Sample records for selected imaging applications

  1. Despeckle filtering for ultrasound imaging and video II selected applications

    CERN Document Server

    Loizou, Christos P


    In ultrasound imaging and video visual perception is hindered by speckle multiplicative noise that degrades the quality. Noise reduction is therefore essential for improving the visual observation quality or as a pre-processing step for further automated analysis, such as image/video segmentation, texture analysis and encoding in ultrasound imaging and video. The goal of the first book (book 1 of 2 books) was to introduce the problem of speckle in ultrasound image and video as well as the theoretical background, algorithmic steps, and the MatlabTM for the following group of despeckle filters:

  2. Mobile phone based imaging system for selected tele-healthcare applications


    Condominas Guàrdia, Jordi


    A mobile phone based telemedicine study is developed to see how feasible phone usage is in selected health care applications. The research is divided into three different objectives. The first objective is to compile the technical characteristics of selected mobile phones from telemedicine perspective. The second objective is to develop techniques to acquire quality images of skin with mobile phones. Finally a smartphone based telemedicine application will be developed to asses...

  3. Advances in feature selection methods for hyperspectral image processing in food industry applications: a review. (United States)

    Dai, Qiong; Cheng, Jun-Hu; Sun, Da-Wen; Zeng, Xin-An


    There is an increased interest in the applications of hyperspectral imaging (HSI) for assessing food quality, safety, and authenticity. HSI provides abundance of spatial and spectral information from foods by combining both spectroscopy and imaging, resulting in hundreds of contiguous wavebands for each spatial position of food samples, also known as the curse of dimensionality. It is desirable to employ feature selection algorithms for decreasing computation burden and increasing predicting accuracy, which are especially relevant in the development of online applications. Recently, a variety of feature selection algorithms have been proposed that can be categorized into three groups based on the searching strategy namely complete search, heuristic search and random search. This review mainly introduced the fundamental of each algorithm, illustrated its applications in hyperspectral data analysis in the food field, and discussed the advantages and disadvantages of these algorithms. It is hoped that this review should provide a guideline for feature selections and data processing in the future development of hyperspectral imaging technique in foods.

  4. Size selectivity of magnetite core- (Ag/Au) shell nanoparticles for multimodal imaging applications (United States)

    Singh, Pinki; Upadhyay, Chandan


    The magnetic and optical properties of nanomaterials play a significant role in the selection of the materials to be used for contrast enhancement in different biological and cell imaging techniques. These nanoparticles can also be used as drug delivery agents. The calculation of absorption efficiency and surface plasmon resonance wavelength has been performed using Mie theory and MATLAB programs. The study of spectrum calculated indicates the dependence of several optical properties such as resonance and absorption efficiency peak on ratio of core radius to the thickness of shell. A systematic study on the effect of nanoparticle dimension has been presented which clearly indicates that the optical properties can be modulated across the visible and near infrared range by changing these parameters. These properties of nanomaterials make them suitable for their application as multimodal imaging agents as they are also magnetically active and biocompatible.

  5. High-frame-rate intensified fast optically shuttered TV cameras with selected imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Yates, G.J.; King, N.S.P.


    This invited paper focuses on high speed electronic/electro-optic camera development by the Applied Physics Experiments and Imaging Measurements Group (P-15) of Los Alamos National Laboratory`s Physics Division over the last two decades. The evolution of TV and image intensifier sensors and fast readout fast shuttered cameras are discussed. Their use in nuclear, military, and medical imaging applications are presented. Several salient characteristics and anomalies associated with single-pulse and high repetition rate performance of the cameras/sensors are included from earlier studies to emphasize their effects on radiometric accuracy of electronic framing cameras. The Group`s test and evaluation capabilities for characterization of imaging type electro-optic sensors and sensor components including Focal Plane Arrays, gated Image Intensifiers, microchannel plates, and phosphors are discussed. Two new unique facilities, the High Speed Solid State Imager Test Station (HSTS) and the Electron Gun Vacuum Test Chamber (EGTC) arc described. A summary of the Group`s current and developmental camera designs and R&D initiatives are included.

  6. Application of Ultrasound to Selectively Localize Nanodroplets for Targeted Imaging and Therapy

    Directory of Open Access Journals (Sweden)

    Paul A. Dayton


    Full Text Available Lipid-coated perfluorocarbon nanodroplets are submicrometer-diameter liquid-filled droplets with proposed applications in molecularly targeted therapeutics and ultrasound (US imaging. Ultrasonic molecular imaging is unique in that the optimal application of these agents depends not only on the surface chemistry, but also on the applied US field, which can increase receptor-ligand binding and membrane fusion. Theory and experiments are combined to demonstrate the displacement of perfluorocarbon nanoparticles in the direction of US propagation, where a traveling US wave with a peak pressure on the order of megapascals and frequency in the megahertz range produces a particle translational velocity that is proportional to acoustic intensity and increases with increasing center frequency. Within a vessel with a diameter on the order of hundreds of micrometers or larger, particle velocity on the order of hundreds of micrometers per second is produced and the dominant mechanism for droplet displacement is shown to be bulk fluid streaming. A model for radiation force displacement of particles is developed and demonstrates that effective particle displacement should be feasible in the microvasculature. In a flowing system, acoustic manipulation of targeted droplets increases droplet retention. Additionally, we demonstrate the feasibility of US-enhanced particle internalization and therapeutic delivery.

  7. Synthesis of a Cu2+-Selective Probe Derived from Rhodamine and Its Application in Cell Imaging

    Directory of Open Access Journals (Sweden)

    Chunwei Yu


    Full Text Available A new fluorescent probe P based on rhodamine for Cu2+ was synthesized and characterized. The new probe P showed high selectivity to Cu2+ over other tested metal ions. With optimal conditions, the proposed probe P worked in a wide linear range of 1.0 × 10−6–1.0 × 10−5 M with a detection limit of 3.3 × 10−7 M Cu2+ in ethanol-water solution (9:1, v:v, 20 mM HEPES, pH 7.0. Furthermore, it has been used for imaging of Cu2+ in living cells with satisfying results.

  8. Fast Convolutional Neural Network Training Using Selective Data Sampling: Application to Hemorrhage Detection in Color Fundus Images. (United States)

    van Grinsven, Mark J J P; van Ginneken, Bram; Hoyng, Carel B; Theelen, Thomas; Sanchez, Clara I


    Convolutional neural networks (CNNs) are deep learning network architectures that have pushed forward the state-of-the-art in a range of computer vision applications and are increasingly popular in medical image analysis. However, training of CNNs is time-consuming and challenging. In medical image analysis tasks, the majority of training examples are easy to classify and therefore contribute little to the CNN learning process. In this paper, we propose a method to improve and speed-up the CNN training for medical image analysis tasks by dynamically selecting misclassified negative samples during training. Training samples are heuristically sampled based on classification by the current status of the CNN. Weights are assigned to the training samples and informative samples are more likely to be included in the next CNN training iteration. We evaluated and compared our proposed method by training a CNN with (SeS) and without (NSeS) the selective sampling method. We focus on the detection of hemorrhages in color fundus images. A decreased training time from 170 epochs to 60 epochs with an increased performance-on par with two human experts-was achieved with areas under the receiver operating characteristics curve of 0.894 and 0.972 on two data sets. The SeS CNN statistically outperformed the NSeS CNN on an independent test set.

  9. Application of DOI index to analysis of selected examples of resistivity imaging models in Quaternary sediments

    Directory of Open Access Journals (Sweden)

    Glazer Michał


    Full Text Available Interpretation of resistivity cross sections may be in many cases unreliable due to the presence of artifacts left by the inversion process. One way to avoid erroneous conclusions about geological structure is creation of Depth of Investigation (DOI index maps, which describe durability of prepared model with respect to variable parameters of inversion. To assess the usefulness of this interpretation methodology in resistivity imaging method over quaternary sediments, it has been used to one synthetic data set and three investigation sites. Two of the study areas were placed in the Upper Silesian Industrial District region: Bytom - Karb, Chorzów - Chorzow Stary; and one in the Southern Pomeranian Lake District across Piława River Valley. Basing on the available geological information the results show high utility of DOI index in analysis of received resistivity models, on which areas poorly constrained by data has been designated.

  10. New water soluble Hg2 + selective fluorescent calix[4]arenes: Synthesis and application in living cells imaging (United States)

    Oguz, Mehmet; Bhatti, Asif Ali; Karakurt, Serdar; Aktas, Mehmet; Yilmaz, Mustafa


    The present study demonstrates the synthesis of water-soluble fluorescent calix[4]arenes (6 and 7) and its application in living cell imaging for Hg2 + detection at a low level. The synthesized fluorescent ligands 6 and 7 were characterized by 1H NMR technique. The fluorescent study showed both water soluble ligands were Hg2 + selective and follow photo-induced electron transfer (PET) process. From the fluorimeter titration experiment detection limit was calculated as 1.14 × 10- 5 and 3.42 × 10- 5 for ligand 6 and 7, respectively. From the Benesi-Hildebrand plot binding constant values were evaluated as 666.7 and 733.3 M- 1 for 6 and 7, respectively. The interactions between ligands 6 and 7 and Hg2 + were also demonstrated in living cells, SW-620, using Fluorescent Cell Imager. While ligands 6 and 7 alone show fluorescent properties, they loss their action with the presence of Hg2 + in SW-620 cells.

  11. Fast Convolutional Neural Network Training Using Selective Data Sampling: Application to Hemorrhage Detection in Color Fundus Images

    NARCIS (Netherlands)

    Grinsven, M.J.J.P. van; Ginneken, B. van; Hoyng, C.B.; Theelen, T.; Sanchez, C.I.


    Convolutional neural networks (CNNs) are deep learning network architectures that have pushed forward the state-of-the-art in a range of computer vision applications and are increasingly popular in medical image analysis. However, training of CNNs is time-consuming and challenging. In medical image

  12. Biomedical Optical Imaging Technologies Design and Applications

    CERN Document Server


    This book provides an introduction to design of biomedical optical imaging technologies and their applications. The main topics include: fluorescence imaging, confocal imaging, micro-endoscope, polarization imaging, hyperspectral imaging, OCT imaging, multimodal imaging and spectroscopic systems. Each chapter is written by the world leaders of the respective fields, and will cover: principles and limitations of optical imaging technology, system design and practical implementation for one or two specific applications, including design guidelines, system configuration, optical design, component requirements and selection, system optimization and design examples, recent advances and applications in biomedical researches and clinical imaging. This book serves as a reference for students and researchers in optics and biomedical engineering.

  13. Biomedical Imaging Principles and Applications

    CERN Document Server

    Salzer, Reiner


    This book presents and describes imaging technologies that can be used to study chemical processes and structural interactions in dynamic systems, principally in biomedical systems. The imaging technologies, largely biomedical imaging technologies such as MRT, Fluorescence mapping, raman mapping, nanoESCA, and CARS microscopy, have been selected according to their application range and to the chemical information content of their data. These technologies allow for the analysis and evaluation of delicate biological samples, which must not be disturbed during the profess. Ultimately, this may me

  14. A highly sensitive, single selective, fluorescent sensor for Al{sup 3+} detection and its application in living cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Xing-Pei [Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Sun, Shao-bo; Li, Ying-dong [Institute of Integrated Traditional and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000 (China); Zhi, Li-hua [Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Wu, Wei-na, E-mail: [Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Wang, Yuan, E-mail: [Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China)


    A new o-aminophenol-based fluorogenic chemosensor methyl 3,5-bis((E)-(2-hydroxyphenylimino)methyl)-4-hydroxybenzoate 1 have been synthesized by Schiff base condensation of methyl 3,5-diformyl-4-hydroxybenzoate with o-aminophenol, which exhibits high selectivity and sensitivity toward Al{sup 3+}. Fluorescence titration studies of receptors 1 with different metal cations in CH{sub 3}OH medium showed highly selective and sensitive towards Al{sup 3+} ions even in the presence of other commonly coexisting metal ions. The detection limit of Al{sup 3+} ions is at the parts per billion level. Interestingly, the Al(III) complex of 1 offered a large Stokes shift (>120 nm), which can miximize the selfquenching effect. In addition, possible utilization of this receptor as bio-imaging fluorescent probe to detect Al{sup 3+} in human cervical HeLa cancer cell lines was also investigated by confocal fluorescence microscopy. - Highlights: • A new Schiff base chemosensor is reported. • The sensor for Al{sup 3+} offers large Stokes shift. • The detection limit of Al{sup 3+} in CH{sub 3}OH solution is at the parts per billion level. • The utilization of sensor for the monitoring of Al{sup 3+} levels in living cells was examined.

  15. LLE Score: A New Filter-Based Unsupervised Feature Selection Method Based on Nonlinear Manifold Embedding and Its Application to Image Recognition. (United States)

    Yao, Chao; Liu, Ya-Feng; Jiang, Bo; Han, Jungong; Han, Junwei


    The task of feature selection is to find the most representative features from the original high-dimensional data. Because of the absence of the information of class labels, selecting the appropriate features in unsupervised learning scenarios is much harder than that in supervised scenarios. In this paper, we investigate the potential of locally linear embedding (LLE), which is a popular manifold learning method, in feature selection task. It is straightforward to apply the idea of LLE to the graph-preserving feature selection framework. However, we find that this straightforward application suffers from some problems. For example, it fails when the elements in the feature are all equal; it does not enjoy the property of scaling invariance and cannot capture the change of the graph efficiently. To solve these problems, we propose a new filter-based feature selection method based on LLE in this paper, which is named as LLE score. The proposed criterion measures the difference between the local structure of each feature and that of the original data. Our experiments of classification task on two face image data sets, an object image data set, and a handwriting digits data set show that LLE score outperforms state-of-the-art methods, including data variance, Laplacian score, and sparsity score.

  16. Hyperspectral small animal fluorescence imaging: spectral selection imaging (United States)

    Leavesley, Silas; Jiang, Yanan; Patsekin, Valery; Hall, Heidi; Vizard, Douglas; Robinson, J. Paul


    Molecular imaging is a rapidly growing area of research, fueled by needs in pharmaceutical drug-development for methods for high-throughput screening, pre-clinical and clinical screening for visualizing tumor growth and drug targeting, and a growing number of applications in the molecular biology fields. Small animal fluorescence imaging employs fluorescent probes to target molecular events in vivo, with a large number of molecular targeting probes readily available. The ease at which new targeting compounds can be developed, the short acquisition times, and the low cost (compared to microCT, MRI, or PET) makes fluorescence imaging attractive. However, small animal fluorescence imaging suffers from high optical scattering, absorption, and autofluorescence. Much of these problems can be overcome through multispectral imaging techniques, which collect images at different fluorescence emission wavelengths, followed by analysis, classification, and spectral deconvolution methods to isolate signals from fluorescence emission. We present an alternative to the current method, using hyperspectral excitation scanning (spectral selection imaging), a technique that allows excitation at any wavelength in the visible and near-infrared wavelength range. In many cases, excitation imaging may be more effective at identifying specific fluorescence signals because of the higher complexity of the fluorophore excitation spectrum. Because the excitation is filtered and not the emission, the resolution limit and image shift imposed by acousto-optic tunable filters have no effect on imager performance. We will discuss design of the imager, optimizing the imager for use in small animal fluorescence imaging, and application of spectral analysis and classification methods for identifying specific fluorescence signals.

  17. Synthesis of a highly Mg2+-selective fluorescent probe and its application to quantifying and imaging total intracellular magnesium. (United States)

    Sargenti, Azzurra; Farruggia, Giovanna; Zaccheroni, Nelsi; Marraccini, Chiara; Sgarzi, Massimo; Cappadone, Concettina; Malucelli, Emil; Procopio, Alessandra; Prodi, Luca; Lombardo, Marco; Iotti, Stefano


    Magnesium plays a crucial role in many physiological functions and pathological states. Therefore, the evolution of specific and sensitive tools capable of detecting and quantifying this element in cells is a very desirable goal in biological and biomedical research. We developed a Mg2+-selective fluorescent dye that can be used to selectively detect and quantify the total magnesium pool in a number of cells that is two orders of magnitude smaller than that required by flame atomic absorption spectroscopy (F-AAS), the reference analytical method for the assessment of cellular total metal content. This protocol reports itemized steps for the synthesis of the fluorescent dye based on diaza-18-crown-6-hydroxyquinoline (DCHQ5). We also describe its application in the quantification of total intracellular magnesium in mammalian cells and the detection of this ion in vivo by confocal microscopy. The use of in vivo confocal microscopy enables the quantification of magnesium in different cellular compartments. As an example of the sensitivity of DCHQ5, we studied the involvement of Mg2+ in multidrug resistance in human colon adenocarcinoma cells sensitive (LoVo-S) and resistant (LoVo-R) to doxorubicin, and found that the concentration was higher in LoVo-R cells. The time frame for DCHQ5 synthesis is 1-2 d, whereas the use of this dye for total intracellular magnesium quantification takes 2.5 h and for ion bioimaging it takes 1-2 h.

  18. A coumarin based Schiff base probe for selective fluorescence detection of Al3 + and its application in live cell imaging (United States)

    Sen, Bhaskar; Sheet, Sanjoy Kumar; Thounaojam, Romita; Jamatia, Ramen; Pal, Amarta Kumar; Aguan, Kripamoy; Khatua, Snehadrinarayan


    A new coumarin based Schiff base compound, CSB-1 has been synthesized to detect metal ion based on the chelation enhanced fluorescence (CHEF). The cation binding properties of CSB-1 was thoroughly examined in UV-vis and fluorescence spectroscopy. In fluorescence spectroscopy the compound showed high selectivity toward Al3 + ion and the Al3 + can be quantified in mixed aqueous buffer solution (MeOH: 0.01 M HEPES Buffer; 9:1; v/v) at pH 7.4 as well as in BSA media. The fluorescence intensity of CSB-1 was enhanced by 24 fold after addition of only five equivalents of Al3 +. The fluorescence titration of CSB-1 with Al3 + in mixed aqueous buffer afforded a binding constant, Ka = (1.06 ± 0.2) × 104 M- 1. The colour change from light yellow to colourless and the appearance of blue fluorescence, which can be observed by the naked eye, provides a real-time method for Al3 + sensing. Further the live cell imaging study indicated that the detection of intracellular Al3 + ions are also readily possible in living cell.

  19. A highly selective long-wavelength fluorescent probe for hydrazine and its application in living cell imaging (United States)

    Hao, Yuanqiang; Zhang, Yintang; Ruan, Kehong; Meng, Fanteng; Li, Ting; Guan, Jinsheng; Du, Lulu; Qu, Peng; Xu, Maotian


    A highly selective long-wavelength turn-on fluorescent probe has been developed for the detection of N2H4. The probe was prepared by conjugation the tricyanofuran-based D-π-A system with a recognizing moiety of acetyl group. In the presence of N2H4, the probe can be effectively hydrazinolysized and produce a turn-on fluorescent emission at 610 nm as well as a large red-shift in the absorption spectrum corresponding to a color change from yellow to blue. The sensing mechanism was confirmed by HPLC, MS, UV-vis, emission spectroscopic and theoretical calculation studies. The probe displayed high selectivity and sensitivity for N2H4 with a LOD (limit of detection) of 0.16 μM. Moreover, the probe was successfully utilized for the detection of hydrazine in living cells.

  20. An efficient strategy based on an individualized selection of registration methods. Application to the coregistration of MR and SPECT images in neuro-oncology (United States)

    Tacchella, Jean-Marc; Roullot, Elodie; Lefort, Muriel; Cohen, Mike-Ely; Guillevin, Rémy; Petrirena, Grégorio; Delattre, Jean-Yves; Habert, Marie-Odile; Yeni, Nathanaëlle; Kas, Aurélie; Frouin, Frédérique


    An efficient registration strategy is described that aims to help solve delicate medical imaging registration problems. It consists of running several registration methods for each dataset and selecting the best one for each specific dataset, according to an evaluation criterion. Finally, the quality of the registration results, obtained with the best method, is visually scored by an expert as excellent, correct or poor. The strategy was applied to coregister Technetium-99m Sestamibi SPECT and MRI data in the framework of a follow-up protocol in patients with high grade gliomas receiving antiangiogenic therapy. To adapt the strategy to this clinical context, a robust semi-automatic evaluation criterion based on the physiological uptake of the Sestamibi tracer was defined. A panel of eighteen multimodal registration algorithms issued from BrainVisa, SPM or AIR software environments was systematically applied to the clinical database composed of sixty-two datasets. According to the expert visual validation, this new strategy provides 85% excellent registrations, 12% correct ones and only 3% poor ones. These results compare favorably to the ones obtained by the globally most efficient registration method over the whole database, for which only 61% of excellent registration results have been reported. Thus the registration strategy in its current implementation proves to be suitable for clinical application.

  1. Feature Selection in Scientific Applications

    Energy Technology Data Exchange (ETDEWEB)

    Cantu-Paz, E; Newsam, S; Kamath, C


    Numerous applications of data mining to scientific data involve the induction of a classification model. In many cases, the collection of data is not performed with this task in mind, and therefore, the data might contain irrelevant or redundant features that affect negatively the accuracy of the induction algorithms. The size and dimensionality of typical scientific data make it difficult to use any available domain information to identify features that discriminate between the classes of interest. Similarly, exploratory data analysis techniques have limitations on the amount and dimensionality of the data that can be effectively processed. In this paper, we describe applications of efficient feature selection methods to data sets from astronomy, plasma physics, and remote sensing. We use variations of recently proposed filter methods as well as traditional wrapper approaches where practical. We discuss the importance of these applications, the general challenges of feature selection in scientific datasets, the strategies for success that were common among our diverse applications, and the lessons learned in solving these problems.

  2. Molecular imaging. Fundamentals and applications

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Jie (ed.) [Chinese Academy of Sciences, Beijing (China). Intelligent Medical Research Center


    Covers a wide range of new theory, new techniques and new applications. Contributed by many experts in China. The editor has obtained the National Science and Technology Progress Award twice. ''Molecular Imaging: Fundamentals and Applications'' is a comprehensive monograph which describes not only the theory of the underlying algorithms and key technologies but also introduces a prototype system and its applications, bringing together theory, technology and applications. By explaining the basic concepts and principles of molecular imaging, imaging techniques, as well as research and applications in detail, the book provides both detailed theoretical background information and technical methods for researchers working in medical imaging and the life sciences. Clinical doctors and graduate students will also benefit from this book.

  3. Image analyzers for bioscience applications. (United States)

    Ramm, P


    Image analysis systems are becoming more sophosticated, less costly, and very common in research laboratories. Therefore, the bioscience researcher is faced with a bewildering array of choices in establishing an image analysis facility. Critical components and characteristics of commercial image analyzers are discussed. State-of-the-art systems feature a graphical user interface, a powerful operating system (e.g., Microsoft OS/2), 1000 line image acquisition, processing and display, true color imaging, and very flexible scanner interfaces. Such systems are best suited to technically difficult applications, such as ratio fluorescence, or to automated analysis of anatomical features, particularly in stained material. Less powerful image analyzers offer medium resolution, and typically work with monochrome data acquired from video cameras. Such systems are suitable for many bioscience applications, including quantitative autoradiography and routine morphometry.

  4. Scale selection for supervised image segmentation

    DEFF Research Database (Denmark)

    Li, Yan; Tax, David M J; Loog, Marco


    Finding the right scales for feature extraction is crucial for supervised image segmentation based on pixel classification. There are many scale selection methods in the literature; among them the one proposed by Lindeberg is widely used for image structures such as blobs, edges and ridges. Those...... unsupervised scale selection paradigms and present a supervised alternative. In particular, the so-called max rule is proposed, which selects a scale for each pixel to have the largest confidence in the classification across the scales. In interpreting the classifier as a complex image filter, we can relate...... our approach back to Lindeberg's original proposal. In the experiments, the max rule is applied to artificial and real-world image segmentation tasks, which is shown to choose the right scales for different problems and lead to better segmentation results....

  5. Multispectral Imaging for Surveillance Applications


    Riseby, Emil; Svensson, Alexander


    Silicon based sensors is a commonly used technology in digital cameras today. That has made such cameras relatively cheap and widely used. Unfortunately they are constructed to capture and represent image quality for humans. Several image applications work better without the restrictions of the visible spectrum. Human visual restrictions are often indirectly put on technology by using images showing only visible light. Thinking outside the box in this case is seeing beyond the visible spectrum.

  6. Microhydrodynamics principles and selected applications

    CERN Document Server

    Kim, Sangtae


    ""This book is well organized and comprehensive . . . an eloquent and enduring statement of significant hydrodynamic principles."" - AIChE JournalMicrohydrodynamics concerns the flow and related phenomena pertinent to the motion of small particles suspended in viscous fluids. This text focuses on determining the motion of a particle or particles through a viscous fluid in bounded and unbounded flow. Its central theme is the mobility relation between particle motion and forces.Microhydrodynamics: Principles and Selected Applications functions as a manual that explains methods for solving partic

  7. Microhydrodynamics principles and selected applications

    CERN Document Server

    Kim, Sangtae; Brenner, Howard


    Microhydrodynamics: Principles and Selected Applications presents analytical and numerical methods for describing motion of small particles suspended in viscous fluids. The text first covers the fundamental principles of low-Reynolds-number flow, including the governing equations and fundamental theorems; the dynamics of a single particle in a flow field; and hydrodynamic interactions between suspended particles. Next, the book deals with the advances in the mathematical and computational aspects of viscous particulate flows that point to innovations for large-scale simulations on parallel co

  8. Selective interferometric imaging of internal multiples

    KAUST Repository

    Zuberi, M. A H


    Internal multiples deteriorate the image when the imaging procedure assumes only single scattering, especially if the velocity model does not reproduce such scattering in the Green’s function. If properly imaged, internal multiples (and internally-scattered energy) can enhance the seismic image and illuminate areas otherwise neglected or poorly imaged by conventional single-scattering approaches. Conventionally, in order to image internal multiples, accurate, sharp contrasts in the velocity model are required to construct a Green’s function with all the scattered energy. As an alternative, we develop a three-step procedure, which images the first-order internal scattering using the background Green’s function (from the surface to each image point), constructed from a smooth velocity model: We first back-propagate the recorded surface data using the background Green’s function, then cross-correlate the back-propagated data with the recorded data and finally cross-correlate the result with the original background Green’s function. This procedure images the contribution of the recorded first-order internal multiples and is almost free of the single-scattering recorded energy. This image can be added to the conventional single-scattering image, obtained e.g. from Kirchhoff migration, to enhance the image. Application to synthetic data with reflectors illuminated by multiple scattering only demonstrates the effectiveness of the approach.

  9. Some selected quantitative methods of thermal image analysis in Matlab. (United States)

    Koprowski, Robert


    The paper presents a new algorithm based on some selected automatic quantitative methods for analysing thermal images. It shows the practical implementation of these image analysis methods in Matlab. It enables to perform fully automated and reproducible measurements of selected parameters in thermal images. The paper also shows two examples of the use of the proposed image analysis methods for the area of ​​the skin of a human foot and face. The full source code of the developed application is also provided as an attachment. The main window of the program during dynamic analysis of the foot thermal image. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Bayesian Registration via Local Image Regions: Information, Selection and Marginalization (United States)

    Toews, Matthew; Wells, William


    We propose a novel Bayesian registration formulation in which image location is represented as a latent random variable. Location is marginalized to determine the maximum a priori (MAP) transform between images, which results in registration that is more robust than the alternatives of omitting locality (i.e. global registration) or jointly maximizing locality and transform (i.e. iconic registration). A mathematical link is established between the Bayesian registration formulation and the mutual information (MI) similarity measure. This leads to a novel technique for selecting informative image regions for registration, based on the MI of image intensity and spatial location. Experimental results demonstrate the effectiveness of the marginalization formulation and the MI-based region selection technique for ultrasound (US) to magnetic resonance (MR) registration in an image-guided neurosurgical application. PMID:19694283

  11. Multimodal nanoparticle imaging agents: design and applications (United States)

    Burke, Benjamin P.; Cawthorne, Christopher; Archibald, Stephen J.


    Molecular imaging, where the location of molecules or nanoscale constructs can be tracked in the body to report on disease or biochemical processes, is rapidly expanding to include combined modality or multimodal imaging. No single imaging technique can offer the optimum combination of properties (e.g. resolution, sensitivity, cost, availability). The rapid technological advances in hardware to scan patients, and software to process and fuse images, are pushing the boundaries of novel medical imaging approaches, and hand-in-hand with this is the requirement for advanced and specific multimodal imaging agents. These agents can be detected using a selection from radioisotope, magnetic resonance and optical imaging, among others. Nanoparticles offer great scope in this area as they lend themselves, via facile modification procedures, to act as multifunctional constructs. They have relevance as therapeutics and drug delivery agents that can be tracked by molecular imaging techniques with the particular development of applications in optically guided surgery and as radiosensitizers. There has been a huge amount of research work to produce nanoconstructs for imaging, and the parameters for successful clinical translation and validation of therapeutic applications are now becoming much better understood. It is an exciting time of progress for these agents as their potential is closer to being realized with translation into the clinic. The coming 5-10 years will be critical, as we will see if the predicted improvement in clinical outcomes becomes a reality. Some of the latest advances in combination modality agents are selected and the progression pathway to clinical trials analysed. This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.

  12. Industrial Applications of Image Processing (United States)

    Ciora, Radu Adrian; Simion, Carmen Mihaela


    The recent advances in sensors quality and processing power provide us with excellent tools for designing more complex image processing and pattern recognition tasks. In this paper we review the existing applications of image processing and pattern recognition in industrial engineering. First we define the role of vision in an industrial. Then a dissemination of some image processing techniques, feature extraction, object recognition and industrial robotic guidance is presented. Moreover, examples of implementations of such techniques in industry are presented. Such implementations include automated visual inspection, process control, part identification, robots control. Finally, we present some conclusions regarding the investigated topics and directions for future investigation

  13. Physics for Medical Imaging Applications

    CERN Document Server

    Caner, Alesssandra; Rahal, Ghita


    The book introduces the fundamental aspects of digital imaging and covers four main themes: Ultrasound techniques and imaging applications; Magnetic resonance and MPJ in hospital; Digital imaging with X-rays; and Emission tomography (PET and SPECT). Each of these topics is developed by analysing the underlying physics principles and their implementation, quality and safety aspects, clinical performance and recent advancements in the field. Some issues specific to the individual techniques are also treated, e.g. choice of radioisotopes or contrast agents, optimisation of data acquisition and st

  14. Medical imaging technology and applications

    CERN Document Server

    Iniewski, Krzysztof


    The book has two intentions. First, it assembles the latest research in the field of medical imaging technology in one place. Detailed descriptions of current state-of-the-art medical imaging systems (comprised of x-ray CT, MRI, ultrasound, and nuclear medicine) and data processing techniques are discussed. Information is provided that will give interested engineers and scientists a solid foundation from which to build with additional resources. Secondly, it exposes the reader to myriad applications that medical imaging technology has enabled.

  15. Image selection as a service for cloud computing environments

    KAUST Repository

    Filepp, Robert


    Customers of Cloud Services are expected to choose specific machine images to instantiate in order to host their workloads. Unfortunately very little information is provided to the users to enable them to make intelligent choices. We believe that as the number of images proliferates it will become increasingly difficult for users to decide effectively. Cloud service providers often allow their customers to instantiate standard system images, to modify their instances, and to store images of these customized instances for public or private future use. Storing modified instances as images enables customers to avoid re-provisioning and re-configuration of required resources thereby reducing their future costs. However Cloud service providers generally do not expose details regarding the configurations of the images in a rigorous canonical fashion nor offer services that assist clients in the best target image selection to support client transformation objectives. Rather, they allow customers to enter a free-form description of an image based on client\\'s best effort. This means in order to find a "best fit" image to instantiate, a human user must review potentially thousands of image descriptions, reading each description to evaluate its suitability as a platform to host their source application. Furthermore, the actual content of the selected image may differ greatly from its description. Finally, even images that have been customized and retained for future use may need additional provisioning and customization to accommodate specific needs. In this paper we propose a service that accumulates image configuration details in a canonical fashion and a further service that employs an algorithm to order images per best fit /least cost in conformance to user-specified policies. These services collectively facilitate workload transformation into enterprise cloud environments.

  16. Selections from 2017: Image Processing with AstroImageJ (United States)

    Kohler, Susanna


    Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.AstroImageJ: Image Processing and Photometric Extraction for Ultra-Precise Astronomical Light CurvesPublished January2017The AIJ image display. A wide range of astronomy specific image display options and image analysis tools are available from the menus, quick access icons, and interactive histogram. [Collins et al. 2017]Main takeaway:AstroImageJ is a new integrated software package presented in a publication led byKaren Collins(Vanderbilt University,Fisk University, andUniversity of Louisville). Itenables new users even at the level of undergraduate student, high school student, or amateur astronomer to quickly start processing, modeling, and plotting astronomical image data.Why its interesting:Science doesnt just happen the momenta telescope captures a picture of a distantobject. Instead, astronomical images must firstbe carefully processed to clean up thedata, and this data must then be systematically analyzed to learn about the objects within it. AstroImageJ as a GUI-driven, easily installed, public-domain tool is a uniquelyaccessible tool for thisprocessing and analysis, allowing even non-specialist users to explore and visualizeastronomical data.Some features ofAstroImageJ:(as reported by Astrobites)Image calibration:generate master flat, dark, and bias framesImage arithmetic:combineimages viasubtraction, addition, division, multiplication, etc.Stack editing:easily perform operations on a series of imagesImage stabilization and image alignment featuresPrecise coordinate converters:calculate Heliocentric and Barycentric Julian DatesWCS coordinates:determine precisely where atelescope was pointed for an image by PlateSolving using Astronomy.netMacro and plugin support:write your own macrosMulti-aperture photometry

  17. An imaging toolbox for smart phone applications (United States)

    Panchul, Alexandr; Bhupathiraju, Deepthi; Agaian, Sos; Akopian, David


    The paper presents a Digital Image Processing toolbox for cellular phones. It is intended for users dealing with imaging algorithms and allows the processing of real images taken by the camera phones. For example, users are able to analyze the images and selected regions of interest using different transforms including Discrete Fourier, Hartley, and Cosine Transforms. One can apply different filters such as median and moving average. Simple image enhancement techniques are also included in the toolbox. A handy user interface allows a suitable browsing through the images and operators. The toolbox is designed to be expandable and more operations will be included in the future targeting military and security applications. The toolbox is implemented using Series 60 Platform SDK for Symbian tm OS, for C++. It allows developers to quickly and efficiently run and test applications for devices that are compatible with the Series 60 Platform. The algorithms are first implemented on Series 60 Platform device emulator on the PC and then installed on the cell phone.

  18. Raman Imaging Techniques and Applications

    CERN Document Server


    Raman imaging has long been used to probe the chemical nature of a sample, providing information on molecular orientation, symmetry and structure with sub-micron spatial resolution. Recent technical developments have pushed the limits of micro-Raman microscopy, enabling the acquisition of Raman spectra with unprecedented speed, and opening a pathway to fast chemical imaging for many applications from material science and semiconductors to pharmaceutical drug development and cell biology, and even art and forensic science. The promise of tip-enhanced raman spectroscopy (TERS) and near-field techniques is pushing the envelope even further by breaking the limit of diffraction and enabling nano-Raman microscopy.

  19. Image wavelet decomposition and applications (United States)

    Treil, N.; Mallat, S.; Bajcsy, R.


    The general problem of computer vision has been investigated for more that 20 years and is still one of the most challenging fields in artificial intelligence. Indeed, taking a look at the human visual system can give us an idea of the complexity of any solution to the problem of visual recognition. This general task can be decomposed into a whole hierarchy of problems ranging from pixel processing to high level segmentation and complex objects recognition. Contrasting an image at different representations provides useful information such as edges. An example of low level signal and image processing using the theory of wavelets is introduced which provides the basis for multiresolution representation. Like the human brain, we use a multiorientation process which detects features independently in different orientation sectors. So, images of the same orientation but of different resolutions are contrasted to gather information about an image. An interesting image representation using energy zero crossings is developed. This representation is shown to be experimentally complete and leads to some higher level applications such as edge and corner finding, which in turn provides two basic steps to image segmentation. The possibilities of feedback between different levels of processing are also discussed.

  20. Biomedical image understanding methods and applications

    CERN Document Server

    Lim, Joo-Hwee; Xiong, Wei


    A comprehensive guide to understanding and interpreting digital images in medical and functional applications Biomedical Image Understanding focuses on image understanding and semantic interpretation, with clear introductions to related concepts, in-depth theoretical analysis, and detailed descriptions of important biomedical applications. It covers image processing, image filtering, enhancement, de-noising, restoration, and reconstruction; image segmentation and feature extraction; registration; clustering, pattern classification, and data fusion. With contributions from ex

  1. Vertical Silicon Nanowires for Image Sensor Applications


    Park, Hyunsung


    Conventional image sensors achieve color imaging using absorptive organic dye filters. These face considerable challenges however in the trend toward ever higher pixel densities and advanced imaging methods such as multispectral imaging and polarization-resolved imaging. In this dissertation, we investigate the optical properties of vertical silicon nanowires with the goal of image sensor applications. First, we demonstrate a multispectral imaging system that uses a novel filter that consists...

  2. Guidelines for Microplate Selection in High Content Imaging. (United States)

    Trask, Oscar J


    Since the inception of commercialized automated high content screening (HCS) imaging devices in the mid to late 1990s, the adoption of media vessels typically used to house and contain biological specimens for interrogation has transitioned from microscope slides and petri dishes into multi-well microtiter plates called microplates. The early 96- and 384-well microplates commonly used in other high-throughput screening (HTS) technology applications were often not designed for optical imaging. Since then, modifications and the use of next-generation materials with improved optical clarity have enhanced the quality of captured images, reduced autofocusing failures, and empowered the use of higher power magnification objectives to resolve fine detailed measurements at the subcellular pixel level. The plethora of microplates and their applications requires practitioners of high content imaging (HCI) to be especially diligent in the selection and adoption of the best plates for running longitudinal studies or larger screening campaigns. While the highest priority in experimental design is the selection of the biological model, the choice of microplate can alter the biological response and ultimately may change the experimental outcome. This chapter will provide readers with background, troubleshooting guidelines, and considerations for choosing an appropriate microplate.

  3. Color imaging fundamentals and applications

    CERN Document Server

    Reinhard, Erik; Oguz Akyuz, Ahmet; Johnson, Garrett


    This book provides the reader with an understanding of what color is, where color comes from, and how color can be used correctly in many different applications. The authors first treat the physics of light and its interaction with matter at the atomic level, so that the origins of color can be appreciated. The intimate relationship between energy levels, orbital states, and electromagnetic waves helps to explain why diamonds shimmer, rubies are red, and the feathers of the Blue Jay are blue. Then, color theory is explained from its origin to the current state of the art, including image captu

  4. [Genomic selection and its application]. (United States)

    Li, Heng-De; Bao, Zhen-Min; Sun, Xiao-Wen


    Selective breeding is very important in agricultural production and breeding value estimation is the core of selective breeding. With the development of genetic markers, especially high throughput genotyping technology, it becomes available to estimate breeding value at genome level, i.e. genomic selection (GS). In this review, the methods of GS was categorized into two groups: one is to predict genomic estimated breeding value (GEBV) based on the allele effect, such as least squares, random regression - best linear unbiased prediction (RR-BLUP), Bayes and principle component analysis, etc; the other is to predict GEBV with genetic relationship matrix, which constructs genetic relationship matrix via high throughput genetic markers and then predicts GEBV through linear mixed model, i.e. GBLUP. The basic principles of these methods were also introduced according to the above two classifications. Factors affecting GS accuracy include markers of type and density, length of haplotype, the size of reference population, the extent between marker-QTL and so on. Among the methods of GS, Bayes and GBLUP are usually more accurate than the others and least squares is the worst. GBLUP is time-efficient and can combine pedigree with genotypic information, hence it is superior to other methods. Although progress was made in GS, there are still some challenges, for examples, united breeding, long-term genetic gain with GS, and disentangling markers with and without contribution to the traits. GS has been applied in animal and plant breeding practice and also has the potential to predict genetic predisposition in humans and study evolutionary dynamics. GS, which is more precise than the traditional method, is a breakthrough at measuring genetic relationship. Therefore, GS will be a revolutionary event in the history of animal and plant breeding.

  5. Selecting silicone tubing for device applications. (United States)

    Jahn, D


    A number of factors are involved in selecting the most suitable silicone tubing for a given purpose. These include physical chemistry, performance properties, a supplier's quality system and regulatory compliance. This article provides a guide for device developers when selecting silicone tubing for their applications.

  6. Hyperspectral imaging and its applications (United States)

    Serranti, S.; Bonifazi, G.


    Hyperspectral imaging (HSI) is an emerging technique that combines the imaging properties of a digital camera with the spectroscopic properties of a spectrometer able to detect the spectral attributes of each pixel in an image. For these characteristics, HSI allows to qualitatively and quantitatively evaluate the effects of the interactions of light with organic and/or inorganic materials. The results of this interaction are usually displayed as a spectral signature characterized by a sequence of energy values, in a pre-defined wavelength interval, for each of the investigated/collected wavelength. Following this approach, it is thus possible to collect, in a fast and reliable way, spectral information that are strictly linked to chemical-physical characteristics of the investigated materials and/or products. Considering that in an hyperspectral image the spectrum of each pixel can be analyzed, HSI can be considered as one of the best nondestructive technology allowing to perform the most accurate and detailed information extraction. HSI can be applied in different wavelength fields, the most common are the visible (VIS: 400-700 nm), the near infrared (NIR: 1000-1700 nm) and the short wave infrared (SWIR: 1000-2500 nm). It can be applied for inspections from micro- to macro-scale, up to remote sensing. HSI produces a large amount of information due to the great number of continuous collected spectral bands. Such an approach, when successful, is quite challenging being usually reliable, robust and characterized by lower costs, if compared with those usually associated to commonly applied analytical off-line and/or on-line analytical approaches. More and more applications have been thus developed and tested, in these last years, especially in food inspection, with a large range of investigated products, such as fruits and vegetables, meat, fish, eggs and cereals, but also in medicine and pharmaceutical sector, in cultural heritage, in material characterization and in

  7. Neutron imaging and applications a reference for the imaging community

    CERN Document Server

    McGreevy, Robert L; Bilheux, Hassina Z


    Offers an introduction to the basics of neutron beam production in addition to the wide scope of techniques that enhance imaging application capabilities. This title features a section that describes imaging single grains in polycrystalline materials, neutron imaging of geological materials and other materials science and engineering areas.

  8. Luminescence imaging using radionuclides: a potential application in molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Chan [Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Il An, Gwang [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Park, Se-Il [Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Oh, Jungmin [Korea Basic Science Institute Chuncheon Center, Gangwon-do 200-701 (Korea, Republic of); Kim, Hong Joo [Department of Physics and Energy Science, Kyungpook National University, Daegu 702-710 (Korea, Republic of); Su Ha, Yeong; Wang, Eun Kyung [Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Min Kim, Kyeong; Kim, Jung Young [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Lee, Jaetae [Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Welch, Michael J. [Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Yoo, Jeongsoo, E-mail: [Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of)


    Introduction: Nuclear and optical imaging are complementary in many aspects and there would be many advantages when optical imaging probes are prepared using radionuclides rather than classic fluorophores, and when nuclear and optical dual images are obtained using single imaging probe. Methods: The luminescence intensities of various radionuclides having different decay modes have been assayed using luminescence imaging and in vitro luminometer. Radioiodinated Herceptin was injected into a tumor-bearing mouse, and luminescence and microPET images were obtained. The plant dipped in [{sup 32}P]phosphate solution was scanned in luminescence mode. Radio-TLC plate was also imaged in the same imaging mode. Results: Radionuclides emitting high energy {beta}{sup +}/{beta}{sup -} particles showed higher luminescence signals. NIH3T6.7 tumors were detected in both optical and nuclear imaging. The uptake of [{sup 32}P]phosphate in plant was easily followed by luminescence imaging. Radio-TLC plate was visualized and radiochemical purity was quantified using luminescence imaging. Conclusion: Many radionuclides with high energetic {beta}{sup +} or {beta}{sup -} particles during decay were found to be imaged in luminescence mode due mainly to Cerenkov radiation. 'Cerenkov imaging' provides a new optical imaging platform and an invaluable bridge between optical and nuclear imaging. New optical imaging probes could be easily prepared using well-established radioiodination methods. Cerenkov imaging will have more applications in the research field of plant science and autoradiography.

  9. Highly selective on-off fluorescence recognition of Fe3+ based on a coumarin derivative and its application in live-cell imaging (United States)

    Warrier, Sona; Kharkar, Prashant S.


    A novel coumarin chemosensor, 7-hydroxy-2-oxo-N-(pyridin-2-ylmethyl)chromene-3-carboxamide (Probe 1), demonstrated significant selectivity towards Fe3+ ions. Probe 1 exhibited high fluorescence emission profile at 447 nm, excellent selectivity towards Fe3+ over other biologically important metal ions (Al3+, Ba2+, Co2+, Cu2+, Zn2+, Cd2+, Hg2+, Pb2+ and Sn2+). Interestingly, there was 30-fold decrease in fluorescence intensity upon Fe3+ binding. The limit of detection of Fe3+ was found to be 0.76 μM ( 40 ppb). Probe 1 also exhibited high potential as an intracellular chemosensor for Fe3+.

  10. A highly selective and sensitive fluorescent probe for Cu2+ based on a novel naphthalimide-rhodamine platform and its application in live cell imaging. (United States)

    Liu, Chang; Jiao, Xiaojie; He, Song; Zhao, Liancheng; Zeng, Xianshun


    Copper plays important roles in a variety of fundamental physiological processes. At the cell organelle level, aberrant copper homeostasis in lysosomes can lead to various serious diseases. Herein, a bifluorophore-based, lysosome-targetable Cu2+-selective ratiometric fluorescent probe (V) has been synthesized by reasonable design. The probe V shows high selectivity toward Cu2+ ions over other cations and exhibits high sensitivity (1.45 nM) for the detection of Cu2+ ions. Meanwhile, the probe is cell permeable and suitable for ratiometric visualization of lysosomal Cu2+ in the living cell.

  11. A highly selective space-folded photo-induced electron transfer fluorescent probe for carbonic anhydrase isozymes IX and its applications for biological imaging. (United States)

    Zhang, Shenyi; Yang, Chunmei; Lu, Weiqiang; Huang, Jin; Zhu, Weiping; Li, Honglin; Xu, Yufang; Qian, Xuhong


    The first highly selective and sensitive fluorescent probe Z1 for detection of carbonic anhydrase IX (CA IX) over isoforms CA I and CA II was developed. As demonstrated, Z1 worked effectively in both enzymatic systems and living hypoxia cells.

  12. Multifunctional Nanoparticles for Drug Delivery Applications Imaging, Targeting, and Delivery

    CERN Document Server

    Prud'homme, Robert


    This book clearly demonstrates the progression of nanoparticle therapeutics from basic research to applications. Unlike other books covering nanoparticles used in medical applications, Multifunctional Nanoparticles for Drug Delivery Applications presents the medical challenges that can be reduced or even overcome by recent advances in nanoscale drug delivery. Each chapter highlights recent progress in the design and engineering of select multifunctional nanoparticles with topics covering targeting, imaging, delivery, diagnostics, and therapy.

  13. Applications Of Image Processing In Criminalistics (United States)

    Krile, Thomas F.; Walkup, John F.; Barsallo, Adonis; Olimb, Hal; Tarng, Jaw-Horng


    A review of some basic image processing techniques for enhancement and restoration of images is given. Both digital and optical approaches are discussed. Fingerprint images are used as examples to illustrate the various processing techniques and their potential applications in criminalistics.

  14. Modeling Perceived Quality for Imaging Applications

    NARCIS (Netherlands)

    Liu, H.


    People of all generations are making more and more use of digital imaging systems in their daily lives. The image content rendered by these digital imaging systems largely differs in perceived quality depending on the system and its applications. To be able to optimize the experience of viewers of

  15. Fuzzy image processing and applications with Matlab

    CERN Document Server

    Chaira, Tamalika


    In contrast to classical image analysis methods that employ ""crisp"" mathematics, fuzzy set techniques provide an elegant foundation and a set of rich methodologies for diverse image-processing tasks. However, a solid understanding of fuzzy processing requires a firm grasp of essential principles and background knowledge.Fuzzy Image Processing and Applications with MATLAB® presents the integral science and essential mathematics behind this exciting and dynamic branch of image processing, which is becoming increasingly important to applications in areas such as remote sensing, medical imaging,

  16. Optical imaging modalities for biomedical applications. (United States)

    Dhawan, Atam P; D'Alessandro, Brian; Fu, Xiaolei


    Optical photographic imaging is a well known imaging method that has been successfully translated into biomedical applications such as microscopy and endoscopy. Although several advanced medical imaging modalities are used today to acquire anatomical, physiological, metabolic, and functional information from the human body, optical imaging modalities including optical coherence tomography, confocal microscopy, multiphoton microscopy, multispectral endoscopy, and diffuse reflectance imaging have recently emerged with significant potential for non-invasive, portable, and cost-effective imaging for biomedical applications spanning tissue, cellular, and molecular levels. This paper reviews methods for modeling the propagation of light photons in a biological medium, as well as optical imaging from organ to cellular levels using visible and near-infrared wavelengths for biomedical and clinical applications.

  17. Image Modeling and Enhancement via Structured Sparse Model Selection (United States)


    deblurring, and inpainting . Index Terms— Model selection, structured sparsity, best basis, denoising, deblurring, inpainting 1. INTRODUCTION Image enhancement...problems, such as denoising, deblurring and inpainting , are typical and important tasks in image processing. Es- timation in sparse representations...deblurring and inpainting . 2. STATE-OF-THE-ART ON IMAGE ENHANCEMENT State-of-the-art image enhancement is obtained by sparse coding image patches with

  18. Image feature detectors and descriptors foundations and applications

    CERN Document Server

    Hassaballah, Mahmoud


    This book provides readers with a selection of high-quality chapters that cover both theoretical concepts and practical applications of image feature detectors and descriptors. It serves as reference for researchers and practitioners by featuring survey chapters and research contributions on image feature detectors and descriptors. Additionally, it emphasizes several keywords in both theoretical and practical aspects of image feature extraction. The keywords include acceleration of feature detection and extraction, hardware implantations, image segmentation, evolutionary algorithm, ordinal measures, as well as visual speech recognition. .

  19. Medical imaging technology reviews and computational applications

    CERN Document Server

    Dewi, Dyah


    This book presents the latest research findings and reviews in the field of medical imaging technology, covering ultrasound diagnostics approaches for detecting osteoarthritis, breast carcinoma and cardiovascular conditions, image guided biopsy and segmentation techniques for detecting lung cancer, image fusion, and simulating fluid flows for cardiovascular applications. It offers a useful guide for students, lecturers and professional researchers in the fields of biomedical engineering and image processing.

  20. An analysis of methods for the selection of atlases for use in medical image segmentation (United States)

    Prescott, Jeffrey W.; Best, Thomas M.; Haq, Furqan; Jackson, Rebecca; Gurcan, Metin


    The use of atlases has been shown to be a robust method for segmentation of medical images. In this paper we explore different methods of selection of atlases for the segmentation of the quadriceps muscles in magnetic resonance (MR) images, although the results are pertinent for a wide range of applications. The experiments were performed using 103 images from the Osteoarthritis Initiative (OAI). The images were randomly split into a training set consisting of 50 images and a testing set of 53 images. Three different atlas selection methods were systematically compared. First, a set of readers was assigned the task of selecting atlases from a training population of images, which were selected to be representative subgroups of the total population. Second, the same readers were instructed to select atlases from a subset of the training data which was stratified based on population modes. Finally, every image in the training set was employed as an atlas, with no input from the readers, and the atlas which had the best initial registration, judged by an appropriate registration metric, was used in the final segmentation procedure. The segmentation results were quantified using the Zijdenbos similarity index (ZSI). The results show that over all readers the agreement of the segmentation algorithm decreased from 0.76 to 0.74 when using population modes to assist in atlas selection. The use of every image in the training set as an atlas outperformed both manual atlas selection methods, achieving a ZSI of 0.82.

  1. Mass spectrometry imaging for biomedical applications. (United States)

    Liu, Jiangjiang; Ouyang, Zheng


    The development of technologies for mass spectrometry imaging is of substantial research interest. Mass spectrometry is potentially capable of providing highly specific information about the distribution of compounds in tissues, with high sensitivity. The in-situ analysis needed for tissue imaging requires MS to be performed under conditions different from the traditional ones, typically with intensive sample preparation and optimized for pharmaceutical applications. In this paper we critically review the current status of MS imaging with different methods of sample ionization and discuss the 3D and quantitative imaging capabilities which need further development, the importance of the multi-modal imaging, and the balance between the pursuit of high-resolution imaging and the practical application of MS imaging in biomedicine.

  2. Imaging gaseous detectors and their applications

    CERN Document Server

    Nappi, Eugenio


    Covers the detector and imaging technology and their numerous applications in nuclear and high energy physics, astrophysics, medicine and radiation measurements Foreword from G. Charpak, awarded the Nobel Prize in Physics for this invention.

  3. Novel Metal Clusters for Imaging Applications

    KAUST Repository

    Alsaiari, Shahad K.


    During the past few years, gold nanoparticles (AuNPs) have received considerable attention in many fields due to their optical properties, photothermal effect and biocompatibility. AuNPs, particularly AuNCs and AuNRs, exhibit great potential in diagnostics and imaging. In the present study, AuNCs were used to selectively image and quantify intracellular antioxidants. It was reported by Chen et al. that the strong fluorescence of AuNCs is quenched by highly reactive oxygen species (hROS). Most of applications depend on fluorescence quenching, however, for our project we designed turn-on fluorescent sensors using AuNCs that sense antioxidants. In the presence of antioxidants, AuNCs fluorescence switch on, while in the absence of antioxidants their fluorescence immediately turn off due to hROS effect. AuNRs were also used for cellular imaging in which AuNRs were conjugated to Cy3-labelled molecular beacon (MB) DNA. Next, the previous complex was loaded in two different strains of magnetotactic bacteria (MTB). MTB were used as a targeted delivery vehicle in which magnetosomes direct the movement of bacteria. The DNA sequence was specific to a certain sequence in mitochondria. The exposure of MTB to an alternating magnetic field (AMF) leads to the increase of temperature inside the bacteria, which destruct the cell wall, and hence, bacterial payload is released. When MD-DNA hybrid with the target sequence, AuNR and Cy3 separate from each other, the fluorescence of the Cy3 is restored.


    Directory of Open Access Journals (Sweden)

    S. Tuermer


    Full Text Available The extraction of vehicles from aerial images provides a wide area traffic situation within a short time. Applications for the gathered data are various and reach from smart routing in the case of congestions to usability validation of roads in the case of disasters. The challenge of the vehicle detection task is finding adequate features which are capable to separate cars from other objects; especially those that look similar. We present an experiment where selected features show their ability of car detection. Precisely, Haar-like and HoG features are utilized and passed to the AdaBoost algorithm for calculating the final detector. Afterwards the classifying power of the features is accurately analyzed and evaluated. The tests a carried out on aerial data from the inner city of Munich, Germany and include small inner city roads with rooftops close by which raise the complexity factor.

  5. Evaluation of Selected Features for CAR Detection in Aerial Images (United States)

    Tuermer, S.; Leitloff, J.; Reinartz, P.; Stilla, U.


    The extraction of vehicles from aerial images provides a wide area traffic situation within a short time. Applications for the gathered data are various and reach from smart routing in the case of congestions to usability validation of roads in the case of disasters. The challenge of the vehicle detection task is finding adequate features which are capable to separate cars from other objects; especially those that look similar. We present an experiment where selected features show their ability of car detection. Precisely, Haar-like and HoG features are utilized and passed to the AdaBoost algorithm for calculating the final detector. Afterwards the classifying power of the features is accurately analyzed and evaluated. The tests a carried out on aerial data from the inner city of Munich, Germany and include small inner city roads with rooftops close by which raise the complexity factor.

  6. Advances and applications of optimised algorithms in image processing

    CERN Document Server

    Oliva, Diego


    This book presents a study of the use of optimization algorithms in complex image processing problems. The problems selected explore areas ranging from the theory of image segmentation to the detection of complex objects in medical images. Furthermore, the concepts of machine learning and optimization are analyzed to provide an overview of the application of these tools in image processing. The material has been compiled from a teaching perspective. Accordingly, the book is primarily intended for undergraduate and postgraduate students of Science, Engineering, and Computational Mathematics, and can be used for courses on Artificial Intelligence, Advanced Image Processing, Computational Intelligence, etc. Likewise, the material can be useful for research from the evolutionary computation, artificial intelligence and image processing co.

  7. Super-thermal light for imaging applications (United States)

    Allevi, Alessia; Cassina, Silvia; Bondani, Maria


    We report on a new classical light source useful for ghost-imaging applications. The light is obtained by frequency doubling a conventional speckle pattern having an overall multi-mode thermal distribution. The frequency-doubled light acquires a super-thermal distribution, which induces higher correlations at a beam splitter and, as a consequence, a higher visibility in ghost-imaging protocols.

  8. Spacecraft Electrical Connector Selection and Application Processes (United States)

    Iannello, Chris; Davis, Mitchell I; Kichak, Robert A.; Slenski, George


    This assessment was initiated by the NASA Engineering & Safety Center (NESC) after a number of recent "high profile" connector problems, the most visible and publicized of these being the problem with the Space Shuttle's Engine Cut-Off System cryogenic feed-thru connector. The NESC commissioned a review of NASA's connector selection and application processes for space flight applications, including how lessons learned and past problem records are fed back into the processes to avoid recurring issues. Team members were primarily from the various NASA Centers and included connector and electrical parts specialists. The commissioned study was conducted on spacecraft connector selection and application processes at NASA Centers. The team also compared the NASA spacecraft connector selection and application process to the military process, identified recent high profile connector failures, and analyzed problem report data looking for trends and common occurrences. The team characterized NASA's connector problem experience into a list of top connector issues based on anecdotal evidence of a system's impact and commonality between Centers. These top issues are as follows, in no particular rank order: electrically shorted, bent and/or recessed contact pins, contact pin/socket contamination leading to electrically open or intermittencies, connector plating corrosion or corrosion of connector components, low or inadequate contact pin retention forces, contact crimp failures, unmated connectors and mis-wiring due to workmanship errors during installation or maintenance, loose connectors due to manufacturing defects such as wavy washer and worn bayonet retention, damaged connector elastomeric seals and cryogenic connector failure. A survey was also conducted of SAE Connector AE-8C1 committee members regarding their experience relative to the NASA concerns on connectors. The most common responses in order of occurrence were contact retention, plating issues, worn-out or damaged

  9. Blob parameter selection for image representation. (United States)

    Benkarroum, Younes; Herman, Gabor T; Rowland, Stuart W


    A technique for optimizing parameters for image representation using blob basis functions is presented and demonstrated. The exact choice of the basis functions significantly influences the quality of the image representation. It has been previously established that using spherically symmetric volume elements (blobs) as basis functions, instead of the more traditional voxels, yields superior representations of real objects, provided that the parameters that occur in the definition of the family of blobs are appropriately tuned. The technique presented in this paper makes use of an extra degree of freedom, which has been previously ignored, in the blob parameter space. The efficacy of the resulting parameters is illustrated.

  10. CMOS Image Sensors for High Speed Applications. (United States)

    El-Desouki, Munir; Deen, M Jamal; Fang, Qiyin; Liu, Louis; Tse, Frances; Armstrong, David


    Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD) imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4∼5 μm) due to limitations in the optics, CMOS technology scaling can allow for an increased number of transistors to be integrated into the pixel to improve both detection and signal processing. Such smart pixels truly show the potential of CMOS technology for imaging applications allowing CMOS imagers to achieve the image quality and global shuttering performance necessary to meet the demands of ultrahigh-speed applications. In this paper, a review of CMOS-based high-speed imager design is presented and the various implementations that target ultrahigh-speed imaging are described. This work also discusses the design, layout and simulation results of an ultrahigh acquisition rate CMOS active-pixel sensor imager that can take 8 frames at a rate of more than a billion frames per second (fps).

  11. CMOS Image Sensors for High Speed Applications

    Directory of Open Access Journals (Sweden)

    M. Jamal Deen


    Full Text Available Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4~5 μm due to limitations in the optics, CMOS technology scaling can allow for an increased number of transistors to be integrated into the pixel to improve both detection and signal processing. Such smart pixels truly show the potential of CMOS technology for imaging applications allowing CMOS imagers to achieve the image quality and global shuttering performance necessary to meet the demands of ultrahigh-speed applications. In this paper, a review of CMOS-based high-speed imager design is presented and the various implementations that target ultrahigh-speed imaging are described. This work also discusses the design, layout and simulation results of an ultrahigh acquisition rate CMOS active-pixel sensor imager that can take 8 frames at a rate of more than a billion frames per second (fps.

  12. Investigating Mental Status and Body Image in Cosmetic Surgery Applicants in Comparison with Non-applicants


    Z Khanjani; J Babapour; G Saba


    Introduction: Today revising and rethinking of the appearance and eliminating its flaws, real or imaginary, through cosmetic surgery is the main concern of some individuals. This study was conducted in order to compare the body image, depression and anxiety disorders between applicants of cosmetic surgery and non-applicants. Methods: The present study is of cause–comparison type. Cosmetic surgery applicants involved 62 participants who were selected by available sampling from those who referr...

  13. Prior image constrained image reconstruction in emerging computed tomography applications (United States)

    Brunner, Stephen T.

    Advances have been made in computed tomography (CT), especially in the past five years, by incorporating prior images into the image reconstruction process. In this dissertation, we investigate prior image constrained image reconstruction in three emerging CT applications: dual-energy CT, multi-energy photon-counting CT, and cone-beam CT in image-guided radiation therapy. First, we investigate the application of Prior Image Constrained Compressed Sensing (PICCS) in dual-energy CT, which has been called "one of the hottest research areas in CT." Phantom and animal studies are conducted using a state-of-the-art 64-slice GE Discovery 750 HD CT scanner to investigate the extent to which PICCS can enable radiation dose reduction in material density and virtual monochromatic imaging. Second, we extend the application of PICCS from dual-energy CT to multi-energy photon-counting CT, which has been called "one of the 12 topics in CT to be critical in the next decade." Numerical simulations are conducted to generate multiple energy bin images for a photon-counting CT acquisition and to investigate the extent to which PICCS can enable radiation dose efficiency improvement. Third, we investigate the performance of a newly proposed prior image constrained scatter correction technique to correct scatter-induced shading artifacts in cone-beam CT, which, when used in image-guided radiation therapy procedures, can assist in patient localization, and potentially, dose verification and adaptive radiation therapy. Phantom studies are conducted using a Varian 2100 EX system with an on-board imager to investigate the extent to which the prior image constrained scatter correction technique can mitigate scatter-induced shading artifacts in cone-beam CT. Results show that these prior image constrained image reconstruction techniques can reduce radiation dose in dual-energy CT by 50% in phantom and animal studies in material density and virtual monochromatic imaging, can lead to radiation

  14. Flexible frequency selective metamaterials for microwave applications (United States)

    Gao, Bo; Yuen, Matthew M. F.; Ye, Terry Tao


    Metamaterials have attracted more and more research attentions recently. Metamaterials for electromagnetic applications consist of sub-wavelength structures designed to exhibit particular responses to an incident EM (electromagnetic) wave. Traditional EM (electromagnetic) metamaterial is constructed from thick and rigid structures, with the form-factor suitable for applications only in higher frequencies (above GHz) in microwave band. In this paper, we developed a thin and flexible metamaterial structure with small-scale unit cell that gives EM metamaterials far greater flexibility in numerous applications. By incorporating ferrite materials, the thickness and size of the unit cell of metamaterials have been effectively scaled down. The design, mechanism and development of flexible ferrite loaded metamaterials for microwave applications is described, with simulation as well as measurements. Experiments show that the ferrite film with permeability of 10 could reduce the resonant frequency. The thickness of the final metamaterials is only 0.3mm. This type of ferrite loaded metamaterials offers opportunities for various sub-GHz microwave applications, such as cloaks, absorbers, and frequency selective surfaces.

  15. Application of external tracking in ultrasound elasticity imaging (United States)

    Foroughi, Pezhman; Hager, Gregory D.; Wacker, Frank K.; Boctor, Emad M.


    Despite the success of ultrasound elasticity imaging (USEI) in medical applications such as diagnosis and screening of breast lesions and prostate cancer, USEI has not been adopted in routine clinical procedures. This is partly caused by the difficulty in acquiring reliable images and interpreting them, the lack of consistency over time, and the dependency of image quality to the expertise of the user. We previously demonstrated the potential of exploiting an external tracker to partially alleviate these issues and enhance the quality of USEI. The tracking data enabled fast and automatic selection of pairs of RF frames used in strain calculation. Here, we expand this method by including new features. The proposed method employs image content to compensate for the limited accuracy of the tracking device. It also combines multiple strain images to improve the quality of the final image. For this purpose, It normalizes the images and determines which images can be combined relying on the tracking information. We have acquired RF frames synchronized with tracking data from livers of pig containing an ablated region and a breast phantom using two different tracking devices; an optical tracker and a less accurate electromagnetic tracker. We present the promising results of the proposed method and investigate the sensitivity of frame selection technique without using the image content to inaccuracies in tracking information.

  16. MATLAB-Based Applications for Image Processing and Image Quality Assessment – Part I: Software Description

    Directory of Open Access Journals (Sweden)

    L. Krasula


    Full Text Available This paper describes several MATLAB-based applications useful for image processing and image quality assessment. The Image Processing Application helps user to easily modify images, the Image Quality Adjustment Application enables to create series of pictures with different quality. The Image Quality Assessment Application contains objective full reference quality metrics that can be used for image quality assessment. The Image Quality Evaluation Applications represent an easy way to compare subjectively the quality of distorted images with reference image. Results of these subjective tests can be processed by using the Results Processing Application. All applications provide Graphical User Interface (GUI for the intuitive usage.

  17. Fundamentals and applications of magnetic particle imaging. (United States)

    Borgert, Jörn; Schmidt, Joachim D; Schmale, Ingo; Rahmer, Jürgen; Bontus, Claas; Gleich, Bernhard; David, Bernd; Eckart, Rainer; Woywode, Oliver; Weizenecker, Jürgen; Schnorr, Jörg; Taupitz, Matthias; Haegele, Julian; Vogt, Florian M; Barkhausen, Jörg


    Magnetic particle imaging (MPI) is a new medical imaging technique which performs a direct measurement of magnetic nanoparticles, also known as superparamagnetic iron oxide. MPI can acquire quantitative images of the local distribution of the magnetic material with high spatial and temporal resolution. Its sensitivity is well above that of other methods used for the detection and quantification of magnetic materials, for example, magnetic resonance imaging. On the basis of an intravenous injection of magnetic particles, MPI has the potential to play an important role in medical application areas such as cardiovascular, oncology, and also in exploratory fields such as cell labeling and tracking. Here, we present an introduction to the basic function principle of MPI, together with an estimation of the spatial resolution and the detection limit. Furthermore, the above-mentioned medical applications are discussed with respect to an applicability of MPI. Copyright © 2012 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  18. Magnetic imaging and its applications to materials

    CERN Document Server

    De Graef, Marc


    Volume 36 provides an extensive introduction to magnetic imaging,including theory and practice, utilizing a wide range of magnetic sensitive imaging methods. It also illustrates the applications of these modern experimental techniques together with imaging calculations to today's advanced magnetic materials. This book is geared towards the upper-level undergraduate students and entry-level graduate students majoring in physics or materials science who are interested in magnetic structure and magnetic imaging. Researchers involved in studying magnetic materials should alsofind the book usef

  19. Clinical applications of choroidal imaging technologies

    Directory of Open Access Journals (Sweden)

    Jay Chhablani


    Full Text Available Choroid supplies the major blood supply to the eye, especially the outer retinal structures. Its understanding has significantly improved with the advent of advanced imaging modalities such as enhanced depth imaging technique and the newer swept source optical coherence tomography. Recent literature reports the findings of choroidal changes, quantitative as well as qualitative, in various chorioretinal disorders. This review article describes applications of choroidal imaging in the management of common diseases such as age-related macular degeneration, high myopia, central serous chorioretinopathy, chorioretinal inflammatory diseases, and tumors. This article briefly discusses future directions in choroidal imaging including angiography.

  20. BOOK REVIEW: Infrared Thermal Imaging: Fundamentals, Research and Applications Infrared Thermal Imaging: Fundamentals, Research and Applications (United States)

    Planinsic, Gorazd


    Ten years ago, a book with a title like this would be interesting only to a narrow circle of specialists. Thanks to rapid advances in technology, the price of thermal imaging devices has dropped sharply, so they have, almost overnight, become accessible to a wide range of users. As the authors point out in the preface, the growth of this area has led to a paradoxical situation: now there are probably more infrared (IR) cameras sold worldwide than there are people who understand the basic physics behind them and know how to correctly interpret the colourful images that are obtained with these devices. My experience confirms this. When I started using the IR camera during lectures on the didactics of physics, I soon realized that I needed more knowledge, which I later found in this book. A wide range of potential readers and topical areas provides a good motive for writing a book such as this one, but it also represents a major challenge for authors, as compromises in the style of writing and choice of topics are required. The authors of this book have successfully achieved this, and indeed done an excellent job. This book addresses a wide range of readers, from engineers, technicians, and physics and science teachers in schools and universities, to researchers and specialists who are professionally active in the field. As technology in this area has made great progress in recent times, this book is also a valuable guide for those who opt to purchase an infrared camera. Chapters in this book could be divided into three areas: the fundamentals of IR thermal imaging and related physics (two chapters); IR imaging systems and methods (two chapters) and applications, including six chapters on pedagogical applications; IR imaging of buildings and infrastructure, industrial applications, microsystems, selected topics in research and industry, and selected applications from other fields. All chapters contain numerous colour pictures and diagrams, and a rich list of relevant

  1. Angularly-selective transmission imaging in a scanning electron microscope. (United States)

    Holm, Jason; Keller, Robert R


    This work presents recent advances in transmission scanning electron microscopy (t-SEM) imaging control capabilities. A modular aperture system and a cantilever-style sample holder that enable comprehensive angular selectivity of forward-scattered electrons are described. When combined with a commercially available solid-state transmission detector having only basic bright-field and dark-field imaging capabilities, the advances described here enable numerous transmission imaging modes. Several examples are provided that demonstrate how contrast arising from diffraction to mass-thickness can be obtained. Unanticipated image contrast at some imaging conditions is also observed and addressed. Published by Elsevier B.V.

  2. Rotation Covariant Image Processing for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Henrik Skibbe


    Full Text Available With the advent of novel biomedical 3D image acquisition techniques, the efficient and reliable analysis of volumetric images has become more and more important. The amount of data is enormous and demands an automated processing. The applications are manifold, ranging from image enhancement, image reconstruction, and image description to object/feature detection and high-level contextual feature extraction. In most scenarios, it is expected that geometric transformations alter the output in a mathematically well-defined manner. In this paper we emphasis on 3D translations and rotations. Many algorithms rely on intensity or low-order tensorial-like descriptions to fulfill this demand. This paper proposes a general mathematical framework based on mathematical concepts and theories transferred from mathematical physics and harmonic analysis into the domain of image analysis and pattern recognition. Based on two basic operations, spherical tensor differentiation and spherical tensor multiplication, we show how to design a variety of 3D image processing methods in an efficient way. The framework has already been applied to several biomedical applications ranging from feature and object detection tasks to image enhancement and image restoration techniques. In this paper, the proposed methods are applied on a variety of different 3D data modalities stemming from medical and biological sciences.

  3. Solid silica nanoparticles: applications in molecular imaging. (United States)

    Shirshahi, Vahid; Soltani, Madjid


    Silica and silica-based nanoparticles have been widely used for therapeutic and diagnostic applications in cancer mainly through delivery of drugs, genes and contrast agents. Development of synthesis methods has provided the possibility of fabricating silica nanoparticles with different sizes in nanometer ranges as well as silica-based multimodal nanoparticles with many innovative properties and intriguing applications in biomedicine. The surface of silica particles facilitates different methods of surface modifications and allows conjugation of various biomolecules such as proteins and nucleic acids. In this review, different methods of fabrication of silica and silica-based nanoparticles, their surface modification and the application of these nanoparticles in molecular imaging are discussed. Overall, the aim of this review is to address the development of silica and silica-based multifunctional nanoparticles that are introduced mainly for molecular imaging applications using optical, magnetic (MRI), X-ray (computed tomography) and multimodal imaging techniques. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Unsupervised Band Selection and Segmentation in Hyper/Multispectral Images


    Martínez Usó, Adolfo


    The title of the thesis focuses the attention on hyperspectral image segmentation, that is, we want to detect salient regions in a hyperspectral image and isolate them as accurate as possible. This purpose presents two main problems: Firstly, the fact of using hyperspectral imaging not only give us a huge amount of information, but we also have to face the problem of selecting somehow the information avoiding redundancies.Secondly, the problem of segmentation strictly speaking is still a chal...

  5. Selective evolutionary generation systems: Theory and applications (United States)

    Menezes, Amor A.

    This dissertation is devoted to the problem of behavior design, which is a generalization of the standard global optimization problem: instead of generating the optimizer, the generalization produces, on the space of candidate optimizers, a probability density function referred to as the behavior. The generalization depends on a parameter, the level of selectivity, such that as this parameter tends to infinity, the behavior becomes a delta function at the location of the global optimizer. The motivation for this generalization is that traditional off-line global optimization is non-resilient and non-opportunistic. That is, traditional global optimization is unresponsive to perturbations of the objective function. On-line optimization methods that are more resilient and opportunistic than their off-line counterparts typically consist of the computationally expensive sequential repetition of off-line techniques. A novel approach to inexpensive resilience and opportunism is to utilize the theory of Selective Evolutionary Generation Systems (SECS), which sequentially and probabilistically selects a candidate optimizer based on the ratio of the fitness values of two candidates and the level of selectivity. Using time-homogeneous, irreducible, ergodic Markov chains to model a sequence of local, and hence inexpensive, dynamic transitions, this dissertation proves that such transitions result in behavior that is called rational; such behavior is desirable because it can lead to both efficient search for an optimizer as well as resilient and opportunistic behavior. The dissertation also identifies system-theoretic properties of the proposed scheme, including equilibria, their stability and their optimality. Moreover, this dissertation demonstrates that the canonical genetic algorithm with fitness proportional selection and the (1+1) evolutionary strategy are particular cases of the scheme. Applications in three areas illustrate the versatility of the SECS theory: flight

  6. Content-Based Image Retrieval: Color-selection exploited

    NARCIS (Netherlands)

    Moens, Marie-Francine; van den Broek, Egon; Vuurpijl, L.G.; de Brusser, Rik; Kisters, P.M.F.; Hiemstra, Djoerd; Kraaij, Wessel; von Schmid, J.C.M.


    This research presents a new color selection interface that facilitates query-by-color in Content-Based Image Retrieval (CBIR). Existing CBIR color selection interfaces, are being judged as non-intuitive and difficult to use. Our interface copes with these problems of usability. It is based on 11

  7. Image similarity search using a negative selection algorithm

    NARCIS (Netherlands)

    Keijzers, S.; Maandag, P.; Marchiori, E.; Sprinkhuizen-Kuyper, I.G.


    The Negative Selection Algorithm is an immune inspired algorithm that can be used for different purposes such as fault detection, data integrity protection and virus detection. In this paper we show how the Negative Selection Algorithm can be adapted to tackle the similar image search problem: given

  8. Angularly-selective transmission imaging in a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Holm, Jason, E-mail:; Keller, Robert R.


    This work presents recent advances in transmission scanning electron microscopy (t-SEM) imaging control capabilities. A modular aperture system and a cantilever-style sample holder that enable comprehensive angular selectivity of forward-scattered electrons are described. When combined with a commercially available solid-state transmission detector having only basic bright-field and dark-field imaging capabilities, the advances described here enable numerous transmission imaging modes. Several examples are provided that demonstrate how contrast arising from diffraction to mass-thickness can be obtained. Unanticipated image contrast at some imaging conditions is also observed and addressed. - Highlights: • A modular aperture system for STEM-in-SEM imaging is described. • A flexible cantilever sample holder that can maximize camera length is described. • The aperture system and sample holder enable complete acceptance angle control. • Most STEM imaging modes can be implemented without multi-segment detectors.

  9. Modulated digital images for biometric and other security applications (United States)

    McCarthy, Lawry D.; Lee, Robert A.; Swiegers, Gerhard F.


    There are, in general, two ways for an observer to deal with light that is incorrect in some way (e.g. which is partially out of focus). One approach is to correct the error (e.g. by using a lens to selectively bend the light). Another approach employs selective masking to block those portions of the light which are unwanted (e.g. out of focus). The principle of selective masking is used in a number of important industries. However it has not found widespread application in the field of optical security devices. This work describes the selective masking, or modulation, of digital images as a means of creating documents and transparent media containing overt or covert biometric and other images. In particular, we show how animation effects, flash-illumination features, color-shifting patches, information concealment devices, and biometric portraiture in various settings can be incorporated in transparent media like plastic packaging materials, credit cards, and plastic banknotes. We also demonstrate the application of modulated digital images to the preparation of optically variable diffractive foils which are readily customized to display biometric portraits and information. Selective masking is shown to be an important means of creating a diverse range of effects useful in authentication. Such effects can be readily and inexpensively produced without the need, for example, to fabricate lenses on materials which may not be conducive in this respect.

  10. Application of numerical methods to elasticity imaging. (United States)

    Castaneda, Benjamin; Ormachea, Juvenal; Rodríguez, Paul; Parker, Kevin J


    Elasticity imaging can be understood as the intersection of the study of biomechanical properties, imaging sciences, and physics. It was mainly motivated by the fact that pathological tissue presents an increased stiffness when compared to surrounding normal tissue. In the last two decades, research on elasticity imaging has been an international and interdisciplinary pursuit aiming to map the viscoelastic properties of tissue in order to provide clinically useful information. As a result, several modalities of elasticity imaging, mostly based on ultrasound but also on magnetic resonance imaging and optical coherence tomography, have been proposed and applied to a number of clinical applications: cancer diagnosis (prostate, breast, liver), hepatic cirrhosis, renal disease, thyroiditis, arterial plaque evaluation, wall stiffness in arteries, evaluation of thrombosis in veins, and many others. In this context, numerical methods are applied to solve forward and inverse problems implicit in the algorithms in order to estimate viscoelastic linear and nonlinear parameters, especially for quantitative elasticity imaging modalities. In this work, an introduction to elasticity imaging modalities is presented. The working principle of qualitative modalities (sonoelasticity, strain elastography, acoustic radiation force impulse) and quantitative modalities (Crawling Waves Sonoelastography, Spatially Modulated Ultrasound Radiation Force (SMURF), Supersonic Imaging) will be explained. Subsequently, the areas in which numerical methods can be applied to elasticity imaging are highlighted and discussed. Finally, we present a detailed example of applying total variation and AM-FM techniques to the estimation of elasticity.

  11. Scattered Radiation Emission Imaging: Principles and Applications

    Directory of Open Access Journals (Sweden)

    M. K. Nguyen


    Full Text Available Imaging processes built on the Compton scattering effect have been under continuing investigation since it was first suggested in the 50s. However, despite many innovative contributions, there are still formidable theoretical and technical challenges to overcome. In this paper, we review the state-of-the-art principles of the so-called scattered radiation emission imaging. Basically, it consists of using the cleverly collected scattered radiation from a radiating object to reconstruct its inner structure. Image formation is based on the mathematical concept of compounded conical projection. It entails a Radon transform defined on circular cone surfaces in order to express the scattered radiation flux density on a detecting pixel. We discuss in particular invertible cases of such conical Radon transforms which form a mathematical basis for image reconstruction methods. Numerical simulations performed in two and three space dimensions speak in favor of the viability of this imaging principle and its potential applications in various fields.

  12. CMOS Image Sensors for High Speed Applications


    Jamal Deen, M.; Qiyin Fang; Louis Liu; Frances Tse; David Armstrong; Munir El-Desouki


    Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD) imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4~5 μm) due to ...

  13. Design of a two-photon fluorescent probe for selective recognition of Au(III) over Au(I) and its application of imaging in vitro and in vivo (United States)

    Wang, Wenjuan; Huang, Yinliang; Wang, Shumin; Zhou, Yujie; Huang, Wei; Feng, Yan; Zhang, Wan; Yu, Wenxin; Zhou, Qiang; Chen, Man; Fang, Min


    A highly selective two-photon fluorescent probe (PyCM-1) for Au3 + was developed with distinct ;turn on; fluorescence response, low detection limit (22 nM) and large two-photon absorption cross-sections (696 GM at 860 nm). Its high selectivity for Au3 + over Au+ was achieved via the modification on the type of coordination atoms in the Schiff base receptor. Co-staining experiments showed that the probe PyCM-1 could co-localize specifically with mitochondria. Moreover, the two-photon confocal fluorescence imaging results demonstrated the probe's capability for visualizing Au3 +in vitro and in vivo.

  14. Noise reduction in selective computational ghost imaging using genetic algorithm (United States)

    Zafari, Mohammad; Ahmadi-Kandjani, Sohrab; Kheradmand, Reza


    Recently, we have presented a selective computational ghost imaging (SCGI) method as an advanced technique for enhancing the security level of the encrypted ghost images. In this paper, we propose a modified method to improve the ghost image quality reconstructed by SCGI technique. The method is based on background subtraction using genetic algorithm (GA) which eliminates background noise and gives background-free ghost images. Analyzing the universal image quality index by using experimental data proves the advantage of this modification method. In particular, the calculated value of the image quality index for modified SCGI over 4225 realization shows an 11 times improvement with respect to SCGI technique. This improvement is 20 times in comparison to conventional CGI technique.

  15. Content dependent selection of image enhancement parameters for mobile displays (United States)

    Lee, Yoon-Gyoo; Kang, Yoo-Jin; Kim, Han-Eol; Kim, Ka-Hee; Kim, Choon-Woo


    Mobile devices such as cellular phones and portable multimedia player with capability of playing terrestrial digital multimedia broadcasting (T-DMB) contents have been introduced into consumer market. In this paper, content dependent image quality enhancement method for sharpness and colorfulness and noise reduction is presented to improve perceived image quality on mobile displays. Human visual experiments are performed to analyze viewers' preference. Relationship between the objective measures and the optimal values of image control parameters are modeled by simple lookup tables based on the results of human visual experiments. Content dependent values of image control parameters are determined based on the calculated measures and predetermined lookup tables. Experimental results indicate that dynamic selection of image control parameters yields better image quality.

  16. Digital imaging applications in anatomic pathology. (United States)

    Leong, F Joel W-M; Leong, Anthony S-Y


    Digital imaging has progressed at a rapid rate and is likely to eventually replace chemical photography in most areas of professional and amateur digital image acquisition. In pathology, digital microscopy has implications beyond that of taking a photograph. The arguments for adopting this new medium are compelling, and given similar developments in other areas of pathology and radiologic imaging, acceptance of the digital medium should be viewed as a component of the technological evolution of the laboratory. A digital image may be stored, replicated, catalogued, employed for educational purposes, transmitted for further interpretation (telepathology), analyzed for salient features (medical vision/image analysis), or form part of a wider digital healthcare strategy. Despite advances in digital camera technology, good image acquisition still requires good microscope optics and the correct calibration of all system components, something which many neglect. The future of digital imaging in pathology is very promising and new applications in the fields of automated quantification and interpretation are likely to have profound long-term influence on the practice of anatomic pathology. This paper discusses the state of the art of digital imaging in anatomic pathology.

  17. Development of a Simple Image Processing Application that Makes Abdominopelvic Tumor Visible on Positron Emission Tomography/Computed Tomography Image. (United States)

    Pandey, Anil Kumar; Saroha, Kartik; Sharma, Param Dev; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh


    In this study, we have developed a simple image processing application in MATLAB that uses suprathreshold stochastic resonance (SSR) and helps the user to visualize abdominopelvic tumor on the exported prediuretic positron emission tomography/computed tomography (PET/CT) images. A brainstorming session was conducted for requirement analysis for the program. It was decided that program should load the screen captured PET/CT images and then produces output images in a window with a slider control that should enable the user to view the best image that visualizes the tumor, if present. The program was implemented on personal computer using Microsoft Windows and MATLAB R2013b. The program has option for the user to select the input image. For the selected image, it displays output images generated using SSR in a separate window having a slider control. The slider control enables the user to view images and select one which seems to provide the best visualization of the area(s) of interest. The developed application enables the user to select, process, and view output images in the process of utilizing SSR to detect the presence of abdominopelvic tumor on prediuretic PET/CT image.

  18. A Novel Spectral Clustering and its Application in Image Processing

    Directory of Open Access Journals (Sweden)

    Gu Ruijun


    Full Text Available This paper proposes an improved spectral clustering algorithm based on neighbour adaptive scale, who fully considers the local structure of dataset using neighbour adaptive scale, which simplifies the selection of parameters and makes the improved algorithm insensitive to both density and outliers. This paper illustrates the proposed algorithm not only has inhibition for certain outliers but is able to cluster the data sets with different scales. Experiments on UCI data sets show that the proposed method is effective. Some experiments were also performed in image clustering and image segmentation to demonstrate its excellent features in application.

  19. Novel hemispheric image formation: concepts and applications (United States)

    Thibault, Simon; Konen, Pierre; Roulet, Patrice; Villegas, Mathieu


    Panoramic and hemispheric lens technologies represent new and exciting opportunities in both imaging and projection systems. Such lenses offer intriguing applications for the transportation/automotive industry, in the protection of civilian and military areas, business. In this paper we describe a new optical design technique that provides a greater degree of freedom in producing a variety of hemispheric spatial light distribution areas. This innovative optical design strategy, of generating and controlling image mapping, has been successful in producing high-resolution imaging and projection systems. This success has subsequently generated increased interest in the high-resolution camera/projector and the concept of absolute measurement with high-resolution wide-angle lenses. The new technique described in this paper uses optimization techniques to improve the performance of a customized wide-angle lens optical system for a specific application. By adding a custom angle-to-pixel ratio at the optical design stage, this customized optical system provides ideal image coverage while reducing and optimizing signal processing. This novel image formation technique requires the development of new algorithms in order to view the panoramic image on a display without any residual distortion.

  20. Wavelets: Applications to Image Compression-II

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 3. Wavelets: Applications to Image Compression – II. Sachin P Nanavati ... National PARAM Supercomputing Facility, Centre for Development of Advanced Computing (C-DAC). Pune University Campus, Ganesh Khind, Pune 411 007, India.

  1. Curve Matching with Applications in Medical Imaging

    DEFF Research Database (Denmark)

    Bauer, Martin; Bruveris, Martins; Harms, Philipp


    In the recent years, Riemannian shape analysis of curves and surfaces has found several applications in medical image analysis. In this paper we present a numerical discretization of second order Sobolev metrics on the space of regular curves in Euclidean space. This class of metrics has several...

  2. Recent applications of hyperspectral imaging in microbiology. (United States)

    Gowen, Aoife A; Feng, Yaoze; Gaston, Edurne; Valdramidis, Vasilis


    Hyperspectral chemical imaging (HSI) is a broad term encompassing spatially resolved spectral data obtained through a variety of modalities (e.g. Raman scattering, Fourier transform infrared microscopy, fluorescence and near-infrared chemical imaging). It goes beyond the capabilities of conventional imaging and spectroscopy by obtaining spatially resolved spectra from objects at spatial resolutions varying from the level of single cells up to macroscopic objects (e.g. foods). In tandem with recent developments in instrumentation and sampling protocols, applications of HSI in microbiology have increased rapidly. This article gives a brief overview of the fundamentals of HSI and a comprehensive review of applications of HSI in microbiology over the past 10 years. Technical challenges and future perspectives for these techniques are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Multimodal interaction in image and video applications

    CERN Document Server

    Sappa, Angel D


    Traditional Pattern Recognition (PR) and Computer Vision (CV) technologies have mainly focused on full automation, even though full automation often proves elusive or unnatural in many applications, where the technology is expected to assist rather than replace the human agents. However, not all the problems can be automatically solved being the human interaction the only way to tackle those applications. Recently, multimodal human interaction has become an important field of increasing interest in the research community. Advanced man-machine interfaces with high cognitive capabilities are a hot research topic that aims at solving challenging problems in image and video applications. Actually, the idea of computer interactive systems was already proposed on the early stages of computer science. Nowadays, the ubiquity of image sensors together with the ever-increasing computing performance has open new and challenging opportunities for research in multimodal human interaction. This book aims to show how existi...

  4. Towards noncontact skin melanoma selection by multispectral imaging analysis (United States)

    Kuzmina, Ilona; Diebele, Ilze; Jakovels, Dainis; Spigulis, Janis; Valeine, Lauma; Kapostinsh, Janis; Berzina, Anna


    A clinical trial comprising 334 pigmented and vascular lesions has been performed in three Riga clinics by means of multispectral imaging analysis. The imaging system Nuance 2.4 (CRi) and self-developed software for mapping of the main skin chromophores were used. Specific features were observed and analyzed for malignant skin melanomas: notably higher absorbance (especially as the difference of optical density relative to the healthy skin), uneven chromophore distribution over the lesion area, and the possibility to select the ``melanoma areas'' in the correlation graphs of chromophores. The obtained results indicate clinical potential of this technology for noncontact selection of melanoma from other pigmented and vascular skin lesions.

  5. Selection of regularization parameter in total variation image restoration. (United States)

    Liao, Haiyong; Li, Fang; Ng, Michael K


    We consider and study total variation (TV) image restoration. In the literature there are several regularization parameter selection methods for Tikhonov regularization problems (e.g., the discrepancy principle and the generalized cross-validation method). However, to our knowledge, these selection methods have not been applied to TV regularization problems. The main aim of this paper is to develop a fast TV image restoration method with an automatic selection of the regularization parameter scheme to restore blurred and noisy images. The method exploits the generalized cross-validation (GCV) technique to determine inexpensively how much regularization to use in each restoration step. By updating the regularization parameter in each iteration, the restored image can be obtained. Our experimental results for testing different kinds of noise show that the visual quality and SNRs of images restored by the proposed method is promising. We also demonstrate that the method is efficient, as it can restore images of size 256 x 256 in approximately 20 s in the MATLAB computing environment.

  6. Genitourinary imaging: Current and emerging applications

    Directory of Open Access Journals (Sweden)

    O′ Donoghue P


    Full Text Available This review discusses the current and emerging techniques in urinary tract imaging. Recent technical advances and novel discoveries make this an exciting but challenging time for urinary tract imaging. The first section describes the imaging of the adrenal gland which has made great strides in the last decade, the current major adrenal imaging modalities as well as new applications are discussed with particular attention to the role of imaging in the incidentally detected adrenal lesion. In the second section the role of ultrasound, computed tomography (CT and magnetic resonance (MR in evaluation of the renal tract are discussed with the new technical advances leading to earlier detection and characterization of renal lesions. Complementary to this is the emerging role of CT and MR urography in assessment of the urinary tract and bladder in contrast to the demise of plain film studies/intravenous urography. The role of CT angiography in assessment of the renal vasculature is also discussed. The third section discusses the role of prostate imaging in the diagnosis, staging and management of prostate cancer. Transrectal ultrasonography, can be used to guide biopsy, CT is frequently used in staging, with bone scintigraphy and positron emission tomography having roles in advanced disease. Currently, all imaging modalities, especially MR are evolving to improve disease detection and staging. The final section discusses the recently encountered adverse reaction of nephrogenic systemic fibrosis in patients post gadolinium-enhanced MRI and how to help prevent this adverse reaction.

  7. Variable wavelength selection devices: Physics and applications (United States)

    Xianyu, Haiqing

    Variable wavelength selection (VWS) achieved by implementing tunability to wavelength discriminating devices has generated great interest in basic science, applied physics, and technology. This thesis focuses on the underlying physics and application of several novel wavelength discriminating devices. Holographical polymer dispersed liquid crystals (HPDLCs) are switchable volume gratings formed by exposing a photopolymerizable monomer and liquid crystal mixture to interfering monochromatic light beams. An HPDLCs wavelength discriminating ability along with its switchability, allow it to be utilized in VWS devices. A novel mode HPDLC, total internal reflection (TIR) HPDLC, has been developed as a wavelength selective filter. The grating planes in this device are tilted so that the diffracted light experiences total internal reflection at the glass-air interface and is trapped in the cell until it eventually escapes from an edge. A VWS device is demonstrated by stacking TIR HPDLCs operating at different wavelengths. Converging or diverging recording beams are employed to fabricate chirped reflection HPDLCs with a pitch gradient along the designated direction, creating chirped switchable reflection gratings (CSRGs). A pixelated version of the CSRG is developed herein, and a dynamic spectral equalizer is presented by combining the pixelated CSRG with a prism (for wavelength discrimination). A switchable circular to point converter (SCPC), which enables the random selection of the wavelength bands divided by the Fabry-Perot interferometer utilizing the controllable beam steering capability of transmission HPDLCs, is demonstrated. A random optical cross-switch (TIROL) can be created by integrating a Fabry-Perot interferometer with a stack of SCPC units. The in-plane electric field generated by the interdigitated electrodes is utilized to elongate the helical pitch of a cholesteric liquid crystal and thereby induces a red shift of the transmission reflection peak

  8. Vascular applications of contrast-enhanced ultrasound imaging. (United States)

    Mehta, Kunal S; Lee, Jake J; Taha, Ashraf A; Avgerinos, Efthymios; Chaer, Rabih A


    Contrast-enhanced ultrasound (CEUS) imaging is a powerful noninvasive modality offering numerous potential diagnostic and therapeutic applications in vascular medicine. CEUS imaging uses microbubble contrast agents composed of an encapsulating shell surrounding a gaseous core. These microbubbles act as nearly perfect intravascular reflectors of ultrasound energy and may be used to enhance the overall contrast and quality of ultrasound images. The purpose of this narrative review is to survey the current literature regarding CEUS imaging and discuss its diagnostic and therapeutic roles in current vascular and selected nonvascular applications. The PubMed, MEDLINE, and Embase databases were searched until July 2016 using the PubMed and Ovid Web-based search engines. The search terms used included contrast-enhanced, microbubble, ultrasound, carotid, aneurysm, and arterial. The diagnostic and therapeutic utility of CEUS imaging has grown exponentially, particularly in the realms of extracranial carotid arterial disease, aortic disease, and peripheral arterial disease. Studies have demonstrated that CEUS imaging is diagnostically superior to conventional ultrasound imaging in identifying vessel irregularities and measuring neovascularization to assess plaque vulnerability and end-muscle perfusion. Groups have begun to use microbubbles as agents in therapeutic applications for targeted drug and gene therapy delivery as well as for the enhancement of sonothrombolysis. The emerging technology of microbubbles and CEUS imaging holds considerable promise for cardiovascular medicine and cancer therapy given its diagnostic and therapeutic utility. Overall, with proper training and credentialing of technicians, the clinical implications are innumerable as microbubble technology is rapidly bursting onto the scene of cardiovascular medicine. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  9. Uncooled LWIR imaging: applications and market analysis (United States)

    Takasawa, Satomi


    The evolution of infrared (IR) imaging sensor technology for defense market has played an important role in developing commercial market, as dual use of the technology has expanded. In particular, technologies of both reduction in pixel pitch and vacuum package have drastically evolved in the area of uncooled Long-Wave IR (LWIR; 8-14 μm wavelength region) imaging sensor, increasing opportunity to create new applications. From the macroscopic point of view, the uncooled LWIR imaging market is divided into two areas. One is a high-end market where uncooled LWIR imaging sensor with sensitivity as close to that of cooled one as possible is required, while the other is a low-end market which is promoted by miniaturization and reduction in price. Especially, in the latter case, approaches towards consumer market have recently appeared, such as applications of uncooled LWIR imaging sensors to night visions for automobiles and smart phones. The appearance of such a kind of commodity surely changes existing business models. Further technological innovation is necessary for creating consumer market, and there will be a room for other companies treating components and materials such as lens materials and getter materials and so on to enter into the consumer market.

  10. Stellar Source Selections for Image Validation of Earth Observation Satellite

    Directory of Open Access Journals (Sweden)

    Jiwoong Yu


    Full Text Available A method of stellar source selection for validating the quality of image is investigated for a low Earth orbit optical remote sensing satellite. Image performance of the optical payload needs to be validated after its launch into orbit. The stellar sources are ideal source points that can be used to validate the quality of optical images. For the image validation, stellar sources should be the brightest as possible in the charge-coupled device dynamic range. The time delayed and integration technique, which is used to observe the ground, is also performed to observe the selected stars. The relations between the incident radiance at aperture and V magnitude of a star are established using Gunn & Stryker's star catalogue of spectrum. Applying this result, an appropriate image performance index is determined, and suitable stars and areas of the sky scene are selected for the optical payload on a remote sensing satellite to observe. The result of this research can be utilized to validate the quality of optical payload of a satellite in orbit.

  11. 34 CFR 668.54 - Selection of applications for verification. (United States)


    ... POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION STUDENT ASSISTANCE GENERAL PROVISIONS Verification of Student Aid Application Information § 668.54 Selection of applications for verification. (a) General... 34 Education 3 2010-07-01 2010-07-01 false Selection of applications for verification. 668.54...

  12. 10 CFR 602.9 - Application evaluation and selection. (United States)


    ... 10 Energy 4 2010-01-01 2010-01-01 false Application evaluation and selection. 602.9 Section 602.9... FINANCIAL ASSISTANCE PROGRAM § 602.9 Application evaluation and selection. (a) Applications shall be... method or approach; (3) Competency of research personnel and adequacy of proposed resources; (4...

  13. 10 CFR 605.10 - Application evaluation and selection. (United States)


    ... 10 Energy 4 2010-01-01 2010-01-01 false Application evaluation and selection. 605.10 Section 605... FINANCIAL ASSISTANCE PROGRAM § 605.10 Application evaluation and selection. (a) Applications shall be... benefits of the project; (2) Appropriateness of the proposed method or approach; (3) Competency of...

  14. Feature Selection for Image Retrieval based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Preeti Kushwaha


    Full Text Available This paper describes the development and implementation of feature selection for content based image retrieval. We are working on CBIR system with new efficient technique. In this system, we use multi feature extraction such as colour, texture and shape. The three techniques are used for feature extraction such as colour moment, gray level co- occurrence matrix and edge histogram descriptor. To reduce curse of dimensionality and find best optimal features from feature set using feature selection based on genetic algorithm. These features are divided into similar image classes using clustering for fast retrieval and improve the execution time. Clustering technique is done by k-means algorithm. The experimental result shows feature selection using GA reduces the time for retrieval and also increases the retrieval precision, thus it gives better and faster results as compared to normal image retrieval system. The result also shows precision and recall of proposed approach compared to previous approach for each image class. The CBIR system is more efficient and better performs using feature selection based on Genetic Algorithm.

  15. Biomedical Applications of Terahertz Spectroscopy and Imaging. (United States)

    Yang, Xiang; Zhao, Xiang; Yang, Ke; Liu, Yueping; Liu, Yu; Fu, Weiling; Luo, Yang


    Terahertz (THz=10(12)Hz) radiation has attracted wide attention for its unprecedented sensing ability and its noninvasive and nonionizing properties. Tremendous strides in THz instrumentation have prompted impressive breakthroughs in THz biomedical research. Here, we review the current state of THz spectroscopy and imaging in various biomedical applications ranging from biomolecules, including DNA/RNA, amino acids/peptides, proteins, and carbohydrates, to cells and tissues. We also address the potential biological effects of THz radiation during its biological applications and propose future prospects for this cutting-edge technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Pharmaceutical applications of non-linear imaging. (United States)

    Strachan, Clare J; Windbergs, Maike; Offerhaus, Herman L


    Non-linear optics encompasses a range of optical phenomena, including two- and three-photon fluorescence, second harmonic generation (SHG), sum frequency generation (SFG), difference frequency generation (DFG), third harmonic generation (THG), coherent anti-Stokes Raman scattering (CARS), and stimulated Raman scattering (SRS). The combined advantages of using these phenomena for imaging complex pharmaceutical systems include chemical and structural specificities, high optical spatial and temporal resolutions, no requirement for labels, and the ability to image in an aqueous environment. These features make such imaging well suited for a wide range of pharmaceutical and biopharmaceutical investigations, including material and dosage form characterisation, dosage form digestion and drug release, and drug and nanoparticle distribution in tissues and within live cells. In this review, non-linear optical phenomena used in imaging will be introduced, together with their advantages and disadvantages in the pharmaceutical context. Research on pharmaceutical and biopharmaceutical applications is discussed, and potential future applications of the technology are considered. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Parallelism and Scalability in an Image Processing Application

    DEFF Research Database (Denmark)

    Rasmussen, Morten Sleth; Stuart, Matthias Bo; Karlsson, Sven


    parallel programs. This paper investigates parallelism and scalability of an embedded image processing application. The major challenges faced when parallelizing the application were to extract enough parallelism from the application and to reduce load imbalance. The application has limited immediately...

  18. Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves

    Directory of Open Access Journals (Sweden)

    Jie Hui


    Full Text Available The quantized vibration of chemical bonds provides a way of detecting specific molecules in a complex tissue environment. Unlike pure optical methods, for which imaging depth is limited to a few hundred micrometers by significant optical scattering, photoacoustic detection of vibrational absorption breaks through the optical diffusion limit by taking advantage of diffused photons and weak acoustic scattering. Key features of this method include both high scalability of imaging depth from a few millimeters to a few centimeters and chemical bond selectivity as a novel contrast mechanism for photoacoustic imaging. Its biomedical applications spans detection of white matter loss and regeneration, assessment of breast tumor margins, and diagnosis of vulnerable atherosclerotic plaques. This review provides an overview of the recent advances made in vibration-based photoacoustic imaging and various biomedical applications enabled by this new technology.

  19. Imaging brain microstructure with diffusion MRI: practicality and applications. (United States)

    Alexander, Daniel C; Dyrby, Tim B; Nilsson, Markus; Zhang, Hui


    This article gives an overview of microstructure imaging of the brain with diffusion MRI and reviews the state of the art. The microstructure-imaging paradigm aims to estimate and map microscopic properties of tissue using a model that links these properties to the voxel scale MR signal. Imaging techniques of this type are just starting to make the transition from the technical research domain to wide application in biomedical studies. We focus here on the practicalities of both implementing such techniques and using them in applications. Specifically, the article summarizes the relevant aspects of brain microanatomy and the range of diffusion-weighted MR measurements that provide sensitivity to them. It then reviews the evolution of mathematical and computational models that relate the diffusion MR signal to brain tissue microstructure, as well as the expanding areas of application. Next we focus on practicalities of designing a working microstructure imaging technique: model selection, experiment design, parameter estimation, validation, and the pipeline of development of this class of technique. The article concludes with some future perspectives on opportunities in this topic and expectations on how the field will evolve in the short-to-medium term. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Improvements in Sample Selection Methods for Image Classification

    Directory of Open Access Journals (Sweden)

    Thales Sehn Körting


    Full Text Available Traditional image classification algorithms are mainly divided into unsupervised and supervised paradigms. In the first paradigm, algorithms are designed to automatically estimate the classes’ distributions in the feature space. The second paradigm depends on the knowledge of a domain expert to identify representative examples from the image to be used for estimating the classification model. Recent improvements in human-computer interaction (HCI enable the construction of more intuitive graphic user interfaces (GUIs to help users obtain desired results. In remote sensing image classification, GUIs still need advancements. In this work, we describe our efforts to develop an improved GUI for selecting the representative samples needed to estimate the classification model. The idea is to identify changes in the common strategies for sample selection to create a user-driven sample selection, which focuses on different views of each sample, and to help domain experts identify explicit classification rules, which is a well-established technique in geographic object-based image analysis (GEOBIA. We also propose the use of the well-known nearest neighbor algorithm to identify similar samples and accelerate the classification.

  1. Investigating Mental Status and Body Image in Cosmetic Surgery Applicants in Comparison with Non-applicants

    Directory of Open Access Journals (Sweden)

    Z Khanjani


    Full Text Available Introduction: Today revising and rethinking of the appearance and eliminating its flaws, real or imaginary, through cosmetic surgery is the main concern of some individuals. This study was conducted in order to compare the body image, depression and anxiety disorders between applicants of cosmetic surgery and non-applicants. Methods: The present study is of cause–comparison type. Cosmetic surgery applicants involved 62 participants who were selected by available sampling from those who referred to specialized centers for cosmetic surgery in Urumia during a three-month period; the non-applicants were homogenized with applicants regarding their age, gender, and level of education who were selected from the applicants’ relatives. So the study subjects were 124 individuals. Data were collected via a questionnaire about demographic characteristics, SCL-90-R and PSDQ questionnaires. The data were submitted to SPSS (ver. 16 and were analyzed using descriptive statistics, multivariable analysis of variance (MANOVA, and t-test. Results: Results showed that there is a significant difference between applicants for cosmetic surgery and non-applicants in regard to body image, depression and anxiety disorders. Conclusion: Like other medical specialties, cosmetic surgical interventions should undergo precise clinical trial before exerting on the patients. Therefore, Assessment and encouraging patients to refer to psychiatrists and consultants before operation is significant.

  2. Medical applications of digital image morphing. (United States)

    Penska, Keith; Folio, Les; Bunger, Rolf


    The authors present a unique medical technical application for illustrating the success and/or failure of the physiological healing process as a dynamically morphed video. Two examples used in this report include the healing of a severely fractured humerus from an explosion in Iraq and the other of dramatic tissue destruction from a poisonous spider bite. For the humerus, several sequential x-rays obtained throughout orthopedic surgical procedures and the healing process were morphed together representing a time-lapsed video of the healing process. The end result is a video that demonstrates the healing process in an animation that radiologists envision and report to other clinicians. For the brown recluse spider bite, a seemingly benign skin lesion transforms into a wide gaping necrotic wound with dramatic appearance within days. This novel technique is not presented for readily apparent clinical advantage, rather, it may have more immediate application in providing treatment options to referring providers and/or patients, as well as educational value of healing or disease progression over time. Image morphing is one of those innovations that is just starting to come into its own. Morphing is an image processing technology that transforms one image into another by generating a series of intermediate synthetic images. It is the same process that Hollywood uses to turn people into animals in movies, for example. The ability to perform morphing, once restricted to high-end graphics workstations, is now widely available for desktop computers. The authors describe how a series of radiographic images were morphed into a short movie clip using readily available software and an average laptop. The resultant video showed the healing process of an open comminuted humerus fracture that helped demonstrate how amazingly the human body heals in a case presentation in a time-lapse fashion.

  3. Application of UV Imaging in Formulation Development. (United States)

    Sun, Yu; Østergaard, Jesper


    Efficient drug delivery is dependent on the drug substance dissolving in the body fluids, being released from dosage forms and transported to the site of action. A fundamental understanding of the interplay between the physicochemical properties of the active compound and pharmaceutical excipients defining formulation behavior after exposure to the aqueous environments and pharmaceutical performance is critical in pharmaceutical development, manufacturing and quality control of drugs. UV imaging has been explored as a tool for qualitative and quantitative characterization of drug dissolution and release with the characteristic feature of providing real-time visualization of the solution phase drug transport in the vicinity of the formulation. Events occurring during drug dissolution and release, such as polymer swelling, drug precipitation/recrystallization, or solvent-mediated phase transitions related to the structural properties of the drug substance or formulation can be monitored. UV imaging is a non-intrusive and simple-to-operate analytical technique which holds potential for providing a mechanistic foundation for formulation development. This review aims to cover applications of UV imaging in the early and late phase pharmaceutical development with a special focus on the relation between structural properties and performance. Potential areas of future advancement and application are also discussed.

  4. Pyrrole-coupled salicylimine-based fluorescence "turn on" probe for highly selective recognition of Zn²⁺ ions in mixed aqueous media: Application in living cell imaging. (United States)

    Bhosale, Jitendra; Fegade, Umesh; Bondhopadhyay, Banashree; Kaur, Simanpreet; Singh, Narinder; Basu, Anupam; Dabur, Rajesh; Bendre, Ratnamala; Kuwar, Anil


    Cation sensing behaviour of a pyrrole-based derivative (2-hydroxyl 3 methyl 6 isopropyl benzaldehyde}-3,4-dimethyl-1H-pyrrole-2-carbohydrazide (receptor 3) has been explored and is found to be selective towards Zn(2+) over a variety of tested cations. The receptor 3 has shown high selectivity and sensitivity towards Zn(2+) over the other alkali, alkaline earth and transition metal ions. In the presence of Zn(2+), absorption band of receptor 3 has shown the red shift. The sensing behaviour has been suggested to continue via enhancement process which has further been supported by UV-vis absorption and theoretical density functional theory (DFT) calculations indicating the formation of a 1:1 complex between the pyrrole based receptor 3 and Zn(2+). The present work is presenting a highly selective dual channel colorimetric sensor for zinc with great sensitivity. The developed sensor was successfully applied to image intracellular Zn(2+) in living cells. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Applications of scientific imaging in environmental toxicology (United States)

    El-Demerdash, Aref M.

    The national goals of clean air, clean water, and healthy ecosystems are a few of the primary forces that drive the need for better environmental monitoring. As we approach the end of the 1990s, the environmental questions at regional to global scales are being redefined and refined in the light of developments in environmental understanding and technological capability. Research in the use of scientific imaging data for the study of the environment is urgently needed in order to explore the possibilities of utilizing emerging new technologies. The objective of this research proposal is to demonstrate the usability of a wealth of new technology made available in the last decade to providing a better understanding of environmental problems. Research is focused in two imaging techniques macro and micro imaging. Several examples of applications of scientific imaging in research in the field of environmental toxicology were presented. This was achieved on two scales, micro and macro imaging. On the micro level four specific examples were covered. First, the effect of utilizing scanning electron microscopy as an imaging tool in enhancing taxa identification when studying diatoms was presented. Second, scanning electron microscopy combined with energy dispersive x-ray analyzer were demonstrated as a valuable and effective tool for identifying and analyzing household dust samples. Third, electronic autoradiography combined with FT-IR microscopy were used to study the distribution pattern of [14C]-Malathion in rats as a result of dermal exposure. The results of the autoradiography made on skin sections of the application site revealed the presence of [ 14C]-activity in the first region of the skin. These results were evidenced by FT-IR microscopy. The obtained results suggest that the penetration of Malathion into the skin and other tissues is vehicle and dose dependent. The results also suggest the use of FT-IR microscopy imaging for monitoring the disposition of

  6. Energy-selective neutron transmission imaging at a pulsed source (United States)

    Kockelmann, W.; Frei, G.; Lehmann, E. H.; Vontobel, P.; Santisteban, J. R.


    Energy-selective neutron radiography experiments were carried out at the ISIS pulsed spallation source. This neutron transmission imaging technique combines the hardware used for conventional neutron radiography with the Bragg edge transmission features of time-of-flight methods. The main component of the energy-selective radiography set-up was a gated image-intensified CCD camera that viewed a neutron sensitive scintillation screen via a mirror. Energy resolution was obtained via synchronization of the light-intensifier with the pulse structure of the neutron source. It is demonstrated that contrast enhancement of materials can be straightforwardly achieved, and that microstructural features in metal samples can be directly visualized with high spatial resolution by taking advantage of the Bragg edges in the energy dependent neutron cross sections.

  7. Clinical applications of cardiovascular magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Marcu, C.B.; Beek, A.M.; Van Rossum, A.C. [Hospital of Saint Raphael, Cardiac Diagnostic Unit, New Haven, CT (United States)], E-mail:


    Cardiovascular magnetic resonance imaging (MRI) has evolved from an effective research tool into a clinically proven, safe and comprehensive imaging modality. It provides anatomic and functional information in acquired and congenital heart disease and is the most precise technique for quantification of ventricular volumes, function and mass. Owing to its excellent interstudy reproducibility, cardiovascular MRI is the optimal method for assessment of changes in ventricular parameters after therapeutic intervention. Delayed contrast enhancement is an accurate and robust method used in the diagnosis of ischemic and nonischemic cardiomyopathies and less common diseases, such as cardiac sarcoidosis and myocarditis. First-pass magnetic contrast myocardial perfusion is becoming an alternative to radionuclide techniques for the detection of coronary atherosclerotic disease. In this review we outline the techniques used in cardiovascular MRI and discuss the most common clinical applications. (author)

  8. 38 CFR 61.14 - Selecting applications for capital grants. (United States)


    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Selecting applications for capital grants. 61.14 Section 61.14 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) VA HOMELESS PROVIDERS GRANT AND PER DIEM PROGRAM § 61.14 Selecting applications for...

  9. Effective feature selection for image steganalysis using extreme learning machine (United States)

    Feng, Guorui; Zhang, Haiyan; Zhang, Xinpeng


    Image steganography delivers secret data by slight modifications of the cover. To detect these data, steganalysis tries to create some features to embody the discrepancy between the cover and steganographic images. Therefore, the urgent problem is how to design an effective classification architecture for given feature vectors extracted from the images. We propose an approach to automatically select effective features based on the well-known JPEG steganographic methods. This approach, referred to as extreme learning machine revisited feature selection (ELM-RFS), can tune input weights in terms of the importance of input features. This idea is derived from cross-validation learning and one-dimensional (1-D) search. While updating input weights, we seek the energy decreasing direction using the leave-one-out (LOO) selection. Furthermore, we optimize the 1-D energy function instead of directly discarding the least significant feature. Since recent Liu features can gain considerable low detection errors compared to a previous JPEG steganalysis, the experimental results demonstrate that the new approach results in less classification error than other classifiers such as SVM, Kodovsky ensemble classifier, direct ELM-LOO learning, kernel ELM, and conventional ELM in Liu features. Furthermore, ELM-RFS achieves a similar performance with a deep Boltzmann machine using less training time.

  10. Feature selection from hyperspectral imaging for guava fruit defects detection (United States)

    Mat Jafri, Mohd. Zubir; Tan, Sou Ching


    Development of technology makes hyperspectral imaging commonly used for defect detection. In this research, a hyperspectral imaging system was setup in lab to target for guava fruits defect detection. Guava fruit was selected as the object as to our knowledge, there is fewer attempts were made for guava defect detection based on hyperspectral imaging. The common fluorescent light source was used to represent the uncontrolled lighting condition in lab and analysis was carried out in a specific wavelength range due to inefficiency of this particular light source. Based on the data, the reflectance intensity of this specific setup could be categorized in two groups. Sequential feature selection with linear discriminant (LD) and quadratic discriminant (QD) function were used to select features that could potentially be used in defects detection. Besides the ordinary training method, training dataset in discriminant was separated in two to cater for the uncontrolled lighting condition. These two parts were separated based on the brighter and dimmer area. Four evaluation matrixes were evaluated which are LD with common training method, QD with common training method, LD with two part training method and QD with two part training method. These evaluation matrixes were evaluated using F1-score with total 48 defected areas. Experiment shown that F1-score of linear discriminant with the compensated method hitting 0.8 score, which is the highest score among all.

  11. Mouse Hepatic Tumor Vascular Imaging by Experimental Selective Angiography.

    Directory of Open Access Journals (Sweden)

    Sang Kyum Kim

    Full Text Available Human hepatocellular carcinoma (HCC has unique vascular features, which require selective imaging of hepatic arterial perfusion and portal venous perfusion with vascular catheterization for sufficient evaluation. Unlike in humans, vessels in mice are too small to catheterize, and the importance of separately imaging the feeding vessels of tumors is frequently overlooked in hepatic tumor models. The purpose of this study was to perform selective latex angiography in several mouse liver tumor models and assess their suitability.In several ectopic (Lewis lung carcinoma, B16/F10 melanoma cell lines and spontaneous liver tumor (Albumin-Cre/MST1fl/fl/MST2fl/fl, Albumin-Cre/WW45fl/fl, and H-ras12V genetically modified mouse models, the heart left ventricle and/or main portal vein of mice was punctured, and latex dye was infused to achieve selective latex arteriography and/or portography.H-ras12V transgenic mice (a HCC and hepatic adenoma model developed multiple liver nodules that displayed three different perfusion patterns (portal venous or hepatic artery perfusion predominant, mixed perfusion, indicating intra-tumoral vascular heterogeneity. Selective latex angiography revealed that the Lewis lung carcinoma implant model and the Albumin-Cre/WW45fl/fl model reproduced conventional angiography findings of human HCC. Specifically, these mice developed tumors with abundant feeding arteries but no portal venous perfusion.Different hepatic tumor models showed different tumor vessel characteristics that influence the suitability of the model and that should be considered when designing translational experiments. Selective latex angiography applied to certain mouse tumor models (both ectopic and spontaneous closely simulated typical characteristics of human HCC vascular imaging.

  12. Threshold selection for classification of MR brain images by clustering method

    Energy Technology Data Exchange (ETDEWEB)

    Moldovanu, Simona [Faculty of Sciences and Environment, Department of Chemistry, Physics and Environment, Dunărea de Jos University of Galaţi, 47 Domnească St., 800008, Romania, Phone: +40 236 460 780 (Romania); Dumitru Moţoc High School, 15 Milcov St., 800509, Galaţi (Romania); Obreja, Cristian; Moraru, Luminita, E-mail: [Faculty of Sciences and Environment, Department of Chemistry, Physics and Environment, Dunărea de Jos University of Galaţi, 47 Domnească St., 800008, Romania, Phone: +40 236 460 780 (Romania)


    Given a grey-intensity image, our method detects the optimal threshold for a suitable binarization of MR brain images. In MR brain image processing, the grey levels of pixels belonging to the object are not substantially different from the grey levels belonging to the background. Threshold optimization is an effective tool to separate objects from the background and further, in classification applications. This paper gives a detailed investigation on the selection of thresholds. Our method does not use the well-known method for binarization. Instead, we perform a simple threshold optimization which, in turn, will allow the best classification of the analyzed images into healthy and multiple sclerosis disease. The dissimilarity (or the distance between classes) has been established using the clustering method based on dendrograms. We tested our method using two classes of images: the first consists of 20 T2-weighted and 20 proton density PD-weighted scans from two healthy subjects and from two patients with multiple sclerosis. For each image and for each threshold, the number of the white pixels (or the area of white objects in binary image) has been determined. These pixel numbers represent the objects in clustering operation. The following optimum threshold values are obtained, T = 80 for PD images and T = 30 for T2w images. Each mentioned threshold separate clearly the clusters that belonging of the studied groups, healthy patient and multiple sclerosis disease.

  13. Slice selection and T1 contrast in FLASH NMR imaging (United States)

    Hänicke, Wolfgang; Merboldt, Klaus-Dietmar; Frahm, Jens

    This paper describes the signal intensity in rapid FLASH NMR imaging as a function of the repetition time, the NMR relaxation times, the flip angle, and the shape of the tailored RF pulses used for slice selection. In the absence or after elimination of signal contributions from transverse coherences the theoretical treatment may be confined to a steady state of the longitudinal magnetization. It turns out that deviations from a rectangular excitation profile due to imperfect pulse shapes strongly alter both the dynamic approach to steady-state conditions and the resulting saturation behavior as expected from theoretical expressions. As a consequence the signal-to-noise and image contrast become dependent on the actual slice profile. In T1 images calculated from series of FLASH images with different flip angles or repetition times qualitative relations between tissues with different T1 values are borne out correctly, whereas the accuracy of T1 relaxation times may not be satisfactory. No restrictions are expected for 3D imaging using a spatially homogeneous RF excitation. Experiments have been carried out on phantoms and human volunteers using a Bruker 2.35 T 40 cm NMR system.

  14. Optical Imaging of the Breast: Basic Principles and Clinical Applications. (United States)

    Di Leo, Giovanni; Trimboli, Rubina Manuela; Sella, Tamar; Sardanelli, Francesco


    The objective of this article is to summarize the physical principles, technology features, and first clinical applications of optical imaging techniques to the breast. Light-breast tissue interaction is expressed as absorption and scattering coefficients, allowing image reconstruction based on endogenous or exogenous contrast. Diffuse optical spectroscopy and imaging, fluorescence molecular tomography, photoacoustic imaging, and multiparametric infrared imaging show potential for clinical application, especially for lesion characterization, estimation of cancer probability, and monitoring the effect of neoadjuvant therapy.

  15. Electric Potential and Electric Field Imaging with Dynamic Applications & Extensions (United States)

    Generazio, Ed


    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field made be used for volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. Extensions to environment, Space and subterranean applications will be presented, and initial results for quantitative characterizing material properties are shown. A wearable EFI system has been developed by using fundamental EFI concepts. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, manufacturing quality control, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of

  16. A Selective Ensemble Classification Method Combining Mammography Images with Ultrasound Images for Breast Cancer Diagnosis

    Directory of Open Access Journals (Sweden)

    Jinyu Cong


    Full Text Available Breast cancer has been one of the main diseases that threatens women’s life. Early detection and diagnosis of breast cancer play an important role in reducing mortality of breast cancer. In this paper, we propose a selective ensemble method integrated with the KNN, SVM, and Naive Bayes to diagnose the breast cancer combining ultrasound images with mammography images. Our experimental results have shown that the selective classification method with an accuracy of 88.73% and sensitivity of 97.06% is efficient for breast cancer diagnosis. And indicator R presents a new way to choose the base classifier for ensemble learning.

  17. Automatic segmentation of brain images: selection of region extraction methods (United States)

    Gong, Leiguang; Kulikowski, Casimir A.; Mezrich, Reuben S.


    In automatically analyzing brain structures from a MR image, the choice of low level region extraction methods depends on the characteristics of both the target object and the surrounding anatomical structures in the image. The authors have experimented with local thresholding, global thresholding, and other techniques, using various types of MR images for extracting the major brian landmarks and different types of lesions. This paper describes specifically a local- binary thresholding method and a new global-multiple thresholding technique developed for MR image segmentation and analysis. The initial testing results on their segmentation performance are presented, followed by a comparative analysis of the two methods and their ability to extract different types of normal and abnormal brain structures -- the brain matter itself, tumors, regions of edema surrounding lesions, multiple sclerosis lesions, and the ventricles of the brain. The analysis and experimental results show that the global multiple thresholding techniques are more than adequate for extracting regions that correspond to the major brian structures, while local binary thresholding is helpful for more accurate delineation of small lesions such as those produced by MS, and for the precise refinement of lesion boundaries. The detection of other landmarks, such as the interhemispheric fissure, may require other techniques, such as line-fitting. These experiments have led to the formulation of a set of generic computer-based rules for selecting the appropriate segmentation packages for particular types of problems, based on which further development of an innovative knowledge- based, goal directed biomedical image analysis framework is being made. The system will carry out the selection automatically for a given specific analysis task.

  18. Educational facilities: classification, selection and application

    Directory of Open Access Journals (Sweden)

    Bárbara Antonia Romeu-Chelssen


    Full Text Available Right now always spoken of teaching aids you look at those related to the use of Information Technology and Communication, it is appropriate to reflect that allows place all teaching resources within a category and assign a role in different learning situations with the help of them can be made. With this article a classification of all teaching aids, selection criteria based communication systems through them are represented and some conditions as to its use is proposed.

  19. Automatic spectral imaging protocol selection and iterative reconstruction in abdominal CT with reduced contrast agent dose: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Peijie; Liu, Jie; Chai, Yaru; Yan, Xiaopeng; Gao, Jianbo; Dong, Junqiang [The First Affiliated Hospital of Zhengzhou University, Department of Radiology, Zhengzhou, Henan Province (China)


    To evaluate the feasibility, image quality, and radiation dose of automatic spectral imaging protocol selection (ASIS) and adaptive statistical iterative reconstruction (ASIR) with reduced contrast agent dose in abdominal multiphase CT. One hundred and sixty patients were randomly divided into two scan protocols (n = 80) each; protocol A, 120 kVp/450 mgI/kg, filtered back projection algorithm (FBP); protocol B, spectral CT imaging with ASIS and 40 to 70 keV monochromatic images generated per 300 mgI/kg, ASIR algorithm. Quantitative parameters (image noise and contrast-to-noise ratios [CNRs]) and qualitative visual parameters (image noise, small structures, organ enhancement, and overall image quality) were compared. Monochromatic images at 50 keV and 60 keV provided similar or lower image noise, but higher contrast and overall image quality as compared with 120-kVp images. Despite the higher image noise, 40-keV images showed similar overall image quality compared to 120-kVp images. Radiation dose did not differ between the two protocols, while contrast agent dose in protocol B was reduced by 33 %. Application of ASIR and ASIS to monochromatic imaging from 40 to 60 keV allowed contrast agent dose reduction with adequate image quality and without increasing radiation dose compared to 120 kVp with FBP. (orig.)

  20. Selected annotated bibliographies for adaptive filtering of digital image data (United States)

    Mayers, Margaret; Wood, Lynnette


    is organized in subsections based on application areas. Contrast enhancement, edge enhancement, noise suppression, and smoothing are typically performed in order imaging process, (for example, degradations due to the optics and electronics of the sensor, or to blurring caused by the intervening atmosphere, uniform motion, or defocused optics). Some of the papers listed may apply to more than one of the above categories; when this happens the paper is listed under the category for which the paper's emphasis is greatest. A list of survey articles is also supplied. These articles are general discussions on adaptive filters and reviews of work done. Finally, a short list of miscellaneous articles are listed which were felt to be sufficiently important to be included, but do not fit into any of the above categories. This bibliography, listing items published from 1970 through 1987, is extensive, but by no means complete. It is intended as a guide for scientists and image analysts, listing references for background information as well as areas of significant development in adaptive filtering.

  1. Selective Detection of Neurotransmitters by Fluorescence and Chemiluminescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ziqiang Wang; Edward S. Yeung


    In recent years, luminescence imaging has been widely employed in neurochemical analysis. It has a number of advantages for the study of neuronal and other biological cells: (1) a particular molecular species or cellular constituent can be selectively visualized in the presence of a large excess of other species in a heterogeneous environment; (2) low concentration detection limits can be achieved because of the inherent sensitivity associated with fluorescence and chemiluminescence; (3) low excitation intensities can be used so that long-term observation can be realized while the viability of the specimen is preserved; and (4) excellent spatial resolution can be obtained with the light microscope so subcellular compartments can be identified. With good sensitivity, temporal and spatial resolution, the flux of ions and molecules and the distribution and dynamics of intracellular species can be measured in real time with specific luminescence probes, substrates, or with native fluorescence. A noninvasive detection scheme based on glutamate dehydrogenase (GDH) enzymatic assay combined with microscopy was developed to measure the glutamate release in cultured cells from the central nervous system (CNS). The enzyme reaction is very specific and sensitive. The detection limit with CCD imaging is down to {micro}M levels of glutamate with reasonable response time. They also found that chemiluminescence associated with the ATP-dependent reaction between luciferase and luciferin can be used to image ATP at levels down to 10 nM in the millisecond time scale. Similar imaging experiments should be feasible in a broad spectrum of biological systems.

  2. Computational Phase Imaging for Biomedical Applications (United States)

    Nguyen, Tan Huu

    laser comes at the expense of speckles, which degrades image quality. Therefore, solutions purely based on physical modeling and computations to remove these artifacts, using white-light illumination, are highly desirable. Here, using physical optics, we develop a theoretical model that accurately explains the effects of partial coherence on image information and phase information. The model is further combined with numerical processing to suppress the artifacts, and recover the correct phase information. The third topic is devoted to applying QPI to clinical applications. Traditionally, stained tissues are used in prostate cancer diagnosis instead. The reason is that tissue samples used in diagnosis are nearly transparent under bright field inspection if unstained. Contrast-enhanced microscopy techniques, e.g., phase contrast microscopy (PC) and differential interference contrast microscopy (DIC), can render visibility of the untagged samples with high throughput. However, since these methods are intensity-based, the contrast of acquired images varies significantly from one imaging facility to another, preventing them from being used in diagnosis. Inheriting the merits of PC, SLIM produces phase maps, which measure the refractive index of label-free samples. However, the maps measured by SLIM are not affected by variation in imaging conditions, e.g., illumination, magnification, etc., allowing consistent imaging results when using SLIM across different clinical institutions. Here, we combine SLIM images with machine learning for automatic diagnosis results for prostate cancer. We focus on two diagnosis problems of automatic Gleason grading and cancer vs. non-cancer diagnosis. Finally, we introduce a new imaging modality, named Gradient Light Interference Microscopy (GLIM), which is able to image through optically thick samples using low spatial coherence illumination. The key benefit of GLIM comes from a large numerical aperture of the condenser, which is 0.55 NA

  3. Near-infrared spectroscopic tissue imaging for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Demos; Stavros (Livermore, CA), Staggs; Michael C. (Tracy, CA)


    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  4. Near-infrared spectroscopic tissue imaging for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Demos, Stavros (Livermore, CA); Staggs, Michael C. (Tracy, CA)


    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  5. Electric Potential and Electric Field Imaging with Applications (United States)

    Generazio, Ed


    The technology and techniques for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for (illuminating) volumes to be inspected with EFI. The baseline sensor technology, electric field sensor (e-sensor), and its construction, optional electric field generation (quasistatic generator), and current e-sensor enhancements (ephemeral e-sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution, creating a new field of study that embraces areas of interest including electrostatic discharge mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, inspection of containers, inspection for hidden objects, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  6. Application of Image Analysis in Optical Microscopy of Ordinary Chondrites (United States)

    Petrova, E. V.; Petrov, M. S.; Grokhovsky, V. I.


    Application of image analysis systems give additional possibilities for estimation, calculation and comparison of optical microscopic images. Different parameters of the texture (phase distribution, porosity, grains shape parameters) can be obtained.

  7. Hyperspectral image classification based on NMF Features Selection Method (United States)

    Abe, Bolanle T.; Jordaan, J. A.


    Hyperspectral instruments are capable of collecting hundreds of images corresponding to wavelength channels for the same area on the earth surface. Due to the huge number of features (bands) in hyperspectral imagery, land cover classification procedures are computationally expensive and pose a problem known as the curse of dimensionality. In addition, higher correlation among contiguous bands increases the redundancy within the bands. Hence, dimension reduction of hyperspectral data is very crucial so as to obtain good classification accuracy results. This paper presents a new feature selection technique. Non-negative Matrix Factorization (NMF) algorithm is proposed to obtain reduced relevant features in the input domain of each class label. This aimed to reduce classification error and dimensionality of classification challenges. Indiana pines of the Northwest Indiana dataset is used to evaluate the performance of the proposed method through experiments of features selection and classification. The Waikato Environment for Knowledge Analysis (WEKA) data mining framework is selected as a tool to implement the classification using Support Vector Machines and Neural Network. The selected features subsets are subjected to land cover classification to investigate the performance of the classifiers and how the features size affects classification accuracy. Results obtained shows that performances of the classifiers are significant. The study makes a positive contribution to the problems of hyperspectral imagery by exploring NMF, SVMs and NN to improve classification accuracy. The performances of the classifiers are valuable for decision maker to consider tradeoffs in method accuracy versus method complexity.

  8. Single-particle imaging for biosensor applications (United States)

    Yorulmaz, Mustafa; Isil, Cagatay; Seymour, Elif; Yurdakul, Celalettin; Solmaz, Berkan; Koc, Aykut; Ünlü, M. Selim


    Current state-of-the-art technology for in-vitro diagnostics employ laboratory tests such as ELISA that consists of a multi-step test procedure and give results in analog format. Results of these tests are interpreted by the color change in a set of diluted samples in a multi-well plate. However, detection of the minute changes in the color poses challenges and can lead to false interpretations. Instead, a technique that allows individual counting of specific binding events would be useful to overcome such challenges. Digital imaging has been applied recently for diagnostics applications. SPR is one of the techniques allowing quantitative measurements. However, the limit of detection in this technique is on the order of nM. The current required detection limit, which is already achieved with the analog techniques, is around pM. Optical techniques that are simple to implement and can offer better sensitivities have great potential to be used in medical diagnostics. Interference Microscopy is one of the tools that have been investigated over years in optics field. More of the studies have been performed in confocal geometry and each individual nanoparticle was observed separately. Here, we achieve wide-field imaging of individual nanoparticles in a large field-of-view ( 166 μm × 250 μm) on a micro-array based sensor chip in fraction of a second. We tested the sensitivity of our technique on dielectric nanoparticles because they exhibit optical properties similar to viruses and cells. We can detect non-resonant dielectric polystyrene nanoparticles of 100 nm. Moreover, we perform post-processing applications to further enhance visibility.

  9. High Throughput Multispectral Image Processing with Applications in Food Science. (United States)

    Tsakanikas, Panagiotis; Pavlidis, Dimitris; Nychas, George-John


    Recently, machine vision is gaining attention in food science as well as in food industry concerning food quality assessment and monitoring. Into the framework of implementation of Process Analytical Technology (PAT) in the food industry, image processing can be used not only in estimation and even prediction of food quality but also in detection of adulteration. Towards these applications on food science, we present here a novel methodology for automated image analysis of several kinds of food products e.g. meat, vanilla crème and table olives, so as to increase objectivity, data reproducibility, low cost information extraction and faster quality assessment, without human intervention. Image processing's outcome will be propagated to the downstream analysis. The developed multispectral image processing method is based on unsupervised machine learning approach (Gaussian Mixture Models) and a novel unsupervised scheme of spectral band selection for segmentation process optimization. Through the evaluation we prove its efficiency and robustness against the currently available semi-manual software, showing that the developed method is a high throughput approach appropriate for massive data extraction from food samples.

  10. Application of Diffraction Enhanced Imaging to Medical Imaging

    National Research Council Canada - National Science Library

    Chapman, Leroy


    This renewal report is for an academic award for Prof. Leroy Chapman to pursue a program of study to apply Diffraction Enhanced X-ray Imaging applied to mammography and other areas of medical imaging. Prof...

  11. Selected Applications of Virtual Reality in Manufacturing (United States)

    Novak-Marcincin, Jozef


    Virtual reality (VR) has become an important and useful tool in science and engineering. VR applications cover a wide range of industrial areas from product design to analysis, from product prototyping to manufacturing. The design and manufacturing of a product can be viewed, evaluated and improved in a virtual environment before its prototype is made, which is an enormous cost saving. Virtual Manufacturing (VM) is the use of computer models and simulations of manufacturing processes to aid in the design and production of manufactured products. VM is the use of manufacturing-based simulations to optimize the design of product and processes for a specific manufacturing goal such as: design for assembly; quality; lean operations; and/or flexibility.

  12. Inverse synthetic aperture radar imaging principles, algorithms and applications

    CERN Document Server

    Chen , Victor C


    Inverse Synthetic Aperture Radar Imaging: Principles, Algorithms and Applications is based on the latest research on ISAR imaging of moving targets and non-cooperative target recognition (NCTR). With a focus on the advances and applications, this book will provide readers with a working knowledge on various algorithms of ISAR imaging of targets and implementation with MATLAB. These MATLAB algorithms will prove useful in order to visualize and manipulate some simulated ISAR images.

  13. The Application of Fractal Theory in Image Recognition

    Directory of Open Access Journals (Sweden)

    Qiu Li


    Full Text Available At present, technicians are constantly exploring how to do effective managements and convenient and efficient queries on the large number of images in database. This article puts forward a new idea that doing the image retrieval with the similarity characteristics of fractal theory. It makes image similarity verification with the method of Opency image histogram and makes explanations by using the application of fractal theory in image pattern recognition. Fractal theory has provided a new method for the methods of image pattern recognition, the recognition research on related images and the classification of huge image database.

  14. Application of image editing software for forensic detection of image ...

    African Journals Online (AJOL)

    The image editing software's available today is apt for creating visually compelling and sophisticated fake images, which causes major issues to the reliability of digital contents as a right representation of reality. Authenticity is the main problem in most digital image communication. Various forensic techniques have been ...

  15. Application of Quantum Dots in Biological Imaging

    Directory of Open Access Journals (Sweden)

    Shan Jin


    Full Text Available Quantum dots (QDs are a group of semiconducting nanomaterials with unique optical and electronic properties. They have distinct advantages over traditional fluorescent organic dyes in chemical and biological studies in terms of tunable emission spectra, signal brightness, photostability, and so forth. Currently, the major type of QDs is the heavy metal-containing II-IV, IV-VI, or III-V QDs. Silicon QDs and conjugated polymer dots have also been developed in order to lower the potential toxicity of the fluorescent probes for biological applications. Aqueous solubility is the common problem for all types of QDs when they are employed in the biological researches, such as in vitro and in vivo imaging. To circumvent this problem, ligand exchange and polymer coating are proven to be effective, besides synthesizing QDs in aqueous solutions directly. However, toxicity is another big concern especially for in vivo studies. Ligand protection and core/shell structure can partly solve this problem. With the rapid development of QDs research, new elements and new morphologies have been introduced to this area to fabricate more safe and efficient QDs for biological applications.

  16. VR interaction techniques for medical imaging applications. (United States)

    Krapichler, C; Haubner, M; Engelbrecht, R; Englmeier, K H


    Methods of virtual reality (VR) offer new ways of human-computer interaction. Medicine is predestined to benefit from this new technology in many ways. Virtual environments can support physicians in their work, alleviate communication between specialists from different fields or be established in educational and training applications. For the field of visualization and analysis of three-dimensional anatomical images (e.g. CT or MRI scans), an application is introduced which expedites recognition of spatial coherencies and the exploration and manipulation of the 3D data. To avoid long periods of learning and accustoming and to facilitate work in such an environment, a powerful human-oriented interface is required allowing interactions similar to the real world and utilization of our natural experiences. This paper shows the use of eye tracking parameters for a level-of-detail algorithm and the integration of a glove-based hand gesture recognition into the virtual environment as an essential component of the human-machine interface. Furthermore, virtual bronchoscopy and virtual angioscopy are presented as examples for the use of the virtual environment.

  17. Development of image mappers for hyperspectral biomedical imaging applications. (United States)

    Kester, Robert T; Gao, Liang; Tkaczyk, Tomasz S


    A new design and fabrication method is presented for creating large-format (>100 mirror facets) image mappers for a snapshot hyperspectral biomedical imaging system called an image mapping spectrometer (IMS). To verify this approach a 250 facet image mapper with 25 multiple-tilt angles is designed for a compact IMS that groups the 25 subpupils in a 5 x 5 matrix residing within a single collecting objective's pupil. The image mapper is fabricated by precision diamond raster fly cutting using surface-shaped tools. The individual mirror facets have minimal edge eating, tilt errors of <1 mrad, and an average roughness of 5.4 nm.

  18. Selective distortion of body image by asynchronous visuotactile stimulation. (United States)

    Perez-Marcos, Daniel; Martini, Matteo; Fuentes, Christina T; Bellido Rivas, Anna I; Haggard, Patrick; Sanchez-Vives, Maria V


    In the rubber hand illusion (RHI), a rubber hand is felt as being part of one's body. This illusion is evoked by providing synchronous visuotactile stimulation to the fake and real hands. Asynchronous visuotactile stimulation is known not to produce such an illusion of ownership, being commonly used as the control condition. Here we explored the impact of synchronous and asynchronous visuotactile stimulation on the body image. We combined the induction of the RHI with a quantitative test for the internal representation of body metrics (i.e., the positions of key fiducial points on the body relative to each other). We found a significant recalibration of the upper/lower arm lengths following asynchronous visuotactile stimulation. In particular, we observed a selective elongation of the lower arm, a distortion typical of deafferentation. Conversely, synchronous visuotactile stimulation did not alter the estimation of the arm segments' length. Our findings are consistent with a dynamic internal representation of body image that is continuously updated based on incoming multisensory information. Furthermore, the use of asynchronous multisensory stimulation as a neutral condition should be reconsidered since it introduces changes in the body image. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Imaging MDCK cysts with a single (selective) plane illumination microscope. (United States)

    Swoger, Jim; Pampaloni, Francesco; Stelzer, Ernst H K


    In modern biology, most optical imaging technologies are applied to two-dimensional cell culture systems. However, investigation of physiological context requires specimens that display the complex three-dimensional (3D) relationship of cells that occurs in tissue sections and in naturally developing organisms. The imaging of highly scattering multicellular specimens presents a number of challenges, including limited optical penetration depth, phototoxicity, and fluorophore bleaching. Light-sheet-based fluorescence microscopy (LSFM) overcomes many drawbacks of conventional fluorescence microscopy by using an orthogonal/azimuthal fluorescence arrangement with independent sets of lenses for illumination and detection. The specimen is illuminated from the side with a thin light sheet that overlaps with the focal plane of a wide-field fluorescence microscope. Optical sectioning and minimal phototoxic damage or photobleaching outside a small volume close to the focal plane are intrinsic properties of LSFM. The principles of LSFM are implemented in the single (or selective) plane illumination microscope (SPIM). Madin-Darby canine kidney (MDCK) cysts grown in extracellular matrix (ECM) hydrogels provide a useful model system for studies of 3D cell biology. Here, we describe protocols for growing MDCK cysts within 3D type I collagen or reconstituted basement membrane (Matrigel) and for imaging these cysts by SPIM.

  20. Imaging cellular spheroids with a single (selective) plane illumination microscope. (United States)

    Swoger, Jim; Pampaloni, Francesco; Stelzer, Ernst H K


    In modern biology, most optical imaging technologies are applied to two-dimensional cell culture systems. However, investigation of physiological context requires specimens that display the complex three-dimensional (3D) relationship of cells that occurs in tissue sections and in naturally developing organisms. The imaging of highly scattering multicellular specimens presents a number of challenges, including limited optical penetration depth, phototoxicity, and fluorophore bleaching. Light-sheet-based fluorescence microscopy (LSFM) overcomes many drawbacks of conventional fluorescence microscopy by using an orthogonal/azimuthal fluorescence arrangement with independent sets of lenses for illumination and detection. The specimen is illuminated from the side with a thin light sheet that overlaps with the focal plane of a wide-field fluorescence microscope. Optical sectioning and minimal phototoxic damage or photobleaching outside a small volume close to the focal plane are intrinsic properties of LSFM. The principles of LSFM are implemented in the single (or selective) plane illumination microscope (SPIM). Cellular spheroids are spherical aggregations of hundreds to thousands of cells and they provide a useful model system for studies of 3D cell biology. Here we describe a protocol for imaging cellular spheroids by SPIM.

  1. Viewpoints on Medical Image Processing: From Science to Application (United States)

    Deserno (né Lehmann), Thomas M.; Handels, Heinz; Maier-Hein (né Fritzsche), Klaus H.; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas


    Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment. PMID:24078804

  2. Infrared imaging technology and biological applications. (United States)

    Kastberger, Gerald; Stachl, Reinhold


    Temperature is the most frequently measured physical quantity, second only to time. Infrared (IR) technology has been utilized successfully in astronomy (for a summary,see Hermans-Killam, 2002b) and in industrial and research settings (Gruner, 2002; Madding, 1982, 1989; Wolfe & Zissis, 1993) for decades. However, fairly recent innovations have reduced costs, increased reliability, and resulted in noncontact IR sensors offering mobile, smaller units of measurement (EOI, 2002; Flir, 2000, 2001,2002). The advantages of using IR imaging are (1) rapidity in the millisecond range, facilitating measurement of moving targets, (2) noncontact procedures, allowing measurements of hazardous or physically inaccessible objects, (3) no interference and no energy lost from the target, (4) no risk of contamination, and (5) no mechanical effect on the surface of the object. All these factors have led to IR technology's becoming an area of interest for new kinds of applications and users. In both manufacturing and quality control, temperature plays an important role as an indicator of the condition of a product or a piece of machinery (EOI, 2002; Flir, 2000, 2001, 2002; Raytek, 2002). In medical and veterinary applications, IR thermometry is increasingly used in organ diagnostics, in the evaluation of sports injuries and the progression of therapy, in disease evaluation (e.g, breast cancer, arthritis, and SARS; Flir, 2003), and in injury and inflammation examinations in horses, livestock (Tivey & Banhazi, 2002), and zoo animals (Hermans-Killam, 2002a; Thiesbrummel, 2002). Lastly, physiological expressions of life processes in animals (Kastberger, Winder, & Steindl, 2001; Stabentheiner, Kovac, & Hagmüller, 1995; Stabentheiner, Kovac, & Schmaranzer, 2002; Stabentheiner & Schmarnzer, 1987) and plants (Bermadinger-Stabentheiner & Stabentheiner, 1995) can be monitored. The most recent field in which IR technology has been applied is animal behavior. This article focuses on the practical

  3. Application of reinforcement learning for segmentation of transrectal ultrasound images


    Sahba, Farhang; Tizhoosh, Hamid R; Salama, Magdy MA


    Abstract Background Among different medical image modalities, ultrasound imaging has a very widespread clinical use. But, due to some factors, such as poor image contrast, noise and missing or diffuse boundaries, the ultrasound images are inherently difficult to segment. An important application is estimation of the location and volume of the prostate in transrectal ultrasound (TRUS) images. For this purpose, manual segmentation is a tedious and time consuming procedure. Methods We introduce ...

  4. Advances in Clinical and Biomedical Applications of Photoacoustic Imaging. (United States)

    Su, Jimmy L; Wang, Bo; Wilson, Katheryne E; Bayer, Carolyn L; Chen, Yun-Sheng; Kim, Seungsoo; Homan, Kimberly A; Emelianov, Stanislav Y


    IMPORTANCE OF THE FIELD: Photoacoustic imaging is an imaging modality that derives image contrast from the optical absorption coefficient of the tissue being imaged. The imaging technique is able to differentiate between healthy and diseased tissue with either deeper penetration or higher resolution than other functional imaging modalities currently available. From a clinical standpoint, photoacoustic imaging has demonstrated safety and effectiveness in diagnosing diseased tissue regions using either endogenous tissue contrast or exogenous contrast agents. Furthermore, the potential of photoacoustic imaging has been demonstrated in various therapeutic interventions ranging from drug delivery and release to image-guided therapy and monitoring. AREAS COVERED IN THIS REVIEW: This article reviews the current state of photoacoustic imaging in biomedicine from a technological perspective, highlights various biomedical and clinical applications of photoacoustic imaging, and gives insights on future directions. WHAT THE READER WILL GAIN: Readers will learn about the various applications of photoacoustic imaging, as well as the various contrast agents that can be used to assist photoacoustic imaging. This review will highlight both pre-clinical and clinical uses for photoacoustic imaging, as well as discuss some of the challenges that must be addressed to move photoacoustic imaging into the clinical realm. TAKE HOME MESSAGE: Photoacoustic imaging offers unique advantages over existing imaging modalities. The imaging field is broad with many exciting applications for detecting and diagnosing diseased tissue or processes. Photoacoustics is also used in therapeutic applications to identify and characterize the pathology and then to monitor the treatment. Although the technology is still in its infancy, much work has been done in the pre-clinical arena, and photoacoustic imaging is fast approaching the clinical setting.

  5. Resonance Energy Transfer Molecular Imaging Application in Biomedicine

    Directory of Open Access Journals (Sweden)

    NIE Da-hong1,2;TANG Gang-hua1,3


    Full Text Available Resonance energy transfer molecular imaging (RETI can markedly improve signal intensity and tissue penetrating capacity of optical imaging, and have huge potential application in the deep-tissue optical imaging in vivo. Resonance energy transfer (RET is an energy transition from the donor to an acceptor that is in close proximity, including non-radiative resonance energy transfer and radiative resonance energy transfer. RETI is an optical imaging technology that is based on RET. RETI mainly contains fluorescence resonance energy transfer imaging (FRETI, bioluminescence resonance energy transfer imaging (BRETI, chemiluminescence resonance energy transfer imaging (CRETI, and radiative resonance energy transfer imaging (RRETI. RETI is the hot field of molecular imaging research and has been widely used in the fields of biology and medicine. This review mainly focuses on RETI principle and application in biomedicine.

  6. Cardiac Applications of PET/MR Imaging. (United States)

    Lau, Jeffrey M C; Laforest, Richard; Nensa, Felix; Zheng, Jie; Gropler, Robert J; Woodard, Pamela K


    Simultaneous acquisition PET/MR imaging combines the anatomic capabilities of cardiac MR imaging with quantitative capabilities of both PET and MR imaging. Cardiac PET/MR imaging has the potential not only to assess cardiac tumors but also to provide thorough assessment of myocardial ischemia, infarction, and function and specific characterization of cardiomyopathies, such as cardiac sarcoid. In this article, the authors start with a discussion of the technical challenges specific to cardiovascular PET/MR imaging followed by a discussion of the use of PET/MR imaging in various cardiovascular conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Applications of Digital Image Processing 11 (United States)

    Cho, Y. -C.


    A new technique, digital image velocimetry, is proposed for the measurement of instantaneous velocity fields of time dependent flows. A time sequence of single-exposure images of seed particles are captured with a high-speed camera, and a finite number of the single-exposure images are sampled within a prescribed period in time. The sampled images are then digitized on an image processor, enhanced, and superimposed to construct an image which is equivalent to a multiple exposure image used in both laser speckle velocimetry and particle image velocimetry. The superimposed image and a single-exposure Image are digitally Fourier transformed for extraction of information on the velocity field. A great enhancement of the dynamic range of the velocity measurement is accomplished through the new technique by manipulating the Fourier transform of both the single-exposure image and the superimposed image. Also the direction of the velocity vector is unequivocally determined. With the use of a high-speed video camera, the whole process from image acquisition to velocity determination can be carried out electronically; thus this technique can be developed into a real-time capability.

  8. Ultra-thin infrared metamaterial detector for multicolor imaging applications. (United States)

    Montoya, John A; Tian, Zhao-Bing; Krishna, Sanjay; Padilla, Willie J


    The next generation of infrared imaging systems requires control of fundamental electromagnetic processes - absorption, polarization, spectral bandwidth - at the pixel level to acquire desirable information about the environment with low system latency. Metamaterial absorbers have sparked interest in the infrared imaging community for their ability to enhance absorption of incoming radiation with color, polarization and/or phase information. However, most metamaterial-based sensors fail to focus incoming radiation into the active region of a ultra-thin detecting element, thus achieving poor detection metrics. Here our multifunctional metamaterial absorber is directly integrated with a novel mid-wave infrared (MWIR) and long-wave infrared (LWIR) detector with an ultra-thin (~λ/15) InAs/GaSb Type-II superlattice (T2SL) interband cascade detector. The deep sub-wavelength metamaterial detector architecture proposed and demonstrated here, thus significantly improves the detection quantum efficiency (QE) and absorption of incoming radiation in a regime typically dominated by Fabry-Perot etalons. Our work evinces the ability of multifunctional metamaterials to realize efficient wavelength selective detection across the infrared spectrum for enhanced multispectral infrared imaging applications.

  9. Three-Dimensional Printing and Medical Imaging: A Review of the Methods and Applications. (United States)

    Marro, Alessandro; Bandukwala, Taha; Mak, Walter


    The purpose of this article is to review recent innovations on the process and application of 3-dimensional (3D) printed objects from medical imaging data. Data for 3D printed medical models can be obtained from computed tomography, magnetic resonance imaging, and ultrasound using the Data Imaging and Communications in Medicine (DICOM) software. The data images are processed using segmentation and mesh generation tools and converted to a standard tessellation language (STL) file for printing. 3D printing technologies include stereolithography, selective laser sintering, inkjet, and fused-deposition modeling . 3D printed models have been used for preoperative planning of complex surgeries, the creation of custom prosthesis, and in the education and training of physicians. The application of medical imaging and 3D printers has been successful in providing solutions to many complex medical problems. As technology advances, its applications continue to grow in the future. Copyright © 2015 Mosby, Inc. All rights reserved.

  10. Application of automatic image analysis in wood science (United States)

    Charles W. McMillin


    In this paper I describe an image analysis system and illustrate with examples the application of automatic quantitative measurement to wood science. Automatic image analysis, a powerful and relatively new technology, uses optical, video, electronic, and computer components to rapidly derive information from images with minimal operator interaction. Such instruments...

  11. Application of Nanoparticles in Diagnostic Imaging via ...

    African Journals Online (AJOL)

    ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). These imaging modalities differ not only in resolution, but also in the instrumentation and the type of nanoparticle that can be employed as its assistant. Of these imaging techniques, ultrasound is one of ...

  12. Tomographic imaging in CWI: Algorithms and applications

    NARCIS (Netherlands)

    H.H. Der Sarkissian (Henri)


    textabstractTomography is a widely used imaging tool to explore the 3D inner structure of object without having to cut it open using penetrating beams. In this talk, I will present the different aspects of tomographic imaging handled and developed at the Computational Imaging group in CWI,

  13. Applications of Digital Image Analysis in Experimental Mechanics


    Lyngbye, J. : Ph.D.


    The present thesis "Application of Digital Image Analysis in Experimental Mechanics" has been prepared as a part of Janus Lyngbyes Ph.D. study during the period December 1988 to June 1992 at the Department of Building technology and Structural Engineering, University of Aalborg, Denmark. In this thesis attention will be focused on optimal use and analysis of the information of digital images. This is realized during investigation and application of parametric methods in digital image analysis...

  14. Development and Application of Multifunctional Lanthanide-Doped Nanoparticles in Medical Imaging (United States)

    Pedraza, Francisco J., III

    Medical imaging has become one of the most important tools of modern medicine soon after it was developed. Presently, several imaging modalities are available to clinicians for the detection of skeletal fractures and functional abnormalities of organs and tissues; and also an excellent tool during surgical procedures. Unfortunately, each imaging technique possesses its own strengths and inherent limitations which can be mitigated via the use of multiple imaging modalities and imaging probes. Through the use of multiple imaging modalities, it is possible to gather complementary information for a more reliable diagnosis. Each imaging technique requires its own imaging probes, providing selectivity and improved contrast. However, conventional contrast agents are incapable of providing what the new generation of multifunctional nanomaterials offer. In addition to improved selectivity and contrast, multifunctional materials possess therapeutic capabilities such as photo-thermal therapy and controlled drug delivery. Lanthanide-based nanomaterials are viable candidates for multimodal imaging agents due to possessing multifunctional capabilities, optical and chemical stability, and an intense tunable emission. This doctoral dissertation will delve into the development of lanthanide-based nanoparticles by proposing a novel multifunctional contrast agent for Near Infrared Fluorescence Imaging and Magnetic Resonance Imaging. Furthermore, the study of surface modification effects on upconversion emission and nanoparticle-cell interactions was performed. Results presented will confirm the potential application of multifunctional lanthanide-based nanomaterials as multimodal imaging probes.

  15. Selective Imaging of Gram-Negative and Gram-Positive Microbiotas in the Mouse Gut. (United States)

    Wang, Wei; Zhu, Yuntao; Chen, Xing


    The diverse gut microbial communities are crucial for host health. How the interactions between microbial communities and between host and microbes influence the host, however, is not well understood. To facilitate gut microbiota research, selective imaging of specific groups of microbiotas in the gut is of great utility but remains technically challenging. Here we present a chemical approach that enables selective imaging of Gram-negative and Gram-positive microbiotas in the mouse gut by exploiting their distinctive cell wall components. Cell-selective labeling is achieved by the combined use of metabolic labeling of Gram-negative bacterial lipopolysaccharides with a clickable azidosugar and direct labeling of Gram-positive bacteria with a vancomycin-derivatized fluorescent probe. We demonstrated this strategy by two-color fluorescence imaging of Gram-negative and Gram-positive gut microbiotas in the mouse intestines. This chemical method should be broadly applicable to different gut microbiota research fields and other bacterial communities studied in microbiology.



    Septimiu-Rare? SZABO


    This study assessed the prevalence of, and applicants’ reactions to 21 different employee selection methods. Past studies on this topic have focused mainly on countries in Western Europe. This research investigated a sample of 142 Romanian respondents using a postal survey. The most popular selection methods used by Romanian organizations were found to be CVs, ability tests and interviews. In contrast, applicants most favor work-samples, followed by ability tests, interviews, CVs and personal...

  17. Review of diffusion tensor imaging and its application in children

    Energy Technology Data Exchange (ETDEWEB)

    Vorona, Gregory A. [Children' s Hospital of Richmond at Virginia Commonwealth University, Department of Radiology, Richmond, VA (United States); Berman, Jeffrey I. [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)


    Diffusion MRI is an imaging technique that uses the random motion of water to probe tissue microstructure. Diffusion tensor imaging (DTI) can quantitatively depict the organization and connectivity of white matter. Given the non-invasiveness of the technique, DTI has become a widely used tool for researchers and clinicians to examine the white matter of children. This review covers the basics of diffusion-weighted imaging and diffusion tensor imaging and discusses examples of their clinical application in children. (orig.)

  18. A multi-layered image format for the web with an adaptive layer selection algorithm

    Directory of Open Access Journals (Sweden)

    Tair Milan


    Full Text Available In this paper we present a proposed multi-layered image format for use on the web. The format implements an algorithm for selecting adequate layer images depending on the image container's surroundings and size. The layer selection depends on the weighted average brightness of the underlying web page background within the bounds of the image. The proposed image format supports multiple image layers with adjoined thresholds and activation conditions. Depending on these conditions and the underlying background, a layer's visibility will be adequately set. The selection algorithm takes into account the background brightness, each layer's adjoined threshold values, and other newly introduced layer conditions.

  19. Colour application on mammography image segmentation (United States)

    Embong, R.; Aziz, N. M. Nik Ab.; Karim, A. H. Abd; Ibrahim, M. R.


    The segmentation process is one of the most important steps in image processing and computer vision since it is vital in the initial stage of image analysis. Segmentation of medical images involves complex structures and it requires precise segmentation result which is necessary for clinical diagnosis such as the detection of tumour, oedema, and necrotic tissues. Since mammography images are grayscale, researchers are looking at the effect of colour in the segmentation process of medical images. Colour is known to play a significant role in the perception of object boundaries in non-medical colour images. Processing colour images require handling more data, hence providing a richer description of objects in the scene. Colour images contain ten percent (10%) additional edge information as compared to their grayscale counterparts. Nevertheless, edge detection in colour image is more challenging than grayscale image as colour space is considered as a vector space. In this study, we implemented red, green, yellow, and blue colour maps to grayscale mammography images with the purpose of testing the effect of colours on the segmentation of abnormality regions in the mammography images. We applied the segmentation process using the Fuzzy C-means algorithm and evaluated the percentage of average relative error of area for each colour type. The results showed that all segmentation with the colour map can be done successfully even for blurred and noisy images. Also the size of the area of the abnormality region is reduced when compare to the segmentation area without the colour map. The green colour map segmentation produced the smallest percentage of average relative error (10.009%) while yellow colour map segmentation gave the largest percentage of relative error (11.367%).

  20. Design Guidelines for a Content-Based Image Retrieval Color-Selection Interface

    NARCIS (Netherlands)

    Eggen, Berry; van den Broek, Egon; van der Veer, Gerrit C.; Kisters, Peter M.F.; Willems, Rob; Vuurpijl, Louis G.


    In Content-Based Image Retrieval (CBIR) two query-methods exist: query-by-example and query-by-memory. The user either selects an example image or selects image features retrieved from memory (such as color, texture, spatial attributes, and shape) to define his query. Hitherto, research on CBIR

  1. System Quality Characteristics for Selecting Mobile Learning Applications

    Directory of Open Access Journals (Sweden)

    Mohamed SARRAB


    Full Text Available The majority of M-learning (Mobile learning applications available today are developed for the formal learning and education environment. These applications are characterized by the improvement in the interaction between learners and instructors to provide high interaction and flexibility to the learning process. M-learning is gaining increased recognition and adoption by different organizations. With the high number of M-learning applications available today, making the right decision about which, application to choose can be quite challenging. To date there is no complete and well defined set of system characteristics for such M-learning applications. This paper presents system quality characteristics for selecting M-learning applications based on the result of a systematic review conducted in this domain.

  2. Practical Applications of Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav Ivanov; Kortbek, Jacob; Jensen, Jørgen Arendt


    Synthetic aperture imaging has been a focus of research for almost 3 decades. The research carried out at the Center for Fast Ultrasound Imaging has demonstrated that synthetic aperture focusing not only can be used in-vivo, but that it also yields superior B-mode and blood flow images. In the last...... years synthetic aperture focusing has moved from the lab to commercial products. The implementations vary in their scope and purpose. Some scanners use synthetic aperture imaging to improve the detail and contrast resolution of the system. Others to increase the image uniformity. Yet others use......, and multiple angle flash imaging are just a few of the names used to describe the commercial implementations of synthetic aperture focusing. Although they sound like different algorithms, they are the same in their core, as revealed in this paper....

  3. Digital Imaging Research for Meteorological Applications. (United States)


    from (RDAOO - RDA07) ADVISAR image or enhancement table memory . Timing pulse DCDC initiates data transfer and, subsequently, DCFLAG signal have evolved because of inexpensive solid-state memory . However, the total systems aspects of meteorological image processing still needs...three images (infrared, visible, difference) utilized the complete dynamic range of the ADVISAR video refresh memories . Clouds that were cold and

  4. Signal and image processing in medical applications

    CERN Document Server

    Kumar, Amit; Rahim, B Abdul; Kumar, D Sravan


    This book highlights recent findings on and analyses conducted on signals and images in the area of medicine. The experimental investigations involve a variety of signals and images and their methodologies range from very basic to sophisticated methods. The book explains how signal and image processing methods can be used to detect and forecast abnormalities in an easy-to-follow manner, offering a valuable resource for researchers, engineers, physicians and bioinformatics researchers alike.

  5. Perceptual digital imaging methods and applications

    CERN Document Server

    Lukac, Rastislav


    Visual perception is a complex process requiring interaction between the receptors in the eye that sense the stimulus and the neural system and the brain that are responsible for communicating and interpreting the sensed visual information. This process involves several physical, neural, and cognitive phenomena whose understanding is essential to design effective and computationally efficient imaging solutions. Building on advances in computer vision, image and video processing, neuroscience, and information engineering, perceptual digital imaging greatly enhances the capabilities of tradition

  6. Depth Modeling With Spectral Selective Region Coding For Image Inpainting (United States)

    Balasaheb Patil Mr., H.; Pradeep Patil, M., Dr.


    Image inpainting, has an evolving approach for image quality enhancement and image visualization. In the process of image inpainting, pixels of similar area variants are considered in a tracing manner to achieve the objectives of unwanted image coefficient which are introduced due to detritions in image handing. To overcome this issue, images are processed in spatial domain, where, images are traced using 8-neighbor region growing method to achieve the objective of image enhancement However, in such approach, the pixel variations are observed in one variation plane. The variation with respect to successive pixel variants is not observed. To develop a new coding in considering with multiple domains, in this paper a new inpainting approach based on image depth coding is suggested.

  7. Current status on the application of image processing of digital intraoral radiographs amongst general dental practitioners. (United States)

    Tohidast, Parisa; Shi, Xie-Qi


    The objectives of this study were to present the subjective knowledge level and the use of image processing on digital intraoral radiographs amongst general dental practitioners at Distriktståndvrden AB, Stockholm. A questionnaire, consisting of12 questions, was sent to 12 dental prac- tices in Stockholm. Additionally, 2000 radiographs were randomly selected from these clinics for evaluation of applied image processing and its effect on image quality. Descriptive and analytical statistical methods were applied to present the current status of the use of image proces- sing alternatives for the dentists' daily clinical work. 50 out of 53 dentists participated in the survey.The survey showed that most of dentists in.this study had received education on image processing at some stage of their career. No correlations were found between application of image processing on one side and educa- tion received with regards to image processing, previous working experience, age and gender on the other. Image processing in terms of adjusting brightness and contrast was frequently used. Overall, in this study 24.5% of the 200 images were actually image processed in practice, in which 90% of the images were improved or maintained in image quality. According to our survey, image processing is experienced to be frequently used by the dentists at Distriktstandvåden AB for diagnosing anatomical and pathological changes using intraoral radiographs. 24.5% of the 200 images were actually image processed in terms of adjusting brightness and/or contrast. In the present study we did not found that the dentists' age, gender, previous working experience and education in image processing influence their viewpoint towards the application of image processing.

  8. Fundamentals and Applications of Magnetic Particle Imaging

    NARCIS (Netherlands)

    Borgert, J.; Schmidt, J.D.; Schmale, I.; Rahmer, J.; Bontus, C.; Gleich, B.; David, B.; Eckart, R.; Woywode, O.; Juergen Weizenecker; Schnorr, J.; Taupitz, M.; Haegele, J.; Vogt, F.; Barkhausen, J.


    Magnetic particle imaging (MPI) is a new medical imaging technique that performs a direct measurement of the magnetization of ferromagnetic nanoparticles to quantify their local concentration. These particles are usually called SPIOs, i.e. superparamagnetic iron oxides. Specific formulations of

  9. Imaging-Genetics Applications in Child Psychiatry (United States)

    Pine, Daniel S.; Ernst, Monique; Leibenluft, Ellen


    Objective: To place imaging-genetics research in the context of child psychiatry. Method: A conceptual overview is provided, followed by discussion of specific research examples. Results: Imaging-genetics research is described linking brain function to two specific genes, for the serotonin-reuptake-transporter protein and a monoamine oxidase…

  10. Novel biomedical applications of Cerenkov radiation and radioluminescence imaging. (United States)

    Spinelli, Antonello E; Boschi, Federico


    The main goals of this review is to provide an up-to-date account of the different uses of Cerenkov radiation (CR) and radioluminescence imaging for pre-clinical small animal imaging. We will focus on new emerging applications such as the use of Cerenkov imaging for monitoring radionuclide and external radiotherapy in humans. Another novel application that will be described is the monitoring of radiochemical synthesis using microfluidic chips. Several pre-clinical aspects of CR will be discussed such as the development of 3D reconstruction methods for Cerenkov images and the use of CR as excitation source for nanoparticles or for endoscopic imaging. We will also include a discussion on radioluminescence imaging that is a more general method than Cerenkov imaging for the detection using optical methods of alpha and gamma emitters. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Image segmentation by iterative parallel region growing with application to data compression and image analysis (United States)

    Tilton, James C.


    Image segmentation can be a key step in data compression and image analysis. However, the segmentation results produced by most previous approaches to region growing are suspect because they depend on the order in which portions of the image are processed. An iterative parallel segmentation algorithm avoids this problem by performing globally best merges first. Such a segmentation approach, and two implementations of the approach on NASA's Massively Parallel Processor (MPP) are described. Application of the segmentation approach to data compression and image analysis is then described, and results of such application are given for a LANDSAT Thematic Mapper image.

  12. 7 CFR 1703.145 - Application selection provisions. (United States)


    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Application selection provisions. 1703.145 Section 1703.145 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE RURAL DEVELOPMENT Distance Learning and Telemedicine Loan Program § 1703.145...

  13. 7 CFR 1703.105 - Processing of selected applications. (United States)


    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Processing of selected applications. 1703.105 Section 1703.105 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE RURAL DEVELOPMENT Distance Learning and Telemedicine Loan and Grant Program-General...

  14. 7 CFR 1703.135 - Application selection provisions. (United States)


    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Application selection provisions. 1703.135 Section 1703.135 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE RURAL DEVELOPMENT Distance Learning and Telemedicine Combination Loan and Grant...

  15. 7 CFR 4280.42 - Application evaluation and selection. (United States)


    ... SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE LOANS AND GRANTS Rural Economic Development Loan and Grant Programs § 4280.42 Application evaluation and selection. (a) Rural Development will... Rural Development: If supplemental funds as a percentage of the Rural Development loan or grant to be...

  16. Role of Friction in Materials Selection for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL


    This is an invited article for a special issue of the ASM International monthly magazine that concerns "Automotive Materials and Applications." The article itself overviews frictional considerations in material selection for automobiles. It discusses implications for energy efficiency (engine friction) and safety (brakes) among other topics.

  17. Surge arresters - Part 5: Selection and application recommendations

    CERN Document Server

    International Electrotechnical Commission. Geneva


    Provides recommendations for the selection and application of surge arresters to be used in three-phase systems with nominal voltages above 1kV. It applies to non-linear resistor type gapped surge arresters as defined in IEC 60099-1 and to gapless metal-oxide surge arresters as defined in IEC 60099-4.

  18. Mass media image of selected instruments of economic develepment

    Directory of Open Access Journals (Sweden)

    Kruliš Ladislav


    Full Text Available The goal of this paper is twofold. Firstly, two instruments of economic development – investment incentives and cluster initiatives – were compared according to the frequency of their occurrence in selected mass media sources in the Czech Republic in the periods 2004-2005 and 2011-2012. Secondly, the mass media image of these two instruments of economic development was evaluated with respect to the frames deductively constructed from literature review. The findings pointed out a higher occurrence of the mass media articles/news dealing with investment incentives. These articles/news were, additionally, more controversial and covered a wider spectrum of frames. Politicians were a relatively more frequent type of actors who created the media message from the articles/news. On the contrary, the mass media articles/news concerning cluster initiatives typically created the frame of positive effects of clusters. The messages were told either by economic experts or by public authority representatives who were closely connected with cluster initiatives. Spatial origin of these messages was rather limited. The definitional vagueness, intangible and uncontroversial nature of cluster initiatives restrained their media appeal.

  19. Variable Selection for Road Segmentation in Aerial Images (United States)

    Warnke, S.; Bulatov, D.


    For extraction of road pixels from combined image and elevation data, Wegner et al. (2015) proposed classification of superpixels into road and non-road, after which a refinement of the classification results using minimum cost paths and non-local optimization methods took place. We believed that the variable set used for classification was to a certain extent suboptimal, because many variables were redundant while several features known as useful in Photogrammetry and Remote Sensing are missed. This motivated us to implement a variable selection approach which builds a model for classification using portions of training data and subsets of features, evaluates this model, updates the feature set, and terminates when a stopping criterion is satisfied. The choice of classifier is flexible; however, we tested the approach with Logistic Regression and Random Forests, and taylored the evaluation module to the chosen classifier. To guarantee a fair comparison, we kept the segment-based approach and most of the variables from the related work, but we extended them by additional, mostly higher-level features. Applying these superior features, removing the redundant ones, as well as using more accurately acquired 3D data allowed to keep stable or even to reduce the misclassification error in a challenging dataset.

  20. Applications of Digital Image Analysis in Experimental Mechanics

    DEFF Research Database (Denmark)

    Lyngbye, J. : Ph.D.

    The present thesis "Application of Digital Image Analysis in Experimental Mechanics" has been prepared as a part of Janus Lyngbyes Ph.D. study during the period December 1988 to June 1992 at the Department of Building technology and Structural Engineering, University of Aalborg, Denmark....... In this thesis attention will be focused on optimal use and analysis of the information of digital images. This is realized during investigation and application of parametric methods in digital image analysis. The parametric methods will be implemented in applications representative for the area of experimental...

  1. Efficient Image Blur in Web-Based Applications

    DEFF Research Database (Denmark)

    Kraus, Martin


    Scripting languages require the use of high-level library functions to implement efficient image processing; thus, real-time image blur in web-based applications is a challenging task unless specific library functions are available for this purpose. We present a pyramid blur algorithm, which can...... be implemented using a subimage copy function, and evaluate its performance with various web browsers in comparison to an infinite impulse response filter. While this pyramid algorithm was first proposed for GPU-based image processing, its applicability to web-based applications indicates that some GPU...

  2. Super-resolution fluorescence imaging of nanoimprinted polymer patterns by selective fluorophore adsorption combined with redox switching

    KAUST Repository

    Yabiku, Y.


    We applied a super-resolution fluorescence imaging based on selective adsorption and redox switching of the fluorescent dye molecules for studying polymer nanostructures. We demonstrate that nano-scale structures of polymer thin films can be visualized with the image resolution better than 80 nm. The method was applied to image 100 nm-wide polymer nanopatterns fabricated by thermal nanoimprinting. The results point to the applicability of the method for evaluating residual polymer thin films and dewetting defect of the polymer resist patterns which are important for the quality control of the fine nanoimprinted patterns. 2013 Author(s).

  3. Novel compact photoacoustic imaging system to explore the applications in the medical imaging field (United States)

    Irisawa, Kaku; Wada, Takatsugu; Hayakawa, Toshiro; Ishihara, Miya


    PhotoAcoustic (PA) imaging is a promising imaging method using the pulsed-laser light source and ultrasound detector. PA image shows the features of optical contrast in biological tissue with ultrasound-like depth and resolution. In the human body, Hemoglobin of the blood is strong optical absorber, so the high-contrast blood distribution (vascular) image is obtained by PA imaging. Recently, FUJIFILM has developed the PA imaging system to explore its application in medical imaging field. In this system, the fusion of PA and conventional ultrasound image is realized, for example, ultrasound Doppler image is superposed to the PA and B-mode image. The system features and some results of clinical studies will be introduced.

  4. Selected Topics in MicroNano-robotics for Biomedical Applications

    CERN Document Server


    Selected Topics in Micro/Nano-robotics for Biomedical Applications features a system approach and incorporates modern methodologies in autonomous mobile robots for programmable and controllable micro/nano-robots aiming at biomedical applications. The book provides chapters of instructional materials and cutting-edge research results in micro/nanorobotics for biomedical applications. The book presents new sensing technology on nanofibers, new power supply techniques including miniature fuel cells and energy harvesting devices, and manipulation techniques including AFM-based nano-robotic manipulation, robot-aided optical tweezers, and robot-assisted catheter surgery systems. It also contains case studies on using micro/nano-robots in biomedical environments and in biomedicine, as well as a design example to conceptually develop a Vitamin-pill sized robot to enter human’s gastrointestinal tract. Each chapter covers a different topic of the highly interdisciplinary area. Bring together the selected topics into ...

  5. Contrast based band selection for optimized weathered oil detection in hyperspectral images (United States)

    Levaux, Florian; Bostater, Charles R., Jr.; Neyt, Xavier


    Hyperspectral imagery offers unique benefits for detection of land and water features due to the information contained in reflectance signatures such as the bi-directional reflectance distribution function or BRDF. The reflectance signature directly shows the relative absorption and backscattering features of targets. These features can be very useful in shoreline monitoring or surveillance applications, for example to detect weathered oil. In real-time detection applications, processing of hyperspectral data can be an important tool and Optimal band selection is thus important in real time applications in order to select the essential bands using the absorption and backscatter information. In the present paper, band selection is based upon the optimization of target detection using contrast algorithms. The common definition of the contrast (using only one band out of all possible combinations available within a hyperspectral image) is generalized in order to consider all the possible combinations of wavelength dependent contrasts using hyperspectral images. The inflection (defined here as an approximation of the second derivative) is also used in order to enhance the variations in the reflectance spectra as well as in the contrast spectrua in order to assist in optimal band selection. The results of the selection in term of target detection (false alarms and missed detection) are also compared with a previous method to perform feature detection, namely the matched filter. In this paper, imagery is acquired using a pushbroom hyperspectral sensor mounted at the bow of a small vessel. The sensor is mechanically rotated using an optical rotation stage. This opto-mechanical scanning system produces hyperspectral images with pixel sizes on the order of mm to cm scales, depending upon the distance between the sensor and the shoreline being monitored. The motion of the platform during the acquisition induces distortions in the collected HSI imagery. It is therefore

  6. Multi-sensor image fusion and its applications

    CERN Document Server

    Blum, Rick S


    Taking another lesson from nature, the latest advances in image processing technology seek to combine image data from several diverse types of sensors in order to obtain a more accurate view of the scene: very much the same as we rely on our five senses. Multi-Sensor Image Fusion and Its Applications is the first text dedicated to the theory and practice of the registration and fusion of image data, covering such approaches as statistical methods, color-related techniques, model-based methods, and visual information display strategies.After a review of state-of-the-art image fusion techniques,

  7. Rehabilitative ultrasound imaging: understanding the technology and its applications. (United States)

    Whittaker, Jackie L; Teyhen, Deydre S; Elliott, James M; Cook, Katy; Langevin, Helene M; Dahl, Haldis H; Stokes, Maria


    The use of ultrasound imaging by physical therapists is growing in popularity. This commentary has 2 aims. The first is to introduce the concept of rehabilitative ultrasound imaging (RUSI), provide a definition of the scope of this emerging tool in regard to the physical therapy profession, and describe how this relates to the larger field of medical ultrasound imaging. The second aim is to provide an overview of basic ultrasound imaging and instrumentation principles, including an understanding of the various modes and applications of the technology with respect to neuromusculoskeletal rehabilitation and in relation to other common imaging modalities.

  8. Multimodality Image Fusion-Guided Procedures: Technique, Accuracy, and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Abi-Jaoudeh, Nadine, E-mail: [National Institutes of Health, Radiology and Imaging Sciences (United States); Kruecker, Jochen, E-mail: [Philips Research North America (United States); Kadoury, Samuel, E-mail: [Ecole Polytechnique de Montreal, Department of Computer and Software Engineering, Institute of Biomedical Engineering (Canada); Kobeiter, Hicham, E-mail: [CHU Henri Mondor, UPEC, Departments of Radiology and d' imagrie medicale (France); Venkatesan, Aradhana M., E-mail:; Levy, Elliot, E-mail:; Wood, Bradford J., E-mail: [National Institutes of Health, Radiology and Imaging Sciences (United States)


    Personalized therapies play an increasingly critical role in cancer care: Image guidance with multimodality image fusion facilitates the targeting of specific tissue for tissue characterization and plays a role in drug discovery and optimization of tailored therapies. Positron-emission tomography (PET), magnetic resonance imaging (MRI), and contrast-enhanced computed tomography (CT) may offer additional information not otherwise available to the operator during minimally invasive image-guided procedures, such as biopsy and ablation. With use of multimodality image fusion for image-guided interventions, navigation with advanced modalities does not require the physical presence of the PET, MRI, or CT imaging system. Several commercially available methods of image-fusion and device navigation are reviewed along with an explanation of common tracking hardware and software. An overview of current clinical applications for multimodality navigation is provided.

  9. Theory and Application of Image Enhancement (United States)


    advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such...for collecting RGB data and displaying image 11205 beadbits - 0: updown m 0 11210 rowx - 3: columnx m 22: vidthlx - 58: depthx - 6: forex - 15: backx...1 11220 VIEW PRINT 2 TO 24 11230 CALL box(rowx, columnx, widthlx, depthx, forex , backx) 11240 LOCATE rowx + 1, columnx + 1: INPUT ’Type Image

  10. Wavelength- or Polarization-Selective Thermal Infrared Detectors for Multi-Color or Polarimetric Imaging Using Plasmonics and Metamaterials

    Directory of Open Access Journals (Sweden)

    Shinpei Ogawa


    Full Text Available Wavelength- or polarization-selective thermal infrared (IR detectors are promising for various novel applications such as fire detection, gas analysis, multi-color imaging, multi-channel detectors, recognition of artificial objects in a natural environment, and facial recognition. However, these functions require additional filters or polarizers, which leads to high cost and technical difficulties related to integration of many different pixels in an array format. Plasmonic metamaterial absorbers (PMAs can impart wavelength or polarization selectivity to conventional thermal IR detectors simply by controlling the surface geometry of the absorbers to produce surface plasmon resonances at designed wavelengths or polarizations. This enables integration of many different pixels in an array format without any filters or polarizers. We review our recent advances in wavelength- and polarization-selective thermal IR sensors using PMAs for multi-color or polarimetric imaging. The absorption mechanism defined by the surface structures is discussed for three types of PMAs—periodic crystals, metal-insulator-metal and mushroom-type PMAs—to demonstrate appropriate applications. Our wavelength- or polarization-selective uncooled IR sensors using various PMAs and multi-color image sensors are then described. Finally, high-performance mushroom-type PMAs are investigated. These advanced functional thermal IR detectors with wavelength or polarization selectivity will provide great benefits for a wide range of applications.

  11. Using stereoscopic imaging for visualization applications

    Energy Technology Data Exchange (ETDEWEB)

    Adelson, S.J.


    The purpose of scientific visualization is to simplify the analysis of numerical data by rendering the information as an image. Even when the image is familiar, as in the case of terrain data, preconceptions about what the image should look like and deceptive image artifacts can create misconceptions about what information is actually contained in the scene. One way of aiding the development of unambiguous visualizations is to add stereoscopic depth to the image. Despite the recent proliferation of affordable stereoscopic viewing equipment, few researchers are at this time taking advantage of stereo in their visualizations. It is generally perceived that the rendering time will have to be doubled in order to generate the pair, and so stereoscopic viewing is sacrificed in the name of expedient rendering. We show that this perception is often invalid. The second half of a stereoscopic image can be generated from the first half for a fraction of the computational cost of complete rendering, usually no more than 50% of the cost and in many cases as little as 5%. Using the techniques presented here, the benefits of stereoscopy can be added to existing visualization systems for only a small cost over current single-frame rendering methods.

  12. Mineral mapping and applications of imaging spectroscopy (United States)

    Clark, R.N.; Boardman, J.; Mustard, J.; Kruse, F.; Ong, C.; Pieters, C.; Swayze, G.A.


    Spectroscopy is a tool that has been used for decades to identify, understand, and quantify solid, liquid, or gaseous materials, especially in the laboratory. In disciplines ranging from astronomy to chemistry, spectroscopic measurements are used to detect absorption and emission features due to specific chemical bonds, and detailed analyses are used to determine the abundance and physical state of the detected absorbing/emitting species. Spectroscopic measurements have a long history in the study of the Earth and planets. Up to the 1990s remote spectroscopic measurements of Earth and planets were dominated by multispectral imaging experiments that collect high-quality images in a few, usually broad, spectral bands or with point spectrometers that obtained good spectral resolution but at only a few spatial positions. However, a new generation of sensors is now available that combines imaging with spectroscopy to create the new discipline of imaging spectroscopy. Imaging spectrometers acquire data with enough spectral range, resolution, and sampling at every pixel in a raster image so that individual absorption features can be identified and spatially mapped (Goetz et al., 1985).

  13. Body Image Disturbance in Selected Groups of Men. (United States)

    Loosemore, Douglas J.; And Others


    Examined satisfaction with body image in sample of 18 male college hockey players, 18 male college body builders, and 18 college students in a psychology class using measures of body image distortion and body image dissatisfaction. Found marked levels of distortion and dissatisfaction in body builders, but not in other two groups. (Author/ABL)

  14. Medical imaging in clinical applications algorithmic and computer-based approaches

    CERN Document Server

    Bhateja, Vikrant; Hassanien, Aboul


    This volume comprises of 21 selected chapters, including two overview chapters devoted to abdominal imaging in clinical applications supported computer aided diagnosis approaches as well as different techniques for solving the pectoral muscle extraction problem in the preprocessing part of the CAD systems for detecting breast cancer in its early stage using digital mammograms. The aim of this book is to stimulate further research in medical imaging applications based algorithmic and computer based approaches and utilize them in real-world clinical applications. The book is divided into four parts, Part-I: Clinical Applications of Medical Imaging, Part-II: Classification and clustering, Part-III: Computer Aided Diagnosis (CAD) Tools and Case Studies and Part-IV: Bio-inspiring based Computer Aided diagnosis techniques. .

  15. Current achievements of nanoparticle applications in developing optical sensing and imaging techniques (United States)

    Choi, Jong-ryul; Shin, Dong-Myeong; Song, Hyerin; Lee, Donghoon; Kim, Kyujung


    Metallic nanostructures have recently been demonstrated to improve the performance of optical sensing and imaging techniques due to their remarkable localization capability of electromagnetic fields. Particularly, the zero-dimensional nanostructure, commonly called a nanoparticle, is a promising component for optical measurement systems due to its attractive features, e.g., ease of fabrication, capability of surface modification and relatively high biocompatibility. This review summarizes the work to date on metallic nanoparticles for optical sensing and imaging applications, starting with the theoretical backgrounds of plasmonic effects in nanoparticles and moving through the applications in Raman spectroscopy and fluorescence biosensors. Various efforts for enhancing the sensitivity, selectivity and biocompatibility are summarized, and the future outlooks for this field are discussed. Convergent studies in optical sensing and imaging have been emerging field for the development of medical applications, including clinical diagnosis and therapeutic applications.

  16. Unsupervised Feature Selection Based on the Morisita Index for Hyperspectral Images (United States)

    Golay, Jean; Kanevski, Mikhail


    Hyperspectral sensors are capable of acquiring images with hundreds of narrow and contiguous spectral bands. Compared with traditional multispectral imagery, the use of hyperspectral images allows better performance in discriminating between land-cover classes, but it also results in large redundancy and high computational data processing. To alleviate such issues, unsupervised feature selection techniques for redundancy minimization can be implemented. Their goal is to select the smallest subset of features (or bands) in such a way that all the information content of a data set is preserved as much as possible. The present research deals with the application to hyperspectral images of a recently introduced technique of unsupervised feature selection: the Morisita-Based filter for Redundancy Minimization (MBRM). MBRM is based on the (multipoint) Morisita index of clustering and on the Morisita estimator of Intrinsic Dimension (ID). The fundamental idea of the technique is to retain only the bands which contribute to increasing the ID of an image. In this way, redundant bands are disregarded, since they have no impact on the ID. Besides, MBRM has several advantages over benchmark techniques: in addition to its ability to deal with large data sets, it can capture highly-nonlinear dependences and its implementation is straightforward in any programming environment. Experimental results on freely available hyperspectral images show the good effectiveness of MBRM in remote sensing data processing. Comparisons with benchmark techniques are carried out and random forests are used to assess the performance of MBRM in reducing the data dimensionality without loss of relevant information. References [1] C. Traina Jr., A.J.M. Traina, L. Wu, C. Faloutsos, Fast feature selection using fractal dimension, in: Proceedings of the XV Brazilian Symposium on Databases, SBBD, pp. 158-171, 2000. [2] J. Golay, M. Kanevski, A new estimator of intrinsic dimension based on the multipoint

  17. Magnetic particle imaging: from proof of principle to preclinical applications (United States)

    Knopp, T.; Gdaniec, N.; Möddel, M.


    Tomographic imaging has become a mandatory tool for the diagnosis of a majority of diseases in clinical routine. Since each method has its pros and cons, a variety of them is regularly used in clinics to satisfy all application needs. Magnetic particle imaging (MPI) is a relatively new tomographic imaging technique that images magnetic nanoparticles with a high spatiotemporal resolution in a quantitative way, and in turn is highly suited for vascular and targeted imaging. MPI was introduced in 2005 and now enters the preclinical research phase, where medical researchers get access to this new technology and exploit its potential under physiological conditions. Within this paper, we review the development of MPI since its introduction in 2005. Besides an in-depth description of the basic principles, we provide detailed discussions on imaging sequences, reconstruction algorithms, scanner instrumentation and potential medical applications.

  18. Infrared hyperspectral imaging miniaturized for UAV applications (United States)

    Hinnrichs, Michele; Hinnrichs, Bradford; McCutchen, Earl


    Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera, both MWIR and LWIR, small enough to serve as a payload on a miniature unmanned aerial vehicles. The optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of the sensor. This new and innovative approach to infrared hyperspectral imaging spectrometer uses micro-optics and will be explained in this paper. The micro-optics are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a mini-UAV or commercial quadcopter. Also, an example of how this technology can easily be used to quantify a hydrocarbon gas leak's volume and mass flowrates. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the spatial resolution. A 2 x 2 lenslet array will image four different spectral images of the scene each frame and when coupled with a 512 x 512 focal plane array will give spatial resolution of 256 x 256 pixel each spectral image. Another system that we developed uses a 4 x 4

  19. Imaging Systems For Application In Harsh Environments (United States)

    Grothues, H.-G.; Michaelis, H.; Behnke, T.; Bresch, W.; Koldewey, E.; Lichopoj, A.; Tschentscher, M.; Alicke, P.

    Imaging systems operating in the wavelength domain between the near UV and the mid IR (about 300 nm to > 5 (m) play a crucial role in remote sensing from orbiters and in-situ lander measurements of planetary exploration space missions. Wide-angle and high-resolution cameras, IR imagers, and imaging spectrographs provide carto- graphic information on the morphology and topography of planetary surfaces, serve to characterize landing sites with their geological features like soils and rocks, de- liver data on the spectrophotometric characteristics of minerals, and contribute to at- mospheric reasearch. Moreover, imaging systems have the important task to present scientific missions to the general public. As resources during planetary missions are usually very limited imaging payloads have to be designed to have low mass and size, low power consumption, and to effectively handle the imaging data taking into ac- count the limited computing powers, mass memories and telemetry data rates (image data compression). Furthermore, the design has to cope with extremely harsh environ- ments such as, for example, high and very low temperatures, large temperature varia- tions and gradients, high mechanical loads (shocks), e.g. during landing on a planetary surface, a hostile particle radiation environment, and dusty or chemically aggressive atmospheres. The presentation discusses the requirements to be set up for planetary mission imaging systems, and gives an overview of the most important design mea- sures to be taken in order to be compliant with these requirements (e.g. miniatur- ization of electronics, light-weight materials, athermal and radiation tolerant design). The discussion comprises all subunits of imaging systems starting with the optics / the spectrograph and the detector unit, continuing with the data processing unit, and ending with peripheral equipment like e.g. drives, deployable booms, and illumina- tion devices for lander cameras. Examples are given of already

  20. PET/MR Imaging in Head and Neck Cancer: Current Applications and Future Directions. (United States)

    Galgano, Samuel J; Marshall, Ryan V; Middlebrooks, Erik H; McConathy, Jonathan E; Bhambhvani, Pradeep


    Clinical PET/MR imaging is being implemented at institutions worldwide as part of the standard-of-care imaging for select oncology patients. This article focuses on oncologic applications of PET/MR imaging in cancers of the head and neck. Although current published literature is relatively sparse, the potential benefits of a hybrid modality of PET/MR imaging are discussed along with several possible areas of research. With the increasing number of PET/MR imaging scanners in clinical use and ongoing research, the role of PET/MR imaging in the management of head and neck cancer is likely to become more evident in the near future. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A mobile medical QR-code authentication system and its automatic FICE image evaluation application

    Directory of Open Access Journals (Sweden)

    Yi-Ying Chang


    Full Text Available This paper presents an adaptive imaging technique run on a mobile service system for endoscopic image enhancement by using color transform and Gray Level Co-occurrence Matrices (GLCM for a single input endoscopy image. The method is simply deal with the color image channels combination which chose the maximum scalar values of red, green and blue channel images, respectively. The GLCM subsequently applied for selecting the highest contrast and entropy images of the expanding image series. The enhanced endoscopy image is generated by fusing of the color, contrast and entropy images. We also proposed a service system with medical image retrieval application via quick response code authentication based on the Android operating system, which helps clinicians convenient in using mobile phone and reviewing images of the patient with cost efficiency. For the mobile technologies are growing rapidly, the mobile service system is installed to connect a Picture Archive and Communication Systems (PACS system in hospital and applied for automatic evaluation of colon images screening. The experimental results show the proposed system is efficient for observing gastrointestinal tract polyp. The performance is evaluated and compared with Fujinon intelligent chromo endoscopy enhanced method.

  2. Multimodal imaging of bone metastases: From preclinical to clinical applications

    Directory of Open Access Journals (Sweden)

    Stephan Ellmann


    Full Text Available Metastases to the skeletal system are commonly observed in cancer patients, highly affecting the patients' quality of life. Imaging plays a major role in detection, follow-up, and molecular characterisation of metastatic disease. Thus, imaging techniques have been optimised and combined in a multimodal and multiparametric manner for assessment of complementary aspects in osseous metastases. This review summarises both application of the most relevant imaging techniques for bone metastasis in preclinical models and the clinical setting.

  3. Application of image processing technology in yarn hairiness detection


    Zhang, Guohong; Binjie XIN


    Digital image processing technology is one of the new methods for yarn detection, which can realize the digital characterization and objective evaluation of yarn appearance. This paper overviews the current status of development and application of digital image processing technology used for yarn hairiness evaluation, and analyzes and compares the traditional detection methods and this new developed method. Compared with the traditional methods, the image processing technology based method is...

  4. Trace metal imaging with high spatial resolution: Applications in biomedicine


    Qin, Z.; Caruso, J A; B. Lai; Matusch, A.; Becker, J. S.


    New generations of analytical techniques for imaging of metals are pushing hitherto boundaries of spatial resolution and quantitative analysis in biology. Because of this, the application of these imaging techniques described herein to the study of the organization and dynamics of metal cations and metal-containing biomolecules in biological cell and tissue is becoming an important issue in biomedical research. In the current review, three common metal imaging techniques in biomedical researc...

  5. Image binarization algorithm using GPU for woodworking industry applications (United States)

    Petrov, A.; Pelevin, V.


    Application of GPU for improving performance of image preprocessing is considered. The task was to measure radius of a log's moving on conveyor for further processing planning. Input data were the images received from three cameras, which supposed to be processed at a moderately high framerate. The paper describes how GPU may be utilized to increase performance of image preprocessing. Obtained results show preferred method of processing.

  6. Optimizing signal and image processing applications using Intel libraries (United States)

    Landré, Jérôme; Truchetet, Frédéric


    This paper presents optimized signal and image processing libraries from Intel Corporation. Intel Performance Primitives (IPP) is a low-level signal and image processing library developed by Intel Corporation to optimize code on Intel processors. Open Computer Vision library (OpenCV) is a high-level library dedicated to computer vision tasks. This article describes the use of both libraries to build flexible and efficient signal and image processing applications.

  7. Medical Image Registration Guided by Application-Specific Geometry

    NARCIS (Netherlands)

    Berendsen, F.F.


    Image registration is an important task in medical image processing. Among its applications are inter-patient registration to perform segmentation of organs, registration of follow-up scans to propagate the in tissue accumulated radiation dose of a radiotherapy, and registration to perform

  8. VIS/NIR imaging application for honey floral origin determination

    NARCIS (Netherlands)

    Minaei, Saeid; Shafiee, Sahameh; Polder, Gerrit; Moghadam-Charkari, Nasrolah; Ruth, van Saskia; Barzegar, Mohsen; Zahiri, Javad; Alewijn, Martin; Kuś, Piotr M.


    Nondestructive methods are of utmost importance for honey characterization. This study investigates the potential application of VIS-NIR hyperspectral imaging for detection of honey flower origin using machine learning techniques. Hyperspectral images of 52 honey samples were taken in

  9. Neural networks: Application to medical imaging (United States)

    Clarke, Laurence P.


    The research mission is the development of computer assisted diagnostic (CAD) methods for improved diagnosis of medical images including digital x-ray sensors and tomographic imaging modalities. The CAD algorithms include advanced methods for adaptive nonlinear filters for image noise suppression, hybrid wavelet methods for feature segmentation and enhancement, and high convergence neural networks for feature detection and VLSI implementation of neural networks for real time analysis. Other missions include (1) implementation of CAD methods on hospital based picture archiving computer systems (PACS) and information networks for central and remote diagnosis and (2) collaboration with defense and medical industry, NASA, and federal laboratories in the area of dual use technology conversion from defense or aerospace to medicine.

  10. Nuclear cardiac imaging: Principles and applications

    Energy Technology Data Exchange (ETDEWEB)

    Iskandrian, A.S.


    This book is divided into 11 chapters. The first three provide a short description of the instrumentation, radiopharmaceuticals, and imaging techniques used in nuclear cardiology. Chapter 4 discusses exercise testing. Chapter 5 gives the theory, technical aspects, and interpretations of thallium-201 myocardial imaging and radionuclide ventriculography. The remaining chapters discuss the use of these techniques in patients with coronary artery disease, acute myocardial infarction, valvular heart disease, and other forms of cardiac disease. The author intended to emphasize the implications of nuclear cardiology procedures on patient care management and to provide a comprehensive bibliography.

  11. MEM application to IRAS CPC images (United States)

    Marston, A. P.


    A method for applying the Maximum Entropy Method (MEM) to Chopped Photometric Channel (CPC) IRAS additional observations is illustrated. The original CPC data suffered from problems with repeatability which MEM is able to cope with by use of a noise image, produced from the results of separate data scans of objects. The process produces images of small areas of sky with circular Gaussian beams of approximately 30 in. full width half maximum resolution at 50 and 100 microns. Comparison is made to previous reconstructions made in the far-infrared as well as morphologies of objects at other wavelengths. Some projects with this dataset are discussed.

  12. Free and open-source software application for the evaluation of coronary computed tomography angiography images. (United States)

    Hadlich, Marcelo Souza; Oliveira, Gláucia Maria Moraes; Feijóo, Raúl A; Azevedo, Clerio F; Tura, Bernardo Rangel; Ziemer, Paulo Gustavo Portela; Blanco, Pablo Javier; Pina, Gustavo; Meira, Márcio; Souza e Silva, Nelson Albuquerque de


    The standardization of images used in Medicine in 1993 was performed using the DICOM (Digital Imaging and Communications in Medicine) standard. Several tests use this standard and it is increasingly necessary to design software applications capable of handling this type of image; however, these software applications are not usually free and open-source, and this fact hinders their adjustment to most diverse interests. To develop and validate a free and open-source software application capable of handling DICOM coronary computed tomography angiography images. We developed and tested the ImageLab software in the evaluation of 100 tests randomly selected from a database. We carried out 600 tests divided between two observers using ImageLab and another software sold with Philips Brilliance computed tomography appliances in the evaluation of coronary lesions and plaques around the left main coronary artery (LMCA) and the anterior descending artery (ADA). To evaluate intraobserver, interobserver and intersoftware agreements, we used simple and kappa statistics agreements. The agreements observed between software applications were generally classified as substantial or almost perfect in most comparisons. The ImageLab software agreed with the Philips software in the evaluation of coronary computed tomography angiography tests, especially in patients without lesions, with lesions 70% in the ADA was lower, but this is also observed when the anatomical reference standard is used.

  13. SU-C-209-05: Monte Carlo Model of a Prototype Backscatter X-Ray (BSX) Imager for Projective and Selective Object-Plane Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rolison, L; Samant, S; Baciak, J; Jordan, K [University of Florida, Gainesville, FL (United States)


    Purpose: To develop a Monte Carlo N-Particle (MCNP) model for the validation of a prototype backscatter x-ray (BSX) imager, and optimization of BSX technology for medical applications, including selective object-plane imaging. Methods: BSX is an emerging technology that represents an alternative to conventional computed tomography (CT) and projective digital radiography (DR). It employs detectors located on the same side as the incident x-ray source, making use of backscatter and avoiding ring geometry to enclose the imaging object. Current BSX imagers suffer from low spatial resolution. A MCNP model was designed to replicate a BSX prototype used for flaw detection in industrial materials. This prototype consisted of a 1.5mm diameter 60kVp pencil beam surrounded by a ring of four 5.0cm diameter NaI scintillation detectors. The imaging phantom consisted of a 2.9cm thick aluminum plate with five 0.6cm diameter holes drilled halfway. The experimental image was created using a raster scanning motion (in 1.5mm increments). Results: A qualitative comparison between the physical and simulated images showed very good agreement with 1.5mm spatial resolution in plane perpendicular to incident x-ray beam. The MCNP model developed the concept of radiography by selective plane detection (RSPD) for BSX, whereby specific object planes can be imaged by varying kVp. 10keV increments in mean x-ray energy yielded 4mm thick slice resolution in the phantom. Image resolution in the MCNP model can be further increased by increasing the number of detectors, and decreasing raster step size. Conclusion: MCNP modelling was used to validate a prototype BSX imager and introduce the RSPD concept, allowing for selective object-plane imaging. There was very good visual agreement between the experimental and MCNP imaging. Beyond optimizing system parameters for the existing prototype, new geometries can be investigated for volumetric image acquisition in medical applications. This material is

  14. Terahertz Imaging for Biomedical Applications Pattern Recognition and Tomographic Reconstruction

    CERN Document Server

    Yin, Xiaoxia; Abbott, Derek


    Terahertz Imaging for Biomedical Applications: Pattern Recognition and Tomographic Reconstruction presents the necessary algorithms needed to assist screening, diagnosis, and treatment, and these algorithms will play a critical role in the accurate detection of abnormalities present in biomedical imaging. Terahertz biomedical imaging has become an area of interest due to its ability to simultaneously acquire both image and spectral information. Terahertz imaging systems are being commercialized with an increasing number of trials performed in a biomedical setting. Terahertz tomographic imaging and detection technology contributes to the ability to identify opaque objects with clear boundaries,and would be useful to both in vivo and ex vivo environments. This book also: Introduces terahertz radiation techniques and provides a number of topical examples of signal and image processing, as well as machine learning Presents the most recent developments in an emerging field, terahertz radiation Utilizes new methods...

  15. On the Image Watermarking Techniques Applications, Properties ...

    African Journals Online (AJOL)

    Abstract:With the coming and the expansion of the World Wide Web an increased amount of digital information, such as documents, images audio and video ... for copyright protection and a considerable interest in methods for inserting in a multimedia document a visible, or preferably invisible, mark to identify the owner.

  16. Wavelets: Applications to Image Compression-II

    Indian Academy of Sciences (India)

    discussions on non-unifornl quantizers, interested read- ers can refer [3]. Entropy Encoder. This is the last component in the compression model. Till now, we have devised models for an alternate repre- sentation of the image, in which its interpixel redundan- cies were reduced. This last model, which is a loss less technique ...

  17. Infrared scanning images: an archeological application. (United States)

    Schaber, G G; Gumerman, G J


    Aerial infrared scanner images of an area near the Little Colorado River in north-central Arizona disclosed the existence of scattered clusters of parallel linear features in the ashfall area of Sunset Crater. The features are not obvious in conventional aerial photographs, and only one cluster could be recognized on the ground. Soil and pollen analyses reveal that they are prehistoric agricultural plots.

  18. Quantum Imaging: New Methods and Applications (United States)


    higher-nonlinearity, periodically- poled 2nd-order nonlinear crystals (lithium niobate and potassium titanyl phosphate) together with off-the-shelf high...imaging for multi- layered and scattering media. Dispersion cancellation has been demonstrated experimentally. In conjunction with this, a method for

  19. Application of reinforcement learning for segmentation of transrectal ultrasound images. (United States)

    Sahba, Farhang; Tizhoosh, Hamid R; Salama, Magdy M A


    Among different medical image modalities, ultrasound imaging has a very widespread clinical use. But, due to some factors, such as poor image contrast, noise and missing or diffuse boundaries, the ultrasound images are inherently difficult to segment. An important application is estimation of the location and volume of the prostate in transrectal ultrasound (TRUS) images. For this purpose, manual segmentation is a tedious and time consuming procedure. We introduce a new method for the segmentation of the prostate in transrectal ultrasound images, using a reinforcement learning scheme. This algorithm is used to find the appropriate local values for sub-images and to extract the prostate. It contains an offline stage, where the reinforcement learning agent uses some images and manually segmented versions of these images to learn from. The reinforcement agent is provided with reward/punishment, determined objectively to explore/exploit the solution space. After this stage, the agent has acquired knowledge stored in the Q-matrix. The agent can then use this knowledge for new input images to extract a coarse version of the prostate. We have carried out experiments to segment TRUS images. The results demonstrate the potential of this approach in the field of medical image segmentation. By using the proposed method, we can find the appropriate local values and segment the prostate. This approach can be used for segmentation tasks containing one object of interest. To improve this prototype, more investigations are needed.

  20. Application of reinforcement learning for segmentation of transrectal ultrasound images

    Directory of Open Access Journals (Sweden)

    Tizhoosh Hamid R


    Full Text Available Abstract Background Among different medical image modalities, ultrasound imaging has a very widespread clinical use. But, due to some factors, such as poor image contrast, noise and missing or diffuse boundaries, the ultrasound images are inherently difficult to segment. An important application is estimation of the location and volume of the prostate in transrectal ultrasound (TRUS images. For this purpose, manual segmentation is a tedious and time consuming procedure. Methods We introduce a new method for the segmentation of the prostate in transrectal ultrasound images, using a reinforcement learning scheme. This algorithm is used to find the appropriate local values for sub-images and to extract the prostate. It contains an offline stage, where the reinforcement learning agent uses some images and manually segmented versions of these images to learn from. The reinforcement agent is provided with reward/punishment, determined objectively to explore/exploit the solution space. After this stage, the agent has acquired knowledge stored in the Q-matrix. The agent can then use this knowledge for new input images to extract a coarse version of the prostate. Results We have carried out experiments to segment TRUS images. The results demonstrate the potential of this approach in the field of medical image segmentation. Conclusion By using the proposed method, we can find the appropriate local values and segment the prostate. This approach can be used for segmentation tasks containing one object of interest. To improve this prototype, more investigations are needed.

  1. Machine Learning in Radiology: Applications Beyond Image Interpretation. (United States)

    Lakhani, Paras; Prater, Adam B; Hutson, R Kent; Andriole, Kathy P; Dreyer, Keith J; Morey, Jose; Prevedello, Luciano M; Clark, Toshi J; Geis, J Raymond; Itri, Jason N; Hawkins, C Matthew


    Much attention has been given to machine learning and its perceived impact in radiology, particularly in light of recent success with image classification in international competitions. However, machine learning is likely to impact radiology outside of image interpretation long before a fully functional "machine radiologist" is implemented in practice. Here, we describe an overview of machine learning, its application to radiology and other domains, and many cases of use that do not involve image interpretation. We hope that better understanding of these potential applications will help radiology practices prepare for the future and realize performance improvement and efficiency gains. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  2. Real Time Fast Ultrasound Imaging Technology and Possible Applications (United States)

    Cruza, J. F.; Perez, M.; Moreno, J. M.; Fritsch, C.

    In this work, a novel hardware architecture for fast ultrasound imaging based on FPGA devices is proposed. A key difference over other approaches is the unlimited scalability in terms of active channels without performance losses. Acquisition and processing tasks share the same hardware, eliminating communication bottlenecks with smaller size and power losses. These features make this system suitable to implement the most demanding imaging applications, like 3D Phased Array, Total Focusing Method, Vector Doppler, Image Compounding, High Speed Part Scanning and advanced elastographic techniques. A single medium sized FPGA allows beamforming up to 200 scan lines simultaneously, which is enough to perform most of the above mentioned applications in strict real time.

  3. Trivariate Probit with Double Sample Selection: Theory and Application


    Víctor Gerardo Carreón Rodríguez; Jorge L. García García-Menéndez


    We develop the trivariate probit model in which the sample incidentally truncates twice —i.e. in the first and in the second equations—, which is not solved in the literature. The model is analogue to the so called Bivariate Probit with Sample Selection (also referred as Bivariate Probit with Partial Partial Observabilty, Censored Probit or Heckman Probit) but in this case there are three equations and two truncations. We also present an application that shows the estimation biases when the i...

  4. Longwave Imaging for Astronomical Applications Project (United States)

    National Aeronautics and Space Administration — We propose to develop a compact portable longwave camera for astronomical applications. In Phase 1, we will develop and deliver the focal plane array (FPA) - a...

  5. Longwave Imaging for Astronomical Applications Project (United States)

    National Aeronautics and Space Administration — We propose to develop a compact portable longwave camera for astronomical applications. In Phase 1, we successfully developed the eye of the camera, i.e. the focal...

  6. Integrating Web Services into Map Image Applications

    National Research Council Canada - National Science Library

    Tu, Shengru


    Web services have been opening a wide avenue for software integration. In this paper, we have reported our experiments with three applications that are built by utilizing and providing web services for Geographic Information Systems (GIS...

  7. Fiber optic probe for region of interest (ROI) selective time averaged multi-fluorescence imaging (United States)

    Shinde, Anant; Perinchery, Sandeep M.; Murukeshan, V. M.


    Time averaged imaging is one of the widely used methods to achieve improved image quality, used in different types of microscopic methods. Time averaged imaging refers to adjusting the exposure time of the imaging system to obtain optimal images. In state of the art microscopes, the region of interest (ROI) of illumination beam for time averaged imaging can be selected to be of regular shapes such as circle or rectangle. This forces smallest possible ROI to be larger than the actual sample's ROI which can be of a specific shape with complex contours. In this context, we present a flexible fiber bundle based illumination probe capable of illuminating samples of irregular shapes for time averaged imaging. Further, this probe is capable of multi-wavelength illumination, hence can be used for multi-fluorescence imaging. The fiber probe with features such as region selective and multi- wavelength illumination allows it to be used for optimal imaging of multi-fluorescence sample.

  8. Image classification by multi-instance learning with base sample selection (United States)

    Pan, Qiang; Zhang, Gang; Zhang, Xiao-Yan; Huang, Zhi-Ming; Xiong, Jie


    We propose a similarity-based learning style algorithm by regarding each image as a multi-instance (MI) sample for image classification. An image featured as vectorial representation interesting regions is transferred to a MI sample. Then a similarity like matrix is constructed using MI kernel between given images and some carefully selected base images, as the new representation of given images. Three selection strategies are proposed to build the base images set to find an optimal solution. A Weka implementation decision tree is used as the main learner in this paper. Experiments on image data repository ALOI and Corel Image 2000 show the effectiveness of the proposed algorithm compared to some previous based line methods.

  9. AHP Methodology Application in Garage-parking Facility Location Selection

    Directory of Open Access Journals (Sweden)

    Aleksandra Deluka-Tibljaš


    Full Text Available The paper deals with the selection of traffic infrastructure facility location by applying the AHP (Analytic Hierarchy Process multi-criteria analysis methodology. The proposed methodology is applied in a case study to solve the problem of selecting a location for the garage-parking facility in the town of defined characteristics. The paper analyses the characteristics of five potential locations (alternatives, the selection of criteria and measures for assessing the alternatives and presents the input data preparation, the application of the selected method and the analysis results. All the relevant criteria for the analyses were included: the traffic, the economic criteria and those which nowadays are of great significance: the influence of the facility on the environment and the social criteria which is in accordance with the sustainable development principles. The goal of the paper is to present the procedure of the AHP method application on the complex issue of traffic planning and to confirm the adequacy of the chosen method on the traffic facility strategic planning.

  10. Semantic sparse recoding of visual content for image applications. (United States)

    Lu, Zhiwu; Han, Peng; Wang, Liwei; Wen, Ji-Rong


    This paper presents a new semantic sparse recoding method to generate more descriptive and robust representation of visual content for image applications. Although the visual bag-of-words (BOW) representation has been reported to achieve promising results in different image applications, its visual codebook is completely learnt from low-level visual features using quantization techniques and thus the so-called semantic gap remains unbridgeable. To handle such challenging issue, we utilize the annotations (predicted by algorithms or shared by users) of all the images to improve the original visual BOW representation. This is further formulated as a sparse coding problem so that the noise issue induced by the inaccurate quantization of visual features can also be handled to some extent. By developing an efficient sparse coding algorithm, we successfully generate a new visual BOW representation for image applications. Since such sparse coding has actually incorporated the high-level semantic information into the original visual codebook, we thus consider it as semantic sparse recoding of the visual content. Finally, we apply our semantic sparse recoding method to automatic image annotation and social image classification. The experimental results on several benchmark datasets show the promising performance of our semantic sparse recoding method in these two image applications.

  11. Image and video compression fundamentals, techniques, and applications

    CERN Document Server

    Joshi, Madhuri A; Dandawate, Yogesh H; Joshi, Kalyani R; Metkar, Shilpa P


    Image and video signals require large transmission bandwidth and storage, leading to high costs. The data must be compressed without a loss or with a small loss of quality. Thus, efficient image and video compression algorithms play a significant role in the storage and transmission of data.Image and Video Compression: Fundamentals, Techniques, and Applications explains the major techniques for image and video compression and demonstrates their practical implementation using MATLAB® programs. Designed for students, researchers, and practicing engineers, the book presents both basic principles

  12. Digital signal processing techniques and applications in radar image processing

    CERN Document Server

    Wang, Bu-Chin


    A self-contained approach to DSP techniques and applications in radar imagingThe processing of radar images, in general, consists of three major fields: Digital Signal Processing (DSP); antenna and radar operation; and algorithms used to process the radar images. This book brings together material from these different areas to allow readers to gain a thorough understanding of how radar images are processed.The book is divided into three main parts and covers:* DSP principles and signal characteristics in both analog and digital domains, advanced signal sampling, and

  13. Applications of magnetic resonance image segmentation in neurology (United States)

    Heinonen, Tomi; Lahtinen, Antti J.; Dastidar, Prasun; Ryymin, Pertti; Laarne, Paeivi; Malmivuo, Jaakko; Laasonen, Erkki; Frey, Harry; Eskola, Hannu


    After the introduction of digital imagin devices in medicine computerized tissue recognition and classification have become important in research and clinical applications. Segmented data can be applied among numerous research fields including volumetric analysis of particular tissues and structures, construction of anatomical modes, 3D visualization, and multimodal visualization, hence making segmentation essential in modern image analysis. In this research project several PC based software were developed in order to segment medical images, to visualize raw and segmented images in 3D, and to produce EEG brain maps in which MR images and EEG signals were integrated. The software package was tested and validated in numerous clinical research projects in hospital environment.

  14. Bayesian image reconstruction: Application to emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, J.; Llacer, J.


    In this paper we propose a Maximum a Posteriori (MAP) method of image reconstruction in the Bayesian framework for the Poisson noise case. We use entropy to define the prior probability and likelihood to define the conditional probability. The method uses sharpness parameters which can be theoretically computed or adjusted, allowing us to obtain MAP reconstructions without the problem of the grey'' reconstructions associated with the pre Bayesian reconstructions. We have developed several ways to solve the reconstruction problem and propose a new iterative algorithm which is stable, maintains positivity and converges to feasible images faster than the Maximum Likelihood Estimate method. We have successfully applied the new method to the case of Emission Tomography, both with simulated and real data. 41 refs., 4 figs., 1 tab.

  15. Applications of molecular MRI and optical imaging in cancer. (United States)

    Penet, Marie-France; Mikhaylova, Maria; Li, Cong; Krishnamachary, Balaji; Glunde, Kristine; Pathak, Arvind P; Bhujwalla, Zaver M


    Some of the most exciting advances in molecular-functional imaging of cancer are occurring at the interface between chemistry and imaging. Several of these advances have occurred through the development of novel imaging probes that report on molecular pathways, the tumor micro-environment and the response of tumors to treatment; as well as through novel image-guided platforms such as nanoparticles and nanovesicles that deliver therapeutic agents against specific targets and pathways. Cancer cells have a remarkable ability to evade destruction despite the armamentarium of drugs currently available. While these drugs can destroy cancer cells, normal tissue toxicity is a major limiting factor, a problem further compounded by poor drug delivery. One major challenge for chemistry continues to be to eliminate cancer cells without damaging normal tissues. Here we have selected examples of MRI and optical imaging, to demonstrate how integrating imaging with novel probes can facilitate the successful treatment of this multifaceted disease.

  16. Uncooled thermal imaging sensor for UAV applications (United States)

    Cochrane, Derick M.; Manning, Paul A.; Wyllie, Tim A.


    Research by DERA aimed at unmanned air vehicle (UAV) size reduction and control automation has led to a unique solution for a short range reconnaissance UAV system. Known as OBSERVER, the UAV conventionally carries a lightweight visible band sensor payload producing imagery with a large 40°x90° field of regard (FOR) to maximize spatial awareness and target detection ranges. Images taken from three CCD camera units set at elevations from plan view and up to the near horizon and are 'stitched' together to produce the large contiguous sensor footprint. This paper describes the design of a thermal imaging (TI) sensor which has been developed to be compatible with the OBSERVER UAV system. The sensor is based on UK uncooled thermal imaging technology research and offers a compact and lightweight solution operating in the 8-12 μm waveband without the need for cryogenic cooling. Infra-red radiation is gathered using two lead scandium tantalate (PST) hybrid thermal detectors each with a 384 X 288 pixel resolution, known as the Very Large Array (VLA). The TI system is designed to maintain the imaging format with that of the visible band sensor. In order to practically achieve this with adequate resolution performance, a dual field of view (FOV) optical system is used within a pitchable gimbal. This combines the advantages of a wide angle 40°x30° FOV for target detection and a narrow angle 13°x10° FOV 'foveal patch' to improve target recognition ranges. The gimbal system can be steered in elevation to give the full 90° coverage as with the visible band sensor footprint. The concept of operation is that targets can be detected over the large FOV and then the air vehicle is maneuvered so as to bring the target into the foveal patch view for recognition at an acceptable stand-off range.

  17. Clinical application of brain imaging for the diagnosis of mood disorders: the current state of play. (United States)

    Savitz, J B; Rauch, S L; Drevets, W C


    In response to queries about whether brain imaging technology has reached the point where it is useful for making a clinical diagnosis and for helping to guide treatment selection, the American Psychiatric Association (APA) has recently written a position paper on the Clinical Application of Brain Imaging in Psychiatry. The following perspective piece is based on our contribution to this APA position paper, which specifically emphasized the application of neuroimaging in mood disorders. We present an introductory overview of the challenges faced by researchers in developing valid and reliable biomarkers for psychiatric disorders, followed by a synopsis of the extant neuroimaging findings in mood disorders, and an evidence-based review of the current research on brain imaging biomarkers in adult mood disorders. Although there are a number of promising results, by the standards proposed below, we argue that there are currently no brain imaging biomarkers that are clinically useful for establishing diagnosis or predicting treatment outcome in mood disorders.

  18. Reconstruction of a ring applicator using CT imaging: impact of the reconstruction method and applicator orientation

    DEFF Research Database (Denmark)

    Hellebust, Taran Paulsen; Tanderup, Kari; Bergstrand, Eva Stabell


    in multiplanar reconstructed images (MPR) and (3) library plans, using pre-defined applicator geometry (LIB). The doses to the lead pellets were calculated. The relative standard deviation (SD) for all reconstruction methods was less than 3.7% in the dose points. The relative SD for the LIB method...... applicator set and six lead pellets representing dose points, was used. The phantom was CT scanned with the ring applicator at four different angles related to the image plane. In each scan the applicator was reconstructed by three methods: (1) direct reconstruction in each image (DR), (2) reconstruction...

  19. Wavelets: Applications to Image Compression-I

    Indian Academy of Sciences (India)

    nal (global phenomenon) after reconstruction. This ef- fect is called Gibbs' phenomenon. Its ill-effects become obvious, if the selected threshold introduces large errors, which will eventually corrupt the entire signal. In case of DWT, we get the so called time-frequency lo- calization. Consider the (1,1) element of the low pass.

  20. CuO-PANI nanostructure with tunable spectral selectivity for solar selective coating application

    Energy Technology Data Exchange (ETDEWEB)

    Cindrella, L., E-mail:; Prabhu, S., E-mail:


    Highlights: • CuO-PANI nanostructure has been reported as the solar selective absorber coating. • Solar selectivity and efficiency of the coatings have been evaluated. • PANI provides a surface texture favourable for multiple reflection. - Abstract: CuO-PANI nanostructure has been demonstrated as the solar selective absorber coating for the first time. The effortless chemical methods and easily scalable techniques such as precipitation, in-situ polymerization and spray coating were adopted for the fabrication of CuO nanorods and CuO-PANI nanostructures for solar application. The synthesis was carried out without using any template. The morphology and phase structure of fabricated CuO nanorods and CuO-PANI nanostructure coatings were studied by atomic force microscopy, scanning electron microscopy and X-ray diffraction analysis. The energy dispersive X-ray spectra and elemental mapping confirm the presence of the chosen elements in the nanostructure. The solar absorptance (α{sub s}), thermal emittance (ε{sub t}) and selectivity (ξ) of the nanostructure coatings on glass substrate were optimized to 0.94, 0.01 and 94 respectively by changing the polyaniline content on the surface of the CuO nanorods. The efficiency of the solar selective coatings were evaluated. The optimized solar absorber coating of CuO-PANI nanostructure is highly promising for its selective optical properties.

  1. Aliphatic polyesters for medical imaging and theranostic applications. (United States)

    Nottelet, Benjamin; Darcos, Vincent; Coudane, Jean


    Medical imaging is a cornerstone of modern medicine. In that context the development of innovative imaging systems combining biomaterials and contrast agents (CAs)/imaging probes (IPs) for improved diagnostic and theranostic applications focuses intense research efforts. In particular, the classical aliphatic (co)polyesters poly(lactide) (PLA), poly(lactide-co-glycolide) (PLGA) and poly(ɛ-caprolactone) (PCL), attract much attention due to their long track record in the medical field. This review aims therefore at providing a state-of-the-art of polyester-based imaging systems. In a first section a rapid description of the various imaging modalities, including magnetic resonance imaging (MRI), optical imaging, computed tomography (CT), ultrasound (US) and radionuclide imaging (SPECT, PET) will be given. Then, the two main strategies used to combine the CAs/IPs and the polyesters will be discussed. In more detail we will first present the strategies relying on CAs/IPs encapsulation in nanoparticles, micelles, dendrimers or capsules. We will then present chemical modifications of polyesters backbones and/or polyester surfaces to yield macromolecular imaging agents. Finally, opportunities offered by these innovative systems will be illustrated with some recent examples in the fields of cell labeling, diagnostic or theranostic applications and medical devices. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Advances in computer imaging/applications in facial plastic surgery. (United States)

    Papel, I D; Jiannetto, D F


    Rapidly progressing computer technology, ever-increasing expectations of patients, and a confusing medicolegal environment requires a clarification of the role of computer imaging/applications. Advances in computer technology and its applications are reviewed. A brief historical discussion is included for perspective. Improvements in both hardware and software with the advent of digital imaging have allowed great increases in speed and accuracy in patient imaging. This facilitates doctor-patient communication and possibly realistic patient expectations. Patients seeking cosmetic surgery now often expect preoperative imaging. Although society in general has become more litigious, a literature search up to 1998 reveals no lawsuits directly involving computer imaging. It appears that conservative utilization of computer imaging by the facial plastic surgeon may actually reduce liability and promote communication. Recent advances have significantly enhanced the value of computer imaging in the practice of facial plastic surgery. These technological advances in computer imaging appear to contribute a useful technique for the practice of facial plastic surgery. Inclusion of computer imaging should be given serious consideration as an adjunct to clinical practice.

  3. Covariance-based band selection and its application to near-real-time hyperspectral target detection (United States)

    Kim, Jun-Hyung; Kim, Jieun; Yang, Yukyung; Kim, Sohyun; Kim, Hyun Sook


    The matched filter (MF) and adaptive coherence estimator (ACE) show great effectiveness in hyperspectral target detection applications. Practical applications in which on-board processing is generally required demand real-time or near-real-time implementation of these detectors. However, a vast amount of hyperspectral data may make real-time or near-real-time implementation of the detection algorithms almost impossible. Band selection can be one of the solutions to this problem by reducing the number of spectral bands. We propose a new band selection method that prioritizes spectral bands based on their influence on the detection performance of the MF and ACE and discards the least influential bands. We validate the performance of our method using real hyperspectral images. We also demonstrate our technique on near-real-time detection tasks and show it to be a feasible approach to the tasks.

  4. MATLAB-based Applications for Image Processing and Image Quality Assessment – Part II: Experimental Results

    Directory of Open Access Journals (Sweden)

    L. Krasula


    Full Text Available The paper provides an overview of some possible usage of the software described in the Part I. It contains the real examples of image quality improvement, distortion simulations, objective and subjective quality assessment and other ways of image processing that can be obtained by the individual applications.

  5. Time-Encoded Neutron Imaging for Applications in Nuclear Security (United States)

    Brubaker, Erik; Brennan, James; Gerling, Mark; Marleau, Peter; Monterial, Mateusz; Nowack, Aaron; Schuster, Patricia; Sturm, Ben; Sweany, Melinda


    Time-encoded imaging (TEI) refers to a class of techniques that extract directional information from a radiation field by inducing a time modulation in a detected particle flux. These approaches are in many ways analogous to pinhole and coded aperture imaging, in which a spatial modulation rather than a time modulation is induced. TEI is particularly useful for imaging energetic particle radiation such as gamma rays and fission-energy neutrons, which cannot be easily lensed. We developed TEI-based neutron imaging systems for two classes of nuclear security applications. First, high-resolution neutron emission imaging of distributed neutron sources was demonstrated with a single-pixel TEI imager. Second, long standoff source detection via a neutron signature was accomplished using a large-area, self-modulating TEI system. We demonstrate the ability to detect a 1 mCi Cf-252 source at 100 m standoff in 12 minutes.

  6. High speed global shutter image sensors for professional applications (United States)

    Wu, Xu; Meynants, Guy


    Global shutter imagers expand the use to miscellaneous applications, such as machine vision, 3D imaging, medical imaging, space etc. to eliminate motion artifacts in rolling shutter imagers. A low noise global shutter pixel requires more than one non-light sensitive memory to reduce the read noise. But larger memory area reduces the fill-factor of the pixels. Modern micro-lenses technology can compensate this fill-factor loss. Backside illumination (BSI) is another popular technique to improve the pixel fill-factor. But some pixel architecture may not reach sufficient shutter efficiency with backside illumination. Non-light sensitive memory elements make the fabrication with BSI possible. Machine vision like fast inspection system, medical imaging like 3D medical or scientific applications always ask for high frame rate global shutter image sensors. Thanks to the CMOS technology, fast Analog-to-digital converters (ADCs) can be integrated on chip. Dual correlated double sampling (CDS) on chip ADC with high interface digital data rate reduces the read noise and makes more on-chip operation control. As a result, a global shutter imager with digital interface is a very popular solution for applications with high performance and high frame rate requirements. In this paper we will review the global shutter architectures developed in CMOSIS, discuss their optimization process and compare their performances after fabrication.

  7. Distributed computing in image analysis using open source frameworks and application to image sharpness assessment of histological whole slide images. (United States)

    Zerbe, Norman; Hufnagl, Peter; Schlüns, Karsten


    Automated image analysis on virtual slides is evolving rapidly and will play an important role in the future of digital pathology. Due to the image size, the computational cost of processing whole slide images (WSIs) in full resolution is immense. Moreover, image analysis requires well focused images in high magnification. We present a system that merges virtual microscopy techniques, open source image analysis software, and distributed parallel processing. We have integrated the parallel processing framework JPPF, so batch processing can be performed distributed and in parallel. All resulting meta data and image data are collected and merged. As an example the system is applied to the specific task of image sharpness assessment. ImageJ is an open source image editing and processing framework developed at the NIH having a large user community that contributes image processing algorithms wrapped as plug-ins in a wide field of life science applications. We developed an ImageJ plug-in that supports both basic interactive virtual microscope and batch processing functionality. For the application of sharpness inspection we employ an approach with non-overlapping tiles. Compute nodes retrieve image tiles of moderate size from the streaming server and compute the focus measure. Each tile is divided into small sub images to calculate an edge based sharpness criterion which is used for classification. The results are aggregated in a sharpness map. Based on the system we calculate a sharpness measure and classify virtual slides into one of the following categories - excellent, okay, review and defective. Generating a scaled sharpness map enables the user to evaluate sharpness of WSIs and shows overall quality at a glance thus reducing tedious assessment work. Using sharpness assessment as an example, the introduced system can be used to process, analyze and parallelize analysis of whole slide images based on open source software.

  8. Block selective redaction for minimizing loss during de-identification of burned in text in irreversibly compressed JPEG medical images. (United States)

    Clunie, David A; Gebow, Dan


    Deidentification of medical images requires attention to both header information as well as the pixel data itself, in which burned-in text may be present. If the pixel data to be deidentified is stored in a compressed form, traditionally it is decompressed, identifying text is redacted, and if necessary, pixel data are recompressed. Decompression without recompression may result in images of excessive or intractable size. Recompression with an irreversible scheme is undesirable because it may cause additional loss in the diagnostically relevant regions of the images. The irreversible (lossy) JPEG compression scheme works on small blocks of the image independently, hence, redaction can selectively be confined only to those blocks containing identifying text, leaving all other blocks unchanged. An open source implementation of selective redaction and a demonstration of its applicability to multiframe color ultrasound images is described. The process can be applied either to standalone JPEG images or JPEG bit streams encapsulated in other formats, which in the case of medical images, is usually DICOM.

  9. Selective mode multiplexer based on phase plates and Mach-Zehnder interferometer with image inversion function. (United States)

    Igarashi, Koji; Souma, Daiki; Takeshima, Koki; Tsuritani, Takehiro


    We propose a novel mode multiplexer based on phase plates followed by a Mach-Zehnder interferometer (MZI) with image inversion. After the higher-order modes are selectively converted from fundamental linear-polarized (LP) modes by the phase plates, the converted modes are coupled without fundamental loss using MZI with image inversion, in which the original spatial pattern and inverted pattern of the optical signal are interfered. Our scheme is also applicable to the coupling of degenerated LP modes such as LP(11a) and LP(11b). First, we numerically and experimentally evaluate the performance of the mode converter based on phase plates. The mode converter is suitable as long as the five LP modes such as LP(01), LP(11ab) and LP(21ab) are sustained in a few-mode fiber (FMF), although the crosstalk due to excitation of undesirable modes is unavoidable when the higher-order modes over LP(02) are sustained in FMF. Next, we develop and characterize the proposed mode multiplexers based on phase plates and MZIs with image inversion. The insertion loss is suppressed to around 3 dB for mode multiplexing of LP(11a) and LP(11b). Using a fabricated mode multiplexer for LP(31a) and LP(31b), we measure the bit-error rate performance of single-polarization mode-multiplexed quadrature-phase shift keying optical signals.

  10. Application of lectins to tumor imaging radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Shuji; Jay, M.


    We investigated the in vitro binding of /sup 125/I-lectins to Ehrlich ascites tumor (EAT) cells and in vivo uptake of /sup 125/I-lectins in Ehrlich solid tumor (EST) bearing mice. In in vitro binding assays, phaseolus vulgaris agglutinin (PHA), pisum sativum agglutinin (PSA), and concanavalia agglutinin (Con A) showed a high affinity for EAT cells. The in vivo biodistribution of /sup 125/I-lectins showed /sup 125/I-PSA to be significantly taken up into EST tissues 24 h postinjection. After IV injection of /sup 125/I-PSA, uptake of the radioactivity into the tumor tissues reached a maximum at 6 h, and thereafter decreased. Rapid disappearance of the radioactivity from blood and its excretion into kidney soon after injection of /sup 125/I-PSA were observed. When compared with the biodistribution of /sup 67/Ga-citrate in EST bearing mice 24 h postinjection, tumor to liver (T/B), tumor to muscle (T/M), and tumor to blood (T/B) ratios were superior for /sup 125/I-PSA. At 6 h postinjection, the T/B-ratio of /sup 125/I-PSA was 2.5, and this value may be sufficient to enable discernable diagnostic images. Our results suggest that PSA might be a useful tumor imaging radiopharmaceutical.

  11. Clinical application of functional magnetic resonance imaging

    CERN Document Server

    Alwatban, A Z W


    The work described in this thesis was carried out at the Magnetic Resonance Centre of the University of Nottingham during the time from May 1998 to April 2001, and is the work of the except where indicated by reference. The main source of signal changes in functional magnetic resonance imaging (fMRJ) is the fluctuation of paramagnetic deoxyhaemoglobin in the venous blood during different states of functional performance. For the work of this thesis, fMRI studies were carried out using a 3 T MR system with an echo planar imaging (EPI) pulse sequence. Hearing research utilising fMRI has been previously reported in normal subjects. Hearing fMRI is normally performed by stimulating the auditory cortex via an acoustic task presentation such as music, tone, etc. However, performing the same research on deaf subjects requires special equipment to be designed to allow direct stimulation of the auditory nerve. In this thesis, a new method of direct electrical stimulation of the auditory nerve is described that uses a ...

  12. Nanoparticles for Applications in Cellular Imaging (United States)

    Thurn, K. Ted; Brown, Eric M. B.; Wu, Aiguo; Vogt, Stefan; Lai, Barry; Maser, Jörg; Paunesku, Tatjana; Woloschak, Gayle E.


    In the following review we discuss several types of nanoparticles (such as TiO2, quantum dots, and gold nanoparticles) and their impact on the ability to image biological components in fixed cells. The review also discusses factors influencing nanoparticle imaging and uptake in live cells in vitro. Due to their unique size-dependent properties nanoparticles offer numerous advantages over traditional dyes and proteins. For example, the photostability, narrow emission peak, and ability to rationally modify both the size and surface chemistry of Quantum Dots allow for simultaneous analyses of multiple targets within the same cell. On the other hand, the surface characteristics of nanometer sized TiO2 allow efficient conjugation to nucleic acids which enables their retention in specific subcellular compartments. We discuss cellular uptake mechanisms for the internalization of nanoparticles and studies showing the influence of nanoparticle size and charge and the cell type targeted on nanoparticle uptake. The predominant nanoparticle uptake mechanisms include clathrin-dependent mechanisms, macropinocytosis, and phagocytosis.

  13. Technique of diffusion weighted imaging and its application in stroke (United States)

    Li, Enzhong; Tian, Jie; Han, Ying; Wang, Huifang; Li, Wu; He, Huiguang


    To study the application of diffusion weighted imaging and image post processing in the diagnosis of stroke, especially in acute stroke, 205 patients were examined by 1.5 T or 1.0 T MRI scanner and the images such as T1, T2 and diffusion weighted images were obtained. Image post processing was done with "3D Med System" developed by our lab to analyze data and acquire the apparent diffusion coefficient (ADC) map. In acute and subacute stage of stroke, the signal in cerebral infarction areas changed to hyperintensity in T2- and diffusion-weighted images, normal or hypointensity in T1-weighted images. In hyperacute stage, however, the signal was hyperintense just in the diffusion weighted imaes; others were normal. In the chronic stage, the signal in T1- and diffusion-weighted imaging showed hypointensity and hyperintensity in T2 weighted imaging. Because ADC declined obviously in acute and subacute stage of stroke, the lesion area was hypointensity in ADC map. With the development of the disease, ADC gradually recovered and then changed to hyperintensity in ADC map in chronic stage. Using diffusion weighted imaging and ADC mapping can make a diagnosis of stroke, especially in the hyperacute stage of stroke, and can differentiate acute and chronic stroke.

  14. Applications of Non-Traditional Measurements for Computational Imaging (United States)

    Treeaporn, Vicha

    Imaging systems play an important role in many diverse applications. Requirements for these applications, however, can lead to complex or sub-optimal designs. Traditionally, imaging systems are designed to yield a visually pleasing representation, or "pretty picture", of the scene or object. Often this is because a human operator is viewing the acquired image to perform a specific task. With digital computers increasingly being used for automation, a large number of algorithms have been designed to accept as input a pretty picture. This isomorphic representation however is neither necessary nor optimal for tasks such as data compression, transmission, pattern recognition or classification. This disconnect between optical measurement and post processing for the final system outcome has motivated an interest in computational imaging (CI). In a CI system the optical sub-system and post-processing sub-system is jointly designed to optimize system performance for a specific task. In these hybrid imagers, the measured image may no longer be a pretty picture but rather an intermediate non-traditional measurement. In this work, applications of non-traditional measurements are considered for computational imaging. Two systems for an image reconstruction task are studied and one system for a detection task is investigated. First, a CI system to extend the field of view is analyzed and an experimental prototype demonstrated. This prototype validates the simulation study and is designed to yield a 3x field of view improvement relative to a conventional imager. Second, a CI system to acquire time-varying natural scenes, i.e. video, is developed. A candidate system using 8 x 8 x16 spatiotemporal blocks yields about 292x compression compared to a conventional imager. Candidate electro-optical architectures, including charge-domain processing, to implement this approach are also discussed. Lastly, a CI system with x-ray pencil beam illumination is investigated for a detection task

  15. Medical Applications of Digital Image Morphing


    Penska, Keith; Folio, Les; Bunger, Rolf


    The authors present a unique medical technical application for illustrating the success and/or failure of the physiological healing process as a dynamically morphed video. Two examples used in this report include the healing of a severely fractured humerus from an explosion in Iraq and the other of dramatic tissue destruction from a poisonous spider bite. For the humerus, several sequential x-rays obtained throughout orthopedic surgical procedures and the healing process were morphed together...

  16. Implementation and applications of dual-modality imaging (United States)

    Hasegawa, Bruce H.; Barber, William C.; Funk, Tobias; Hwang, Andrew B.; Taylor, Carmen; Sun, Mingshan; Seo, Youngho


    In medical diagnosis, functional or physiological data can be acquired using radionuclide imaging with positron emission tomography or with single-photon emission computed tomography. However, anatomical or structural data can be acquired using X-ray computed tomography. In dual-modality imaging, both radionuclide and X-ray detectors are incorporated in an imaging system to allow both functional and structural data to be acquired in a single procedure without removing the patient from the imaging system. In a clinical setting, dual-modality imaging systems commonly are used to localize radiopharmaceutical uptake with respect to the patient's anatomy. This helps the clinician to differentiate disease from regions of normal radiopharmaceutical accumulation, to improve diagnosis or cancer staging, or to facilitate planning for radiation therapy or surgery. While initial applications of dual-modality imaging were developed for clinical imaging on humans, it now is recognized that these systems have potentially important applications for imaging small animals involved in experimental studies including basic investigations of mammalian biology and development of new pharmaceuticals for diagnosis or treatment of disease.

  17. Pediatric applications of functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Altman, Nolan R. [Miami Children' s Hospital, Department of Radiology, Miami, FL (United States); Bernal, Byron [Miami Children' s Hospital, Pediatric Neuroradiology, Miami, FL (United States)


    Pediatric functional MRI has been used for the last 2 decades but is now gaining wide acceptance in the preoperative workup of children with brain tumors and medically refractory epilepsy. This review covers pediatrics-specific difficulties such as sedation and task paradigm selection according to the child's age and cognitive level. We also illustrate the increasing uses of functional MRI in the depiction of cognitive function, neuropsychiatric disorders and response to pharmacological agents. Finally, we review the uses of resting-state fMRI in the evaluation of children and in the detection of epileptogenic regions. (orig.)

  18. Clinical application of functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Alwatban, Adnan Z.W


    The work described in this thesis was carried out at the Magnetic Resonance Centre of the University of Nottingham during the time from May 1998 to April 2001, and is the work of the author except where indicated by reference. The main source of signal changes in functional magnetic resonance imaging (fMRJ) is the fluctuation of paramagnetic deoxyhaemoglobin in the venous blood during different states of functional performance. For the work of this thesis, fMRI studies were carried out using a 3 T MR system with an echo planar imaging (EPI) pulse sequence. Hearing research utilising fMRI has been previously reported in normal subjects. Hearing fMRI is normally performed by stimulating the auditory cortex via an acoustic task presentation such as music, tone, etc. However, performing the same research on deaf subjects requires special equipment to be designed to allow direct stimulation of the auditory nerve. In this thesis, a new method of direct electrical stimulation of the auditory nerve is described that uses a transtympanic electrode implanted onto the surface of the cochlea. This approach would however, result in electromotive forces (EMFs) being induced by the time varying magnetic field, which would lead to current flow and heating, as well as deflection of the metallic electrode within the static magnetic field, and image distortion due to the magnetic susceptibility difference. A gold-plated tungsten electrode with a zero magnetic susceptibility was developed to avoid image distortion. Used with carbon leads and a carbon reference pad, it enabled safe, distortion-free fMRI studies of deaf subjects. The study revealed activation of the primary auditory cortex. This fMRI procedure can be used to demonstrate whether the auditory pathway is fully intact, and may provide a useful method for pre-operative assessment of candidates for cochlear implantation. Glucose is the energy source on which the function of the human brain is entirely dependent. Failure to

  19. High resolution imaging detectors and applications

    CERN Document Server

    Saha, Swapan K


    Interferometric observations need snapshots of very high time resolution of the order of (i) frame integration of about 100 Hz or (ii) photon-recording rates of several megahertz (MHz). Detectors play a key role in astronomical observations, and since the explanation of the photoelectric effect by Albert Einstein, the technology has evolved rather fast. The present-day technology has made it possible to develop large-format complementary metal oxide–semiconductor (CMOS) and charge-coupled device (CCD) array mosaics, orthogonal transfer CCDs, electron-multiplication CCDs, electron-avalanche photodiode arrays, and quantum-well infrared (IR) photon detectors. The requirements to develop artifact-free photon shot noise-limited images are higher sensitivity and quantum efficiency, reduced noise that includes dark current, read-out and amplifier noise, smaller point-spread functions, and higher spectral bandwidth. This book aims to address such systems, technologies and design, evaluation and calibration, control...

  20. The application of similar image retrieval in electronic commerce. (United States)

    Hu, YuPing; Yin, Hua; Han, Dezhi; Yu, Fei


    Traditional online shopping platform (OSP), which searches product information by keywords, faces three problems: indirect search mode, large search space, and inaccuracy in search results. For solving these problems, we discuss and research the application of similar image retrieval in electronic commerce. Aiming at improving the network customers' experience and providing merchants with the accuracy of advertising, we design a reasonable and extensive electronic commerce application system, which includes three subsystems: image search display subsystem, image search subsystem, and product information collecting subsystem. This system can provide seamless connection between information platform and OSP, on which consumers can automatically and directly search similar images according to the pictures from information platform. At the same time, it can be used to provide accuracy of internet marketing for enterprises. The experiment shows the efficiency of constructing the system.

  1. The Application of Similar Image Retrieval in Electronic Commerce (United States)

    Hu, YuPing; Yin, Hua; Han, Dezhi; Yu, Fei


    Traditional online shopping platform (OSP), which searches product information by keywords, faces three problems: indirect search mode, large search space, and inaccuracy in search results. For solving these problems, we discuss and research the application of similar image retrieval in electronic commerce. Aiming at improving the network customers' experience and providing merchants with the accuracy of advertising, we design a reasonable and extensive electronic commerce application system, which includes three subsystems: image search display subsystem, image search subsystem, and product information collecting subsystem. This system can provide seamless connection between information platform and OSP, on which consumers can automatically and directly search similar images according to the pictures from information platform. At the same time, it can be used to provide accuracy of internet marketing for enterprises. The experiment shows the efficiency of constructing the system. PMID:24883411

  2. The Application of Similar Image Retrieval in Electronic Commerce

    Directory of Open Access Journals (Sweden)

    YuPing Hu


    Full Text Available Traditional online shopping platform (OSP, which searches product information by keywords, faces three problems: indirect search mode, large search space, and inaccuracy in search results. For solving these problems, we discuss and research the application of similar image retrieval in electronic commerce. Aiming at improving the network customers’ experience and providing merchants with the accuracy of advertising, we design a reasonable and extensive electronic commerce application system, which includes three subsystems: image search display subsystem, image search subsystem, and product information collecting subsystem. This system can provide seamless connection between information platform and OSP, on which consumers can automatically and directly search similar images according to the pictures from information platform. At the same time, it can be used to provide accuracy of internet marketing for enterprises. The experiment shows the efficiency of constructing the system.

  3. Applications of evolutionary computation in image processing and pattern recognition

    CERN Document Server

    Cuevas, Erik; Perez-Cisneros, Marco


    This book presents the use of efficient Evolutionary Computation (EC) algorithms for solving diverse real-world image processing and pattern recognition problems. It provides an overview of the different aspects of evolutionary methods in order to enable the reader in reaching a global understanding of the field and, in conducting studies on specific evolutionary techniques that are related to applications in image processing and pattern recognition. It explains the basic ideas of the proposed applications in a way that can also be understood by readers outside of the field. Image processing and pattern recognition practitioners who are not evolutionary computation researchers will appreciate the discussed techniques beyond simple theoretical tools since they have been adapted to solve significant problems that commonly arise on such areas. On the other hand, members of the evolutionary computation community can learn the way in which image processing and pattern recognition problems can be translated into an...

  4. The low light level image intensifier's application in x-ray imaging (United States)

    Yu, Chunyu; Kong, Lingli; Zhang, Junju; Zhang, Shengdong


    The low light level image intensifier was usually applied in the night observation, and it has been developed and improved for a long history. While it can also be used in the x ray imaging system for its specialty in photos multiplying and conversion, so in this paper, the technology development of the low light level image intensifier was described at first and then a novel x ray image intensifier designed by our research group is introduced. The x ray intensifying screen was the x ray sensor converting the x ray into the visible light. For the visible light from the x ray image intensifier was too weak to see the image, the low light level image intensifier was used to intensify the light further. When the low light level image intensifier was selected, the novel x ray image intensifier's performance was modeled, which can given the comparison in resolution and brightness between with and without the low light level image intensifier. In conclusion, the novel x ray imaging system's performance is good enough to be applied to security checking, non-destructive testing, and industry detection.

  5. Mining remote-image repositories with application to Mars Rover stereoscopic image datasets (United States)

    Willis, Andrew; Shadid, Waseem; Eppes, Martha C.


    As of December 2008, the two Mars rover spacecraft Spirit and Opportunity have collected more than 4 years worth of data from nine imaging instruments producing greater than 200k images which includes both raw image data from spacecraft instruments and images generated by post-processing algorithms developed by NASA's Multimission Image Processing Laboratory (MIPL). This paper describes a prototype software system that allows scientists to browse and data-mine the images produced from NASA's Mars Exploratory Rover (MER) missions with emphasis on the automatic detection of images containing rocks that are of interest for geological research. We highlight two aspects of our prototype system: (1) software design for mining remote data repositories, (2) a computationally efficient image search engine for detecting MER images that containing rocks. Datatype abstractions made at the software design level allow users to access and visualize the source data through a single simple-to-use interface when the underlying data may originate from a local or remote image repository. Data mining queries into the MER image data are specified over chronological intervals denoted (sols) as each interval is a solar day. As in other mining applications, an automatic detection and classification algorithm is used to compute a relevance score that represents how relevant a given recorded image is to the user-specified query. Query results are presented as list of records, sorted by their relevance score, which the user may then visualize and investigate to extract information of interest. Several standard image analysis tools are provided for investigation of 2D images (e.g., histogram equalization, edge detection, etc.) and, when available, stereoscopic data is integrated with the image data using multiple windows which show both the 2D image and 3D surface geometry. The combination of data mining and a high-quality visualization interface provides MER researchers unprecedented access

  6. Materials Selection Criteria for Nuclear Power Applications: A Decision Algorithm (United States)

    Rodríguez-Prieto, Álvaro; Camacho, Ana María; Sebastián, Miguel Ángel


    An innovative methodology based on stringency levels is proposed in this paper and improves the current selection method for structural materials used in demanding industrial applications. This paper describes a new approach for quantifying the stringency of materials requirements based on a novel deterministic algorithm to prevent potential failures. We have applied the new methodology to different standardized specifications used in pressure vessels design, such as SA-533 Grade B Cl.1, SA-508 Cl.3 (issued by the American Society of Mechanical Engineers), DIN 20MnMoNi55 (issued by the German Institute of Standardization) and 16MND5 (issued by the French Nuclear Commission) specifications and determine the influence of design code selection. This study is based on key scientific publications on the influence of chemical composition on the mechanical behavior of materials, which were not considered when the technological requirements were established in the aforementioned specifications. For this purpose, a new method to quantify the efficacy of each standard has been developed using a deterministic algorithm. The process of assigning relative weights was performed by consulting a panel of experts in materials selection for reactor pressure vessels to provide a more objective methodology; thus, the resulting mathematical calculations for quantitative analysis are greatly simplified. The final results show that steel DIN 20MnMoNi55 is the best material option. Additionally, more recently developed materials such as DIN 20MnMoNi55, 16MND5 and SA-508 Cl.3 exhibit mechanical requirements more stringent than SA-533 Grade B Cl.1. The methodology presented in this paper can be used as a decision tool in selection of materials for a wide range of applications.

  7. Selective micro metallization of polymers for biomedical and medical application

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    Integration of micro/nano metallic structures in polymer devices is a broad multi-disciplinary research field, consisting of various combinations of mechanical, chemical and physical fabrication methods. Some of these combinations have been known for years and other combinations or methods are ve......-on-a-chip devices, bioelectronics etc. are also potential application areas for metallized plastic parts. This paper shows various methods used in selective micro metallization of polymers.......Integration of micro/nano metallic structures in polymer devices is a broad multi-disciplinary research field, consisting of various combinations of mechanical, chemical and physical fabrication methods. Some of these combinations have been known for years and other combinations or methods are very...... new and developing. Metallized plastic parts have many application in micro electro-mechanical devices. Injection moulded plastic parts combined with micro metallic structures (with nanosized features) can be used in the bio-sensing devices like plasmon resonance sensors. Hearing aids, lab...

  8. FPGA implementation of image dehazing algorithm for real time applications (United States)

    Kumar, Rahul; Kaushik, Brajesh Kumar; Balasubramanian, R.


    Weather degradation such as haze, fog, mist, etc. severely reduces the effective range of visual surveillance. This degradation is a spatially varying phenomena, which makes this problem non trivial. Dehazing is an essential preprocessing stage in applications such as long range imaging, border security, intelligent transportation system, etc. However, these applications require low latency of the preprocessing block. In this work, single image dark channel prior algorithm is modified and implemented for fast processing with comparable visual quality of the restored image/video. Although conventional single image dark channel prior algorithm is computationally expensive, it yields impressive results. Moreover, a two stage image dehazing architecture is introduced, wherein, dark channel and airlight are estimated in the first stage. Whereas, transmission map and intensity restoration are computed in the next stages. The algorithm is implemented using Xilinx Vivado software and validated by using Xilinx zc702 development board, which contains an Artix7 equivalent Field Programmable Gate Array (FPGA) and ARM Cortex A9 dual core processor. Additionally, high definition multimedia interface (HDMI) has been incorporated for video feed and display purposes. The results show that the dehazing algorithm attains 29 frames per second for the image resolution of 1920x1080 which is suitable of real time applications. The design utilizes 9 18K_BRAM, 97 DSP_48, 6508 FFs and 8159 LUTs.

  9. Towards an Automatic and Application-Based EigensolverSelection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yeliang; Li, Xiaoye S.; Marques, Osni


    The computation of eigenvalues and eigenvectors is an important and often time-consuming phase in computer simulations. Recent efforts in the development of eigensolver libraries have given users good algorithms without the need for users to spend much time in programming. Yet, given the variety of numerical algorithms that are available to domain scientists, choosing the ''best'' algorithm suited for a particular application is a daunting task. As simulations become increasingly sophisticated and larger, it becomes infeasible for a user to try out every reasonable algorithm configuration in a timely fashion. Therefore, there is a need for an intelligent engine that can guide the user through the maze of various solvers with various configurations. In this paper, we present a methodology and a software architecture aiming at determining the best solver based on the application type and the matrix properties. We combine a decision tree and an intelligent engine to select a solver and a preconditioner combination for the application submitted by the user. We also discuss how our system interface is implemented with third party numerical libraries. In the case study, we demonstrate the feasibility and usefulness of our system with a simplified linear solving system. Our experiments show that our proposed intelligent engine is quite adept in choosing a suitable algorithm for different applications.

  10. Image quality transfer and applications in diffusion MRI. (United States)

    Alexander, Daniel C; Zikic, Darko; Ghosh, Aurobrata; Tanno, Ryutaro; Wottschel, Viktor; Zhang, Jiaying; Kaden, Enrico; Dyrby, Tim B; Sotiropoulos, Stamatios N; Zhang, Hui; Criminisi, Antonio


    This paper introduces a new computational imaging technique called image quality transfer (IQT). IQT uses machine learning to transfer the rich information available from one-off experimental medical imaging devices to the abundant but lower-quality data from routine acquisitions. The procedure uses matched pairs to learn mappings from low-quality to corresponding high-quality images. Once learned, these mappings then augment unseen low quality images, for example by enhancing image resolution or information content. Here, we demonstrate IQT using a simple patch-regression implementation and the uniquely rich diffusion MRI data set from the human connectome project (HCP). Results highlight potential benefits of IQT in both brain connectivity mapping and microstructure imaging. In brain connectivity mapping, IQT reveals, from standard data sets, thin connection pathways that tractography normally requires specialised data to reconstruct. In microstructure imaging, IQT shows potential in estimating, from standard "single-shell" data (one non-zero b-value), maps of microstructural parameters that normally require specialised multi-shell data. Further experiments show strong generalisability, highlighting IQT's benefits even when the training set does not directly represent the application domain. The concept extends naturally to many other imaging modalities and reconstruction problems. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Ultrafast optical imaging technology: principles and applications of emerging methods

    Directory of Open Access Journals (Sweden)

    Mikami Hideharu


    Full Text Available High-speed optical imaging is an indispensable technology for blur-free observation of fast transient dynamics in virtually all areas including science, industry, defense, energy, and medicine. High temporal resolution is particularly important for microscopy as even a slow event appears to occur “fast” in a small field of view. Unfortunately, the shutter speed and frame rate of conventional cameras based on electronic image sensors are significantly constrained by their electrical operation and limited storage. Over the recent years, several unique and unconventional approaches to high-speed optical imaging have been reported to circumvent these technical challenges and achieve a frame rate and shutter speed far beyond what can be reached with the conventional image sensors. In this article, we review the concepts and principles of such ultrafast optical imaging methods, compare their advantages and disadvantages, and discuss an entirely new class of applications that are possible using them.

  12. Application of image processing technology in yarn hairiness detection

    Directory of Open Access Journals (Sweden)

    Guohong ZHANG


    Full Text Available Digital image processing technology is one of the new methods for yarn detection, which can realize the digital characterization and objective evaluation of yarn appearance. This paper overviews the current status of development and application of digital image processing technology used for yarn hairiness evaluation, and analyzes and compares the traditional detection methods and this new developed method. Compared with the traditional methods, the image processing technology based method is more objective, fast and accurate, which is the vital development trend of the yarn appearance evaluation.

  13. Imaging with electromagnetic spectrum applications in food and agriculture

    CERN Document Server

    Jayasuriya, Hemantha


    This book demonstrates how imaging techniques, applying different frequency bands from the electromagnetic spectrum, are used in scientific research. Illustrated with numerous examples this book is structured according to the different radiation bands: From Gamma-rays over UV and IR to radio frequencies. In order to ensure a clear understanding of the processing methodologies, the text is enriched with descriptions of how digital images are formed, acquired, processed and how to extract information from them. A special emphasis is given to the application of imaging techniques in food and agriculture research.

  14. Advanced Nanomaterials in Multimodal Imaging: Design, Functionalization, and Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Zhe Liu


    Full Text Available The biomedical applications of nanoparticles in molecular imaging, drug delivery, and therapy give rise to the term “nanomedicine” and have led to ever-growing developments in the past decades. New generation of imaging probes (or contrast agents and state of the art of various strategies for efficient multimodal molecular imaging have drawn much attention and led to successful preclinical uses. In this context, we intend to elucidate the fundamentals and review recent advances as well as to provide an outlook perspective in these fields.

  15. Applications of nanotechnology to imaging and therapy of brain tumors. (United States)

    Mohs, Aaron M; Provenzale, James M


    In the past decade, numerous advances in the understanding of brain tumor physiology, tumor imaging, and tumor therapy have been attained. In some cases, these advances have resulted from refinements of pre-existing technologies (eg, improvements of contrast-enhanced magnetic resonance imaging). In other instances, advances have resulted from development of novel technologies. The development of nanomedicine (ie, applications of nanotechnology to the field of medicine) is an example of the latter. In this review, the authors explain the principles that underlay nanoparticle design and function as well as the means by which nanoparticles can be used for imaging and therapy of brain tumors. Copyright 2010 Elsevier Inc. All rights reserved.

  16. CuO-PANI nanostructure with tunable spectral selectivity for solar selective coating application (United States)

    Cindrella, L.; Prabhu., S.


    CuO-PANI nanostructure has been demonstrated as the solar selective absorber coating for the first time. The effortless chemical methods and easily scalable techniques such as precipitation, in-situ polymerization and spray coating were adopted for the fabrication of CuO nanorods and CuO-PANI nanostructures for solar application. The synthesis was carried out without using any template. The morphology and phase structure of fabricated CuO nanorods and CuO-PANI nanostructure coatings were studied by atomic force microscopy, scanning electron microscopy and X-ray diffraction analysis. The energy dispersive X-ray spectra and elemental mapping confirm the presence of the chosen elements in the nanostructure. The solar absorptance (αs), thermal emittance (εt) and selectivity (ξ) of the nanostructure coatings on glass substrate were optimized to 0.94, 0.01 and 94 respectively by changing the polyaniline content on the surface of the CuO nanorods. The efficiency of the solar selective coatings were evaluated. The optimized solar absorber coating of CuO-PANI nanostructure is highly promising for its selective optical properties.

  17. A selective review of robust variable selection with applications in bioinformatics. (United States)

    Wu, Cen; Ma, Shuangge


    A drastic amount of data have been and are being generated in bioinformatics studies. In the analysis of such data, the standard modeling approaches can be challenged by the heavy-tailed errors and outliers in response variables, the contamination in predictors (which may be caused by, for instance, technical problems in microarray gene expression studies), model mis-specification and others. Robust methods are needed to tackle these challenges. When there are a large number of predictors, variable selection can be as important as estimation. As a generic variable selection and regularization tool, penalization has been extensively adopted. In this article, we provide a selective review of robust penalized variable selection approaches especially designed for high-dimensional data from bioinformatics and biomedical studies. We discuss the robust loss functions, penalty functions and computational algorithms. The theoretical properties and implementation are also briefly examined. Application examples of the robust penalization approaches in representative bioinformatics and biomedical studies are also illustrated. © The Author 2014. Published by Oxford University Press. For Permissions, please email:

  18. Time is Penumbra: imaging, selection and outcome. The Johann jacob wepfer award 2014. (United States)

    Davis, Stephen; Donnan, Geoffrey A


    The foundation of modern therapy for ischaemic stroke involves reperfusion of the ischaemic penumbra and salvage of threatened but potentially viable brain tissue. Work on imaging of the penumbra and clinical trials using penumbral evaluation or selection have been a major focus of our collaborative work over several decades. We review the original description of the ischaemic penumbra, its measurement using a variety of imaging techniques, the duration of the penumbra and its potential salvage up to 48 h after stroke onset. The penumbra can now be accurately measured using automated thresholded techniques in real time with MRI or CT perfusion (CTP). Particular advances include more precise definitions of mismatch with validation of the measures for the ischaemic core and exclusion of benign oligaemia. While there has been greater trial experience with MRI perfusion/diffusion mismatch, CTP mismatch using a similar thresholded perfusion metric (Tmax 6 s) and relative blood flow (around 31%) to estimate the ischaemic core is generally more available and practicable in our experience. We review the completed clinical trials, which generally demonstrate the clinical benefits of acute reperfusion in penumbral patients, provided that large ischaemic cores are excluded. Our EPITHET trial was the first randomized controlled trial of tissue plasminogen activator (tPA) versus placebo at delayed times to test the concept of penumbral selection. We showed that in patients with a penumbra receiving thrombolysis, there was substantially increased reperfusion. Major reperfusion times were associated with reduced growth of the ischaemic core and improved clinical outcomes. Our current trial programme involves the application of penumbral imaging to attempt to extend the time window for intravenous tPA and treat wake-up strokes, to test the benefits of endovascular therapy in patients who have already received tPA but still have both substantial penumbra and an occluded vessel, and

  19. Review of selective laser melting: Materials and applications (United States)

    Yap, C. Y.; Chua, C. K.; Dong, Z. L.; Liu, Z. H.; Zhang, D. Q.; Loh, L. E.; Sing, S. L.


    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  20. Review of selective laser melting: Materials and applications

    Energy Technology Data Exchange (ETDEWEB)

    Yap, C. Y., E-mail: [Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N3.1 - B2c - 01, Singapore 639798 (Singapore); Energy Research Institute @ NTU, Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Block S2 - B3a - 01, Singapore 639798 (Singapore); Chua, C. K., E-mail:; Liu, Z. H., E-mail:; Zhang, D. Q., E-mail:; Loh, L. E., E-mail:; Sing, S. L., E-mail: [Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N3.1 - B2c - 01, Singapore 639798 (Singapore); Dong, Z. L., E-mail: [School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N4.1, Singapore 639798 (Singapore)


    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  1. Carbon Nanotube-Based Ion Selective Sensors for Wearable Applications. (United States)

    Roy, Soumyendu; David-Pur, Moshe; Hanein, Yael


    Wearable electronics offer new opportunities in a wide range of applications, especially sweat analysis using skin sensors. A fundamental challenge in these applications is the formation of sensitive and stable electrodes. In this article we report the development of a wearable sensor based on carbon nanotube (CNT) electrode arrays for sweat sensing. Solid-state ion selective electrodes (ISEs), sensitive to Na(+) ions, were prepared by drop coating plasticized poly(vinyl chloride) (PVC) doped with ionophore and ion exchanger on CNT electrodes. The ion selective membrane (ISM) filled the intertubular spaces of the highly porous CNT film and formed an attachment that was stronger than that achieved with flat Au, Pt, or carbon electrodes. Concentration of the ISM solution used influenced the attachment to the CNT film, the ISM surface morphology, and the overall performance of the sensor. Sensitivity of 56 ± 3 mV/decade to Na(+) ions was achieved. Optimized solid-state reference electrodes (REs), suitable for wearable applications, were prepared by coating CNT electrodes with colloidal dispersion of Ag/AgCl, agarose hydrogel with 0.5 M NaCl, and a passivation layer of PVC doped with NaCl. The CNT-based REs had low sensitivity (-1.7 ± 1.2 mV/decade) toward the NaCl solution and high repeatability and were superior to bare Ag/AgCl, metals, carbon, and CNT films, reported previously as REs. CNT-based ISEs were calibrated against CNT-based REs, and the short-term stability of the system was tested. We demonstrate that CNT-based devices implemented on a flexible support are a very attractive platform for future wearable technology devices.

  2. Image PSF-matching and subtraction: a powerful astronomical technique and its application to industrial imaging (United States)

    Butler, Raymond F.; O'Tuairisg, Seathrun; Shearer, Andrew; Golden, Aaron


    There is a family of difficult image-processing scenarios which involve seeking out and quantifying minute changes within a sequence of near-identical images. Traditionally these have been dealt with by carefully registering the images in terms of position, orientiation and intensity, and subtracting them from some template image. However, for critical measurements, this approach breaks down if the point-spread-functions (PSFs) vary even slightly from image to image. Subtraction of registered images whose PSFs are not matched leads to considerable residual structure, which may be mistakenly interpreted as real features rather than processing artefacts. In astronomy, software known as ISIS has been developed to fully PSF-match image sequences and to facilitate their analysis. We show here the tremendous improvement in detection rates and measurement accuracy which ISIS has afforded in our program for the study of rare variable stars in dense, globular star clusters. We discuss the genesis from this work of our new program to use ISIS to search for extra-solar planets in transit across the face of stars in such clusters. Finally we illustrate an application of ISIS in the industrial imaging sector, showing how it can be used to detect minute faults in images of products.

  3. Research-grade CMOS image sensors for demanding space applications (United States)

    Saint-Pé, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Belliot, Pierre


    Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid- 90s, CMOS Image Sensors (CIS) have been competing with CCDs for more and more consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA, and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this talk will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments of CIS prototypes built using an imaging CMOS process and of devices based on improved designs will be presented.

  4. Enhancing Web applications in radiology with Java: estimating MR imaging relaxation times. (United States)

    Dagher, A P; Fitzpatrick, M; Flanders, A E; Eng, J


    Java is a relatively new programming language that has been used to develop a World Wide Web-based tool for estimating magnetic resonance (MR) imaging relaxation times, thereby demonstrating how Java may be used for Web-based radiology applications beyond improving the user interface of teaching files. A standard processing algorithm coded with Java is downloaded along with the hypertext markup language (HTML) document. The user (client) selects the desired pulse sequence and inputs data obtained from a region of interest on the MR images. The algorithm is used to modify selected MR imaging parameters in an equation that models the phenomenon being evaluated. MR imaging relaxation times are estimated, and confidence intervals and a P value expressing the accuracy of the final results are calculated. Design features such as simplicity, object-oriented programming, and security restrictions allow Java to expand the capabilities of HTML by offering a more versatile user interface that includes dynamic annotations and graphics. Java also allows the client to perform more sophisticated information processing and computation than is usually associated with Web applications. Java is likely to become a standard programming option, and the development of stand-alone Java applications may become more common as Java is integrated into future versions of computer operating systems.

  5. Adaptive coded aperture imaging: progress and potential future applications (United States)

    Gottesman, Stephen R.; Isser, Abraham; Gigioli, George W., Jr.


    Interest in Adaptive Coded Aperture Imaging (ACAI) continues to grow as the optical and systems engineering community becomes increasingly aware of ACAI's potential benefits in the design and performance of both imaging and non-imaging systems , such as good angular resolution (IFOV), wide distortion-free field of view (FOV), excellent image quality, and light weight construct. In this presentation we first review the accomplishments made over the past five years, then expand on previously published work to show how replacement of conventional imaging optics with coded apertures can lead to a reduction in system size and weight. We also present a trade space analysis of key design parameters of coded apertures and review potential applications as replacement for traditional imaging optics. Results will be presented, based on last year's work of our investigation into the trade space of IFOV, resolution, effective focal length, and wavelength of incident radiation for coded aperture architectures. Finally we discuss the potential application of coded apertures for replacing objective lenses of night vision goggles (NVGs).

  6. Biomedical applications of photoacoustic imaging with exogenous contrast agents. (United States)

    Luke, Geoffrey P; Yeager, Doug; Emelianov, Stanislav Y


    Photoacoustic imaging is a biomedical imaging modality that provides functional information, and, with the help of exogenous contrast agents, cellular and molecular signatures of tissue. In this article, we review the biomedical applications of photoacoustic imaging assisted with exogenous contrast agents. Dyes, noble metal nanoparticles, and other constructs are contrast agents which absorb strongly in the near-infrared band of the optical spectrum and generate strong photoacoustic response. These contrast agents, which can be specifically targeted to molecules or cells, have been coupled with photoacoustic imaging for preclinical and clinical applications ranging from detection of cancer cells, sentinel lymph nodes, and micrometastasis to angiogenesis to characterization of atherosclerotic plaques. Multi-functional agents have also been developed, which can carry drugs or simultaneously provide contrast in multiple imaging modalities. Furthermore, contrast agents were used to guide and monitor the therapeutic procedures. Overall, photoacoustic imaging shows significant promise in its ability to assist in diagnosis, therapy planning, and monitoring of treatment outcome for cancer, cardiovascular disease, and other pathologies.

  7. A possible application of magnetic resonance imaging for pharmaceutical research. (United States)

    Kowalczuk, Joanna; Tritt-Goc, Jadwiga


    Magnetic resonance imaging (MRI) is a non-destructive and non-invasive method, the experiment can be conducted in situ and allows the studying of the sample and the different processes in vitro or in vivo. 1D, 2D or 3D imaging can be undertaken. MRI is nowadays most widely used in medicine as a clinical diagnostic tool, but has still seen limited application in the food and pharmaceutical sciences. The different imaging pulse sequences of MRI allow to image the processes that take place in a wide scale range from ms (dissolution of compact tablets) to hours (hydration of drug delivery systems) for mobile as well as for rigid spins, usually protons. The paper gives examples of MRI application of in vitro imaging of pharmaceutical dosage based on hydroxypropyl methylcellulose which have focused on water-penetration, diffusion, polymer swelling, and drug release, characterized with respect to other physical parameters such as pH and the molecular weight of polymer. Tetracycline hydrochloride was used as a model drug. NMR imaging of density distributions and fast kinetics of the dissolution behavior of compact tablets is presented for paracetamol tablets. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Hexabundles: imaging fiber arrays for low-light astronomical applications

    DEFF Research Database (Denmark)

    Bland-Hawthorn, Joss; Bryant, Julia; Robertson, Gordon


    We demonstrate for the first time an imaging fibre bundle (“hexabundle”) that is suitable for low-light applications in astronomy. The most successful survey instruments at optical-infrared wavelengths today have obtained data on up to a million celestial sources using hundreds of multimode fibre...

  9. Hexabundles: imaging fibre arrays for low-light astronomical applications

    DEFF Research Database (Denmark)

    Bland-Hawthorn, Joss; Bryant, Julie; Robertson, Gordon


    We demonstrate for the first time an imaging fibre bundle (“hexabundle”) that is suitable for low-light applications in astronomy. The most successful survey instruments at optical-infrared wavelengths today have obtained data on up to a million celestial sources using hundreds of multimode fibres...

  10. Application of aptamers in diagnostics, drug-delivery and imaging

    Indian Academy of Sciences (India)

    Inthis review we will discuss about the latest developments in using aptamers in diagnostics, drug delivery and imaging.We begin with diagnostics, discussing the application of aptamers for the detection of infective agents itself, antigens/toxins (bacteria), biomarkers (cancer), or a combination. The ease of conjugation and ...

  11. Application of digital image processing for pot plant grading

    NARCIS (Netherlands)

    Dijkstra, J.


    The application of digital image processing for grading of pot plants has been studied. Different techniques e.q. plant part identification based on knowledge based segmentation, have been developed to measure features of plants in different growth stage. Growth experiments were performed

  12. Applications of Micro-Raman Imaging in Biomedical Research

    NARCIS (Netherlands)

    Otto, Cornelis; de Grauw, C.J.; de Grauw, C.J.; Duindam, J.J.; Duindam, J.J.; Sijtsema, N.M.; Greve, Jan


    Recent results are presented of the application of imaging micro-Raman spectrometers in cellular biophysics and biomedical research. Various micro-Raman spectrometers have been developed that are now routinely applied in these fields. Results are presented that were obtained with a linescan Raman

  13. Sparse Contribution Feature Selection and Classifiers Optimized by Concave-Convex Variation for HCC Image Recognition. (United States)

    Pang, Wenbo; Jiang, Huiyan; Li, Siqi


    Accurate classification of hepatocellular carcinoma (HCC) image is of great importance in pathology diagnosis and treatment. This paper proposes a concave-convex variation (CCV) method to optimize three classifiers (random forest, support vector machine, and extreme learning machine) for the more accurate HCC image classification results. First, in preprocessing stage, hematoxylin-eosin (H&E) pathological images are enhanced using bilateral filter and each HCC image patch is obtained under the guidance of pathologists. Then, after extracting the complete features of each patch, a new sparse contribution (SC) feature selection model is established to select the beneficial features for each classifier. Finally, a concave-convex variation method is developed to improve the performance of classifiers. Experiments using 1260 HCC image patches demonstrate that our proposed CCV classifiers have improved greatly compared to each original classifier and CCV-random forest (CCV-RF) performs the best for HCC image recognition.

  14. Quantum dots for fluorescent biosensing and bio-imaging applications. (United States)

    Li, Jingjing; Zhu, Jun-Jie


    Quantum dots (QDs) have been facilitating the development of sensitive fluorescence biosensors over the past two decades due to their high quantum yield, narrow and tunable emission spectrum and good photostability. The new emerging QDs with improved biocompatibility further promote their biological applications. In this review, we first briefly introduce the prevalently used QDs and their preparation and bioconjugation approaches. Then we summarize QDs-based fluorescent biosensing for proteins and nucleic acids, and QDs-based applications in cellular and in vivo targeting and imaging. Last but not the least, we envision the potential QDs-based applications in future perspectives.

  15. Selection of optimal molecular targets for tumor-specific imaging in pancreatic ductal adenocarcinoma

    NARCIS (Netherlands)

    Tummers, W.S. (Willemieke S.); A. Fariña-Sarasqueta (Arantza); M.C. Boonstra (M.); Prevoo, H.A. (Hendrica A.); C.F.M. Sier (Cornelis); J.S.D. Mieog (Sven); H. Morreau (Hans); C.H.J. van Eijck (Casper); P.J.K. Kuppen (P. J K); C.J.H. van de Velde (Cornelis); B.A. Bonsing (Bert); A.L. Vahrmeijer (Alexander L.); Swijnenburg, R.-J. (Rutger-Jan)


    textabstractDiscrimination of pancreatic ductal adenocarcinoma (PDAC) from chronic pancreatitis (CP) or peritumoral inflammation is challenging, both at preoperative imaging and during surgery, but it is crucial for proper therapy selection. Tumor-specific molecular imaging aims to enhance this

  16. Interferometric fiber optic sensors for biomedical applications of optoacoustic imaging. (United States)

    Lamela, Horacio; Gallego, Daniel; Gutierrez, Rebeca; Oraevsky, Alexander


    We present a non-metallic interferometric silica optical fiber ultrasonic wideband sensor for optoacoustic imaging applications. The ultrasonic sensitivity of this sensor has been characterized over the frequency range from 1 to 10 MHz. A comparative analysis has been carried out between this sensor and an array of piezoelectric transducers using optoacoustic signals generated from an optical absorbent embedded in a tissue mimicking phantom. Also, a two dimensional reconstructed image of the phantom using the fiber interferometric sensor is presented and compared to the image obtained using the Laser Optoacoustic Imaging System, LOIS-64B. The feasibility of our fiber optic based sensor for wideband ultrasonic detection is demonstrated. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Applications in image-based profiling of perturbations. (United States)

    Caicedo, Juan C; Singh, Shantanu; Carpenter, Anne E


    A dramatic shift has occurred in how biologists use microscopy images. Whether experiments are small-scale or high-throughput, automatically quantifying biological properties in images is now widespread. We see yet another revolution under way: a transition towards using automated image analysis to not only identify phenotypes a biologist specifically seeks to measure ('screening') but also as an unbiased and sensitive tool to capture a wide variety of subtle features of cell (or organism) state ('profiling'). Mapping similarities among samples using image-based (morphological) profiling has tremendous potential to transform drug discovery, functional genomics, and basic biological research. Applications include target identification, lead hopping, library enrichment, functionally annotating genes/alleles, and identifying small molecule modulators of gene activity and disease-specific phenotypes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Wideband Fractal Antennas for Holographic Imaging and Rectenna Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bunch, Kyle J.; McMakin, Douglas L.; Sheen, David M.


    At Pacific Northwest National Laboratory, wideband antenna arrays have been successfully used to reconstruct three-dimensional images at microwave and millimeter-wave frequencies. Applications of this technology have included portal monitoring, through-wall imaging, and weapons detection. Fractal antennas have been shown to have wideband characteristics due to their self-similar nature (that is, their geometry is replicated at different scales). They further have advantages in providing good characteristics in a compact configuration. We discuss the application of fractal antennas for holographic imaging. Simulation results will be presented. Rectennas are a specific class of antennas in which a received signal drives a nonlinear junction and is retransmitted at either a harmonic frequency or a demodulated frequency. Applications include tagging and tracking objects with a uniquely-responding antenna. It is of interest to consider fractal rectenna because the self-similarity of fractal antennas tends to make them have similar resonance behavior at multiples of the primary resonance. Thus, fractal antennas can be suited for applications in which a signal is reradiated at a harmonic frequency. Simulations will be discussed with this application in mind.

  19. Novel Applications of Laser Doppler Vibration Measurements to Medical Imaging (United States)

    Tabatabai, Habib; Oliver, David E.; Rohrbaugh, John W.; Papadopoulos, Christopher


    Laser Doppler Vibrometry (LDV) has been widely used in engineering applications involving non-contact vibration and sound measurements. This technique has also been used in some biomedical applications including hearing research. The detectable frequencies are in the range of near-DC to 1 GHz or higher. This paper reviews applications of LDV in biomedical engineering and proposes new medical imaging applications based on measuring surface vibrations of tissues and organs. Tests were conducted on human skin using single point and scanning laser vibrometers. These tests suggest that skin vibrations due to the forcing excitation from the heart can be used in imaging of blood flow. The results of these tests illustrate the potential of such vibration measurements in a variety of diagnostic medical imaging applications including blood flow/restrictions, real-time monitoring of blood pressure variations, wound healing, muscle movements, etc. The fact that the measurements can be conducted remotely (non-contact) is an important benefit that adds to the promise of this approach.

  20. Applications of terahertz (THz) technology to medical imaging (United States)

    Arnone, Donald D.; Ciesla, Craig M.; Corchia, Alessandra; Egusa, S.; Pepper, Michael; Chamberlain, J. Martyn; Bezant, C.; Linfield, Edmund H.; Clothier, R.; Khammo, N.


    An imaging system has been developed based on pulses of Terahertz (THz) radiation generated and detected using all- optical effects accessed by irradiating semiconductors with ultrafast pulses of visible laser light. This technique, commonly referred to as T-Ray Imaging or THz Pulse Imaging (TPI), holds enormous promise for certain aspects of medical imaging. We have conducted an initial survey of possible medical applications of TPI and demonstrated that TPI images show good contrast between different animal tissue types. Moreover, the diagnostic power of TPI has been elicidated by the spectra available at each pixel in the image, which are markedly different for the different tissue types. This suggests that the spectral information inherent in TPI might be used to identify the type of soft and hard tissue at each pixel in an image and provide other diagnostic information not afforded by conventional imagin techniques. Preliminary TPI studies of pork skin show that 3D tomographic imaging of the skin surface and thickness is possible, and data from experiments on models of the human dermis are presented which demonstrate that different constituents of skin have different refractive indices. Lastly, we present the first THz image of human tissue, namely an extracted tooth. The time of flight of THz pulses through the tooth allows the thickness of the enamel to be determined, and is used to create an image showing the enamel and dentine regions. Absorption of THz pulses in the tooth allows the pulp cavity region to be identified. Initial evidence strongly suggests that TPI my be used to provide valuable diagnostic information pertaining to the enamel, dentine, and the pump cavity.

  1. A collaborative biomedical image mining framework: application on the image analysis of microscopic kidney biopsies. (United States)

    Goudas, T; Doukas, C; Chatziioannou, A; Maglogiannis, I


    The analysis and characterization of biomedical image data is a complex procedure involving several processing phases, like data acquisition, preprocessing, segmentation, feature extraction and classification. The proper combination and parameterization of the utilized methods are heavily relying on the given image data set and experiment type. They may thus necessitate advanced image processing and classification knowledge and skills from the side of the biomedical expert. In this work, an application, exploiting web services and applying ontological modeling, is presented, to enable the intelligent creation of image mining workflows. The described tool can be directly integrated to the RapidMiner, Taverna or similar workflow management platforms. A case study dealing with the creation of a sample workflow for the analysis of kidney biopsy microscopy images is presented to demonstrate the functionality of the proposed framework.

  2. Imaging mass spectrometry with nuclear microprobes for biological applications

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Y. [Department of Nuclear Engineering, Kyoto University, Sakyo, Kyoto 606-8501 (Japan)], E-mail:; Yamada, H.; Honda, Y. [Department of Nuclear Engineering, Kyoto University, Sakyo, Kyoto 606-8501 (Japan); Ninomiya, S. [Quantum Science and Engineering Center, Kyoto University, Uji, Kyoto 611-0011 (Japan); Seki, T. [Department of Nuclear Engineering, Kyoto University, Sakyo, Kyoto 606-8501 (Japan); CREST, Japan Science and Technology Agency, Chiyoda, Tokyo 102-0075 (Japan); Aoki, T. [Department of Electronic Science and Engineering, Kyoto University, Nishikyo, Kyoto 615-8510 (Japan); CREST, Japan Science and Technology Agency, Chiyoda, Tokyo 102-0075 (Japan); Matsuo, J. [Quantum Science and Engineering Center, Kyoto University, Uji, Kyoto 611-0011 (Japan); CREST, Japan Science and Technology Agency, Chiyoda, Tokyo 102-0075 (Japan)


    A mass spectrometric technique using nuclear microprobes is presented in this paper for biological applications. In recent years, imaging mass spectrometry has become an increasingly important technique for visualizing the spatial distribution of molecular species in biological tissues and cells. However, due to low yields of large molecular ions, the conventional secondary ion mass spectrometry (SIMS), that uses keV primary ion beams, is typically applied for imaging of either elements or low mass compounds. In this study, we performed imaging mass spectrometry using MeV ion beams collimated to about 10 {mu}m, and successfully obtained molecular ion images from plant and animal cell sections. The molecular ion imaging of the pollen section showed high intensities of PO{sub 3}{sup -} ions in the pollen cytoplasm, compared to the pollen wall, and indicated the heterogeneous distribution in the cytoplasm. The 3T3-L1 cell image revealed the high intensity of PO{sub 3}{sup -} ions, in particular from the cell nucleus. The result showed that not only the individual cell, but also the cell nucleus could be identified with the present imaging technique.

  3. Catalytic Membranes Embedding Selective Catalysts: Preparation and Applications (United States)

    Drioli, Enrico; Fontananova, Enrica

    The embedding of a catalyst in membranes is today recognized as a promising strategy to develop highly efficient and eco-friendly heterogeneous catalytic chemical processes. When a catalyst is heterogenized within or on the surface of a membrane, the membrane composition (characteristics of the membrane material: hydrophobic or hydrophilic, presence of chemical groups with specific functionality, etc.) and the membrane structure (dense or porous, symmetric or asymmetric), can positively influence the catalyst performance, not only by the selective sorption and diffusion of reagents and/or products, but also influencing the catalyst activity by electronic and conformational effect. These effects are similar to those occurring in biological membranes. In this chapter, after a preliminary presentation of the basic principles of membrane reactors and polymer membranes, the preparation, characterization and applications of polymeric catalytic membranes, will be discussed.

  4. Statistical methods and applications from a historical perspective selected issues

    CERN Document Server

    Mignani, Stefania


    The book showcases a selection of peer-reviewed papers, the preliminary versions of which were presented at a conference held 11-13 June 2011 in Bologna and organized jointly by the Italian Statistical Society (SIS), the National Institute of Statistics (ISTAT) and the Bank of Italy. The theme of the conference was "Statistics in the 150 years of the Unification of Italy." The celebration of the anniversary of Italian unification provided the opportunity to examine and discuss the methodological aspects and applications from a historical perspective and both from a national and international point of view. The critical discussion on the issues of the past has made it possible to focus on recent advances, considering the studies of socio-economic and demographic changes in European countries.

  5. Selecting reliable and robust freshwater macroalgae for biomass applications.

    Directory of Open Access Journals (Sweden)

    Rebecca J Lawton

    Full Text Available Intensive cultivation of freshwater macroalgae is likely to increase with the development of an algal biofuels industry and algal bioremediation. However, target freshwater macroalgae species suitable for large-scale intensive cultivation have not yet been identified. Therefore, as a first step to identifying target species, we compared the productivity, growth and biochemical composition of three species representative of key freshwater macroalgae genera across a range of cultivation conditions. We then selected a primary target species and assessed its competitive ability against other species over a range of stocking densities. Oedogonium had the highest productivity (8.0 g ash free dry weight m⁻² day⁻¹, lowest ash content (3-8%, lowest water content (fresh weigh: dry weight ratio of 3.4, highest carbon content (45% and highest bioenergy potential (higher heating value 20 MJ/kg compared to Cladophora and Spirogyra. The higher productivity of Oedogonium relative to Cladophora and Spirogyra was consistent when algae were cultured with and without the addition of CO₂ across three aeration treatments. Therefore, Oedogonium was selected as our primary target species. The competitive ability of Oedogonium was assessed by growing it in bi-cultures and polycultures with Cladophora and Spirogyra over a range of stocking densities. Cultures were initially stocked with equal proportions of each species, but after three weeks of growth the proportion of Oedogonium had increased to at least 96% (±7 S.E. in Oedogonium-Spirogyra bi-cultures, 86% (±16 S.E. in Oedogonium-Cladophora bi-cultures and 82% (±18 S.E. in polycultures. The high productivity, bioenergy potential and competitive dominance of Oedogonium make this species an ideal freshwater macroalgal target for large-scale production and a valuable biomass source for bioenergy applications. These results demonstrate that freshwater macroalgae are thus far an under-utilised feedstock with

  6. Reconstruction of a ring applicator using CT imaging: impact of the reconstruction method and applicator orientation

    Energy Technology Data Exchange (ETDEWEB)

    Hellebust, Taran Paulsen [Department of Medical Physics, Rikshospital-Radiumhospital Medical Center, Oslo (Norway); Tanderup, Kari [Department of Oncology, Aarhus University Hospital, Aarhus (Denmark); Bergstrand, Eva Stabell [Department of Medical Physics, Rikshospital-Radiumhospital Medical Center, Oslo (Norway); Knutsen, Bjoern Helge [Department of Medical Physics, Rikshospital-Radiumhospital Medical Center, Oslo (Norway); Roeislien, Jo [Section of Biostatistics, Rikshospital-Radiumhospital Medical Center, Oslo (Norway); Olsen, Dag Rune [Institute for Cancer Research, Rikshospital-Radiumhospital Medical Center, Oslo (Norway)


    The purpose of this study is to investigate whether the method of applicator reconstruction and/or the applicator orientation influence the dose calculation to points around the applicator for brachytherapy of cervical cancer with CT-based treatment planning. A phantom, containing a fixed ring applicator set and six lead pellets representing dose points, was used. The phantom was CT scanned with the ring applicator at four different angles related to the image plane. In each scan the applicator was reconstructed by three methods: (1) direct reconstruction in each image (DR) (2) reconstruction in multiplanar reconstructed images (MPR) and (3) library plans, using pre-defined applicator geometry (LIB). The doses to the lead pellets were calculated. The relative standard deviation (SD) for all reconstruction methods was less than 3.7% in the dose points. The relative SD for the LIB method was significantly lower (p < 0.05) than for the DR and MPR methods for all but two points. All applicator orientations had similar dose calculation reproducibility. Using library plans for applicator reconstruction gives the most reproducible dose calculation. However, with restrictive guidelines for applicator reconstruction the uncertainties for all methods are low compared to other factors influencing the accuracy of brachytherapy.

  7. Simultaneous Clustering and Model Selection: Algorithm, Theory and Applications. (United States)

    Li, Zhuwen; Cheong, Loong-Fah; Yang, Shuoguang; Toh, Kim-Chuan


    While clustering has been well studied in the past decade, model selection has drawn much less attention due to the difficulty of the problem. In this paper, we address both problems in a joint manner by recovering an ideal affinity tensor from an imperfect input. By taking into account the relationship of the affinities induced by the cluster structures, we are able to significantly improve the affinity input, such as repairing those entries corrupted by gross outliers. More importantly, the recovered ideal affinity tensor also directly indicates the number of clusters and their membership, thus solving the model selection and clustering jointly. To enforce the requisite global consistency in the affinities demanded by the cluster structure, we impose a number of constraints, specifically, among others, the tensor should be low rank and sparse, and it should obey what we call the rank-1 sum constraint. To solve this highly non-smooth and non-convex problem, we exploit the mathematical structures, and express the original problem in an equivalent form amenable for numerical optimization and convergence analysis. To scale to large problem sizes, we also propose an alternative formulation, so that those problems can be efficiently solved via stochastic optimization in an online fashion. We evaluate our algorithm with different applications to demonstrate its superiority, and show it can adapt to a large variety of settings.

  8. Application of alternating decision trees in selecting sparse linear solvers

    KAUST Repository

    Bhowmick, Sanjukta


    The solution of sparse linear systems, a fundamental and resource-intensive task in scientific computing, can be approached through multiple algorithms. Using an algorithm well adapted to characteristics of the task can significantly enhance the performance, such as reducing the time required for the operation, without compromising the quality of the result. However, the best solution method can vary even across linear systems generated in course of the same PDE-based simulation, thereby making solver selection a very challenging problem. In this paper, we use a machine learning technique, Alternating Decision Trees (ADT), to select efficient solvers based on the properties of sparse linear systems and runtime-dependent features, such as the stages of simulation. We demonstrate the effectiveness of this method through empirical results over linear systems drawn from computational fluid dynamics and magnetohydrodynamics applications. The results also demonstrate that using ADT can resolve the problem of over-fitting, which occurs when limited amount of data is available. © 2010 Springer Science+Business Media LLC.

  9. Nanoparticle imaging probes for molecular imaging with computed tomography and application to cancer imaging (United States)

    Roeder, Ryan K.; Curtis, Tyler E.; Nallathamby, Prakash D.; Irimata, Lisa E.; McGinnity, Tracie L.; Cole, Lisa E.; Vargo-Gogola, Tracy; Cowden Dahl, Karen D.


    Precision imaging is needed to realize precision medicine in cancer detection and treatment. Molecular imaging offers the ability to target and identify tumors, associated abnormalities, and specific cell populations with overexpressed receptors. Nuclear imaging and radionuclide probes provide high sensitivity but subject the patient to a high radiation dose and provide limited spatiotemporal information, requiring combined computed tomography (CT) for anatomic imaging. Therefore, nanoparticle contrast agents have been designed to enable molecular imaging and improve detection in CT alone. Core-shell nanoparticles provide a powerful platform for designing tailored imaging probes. The composition of the core is chosen for enabling strong X-ray contrast, multi-agent imaging with photon-counting spectral CT, and multimodal imaging. A silica shell is used for protective, biocompatible encapsulation of the core composition, volume-loading fluorophores or radionuclides for multimodal imaging, and facile surface functionalization with antibodies or small molecules for targeted delivery. Multi-agent (k-edge) imaging and quantitative molecular imaging with spectral CT was demonstrated using current clinical agents (iodine and BaSO4) and a proposed spectral library of contrast agents (Gd2O3, HfO2, and Au). Bisphosphonate-functionalized Au nanoparticles were demonstrated to enhance sensitivity and specificity for the detection of breast microcalcifications by conventional radiography and CT in both normal and dense mammary tissue using murine models. Moreover, photon-counting spectral CT enabled quantitative material decomposition of the Au and calcium signals. Immunoconjugated Au@SiO2 nanoparticles enabled highly-specific targeting of CD133+ ovarian cancer stem cells for contrast-enhanced detection in model tumors.

  10. The method of selection of leukocytes in images of preparations of peripheral blood and bone marrow (United States)

    Zakharenko, Y. V.; Nikitaev, V. G.; Polyakov, E. V.; Seldyukov, S. O.


    Study of the segmentation method on the basis of histogram analysis for the selection of leukocytes in the images of blood and bone marrow in the diagnosis of acute leukemia was conducted in this paper. Method of filtering was offered to eliminate the artifacts, resulting from the selection of leukocytes.

  11. Band selection for hyperspectral image classification using extreme learning machine (United States)

    Li, Jiaojiao; Kingsdorf, Benjamin; Du, Qian


    Extreme learning machine (ELM) is a feedforward neural network with one hidden layer, which is similar to a multilayer perceptron (MLP). To reduce the complexity in the training process of MLP using the traditional backpropagation algorithm, the weights in ELM between input and hidden layers are random variables. The output layer in the ELM is linear, as in a radial basis function neural network (RBFNN), so the output weights can be easily estimated with a least squares solution. It has been demonstrated in our previous work that the computational cost of ELM is much lower than the standard support vector machine (SVM), and a kernel version of ELM can offer comparable performance as SVM. In our previous work, we also investigate the impact of the number of hidden neurons to the performance of ELM. Basically, more hidden neurons are needed if the number of training samples and data dimensionality are large, which results in a very large matrix inversion problem. To avoid handling such a large matrix, we propose to conduct band selection to reduce data dimensionality (i.e., the number of input neurons), thereby reducing network complexity. Experimental results show that ELM using selected bands can yield similar or even better classification accuracy than using all the original bands.

  12. The application of camera calibration in range-gated 3D imaging technology (United States)

    Liu, Xiao-quan; Wang, Xian-wei; Zhou, Yan


    selected. One-to-one correspondence between visual filed and focal length of system is obtained and offers effective visual field information for the matching of imaging filed and illumination filed in range-gated 3-D imaging technology. On the basis of the experimental results, combined with the depth of field theory, the application of camera calibration in range-gated 3-D imaging technology is futher studied.

  13. Application of agricultural subsidy inspection using UAV image (United States)

    Park, Jin-Ki; Das, Amrita; Park, Jong-Hwa


    The most important parameters, should be considered during application of remote sensing techniques in agricultural sector, is to acquire image data in appropriate moment in accordance with the growth of the crop. Unmanned Aerial Vehicles (UAVs) have several advantages over conventional remote sensing techniques. They can acquire high-resolution images quickly and repeatedly with a comparatively lower flight altitude i.e. 80 400m nullifying the effect of extreme weather and cloud. This study discussed the use of low cost-effective UAV based remote sensing application in inspection of agricultural subsidy. The study area includes 129.1km2 of Miwon town. UAV images acquired 41 times from July 17 to August 10, 2015 for 7 days. The UAV images identify a significant amount of incorrect applications for agricultural subsidy, almost 29.6% (559 of 1,889). Surveying with UAV for agricultural payment instead of field stuff can reduce the time as much as 76.7 % and increase the effectiveness of inspection methods.

  14. Assessment of application of selected waste for production of biogas (United States)

    Pawlita-Posmyk, Monika; Wzorek, Małgorzata


    Recently, the idea of biogas production has become a popular topic in Poland. Biogas is a valuable source of renewable energy with a potential application in electricity and heat production. Numerous types of technological solutions of biogas production are closely linked to the availability of substrates in the area, as well as their quantity and their properties. The paper presents the assessment of application in biogas production selected wastes such as communal and household sewage sludge and waste from a paper production in Opole region (Poland). The annual productions of methane, biogas and electricity were estimated. Chosen physico-chemical properties important in fermentation process were taken into consideration in the assessment. The highest value of potential energy was obtained using waste from the paper industry but the most appropriate parameters for this process has sewage sludge from the municipal sewage treatment plant. The use of sewage sludge from domestic and municipal sewage and waste from the paper industry creates the opportunity to reduce the amount of waste materials.


    Directory of Open Access Journals (Sweden)

    A. Kianisarkaleh


    Full Text Available Feature extraction plays a key role in hyperspectral images classification. Using unlabeled samples, often unlimitedly available, unsupervised and semisupervised feature extraction methods show better performance when limited number of training samples exists. This paper illustrates the importance of selecting appropriate unlabeled samples that used in feature extraction methods. Also proposes a new method for unlabeled samples selection using spectral and spatial information. The proposed method has four parts including: PCA, prior classification, posterior classification and sample selection. As hyperspectral image passes these parts, selected unlabeled samples can be used in arbitrary feature extraction methods. The effectiveness of the proposed unlabeled selected samples in unsupervised and semisupervised feature extraction is demonstrated using two real hyperspectral datasets. Results show that through selecting appropriate unlabeled samples, the proposed method can improve the performance of feature extraction methods and increase classification accuracy.

  16. Secure and Efficient Transmission of Hyperspectral Images for Geosciences Applications (United States)

    Carpentieri, Bruno; Pizzolante, Raffaele


    Hyperspectral images are acquired through air-borne or space-borne special cameras (sensors) that collect information coming from the electromagnetic spectrum of the observed terrains. Hyperspectral remote sensing and hyperspectral images are used for a wide range of purposes: originally, they were developed for mining applications and for geology because of the capability of this kind of images to correctly identify various types of underground minerals by analysing the reflected spectrums, but their usage has spread in other application fields, such as ecology, military and surveillance, historical research and even archaeology. The large amount of data obtained by the hyperspectral sensors, the fact that these images are acquired at a high cost by air-borne sensors and that they are generally transmitted to a base, makes it necessary to provide an efficient and secure transmission protocol. In this paper, we propose a novel framework that allows secure and efficient transmission of hyperspectral images, by combining a reversible invisible watermarking scheme, used in conjunction with digital signature techniques, and a state-of-art predictive-based lossless compression algorithm.

  17. Open-source software platform for medical image segmentation applications (United States)

    Namías, R.; D'Amato, J. P.; del Fresno, M.


    Segmenting 2D and 3D images is a crucial and challenging problem in medical image analysis. Although several image segmentation algorithms have been proposed for different applications, no universal method currently exists. Moreover, their use is usually limited when detection of complex and multiple adjacent objects of interest is needed. In addition, the continually increasing volumes of medical imaging scans require more efficient segmentation software design and highly usable applications. In this context, we present an extension of our previous segmentation framework which allows the combination of existing explicit deformable models in an efficient and transparent way, handling simultaneously different segmentation strategies and interacting with a graphic user interface (GUI). We present the object-oriented design and the general architecture which consist of two layers: the GUI at the top layer, and the processing core filters at the bottom layer. We apply the framework for segmenting different real-case medical image scenarios on public available datasets including bladder and prostate segmentation from 2D MRI, and heart segmentation in 3D CT. Our experiments on these concrete problems show that this framework facilitates complex and multi-object segmentation goals while providing a fast prototyping open-source segmentation tool.

  18. Tetrazine-Based Cycloadditions: Application to Pretargeted Live Cell Imaging (United States)

    Devaraj, Neal K.; Weissleder, Ralph; Hilderbrand, Scott A.


    Bioorthogonal tetrazine cycloadditions have been applied to live cell labeling. Tetrazines react irreversibly with the strained dienophile norbornene forming dihydropyrazine products and dinitrogen. The reaction is high yielding, selective, and fast in aqueous media. Her2/neu receptors on live human breast cancer cells were targeted with a monoclonal antibody modified with a norbornene. Tetrazines conjugated to a near-infrared fluorochrome selectively and rapidly label the pretargeted antibody in the presence of serum. These findings indicate that this chemistry is suitable for in vitro labeling experiments, and suggests that it may prove a useful strategy for in vivo pretargeted imaging under numerous modalities. PMID:19053305

  19. Image search engine with selective filtering and feature-element-based classification (United States)

    Li, Qing; Zhang, Yujin; Dai, Shengyang


    With the growth of Internet and storage capability in recent years, image has become a widespread information format in World Wide Web. However, it has become increasingly harder to search for images of interest, and effective image search engine for the WWW needs to be developed. We propose in this paper a selective filtering process and a novel approach for image classification based on feature element in the image search engine we developed for the WWW. First a selective filtering process is embedded in a general web crawler to filter out the meaningless images with GIF format. Two parameters that can be obtained easily are used in the filtering process. Our classification approach first extract feature elements from images instead of feature vectors. Compared with feature vectors, feature elements can better capture visual meanings of the image according to subjective perception of human beings. Different from traditional image classification method, our classification approach based on feature element doesn't calculate the distance between two vectors in the feature space, while trying to find associations between feature element and class attribute of the image. Experiments are presented to show the efficiency of the proposed approach.

  20. Interpretation of medical imaging data with a mobile application: a mobile digital imaging processing environment. (United States)

    Lin, Meng Kuan; Nicolini, Oliver; Waxenegger, Harald; Galloway, Graham J; Ullmann, Jeremy F P; Janke, Andrew L


    Digital Imaging Processing (DIP) requires data extraction and output from a visualization tool to be consistent. Data handling and transmission between the server and a user is a systematic process in service interpretation. The use of integrated medical services for management and viewing of imaging data in combination with a mobile visualization tool can be greatly facilitated by data analysis and interpretation. This paper presents an integrated mobile application and DIP service, called M-DIP. The objective of the system is to (1) automate the direct data tiling, conversion, pre-tiling of brain images from Medical Imaging NetCDF (MINC), Neuroimaging Informatics Technology Initiative (NIFTI) to RAW formats; (2) speed up querying of imaging measurement; and (3) display high-level of images with three dimensions in real world coordinates. In addition, M-DIP provides the ability to work on a mobile or tablet device without any software installation using web-based protocols. M-DIP implements three levels of architecture with a relational middle-layer database, a stand-alone DIP server, and a mobile application logic middle level realizing user interpretation for direct querying and communication. This imaging software has the ability to display biological imaging data at multiple zoom levels and to increase its quality to meet users' expectations. Interpretation of bioimaging data is facilitated by an interface analogous to online mapping services using real world coordinate browsing. This allows mobile devices to display multiple datasets simultaneously from a remote site. M-DIP can be used as a measurement repository that can be accessed by any network environment, such as a portable mobile or tablet device. In addition, this system and combination with mobile applications are establishing a virtualization tool in the neuroinformatics field to speed interpretation services.

  1. Interpretation of Medical Imaging Data with a Mobile Application: A Mobile Digital Imaging Processing Environment (United States)

    Lin, Meng Kuan; Nicolini, Oliver; Waxenegger, Harald; Galloway, Graham J.; Ullmann, Jeremy F. P.; Janke, Andrew L.


    Digital Imaging Processing (DIP) requires data extraction and output from a visualization tool to be consistent. Data handling and transmission between the server and a user is a systematic process in service interpretation. The use of integrated medical services for management and viewing of imaging data in combination with a mobile visualization tool can be greatly facilitated by data analysis and interpretation. This paper presents an integrated mobile application and DIP service, called M-DIP. The objective of the system is to (1) automate the direct data tiling, conversion, pre-tiling of brain images from Medical Imaging NetCDF (MINC), Neuroimaging Informatics Technology Initiative (NIFTI) to RAW formats; (2) speed up querying of imaging measurement; and (3) display high-level of images with three dimensions in real world coordinates. In addition, M-DIP provides the ability to work on a mobile or tablet device without any software installation using web-based protocols. M-DIP implements three levels of architecture with a relational middle-layer database, a stand-alone DIP server, and a mobile application logic middle level realizing user interpretation for direct querying and communication. This imaging software has the ability to display biological imaging data at multiple zoom levels and to increase its quality to meet users’ expectations. Interpretation of bioimaging data is facilitated by an interface analogous to online mapping services using real world coordinate browsing. This allows mobile devices to display multiple datasets simultaneously from a remote site. M-DIP can be used as a measurement repository that can be accessed by any network environment, such as a portable mobile or tablet device. In addition, this system and combination with mobile applications are establishing a virtualization tool in the neuroinformatics field to speed interpretation services. PMID:23847587

  2. Monte Carlo SURE-based parameter selection for parallel magnetic resonance imaging reconstruction. (United States)

    Weller, Daniel S; Ramani, Sathish; Nielsen, Jon-Fredrik; Fessler, Jeffrey A


    Regularizing parallel magnetic resonance imaging (MRI) reconstruction significantly improves image quality but requires tuning parameter selection. We propose a Monte Carlo method for automatic parameter selection based on Stein's unbiased risk estimate that minimizes the multichannel k-space mean squared error (MSE). We automatically tune parameters for image reconstruction methods that preserve the undersampled acquired data, which cannot be accomplished using existing techniques. We derive a weighted MSE criterion appropriate for data-preserving regularized parallel imaging reconstruction and the corresponding weighted Stein's unbiased risk estimate. We describe a Monte Carlo approximation of the weighted Stein's unbiased risk estimate that uses two evaluations of the reconstruction method per candidate parameter value. We reconstruct images using the denoising sparse images from GRAPPA using the nullspace method (DESIGN) and L1 iterative self-consistent parallel imaging (L1 -SPIRiT). We validate Monte Carlo Stein's unbiased risk estimate against the weighted MSE. We select the regularization parameter using these methods for various noise levels and undersampling factors and compare the results to those using MSE-optimal parameters. Our method selects nearly MSE-optimal regularization parameters for both DESIGN and L1 -SPIRiT over a range of noise levels and undersampling factors. The proposed method automatically provides nearly MSE-optimal choices of regularization parameters for data-preserving nonlinear parallel MRI reconstruction methods. Copyright © 2013 Wiley Periodicals, Inc.

  3. Application of digital image processing techniques to astronomical imagery, 1979 (United States)

    Lorre, J. J.


    Several areas of applications of image processing to astronomy were identified and discussed. These areas include: (1) deconvolution for atmospheric seeing compensation; a comparison between maximum entropy and conventional Wiener algorithms; (2) polarization in galaxies from photographic plates; (3) time changes in M87 and methods of displaying these changes; (4) comparing emission line images in planetary nebulae; and (5) log intensity, hue saturation intensity, and principal component color enhancements of M82. Examples are presented of these techniques applied to a variety of objects.

  4. The application of random phase filter in the image recognition (United States)

    Yang, Xiujuan; Zhong, Mei; Shao, Zhufeng


    We define one kind of new correlation, i.e. random phase correlation, which based on the Random Fourier Transform (RFT). An optical pattern recognition system, random phase filtering, is given according to random phase correlation. Furthermore its electro-optical setup is given for the application in image recognition. By the numerical simulation on computer, when the, we have found the proposed random phase filter can recognize the small change of object image and has higher recognition capability comparing of other three conventional correlators, the classical marched filter, the phase-only filter and the pure phase correlator.

  5. A New Application of MSPIHT for Medical Imaging

    Directory of Open Access Journals (Sweden)

    Athmane ZITOUNI


    Full Text Available In this paper, we propose a new application for medical imaging to image compression based on the principle of Set Partitioning In Hierarchical Tree algorithm (SPIHT. Our approach called , the modified SPIHT (MSPIHT, distributes entropy differently than SPIHT and also optimizes the coding. This approach can produce results that are a significant improvement on the Peak Signal-to-Noise Ratio (PSNR and compression ratio obtained by SPIHT algorithm, without affecting the computing time. These results are also comparable with those obtained using the Set Partitioning In Hierarchical Tree (SPIHT and Joint Photographic Experts Group 2000 (JPG2 algorithms.


    Directory of Open Access Journals (Sweden)

    Hynek Lauschmann


    Full Text Available The morphology of fatigue fracture surface (caused by constant cycle loading is strictly related to crack growth rate. This relation may be expressed, among other methods, by means of fractal analysis. Fractal dimension as a single numerical value is not sufficient. Two types of fractal feature vectors are discussed: multifractal and multiparametric. For analysis of images, the box-counting method for 3D is applied with respect to the non-homogeneity of dimensions (two in space, one in brightness. Examples of application are shown: images of several fracture surfaces are analyzed and related to crack growth rate.

  7. Modeling & imaging of bioelectrical activity principles and applications

    CERN Document Server

    He, Bin


    Over the past several decades, much progress has been made in understanding the mechanisms of electrical activity in biological tissues and systems, and for developing non-invasive functional imaging technologies to aid clinical diagnosis of dysfunction in the human body. The book will provide full basic coverage of the fundamentals of modeling of electrical activity in various human organs, such as heart and brain. It will include details of bioelectromagnetic measurements and source imaging technologies, as well as biomedical applications. The book will review the latest trends in

  8. Improved tensor scale computation with application to medical image interpolation. (United States)

    Xu, Ziyue; Sonka, Milan; Saha, Punam K


    Tensor scale (t-scale) is a parametric representation of local structure morphology that simultaneously describes its orientation, shape and isotropic scale. At any image location, t-scale represents the largest ellipse (an ellipsoid in three dimensions) centered at that location and contained in the same homogeneous region. Here, we present an improved algorithm for t-scale computation and study its application to image interpolation. Specifically, the t-scale computation algorithm is improved by: (1) enhancing the accuracy of identifying local structure boundary and (2) combining both algebraic and geometric approaches in ellipse fitting. In the context of interpolation, a closed form solution is presented to determine the interpolation line at each image location in a gray level image using t-scale information of adjacent slices. At each location on an image slice, the method derives normal vector from its t-scale that yields trans-orientation of the local structure and points to the closest edge point. Normal vectors at the matching two-dimensional locations on two adjacent slices are used to compute the interpolation line using a closed form equation. The method has been applied to BrainWeb data sets and to several other images from clinical applications and its accuracy and response to noise and other image-degrading factors have been examined and compared with those of current state-of-the-art interpolation methods. Experimental results have established the superiority of the new t-scale based interpolation method as compared to existing interpolation algorithms. Also, a quantitative analysis based on the paired t-test of residual errors has ascertained that the improvements observed using the t-scale based interpolation are statistically significant. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. The Application of the Montage Image Mosaic Engine To The Visualization Of Astronomical Images (United States)

    Berriman, G. Bruce; Good, J. C.


    The Montage Image Mosaic Engine was designed as a scalable toolkit, written in C for performance and portability across *nix platforms, that assembles FITS images into mosaics. This code is freely available and has been widely used in the astronomy and IT communities for research, product generation, and for developing next-generation cyber-infrastructure. Recently, it has begun finding applicability in the field of visualization. This development has come about because the toolkit design allows easy integration into scalable systems that process data for subsequent visualization in a browser or client. The toolkit it includes a visualization tool suitable for automation and for integration into Python: mViewer creates, with a single command, complex multi-color images overlaid with coordinate displays, labels, and observation footprints, and includes an adaptive image histogram equalization method that preserves the structure of a stretched image over its dynamic range. The Montage toolkit contains functionality originally developed to support the creation and management of mosaics, but which also offers value to visualization: a background rectification algorithm that reveals the faint structure in an image; and tools for creating cutout and downsampled versions of large images. Version 5 of Montage offers support for visualizing data written in HEALPix sky-tessellation scheme, and functionality for processing and organizing images to comply with the TOAST sky-tessellation scheme required for consumption by the World Wide Telescope (WWT). Four online tutorials allow readers to reproduce and extend all the visualizations presented in this paper.

  10. Review of biomedical Čerenkov luminescence imaging applications. (United States)

    Tanha, Kaveh; Pashazadeh, Ali Mahmoud; Pogue, Brian W


    Čerenkov radiation is a fascinating optical signal, which has been exploited for unique diagnostic biological sensing and imaging, with significantly expanded use just in the last half decade. Čerenkov Luminescence Imaging (CLI) has desirable capabilities for niche applications, using specially designed measurement systems that report on radiation distributions, radiotracer and nanoparticle concentrations, and are directly applied to procedures such as medicine assessment, endoscopy, surgery, quality assurance and dosimetry. When compared to the other imaging tools such as PET and SPECT, CLI can have the key advantage of lower cost, higher throughput and lower imaging time. CLI can also provide imaging and dosimetry information from both radioisotopes and linear accelerator irradiation. The relatively short range of optical photon transport in tissue means that direct Čerenkov luminescence imaging is restricted to small animals or near surface human use. Use of Čerenkov-excitation for additional molecular probes, is now emerging as a key tool for biosensing or radiosensitization. This review evaluates these new improvements in CLI for both medical value and biological insight.

  11. VIS/NIR imaging application for honey floral origin determination (United States)

    Minaei, Saeid; Shafiee, Sahameh; Polder, Gerrit; Moghadam-Charkari, Nasrolah; van Ruth, Saskia; Barzegar, Mohsen; Zahiri, Javad; Alewijn, Martin; Kuś, Piotr M.


    Nondestructive methods are of utmost importance for honey characterization. This study investigates the potential application of VIS-NIR hyperspectral imaging for detection of honey flower origin using machine learning techniques. Hyperspectral images of 52 honey samples were taken in transmittance mode in the visible/near infrared (VIS-NIR) range (400-1000 nm). Three different machine learning algorithms were implemented to predict honey floral origin using honey spectral images. These methods, included radial basis function (RBF) network, support vector machine (SVM), and random forest (RF). Principal component analysis (PCA) was also exploited for dimensionality reduction. According to the obtained results, the best classifier (RBF) achieved a precision of 94% in a fivefold cross validation experiment using only the first two PCs. Mapping of the classifier results to the test set images showed 90% accuracy for honey images. Three types of honey including buckwheat, rapeseed and heather were classified with 100% accuracy. The proposed approach has great potential for honey floral origin detection. As some other honey properties can also be predicted using image features, in addition to floral origin detection, this method may be applied to predict other honey characteristics.

  12. Advanced Imaging and Robotics Technologies for Medical Applications (United States)

    Masamune, Ken; Hong, Jaesung


    Due to the importance of surgery in the medical field, a large amount of research has been conducted in this area. Imaging and robotics technologies provide surgeons with the advanced eye and hand to perform their surgeries in a safer and more accurate manner. Recently medical images have been utilized in the operating room as well as in the diagnostic stage. If the image to patient registration is done with sufficient accuracy, medical images can be used as "a map" for guidance to the target lesion. However, the accuracy and reliability of the surgical navigation system should be sufficiently verified before applying it to the patient. Along with the development of medical imaging, various medical robots have also been developed. In particular, surgical robots have been researched in order to reach the goal of minimal invasiveness. The most important factors to consider are determining the demand, the strategy for their use in operating procedures, and how it aids patients. In addition to the above considerations, medical doctors and researchers should always think from the patient's point of view. In this article, the latest medical imaging and robotic technologies focusing on surgical applications are reviewed based upon the factors described in the above.

  13. Adaptive image interrogation for PIV : Application to compressible flows and interfaces

    NARCIS (Netherlands)

    Theunissen, R.


    As an experimental tool, Particle Image Velocimetry has quickly superseded traditional point-wise measurements. The inherent image processing has become standardized though the performances are strongly dependent on user experience. Moreover, the arduously selected image interrogation parameters are

  14. Differences in selectivity to natural images in early visual areas (V1-V3). (United States)

    Coggan, David D; Allen, Luke A; Farrar, Oliver R H; Gouws, Andre D; Morland, Antony B; Baker, Daniel H; Andrews, Timothy J


    High-level regions of the ventral visual pathway respond more to intact objects compared to scrambled objects. The aim of this study was to determine if this selectivity for objects emerges at an earlier stage of processing. Visual areas (V1-V3) were defined for each participant using retinotopic mapping. Participants then viewed intact and scrambled images from different object categories (bottle, chair, face, house, shoe) while neural responses were measured using fMRI. Our rationale for using scrambled images is that they contain the same low-level properties as the intact objects, but lack the higher-order combinations of features that are characteristic of natural images. Neural responses were higher for scrambled than intact images in all regions. However, the difference between intact and scrambled images was smaller in V3 compared to V1 and V2. Next, we measured the spatial patterns of response to intact and scrambled images from different object categories. We found higher within-category compared to between category correlations for both intact and scrambled images demonstrating distinct patterns of response. Spatial patterns of response were more distinct for intact compared to scrambled images in V3, but not in V1 or V2. These findings demonstrate the emergence of selectivity to natural images in V3.

  15. Probabilistic-driven oriented Speckle reducing anisotropic diffusion with application to cardiac ultrasonic images. (United States)

    Vegas-Sanchez-Ferrero, G; Aja-Fernandez, S; Martin-Fernandez, M; Frangi, A F; Palencia, C


    A novel anisotropic diffusion filter is proposed in this work with application to cardiac ultrasonic images. It includes probabilistic models which describe the probability density function (PDF) of tissues and adapts the diffusion tensor to the image iteratively. For this purpose, a preliminary study is performed in order to select the probability models that best fit the stastitical behavior of each tissue class in cardiac ultrasonic images. Then, the parameters of the diffusion tensor are defined taking into account the statistical properties of the image at each voxel. When the structure tensor of the probability of belonging to each tissue is included in the diffusion tensor definition, a better boundaries estimates can be obtained instead of calculating directly the boundaries from the image. This is the main contribution of this work. Additionally, the proposed method follows the statistical properties of the image in each iteration. This is considered as a second contribution since state-of-the-art methods suppose that noise or statistical properties of the image do not change during the filter process.

  16. Application of superhigh-definition images to teleradiology and telepathology (United States)

    Suzuki, Junji


    It was recognized early on that the digitization of medical information would advance the efficiency of diagnostic technology. However, the digitization of image data, which makes up the majority of medical information, is dependent on advances in technologies such as input, processing, transmission, storage, and display. Insufficient advances in such technologies has effectively limited the digitization of image data for medical use. The result of this has been non-networked systems or LANs confined to a single hospital. Such isolated systems integrate only portions of digital medical images such as x-ray computer tomography (CT), magnetic resonance (MR), and computed radiography (CR). Fortunately, recent advances in the areas of super high definition image I/O, high-quality encoding, ATM-based high speed transmission, and high-capacity storage has turned the tide in favor of the digitization and networking of all medical information. This paper focuses on the digitization and networking of medical image information used within hospitals and provides a multifaceted study of the technologies necessary for these advances. This allows us to discuss the present state of related technical developments and the level that has been attained so far. In addition, we have targeted image information that demands the highest level of quality (radiological and pathological images) for application in medical diagnosis using super high definition images, which have a spatial resolution of at least 2048 by 2048 pixels and a temporal resolution of at least 60 frames per second with progressive scanning. We cover the concrete issues and approaches to solutions that must be investigated when building and networking a digital system.

  17. Tensor valuations and their applications in stochastic geometry and imaging

    CERN Document Server

    Kiderlen, Markus


    The purpose of this volume is to give an up-to-date introduction to tensor valuations and their applications. Starting with classical results concerning scalar-valued valuations on the families of convex bodies and convex polytopes, it proceeds to the modern theory of tensor valuations. Product and Fourier-type transforms are introduced and various integral formulae are derived. New and well-known results are presented, together with generalizations in several directions, including extensions to the non-Euclidean setting and to non-convex sets. A variety of applications of tensor valuations to models in stochastic geometry, to local stereology and to imaging are also discussed.

  18. THz wave generation and imaging for industrial applications (United States)

    Kawase, K.; Shibuya, T.; Suizu, K.; Hayashi, S.


    We have suggested a wide range of real-life applications using novel terahertz imaging techniques. A high-resolution terahertz tomography was demonstrated by ultra short terahertz pulses using optical fiber and a nonlinear organic crystal. We also describe a non-destructive inspection system that can monitor the soot distribution in the ceramic filter using millimeter-to-terahertz wave computed tomography. Further we report on the thickness measurement of very thin films using high-sensitivity metal mesh filter. These techniques are directly applicable to the non-destructive testing in industries.

  19. Preparation of a Versatile Bifunctional Zeolite for Targeted Imaging Applications (United States)

    Ndiege, Nicholas; Raidoo, Renugan; Schultz, Michael K.; Larsen, Sarah


    Bifunctional zeolite Y was prepared for use in targeted in vivo molecular imaging applications. The strategy involved functionalization of the external surface of zeolite Y with chloropropyltriethoxysilane followed by reaction with sodium azide to form azide-functionalized NaY, which is amenable to copper(1) catalyzed click chemistry. In this study, a model alkyne (4-pentyn-1-ol) was attached to the azide-terminated surface via click chemistry to demonstrate feasibility for attachment of molecular targeting vectors (e.g., peptides, aptamers) to the zeolite surface. The modified particle efficiently incorporates the imaging radioisotope gallium-68 (68Ga) into the pores of the azide-functionalized NaY zeolite to form a stable bifunctional molecular targeting vector. The result is a versatile “clickable” zeolite platform that can be tailored for future in vivo molecular targeting and imaging modalities. PMID:21306141

  20. Imaging of the hip and bony pelvis. Techniques and applications

    Energy Technology Data Exchange (ETDEWEB)

    Davies, A.M. [Royal Orthopaedic Hospital, Birmingham (United Kingdom). MRI Centre; Johnson, K.J. [Princess of Wales Birmingham Children' s Hospital (United Kingdom); Whitehouse, R.W. (eds.) [Manchester Royal Infirmary (United Kingdom). Dept. of Clinical Radiology


    This is a comprehensive textbook on imaging of the bony pelvis and hip joint that provides a detailed description of the techniques and imaging findings relevant to this complex anatomical region. In the first part of the book, the various techniques and procedures employed for imaging the pelvis and hip are discussed in detail. The second part of the book documents the application of these techniques to the diverse clinical problems and diseases encountered. Among the many topics addressed are congenital and developmental disorders including developmental dysplasia of the hip, irritable hip and septic arthritis, Perthes' disease and avascular necrosis, slipped upper femoral epiphysis, bony and soft tissue trauma, arthritis, tumours and hip prostheses. Each chapter is written by an acknowledged expert in the field, and a wealth of illustrative material is included. This book will be of great value to musculoskeletal and general radiologists, orthopaedic surgeons and rheumatologists. (orig.)

  1. Application of Super-Resolution Image Reconstruction to Digital Holography

    Directory of Open Access Journals (Sweden)

    Zhang Shuqun


    Full Text Available We describe a new application of super-resolution image reconstruction to digital holography which is a technique for three-dimensional information recording and reconstruction. Digital holography has suffered from the low resolution of CCD sensors, which significantly limits the size of objects that can be recorded. The existing solution to this problem is to use optics to bandlimit the object to be recorded, which can cause the loss of details. Here super-resolution image reconstruction is proposed to be applied in enhancing the spatial resolution of digital holograms. By introducing a global camera translation before sampling, a high-resolution hologram can be reconstructed from a set of undersampled hologram images. This permits the recording of larger objects and reduces the distance between the object and the hologram. Practical results from real and simulated holograms are presented to demonstrate the feasibility of the proposed technique.

  2. Applications of fluorescence lifetime imaging in clinical medicine

    Directory of Open Access Journals (Sweden)

    Zhanwen Wang


    Full Text Available Fluorescence lifetime is not only associated with the molecular structure of fluorophores, but also strongly depends on the environment around them, which allows fluorescence lifetime imaging microscopy (FLIM to be used as a tool for precise measurement of the cell or tissue microenvironment. This review introduces the basic principle of fluorescence lifetime imaging technology and its application in clinical medicine, including research and diagnosis of diseases in skin, brain, eyes, mouth, bone, blood vessels and cavity organs, and drug evaluation. As a noninvasive, nontoxic and nonionizing radiation technique, FLIM demonstrates excellent performance with high sensitivity and specificity, which allows to determine precise position of the lesion and, thus, has good potential for application in biomedical research and clinical diagnosis.

  3. Quantum dots in imaging, drug delivery and sensor applications. (United States)

    Matea, Cristian T; Mocan, Teodora; Tabaran, Flaviu; Pop, Teodora; Mosteanu, Ofelia; Puia, Cosmin; Iancu, Cornel; Mocan, Lucian


    Quantum dots (QDs), also known as nanoscale semiconductor crystals, are nanoparticles with unique optical and electronic properties such as bright and intensive fluorescence. Since most conventional organic label dyes do not offer the near-infrared (>650 nm) emission possibility, QDs, with their tunable optical properties, have gained a lot of interest. They possess characteristics such as good chemical and photo-stability, high quantum yield and size-tunable light emission. Different types of QDs can be excited with the same light wavelength, and their narrow emission bands can be detected simultaneously for multiple assays. There is an increasing interest in the development of nano-theranostics platforms for simultaneous sensing, imaging and therapy. QDs have great potential for such applications, with notable results already published in the fields of sensors, drug delivery and biomedical imaging. This review summarizes the latest developments available in literature regarding the use of QDs for medical applications.

  4. Optical Imaging Sensors and Systems for Homeland Security Applications

    CERN Document Server

    Javidi, Bahram


    Optical and photonic systems and devices have significant potential for homeland security. Optical Imaging Sensors and Systems for Homeland Security Applications presents original and significant technical contributions from leaders of industry, government, and academia in the field of optical and photonic sensors, systems and devices for detection, identification, prevention, sensing, security, verification and anti-counterfeiting. The chapters have recent and technically significant results, ample illustrations, figures, and key references. This book is intended for engineers and scientists in the relevant fields, graduate students, industry managers, university professors, government managers, and policy makers. Advanced Sciences and Technologies for Security Applications focuses on research monographs in the areas of -Recognition and identification (including optical imaging, biometrics, authentication, verification, and smart surveillance systems) -Biological and chemical threat detection (including bios...

  5. Nanoemulsion: process selection and application in cosmetics--a review. (United States)

    Yukuyama, M N; Ghisleni, D D M; Pinto, T J A; Bou-Chacra, N A


    In recent decades, considerable and continuous growth in consumer demand in the cosmetics field has spurred the development of sophisticated formulations, aiming at high performance, attractive appearance, sensorial benefit and safety. Yet despite increasing demand from consumers, the formulator faces certain restrictions regarding the optimum equilibrium between the active compound concentration and the formulation base taking into account the nature of the skin structure, mainly concerning to the ideal penetration of the active compound, due to the natural skin barrier. Emulsion is a mixture of two immiscible phases, and the interest in nanoscale emulsion has been growing considerably in recent decades due to its specific attributes such as high stability, attractive appearance and drug delivery properties; therefore, performance is expected to improve using a lipid-based nanocarrier. Nanoemulsions are generated by different approaches: the so-called high-energy and low-energy methods. The global overview of these mechanisms and different alternatives for each method are presented in this paper, along with their benefits and drawbacks. As a cosmetics formulation is reflected in product delivery to consumers, nanoemulsion development with prospects for large-scale production is one of the key attributes in the method selection process. Thus, the aim of this review was to highlight the main high- and low-energy methods applicable in cosmetics and dermatological product development, their specificities, recent research on these methods in the cosmetics and consideration for the process selection optimization. The specific process with regard to inorganic nanoparticles, polymer nanoparticles and nanocapsule formulation is not considered in this paper. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  6. Application of digital image processing for pot plant grading


    Dijkstra, J.


    The application of digital image processing for grading of pot plants has been studied. Different techniques e.q. plant part identification based on knowledge based segmentation, have been developed to measure features of plants in different growth stage. Growth experiments were performed to identify grading features and to test whether it is possible to grade pot plants in homogeneous groups. Judgement experiments were performed to test whether it is possible to grade plants as good...

  7. Design and Fabrication of Waveguide Optics for Imaging Applications


    Babu, P; Ganganagunta, S.


    Due to the non-ionizing property, researchers have chosen to investigate terahertz radiation (THz) Imaging instrumentation for Bio-Sensing applications. The present work is to design and fabricate a near field lens that can focus guided terahertz radiation to a microscopic region for the detection of cancer-affected cells in Biological tissue. Operational characteristics such as field of view, optical loss factor, and hydrophobicity must be included to achieve an effective design of the lens.

  8. Applications of laser wakefield accelerators for biomedical imaging (United States)

    Najmudin, Zulfikar


    Laser-wakefield accelerators driven by high-intensity short-pulse lasers are a proven compact source of high-energy electron beams, with energy gains of ~GeV energy in centimetres of plasma demonstrated. One of the main proposed applications for these accelerators is to drive synchrotron light sources, in particular for x-ray applications. It has also been shown that the same plasma accelerator can also act as a wigglers, capable of the production of high brightness and spatially coherent hard x-ray beams. In this latest work, we demonstrate the application of these unique light-sources for biological and medical applications. The experiments were performed with the Astra Gemini laser at the Rutherford Appleton Laboratory in the UK. Gemini produces laser pulses with energy exceeding 10 J in pulse lengths down to 40 fs. A long focal length parabola (f / 20) is used to focus the laser down to a spot of size approximately 25 μ m (fwhm) into a gas-cell of variable length. Electrons are accelerated to energies up to 1 GeV and a bright beam of x-rays is observed simultaneously with the accelerated beam. The length of the gas cell was optimised to produce high contrast x-ray images of radiographed test objects. This source was then used for imaging a number of interesting medical and biological samples. Full tomographic imaging of a human trabecular bone sample was made with resolution easily exceeding the ~100 μm level required for CT applications. Phase-contrast imaging of human prostrate and mouse neonates at the micron level was also demonstrated. These studies indicate the usefulness of these sources in research and clinical applications. They also show that full 3D imaging can be made possible with this source in a fraction of the time that it would take with a corresponding x-ray tube. The JAI is funded by STFC Grant ST/J002062/1.

  9. Functional imaging in oncology. Clinical applications. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Luna, Antonio [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Radiology; MRI Health Time Group, Jaen (Spain); Vilanova, Joan C. [Girona Univ. (Spain). Clinica Girona - Hospital Sta. Caterina; Hygino da Cruz, L. Celso Jr. (ed.) [CDPI and IRM, Rio de Janeiro (Brazil). Dept. of Radiology; Rossi, Santiago E. [Centro de Diagnostico, Buenos Aires (Argentina)


    Easy-to-read manual on new functional imaging techniques in oncology. Explains current clinical applications and outlines future avenues. Includes numerous high-quality illustrations to highlight the major teaching points. In the new era of functional and molecular imaging, both currently available imaging biomarkers and biomarkers under development are expected to lead to major changes in the management of oncological patients. This two-volume book is a practical manual on the various imaging techniques capable of delivering functional information on cancer, including diffusion MRI, perfusion CT and MRI, dual-energy CT, spectroscopy, dynamic contrast-enhanced ultrasonography, PET, and hybrid modalities. This second volume considers the applications and benefits of these techniques in a wide range of tumor types, including their role in diagnosis, prediction of treatment outcome, and early evaluation of treatment response. Each chapter addresses a specific malignancy and is written by one or more acclaimed experts. The lucid text is complemented by numerous high-quality illustrations that highlight key features and major teaching points.

  10. Emotional textile image classification based on cross-domain convolutional sparse autoencoders with feature selection (United States)

    Li, Zuhe; Fan, Yangyu; Liu, Weihua; Yu, Zeqi; Wang, Fengqin


    We aim to apply sparse autoencoder-based unsupervised feature learning to emotional semantic analysis for textile images. To tackle the problem of limited training data, we present a cross-domain feature learning scheme for emotional textile image classification using convolutional autoencoders. We further propose a correlation-analysis-based feature selection method for the weights learned by sparse autoencoders to reduce the number of features extracted from large size images. First, we randomly collect image patches on an unlabeled image dataset in the source domain and learn local features with a sparse autoencoder. We then conduct feature selection according to the correlation between different weight vectors corresponding to the autoencoder's hidden units. We finally adopt a convolutional neural network including a pooling layer to obtain global feature activations of textile images in the target domain and send these global feature vectors into logistic regression models for emotional image classification. The cross-domain unsupervised feature learning method achieves 65% to 78% average accuracy in the cross-validation experiments corresponding to eight emotional categories and performs better than conventional methods. Feature selection can reduce the computational cost of global feature extraction by about 50% while improving classification performance.

  11. Regadenoson: review of its established role in myocardial perfusion imaging and emerging applications. (United States)

    Palani, Gurunanthan; Ananthasubramaniam, Karthikeyan


    Myocardial perfusion imaging is a well-established noninvasive modality for the diagnosis and prognosis of coronary artery disease. The pharmacologic stress agents adenosine and dipyridamole are widely used in imaging studies, but cause undesirable side effects, like atrioventricular block and bronchospasm, due to their nonselective adenosine receptor activation. Furthermore, the mode of administration of these agents as a bolus infusion is less preferred. Regadenoson, an A2A adenosine receptor selective pharmacologic stress agent was approved in 2008 and is widely used instead of adenosine and dipyridamole. This article reviews regadenosons structure, mechanism of action, advantages over adenosine and dipyridamole, and its role in various patient populations undergoing stress perfusion imaging. Emerging applications where regadenoson could be of potential use are also explored.

  12. Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes. (United States)

    Dosekova, Erika; Filip, Jaroslav; Bertok, Tomas; Both, Peter; Kasak, Peter; Tkac, Jan


    This review comprehensively covers the most recent achievements (from 2013) in the successful integration of nanomaterials in the field of glycomics. The first part of the paper addresses the beneficial properties of nanomaterials for the construction of biosensors, bioanalytical devices, and protocols for the detection of various analytes, including viruses and whole cells, together with their key characteristics. The second part of the review focuses on the application of nanomaterials integrated with glycans for various biomedical applications, that is, vaccines against viral and bacterial infections and cancer cells, as therapeutic agents, for in vivo imaging and nuclear magnetic resonance imaging, and for selective drug delivery. The final part of the review describes various ways in which glycan enrichment can be effectively done using nanomaterials, molecularly imprinted polymers with polymer thickness controlled at the nanoscale, with a subsequent analysis of glycans by mass spectrometry. A short section describing an active glycoprofiling by microengines (microrockets) is covered as well. © 2016 Wiley Periodicals, Inc.

  13. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications (United States)

    Deslouches, Berthony; Di, Y. Peter


    In the last several decades, there have been significant advances in anticancer therapy. However, the development of resistance to cancer drugs and the lack of specificity related to actively dividing cells leading to toxic side effects have undermined these achievements. As a result, there is considerable interest in alternative drugs with novel antitumor mechanisms. In addition to the recent approach using immunotherapy, an effective but much cheaper therapeutic option of pharmaceutical drugs would still provide the best choice for cancer patients as the first line treatment. Ribosomally synthesized cationic antimicrobial peptides (AMPs) or host defense peptides (HDP) display broad-spectrum activity against bacteria based on electrostatic interactions with negatively charged lipids on the bacterial surface. Because of increased proportions of phosphatidylserine (negatively charged) on the surface of cancer cells compared to normal cells, cationic amphipathic peptides could be an effective source of anticancer agents that are both selective and refractory to current resistance mechanisms. We reviewed herein the prospect for AMP application to cancer treatment, with a focus on modes of action of cationic AMPs. PMID:28422728

  14. Application of Delphi method in site selection of desalination plants

    Directory of Open Access Journals (Sweden)

    M. Sepehr


    Full Text Available Given the reduced freshwater supplies across the world, seawater desalination is one of the appropriate methods available for producing freshwater. Selecting an optimal location is crucial in the installation of these plants owing to the environmental problems they cause. The present study was conducted to identify optimal locations for installing desalination Plants in the coastal areas of southern Iran (Hormozgan Province with application of Delphi method. To implement this technique and identify, screen and prioritize effective criteria and sub-criteria, ten experts were surveyed through questionnaires and eight criteria and 18 sub-criteria were identified. All these sub-criteria were evaluated and classified in ArcGIS into five classes as input layers. The maps were then integrated based on the modulation importance coefficient and the identified priorities using a linear Delphi model and the final map was reclassified into five categories. Environmentally sensitive areas and seawater quality were respectively the criterion and sub-criterion that received the highest importance. After combining the layers and obtaining the final map, 63 locations were identified for installing desalination plants in the coastal areas on the Persian Gulf and Oman Sea in Hormozgan Province.  At the end, 27 locations were high important and had optimal environmental conditions for establishing desalination plants. Of the 27 locations, six were located in the coastal area of the Oman Sea, one in the coastal area of the Strait of Hormuz and 20 others in the coastal area of the Persian Gulf.

  15. Improving applicant selection: identifying qualities of the unsuccessful otolaryngology resident. (United States)

    Badran, Karam W; Kelley, Kanwar; Conderman, Christian; Mahboubi, Hossein; Armstrong, William B; Bhandarkar, Naveen D


    To identify the prevalence and management of problematic residents. Additionally, we hope to identify the factors associated with successful remediation of unsuccessful otolaryngology residents. Self-reported Internet and paper-based survey. An anonymous survey was distributed to 152 current and former program directors (PDs) in 2012. The factors associated with unsuccessful otolaryngology residents and those associated with the successful remediation of problematic residents were investigated. An unsuccessful resident is defined as one who quit or was removed from the program for any reason, or one whose actions resulted in criminal action or citation against their medical license after graduation from residency. Remediation is defined as an individualized program implemented to correct documented weaknesses. The overall response rate was 26% (40 PDs). Seventy-three unsuccessful or problematic residents were identified. Sixty-six problematic or unsuccessful residents were identified during residency, with 58 of 66 (88%) undergoing remediation. Thirty-one (47%) residents did not graduate. The most commonly identified factors of an unsuccessful resident were: change in specialty (21.5%), interpersonal and communication skills with health professionals (13.9%), and clinical judgment (10.1%). Characteristics of those residents who underwent successful remediation include: poor performance on in-training examination (17%, P otolaryngology PDs in this sample identified at least one unsuccessful resident. Improved methods of applicant screening may assist in optimizing otolaryngology resident selection. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  16. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. (United States)

    Deslouches, Berthony; Di, Y Peter


    In the last several decades, there have been significant advances in anticancer therapy. However, the development of resistance to cancer drugs and the lack of specificity related to actively dividing cells leading to toxic side effects have undermined these achievements. As a result, there is considerable interest in alternative drugs with novel antitumor mechanisms. In addition to the recent approach using immunotherapy, an effective but much cheaper therapeutic option of pharmaceutical drugs would still provide the best choice for cancer patients as the first line treatment. Ribosomally synthesized cationic antimicrobial peptides (AMPs) or host defense peptides (HDP) display broad-spectrum activity against bacteria based on electrostatic interactions with negatively charged lipids on the bacterial surface. Because of increased proportions of phosphatidylserine (negatively charged) on the surface of cancer cells compared to normal cells, cationic amphipathic peptides could be an effective source of anticancer agents that are both selective and refractory to current resistance mechanisms. We reviewed herein the prospect for AMP application to cancer treatment, with a focus on modes of action of cationic AMPs.

  17. Emerging clinical applications of selected biomarkers in melanoma

    Directory of Open Access Journals (Sweden)

    Tetzlaff MT


    Full Text Available Michael T Tetzlaff,1 Carlos A Torres-Cabala,1,2 Penvadee Pattanaprichakul,1,3 Ronald P Rapini,2 Victor G Prieto,1,2 Jonathan L Curry1,21Department of Pathology, Section of Dermatopathology, 2Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 3Department of Dermatology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, ThailandAbstract: Melanoma is a lethal skin disease with a mostly predictable clinical course according to a known constellation of clinical and pathologic features. The distinction of melanoma from benign melanocytic nevus is typically unequivocol; however, there is a subset of tumors known for its diagnostic challenges, development of late metastases, and difficulties in treatment. Several melanocytic tissue biomarkers are available that can facilitate the histopathologic interpretation of melanoma as well as provide insight into the biologic potential and mutational status of this disease. This review describes the clinical application of some of these established and emerging tissue biomarkers available to assess melanocytic differentiation, vascular invasion, mitotic capacity, and mutation status. The selected tissue biomarkers in this review include MiTF, Sox10, D2-40, PHH3, H3KT (anti-H3K79me3T80ph, anti-BRAFV600E, and anti-BAP-1.Keywords: immunohistochemistry, melanocytic differentiation, histone marks, BRAFV600E

  18. Intelligent instance selection of data streams for smart sensor applications (United States)

    Galan, Magdiel; Liu, Huan; Torkkola, Kari


    The purpose of our work is to mine streaming data from a variety of hundreds of automotive sensors in order to develop methods to minimize driver distraction from in-vehicle communications and entertainment systems such as audio/video devices, cellphones, PDAs, Fax, eMail, and other messaging devices. Our endeavor is to create a safer driving environment, by providing assistance in the form of warning, delaying, or re-routing, incoming signals if the assistance system detects that the driver is performing, or is about to perform, a critical maneuver, such as passing, changing lanes, making a turn, or during a sudden evasive maneuver. To accomplish this, our assistance system relies on maneuver detection by continuously evaluating various embedded vehicle sensors, such as speed, steering, acceleration, lane distance, and many others, combined into representing an instance of the "state" of the vehicle. One key issue is how to effectively and efficiently monitor many sensors with constant data streams. Data streams have their unique characteristics and may produce data that is not relevant or pertinent to a maneuver. We propose an adaptive sampling method that takes advantage of these unique characteristics and develop algorithms that attempt to select relevant and important instances to determine which sensors to monitor and how to provide quick and effective responses to this type of mission critical situations. This work can be extended to many similar sensor applications with data streams.

  19. Graphene electrically reconfigurable patterns for THz imaging applications (United States)

    Sensale-Rodriguez, Berardi; Rafique, Subrina; Yan, Rusen; Zhu, Mingda; Protasenko, Vladimir; Jena, Debdeep; Liu, Lei; Xing, Huili Grace


    THz waves are attractive for several imaging applications, since they can propagate through non metallic media such as paper, cloth, plastics, and ceramics, and do not scatter over nano-scale defects or ionize the material under imaging -as might shorter wavelengths do- while offering an image resolution similar to that of the human eye. In this work we propose and experimentally demonstrate electrically reconfigurable patterns for single-pixel terahertz imaging based on arrays of graphene THz electro-absorption modulators. In an optical setup, in conjunction with mirrors, the modulator array can transform the output radiation from a CW THz source into a pixelated and collimated beam of illumination. Single-atom-thick graphene is employed as the active element of these modulators, achieving a modulation of the THz wave reflectance >50% with a potential modulation depth approaching 100% (i.e. each region of the pixelated collimated beam can be potentially completely turned-off). Although the proof-of-concept device here discussed only consists of 4x4 elements, we foresee that this technology can enable low-cost video rate THz imaging systems.

  20. New technology of functional infrared imaging and its clinical applications (United States)

    Yang, Hongqin; Xie, Shusen; Lu, Zukang; Liu, Zhongqi


    With improvements in infrared camera technology, the promise of reduced costs and noninvasive character, infrared thermal imaging resurges in medicine. The paper introduces a new technology of functional infrared imaging, thermal texture maps (TTM), which is not only an apparatus for thermal radiation imaging but also a new method for revealing the relationship between the temperature distribution of the skin surface and the emission field inside body. The skin temperature distribution of a healthy human body exhibits a contralateral symmetry. Any disease in the body is associated with an alteration of the thermal distribution of human body. Infrared thermography is noninvasive, so it is the best choice for studying the physiology of thermoregulation and the thermal dysfunction associated with diseases. Reading and extracting information from the thermograms is a complex and subjective task that can be greatly facilitated by computerized techniques. Through image processing and measurement technology, surface or internal radiation sources can be non-invasively distinguished through extrapolation. We discuss the principle, the evaluation procedure and the effectiveness of TTM technology in the clinical detection and diagnosis of cancers, especially in their early stages and other diseases by comparing with other imaging technologies, such as ultrasound. Several study cases are given to show the effectiveness of this method. At last, we point out the applications of TTM technology in the research field of traditional medicine.

  1. A review of image quality assessment methods with application to computational photography (United States)

    Maître, Henri


    Image quality assessment has been of major importance for several domains of the industry of image as for instance restoration or communication and coding. New application fields are opening today with the increase of embedded power in the camera and the emergence of computational photography: automatic tuning, image selection, image fusion, image data-base building, etc. We review the literature of image quality evaluation. We pay attention to the very different underlying hypotheses and results of the existing methods to approach the problem. We explain why they differ and for which applications they may be beneficial. We also underline their limits, especially for a possible use in the novel domain of computational photography. Being developed to address different objectives, they propose answers on different aspects, which make them sometimes complementary. However, they all remain limited in their capability to challenge the human expert, the said or unsaid ultimate goal. We consider the methods which are based on retrieving the parameters of a signal, mostly in spectral analysis; then we explore the more global methods to qualify the image quality in terms of noticeable defects or degradation as popular in the compression domain; in a third field the image acquisition process is considered as a channel between the source and the receiver, allowing to use the tools of the information theory and to qualify the system in terms of entropy and information capacity. However, these different approaches hardly attack the most difficult part of the task which is to measure the quality of the photography in terms of aesthetic properties. To help in addressing this problem, in between Philosophy, Biology and Psychology, we propose a brief review of the literature which addresses the problematic of qualifying Beauty, present the attempts to adapt these concepts to visual patterns and initiate a reflection on what could be done in the field of photography.

  2. MR imaging and proton spectroscopy of the breast: how to select the images useful to convey the diagnostic message. (United States)

    Fausto, A; Magaldi, A; Babaei Paskeh, B; Menicagli, L; Lupo, E N; Sardanelli, F


    The purpose of this study was to propose a short way to summarise a breast magnetic resonance (MR) examination including a precontrast and contrast-enhanced dynamic study and proton spectroscopy (1H-MRS) in order to convey the diagnostic message. At the Department of Radiology of the Policlinico San Donato (University of Milan), breast MR is routinely performed at 1.5 T as follows: 36-slice axial 2D short-time inversion-recovery (STIR) sequence; 128-partition 3D gradient-echo coronal sequence (1-mm3 siotropic voxel) before and after rapid automatic intravenous injection of 0.1 mmol/kg of Gd-DOTA (one precontrast and four postcontrast phases). Postprocessing includes temporal subtraction (postcontrast minus precontrast), maximum intensity projections (MIPs), percent enhancement-to-time curves for small regions of interest, and axial and/or sagittal multiplanar reconstructions. Single-voxel 1H-MRS is acquired to characterise focal lesions. Applying this protocol, more than 1,200 images are generated for each examination. We select only four MIPs of an early subtracted dynamic phase: one axial similar to craniocaudal x-ray mammographic views, one coronal, and two lateral similar to lateral 90 degrees x-ray mammographic views. For each lesion described in the report, we select five items, including three images, one graph, and one table: STIR image, precontrast and subtracted postcontrast images (morphology), percent enhancement-to-time curves and a table of raw data generating the curves (dynamics). If 1H-MRS has been performed, we add other five items: two postprocessed spectra (metabolism) and three images localising the volume of interest. Only the selected items are printed on films and attached to the report. The selected items range usually from four (no detected lesion) to 14 (one lesion, studied also with 1H-MRS), to 44 (five lesions, one of them studied also with 1H-MRS). The percentage of items presented with the report if compared with the total number of

  3. HuntIR thermal imagers for reconnaissance and targeting applications (United States)

    Breiter, Rainer; Cabanski, Wolfgang A.; Ihle, Tobias; Mauk, Karl-Heinz; Rode, Werner


    A new family of light handheld military thermal imagers for reconnaissance and targeting applications was developed based on AIM's IR components like IR detection modules, command and control electronics and image processing units. Three different types of imagers provide solutions for different requirements in identification ranges of targets. The highest performance device makes use of a FPA MCT 384x288 MWIR detector with a motorized double field of view optics. An identification range up to 2400m for the NATO standard target was proven according to the FGAN-FOM TRM3 range model. The device provides a mechanical adaptation to weapon systems and provides target markers for common hand weapons of the German army. A single field of view MCT device for 1000m ranges and an uncooled device on the lower performance end complete the imager family. Electronics for intelligent power management from batteries and display electronics were developed to provide stand alone operation. The modular concept allows the use of the same image processing unit for all devices providing special features for best performance like scene-based non-uniformity correction together with an optical calibration element and dynamic reduction including automatic histogram equalization for optimized scene display and text or graphics overlay. Due to the modular concept the components like the image processing unit are already used and validated in programs like the thermal sight for the self defense gun of the reconnaissance vehicle FENNEK together with a 320x240 LWIR uncooled microbolometer detector or with the MCT 384x288 MWIR detection module in a thermal imager for the German army UAV Luna.

  4. Application of Simulated Three Dimensional CT Image in Orthognathic Surgery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Don; Park, Chang Seo [Dept. of Dental Radiology, College of Dentistry, Yensei University, Seoul (Korea, Republic of); Yoo, Sun Kook; Lee, Kyoung Sang [Dept. of Medical Engineering, College of Medicine, Yensei University, Seoul (Korea, Republic of)


    In orthodontics and orthognathic surgery, cephalogram has been routine practice in diagnosis and treatment evaluation of craniofacial deformity. But its inherent distortion of actual length and angles during projecting three dimensional object to two dimensional plane might cause errors in quantitative analysis of shape and size. Therefore, it is desirable that three dimensional object is diagnosed and evaluated three dimensionally and three dimensional CT image is best for three dimensional analysis. Development of clinic necessitates evaluation of result of treatment and comparison before and after surgery. It is desirable that patient that was diagnosed and planned by three dimensional computed tomography before surgery is evaluated by three dimensional computed tomography after surgery, too. But Because there is no standardized normal values in three dimension now and three dimensional Computed Tomography needs expensive equipment and because of its expenses and amount of exposure to radiation, limitations still remain to be solved in its application to routine practice. If postoperative three dimensional image is constructed by pre and postoperative lateral and postero-anterior cephalograms and preoperative three dimensional computed tomogram, pre and postoperative image will be compared and evaluated three dimensionally without three dimensional computed tomography after surgery and that will contribute to standardize normal values in three dimension. This study introduced new method that computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms, and for validation of new method, in four cases of dry skull that position of mandible was displaced and four patients of orthognathic surgery, computer-simulated three dimensional image and actual postoperative three dimensional image were compared. The results were as follows. 1. In four cases of

  5. Rough-fuzzy clustering and unsupervised feature selection for wavelet based MR image segmentation.

    Directory of Open Access Journals (Sweden)

    Pradipta Maji

    Full Text Available Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of brain magnetic resonance (MR images. For many human experts, manual segmentation is a difficult and time consuming task, which makes an automated brain MR image segmentation method desirable. In this regard, this paper presents a new segmentation method for brain MR images, integrating judiciously the merits of rough-fuzzy computing and multiresolution image analysis technique. The proposed method assumes that the major brain tissues, namely, gray matter, white matter, and cerebrospinal fluid from the MR images are considered to have different textural properties. The dyadic wavelet analysis is used to extract the scale-space feature vector for each pixel, while the rough-fuzzy clustering is used to address the uncertainty problem of brain MR image segmentation. An unsupervised feature selection method is introduced, based on maximum relevance-maximum significance criterion, to select relevant and significant textural features for segmentation problem, while the mathematical morphology based skull stripping preprocessing step is proposed to remove the non-cerebral tissues like skull. The performance of the proposed method, along with a comparison with related approaches, is demonstrated on a set of synthetic and real brain MR images using standard validity indices.

  6. Magnetic resonance imaging with hyperpolarized agents: methods and applications (United States)

    Adamson, Erin B.; Ludwig, Kai D.; Mummy, David G.; Fain, Sean B.


    In the past decade, hyperpolarized (HP) contrast agents have been under active development for MRI applications to address the twin challenges of functional and quantitative imaging. Both HP helium (3He) and xenon (129Xe) gases have reached the stage where they are under study in clinical research. HP 129Xe, in particular, is poised for larger scale clinical research to investigate asthma, chronic obstructive pulmonary disease, and fibrotic lung diseases. With advances in polarizer technology and unique capabilities for imaging of 129Xe gas exchange into lung tissue and blood, HP 129Xe MRI is attracting new attention. In parallel, HP 13C and 15N MRI methods have steadily advanced in a wide range of pre-clinical research applications for imaging metabolism in various cancers and cardiac disease. The HP [1-13C] pyruvate MRI technique, in particular, has undergone phase I trials in prostate cancer and is poised for investigational new drug trials at multiple institutions in cancer and cardiac applications. This review treats the methodology behind both HP gases and HP 13C and 15N liquid state agents. Gas and liquid phase HP agents share similar technologies for achieving non-equilibrium polarization outside the field of the MRI scanner, strategies for image data acquisition, and translational challenges in moving from pre-clinical to clinical research. To cover the wide array of methods and applications, this review is organized by numerical section into (1) a brief introduction, (2) the physical and biological properties of the most common polarized agents with a brief summary of applications and methods of polarization, (3) methods for image acquisition and reconstruction specific to improving data acquisition efficiency for HP MRI, (4) the main physical properties that enable unique measures of physiology or metabolic pathways, followed by a more detailed review of the literature describing the use of HP agents to study: (5) metabolic pathways in cancer and cardiac

  7. Image statistics underlying natural texture selectivity of neurons in macaque V4 (United States)

    Okazawa, Gouki; Tajima, Satohiro; Komatsu, Hidehiko


    Our daily visual experiences are inevitably linked to recognizing the rich variety of textures. However, how the brain encodes and differentiates a plethora of natural textures remains poorly understood. Here, we show that many neurons in macaque V4 selectively encode sparse combinations of higher-order image statistics to represent natural textures. We systematically explored neural selectivity in a high-dimensional texture space by combining texture synthesis and efficient-sampling techniques. This yielded parameterized models for individual texture-selective neurons. The models provided parsimonious but powerful predictors for each neuron’s preferred textures using a sparse combination of image statistics. As a whole population, the neuronal tuning was distributed in a way suitable for categorizing textures and quantitatively predicts human ability to discriminate textures. Together, we suggest that the collective representation of visual image statistics in V4 plays a key role in organizing the natural texture perception. PMID:25535362

  8. Improvement of Closed Crack Selectivity in Nonlinear Ultrasonic Imaging Using Fundamental Wave Amplitude Difference (United States)

    Ikeuchi, Masako; Jinno, Kentaro; Ohara, Yoshikazu; Yamanaka, Kazushi


    To realize the high selectivity of closed cracks, we propose a fundamental wave amplitude difference (FAD) method based on the threshold behavior of fundamental waves caused by the contact vibration of closed cracks. This is realized by the subtraction of a fundamental array (FA) image at a small input amplitude multiplied by the amplification factor from that at a large input amplitude. The formulation clarified that FAD can selectively image closed cracks while eliminating other linear scatterers, which cannot be completely eliminated by the subharmonic wave amplitude difference (SAD) method. Furthermore, FAD was experimentally verified in a closed fatigue crack specimen using the closed-crack-imaging method of subharmonic phased array for crack evaluation (SPACE). Thus, we demonstrated that FAD is useful for achieving the higher selectivity of closed cracks against other linear scatterers than previous amplitude difference methods without filtering out the subharmonic or superharmonic waves.

  9. A Novel Technique of Error Concealment Method Selection in Texture Images Using ALBP Classifier

    Directory of Open Access Journals (Sweden)

    Z. Tothova


    Full Text Available There are many error concealment techniques for image processing. In the paper, the focus is on restoration of image with missing blocks or macroblocks. Different methods can be optimal for different kinds of images. In recent years, great attention was dedicated to textures, and specific methods were developed for their processing. Many of them use classification of textures as an integral part. It is also of an advantage to know the texture classification to select the best restoration technique. In the paper, selection based on texture classification with advanced local binary patterns and spatial distribution of dominant patterns is proposed. It is shown, that for classified textures, optimal error concealment method can be selected from predefined ones, resulting then in better restoration. For testing, three methods of extrapolation and texture synthesis were used.

  10. Fusion of remote sensing images based on pyramid decomposition with Baldwinian Clonal Selection Optimization (United States)

    Jin, Haiyan; Xing, Bei; Wang, Lei; Wang, Yanyan


    In this paper, we put forward a novel fusion method for remote sensing images based on the contrast pyramid (CP) using the Baldwinian Clonal Selection Algorithm (BCSA), referred to as CPBCSA. Compared with classical methods based on the transform domain, the method proposed in this paper adopts an improved heuristic evolutionary algorithm, wherein the clonal selection algorithm includes Baldwinian learning. In the process of image fusion, BCSA automatically adjusts the fusion coefficients of different sub-bands decomposed by CP according to the value of the fitness function. BCSA also adaptively controls the optimal search direction of the coefficients and accelerates the convergence rate of the algorithm. Finally, the fusion images are obtained via weighted integration of the optimal fusion coefficients and CP reconstruction. Our experiments show that the proposed method outperforms existing methods in terms of both visual effect and objective evaluation criteria, and the fused images are more suitable for human visual or machine perception.

  11. Bioanalytical Applications of Real-Time ATP Imaging Via Bioluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Gruenhagen, Jason Alan [Iowa State Univ., Ames, IA (United States)


    The research discussed within involves the development of novel applications of real-time imaging of adenosine 5'-triphosphate (ATP). ATP was detected via bioluminescence and the firefly luciferase-catalyzed reaction of ATP and luciferin. The use of a microscope and an imaging detector allowed for spatially resolved quantitation of ATP release. Employing this method, applications in both biological and chemical systems were developed. First, the mechanism by which the compound 48/80 induces release of ATP from human umbilical vein endothelial cells (HUVECs) was investigated. Numerous enzyme activators and inhibitors were utilized to probe the second messenger systems involved in release. Compound 48/80 activated a G{sub q}-type protein to initiate ATP release from HUVECs. Ca2+ imaging along with ATP imaging revealed that activation of phospholipase C and induction of intracellular Ca2+ signaling were necessary for release of ATP. Furthermore, activation of protein kinase C inhibited the activity of phospholipase C and thus decreased the magnitude of ATP release. This novel release mechanism was compared to the existing theories of extracellular release of ATP. Bioluminescence imaging was also employed to examine the role of ATP in the field of neuroscience. The central nervous system (CNS) was dissected from the freshwater snail Lymnaea stagnalis. Electrophysiological experiments demonstrated that the neurons of the Lymnaea were not damaged by any of the components of the imaging solution. ATP was continuously released by the ganglia of the CNS for over eight hours and varied from ganglion to ganglion and within individual ganglia. Addition of the neurotransmitters K+ and serotonin increased release of ATP in certain regions of the Lymnaea CNS. Finally, the ATP imaging technique was investigated for the study of drug release systems. MCM-41-type mesoporous nanospheres were loaded with ATP and end-capped with mercaptoethanol

  12. Carbazole-azine based fluorescence 'off-on' sensor for selective detection of Cu2+ and its live cell imaging. (United States)

    Christopher Leslee, Denzil Britto; Karuppannan, Sekar; Vengaian, Karmegam Muthu; Gandhi, Sivaraman; Subramanian, Singaravadivel


    A new carbazole-azine based fluorescent sensor was synthesized and characterized. The selectivity of the sensor for Cu2+ over other counter ions in a dimethyl sulfoxide/H2 O mixture was shown through enhancement in fluorescence - an off to on transformation. The specificity of the probe towards Cu2+ was evident in ultraviolet/visible, fluorescence, Fourier transform infrared and mass studies. Application of the probe in the cell imaging and cytotoxicity of living cells is illustrated. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Application of forensic image analysis in accident investigations. (United States)

    Verolme, Ellen; Mieremet, Arjan


    Forensic investigations are primarily meant to obtain objective answers that can be used for criminal prosecution. Accident analyses are usually performed to learn from incidents and to prevent similar events from occurring in the future. Although the primary goal may be different, the steps in which information is gathered, interpreted and weighed are similar in both types of investigations, implying that forensic techniques can be of use in accident investigations as well. The use in accident investigations usually means that more information can be obtained from the available information than when used in criminal investigations, since the latter require a higher evidence level. In this paper, we demonstrate the applicability of forensic techniques for accident investigations by presenting a number of cases from one specific field of expertise: image analysis. With the rapid spread of digital devices and new media, a wealth of image material and other digital information has become available for accident investigators. We show that much information can be distilled from footage by using forensic image analysis techniques. These applications show that image analysis provides information that is crucial for obtaining the sequence of events and the two- and three-dimensional geometry of an accident. Since accident investigation focuses primarily on learning from accidents and prevention of future accidents, and less on the blame that is crucial for criminal investigations, the field of application of these forensic tools may be broader than would be the case in purely legal sense. This is an important notion for future accident investigations. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Applications of SPECT imaging of dopaminergic neurotransmission in neuropsychiatric disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kugaya, Akira; Fujita, Masahiro; Innis, R.B. [Yale Univ., New Haven, CT (United States). School of Medicine


    Single photon emission computed tomography (SPECT) tracers selective for pre- and post-synaptic targets have allowed measurements of several aspects of dopaminergic (DA) neurotransmission. In this article, we will first review our DA transporter imaging in Parkinson's disease. We have developed the in vivo dopamine transporter (DAT) imaging with [{sup 123}I]{beta}-CIT ((1R)-2{beta}-Carbomethoxy-3{beta}-(4-iodophenyl)tropane). This method showed that patients with Parkinson's disease have markedly reduced DAT levels in striatum, which correlated with disease severity and disease progression. Second, we applied DA imaging techniques in patients with schizophrenia. Using amphetamine as a releaser of DA, we observed the enhanced DA release, which was measured by imaging D2 receptors with [{sup 123}I]IBZM (iodobenzamide), in schizophrenics. Further we developed the measurement of basal synaptic DA levels by AMPT (alpha-methyl-paratyrosine)-induced unmasking of D2 receptors. Finally, we expanded our techniques to the measurement of extrastriatal DA receptors using [{sup 123}I]epidepride. The findings suggest that SPECT is a useful technique to measure DA transmission in human brain and may further our understanding of the pathophysiology of neuropsychiatric disorders. (author)


    Directory of Open Access Journals (Sweden)

    R. V. Anitropov


    Full Text Available Subject of Research. The research results, structural composition analysis and the parametric synthesis of the projected imaging and non-imaging optical systems were presented. We made an attempt to use the gained experience about imaging systems while designing non-imaging systems, by adapting the composition theory for the calculations of non-imaging systems. Several patterns were revealed, which provide a deeper understanding of the design process of non-imaging optical systems; measures of its optimization were proposed. Method. We investigated the applicability of the theory of composition and synthesis of non-imaging optical systems. The main provisions of the theory of composition are based on the division of all available optical elements in four types depending on their functionality, which corresponds to a modular design. Similar items were identified in non-imaging optical systems and adaptation of composition theory to their design became possible. Main Results. General design patterns of imaging and non-imaging optical systems were studied. Classification of systems, components, as well as technical and generic characteristics of imaging and non-imaging optical systems was determined. Search mechanism of the initial optical system by means of structural and parametric synthesis of non-imaging optical system was formalized. The basic elements were determined included in non-imaging systems and their classification by functionality was done. They were subdivided into basic, corrective, wide angle and high aperture ones. The rules for formation of these elements and their composition were determined: surface reflecting, refracting, spherical and nonspherical elements with total internal reflection. The foundations of composition theory for non-imaging optical systems were laid. The approbation of this method was carried out on the example of the illumination system calculation for surgical room. A 3D model of an illumination optical

  16. License Application Design Selection Report, REV 01. August 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, C.R.


    In December 1998, the U.S. Department of Energy (DOE) published the ''Viability Assessment of a Repository at Yucca Mountain'' (DOE 1998b). The Viability Assessment described a preliminary design of a potential repository at Yucca Mountain, Nevada, for disposal of spent nuclear fuel and high-level radioactive waste, and assessed the probable behavior of that repository design in the Yucca Mountain geologic setting. The report concluded that 'Yucca Mountain remains a promising site for a geologic repository and that work should proceed to support a decision in 2001 on whether to recommend the site to the President for development as a repository'. It also concluded that 'uncertainties remain about key natural processes, the preliminary design, and how the site and design would interact'. Recognizing that the design that was evaluated will be refined before a license application could be submitted, the Viability Aassesment notes that 'DOE is evaluating several design options and alternatives that could reduce existing uncertainty and improve the performance of the repository system'. During the preparation of the Viability Assessment, DOE asked the contractor for the Civilian Radioactive Waste Management Program to study alternative design concepts for a potential geologic repository for high-level radioactive waste at Yucca Mountain. The License Application Design Selection (LADS) project was initiated to conduct that study. The goal of the project was to develop and evaluate a diverse range of conceptual repository designs that work well in concert with the Yucca Mountain site and to recommend an initial design concept for the possible Site Recommendation and License Apllication. This report presents the results of the LADS project. The design process consisted of two phases. In Phase I, a series of basic design concepts (design alternatives) and components (design features) were analyzed for their potential value

  17. Endoneurosonography: technique and equipment, anatomy and imaging, and clinical application. (United States)

    Resch, Klaus D M; Schroeder, H W S


    To evaluate the usefulness of transendoscopic ultrasound in neurosurgery, we studied two new sonoprobes measuring 6 and 8 French in diameter in 20 fresh specimens. The application and indication are discussed in the first clinical series of 75 patients. Sonocatheters (ALOKA, Meerbusch, Germany) 1.9 mm (6 French) and 2.4 mm (8 French) in diameter were introduced into the working channel of an endoscope. The preparations were done in nonfixed skulls in a surgical simulation-setting laboratory. Based on these experiences with imaging possibilities, intraoperative transendoscopic ultrasound was applied in 75 patients and a variety of lesions. It was used for imaging (41 patients), targeting (18 patients), and neuronavigation (16 patients) in neuroendoscopy. The sonoprobe adds a transverse scan at the tip of the probe to the anterior endoscopic view. This axial scan to the longitudinal axis of the endoscope is geometrically comparable with radar scanning. Three probes working with 10, 15, and 20 MHz were used, resulting in a short penetration with a radius of 3 cm. The orthogonal scanning plane had limitations, which were documented. We observed precise imaging of well known anatomic structures and, moreover, achieved an additional dimension in endoscopy. The axial scan presents the anatomic landmarks like a map at the tip of the endoscope where the endoscope is represented as a spot. The real-time imaging and representation of the tip of the endoscope showed a capacity for navigation. This preclinical study rectified clinical application. The real-time imaging of this technique showed the ability of the navigation of endoscopes to detect more overall movements, such as blood flow or change of ventricle size during endoscopy. The primary benefit in this first clinical series was witnessed in difficult endoscopy cases and complex lesions, but benefit was also observed in cases in which vision through the endoscope alone was obscured. The main limitation was the result of

  18. An automatic fuzzy-based multi-temporal brain digital subtraction angiography image fusion algorithm using curvelet transform and content selection strategy. (United States)

    Momeni, Saba; Pourghassem, Hossein


    Recently image fusion has prominent role in medical image processing and is useful to diagnose and treat many diseases. Digital subtraction angiography is one of the most applicable imaging to diagnose brain vascular diseases and radiosurgery of brain. This paper proposes an automatic fuzzy-based multi-temporal fusion algorithm for 2-D digital subtraction angiography images. In this algorithm, for blood vessel map extraction, the valuable frames of brain angiography video are automatically determined to form the digital subtraction angiography images based on a novel definition of vessel dispersion generated by injected contrast material. Our proposed fusion scheme contains different fusion methods for high and low frequency contents based on the coefficient characteristic of wrapping second generation of curvelet transform and a novel content selection strategy. Our proposed content selection strategy is defined based on sample correlation of the curvelet transform coefficients. In our proposed fuzzy-based fusion scheme, the selection of curvelet coefficients are optimized by applying weighted averaging and maximum selection rules for the high frequency coefficients. For low frequency coefficients, the maximum selection rule based on local energy criterion is applied to better visual perception. Our proposed fusion algorithm is evaluated on a perfect brain angiography image dataset consisting of one hundred 2-D internal carotid rotational angiography videos. The obtained results demonstrate the effectiveness and efficiency of our proposed fusion algorithm in comparison with common and basic fusion algorithms.

  19. Design and applications of a multimodality image data warehouse framework. (United States)

    Wong, Stephen T C; Hoo, Kent Soo; Knowlton, Robert C; Laxer, Kenneth D; Cao, Xinhau; Hawkins, Randall A; Dillon, William P; Arenson, Ronald L


    A comprehensive data warehouse framework is needed, which encompasses imaging and non-imaging information in supporting disease management and research. The authors propose such a framework, describe general design principles and system architecture, and illustrate a multimodality neuroimaging data warehouse system implemented for clinical epilepsy research. The data warehouse system is built on top of a picture archiving and communication system (PACS) environment and applies an iterative object-oriented analysis and design (OOAD) approach and recognized data interface and design standards. The implementation is based on a Java CORBA (Common Object Request Broker Architecture) and Web-based architecture that separates the graphical user interface presentation, data warehouse business services, data staging area, and backend source systems into distinct software layers. To illustrate the practicality of the data warehouse system, the authors describe two distinct biomedical applications--namely, clinical diagnostic workup of multimodality neuroimaging cases and research data analysis and decision threshold on seizure foci lateralization. The image data warehouse framework can be modified and generalized for new application domains.


    Energy Technology Data Exchange (ETDEWEB)

    Werth, Charles J.; Zhang, Changyong; Brusseau, M. L.; Oostrom, Martinus; Baumann, T.


    Contaminant hydrogeological processes occurring in porous media are typically not amenable to direct observation. As a result, indirect measurements (e.g., contaminant breakthrough at a fixed location) are often used to infer processes occurring at different scales, locations, or times. To overcome this limitation, non-invasive imaging methods are increasingly being used in contaminant hydrogeology research. The most common methods, and the subjects of this review, are optical imaging using UV or visible light, dual-energy gamma-radiation, X-ray microtomography, and magnetic resonance imaging (MRI). Non-invasive imaging techniques have provided valuable insights into a variety of complex systems and processes, including porous media characterization, multiphase fluid distribution, fluid flow, solute transport and mixing, colloidal transport and deposition, and reactions. In this paper we review the theory underlying these methods, applications of these methods to contaminant hydrogeology research, and methods’ advantages and disadvantages. As expected, there is no perfect method or tool for non-invasive imaging. However, optical methods generally present the least expensive and easiest options for imaging fluid distribution, solute and fluid flow, colloid transport, and reactions in artificial two-dimensional (2D) porous media. Gamma radiation methods present the best opportunity for characterization of fluid distributions in 2D at the Darcy scale. X-ray methods present the highest resolution and flexibility for three-dimensional (3D) natural porous media characterization, and 3D characterization of fluid distributions in natural porous media. And MRI presents the best option for 3D characterization of fluid distribution, fluid flow, colloid transport, and reaction in artificial porous media. Obvious deficiencies ripe for method development are the ability to image transient processes such as fluid flow and colloid transport in natural porous media in three

  1. Application of Crushed Concrete in Geotechnical Engineering – Selected Issues (United States)

    Kawalec, Jacek; Kwiecien, Slawomir; Pilipenko, Anton; Rybak, Jarosław


    The reuse of building materials becomes an important issue in sustainable engineering. As the technical requirements for civil engineering structures changes with time and the life time is limited, the need of building new objects meets the necessity of recycling of the existing ones. In the case of steel structures, the possibility of recycling is obvious, also in the case of wooden constructions, the possibility of “burning” solves the problem. The concrete waste is generated mainly as a result of the demolition and reconstruction of residential and industrial buildings. These types of waste are basically made from crushed rocks and cement minerals and contain non-hydrated cement particles in its composition. Concrete poses a lot of problems mainly for two reasons. It is difficult to crush, heavy and hard to transport and demanding in reuse. Different fractions (particle sizes) may be used for different purposes. Starting from very fine particles which can be used in concrete production, through regular 16-300 mm fractions used to form new fills and fill the mats, up to very irregular mixtures used to form stone columns by means of Impulse Compaction or in Dynamic Replacement. The presented study juxtaposes authors experience with crushed concrete used in civil engineering, mainly in geotechnical projects. Authors’ experiences comprise the application of crushed concrete in the new concrete production in Russia, changing pulverized bridge into the fill of mesh sacks, or mattresses used as an effective way to protect the shoreline and the New Orleans East land bridge after Katrina storm (forming a new shoreline better able to withstand wave actions), and finally the use of very irregular concrete fractions to form stone columns in week soils on the example of railway and road projects in Poland. Selected case studies are presented and summarized with regard to social, technical and economic issues including energy consumption needed for proposed technologies

  2. Measurements and analysis in imaging for biomedical applications (United States)

    Hoeller, Timothy L.


    A Total Quality Management (TQM) approach can be used to analyze data from biomedical optical and imaging platforms of tissues. A shift from individuals to teams, partnerships, and total participation are necessary from health care groups for improved prognostics using measurement analysis. Proprietary measurement analysis software is available for calibrated, pixel-to-pixel measurements of angles and distances in digital images. Feature size, count, and color are determinable on an absolute and comparative basis. Although changes in images of histomics are based on complex and numerous factors, the variation of changes in imaging analysis to correlations of time, extent, and progression of illness can be derived. Statistical methods are preferred. Applications of the proprietary measurement software are available for any imaging platform. Quantification of results provides improved categorization of illness towards better health. As health care practitioners try to use quantified measurement data for patient diagnosis, the techniques reported can be used to track and isolate causes better. Comparisons, norms, and trends are available from processing of measurement data which is obtained easily and quickly from Scientific Software and methods. Example results for the class actions of Preventative and Corrective Care in Ophthalmology and Dermatology, respectively, are provided. Improved and quantified diagnosis can lead to better health and lower costs associated with health care. Systems support improvements towards Lean and Six Sigma affecting all branches of biology and medicine. As an example for use of statistics, the major types of variation involving a study of Bone Mineral Density (BMD) are examined. Typically, special causes in medicine relate to illness and activities; whereas, common causes are known to be associated with gender, race, size, and genetic make-up. Such a strategy of Continuous Process Improvement (CPI) involves comparison of patient results

  3. Trace metal imaging with high spatial resolution: applications in biomedicine. (United States)

    Qin, Zhenyu; Caruso, Joseph A; Lai, Barry; Matusch, Andreas; Becker, J Sabine


    New generations of analytical techniques for imaging of metals are pushing hitherto boundaries of spatial resolution and quantitative analysis in biology. Because of this, the application of these imaging techniques described herein to the study of the organization and dynamics of metal cations and metal-containing biomolecules in biological cell and tissue is becoming an important issue in biomedical research. In the current review, three common metal imaging techniques in biomedical research are introduced, including synchrotron X-ray fluorescence (SXRF) microscopy, secondary ion mass spectrometry (SIMS), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). These are exemplified by a demonstration of the dopamine-Fe complexes, by assessment of boron distribution in a boron neutron capture therapy cell model, by mapping Cu and Zn in human brain cancer and a rat brain tumor model, and by the analysis of metal topography within neuromelanin. These studies have provided solid evidence that demonstrates that the sensitivity, spatial resolution, specificity, and quantification ability of metal imaging techniques is suitable and highly desirable for biomedical research. Moreover, these novel studies on the nanometre scale (e.g., of individual single cells or cell organelles) will lead to a better understanding of metal processes in cells and tissues.

  4. Application of molecular ultrasound for imaging integrin expression. (United States)

    Kiessling, Fabian; Gaetjens, Jessica; Palmowski, Moritz


    Stabilized microbubbles with a size between 1-5 µm are used as ultrasound contrast agents in the clinical routine. They have shown convincing results for the vascular characterization of tissues as well as in echocardiography. Due to their size, microbubbles strictly remain intravascular where they can be detected with high sensitivity and specificity. This qualifies them for intravascular molecular imaging. Many studies have been published reporting on the successful use of microbubbles conjugated to specific ligands for target identification in vivo. Among them, there are several promising examples on how to use molecular ultrasound for the imaging of integrin expression. This review provides an overview on the composition of ultrasound contrast agents that can be used for molecular imaging and their detection by ultrasound using destructive and non destructive methods. Furthermore, concrete examples are given on the use of molecular ultrasound to characterize integrin expression on vessels. These cover oncological applications where integrin targeted microbubbles were used to identify and characterize tumor angiogenesis and to assess tumor response to antiangiogenic drugs as well as to radiotherapy. In addition, increased accumulation of integrin targeted microbubbles was found during vascular reformation in ischemic tissues as well as in vulnerable atherosclerotic plaques. In summary, there is clear evidence from preclinical studies that integrin targeted ultrasound imaging is a valuable tool for the characterization of a broad spectrum of diseases. Thus, more efforts should be put into translating this promising technology into the clinics.

  5. New model for selection of applicants at the universities in the conditions Smart-society


    Alexandr S. Molchanov; Tatiana G. Kalashnikova


    Smart-society -– a new quality of society. The greatest value to society will be represented by people trained by the new technologies or who require minimal resources to study up to the required level. Universities will use the smarteducational technology, that will require a new level of training the applicant and the other search engines, selection and motivation of applicants. The paper proposes a new model of selection of applicants to universities, which will improve the selection proce...

  6. High spatial resolution diffusion tensor imaging and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiun-Jie


    Introduction Magnetic Resonance Imaging is at present the only imaging technique available to measure diffusion of water and metabolites in humans. It provides vital insights to brain connectivity and has proved to be an important tool in diagnosis and therapy planning in many neurological diseases such as brain tumour, ischaemia and multiple sclerosis. This project focuses on the development of a high resolution diffusion tensor imaging technique. In this thesis, the basic theory of diffusion tensor MR Imaging is presented. The technical challenges encountered during development of these techniques will be discussed, with proposed solutions. New sequences with high spatial resolution have been developed and the results are compared with the standard technique more commonly used. Overview The project aims at the development of diffusion tensor imaging techniques with a high spatial resolution. Chapter 2 will describe the basic physics of MRI, the phenomenon of diffusion and the measurement of diffusion by MRI. The basic parameters used all through the projects will be presented. In Chapter 3, a reproducibility study on DTI with the single shot EPI sequence will be conducted. The single shot DT-EPI was carried out on a stroke patient. In Chapter 4, current techniques on high spatial resolution DTI will be explored. Sequences of Interleaved EPI of two segments and EPI with Half Fourier acquisition will be developed. The sources of artefacts which contaminate most DT images will be discussed with solution proposed. Chapter 5 proposed a new selective averaging algorithm for the data acquired by the sequences of interleaved EPI. It does not require cardiac gating during data acquisition period and thus increase the speed of data collection. A new ghost free segmented EPI sequence will be presented in Chapter 6: Half-FOV EPI. The technique will be tested on a phantom in vitro as well as in two normal male volunteers in vivo. A comparison study on diffusion tensor imaging

  7. Open-box spectral clustering: applications to medical image analysis. (United States)

    Schultz, Thomas; Kindlmann, Gordon L


    Spectral clustering is a powerful and versatile technique, whose broad range of applications includes 3D image analysis. However, its practical use often involves a tedious and time-consuming process of tuning parameters and making application-specific choices. In the absence of training data with labeled clusters, help from a human analyst is required to decide the number of clusters, to determine whether hierarchical clustering is needed, and to define the appropriate distance measures, parameters of the underlying graph, and type of graph Laplacian. We propose to simplify this process via an open-box approach, in which an interactive system visualizes the involved mathematical quantities, suggests parameter values, and provides immediate feedback to support the required decisions. Our framework focuses on applications in 3D image analysis, and links the abstract high-dimensional feature space used in spectral clustering to the three-dimensional data space. This provides a better understanding of the technique, and helps the analyst predict how well specific parameter settings will generalize to similar tasks. In addition, our system supports filtering outliers and labeling the final clusters in such a way that user actions can be recorded and transferred to different data in which the same structures are to be found. Our system supports a wide range of inputs, including triangular meshes, regular grids, and point clouds. We use our system to develop segmentation protocols in chest CT and brain MRI that are then successfully applied to other datasets in an automated manner.

  8. Halon Replacement Program for Aviation, Aircraft Engine Nacelle Application Phase II - Operational Comparison of Selected Extinguishants

    National Research Council Canada - National Science Library

    Bennett, John A


    This report documents the work performed under Phase II - Operational Comparison of Selected Extinguishants - of the Halon Replacement Program for Aviation for the Aircraft Engine Nacelle Application...

  9. Internal representations for face detection: an application of noise-based image classification to BOLD responses. (United States)

    Nestor, Adrian; Vettel, Jean M; Tarr, Michael J


    What basic visual structures underlie human face detection and how can we extract such structures directly from the amplitude of neural responses elicited by face processing? Here, we address these issues by investigating an extension of noise-based image classification to BOLD responses recorded in high-level visual areas. First, we assess the applicability of this classification method to such data and, second, we explore its results in connection with the neural processing of faces. To this end, we construct luminance templates from white noise fields based on the response of face-selective areas in the human ventral cortex. Using behaviorally and neurally-derived classification images, our results reveal a family of simple but robust image structures subserving face representation and detection. Thus, we confirm the role played by classical face selective regions in face detection and we help clarify the representational basis of this perceptual function. From a theory standpoint, our findings support the idea of simple but highly diagnostic neurally-coded features for face detection. At the same time, from a methodological perspective, our work demonstrates the ability of noise-based image classification in conjunction with fMRI to help uncover the structure of high-level perceptual representations. Copyright © 2012 Wiley Periodicals, Inc.

  10. Spectrally-Selective Photonic Structures for PV Applications

    Directory of Open Access Journals (Sweden)

    Benedikt Bläsi


    Full Text Available We review several examples of how spectrally-selective photonic structures may be used to improve solar cell systems. Firstly, we introduce different spectrally-selective structures that are based on interference effects. Examples shown include Rugate filter, edge filter and 3D photonic crystals such as artificial opals. In the second part, we discuss several examples of photovoltaic (PV concepts that utilize spectral selectivity such as fluorescence collectors, upconversion systems, spectrum splitting concepts and the intermediate reflector concept. The potential of spectrally selective filters in the context of solar cells is discussed.

  11. Scaling images using their background ratio. An application in statistical comparisons of images. (United States)

    Kalemis, A; Binnie, D; Bailey, D L; Flower, M A; Ott, R J


    Comparison of two medical images often requires image scaling as a pre-processing step. This is usually done with the scaling-to-the-mean or scaling-to-the-maximum techniques which, under certain circumstances, in quantitative applications may contribute a significant amount of bias. In this paper, we present a simple scaling method which assumes only that the most predominant values in the corresponding images belong to their background structure. The ratio of the two images to be compared is calculated and its frequency histogram is plotted. The scaling factor is given by the position of the peak in this histogram which belongs to the background structure. The method was tested against the traditional scaling-to-the-mean technique on simulated planar gamma-camera images which were compared using pixelwise statistical parametric tests. Both sensitivity and specificity for each condition were measured over a range of different contrasts and sizes of inhomogeneity for the two scaling techniques. The new method was found to preserve sensitivity in all cases while the traditional technique resulted in significant degradation of sensitivity in certain cases.

  12. Image Restoration Using Functional and Anatomical Information Fusion with Application to SPECT-MRI Images

    Directory of Open Access Journals (Sweden)

    S. Benameur


    Full Text Available Image restoration is usually viewed as an ill-posed problem in image processing, since there is no unique solution associated with it. The quality of restored image closely depends on the constraints imposed of the characteristics of the solution. In this paper, we propose an original extension of the NAS-RIF restoration technique by using information fusion as prior information with application in SPECT medical imaging. That extension allows the restoration process to be constrained by efficiently incorporating, within the NAS-RIF method, a regularization term which stabilizes the inverse solution. Our restoration method is constrained by anatomical information extracted from a high resolution anatomical procedure such as magnetic resonance imaging (MRI. This structural anatomy-based regularization term uses the result of an unsupervised Markovian segmentation obtained after a preliminary registration step between the MRI and SPECT data volumes from each patient. This method was successfully tested on 30 pairs of brain MRI and SPECT acquisitions from different subjects and on Hoffman and Jaszczak SPECT phantoms. The experiments demonstrated that the method performs better, in terms of signal-to-noise ratio, than a classical supervised restoration approach using a Metz filter.

  13. Using genetic algorithm feature selection in neural classification systems for image pattern recognition

    Directory of Open Access Journals (Sweden)

    Margarita R. Gamarra A.


    Full Text Available Pattern recognition performance depends on variations during extraction, selection and classification stages. This paper presents an approach to feature selection by using genetic algorithms with regard to digital image recognition and quality control. Error rate and kappa coefficient were used for evaluating the genetic algorithm approach Neural networks were used for classification, involving the features selected by the genetic algorithms. The neural network approach was compared to a K-nearest neighbor classifier. The proposed approach performed better than the other methods.

  14. Clinical Application of Radiolabeled RGD Peptides for PET Imaging of Integrin αvβ3. (United States)

    Chen, Haojun; Niu, Gang; Wu, Hua; Chen, Xiaoyuan


    Molecular imaging for non-invasive assessment of angiogenesisis is of great interest for clinicians because of the wide-spread application of anti-angiogenic cancer therapeutics. Besides, many other interventions that involve the change of blood vessel/tumor microenvironment would also benefit from such imaging strategies. Of the imaging techniques that target angiogenesis, radiolabeled Arg-Gly-Asp (RGD) peptides have been a major focus because of their high affinity and selectivity for integrin αvβ3--one of the most extensively examined target of angiogenesis. Since the level of integrin αvβ3 expression has been established as a surrogate marker of angiogenic activity, imaging αvβ3 expression can potentially be used as an early indicator of effectiveness of antiangiogenic therapy at the molecular level. In this review, we summarize RGD-based PET tracers that have already been used in clinical trials and intercompared them in terms of radiosynthesis, dosimetry, pharmacokinetics and clinical applications. A perspective of their future use in the clinic is also provided.

  15. Clinical Application of Radiolabeled RGD Peptides for PET Imaging of Integrin αvβ3 (United States)

    Chen, Haojun; Niu, Gang; Wu, Hua; Chen, Xiaoyuan


    Molecular imaging for non-invasive assessment of angiogenesisis is of great interest for clinicians because of the wide-spread application of anti-angiogenic cancer therapeutics. Besides, many other interventions that involve the change of blood vessel/tumor microenvironment would also benefit from such imaging strategies. Of the imaging techniques that target angiogenesis, radiolabeled Arg-Gly-Asp (RGD) peptides have been a major focus because of their high affinity and selectivity for integrin αvβ3--one of the most extensively examined target of angiogenesis. Since the level of integrin αvβ3 expression has been established as a surrogate marker of angiogenic activity, imaging αvβ3 expression can potentially be used as an early indicator of effectiveness of antiangiogenic therapy at the molecular level. In this review, we summarize RGD-based PET tracers that have already been used in clinical trials and intercompared them in terms of radiosynthesis, dosimetry, pharmacokinetics and clinical applications. A perspective of their future use in the clinic is also provided. PMID:26722375

  16. Applications of digital image analysis capability in Idaho (United States)

    Johnson, K. A.


    The use of digital image analysis of LANDSAT imagery in water resource assessment is discussed. The data processing systems employed are described. The determination of urban land use conversion of agricultural land in two southwestern Idaho counties involving estimation and mapping of crop types and of irrigated land is described. The system was also applied to an inventory of irrigated cropland in the Snake River basin and establishment of a digital irrigation water source/service area data base for the basin. Application of the system to a determination of irrigation development in the Big Lost River basin as part of a hydrologic survey of the basin is also described.

  17. Minimal form factor digital-image sensor for endoscopic applications (United States)

    Wäny, Martin; Voltz, Stephan; Gaspar, Fabio; Chen, Lei


    This paper presents a digital image sensor SOC featuring a total chip area (including dicing tolerances) of 0.34mm2 for endoscopic applications. Due to this extremely small form factor the sensor enables integration in endoscopes, guide wires and locater devices of less than 1mm outer diameter. The sensor embeds a pixel matrix of 10'000 pixels with a pitch of 3um x 3um covered with RGB filters in Bayer pattern. The sensor operates fully autonomous, controlled by an on chip ring oscillator and readout state machine, which controls integration AD conversion and data transmission, thus the sensor only requires 4 pin's for power supply and data communication. The sensor provides a frame rate of 40Frames per second over a LVDS serial data link. The endoscopic application requires that the sensor must work without any local power decoupling capacitances at the end of up to 2m cabling and be able to sustain data communication over the same wire length without deteriorating image quality. This has been achieved by implementation of a current mode successive approximation ADC and current steering LVDS data transmission. An band gap circuit with -40dB PSRR at the data frequency was implemented as on chip reference to improve robustness against power supply ringing due to the high series inductance of the long cables. The B&W versions of the sensor provides a conversion gain of 30DN/nJ/cm2 at 550nm with a read noise in dark of 1.2DN when operated at 2m cable. Using the photon transfer method according to EMVA1288 standard the full well capacity was determined to be 18ke-. According to our knowledge the presented work is the currently world smallest fully digital image sensor. The chip was designed along with a aspheric single surface lens to assemble on the chip without increasing the form factor. The extremely small form factor of the resulting camera permit's to provide visualization with much higher than state of the art spatial resolution in sub 1mm endoscopic

  18. Application of FPGA's in Flexible Analogue Electronic Image Generator Design

    Directory of Open Access Journals (Sweden)

    Peter Kulla


    Full Text Available This paper focuses on usage of the FPGAs (Field Programmable Gate Arrays Xilinx as a part of our more complex workdedicated to design of flexible analogue electronic images generator for application in TV measurement technique or/and TV servicetechnique or/and education process. The FPGAs performs here the role of component colour R, G, B, synchronization and blanking signals source. These signals are next processed and amplified in other parts of the generator as NTSC/PAL source encoder and RF modulator. The main aim of this paper is to show the possibilities how with suitable development software use a FPGAs in analog TV technology.

  19. Live Demonstration: A Dynamically Adaptable Image Processing Application Running in an FPGA-Based WSN Platform


    Rodríguez Medina, Alfonso; Valverde Alcalá, Juan; Castañares Franco, César; Portilla Berrueco, Jorge; Torre Arnanz, Eduardo de la; Riesgo Alcaide, Teresa


    This 1-Page Demonstration paper is included in the track “Multimedia Systems and Applications”. The work has been already published in [1] and [2]. The main idea of the demonstration is to show how the Virtual Architecture ARTICo3 works within a high performance wireless sensor node called HiReCookie. The selected demo includes an image processing application with several filters running as different kernels within the architecture ARTICo3. The virtual architecture works in a Spartan-6 FPGA i...

  20. Multispectral Remote Sensing from Unmanned Aircraft: Image Processing Workflows and Applications for Rangeland Environments

    Directory of Open Access Journals (Sweden)

    Albert Rango


    Full Text Available Using unmanned aircraft systems (UAS as remote sensing platforms offers the unique ability for repeated deployment for acquisition of high temporal resolution data at very high spatial resolution. Multispectral remote sensing applications from UAS are reported in the literature less commonly than applications using visible bands, although light-weight multispectral sensors for UAS are being used increasingly. . In this paper, we describe challenges and solutions associated with efficient processing of multispectral imagery to obtain orthorectified, radiometrically calibrated image mosaics for the purpose of rangeland vegetation classification. We developed automated batch processing methods for file conversion, band-to-band registration, radiometric correction, and orthorectification. An object-based image analysis approach was used to derive a species-level vegetation classification for the image mosaic with an overall accuracy of 87%. We obtained good correlations between: (1 ground and airborne spectral reflectance (R2 = 0.92; and (2 spectral reflectance derived from airborne and WorldView-2 satellite data for selected vegetation and soil targets. UAS-acquired multispectral imagery provides quality high resolution information for rangeland applications with the potential for upscaling the data to larger areas using high resolution satellite imagery.

  1. Particle image velocimetry new developments and recent applications

    CERN Document Server

    Willert, Christian E


    Particle Image Velocimetry (PIV) is a non-intrusive optical measurement technique which allows capturing several thousand velocity vectors within large flow fields instantaneously. Today, the PIV technique has spread widely and differentiated into many distinct applications, from micro flows over combustion to supersonic flows for both industrial needs and research. Over the past decade the measurement technique and the hard- and software have been improved continuously so that PIV has become a reliable and accurate method for "real life" investigations. Nevertheless there is still an ongoing process of improvements and extensions of the PIV technique towards 3D, time resolution, higher accuracy, measurements under harsh conditions and micro- and macroscales. This book gives a synopsis of the main results achieved during the EC-funded network PivNet 2 as well as a survey of the state-of-the-art of scientific research using PIV techniques in different fields of application.

  2. Selective Fasciotomy for Chronic Exertional Compartment Syndrome Detected With Exercise Magnetic Resonance Imaging. (United States)

    Park, Sehan; Lee, Ho Seong; Seo, Sang Gyo


    Chronic exertional compartment syndrome that is refractory to conservative management should be treated with surgical fasciotomy. However, owing to the limitations of intracompartmental needle manometry in reaching a definite diagnosis, the appropriate timing for fasciotomy and on which compartment remain unclear. The authors report the case of a 22-year-old male military cadet who reported pain in his left calf when running or walking for long distances. The pain was located at the lateral aspect of the calf, from the mid-calf level to the ankle. At another hospital, nonenhanced magnetic resonance imaging had been performed, which showed no considerable abnormality. The authors used exercise magnetic resonance imaging to diagnose chronic exertional compartment syndrome. They performed selective fasciotomy on the compartment that showed a high signal intensity. As a military cadet, the patient was required to jog for more than an hour per day and perform strenuous muscle exercises. He reported that he did not have calf pain or discomfort during such activities 13 months postoperatively. The authors obtained a follow-up exercise magnetic resonance image. Compared with the preoperative magnetic resonance image, the follow-up exercise magnetic resonance image did not show high signal intensity at the lateral compartment. Exercise magnetic resonance imaging is useful in confirming the diagnosis of chronic exertional compartment syndrome and enables the performance of selective fasciotomy on the affected compartment. [Orthopedics. 2017; 40(6):e1099-e1102.]. Copyright 2017, SLACK Incorporated.

  3. Selective Energy Neutron Radiographic Imaging Origins and Lessons for Low Cost Systems (United States)

    Barton, J. P.; Rogers, J. D.

    Major advances in selective energy techniques for neutron radiographic imaging have been demonstrated recently at very advanced, high flux, shared user facilities. The origins of selective energy methods for neutron radiography have been reviewed and options for low cost systems at lower flux, lower budget, single-user neutron source facilities are discussed. An original cold NR Imaging demonstration used a simple filter of polycrystalline beryllium and single crystal bismuth cooled by liquid nitrogen. An expensive refrigerated moderator source block is not essential. A less expensive option omits use of the single crystal bismuth. A low cost boost to cold neutron flux at a low power reactor uses a refrigerated source block of solid methane. For NR Imaging at selective epithermal energies, a single crystal neutron monochromator provides a low cost option. Alternatively a pulsed neutron source and time of flight technique is included in the original reports on selective energy methods. The original demonstrations using low cost systems indicate new advanced selective energy techniques pioneered at high flux sources may be developed at lower flux, single-user sources.

  4. A recursive spectral selection scheme for unsupervised segmentation of multispectral Pap smear image sets (United States)

    Zhao, Tong; Wachman, Elliot S.; Geyer, Stanley J.; Farkas, Daniel L.


    Efficient computer-aided cervical cancer detection can improve both the accuracy and the productivity of cytotechnologists and pathologists. Nuclear segmentation is essential to automated screening, and is still a challenge. We propose and demonstrate a novel approach to improving segmentation performance by multispectral imaging followed by unsupervised nuclear segmentation relying on selecting a useful subset of spectral or derived image features. In the absence of prior knowledge, feature selection can be negatively affected by the bias, present in most unsupervised segmentation, to erroneously segment out small objects, yielding ill-balanced class samples. To address this issue, we first introduce a new measurement, Criterion Vector (CV), measuring the distances between the segmentation result and the original data. This efficiently reduces the bias generated by feature selection. Second, we apply a novel recursive feature selection scheme, to generate a new feature subset based on the corresponding CV, ensuring that the correct part of the initial segmentation results is used to obtain better feature subsets. We studied the speed and accuracy of our two-step algorithm in analyzing a number of multispectral Pap smear image sets. The results show high accuracy of segmentation, as well as great reduction of spectral redundancy. The nuclear segmentation accuracy can reach over 90%, by selecting as few as 4 distinct spectra out of 30.

  5. Picture Yourself Healthy-How Users Select Mediated Images to Shape Health Intentions and Behaviors. (United States)

    Wilson, Brianna; Knobloch-Westerwick, Silvia; Robinson, Melissa J


    Hypotheses on how selective viewing of mediated images may sustain eating habits and aid healthier eating were derived from the Selective Exposure Self- and Affect Management model. The model posits that individuals select to view media to manage their self-concepts-and that this exposure affects subsequent intentions and behaviors. Participants (N = 265) selectively viewed Instagram-like postings featuring healthy or unhealthy food imagery. Beforehand, participants reported habits and perceived expert recommendations regarding food intake. After viewing postings, participants chose gift cards representing healthy or unhealthy food purchases and indicated food intake intentions. Results show that existing eating behavior predicts selective exposure to healthy or unhealthy food imagery, which in turn shapes gift card choices and (both healthy and unhealthy) food intake intentions.

  6. A multimode optical imaging system for preclinical applications in vivo: technology development, multiscale imaging, and chemotherapy assessment. (United States)

    Hwang, Jae Youn; Wachsmann-Hogiu, Sebastian; Ramanujan, V Krishnan; Ljubimova, Julia; Gross, Zeev; Gray, Harry B; Medina-Kauwe, Lali K; Farkas, Daniel L


    Several established optical imaging approaches have been applied, usually in isolation, to preclinical studies; however, truly useful in vivo imaging may require a simultaneous combination of imaging modalities to examine dynamic characteristics of cells and tissues. We developed a new multimode optical imaging system designed to be application-versatile, yielding high sensitivity, and specificity molecular imaging. We integrated several optical imaging technologies, including fluorescence intensity, spectral, lifetime, intravital confocal, two-photon excitation, and bioluminescence, into a single system that enables functional multiscale imaging in animal models. The approach offers a comprehensive imaging platform for kinetic, quantitative, and environmental analysis of highly relevant information, with micro-to-macroscopic resolution. Applied to small animals in vivo, this provides superior monitoring of processes of interest, represented here by chemo-/nanoconstruct therapy assessment. This new system is versatile and can be optimized for various applications, of which cancer detection and targeted treatment are emphasized here.

  7. Recent Advances in the Development and Application of Radiolabeled Kinase Inhibitors for PET Imaging

    Directory of Open Access Journals (Sweden)

    Vadim Bernard-Gauthier


    Full Text Available Over the last 20 years, intensive investigation and multiple clinical successes targeting protein kinases, mostly for cancer treatment, have identified small molecule kinase inhibitors as a prominent therapeutic class. In the course of those investigations, radiolabeled kinase inhibitors for positron emission tomography (PET imaging have been synthesized and evaluated as diagnostic imaging probes for cancer characterization. Given that inhibitor coverage of the kinome is continuously expanding, in vivo PET imaging will likely find increasing applications for therapy monitoring and receptor density studies both in- and outside of oncological conditions. Early investigated radiolabeled inhibitors, which are mostly based on clinically approved tyrosine kinase inhibitor (TKI isotopologues, have now entered clinical trials. Novel radioligands for cancer and PET neuroimaging originating from novel but relevant target kinases are currently being explored in preclinical studies. This article reviews the literature involving radiotracer design, radiochemistry approaches, biological tracer evaluation and nuclear imaging results of radiolabeled kinase inhibitors for PET reported between 2010 and mid-2015. Aspects regarding the usefulness of pursuing selective vs. promiscuous inhibitor scaffolds and the inherent challenges associated with intracellular enzyme imaging will be discussed.

  8. Experimental evaluation of single-crystal and granular scintillators in medical imaging detectors : application in an experimental prototype imaging system


    Δαυίδ, Ευστράτιος


    The aim of the present thesis is to evaluate fast scintillator materials, in both single-crystal and powder form, for possible usage in dedicated gamma ray imaging applications as well as in X-ray imaging techniques, requiring high frame rates. Powder scintillators are traditionally used in conventional X-ray imaging due to their property to produce high resolution images. This is because laterally directed optical photons, originating from the point of X-ray interaction, are strongly attenua...

  9. Perfusion weighted imaging and its application in stroke (United States)

    Li, Enzhong; Tian, Jie; Han, Ying; Wang, Huifang; Li, Xingfeng; Zhu, Fuping


    To study the technique and application of perfusion weighted imaging (PWI) in the diagnosis and medical treatment of acute stroke, 25 patients were examined by 1.5 T or 1.0 T MRI scanner. The Data analysis was done with "3D Med System" developed by our Lab to process the data and obtain apparent diffusion coefficient (ADC) map, cerebral blood volume (CBV) map, cerebral blood flow (CBF) map as well as mean transit time (MTT) map. In accute stage of stroke, normal or slightly hypointensity in T1-, hyperintensity in T2- and diffusion-weighted images were seen in the cerebral infarction areas. There were hypointensity in CBV map, CBF map and ADC map; and hyperintensity in MTT map that means this infarct area could be saved. If the hyperintensity area in MTT map was larger than the area in diffusion weighted imaging (DWI), the larger part was called penumbra and could be cured by an appropriate thrombolyitic or other therapy. The CBV, CBF and MTT maps are very important in the diagnosis and medical treatment of acute especially hyperacute stroke. Comparing with DWI, we can easily know the situation of penumbra and the effect of curvative therapy. Besides, we can also make a differential diagnosis with this method.

  10. Pipe Phantoms With Applications in Molecular Imaging and System Characterization. (United States)

    Wang, Shiying; Herbst, Elizabeth B; Pye, Stephen D; Moran, Carmel M; Hossack, John A


    Pipe (vessel) phantoms mimicking human tissue and blood flow are widely used for cardiovascular related research in medical ultrasound. Pipe phantom studies require the development of materials and liquids that match the acoustic properties of soft tissue, blood vessel wall, and blood. Over recent years, pipe phantoms have been developed to mimic the molecular properties of the simulated blood vessels. In this paper, the design, construction, and functionalization of pipe phantoms are introduced and validated for applications in molecular imaging and ultrasound imaging system characterization. There are three major types of pipe phantoms introduced: 1) a gelatin-based pipe phantom; 2) a polydimethylsiloxane-based pipe phantom; and 3) the "Edinburgh pipe phantom." These phantoms may be used in the validation and assessment of the dynamics of microbubble-based contrast agents and, in the case of a small diameter tube phantom, for assessing imaging system spatial resolution/contrast performance. The materials and procedures required to address each of the phantoms are described.

  11. Application of snapshot imaging spectrometer in environmental detection (United States)

    Sun, Kai; Qin, Xiaolei; Zhang, Yu; Wang, Jinqiang


    This study aimed at the application of snapshot imaging spectrometer in environmental detection. The simulated sewage and dyeing wastewater were prepared and the optimal experimental conditions were determined. The white LED array was used as the detection light source and the image of the sample was collected by the imaging spectrometer developed in the laboratory to obtain the spectral information of the sample in the range of 400-800 nm. The standard curve between the absorbance and the concentration of the samples was established. The linear range of a single component of Rhoda mine B was 1-50 mg/L, the linear correlation coefficient was more than 0.99, the recovery was 93%-113% and the relative standard deviations (RSD) was 7.5%. The linear range of chemical oxygen demand (COD) standard solution was 50-900mg/L, the linear correlation coefficient was 0.981, the recovery was 91% -106% and the relative standard deviation (RSD) was 6.7%. The rapid, accurate and precise method for detecting dyes showed an excellent promise for on-site and emergency detection in environment. At the request of the proceedings editor, an updated version of this article was published on 17 October 2017. The original version of this article was replaced due to an accidental inversion of Figure 2 and Figure 3. The Figures have been corrected in the updated and republished version.

  12. Design and Applications of a Multimodality Image Data Warehouse Framework (United States)

    Wong, Stephen T.C.; Hoo, Kent Soo; Knowlton, Robert C.; Laxer, Kenneth D.; Cao, Xinhau; Hawkins, Randall A.; Dillon, William P.; Arenson, Ronald L.


    A comprehensive data warehouse framework is needed, which encompasses imaging and non-imaging information in supporting disease management and research. The authors propose such a framework, describe general design principles and system architecture, and illustrate a multimodality neuroimaging data warehouse system implemented for clinical epilepsy research. The data warehouse system is built on top of a picture archiving and communication system (PACS) environment and applies an iterative object-oriented analysis and design (OOAD) approach and recognized data interface and design standards. The implementation is based on a Java CORBA (Common Object Request Broker Architecture) and Web-based architecture that separates the graphical user interface presentation, data warehouse business services, data staging area, and backend source systems into distinct software layers. To illustrate the practicality of the data warehouse system, the authors describe two distinct biomedical applications—namely, clinical diagnostic workup of multimodality neuroimaging cases and research data analysis and decision threshold on seizure foci lateralization. The image data warehouse framework can be modified and generalized for new application domains. PMID:11971885

  13. Application of integral imaging autostereoscopic display to medical training equipment (United States)

    Nagatani, Hiroyuki


    We applied an autostereoscopic display based on the integral imaging method (II method) to training equipment for medical treatment in an attempt to recover the binocular vision performance of strabismus or amblyopia (lazy eye) patients. This report summarizes the application method and results. The point of the training is to recognize the parallax using both eyes. The strabismus or amblyopia patients have to recognize the information on both eyes equally when they gaze at the display with parallax and perceive the stereo depth of the content. Participants in this interactive training engage actively with the image. As a result, they are able to revive their binocular visual function while playing a game. Through the training, the observers became able to recognize the amount of parallax correctly. In addition, the training level can be changed according to the eyesight difference between a right eye and a left eye. As a result, we ascertained that practical application of the II method for strabismus or amblyopia patients would be possible.

  14. Nanotechnological Applications in Cancer Treatment and Tumor Imaging

    Directory of Open Access Journals (Sweden)

    Ayse Erdogan


    Full Text Available Nanotechnology which is used in many sectors from cosmetics to pharmaceuticals, from paints industry to biotechnology, continue to benefit from the efforts of cancer treatment. Cancer cells can be killed with nanoparticles applications in some studies which have been approved and are being tested in the world. Applications with a special carrier systems which is developed using nanotechnology, do not affect healthy cells but kill cancer cells is possible now. Recent developments in cancer nanotechnology provide new tools to researchers in both tumor imaging and treatment of cancer. This technology led to the development of nanoparticles which can be used in oncology and can be conjugated with more than one functional molecule simultaneously including tumor-specific ligands, antibodies, anti-cancer drugs and imaging probes. Those nanoparticles are smaller than cancer cells. They can be transferred easily through blood vessels and interact with targeted tumor-specific proteins both on the surface and inside of cancer cells. High cancer treatment success can be achieved with drug delivery systems using nanoparticles target to tumor cells develop at much lower drug doses. [Archives Medical Review Journal 2013; 22(3.000: 426-440

  15. System Quality Characteristics for Selecting Mobile Learning Applications (United States)

    Sarrab, Mohamed; Al-Shihi, Hafedh; Al-Manthari, Bader


    The majority of M-learning (Mobile learning) applications available today are developed for the formal learning and education environment. These applications are characterized by the improvement in the interaction between learners and instructors to provide high interaction and flexibility to the learning process. M-learning is gaining increased…

  16. Image-Based Vehicle Identification Technology for Homeland Security Applications

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G A


    The threat of terrorist attacks against US civilian populations is a very real, near-term problem that must be addressed, especially in response to possible use of Weapons of Mass Destruction. Several programs are now being funded by the US Government to put into place means by which the effects of a terrorist attack could be averted or limited through the use of sensors and monitoring technology. Specialized systems that detect certain threat materials, while effective within certain performance limits, cannot generally be used efficiently to track a mobile threat such as a vehicle over a large urban area. The key elements of an effective system are an image feature-based vehicle identification technique and a networked sensor system. We have briefly examined current uses of image and feature recognition techniques to the urban tracking problem and set forth the outlines of a proposal for application of LLNL technologies to this critical problem. The primary contributions of the proposed work lie in filling important needs not addressed by the current program: (1) The ability to create vehicle ''fingerprints,'' or feature information from images to allow automatic identification of vehicles. Currently, the analysis task is done entirely by humans. The goal is to aid the analyst by reducing the amount of data he/she must analyze and reduce errors caused by inattention or lack of training. This capability has broad application to problems associated with extraction of useful features from large data sets. (2) Improvements in the effectiveness of LLNL's WATS (Wide Area Tracking System) by providing it accurate threat vehicle location and velocity. Model predictability is likely to be enhanced by use of more information related to different data sets. We believe that the LLNL can accomplish the proposed tasks and enhance the effectiveness of the system now under development.

  17. 75 FR 44284 - Notice of Draft NIJ Criminal Justice Restraints Selection and Application Guide (United States)


    ... is open to industry technical representatives, criminal justice agencies and organizations, research... of Justice Programs Notice of Draft NIJ Criminal Justice Restraints Selection and Application Guide... of Draft NIJ Criminal Justice Restraints Selection and Application Guide. SUMMARY: In an effort to...

  18. Gene-assisted selection: applications of association genetics for forest tree breeding (United States)

    Philip L. Wilcox; Craig E. Echt; Rowland D. Burdon


    This chapter describes application of association genetics in forest tree species for the purposes of selection. We use the term gene-assisted selection (GAS) to denote application of marker-trait associations determined via association genetics, which we anticipate will be based on poly morph isms associated with expressed genes. The salient features of forest trees...

  19. 42 CFR 57.306 - Eligibility and selection of nursing student loan applicants. (United States)


    ... 42 Public Health 1 2010-10-01 2010-10-01 false Eligibility and selection of nursing student loan... STUDENT LOANS Nursing Student Loans § 57.306 Eligibility and selection of nursing student loan applicants. (a) Determination of eligibility. (1) Applicants are eligible for consideration for a nursing student...

  20. Mesoscopics of ultrasound and seismic waves: application to passive imaging (United States)

    Larose, É.


    This manuscript deals with different aspects of the propagation of acoustic and seismic waves in heterogeneous media, both simply and multiply scattering ones. After a short introduction on conventional imaging techniques, we describe two observations that demonstrate the presence of multiple scattering in seismic records: the equipartition principle, and the coherent backscattering effect (Chap. 2). Multiple scattering is related to the mesoscopic nature of seismic and acoustic waves, and is a strong limitation for conventional techniques like medical or seismic imaging. In the following part of the manuscript (Chaps. 3 5), we present an application of mesoscopic physics to acoustic and seismic waves: the principle of passive imaging. By correlating records of ambient noise or diffuse waves obtained at two passive sensors, it is possible to reconstruct the impulse response of the medium as if a source was placed at one sensor. This provides the opportunity of doing acoustics and seismology without a source. Several aspects of this technique are presented here, starting with theoretical considerations and numerical simulations (Chaps. 3, 4). Then we present experimental applications (Chap. 5) to ultrasound (passive tomography of a layered medium) and to seismic waves (passive imaging of California, and the Moon, with micro-seismic noise). Physique mésoscopique des ultrasons et des ondes sismiques : application à l'imagerie passive. Cet article de revue rassemble plusieurs aspects fondamentaux et appliqués de la propagation des ondes acoustiques et élastiques dans les milieux hétérogènes, en régime de diffusion simple ou multiple. Après une introduction sur les techniques conventionelles d'imagerie sismique et ultrasonore, nous présentons deux expériences qui mettent en évidence la présence de diffusion multiple dans les enregistrements sismologiques : l'équipartition des ondes, et la rétrodiffusion cohérente (Chap. 2). La diffusion multiple des

  1. Image slicer manufacturing: from space application to mass production (United States)

    Bonneville, Christophe; Cagnat, Jean-François; Laurent, Florence; Prieto, Eric; Ancourt, Gérard


    This presentation aims to show technical and industrial inputs to be taking into account for Image Slicer systems design and development for different types of projects from space application to mass production for multi-IFU instruments. Cybernétix has a strong experience of precision optics assembled thanks to molecular adhesion and have already manufactured 6 prototypes of image slicer subsystem (prototypes of NIRSPEC-IFU, IFS for JWST, MUSE ...) in collaboration with the Laboratoire d"Astrophysique de Marseille (LAM) and the Centre de Recherche Astronomique de Lyon (CRAL). After a brief presentation of the principle of manufacturing and assembly, we will focus on the different performances achieved in our prototypes of slicer mirrors, pupil and slit mirrors lines: an accuracy on centre of curvature position better than 15 arsec has been obtained for a stack of 30 slices. The contribution of the slice stacking to this error is lower than 4 arcsec. In spite of very thin surfaces (~ 0.9 x 40 mm for instance), a special process allows to guarantee a surface roughness about 5 nm and very few digs on the slice borders. The WFE of the mini-mirror can also be measured at a stage of the manufacturing. Different environmental tests have shown the withstanding of these assemblies to cryogenic temperature (30 K). Then, we will describe the different solutions (spherical, flat, cylindrical surfaces) and characteristics of an image slicer that can influence difficulties of manufacturing and metrology, cost, schedule and risks with regard to fabrication. Finally, the study of a mass production plan for MUSE (CRAL) composed of 24 Image Slicers of 38 slices, that"s to say 912 slices, will be exposed as an example of what can be do for multi-module instruments.

  2. Three-dimensional radar imaging techniques and systems for near-field applications

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, David M.; Hall, Thomas E.; McMakin, Douglas L.; Jones, Anthony M.; Tedeschi, Jonathan R.


    The Pacific Northwest National Laboratory has developed three-dimensional holographic (synthetic aperture) radar imaging techniques and systems for a wide variety of near-field applications. These applications include radar cross-section (RCS) imaging, personnel screening, standoff concealed weapon detection, concealed threat detection, through-barrier imaging, ground penetrating radar (GPR), and non-destructive evaluation (NDE). Sequentially-switched linear arrays are used for many of these systems to enable high-speed data acquisition and 3-D imaging. In this paper, the techniques and systems will be described along with imaging results that demonstrate the utility of near-field 3-D radar imaging for these compelling applications.

  3. High-sensitivity hyperspectral imager for biomedical video diagnostic applications (United States)

    Leitner, Raimund; Arnold, Thomas; De Biasio, Martin


    Video endoscopy allows physicians to visually inspect inner regions of the human body using a camera and only minimal invasive optical instruments. It has become an every-day routine in clinics all over the world. Recently a technological shift was done to increase the resolution from PAL/NTSC to HDTV. But, despite a vast literature on invivo and in-vitro experiments with multi-spectral point and imaging instruments that suggest that a wealth of information for diagnostic overlays is available in the visible spectrum, the technological evolution from colour to hyper-spectral video endoscopy is overdue. There were two approaches (NBI, OBI) that tried to increase the contrast for a better visualisation by using more than three wavelengths. But controversial discussions about the real benefit of a contrast enhancement alone, motivated a more comprehensive approach using the entire spectrum and pattern recognition algorithms. Up to now the hyper-spectral equipment was too slow to acquire a multi-spectral image stack at reasonable video rates rendering video endoscopy applications impossible. Recently, the availability of fast and versatile tunable filters with switching times below 50 microseconds made an instrumentation for hyper-spectral video endoscopes feasible. This paper describes a demonstrator for hyper-spectral video endoscopy and the results of clinical measurements using this demonstrator for measurements after otolaryngoscopic investigations and thorax surgeries. The application investigated here is the detection of dysplastic tissue, although hyper-spectral video endoscopy is of course not limited to cancer detection. Other applications are the detection of dysplastic tissue or polyps in the colon or the gastrointestinal tract.

  4. Selectively detail-enhanced fusion of differently exposed images with moving objects. (United States)

    Li, Zhengguo; Zheng, Jinghong; Zhu, Zijian; Wu, Shiqian


    In this paper, we introduce an exposure fusion scheme for differently exposed images with moving objects. The proposed scheme comprises a ghost removal algorithm in a low dynamic range domain and a selectively detail-enhanced exposure fusion algorithm. The proposed ghost removal algorithm includes a bidirectional normalization-based method for the detection of nonconsistent pixels and a two-round hybrid method for the correction of nonconsistent pixels. Our detail-enhanced exposure fusion algorithm includes a content adaptive bilateral filter, which extracts fine details from all the corrected images simultaneously in gradient domain. The final image is synthesized by selectively adding the extracted fine details to an intermediate image that is generated by fusing all the corrected images via an existing multiscale algorithm. The proposed exposure fusion algorithm allows fine details to be exaggerated while existing exposure fusion algorithms do not provide such an option. The proposed scheme usually outperforms existing exposure fusion schemes when there are moving objects in real scenes. In addition, the proposed ghost removal algorithm is simpler than existing ghost removal algorithms and is suitable for mobile devices with limited computational resource.

  5. A novel FRET 'off-on' fluorescent probe for the selective detection of Fe³⁺, Al³⁺ and Cr³⁺ ions: its ultrafast energy transfer kinetics and application in live cell imaging. (United States)

    Chereddy, Narendra Reddy; Nagaraju, Peethani; Raju, M V Niladri; Krishnaswamy, Venkat Raghavan; Korrapati, Purna Sai; Bangal, Prakriti Ranjan; Rao, Vaidya Jayathirtha


    A rhodamine-naphthalimide dyad probe, 1, that selectively responds to the addition of trivalent metal ions (Fe(3+) or Al(3+) or Cr(3+)) via ultrafast Förster resonance energy transfer (FRET) from naphthalimide to rhodamine is designed and synthesized. 1 is highly selective to the trivalent metal ions and the presence of other monovalent or divalent metal ions do not affect its detection ability. The probe is highly sensitive and it can respond to the presence of trivalent metal ions even at sub-micromolar levels. 1 is stable over a broad range of pH, non-toxic under experimental conditions and suitable to the fluorescence bio-imaging of live cells exposed to trivalent metal ions. The trivalent metal ion induced ultrafast energy transfer kinetics of 1 is explored using time resolved fluorescence experiments. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Variability-based active galactic nucleus selection using image subtraction in the SDSS and LSST era

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yumi; Gibson, Robert R.; Becker, Andrew C.; Ivezić, Željko; Connolly, Andrew J.; Ruan, John J.; Anderson, Scott F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); MacLeod, Chelsea L., E-mail: [Physics Department, U.S. Naval Academy, 572 Holloway Road, Annapolis, MD 21402 (United States)


    With upcoming all-sky surveys such as LSST poised to generate a deep digital movie of the optical sky, variability-based active galactic nucleus (AGN) selection will enable the construction of highly complete catalogs with minimum contamination. In this study, we generate g-band difference images and construct light curves (LCs) for QSO/AGN candidates listed in Sloan Digital Sky Survey Stripe 82 public catalogs compiled from different methods, including spectroscopy, optical colors, variability, and X-ray detection. Image differencing excels at identifying variable sources embedded in complex or blended emission regions such as Type II AGNs and other low-luminosity AGNs that may be omitted from traditional photometric or spectroscopic catalogs. To separate QSOs/AGNs from other sources using our difference image LCs, we explore several LC statistics and parameterize optical variability by the characteristic damping timescale (τ) and variability amplitude. By virtue of distinguishable variability parameters of AGNs, we are able to select them with high completeness of 93.4% and efficiency (i.e., purity) of 71.3%. Based on optical variability, we also select highly variable blazar candidates, whose infrared colors are consistent with known blazars. One-third of them are also radio detected. With the X-ray selected AGN candidates, we probe the optical variability of X-ray detected optically extended sources using their difference image LCs for the first time. A combination of optical variability and X-ray detection enables us to select various types of host-dominated AGNs. Contrary to the AGN unification model prediction, two Type II AGN candidates (out of six) show detectable variability on long-term timescales like typical Type I AGNs. This study will provide a baseline for future optical variability studies of extended sources.

  7. Automatic morphological characterization of nanobubbles with a novel image segmentation method and its application in the study of nanobubble coalescence

    Directory of Open Access Journals (Sweden)

    Yuliang Wang


    Full Text Available Nanobubbles (NBs on hydrophobic surfaces in aqueous solvents have shown great potential in numerous applications. In this study, the morphological characterization of NBs in AFM images was carried out with the assistance of a novel image segmentation method. The method combines the classical threshold method and a modified, active contour method to achieve optimized image segmentation. The image segmentation results obtained with the classical threshold method and the proposed, modified method were compared. With the modified method, the diameter, contact angle, and radius of curvature were automatically measured for all NBs in AFM images. The influence of the selection of the threshold value on the segmentation result was discussed. Moreover, the morphological change in the NBs was studied in terms of density, covered area, and volume occurring during coalescence under external disturbance.

  8. Financial applications of a Tabu search variable selection model

    Directory of Open Access Journals (Sweden)

    Zvi Drezner


    Full Text Available We illustrate how a comparatively new technique, a Tabu search variable selection model [Drezner, Marcoulides and Salhi (1999], can be applied efficiently within finance when the researcher must select a subset of variables from among the whole set of explanatory variables under consideration. Several types of problems in finance, including corporate and personal bankruptcy prediction, mortgage and credit scoring, and the selection of variables for the Arbitrage Pricing Model, require the researcher to select a subset of variables from a larger set. In order to demonstrate the usefulness of the Tabu search variable selection model, we: (1 illustrate its efficiency in comparison to the main alternative search procedures, such as stepwise regression and the Maximum R2 procedure, and (2 show how a version of the Tabu search procedure may be implemented when attempting to predict corporate bankruptcy. We accomplish (2 by indicating that a Tabu Search procedure increases the predictability of corporate bankruptcy by up to 10 percentage points in comparison to Altman's (1968 Z-Score model.

  9. Effective Feature Selection for 5G IM Applications Traffic Classification

    Directory of Open Access Journals (Sweden)

    Muhammad Shafiq


    Full Text Available Recently, machine learning (ML algorithms have widely been applied in Internet traffic classification. However, due to the inappropriate features selection, ML-based classifiers are prone to misclassify Internet flows as that traffic occupies majority of traffic flows. To address this problem, a novel feature selection metric named weighted mutual information (WMI is proposed. We develop a hybrid feature selection algorithm named WMI_ACC, which filters most of the features with WMI metric. It further uses a wrapper method to select features for ML classifiers with accuracy (ACC metric. We evaluate our approach using five ML classifiers on the two different network environment traces captured. Furthermore, we also apply Wilcoxon pairwise statistical test on the results of our proposed algorithm to find out the robust features from the selected set of features. Experimental results show that our algorithm gives promising results in terms of classification accuracy, recall, and precision. Our proposed algorithm can achieve 99% flow accuracy results, which is very promising.

  10. Determinants of Smartphone Selection: An Application of the University Students

    Directory of Open Access Journals (Sweden)

    Halim TATLI


    Full Text Available In this study, we aimed to identify the factors that impact on smartphone selection of university students. In this context, the data is obtained from a survey which is conducted to students that are studying in Bingöl University. This questionnaire was administered to 400 students in the November-October 2014. Student’s smartphone selection response variable, the logarithm of age, the logarithm of income and logarithm of the scores of the students' perspective on smart phone is taken as an explanatory variable. In the analysis were used logistic regression. The estimated results of logistic regression analysis; logarithm of the scores of the students' perspective on smart phone and the the logarithm of income was be found to increase the likelihood of smartphone selection in a meaningful way. Between the logarithm of age and smartphone selection was not found to be significant relationship. The results of the study, showed that the major determinants of smartphone selection monthly income and students' perspective on smartphones.

  11. Enhanced nanoscale imaging of polymer blends by temperature-controlled selective dissolution. (United States)

    Friedel, Bettina; Ehrler, Bruno; Hüttner, Sven; Greenham, Neil C


    Nanoscale imaging on polymer blends is vital, especially in organic electronics. By using temperature-controlled selective dissolution, the 3D structure of a thin film becomes accessible without the expensive search for adequate orthogonal solvents. The method, which takes advantage of the temperature dependence of the solubility, is demonstrated to image P3HT:PCBM and P3HT:F8TBT photovoltaic blend films using atomic force and scanning electron microscopy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Applications of Scheimpflug Imaging in Glaucoma Management: Current and Potential Applications

    Directory of Open Access Journals (Sweden)

    Alexander T. Nguyen


    Full Text Available Scheimpflug photography is the basis for a variety of imaging devices that are highly versatile. The applications of Scheimpflug imaging are wide in scope, spanning from evaluation of corneal ectasia to quantifying density in nuclear sclerotic cataracts. The potential uses for Scheimpflug-based devices are expanding and a number of them are relevant in glaucoma. In particular, they can provide three-dimensional image reconstruction of the anterior segment which includes assessment of the iridocorneal angle. Photographic analyses allow also for a noncontact method of estimating central corneal thickness (CCT and intraocular pressure (IOP, as well as the study of various corneal biomechanical properties, which may be useful for stratifying glaucoma risk.

  13. Optimization of Metamaterial Selective Emitters for Use in Thermophotovoltaic Applications (United States)

    Pfiester, Nicole A.

    The increasing costs of fossil fuels, both financial and environmental, has motivated many to look into sustainable energy sources. Thermophotovoltaics (TPVs), specialized photovoltaic cells focused on the infrared range, offer an opportunity to achieve both primary energy capture, similar to traditional photovoltaics, as well as secondary energy capture in the form of waste heat. However, to become a feasible energy source, TPV systems must become more efficient. One way to do this is through the development of selective emitters tailored to the bandgap of the TPV diode in question. This thesis proposes the use of metamaterial emitters as an engineerable, highly selective emitter that can withstand the temperatures required to collect waste heat. Metamaterial devices made of platinum and a dielectric such as alumina or silicon nitride were initially designed and tested as perfect absorbers. High temperature robustness testing demonstrates the device's ability to withstand the rigors of operating as a selective emitter.

  14. Multiple relay selection for delay-limited applications

    KAUST Repository

    Alsharoa, Ahmad M.


    A multiple relay selection system model that implements the decode-and-forward mode is investigated. All communication nodes are assumed to be equipped by multiple antennas. Furthermore, lattices space-time coded multiple-input multiple-output half duplex channel is applied. The main goal is to increase the throughput of the system by selecting multiple number of relays. The selection criteria depends on the maximum decoding delay at relays where the system implements a decoding time-out algorithm at each relay. This leads to a significant saving in the overall system power consumptions and attempts to solve the relays synchronization problem. All results are presented using numerical simulations. © 2012 IEEE.

  15. Selection-based virtual keyboard prototypes and data collection application. (United States)

    Millet, Barbara; Asfour, Shihab; Lewis, James R


    An emerging area of research in engineering psychology is the evaluation of text entry for mobile devices using a small number of keys for the control of cursor direction and character selection from a matrix of characters (i.e., selection-based data entry). The present article describes a software tool designed to reduce time and effort in the development of prototypes of alternative selection-based text-entry schemes and their empirical evaluation. The tool, available for distribution to researchers, educators, and students, uses Action Script code compiled into an executable file that has an embedded Adobe Flash Player and is compatible with most operating systems (including Microsoft Windows, Apple OSX, and Linux).

  16. A selective deficit in imageable concepts: A window to the organization of the conceptual system

    Directory of Open Access Journals (Sweden)

    Aviah eGvion


    Full Text Available Nissim, a 64 years old Hebrew-speaking man who sustained an ischemic infarct in the left occipital lobe, exhibited an intriguing pattern. He could hold a deep and fluent conversation about abstract and complex issues, such as the social risks in unemployment, but failed to retrieve imageable words such as ball, spoon, carrot, or giraffe. A detailed study of the words he could and could not retrieve, in tasks of picture naming, tactile naming, and naming to definition indicated that whereas he was able to retrieve abstract words, he had severe difficulties when trying to retrieve imageable words. The same dissociation also applied for proper names – he could retrieve names of people who have no visual image attached to their representation (such as the son of the biblical Abraham, but could not name people who had a visual image (such as his own son, or Barack Obama. When he tried to produce imageable words, he mainly produced perseverations and empty speech, and some semantic paraphasias. He did not produce perseverations when he tried to retrieve abstract words. This suggests that perseverations may occur when the phonological-production system produces a word without proper activation in the semantic lexicon. Nissim evinced a similar dissociation in comprehension – he could understand abstract words and sentences but failed to understand sentences with imageable words, and to match spoken imageable words to pictures or to semantically related imageable words. He was able to understand proverbs with imageable literal meaning but abstract figurative meaning. His comprehension was impaired also in tasks of semantic associations of pictures, pointing to a conceptual, rather than lexical source of the deficit. His visual perception as well as his phonological input and output lexicons and buffers (assessed by auditory lexical decision, word and sentence repetition, and writing to dictation were intact, supporting a selective conceptual system

  17. New amorphous-silicon image sensor for x-ray diagnostic medical imaging applications (United States)

    Weisfield, Richard L.; Hartney, Mark A.; Street, Robert A.; Apte, Raj B.


    This paper introduces new high-resolution amorphous Silicon (a-Si) image sensors specifically configured for demonstrating film-quality medical x-ray imaging capabilities. The devices utilizes an x-ray phosphor screen coupled to an array of a-Si photodiodes for detecting visible light, and a-Si thin-film transistors (TFTs) for connecting the photodiodes to external readout electronics. We have developed imagers based on a pixel size of 127 micrometer X 127 micrometer with an approximately page-size imaging area of 244 mm X 195 mm, and array size of 1,536 data lines by 1,920 gate lines, for a total of 2.95 million pixels. More recently, we have developed a much larger imager based on the same pixel pattern, which covers an area of approximately 406 mm X 293 mm, with 2,304 data lines by 3,200 gate lines, for a total of nearly 7.4 million pixels. This is very likely to be the largest image sensor array and highest pixel count detector fabricated on a single substrate. Both imagers connect to a standard PC and are capable of taking an image in a few seconds. Through design rule optimization we have achieved a light sensitive area of 57% and optimized quantum efficiency for x-ray phosphor output in the green part of the spectrum, yielding an average quantum efficiency between 500 and 600 nm of approximately 70%. At the same time, we have managed to reduce extraneous leakage currents on these devices to a few fA per pixel, which allows for very high dynamic range to be achieved. We have characterized leakage currents as a function of photodiode bias, time and temperature to demonstrate high stability over these large sized arrays. At the electronics level, we have adopted a new generation of low noise, charge- sensitive amplifiers coupled to 12-bit A/D converters. Considerable attention was given to reducing electronic noise in order to demonstrate a large dynamic range (over 4,000:1) for medical imaging applications. Through a combination of low data lines capacitance

  18. Application of fluence field modulation to proton computed tomography for proton therapy imaging (United States)

    Dedes, G.; De Angelis, L.; Rit, S.; Hansen, D.; Belka, C.; Bashkirov, V.; Johnson, R. P.; Coutrakon, G.; Schubert, K. E.; Schulte, R. W.; Parodi, K.; Landry, G.


    This simulation study presents the application of fluence field modulated computed tomography, initially developed for x-ray CT, to proton computed tomography (pCT). By using pencil beam (PB) scanning, fluence modulated pCT (FMpCT) may achieve variable image quality in a pCT image and imaging dose reduction. Three virtual phantoms, a uniform cylinder and two patients, were studied using Monte Carlo simulations of an ideal list-mode pCT scanner. Regions of interest (ROI) were selected for high image quality and only PBs intercepting them preserved full fluence (FF). Image quality was investigated in terms of accuracy (mean) and noise (standard deviation) of the reconstructed proton relative stopping power compared to reference values. Dose calculation accuracy on FMpCT images was evaluated in terms of dose volume histograms (DVH), range difference (RD) for beam-eye-view (BEV) dose profiles and gamma evaluation. Pseudo FMpCT scans were created from broad beam experimental data acquired with a list-mode pCT prototype. FMpCT noise in ROIs was equivalent to FF images and accuracy better than  -1.3%(-0.7%) by using 1% of FF for the cylinder (patients). Integral imaging dose reduction of 37% and 56% was achieved for the two patients for that level of modulation. Corresponding DVHs from proton dose calculation on FMpCT images agreed to those from reference images and 96% of BEV profiles had RD below 2 mm, compared to only 1% for uniform 1% of FF. Gamma pass rates (2%, 2 mm) were 98% for FMpCT while for uniform 1% of FF they were as low as 59%. Applying FMpCT to preliminary experimental data showed that low noise levels and accuracy could be preserved in a ROI, down to 30% modulation. We have shown, using both virtual and experimental pCT scans, that FMpCT is potentially feasible and may allow a means of imaging dose reduction for a pCT scanner operating in PB scanning mode. This may be of particular importance to proton therapy given the low integral dose found

  19. Optical Properties of Selective Emitter Materials for Thermophotovoltaic Applications (United States)

    Hambourger, Paul D.


    We investigate the optical properties of new "selective emitter" materials for possible use in high-efficiency thermophotovoltaic power systems. These are systems which directly convert heat to radiation at a wavelength closely matched to the bandgap energy of the solar cell. Candidate materials which have strong absorption lines fairly close to the bandgap of good solar-cell materials were chosen for study. Their emittance was measured as a function of wavelength to evaluate their promise as selective TPV emitters. Useful and informative results were obtained. Some of these results were presented at a January 1996 solar energy conference of the American Institute of Aeronautics and Astronautics.

  20. Assessment of a CAD scheme in selecting the optimal focused microscopic scanning images of the metaphase chromosomes (United States)

    Wang, Xingwei; Tan, Jun; Qiu, Yuchen; Li, Yuhua; Liu, Hong; Li, Shibo; Zheng, Bin


    Visually searching for analyzable metaphase chromosome cells under microscopes is a routine and timeconsuming task in genetic laboratories to diagnose cancer and genetic disorders. To improve detection efficiency, consistency, and accuracy, we developed an automated microscopic image scanning system using a 100X oil immersion objective lens to acquire images that has sufficient spatial resolution allowing clinicians to do diagnosis. Due to the highresolution, the field of image depth is very limited and multiple scans up to seven layers are required. Thus, a metaphase cell can spread over multiple images at different focal levels. Among them only one or two are adequate for the diagnosis and the others are typically fuzzy images. In this study, we developed and tested a computer-aided detection (CAD) scheme to automatically select one image with the sharpest image quality and discard all of the other fuzzy images based on the computed sharpness index. From three scanned bone marrow specimen slides, the on-line and offline metaphase finding modules automatically selected 100 chromosome cells with 534 images. These images were selected to build a testing dataset. For each cell, the CAD scheme selects one image with the maximum sharpness index. Three observers also independently visually selected one best image for diagnosis from each cell. The agreement rate between CAD and visually selected images ranges from 89% to 96%, which is also very comparable to the agreement rate between the two observers. This experiment demonstrated the feasibility of applying a CAD scheme to select the images with sharpest high-resolution metaphase chromosome cell and potentially improve diagnostic efficiency and accuracy in the future clinical practice.

  1. When selection ratios are high: predicting the expatriation willingness of prospective domestic entry-level job applicants

    NARCIS (Netherlands)

    Mol, S.T.; Born, M.P.; Willemsen, M.E.; van der Molen, H.T.; Derous, E.


    High expatriate selection ratios thwart the ability of multinational organizations to select expatriates. Reducing the selection ratio may be accomplished by selecting those applicants for entry level domestic positions who have expatriate aspirations. Regression analyses conducted on data from a

  2. Heparin conjugated quantum dots for in vitro imaging applications. (United States)

    Maguire, Ciaran Manus; Mahfoud, Omar Kazem; Rakovich, Tatsiana; Gerard, Valerie Anne; Prina-Mello, Adriele; Gun'ko, Yurii; Volkov, Yuri


    In this work heparin-gelatine multi-layered cadmium telluride quantum dots (QDgel/hep) were synthesised using a novel 'one-pot' method. The QDs produced were characterised using various spectroscopic and physiochemical techniques. Suitable QDs were then selected and compared to thioglycolic acid stabilised quantum dots (QDTGA) and gelatine coated quantum dots (QDgel) for utilisation in in vitro imaging experiments on live and fixed permeabilised THP-1, A549 and Caco-2 cell lines. Exposure of live THP-1 cells to QDgel/hep resulted in localisation of the QDs to the nucleus of the cells. QDgel/hep show affinity for the nuclear compartment of fixed permeabilised THP-1 and A549 cells but remain confined to cytoplasm of fixed permeabilised Caco-2 cells. It is postulated that heparin binding to the CD11b receptor facilitates the internalisation of the QDs into the nucleus of THP-1 cells. In addition, the heparin layer may reduce the unfavourable thrombogenic nature of quantum dots observed in vivo. In this study, heparin conjugated quantum dots were found to have superior imaging properties compared to its native counterparts. The authors postulate that heparin binding to the CD11b receptor facilitates QD internalization to the nucleus, and the heparin layer may reduce the in vivo thrombogenic properties of quantum dots. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Multiscale registration of medical images based on edge preserving scale space with application in image-guided radiation therapy (United States)

    Li, Dengwang; Li, Hongsheng; Wan, Honglin; Chen, Jinhu; Gong, Guanzhong; Wang, Hongjun; Wang, Liming; Yin, Yong


    Mutual information (MI) is a well-accepted similarity measure for image registration in medical systems. However, MI-based registration faces the challenges of high computational complexity and a high likelihood of being trapped into local optima due to an absence of spatial information. In order to solve these problems, multi-scale frameworks can be used to accelerate registration and improve robustness. Traditional Gaussian pyramid representation is one such technique but it suffers from contour diffusion at coarse levels which may lead to unsatisfactory registration results. In this work, a new multi-scale registration framework called edge preserving multiscale registration (EPMR) was proposed based upon an edge preserving total variation L1 norm (TV-L1) scale space representation. TV-L1 scale space is constructed by selecting edges and contours of images according to their size rather than the intensity values of the image features. This ensures more meaningful spatial information with an EPMR framework for MI-based registration. Furthermore, we design an optimal estimation of the TV-L1 parameter in the EPMR framework by training and minimizing the transformation offset between the registered pairs for automated registration in medical systems. We validated our EPMR method on both simulated mono- and multi-modal medical datasets with ground truth and clinical studies from a combined positron emission tomography/computed tomography (PET/CT) scanner. We compared our registration framework with other traditional registration approaches. Our experimental results demonstrated that our method outperformed other methods in terms of the accuracy and robustness for medical images. EPMR can always achieve a small offset value, which is closer to the ground truth both for mono-modality and multi-modality, and the speed can be increased 5-8% for mono-modality and 10-14% for multi-modality registration under the same condition. Furthermore, clinical application by adaptive

  4. Design analysis, selection and application of fans for ventilation and ...

    African Journals Online (AJOL)

    ... fluid mechanics and head losses due to friction and across fittings were considered. Practical illustrations are provided for ducted and non-ducted ventilation and air conditioned distribution in buildings. The use of characteristic curves for selection of fans is also discussed. Journal of Applied Science and Technology Vol.

  5. All-(111) Surface Silicon Nanowires: Selective Functionalization for Biosensing Applications

    NARCIS (Netherlands)

    Masood, M.N.; Chen, S.; Carlen, Edwin; van den Berg, Albert

    e demonstrate the utilization of selective functionalization of carbon-silicon (C-Si) alkyl and alkenyl monolayers covalently linked to all-(111) surface silicon nanowire (Si-NW) biosensors. Terminal amine groups on the functional monolayer surfaces were used for conjugation of biotin

  6. Application of numerical modeling for optimization of selective hot ...

    African Journals Online (AJOL)



    Aug 29, 2011 ... selective hot water extraction of taxifolin from 'milk thistle' seeds. Hala El-Adawi1, Yasser Abdel-Fattah2 ... content; HWE, hot water extract. 2002; Skottová et al., 2003; Sobolová et al., 2006). ..... Decreased plasma and tissue levels of vitamin C in a rat model of aging: implications for antioxidative defense.

  7. Electric Potential and Electric Field Imaging with Dynamic Applications: 2017 Research Award Innovation (United States)

    Generazio, Ed


    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for illuminating volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Initial results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of structures, tether integrity, organic molecular memory, atmospheric science, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  8. Comparison of selective transmitters for solar thermal applications. (United States)

    Taylor, Robert A; Hewakuruppu, Yasitha; DeJarnette, Drew; Otanicar, Todd P


    Solar thermal collectors are radiative heat exchangers. Their efficacy is dictated predominantly by their absorption of short wavelength solar radiation and, importantly, by their emission of long wavelength thermal radiation. In conventional collector designs, the receiver is coated with a selectively absorbing surface (Black Chrome, TiNOx, etc.), which serves both of these aims. As the leading commercial absorber, TiNOx consists of several thin, vapor deposited layers (of metals and ceramics) on a metal substrate. In this technology, the solar absorption to thermal emission ratio can exceed 20. If a solar system requires an analogous transparent component-one which transmits the full AM1.5 solar spectrum, but reflects long wavelength thermal emission-the technology is much less developed. Bespoke "heat mirrors" are available from optics suppliers at high cost, but the closest mass-produced commercial technology is low-e glass. Low-e glasses are designed for visible light transmission and, as such, they reflect up to 50% of available solar energy. To address this technical gap, this study investigated selected combinations of thin films that could be deposited to serve as transparent, selective solar covers. A comparative numerical analysis of feasible materials and configurations was investigated using a nondimensional metric termed the efficiency factor for selectivity (EFS). This metric is dependent on the operation temperature and solar concentration ratio of the system, so our analysis covered the practical range for these parameters. It was found that thin films of indium tin oxide (ITO) and ZnS-Ag-ZnS provided the highest EFS. Of these, ITO represents the more commercially viable solution for large-scale development. Based on these optimized designs, proof-of-concept ITO depositions were fabricated and compared to commercial depositions. Overall, this study presents a systematic guide for creating a new class of selective, transparent optics for solar

  9. Applicant Reactions to a Situational Judgment Test Used for Selection into Initial Teacher Training (United States)

    Klassen, Robert M.; Durksen, Tracy L.; Rowett, Emma; Patterson, Fiona


    We considered applicants' perceptions of the use of a pilot situational judgment test (SJT) designed for selection into primary and secondary teacher training programs in the UK. Quantitative and qualitative data were collected from 304 applicants (73% female) to two postgraduate (PGCE) training programs in the 2013-2014 application cycle.…

  10. An infrared high rate video imager for various space applications (United States)

    Svedhem, Hâkan; Koschny, Detlef


    Modern spacecraft with high data transmission capabilities have opened up the possibility to fly video rate imagers in space. Several fields concerned with observations of transient phenomena can benefit significantly from imaging at video frame rate. Some applications are observations and characterization of bolides/meteors, sprites, lightning, volcanic eruptions, and impacts on airless bodies. Applications can be found both on low and high Earth orbiting spacecraft as well as on planetary and lunar orbiters. The optimum wavelength range varies depending on the application but we will focus here on the near infrared, partly since it allows exploration of a new field and partly because it, in many cases, allows operation both during day and night. Such an instrument has to our knowledge never flown in space so far. The only sensors of a similar kind fly on US defense satellites for monitoring launches of ballistic missiles. The data from these sensors, however, is largely inaccessible to scientists. We have developed a bread-board version of such an instrument, the SPOSH-IR. The instrument is based on an earlier technology development - SPOSH - a Smart Panoramic Optical Sensor Head, for operation in the visible range, but with the sensor replace by a cooled IR detector and new optics. The instrument is using a Sofradir 320x256 pixel HgCdTe detector array with 30µm pixel size, mounted directly on top of a four stage thermoelectric Peltier cooler. The detector-cooler combination is integrated into an evacuated closed package with a glass window on its front side. The detector has a sensitive range between 0.8 and 2.5 µm. The optical part is a seven lens design with a focal length of 6 mm and a FOV 90deg by 72 deg optimized for use at SWIR. The detector operates at 200K while the optics operates at ambient temperature. The optics and electronics for the bread-board has been designed and built by Jena-Optronik, Jena, Germany. This talk will present the design and the

  11. MEMS Tunable Diffraction Grating for Spaceborne Imaging Spectroscopic Applications

    Directory of Open Access Journals (Sweden)

    Sanathanan S. Muttikulangara


    Full Text Available Diffraction gratings are among the most commonly used optical elements in applications ranging from spectroscopy and metrology to lasers. Numerous methods have been adopted for the fabrication of gratings, including microelectromechanical system (MEMS fabrication which is by now mature and presents opportunities for tunable gratings through inclusion of an actuation mechanism. We have designed, modeled, fabricated and tested a silicon based pitch tunable diffraction grating (PTG with relatively large resolving power that could be deployed in a spaceborne imaging spectrometer, for example in a picosatellite. We have carried out a detailed analytical modeling of PTG, based on a mass spring system. The device has an effective fill factor of 52% and resolving power of 84. Tuning provided by electrostatic actuation results in a displacement of 2.7 μ m at 40 V . Further, we have carried out vibration testing of the fabricated structure to evaluate its feasibility for spaceborne instruments.

  12. A Novel Application of Ultrasonic Imaging to Study Smoldering Combustion (United States)

    Tse, S. D.; Anthenien, R. A.; Fernandez-Pello, A. Carlos; Miyasaka, K.


    An ultrasonic imaging technique has been developed to examine the propagation of a smolder reaction within a porous combustible material. The technique provides information about the location of a propagating smolder front, as well as line-of-sight average permeability variations of the smoldering material. The method utilizes the observation that transmission of an ultrasonic signal through a porous material increases with permeability. Since a propagating smolder reaction leaves behind char with a higher permeability than the original material, ultrasound transmission can be employed to monitor smolder progress. The technique can also be used to track the char evolution as it continues to react. Experiments are presented where the technique is applied to smoldering combustion in a two-dimensional geometry. The results have furthered the understanding of two-dimensional smolder, especially in identifying the controlling mechanisms leading to the transition from smoldering to flaming. The applicability of ultrasonic tomography to smoldering combustion has also been investigated.

  13. Natural image coding in V1: how much use is orientation selectivity?

    Directory of Open Access Journals (Sweden)

    Jan Eichhorn


    Full Text Available Orientation selectivity is the most striking feature of simple cell coding in V1 that has been shown to emerge from the reduction of higher-order correlations in natural images in a large variety of statistical image models. The most parsimonious one among these models is linear Independent Component Analysis (ICA, whereas second-order decorrelation transformations such as Principal Component Analysis (PCA do not yield oriented filters. Because of this finding, it has been suggested that the emergence of orientation selectivity may be explained by higher-order redundancy reduction. To assess the tenability of this hypothesis, it is an important empirical question how much more redundancy can be removed with ICA in comparison to PCA or other second-order decorrelation methods. Although some previous studies have concluded that the amount of higher-order correlation in natural images is generally insignificant, other studies reported an extra gain for ICA of more than 100%. A consistent conclusion about the role of higher-order correlations in natural images can be reached only by the development of reliable quantitative evaluation methods. Here, we present a very careful and comprehensive analysis using three evaluation criteria related to redundancy reduction: In addition to the multi-information and the average log-loss, we compute complete rate-distortion curves for ICA in comparison with PCA. Without exception, we find that the advantage of the ICA filters is small. At the same time, we show that a simple spherically symmetric distribution with only two parameters can fit the data significantly better than the probabilistic model underlying ICA. This finding suggests that, although the amount of higher-order correlation in natural images can in fact be significant, the feature of orientation selectivity does not yield a large contribution to redundancy reduction within the linear filter bank models of V1 simple cells.

  14. Myocardial perfusion imaging determination using an appropriate use smartphone application. (United States)

    Mahajan, Ashish; Bal, Susan; Hahn, Harvey


    Inappropriate cardiac imaging has been a significant cost concern and cause of radiation burden to patients. To assess if a smartphone application (app) based on 2009 Appropriate Use Criteria (AUC) for Cardiac Radionuclide Imaging published by American College of Cardiology would be feasible at the point of order. We evaluated stress myocardial perfusion imaging (MPI) (N = 403) (mean age = 62.23 years; 47.89% males) over a 4 month period using a smartphone app to determine whether the study ordered was Appropriate, Inappropriate, or Uncertain per 2009 AUC. We also monitored the time needed to use the app to determine the level of appropriateness of each stress MPI. The results of the stress MPI were noted. Of the 403 stress MPIs evaluated, 267 (66.25%) were noted to be Appropriate, 118 (29.28%) were Inappropriate, and 13 (3.23%) were Uncertain, per AUC; 5 (1.25%) remained unclassified. Average time needed to use the app to assess each stress MPI for appropriateness was noted to be 44 (±9) seconds. Non-teaching physicians ordered 70 (38.89%) inappropriate stress MPIs as compared to 20 (23.53%) ordered by physicians on resident teaching service, and 28 (23.33%) by cardiologists (P = .0045). Among inappropriately ordered stress MPIs, 87 (42.65%) were ordered in females as compared to 31 (17.13%) in males (P smartphone app provides an easy-to-use tool to assist physicians in determining the level of appropriateness of stress MPI in a time- and cost-effective manner at the point of order. The smartphone app may have potential to promote the usage of the AUC and possibly aid reduction of healthcare cost and ionizing radiation burden.

  15. Applications of three-dimensional image correlation in conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Van Herk, M.; Gilhuijs, K.; Kwa, S.; Lebesque, J.; Muller, S.; De Munck, J.; Touw, A. [Nederlands Kanker Inst. `Antoni van Leeuwenhoekhuis`, Amsterdam (Netherlands); Kooy, H. [Harvard Medical School, Boston, MA (United States)


    The development of techniques for the registration of CT, MRI and SPECT creates new possibilities for improved target volume definition and quantitative image analysis. The discussed technique is based on chamfer matching and is suitable for automatic 3-D matching of CT with CT, CT with MRI, CT with SPECT and MRI with SPECT. By integrating CT with MRI, the diagnostic qualities of MRI are combined with the geometric accuracy of the planning CT. Significant differences in the delineation of the target volume for brain, head and neck and prostate tumors were demonstrated when using integrated CT and MRI compared with using CT alone. In addition, integration of the planning CT with pre-operative scans improves knowledge of possible tumor extents. By first matching scans based on the bony anatomy and subsequently matching on an organ of study, relative motion of the organ is quantified accurately. In a study with 42 CT scans of 11 patients, magnitude and causes of prostate motion were analysed. The most important motion of the prostate is a forward-backward rotation around a point near the apex caused by rectal volume difference. Significant correlations were also found between motion of the legs and the prostate. By integrating functional images made before and after radiotherapy with the planning CT, the relation between local change of lung function and delivered dose has been quantified accurately. The technique of chamfer matching is a convenient and more accurate alternative for the use of external markers in a CT/SPECT lung damage study. Also, damage visible in diagnostic scans can be related to radiation dose, thereby improving follow-up diagnostics. It can be concluded that 3-D image integration plays an important role in assessing and improving the accuracy of radiotherapy and is therefore indispensable for conformal therapy. However, user-friendly implementation of these techniques remains to be done to facilitate clinical application on a large scale.

  16. Clinical applications of cobalt-radionuclides in neuro-imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, H.M.L


    The aim of the studies embodied in this thesis was to investigate the clinical applicability of Co in euro-imaging using positron emission tomography (PET). To this purpose, a set of closely related pilot studies were performed in patients suffering from several neurological diseases affecting the brain. Chapter 2 discusses the physiological role of Co and both indications and complications of Co-administration in the past. The probable deposition mechanism of Co is described, potential (absence of) evidence of Co mimicking Ca in vivo is discussed, a comparison is made with other tracer-analogues (Ga, TI, Rb) and several hypotheses with respect to the pharmacokinetic behaviour of Co and the role of (inflammatory) proteins and cells are forwarded. The etiologic mechanism(s), clinical symptoms, Ca-related pathophysiology and (most recent) imaging techniques are reviewed of Multiple Sclerosis, cerebrovascular stroke, traumatic brain injury and primary brain tumours. The major goal of these respective reviews is both a rough outline of present insights and near-future developments and an assessment of the (im)possibilities in visualising the actual substrate of disease. Since Co is assumed to reflect (the common pathway of) Ca, an application of Co (based on cell-decay and inflammation) may be hypothesised in all of the diseases mentioned. These considerations served as a theoretical basis for our further studies in clinical practice. Chapter 3 (Original reprints) presents the actual results, whil Chapter 4 (General discussion) reflects on lessons that can be learned from the present work and consequently formulates some suggestions for future (extended) studies. The contours of possible new emerging areas of interest (dementia of the Alzheimer type; vascular dementia; stunned myocardium) are drawn in continuation of the foregoing studies. 47 refs.

  17. Media image of the Soviet Union in selected Communist and Christian Democratic weeklies during the Third Czechoslovak Republic


    Mádr, Daniel


    Media image of the Soviet Union in selected Communist and Christian Democratic weeklies during the Third Czechoslovak Republic The paper deals with selected aspects of the media image of the Soviet Union during the Third Czechoslovak Republic. Its aim is to analyze the mechanisms of media image construction in two journals of the Communist Party of Czechoslovakia and in two weeklies of the Czechoslovak People's Party. Partial aim represents an effort to compare the resemblance of discourse of...

  18. Identity Recognition Algorithm Using Improved Gabor Feature Selection of Gait Energy Image (United States)

    Chao, LIANG; Ling-yao, JIA; Dong-cheng, SHI


    This paper describes an effective gait recognition approach based on Gabor features of gait energy image. In this paper, the kernel Fisher analysis combined with kernel matrix is proposed to select dominant features. The nearest neighbor classifier based on whitened cosine distance is used to discriminate different gait patterns. The approach proposed is tested on the CASIA and USF gait databases. The results show that our approach outperforms other state of gait recognition approaches in terms of recognition accuracy and robustness.

  19. LWIR hyperspectral imaging application and detection of chemical precursors (United States)

    Lavoie, Hugo; Thériault, Jean-Marc; Bouffard, François; Puckrin, Eldon; Dubé, Denis


    Detection and identification of Toxic industrial chemicals (TICs) represent a major challenge to protect and sustain first responder and public security. In this context, passive Hyperspectral Imaging (HSI) is a promising technology for the standoff detection and identification of chemical vapors emanating from a distant location. To investigate this method, the Department of National Defense and Public Safety Canada have mandated Defense Research and Development Canada (DRDC) - Valcartier to develop and test Very Long Wave Infrared (VLWIR) HSI sensors for standoff detection. The initial effort was focused to address the standoff detection and identification of toxic industrial chemicals (TICs), surrogates and precursors. Sensors such as the Improved Compact ATmospheric Sounding Interferometer (iCATSI) and the Multi-option Differential Detection and Imaging Fourier Spectrometer (MoDDIFS) were developed for this application. This paper presents the sensor developments and preliminary results of standoff detection and identification of TICs and precursors. The iCATSI and MoDDIFS sensors are based on the optical differential Fourier-transform infrared (FTIR) radiometric technology and are able to detect, spectrally resolve and identify small leak at ranges in excess of 1 km. Results from a series of trials in asymmetric threat type scenarios are reported. These results serve to establish the potential of passive standoff HSI detection of TICs, precursors and surrogates.

  20. Non-local SAR Image Despeckling Based on Similar Pixels Selected

    Directory of Open Access Journals (Sweden)

    Li Guang-ting


    Full Text Available Based on the ratio distance pixel-relativity and thresholding pixel-similarity, a modified non-local filter is proposed for SAR image despeckling in this paper. Firstly, the ratio distance pixel-relativity is obtained by transforming the joint probability density function of two pixels. Then, a table of pixel-similarity threshold, as a function of the SAR image look number and neighboring reflectivity ratio, is trained according to the minimum error probability. Finally, the pixel-similarity threshold is applied to select similar pixels from the searching window for the real reflectivity estimation. The proposed approach was verified by synthetic and real SAR images, and was compared with the PPB and LHRS-PRM filters. The visual quality and the quantification comparison show that the proposed approach is excellent not only in the reconstruction of the uniform area, the character of edges, texture, and details, but also with the lower computation complexity.

  1. Partnering With Your Health System to Select and Implement Clinical Decision Support for Imaging. (United States)

    Jensen, Jeff D; Durand, Daniel J


    Recent legislation mandates the documentation of appropriateness criteria consultation when ordering advanced imaging for Medicare patients to remain eligible for reimbursement. Implementation of imaging clinical decision support (CDS) is a solution adopted by many systems to automate compliance with the new requirements. This article is intended to help radiologists who are employed by, contracted with, or otherwise affiliated with systems planning to implement CDS in the near future and ensure that they are able to understand and contribute to the process wherever possible. It includes an in-depth discussion of the legislation, evidence for and against the efficacy of imaging CDS, considerations for selecting a CDS vendor, tips for configuring CDS in a fashion consistent with departmental goals, and pointers for implementation and change management. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  2. Neutron Imaging for Selective Laser Melting Inconel Hardware with Internal Passages (United States)

    Tramel, Terri L.; Norwood, Joseph K.; Bilheux, Hassina


    Additive Manufacturing is showing great promise for the development of new innovative designs and large potential life cycle cost reduction for the Aerospace Industry. However, more development work is required to move this technology into space flight hardware production. With selective laser melting (SLM), hardware that once consisted of multiple, carefully machined and inspected pieces, joined together can be made in one part. However standard inspection techniques cannot be used to verify that the internal passages are within dimensional tolerances or surface finish requirements. NASA/MSFC traveled to Oak Ridge National Lab's (ORNL) Spallation Neutron Source to perform some non-destructive, proof of concept imaging measurements to assess the capabilities to understand internal dimensional tolerances and internal passages surface roughness. This presentation will describe 1) the goals of this proof of concept testing, 2) the lessons learned when designing and building these Inconel 718 test specimens to minimize beam time, 3) the neutron imaging test setup and test procedure to get the images, 4) the initial results in images, volume and a video, 4) the assessment of using this imaging technique to gather real data for designing internal flow passages in SLM manufacturing aerospace hardware, and lastly 5) how proper cleaning of the internal passages is critically important. In summary, the initial results are very promising and continued development of a technique to assist in SLM development for aerospace components is desired by both NASA and ORNL. A plan forward that benefits both ORNL and NASA will also be presented, based on the promising initial results. The initial images and volume reconstruction showed that clean, clear images of the internal passages geometry are obtainable. These clear images of the internal passages of simple geometries will be compared to the build model to determine any differences. One surprising result was that a new cleaning

  3. Adaptive image interrogation for PIV: Application to compressible flows and interfaces


    Theunissen, R.


    As an experimental tool, Particle Image Velocimetry has quickly superseded traditional point-wise measurements. The inherent image processing has become standardized though the performances are strongly dependent on user experience. Moreover, the arduously selected image interrogation parameters are applied uniformly throughout the image snapshots and image sequence but seldom comply with the observed fluid’s convective motion, spatial distribution in length scales or signal distribution. Ins...

  4. Choice and Application of Marketing Strategies of Selected Book ...

    African Journals Online (AJOL)

    The study was designed to identity the type of marketing strategies employed by book publishers in Nigeria, the criteria for the choice and application of marketing strategies, being used to reach each segment of the market. The survey research method was adopted for the study. Forty market managers and 60 sales ...

  5. Rough sets selected methods and applications in management and engineering

    CERN Document Server

    Peters, Georg; Ślęzak, Dominik; Yao, Yiyu


    Introduced in the early 1980s, Rough Set Theory has become an important part of soft computing in the last 25 years. This book provides a practical, context-based analysis of rough set theory, with each chapter exploring a real-world application of Rough Sets.

  6. 42 CFR 136.351 - Application and selection. (United States)


    ... demonstrating local support for the applicant organization from both the Indian and non-Indian communities in...) Cultural barriers; (ii) Discrimination against Indians; (iii) Inability to pay for health care; (iv) Lack of facilities which provide free care to indigent persons; (v) Lack of state or local health programs...

  7. Exterior wood in the South : selection, applications, and finishes (United States)

    Daniel L. Cassens; William C. Feist


    Wood continues to play an important role as a structural material in today’s high-tech society. As lumber and in reconstituted products, wood is commonly used for house siding, trim, decks, fences, and countless other exterior and interior applications. When wood is exposed to the elements, particularly sunlight and moisture, special precautions must be taken in...

  8. Phytochemical screening and application of extracts of selected ...

    African Journals Online (AJOL)


    2Department of Science Laboratory Technology, Federal Polytechnic, P.M.B 5351, Ado-Ekiti, Ekiti State, Nigeria. Accepted 8 November, 2012. Extracts ... acceptable of yoghurt is on the increase due to its health benefits, which could be in terms of its ... Application of plant foods extract. Each of the plant foods (2 g) namely: ...

  9. Primary gamma ray selection in a hybrid timing/imaging Cherenkov array

    Directory of Open Access Journals (Sweden)

    Postnikov E.B.


    Full Text Available This work is a methodical study on hybrid reconstruction techniques for hybrid imaging/timing Cherenkov observations. This type of hybrid array is to be realized at the gamma-observatory TAIGA intended for very high energy gamma-ray astronomy (> 30 TeV. It aims at combining the cost-effective timing-array technique with imaging telescopes. Hybrid operation of both of these techniques can lead to a relatively cheap way of development of a large area array. The joint approach of gamma event selection was investigated on both types of simulated data: the image parameters from the telescopes, and the shower parameters reconstructed from the timing array. The optimal set of imaging parameters and shower parameters to be combined is revealed. The cosmic ray background suppression factor depending on distance and energy is calculated. The optimal selection technique leads to cosmic ray background suppression of about 2 orders of magnitude on distances up to 450 m for energies greater than 50 TeV.

  10. Material Selection and Characterization for High Gradient RF Applications

    CERN Document Server

    Arnau-Izquierdo, G; Heikkinen, S; Ramsvik, T; Sgobba, Stefano; Taborelli, M; Wuensch, W


    The selection of candidate materials for the accelerating cavities of the Compact Linear Collider (CLIC) is carried out in parallel with high power RF testing. The maximum DC breakdown field of copper, copper alloys, refractory metals, aluminium and titanium have been measured with a dedicated setup. Higher maximum fields are obtained for refractory metals and for titanium, which exhibits, however, important damages after conditioning. Fatigue behaviour of copper alloys has been studied for surface and bulk by pulsed laser irradiation and ultrasonic excitation, respectively. The selected copper alloys show consistently higher fatigue resistance than copper in both experiments. In order to obtain the best local properties in the device a possible solution is a bi-metallic assembly. Junctions of molybdenum and copper-zirconium UNS C15000 alloy, achieved by HIP (Hot Isostatic Pressing) diffusion bonding or explosion bonding were evaluated for their mechanical strength. The reliability of the results obtained wit...

  11. On the selection of dimension reduction techniques for scientific applications

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Y J; Kamath, C


    Many dimension reduction methods have been proposed to discover the intrinsic, lower dimensional structure of a high-dimensional dataset. However, determining critical features in datasets that consist of a large number of features is still a challenge. In this paper, through a series of carefully designed experiments on real-world datasets, we investigate the performance of different dimension reduction techniques, ranging from feature subset selection to methods that transform the features into a lower dimensional space. We also discuss methods that calculate the intrinsic dimensionality of a dataset in order to understand the reduced dimension. Using several evaluation strategies, we show how these different methods can provide useful insights into the data. These comparisons enable us to provide guidance to a user on the selection of a technique for their dataset.


    Directory of Open Access Journals (Sweden)

    Dragan Drobnjak


    Full Text Available In the process of explorative research of transversal character on the model of selected volleyball players numbering 345 players of both sexes from 10 to 19 years of age coming from Montenegrin and Serbian clubs, the validity of selected group of morphological, basic and special motorical indicators used as objective indicators for the level and efficiency of young sportists preparation, has been examined. The examined an throphological space was covered with 51 variables (35 original and 16 derived that have undergone standard methods of statistical processing (descriptive statistical analysis, inferential and multivariant statistics resulting in relevant data necessary for conclusions on basic hypothesis of research. The results of research are leading to the following conclusions according to which the morphological – functional space of men and women differs in qualitative manner, can be ascribed to the training factor effect.

  13. Development of macropore arrays in silicon and related technologies for X-ray imaging applications


    Badel, Xavier


    Digital devices have started to replace photographic film inX-ray imaging applications. As compared to photographic films,these devices are more convenient to obtain images and tohandle, treat and store these images. The goal of the presentstudy is to develop macropore arrays and related silicontechnologies in order to fabricate X-ray imaging detectors formedical applications, and in particular for dentistry. Althougha few detectors are already available on the market, theirperformances, such...

  14. Modern dental imaging: a review of the current technology and clinical applications in dental practice

    Energy Technology Data Exchange (ETDEWEB)

    Vandenberghe, Bart; Jacobs, Reinhilde [Katholieke Universiteit Leuven, Oral Imaging Centre, Faculty of Medicine, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Leuven (Belgium); Bosmans, Hilde [Katholieke Universiteit Leuven, Radiology Section, Department of Medical Diagnostic Sciences, Leuven (Belgium)


    A review of modern imaging techniques commonly used in dental practice and their clinical applications is presented. The current dental examinations consist of intraoral imaging with digital indirect and direct receptors, while extraoral imaging is divided into traditional tomographic/panoramic imaging and the more recently introduced cone beam computed tomography. Applications, limitations and current trends of these dental ''in-office'' radiographic techniques are discussed. (orig.)

  15. Image processing using pulse-coupled neural networks applications in Python

    CERN Document Server

    Lindblad, Thomas


    Image processing algorithms based on the mammalian visual cortex are powerful tools for extraction information and manipulating images. This book reviews the neural theory and translates them into digital models. Applications are given in areas of image recognition, foveation, image fusion and information extraction. The third edition reflects renewed international interest in pulse image processing with updated sections presenting several newly developed applications. This edition also introduces a suite of Python scripts that assist readers in replicating results presented in the text and to further develop their own applications.


    NARCIS (Netherlands)


    A method facilitating recording of macroscopic images from glycolmethacrylate (GMA) embedded tissues and tissue-free sections is described. This method used dyes that selectively stain only tissue, only resin, or both, but in contrasting colors. The dyes were selected on the basis of simple

  17. Application of the selected physical methods in biological research

    Directory of Open Access Journals (Sweden)

    Jaromír Tlačbaba


    Full Text Available This paper deals with the application of acoustic emission (AE, which is a part of the non-destructive methods, currently having an extensive application. This method is used for measuring the internal defects of materials. AE has a high potential in further research and development to extend the application of this method even in the field of process engineering. For that matter, it is the most elaborate acoustic emission monitoring in laboratory conditions with regard to external stimuli. The aim of the project is to apply the acoustic emission recording the activity of bees in different seasons. The mission is to apply a new perspective on the behavior of colonies by means of acoustic emission, which collects a sound propagation in the material. Vibration is one of the integral part of communication in the community. Sensing colonies with the support of this method is used for understanding of colonies biological behavior to stimuli clutches, colony development etc. Simulating conditions supported by acoustic emission monitoring system the illustrate colonies activity. Collected information will be used to represent a comprehensive view of the life cycle and behavior of honey bees (Apis mellifera. Use of information about the activities of bees gives a comprehensive perspective on using of acoustic emission in the field of biological research.

  18. CRISM Hyperspectral Data Filtering with Application to MSL Landing Site Selection (United States)

    Seelos, F. P.; Parente, M.; Clark, T.; Morgan, F.; Barnouin-Jha, O. S.; McGovern, A.; Murchie, S. L.; Taylor, H.


    We report on the development and implementation of a custom filtering procedure for Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) IR hyperspectral data that is suitable for incorporation into the CRISM Reduced Data Record (RDR) calibration pipeline. Over the course of the Mars Reconnaissance Orbiter (MRO) Primary Science Phase (PSP) and the ongoing Extended Science Phase (ESP) CRISM has operated with an IR detector temperature between ~107 K and ~127 K. This ~20 K range in operational temperature has resulted in variable data quality, with observations acquired at higher detector temperatures exhibiting a marked increase in both systematic and stochastic noise. The CRISM filtering procedure consists of two main data processing capabilities. The primary systematic noise component in CRISM IR data appears as along track or column oriented striping. This is addressed by the robust derivation and application of an inter-column ratio correction frame. The correction frame is developed through the serial evaluation of band specific column ratio statistics and so does not compromise the spectral fidelity of the image cube. The dominant CRISM IR stochastic noise components appear as isolated data spikes or column oriented segments of variable length with erroneous data values. The non-systematic noise is identified and corrected through the application of an iterative-recursive kernel modeling procedure which employs a formal statistical outlier test as the iteration control and recursion termination criterion. This allows the filtering procedure to make a statistically supported determination between high frequency (spatial/spectral) signal and high frequency noise based on the information content of a given multidimensional data kernel. The governing statistical test also allows the kernel filtering procedure to be self regulating and adaptive to the intrinsic noise level in the data. The CRISM IR filtering procedure is scheduled to be incorporated into

  19. Automatic selection of resting-state networks with functional magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Silvia Francesca eStorti


    Full Text Available Functional magnetic resonance imaging (fMRI during a resting-state condition can reveal the co-activation of specific brain regions in distributed networks, called resting-state networks, which are selected by independent component analysis (ICA of the fMRI data. One of the major difficulties with component analysis is the automatic selection of the ICA features related to brain activity. In this study we describe a method designed to automatically select networks of potential functional relevance, specifically, those regions known to be involved in motor function, visual processing, executive functioning, auditory processing, memory, and the default-mode network. To do this, image analysis was based on probabilistic ICA as implemented in FSL software. After decomposition, the optimal number of components was selected by applying a novel algorithm which takes into account, for each component, Pearson's median coefficient of skewness of the spatial maps generated by FSL, followed by clustering, segmentation, and spectral analysis. To evaluate the performance of the approach, we investigated the resting-state networks in 25 subjects. For each subject, three resting-state scans were obtained with a Siemens Allegra 3 T scanner (NYU data set. Comparison of the visually and the automatically identified neuronal networks showed that the algorithm had high accuracy (first scan: 95%, second scan: 95%, third scan: 93% and precision (90%, 90%, 84%. The reproducibility of the networks for visual and automatic selection was very close: it was highly consistent in each subject for the default-mode network (≥ 92% and the occipital network, which includes the medial visual cortical areas (≥ 94%, and consistent for the attention network (≥ 80%, the right and/or left lateralized frontoparietal attention networks, and the temporal-motor network (≥ 80%. The automatic selection method may be used to detect neural networks and reduce subjectivity in ICA

  20. Image Filtering with Neural Networks: applications and performance evaluation

    NARCIS (Netherlands)

    Spreeuwers, Lieuwe Jan


    A simple and elegant method to design image filters with neural networks is proposed: using small networks that scan the image and perform position invariant filtering. In the theses examples of image filtering with error backpropagation networks for edge detection, image deblurring and noise