analysis of final products from the liquid alkanes radiolysis at low dose, low temperature and high dose rate

    International Nuclear Information System (INIS)

    Tilquin, B.; Doncker, J. de.

    1991-01-01

    Yields of final products (dimers) from the radiolysis of n-hexane and 2,3-dimethylbutane are studied by capillary chromatographic techniques for trace analysis. Reaction of intermediates with the products, the alkane molecules or impurities, is reduced by using low dose (1 kGy), low temperature (195 K) and high dose rate (LINAC). Temperature is the most important experiment variable; by reducing the temperature, reactions with significant activation energies do not compete with radical-radical termination reactions. Products from LINAC radiolysis provide information about active species (reactive fragment, allylic radical...) which deserve a more detailed examination by direct methods [fr

  7. Anomalous hydrocracking of triglycerides over CoMo-catalyst ...

    Indian Academy of Sciences (India)

    Vol. 126, No. 2, March 2014, pp. 473–480. c Indian Academy of Sciences. Anomalous hydrocracking of ... to minimize condensation reaction during this process. Keywords. Coupling reactions ... normal and/or iso-alkanes.5–7 The first step in plant- oil hydroprocessing for the production of hydrocarbon fuels is saturation of ...

  8. Prediction of saturation using the carbon/oxygen log

    Energy Technology Data Exchange (ETDEWEB)

    Horner, S.C.; Sanyal, S.K.

    1984-09-01

    This project investigates the nature of Dresser-Atlas Carbon/Oxygen Log gamma ray spectra. It presents an attempt to improve the signal-to-noise ratio of the C/O and Si/Ca parameters used by Dresser-Atlas to determine oil saturation. Two techniques were developed to subtract the Compton background from the spectral data. Neither technique significantly improves the accuracy of the cased-hole prediction of oil saturation. However, it has been shown that it is possible to develop a satisfactory correlation for oil saturation on a well-by-well basis. This correlation can then be used to generate oil-in-place from the C/O and Si/Ca ratios. 17 references.

  9. Input saturation in nonlinear multivariable processes resolved by nonlinear decoupling

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    1995-04-01

    Full Text Available A new method is presented for the resolution of the problem of input saturation in nonlinear multivariable process control by means of elementary nonlinear decoupling (END. Input saturation can have serious consequences particularly in multivariable control because it may lead to very undesirable system behaviour and quite often system instability. Many authors have searched for systematic techniques for designing multivariable control systems in which saturation may occur in any of the control variables (inputs, manipulated variables. No generally accepted method seems to have been presented so far which gives a solution in closed form. The method of elementary nonlinear decoupling (END can be applied directly to the case of saturation control variables by deriving as many control strategies as there are combinations of saturating control variables. The method is demonstrated by the multivariable control of a simulated Fluidized Catalytic Cracker (FCC with very convincing results.

  10. Application of biological markers for the identification of oil-type pollutants in recent sediments: Alluvial formation of the Danube river, Oil refinery Pančevo

    Directory of Open Access Journals (Sweden)

    Rašović Aleksandar S.

    2002-01-01

    Full Text Available The purpose of this paper was to examine to which extent the abundance and distribution of certain biological markers may be used for the identification of oil-type pollutants in recent sediments and ground waters. The samples were taken from the area of the Oil Refinery Pančevo (alluvial formation of the Danube River. The organic matter of the investigated samples was isolated using an extraction method with chloroform. The group composition and usual biological markers were analyzed in the obtained extracts. n-Alkanes and acyclic isoprenoids, pristane and phytane were analyzed using gas chromatographie (GC analysis of saturated hydrocarbons. Polycyclic alkanes of the sterane and terpane type were analyzed using gas chromatography-mass spectrometry (GC-MS, i.e. by analyzing the carbamide non-adduct of the total alkane fraction (Single Ion Monitoring SIM-technique. The obtained results indicate that n-alkanes can be used for the identification of oil-type pollutants (for example, if the oil-pollutant is biodegraded or present in very low concentrations, and steranes and triterpanes can be used as very reliable indicators of oil-type pollution in recent sediments and ground waters.

  11. Catalytic conversion of light alkanes, Phase 3. Topical report, January 1990--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    The mission of this work is to devise a new catalyst which can be used in the first simple, economic process to convert the light alkanes in natural gas to an alcohol-rich oxygenated product which can either be used as an environmentally friendly, high-performance liquid fuel, or a precursor to a liquid hydrocarbon transportation fuel. The authors have entered the proof-of-concept stage for converting isobutane to tert butyl alcohol in a practical process and are preparing to enter proof-of-concept of a propane to isopropyl alcohol process in the near future. Methane and ethane are more refractory and thus more difficult to oxidize than the C{sub 3} and C{sub 4} hydrocarbons. Nonetheless, advances made in this area indicate that further research progress could achieve the goal of their direct conversion to alcohols. Progress in Phase 3 catalytic vapor phase methane and ethane oxidation over metals in regular oxidic lattices are the subject of this topical report.

  12. Beyond the Natural Proteome: Nondegenerate Saturation Mutagenesis-Methodologies and Advantages.

    Science.gov (United States)

    Ferreira Amaral, M M; Frigotto, L; Hine, A V

    2017-01-01

    Beyond the natural proteome, high-throughput mutagenesis offers the protein engineer an opportunity to "tweak" the wild-type activity of a protein to create a recombinant protein with required attributes. Of the various approaches available, saturation mutagenesis is one of the core techniques employed by protein engineers, and in recent times, nondegenerate saturation mutagenesis is emerging as the approach of choice. This review compares the current methodologies available for conducting nondegenerate saturation mutagenesis with traditional, degenerate saturation and briefly outlines the options available for screening the resulting libraries, to discover a novel protein with the required activity and/or specificity. © 2017 Elsevier Inc. All rights reserved.

  13. Direct hydrodeoxygenation of cellulose and xylan to lower alkanes on ruthenium catalysts in subcritical water

    International Nuclear Information System (INIS)

    Osaka, Yuriko; Ikeda, Yoichi; Hashizume, Daisuke; Iwamoto, Masakazu

    2013-01-01

    Nano particles of Ru, Rh, Pd, Ir, Pt, and Au, protected by polyvinyl pyrrolidone (PVP), were applied to the hydrodeoxygenation of cellulose and xylan in water and 5 MPa H 2 at 543 K. The distributions of products generated from cellulose and xylan were roughly similar to each other under the present reaction conditions, and therefore, the former was intensively studied. The Ru-PVP catalyst afforded mainly methane and lower alkanes, rather than producing water soluble organic compounds, such as diols and alcohols, that were formed with the use of the other catalysts. The changes in the product distributions with reaction temperature and time indicated that the reaction consisted of two consecutive reactions: cellulose or xylan → water soluble compounds → hydrogenolysis. The first transformation was promoted in subcritical water, and the second step was catalyzed by the Ru catalyst. The Ru catalyst that was supported on CeO 2 , γ-Al 2 O 3 , or activated carbon yielded a similar product distribution to that on Ru-PVP; however, the loading of Ru on TiO 2 , ZrO 2 , SiO 2 –Al 2 O 3 , or SiO 2 resulted in the increment of diols. After the reaction a small portion of the CeO 2 and most of the SiO 2 –Al 2 O 3 and SiO 2 were dissolved in water, and a portion of the Al 2 O 3 was transformed to boehmite AlO(OH) from the γ-alumina. Little change in the catalytic activity however was observed upon the reuse of Ru/Al 2 O 3 in the second run. Highlights: •One-path hydrodeoxygenation of cellulose and xylan to methane and lower alkanes was studied. •Ru-PVP catalysts gave the best yields among Ru-, Rh-, Pd-, Ir-, Pt-, and Au-PVP. •The reaction pathways were cellulose → water soluble compounds → hydrogenolysis. •The catalytic activity of Ru was greatly dependent on the supports

  14. Catalytic ring opening of cyclic hydrocarbons in diesel fuels

    Energy Technology Data Exchange (ETDEWEB)

    Calemma, V.; Ferrari, M. [Eni S.p.A., San Donato Milanese (Italy). R and M Div.; Rabl, S.; Haas, A.; Santi, D.; Weitkamp, J. [Stuttgart Univ. (Germany). Inst. of Chemical Technology

    2013-11-01

    An approach for high-aromatic streams upgrading, allowing to meet future diesel quality standards, is saturation of the aromatic structures followed by the selective breaking of endocyclic C-C bonds of naphthenic structures so formed to produce alkanes with the same number of carbon atoms as the starting molecule ('selective ring opening, SRO'). Although theoretically, SRO is a promising route for upgrading low-value feeds to high-quality products, in practice, it continues to be a challenge owing to its complex chemistry. Product characteristics, do not only depend on the composition of the feed, but also on the operating conditions and the nature of the catalyst. Very recently, novel catalysts ('HIgh-PErformance Ring Opening Catalysts, HIPEROCs') were developed which allow a very selective ring opening of the model compound decalin to paraffins without degradation of the carbon number. The hydroconversion of dearomatized Light Cycle Oil (DeAr-LCO) over the abovementioned catalysts resulted in a remarkable change of the chemical structure of the feed with a strong decrease of naphthenic structures with two or more condensed rings and a concomitant increase of alkyl-substituted cyclohexanes and open-chain alkanes. The changes occurring in the chemical structures of feedstock during hydroconversion resulted in a remarkable increase of the Cetane Index of the products up to 11 units. In the present contribution, we examine the main factors affecting activity and selectivity of SRO catalysts in the light of the recent literature dealing with the subject and we report on the recent advances in hydroconversion of refinery cuts such as DeAr- LCO over HIPEROCs. (orig.)

  15. Investigation of the Low-Temperature Behavior of FD-SOI MOSFETs in the Saturation Regime Using Y and Z Functions

    Directory of Open Access Journals (Sweden)

    A. Karsenty

    2014-01-01

    Full Text Available The saturation regime of two types of fully depleted (FD SOI MOSFET devices was studied. Ultrathin body (UTB and gate recessed channel (GRC devices were fabricated simultaneously on the same silicon wafer through a selective “gate recessed” process. They share the same W/L ratio but have a channel film thickness of 46 nm and 2.2 nm, respectively. Their standard characteristics (IDS-VDS and IDS-VGS of the devices were measured at room temperature before cooling down to 77 K. Surprisingly, their respective temperature dependence is found to be opposite. In this paper, we focus our comparative analysis on the devices' conduction using a Y-function applied to the saturation domain. The influence of the temperature in this domain is presented for the first time. We point out the limits of the Y-function analysis and show that a new function called Z can be used to extract the series resistance in the saturation regime.

  16. Alkane and crude oil degrading bacteria from the petroliferous soil of India

    International Nuclear Information System (INIS)

    Roy, I.; Mishra, A.K.; Ray, A.K.

    1991-01-01

    It has been estimated that approximately 0.5 percent of transported crude oil finds its way into seawater, largely through accidental spills and discharge of ballast and wash water from oil tankers. Some microorganisms are well known for their ability to degrade a variety of hydrocarbons present in crude oil. Oil spills at sea or on land have demonstrated the hydrocarbon-degrading potential of these organisms. Under laboratory conditions, nitrogen may be supplied in soluble form (inorganic salts of ammonia or nitrate of urea). Since most natural aquatic environments are deficient in utilizable forms of nitrogen, it is necessary to add the same exogeneously, but because of rapid dilution the added source of nitrogen does not remain effective. The need for nitrogen supplements may be overcome by appropriate choice of microbes with the genetic capacity to fix molecular nitrogen. In this paper the authors are reporting the isolation of a strain of Pseudomonas stutzeri from the petroliferous soil of India. This strain has the capacity to degrade alkane and crude oil and to fix nitrogen

  17. Calcium phosphate saturation in the western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, S.; Reddy, C.V.G.

    Temperature, inorganic phosphate concentration and pH seem to be the major factors influencing the degree of saturation of calcium phosphate in sea water. Two water regions can be demarcated in the study area based on the saturation patterns...

  18. Comparing the accuracy of high-dimensional neural network potentials and the systematic molecular fragmentation method: A benchmark study for all-trans alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Gastegger, Michael; Kauffmann, Clemens; Marquetand, Philipp, E-mail: philipp.marquetand@univie.ac.at [Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, Vienna (Austria); Behler, Jörg [Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum (Germany)

    2016-05-21

    Many approaches, which have been developed to express the potential energy of large systems, exploit the locality of the atomic interactions. A prominent example is the fragmentation methods in which the quantum chemical calculations are carried out for overlapping small fragments of a given molecule that are then combined in a second step to yield the system’s total energy. Here we compare the accuracy of the systematic molecular fragmentation approach with the performance of high-dimensional neural network (HDNN) potentials introduced by Behler and Parrinello. HDNN potentials are similar in spirit to the fragmentation approach in that the total energy is constructed as a sum of environment-dependent atomic energies, which are derived indirectly from electronic structure calculations. As a benchmark set, we use all-trans alkanes containing up to eleven carbon atoms at the coupled cluster level of theory. These molecules have been chosen because they allow to extrapolate reliable reference energies for very long chains, enabling an assessment of the energies obtained by both methods for alkanes including up to 10 000 carbon atoms. We find that both methods predict high-quality energies with the HDNN potentials yielding smaller errors with respect to the coupled cluster reference.

  19. Comparing the accuracy of high-dimensional neural network potentials and the systematic molecular fragmentation method: A benchmark study for all-trans alkanes

    International Nuclear Information System (INIS)

    Gastegger, Michael; Kauffmann, Clemens; Marquetand, Philipp; Behler, Jörg

    2016-01-01

    Many approaches, which have been developed to express the potential energy of large systems, exploit the locality of the atomic interactions. A prominent example is the fragmentation methods in which the quantum chemical calculations are carried out for overlapping small fragments of a given molecule that are then combined in a second step to yield the system’s total energy. Here we compare the accuracy of the systematic molecular fragmentation approach with the performance of high-dimensional neural network (HDNN) potentials introduced by Behler and Parrinello. HDNN potentials are similar in spirit to the fragmentation approach in that the total energy is constructed as a sum of environment-dependent atomic energies, which are derived indirectly from electronic structure calculations. As a benchmark set, we use all-trans alkanes containing up to eleven carbon atoms at the coupled cluster level of theory. These molecules have been chosen because they allow to extrapolate reliable reference energies for very long chains, enabling an assessment of the energies obtained by both methods for alkanes including up to 10 000 carbon atoms. We find that both methods predict high-quality energies with the HDNN potentials yielding smaller errors with respect to the coupled cluster reference.

  20. Crystal structures of eight mono-methyl alkanes (C26–C32 via single-crystal and powder diffraction and DFT-D optimization

    Directory of Open Access Journals (Sweden)

    Lee Brooks

    2015-09-01

    Full Text Available The crystal structures of eight mono-methyl alkanes have been determined from single-crystal or high-resolution powder X-ray diffraction using synchrotron radiation. Mono-methyl alkanes can be found on the cuticles of insects and are believed to act as recognition pheromones in some social species, e.g. ants, wasps etc. The molecules were synthesized as pure S enantiomers and are (S-9-methylpentacosane, C26H54; (S-9-methylheptacosane and (S-11-methylheptacosane, C28H58; (S-7-methylnonacosane, (S-9-methylnonacosane, (S-11-methylnonacosane and (S-13-methylnonacosane, C30H62; and (S-9-methylhentriacontane, C32H66. All crystallize in space group P21. Depending on the position of the methyl group on the carbon chain, two packing schemes are observed, in which the molecules pack together hexagonally as linear rods with terminal and side methyl groups clustering to form distinct motifs. Carbon-chain torsion angles deviate by less than 10° from the fully extended conformation, but with one packing form showing greater curvature than the other near the position of the methyl side group. The crystal structures are optimized by dispersion-corrected DFT calculations, because of the difficulties in refining accurate structural parameters from powder diffraction data from relatively poorly crystalline materials.