WorldWideScience

Sample records for seismicity patterns observed

  1. Patterned basal seismicity shows sub-ice stream bedforms

    Science.gov (United States)

    Barcheck, C. G.; Tulaczyk, S. M.; Schwartz, S. Y.

    2017-12-01

    Patterns in seismicity emanating from the bottom of fast-moving ice streams and glaciers may indicate localized patches of higher basal resistance— sometimes called 'sticky spots', or otherwise varying basal properties. These seismogenic basal areas resist an unknown portion of the total driving stress of the Whillans Ice Plain (WIP), in West Antarctica, but may play an important role in the WIP stick-slip cycle and ice stream slowdown. To better understand the mechanism and importance of basal seismicity beneath the WIP, we analyze seismic data collected by a small aperture (micro-earthquakes in Dec 2014, and we compare the resulting map of seismicity to ice bottom depth measured by airborne radar. The number of basal earthquakes per area within the network is spatially heterogeneous, but a pattern of two 400m wide streaks of high seismicity rates is evident, with >50-500 earthquakes detected per 50x50m grid cell in 2 weeks. These seismically active streaks are elongated approximately in the ice flow direction with a spacing of 750m. Independent airborne radar measurements of ice bottom depth from Jan 2013 show a low-amplitude ( 5m) undulation in the basal topography superposed on a regional gradient in ice bottom depth. The flow-perpendicular wavelength of these low-amplitude undulations is comparable to the spacing of the high seismicity bands, and the streaks of high seismicity intersect local lows in the undulating basal topography. We interpret these seismic and radar observations as showing seismically active sub-ice stream bedforms that are low amplitude and elongated in the direction of ice flow, comparable to the morphology of mega scale glacial lineations (MSGLs), with high basal seismicity rates observed in the MSGL troughs. These results have implications for understanding the formation mechanism of MSGLS and well as understanding the interplay between basal topographic roughness, spatially varying basal till and hydrologic properties, basal

  2. Patterns of Seismicity Associated with USGS Identified Areas of Potentially Induced Seismicity.

    Science.gov (United States)

    Barnes, Caitlin; Halihan, Todd

    2018-03-13

    A systematic review across U.S. Geological Survey (USGS) identified potentially induced seismic locations was conducted to discover seismic distance patterns and trends over time away from injection disposal wells. Previous research indicates a 10 km (6 miles) average where the majority of induced seismicity is expected to occur within individual locations, with some areas reporting a larger radius of 35 km (22 miles) to over 70 km (43 miles). This research analyzed earthquake occurrences within nine USGS locations where specified wells were identified as contributors to induced seismicity to determine distance patterns from disposal wells or outward seismic migration over time using established principles of hydrogeology. Results indicate a radius of 31.6 km (20 miles) where 90% of felt earthquakes occur among locations, with the closest proximal felt seismic events, on average, occurring 3 km (1.9 miles) away from injection disposal wells. The results of this research found distance trends across multiple locations of potentially induced seismicity. © 2018, National Ground Water Association.

  3. Stress distribution and seismicity patterns of the 2011 seismic swarm in the Messinia basin, (South-Western Peloponnesus, Greece

    Directory of Open Access Journals (Sweden)

    G. Chouliaras

    2013-01-01

    Full Text Available In this investigation we examine the local stress field and the seismicity patterns associated with the 2011–2012 seismicity swarm in the Messinia basin, south-western Peloponnesus, Greece, using the seismological data of the National Observatory of Athens (NOA. During this swarm more than 2000 events were recorded in a 12 month period by the Hellenic Unified Seismological Network (HUSN and also by the additional local installation of four portable broadband seismographic stations by NOA.

    The results indicate a Gaussian distribution of swarm activity and the development of a seismicity cluster in a pre-existing seismic gap within the Messinia basin. Centroid Moment Tensor solutions demonstrate a normal fault trending northwest–southeast and dipping to the southwest primarily due to an extensional stress field. During this seismicity swarm an epicentre migration of the three largest shocks is observed, from one end of the rupture zone in the north-western part of the cluster, towards the other edge of the rupture in the south-eastern part of the cluster. This migration is found to follow the Coulomb failure criterion that predicts the advancement and retardation of the stress field and the patterns of increases and decreases of the seismicity rate (b-value of the frequency–magnitude relation.

  4. Understanding cyclic seismicity and ground deformation patterns at volcanoes: Intriguing lessons from Tungurahua volcano, Ecuador

    Science.gov (United States)

    Neuberg, Jürgen W.; Collinson, Amy S. D.; Mothes, Patricia A.; Ruiz, Mario C.; Aguaiza, Santiago

    2018-01-01

    Cyclic seismicity and ground deformation patterns are observed on many volcanoes worldwide where seismic swarms and the tilt of the volcanic flanks provide sensitive tools to assess the state of volcanic activity. Ground deformation at active volcanoes is often interpreted as pressure changes in a magmatic reservoir, and tilt is simply translated accordingly into inflation and deflation of such a reservoir. Tilt data recorded by an instrument in the summit area of Tungurahua volcano in Ecuador, however, show an intriguing and unexpected behaviour on several occasions: prior to a Vulcanian explosion when a pressurisation of the system would be expected, the tilt signal declines significantly, hence indicating depressurisation. At the same time, seismicity increases drastically. Envisaging that such a pattern could carry the potential to forecast Vulcanian explosions on Tungurahua, we use numerical modelling and reproduce the observed tilt patterns in both space and time. We demonstrate that the tilt signal can be more easily explained as caused by shear stress due to viscous flow resistance, rather than by pressurisation of the magmatic plumbing system. In general, our numerical models prove that if magma shear viscosity and ascent rate are high enough, the resulting shear stress is sufficient to generate a tilt signal as observed on Tungurahua. Furthermore, we address the interdependence of tilt and seismicity through shear stress partitioning and suggest that a joint interpretation of tilt and seismicity can shed new light on the eruption potential of silicic volcanoes.

  5. Improvement of seismic observation systems in JOYO

    International Nuclear Information System (INIS)

    Sumino, Kozo; Suto, Masayoshi; Tanaka, Akihiro

    2013-01-01

    In the experimental fast reactor 'Joyo' in order to perform the seismic observation in and around the building block and ground, SMAC type seismographs had continuously been used for about 38 years. However, this equipment aged, and the 2011 off the Pacific Coast of Tohoku Earthquake on Mach 11, 2011 increased the importance of seismic data of the reactor facilities from the viewpoint of earthquake-proof safety. For these reasons, Joyo updated the system to the seismic observation system reflecting the latest technology/information, while keeping consistency with the observation data of the former seismographs (SMAC type seismograph). This updating improved various problems on the former observation seismographs. In addition, the installation of now observation points in the locations that are important in seismic safety evaluation expanded the data, and further improved the reliability of the seismic observation and evaluation on 'Joyo'. (A.O.)

  6. Spatial pattern recognition of seismic events in South West Colombia

    Science.gov (United States)

    Benítez, Hernán D.; Flórez, Juan F.; Duque, Diana P.; Benavides, Alberto; Lucía Baquero, Olga; Quintero, Jiber

    2013-09-01

    Recognition of seismogenic zones in geographical regions supports seismic hazard studies. This recognition is usually based on visual, qualitative and subjective analysis of data. Spatial pattern recognition provides a well founded means to obtain relevant information from large amounts of data. The purpose of this work is to identify and classify spatial patterns in instrumental data of the South West Colombian seismic database. In this research, clustering tendency analysis validates whether seismic database possesses a clustering structure. A non-supervised fuzzy clustering algorithm creates groups of seismic events. Given the sensitivity of fuzzy clustering algorithms to centroid initial positions, we proposed a methodology to initialize centroids that generates stable partitions with respect to centroid initialization. As a result of this work, a public software tool provides the user with the routines developed for clustering methodology. The analysis of the seismogenic zones obtained reveals meaningful spatial patterns in South-West Colombia. The clustering analysis provides a quantitative location and dispersion of seismogenic zones that facilitates seismological interpretations of seismic activities in South West Colombia.

  7. Pattern of seismic deformation in the Western Mediterranean

    Directory of Open Access Journals (Sweden)

    S. Pondrelli

    1999-06-01

    Full Text Available The seismic deformation of the Western Mediterranean was studied with the aim of defining the strain pattern that characterizes the Africa-Eurasia plate boundary in this area. Within different sections along the boundary the cumulative moment tensor was computed over 90 years of seismological data. The results were compared with NUVELlA plate motion model and geodetic data. A stable agreement was found along Northern Africa to Sicily, where only Africa and Eurasia plates are involved. In this zone it is evident that changes in the strike of the boundary correspond to variations in the prevailing geometry of deformation, tectonic features and in the percentage of seismic with respect to total expected deformation. The geometry of deformation of periadriatic sections (Central to Southern Apennines, Eastern Alps and the Eastern Adriatic area agrees well with VLBI measurements and with regional geological features. Seismicity seems to account for low rates, from 3% to 31%, of total expected deformation. Only in the Sicily Strait, characterized by extensional to strike slip deformation, does the ratio reach a higher value (79%. If the amount of deformation deduced from seismicity seems low, because 90 years are probably not representative of the recurrence seismic cycle of the Western Mediterranean, the strain pattern we obtain from cumulative moment tensors is more representative of the kinematics of this area than global plate motion models and better identifies lower scale geodynamic features.

  8. Long-term seismic observations along Myanmar-Sunda subduction margin: insights for 2004 M w > 9.0 earthquake

    Science.gov (United States)

    Khan, Prosanta Kumar; Banerjee, Jayashree; Shamim, Sk; Mohanty, Manoranjan

    2018-03-01

    The present study investigates the temporal variation of few seismic parameters between the Myanmar (Zone I), Andaman-Nicobar-Northwest Sumatra (Zone II), Southeast Sumatra-West Indonesia (Zone III) and East Indonesia (Zone IV) converging boundaries in reference to the generation of 26 December 2004 M w > 9.0 off-Sumatra mega-earthquake event. The four segments are distinguished based on tectonics parameters, distinct geological locations, great earthquake occurrences, and the Wadati-Benioff zone characteristics. Two important seismic parameters such as seismic energy and b values are computed over a time-window of 6-month period during the entire 1976-2013 period for these segments. The b values show a constant decrease in Zones II, III, and IV, whereas the Zone I does not show any such pattern prior to the 2004 mega-event. The release of seismic energy was also gradually decreasing in Zones II and III till the 2004 event, and little similar pattern was also noted in Zone IV. This distinct observation might be indicating that the stress accumulation was dominant near the Sumatra-Java area located towards southeast of Zone II and northwest of Zone III. The released strain energy during the 2004 event was subsequently migrated towards north, rupturing 1300 km of the boundary between the Northwest Sumatra and the North Andaman. The occurrence of 2004 mega-event was apparently concealed behind the long-term seismic quiescence existing near the Sumatra and Nicobar margin. A systematic study of the patterns of seismic energy release and b values, and the long-term observation of collective behaviour of the margin tectonics might have had given clues to the possibility of the 2004 mega-event.

  9. Focusing patterns of seismicity with relocation and collapsing

    Science.gov (United States)

    Li, Ka Lok; Gudmundsson, Ólafur; Tryggvason, Ari; Bödvarsson, Reynir; Brandsdóttir, Bryndís

    2016-07-01

    Seismicity is generally concentrated on faults or in fault zones of varying, sometimes complex geometry. An earthquake catalog, compiled over time, contains useful information about this geometry, which can help understanding the tectonics of a region. Interpreting the geometrical distribution of events in a catalog is often complicated by the diffuseness of the earthquake locations. Here, we explore a number of strategies to reduce this diffuseness and hence simplify the seismicity pattern of an earthquake catalog. These strategies utilize information about event locations contained in their overall catalog distribution. They apply this distribution as an a priori constraint on relocations of the events, or as an attractor for each individual event in a collapsing scheme, and thereby focus the locations. The latter strategy is not a relocation strategy in a strict sense, although event foci are moved, because the movements are not driven by data misfit. Both strategies simplify the seismicity pattern of the catalog and may help to interpret it. A synthetic example and a real-data example from an aftershock sequence in south west Iceland are presented to demonstrate application of the strategies. Entropy is used to quantify their effect.

  10. Seismically observed seiching in the Panama Canal

    Science.gov (United States)

    McNamara, D.E.; Ringler, A.T.; Hutt, C.R.; Gee, L.S.

    2011-01-01

    A large portion of the seismic noise spectrum is dominated by water wave energy coupled into the solid Earth. Distinct mechanisms of water wave induced ground motions are distinguished by their spectral content. For example, cultural noise is generally Panama Canal there is an additional source of long-period noise generated by standing water waves, seiches, induced by disturbances such as passing ships and wind pressure. We compare seismic waveforms to water level records and relate these observations to changes in local tilt and gravity due to an oscillating seiche. The methods and observations discussed in this paper provide a first step toward quantifying the impact of water inundation as recorded by seismometers. This type of quantified understanding of water inundation will help in future estimates of similar phenomena such as the seismic observations of tsunami impact. Copyright 2011 by the American Geophysical Union.

  11. Recent Progress of Seismic Observation Networks in Japan

    Science.gov (United States)

    Okada, Y.

    2013-04-01

    Before the occurrence of disastrous Kobe earthquake in 1995, the number of high sensitivity seismograph stations operated in Japan was nearly 550 and was concentrated in the Kanto and Tokai districts, central Japan. In the wake of the Kobe earthquake, Japanese government has newly established the Headquarters for Earthquake Research Promotion and started the reconstruction of seismic networks to evenly cover the whole Japan. The basic network is composed of three seismographs, i.e. high sensitivity seismograph (Hi-net), broadband seismograph (F-net), and strong motion seismograph (K-NET). A large majority of Hi-net stations are also equipped with a pair of strong motion sensors at the bottom of borehole and the ground surface (KiK-net). A plenty of high quality data obtained from these networks are circulated at once and is producing several new seismological findings as well as providing the basis for the Earthquake Early Warning system. In March 11, 2011, "Off the Pacific coast of Tohoku Earthquake" was generated with magnitude 9.0, which records the largest in the history of seismic observation in Japan. The greatest disaster on record was brought by huge tsunami with nearly 20 thousand killed or missing people. We are again noticed that seismic observation system is quite poor in the oceanic region compared to the richness of it in the inland region. In 2012, NIED has started the construction of ocean bottom seismic and tsunami observation network along the Japan Trench. It is planned to layout 154 stations with an average spacing of 30km, each of which is equipped with an accelerometer for seismic observation and a water pressure gauge for tsunami observation. We are expecting that more rapid and accurate warning of earthquake and tsunami becomes possible by this observing network.

  12. Recent Progress of Seismic Observation Networks in Japan

    International Nuclear Information System (INIS)

    Okada, Y

    2013-01-01

    Before the occurrence of disastrous Kobe earthquake in 1995, the number of high sensitivity seismograph stations operated in Japan was nearly 550 and was concentrated in the Kanto and Tokai districts, central Japan. In the wake of the Kobe earthquake, Japanese government has newly established the Headquarters for Earthquake Research Promotion and started the reconstruction of seismic networks to evenly cover the whole Japan. The basic network is composed of three seismographs, i.e. high sensitivity seismograph (Hi-net), broadband seismograph (F-net), and strong motion seismograph (K-NET). A large majority of Hi-net stations are also equipped with a pair of strong motion sensors at the bottom of borehole and the ground surface (KiK-net). A plenty of high quality data obtained from these networks are circulated at once and is producing several new seismological findings as well as providing the basis for the Earthquake Early Warning system. In March 11, 2011, 'Off the Pacific coast of Tohoku Earthquake' was generated with magnitude 9.0, which records the largest in the history of seismic observation in Japan. The greatest disaster on record was brought by huge tsunami with nearly 20 thousand killed or missing people. We are again noticed that seismic observation system is quite poor in the oceanic region compared to the richness of it in the inland region. In 2012, NIED has started the construction of ocean bottom seismic and tsunami observation network along the Japan Trench. It is planned to layout 154 stations with an average spacing of 30km, each of which is equipped with an accelerometer for seismic observation and a water pressure gauge for tsunami observation. We are expecting that more rapid and accurate warning of earthquake and tsunami becomes possible by this observing network.

  13. Spatiotemporal patterns, triggers and anatomies of seismically detected rockfalls

    Directory of Open Access Journals (Sweden)

    M. Dietze

    2017-11-01

    Full Text Available Rockfalls are a ubiquitous geomorphic process and a natural hazard in steep landscapes across the globe. Seismic monitoring can provide precise information on the timing, location and event anatomy of rockfalls, which are parameters that are otherwise hard to constrain. By pairing data from 49 seismically detected rockfalls in the Lauterbrunnen Valley in the Swiss Alps with auxiliary meteorologic and seismic data of potential triggers during autumn 2014 and spring 2015, we are able to (i analyse the evolution of single rockfalls and their common properties, (ii identify spatial changes in activity hotspots (iii and explore temporal activity patterns on different scales ranging from months to minutes to quantify relevant trigger mechanisms. Seismic data allow for the classification of rockfall activity into two distinct phenomenological types. The signals can be used to discern multiple rock mass releases from the same spot, identify rockfalls that trigger further rockfalls and resolve modes of subsequent talus slope activity. In contrast to findings based on discontinuous methods with integration times of several months, rockfall in the monitored limestone cliff is not spatially uniform but shows a systematic downward shift of a rock mass release zone following an exponential law, most likely driven by a continuously lowering water table. Freeze–thaw transitions, approximated at first order from air temperature time series, account for only 5 out of the 49 rockfalls, whereas 19 rockfalls were triggered by rainfall events with a peak lag time of 1 h. Another 17 rockfalls were triggered by diurnal temperature changes and occurred during the coldest hours of the day and during the highest temperature change rates. This study is thus the first to show direct links between proposed rockfall triggers and the spatiotemporal distribution of rockfalls under natural conditions; it extends existing models by providing seismic observations of the

  14. Virtual Seismic Observation (VSO) with Sparsity-Promotion Inversion

    Science.gov (United States)

    Tiezhao, B.; Ning, J.; Jianwei, M.

    2017-12-01

    Large station interval leads to low resolution images, sometimes prevents people from obtaining images in concerned regions. Sparsity-promotion inversion, a useful method to recover missing data in industrial field acquisition, can be lent to interpolate seismic data on none-sampled sites, forming Virtual Seismic Observation (VSO). Traditional sparsity-promotion inversion suffers when coming up with large time difference in adjacent sites, which we concern most and use shift method to improve it. The procedure of the interpolation is that we first employ low-pass filter to get long wavelength waveform data and shift the waveforms of the same wave in different seismograms to nearly same arrival time. Then we use wavelet-transform-based sparsity-promotion inversion to interpolate waveform data on none-sampled sites and filling a phase in each missing trace. Finally, we shift back the waveforms to their original arrival times. We call our method FSIS (Filtering, Shift, Interpolation, Shift) interpolation. By this way, we can insert different virtually observed seismic phases into none-sampled sites and get dense seismic observation data. For testing our method, we randomly hide the real data in a site and use the rest to interpolate the observation on that site, using direct interpolation or FSIS method. Compared with directly interpolated data, interpolated data with FSIS can keep amplitude better. Results also show that the arrival times and waveforms of those VSOs well express the real data, which convince us that our method to form VSOs are applicable. In this way, we can provide needed data for some advanced seismic technique like RTM to illuminate shallow structures.

  15. Investigation on the real-time prediction of ground motions using seismic records observed in deep boreholes

    Science.gov (United States)

    Miyakoshi, H.; Tsuno, S.

    2013-12-01

    The present method of the EEW system installed in the railway field of Japan predicts seismic ground motions based on the estimated earthquake information about epicentral distances and magnitudes using initial P-waves observed on the surface. In the case of local earthquakes beneath the Tokyo Metropolitan Area, however, a method to directly predict seismic ground motions using P-waves observed in deep boreholes could issue EEWs more simply and surely. Besides, a method to predict seismic ground motions, using S-waves observed in deep boreholes and S-wave velocity structures beneath seismic stations, could show planar distributions of ground motions for train operation control areas in the aftermath of earthquakes. This information is available to decide areas in which the emergency inspection of railway structures should be performed. To develop those two methods, we investigated relationships between peak amplitudes on the surface and those in deep boreholes, using seismic records of KiK-net stations in the Kanto Basin. In this study, we used earthquake accelerograms observed in boreholes whose depths are deeper than the top face of Pre-Neogene basement and those on the surface at 12 seismic stations of KiK-net. We selected 243 local earthquakes whose epicenters are located around the Kanto Region. Those JMA magnitudes are in the range from 4.5 to 7.0. We picked the on-set of P-waves and S-waves using a vertical component and two horizontal components, respectively. Peak amplitudes of P-waves and S-waves were obtained using vertical components and vector sums of two horizontal components, respectively. We estimated parameters which represent site amplification factors beneath seismic stations, using peak amplitudes of S-waves observed in the deep borehole and those on the surface, to minimize the residuals between calculations by the theoretical equation and observations. Correlation coefficients between calculations and observations are high values in the range

  16. Cracking pattern and seismic performance assessment of the Orvieto cathedral

    International Nuclear Information System (INIS)

    De Canio, G.

    2015-01-01

    In this paper are described the in situ cracking pattern measurement and ambient vibration monitoring for the seismic performance evaluation of the Orvieto Cathedral Italy, according the deplacement based safety assessment. This requires, as a first step, the direct measurement of the cracking pattern and dynamic response of the structural macro elements of the cathedral due to weak vibrations induced by traffic and seismic micro tremors. Seismic assessment for this type of structure require also the proper limit states definitions. In fact, in the case historic monuments like churches, due to the presence of specific typology of macro elements: rigid blocks, complex vault systems, slenderness of the walls, presence of wide halls, domes and drums with particular geometry, is necessary to define the proper assessment procedures which are slightly different with respect those required for conventional civil industrial buildings. Regarding the Ambient vibration monitoring, a new approach to estimate the participating masses associated to the macro element kinematics is defined: it is based on the frequency contribution to the Root Main Square Acceleration, obtained by numerical integration of the Power Spectral Density (PSD) function. This information, when associated to the analysis of the Real and Imaginary part of the Cross Spectral Density (CSD) function between the acceleration time histories at different points, allow to identify the principal (at least first and second) mode shapes of the structure.

  17. A novel tree-based algorithm to discover seismic patterns in earthquake catalogs

    Science.gov (United States)

    Florido, E.; Asencio-Cortés, G.; Aznarte, J. L.; Rubio-Escudero, C.; Martínez-Álvarez, F.

    2018-06-01

    A novel methodology is introduced in this research study to detect seismic precursors. Based on an existing approach, the new methodology searches for patterns in the historical data. Such patterns may contain statistical or soil dynamics information. It improves the original version in several aspects. First, new seismicity indicators have been used to characterize earthquakes. Second, a machine learning clustering algorithm has been applied in a very flexible way, thus allowing the discovery of new data groupings. Third, a novel search strategy is proposed in order to obtain non-overlapped patterns. And, fourth, arbitrary lengths of patterns are searched for, thus discovering long and short-term behaviors that may influence in the occurrence of medium-large earthquakes. The methodology has been applied to seven different datasets, from three different regions, namely the Iberian Peninsula, Chile and Japan. Reported results show a remarkable improvement with respect to the former version, in terms of all evaluated quality measures. In particular, the number of false positives has decreased and the positive predictive values increased, both of them in a very remarkable manner.

  18. Pn-waves Travel-time Anomaly beneath Taiwan from Dense Seismic Array Observations and its Possible Tectonic Implications

    Science.gov (United States)

    Lin, Y. Y.; Huang, B. S.; Ma, K. F.; Hsieh, M. C.

    2015-12-01

    We investigated travel times of Pn waves, which are of great important for understanding the Moho structure in Taiwan region. Although several high quality tomographic studies had been carried out, observations of Pn waves are still the most comprehensive way to elucidate the Moho structure. Mapping the Moho structure of Taiwan had been a challenging due to the small spatial dimension of Taiwan island with two subduction systems. To decipher the tectonic structure and understanding of earthquake hazard, the island of Taiwan have been implemented by several high density seismic stations, including 71 short-period stations of Central Weather Bureau Seismic Network (CWBSN) and 42 broardband stations of Broadband Array in Taiwan for Seismology (BATS). High quality seismic records of these stations would be used to identify precise Pn-wave arrival times. After station-elevation correction, we measure the difference between the observed and theoretical Pn arrivals from the IASPI 91 model for each station. For correcting uncertainties of earthquake location and origin time, we estimate relative Pn anomaly, ΔtPn , between each station and a reference station. The pattern of ΔtPn reflects the depth anomaly of Moho beneath Taiwan. In general, Pn waves are commonly observed from shallow earthquake at epicentral distance larger than 120 km. We search the global catalog since 2005 and the criteria are M > 5.5, focal depth 150 km. The 12 medium earthquakes from north Luzon are considered for analysis. We choose a station, TWKB, in the most southern point of Taiwan as the reference station due to that all events are from the south. The results indicate obvious different patterns of ΔtPn from different back-azimuths. The ΔtPn pattern of the events in the first group from the south south-east indicates that the Pn arrivals delay suddenly when the Pn waves pass through the Central Range, suggesting the Moho becomes deep rapidly. However, we cannot recognize the same pattern when

  19. Pre-seismic anomalies from optical satellite observations: a review

    Science.gov (United States)

    Jiao, Zhong-Hu; Zhao, Jing; Shan, Xinjian

    2018-04-01

    Detecting various anomalies using optical satellite data prior to strong earthquakes is key to understanding and forecasting earthquake activities because of its recognition of thermal-radiation-related phenomena in seismic preparation phases. Data from satellite observations serve as a powerful tool in monitoring earthquake preparation areas at a global scale and in a nearly real-time manner. Over the past several decades, many new different data sources have been utilized in this field, and progressive anomaly detection approaches have been developed. This paper reviews the progress and development of pre-seismic anomaly detection technology in this decade. First, precursor parameters, including parameters from the top of the atmosphere, in the atmosphere, and on the Earth's surface, are stated and discussed. Second, different anomaly detection methods, which are used to extract anomalous signals that probably indicate future seismic events, are presented. Finally, certain critical problems with the current research are highlighted, and new developing trends and perspectives for future work are discussed. The development of Earth observation satellites and anomaly detection algorithms can enrich available information sources, provide advanced tools for multilevel earthquake monitoring, and improve short- and medium-term forecasting, which play a large and growing role in pre-seismic anomaly detection research.

  20. Long Term Seismic Observation in Mariana by OBSs : Double Seismic Zone and Upper Mantle Structure

    Science.gov (United States)

    Shiobara, H.; Sugioka, H.; Mochizuki, K.; Oki, S.; Kanazawa, T.; Fukao, Y.; Suyehiro, K.

    2005-12-01

    In order to obtain the deep arc structural image of Mariana, a large-scale seismic observation by using 58 long-term ocean bottom seismometers (LTOBS) had been performed from June 2003 until April 2004, which is a part of the MARGINS program funded by the NSF. Prior to this observation, a pilot long-term seismic array observation was conducted in the same area by using 10 LTOBSs from Oct. 2001 until Feb. 2003. At that time, 8 LTOBSs were recovered but one had no data. Recently, 2 LTOBSs, had troubles in the releasing, were recovered by the manned submersible (Shinkai 6500, Jamstec) for the research of the malfunction in July 2005. By using all 9 LTOBS's data, those are about 11 months long, hypocenter determination was performed and more than 3000 local events were found. Even with the 1D velocity structure based on the iasp91 model, double seismic zones and a systematic shift of epicenters between the PDE and this study were observed. To investigate the detail of hypocenter distribution and the 3D velocity structure, the DD inversion (tomoDD: Zhang and Thurber, 2003) was applied for this data set with the 1D structure initial model except for the crust, which has been surveyed by using a dense airgun-OBS system (Takahashi et al., 2003). The result of relocated hypocenters shows clear double seismic zones until about 200 km depth, a high activity area around the fore-arc serpentine sea-mount, the Big Blue, and a lined focuses along the current ridge axis in the back-arc basin, and the result of the tomography shows a image of subducting slab and a low-Vs region below the same sea-mount mentioned. The wedge mantle structure was not clearly resolved due to the inadequate source-receiver coverage, which will be done in the recent experiment.

  1. Linking ground motion measurements and macro-seismic observations in France: A case study based on the RAP (accelerometric) and BCSF (macro-seismic) databases

    International Nuclear Information System (INIS)

    Lesueur, Ch.

    2011-01-01

    Comparison between accelerometric and macro-seismic observations is made for three mw∼4.5 earthquakes of eastern France between 2003 and 2005. Scalar and spectral instrumental parameters are processed from the accelerometric data recorded by nine accelerometric stations located between 29 km and 180 km from the epicentres. Macro-seismic data are based on the French internet reports. In addition to the individual macro-seismic intensity, analysis of the internal correlation between the encoded answers highlights four predominant fields of questions, bearing different physical meanings: 1) 'vibratory motions of small objects', 2) 'displacement and fall of objects', 3) 'acoustic noise', and 4) 'personal feelings'. Best correlations between macro-seismic and instrumental observations are obtained when the macro-seismic parameters are averaged over 10 km radius circles around each station. macro-seismic intensities predicted by published pgv-intensity relationships quite agree with the observed intensities, contrary to those based on pga. The correlations between the macro-seismic and instrumental data, for intensities between ii and v (ems-98), show that pgv is the instrumental parameter presenting the best correlation with all macro-seismic parameters. The correlation with response spectra, exhibits clear frequency dependence over a limited frequency range [0.5-33 hz]. Horizontal and vertical components are significantly correlated with macro-seismic parameters between 1 and 10 hz, a range corresponding to both natural frequencies of most buildings and high energy content in the seismic ground motion. Between 10 and 25 hz, a clear lack of correlation between macro-seismic and instrumental data is observed, while beyond 25 hz the correlation coefficient increases, approaching that of the PGA correlation level. (author)

  2. Study of Seismic Activity Using Geophysical and Radio Physical Equipment for Observation

    Science.gov (United States)

    Kvavadze, N.; Tsereteli, N. S.

    2015-12-01

    One of the most dangerous and destructive natural hazards are earthquakes, which is confirmed by recent earthquakes such as Nepal 2015, Japan and Turkey 2011. Because of this, study of seismic activity is important. Studying any process, it is necessary to use different methods of observation, which allows us to increase accuracy of obtained data. Seismic activity is a complex problem and its study needs different types of observation methods. Two main problems of seismic activity study are: reliable instrumental observations and earthquake short-term predictions. In case of seismic risks it is necessary to have reliable accelerometer data. One of the most promising field in earthquake short-term prediction is very low frequency (VLF) electromagnetic wave propagation in ionosphere observation. To study Seismic activity of Caucasus region, was created observation complex using Accelerometer, Velocimeter and VLF electromagnetic waves received from communication stations (located in different area of the world) reflected from low ionosphere. System is created and operates at Tbilisi State University Ionosphere Observatory, near Tbilisi in Tabakhmela 42.41'70 N, 44.80'92 E, Georgia. Data obtained is sent to a local server located at M. Nodia Institute of Geophysics, TSU, for storage and processing. Diagram for complex is presented. Also data analysis methods were created and preliminary processing was done. In this paper we present some of the results: Earthquake data from ionosphere observations as well as local earthquakes recorded with accelerometer and velocimeter. Complex is first in 6 that will be placed around Georgia this year. We plan on widening network every year.

  3. Seismic, satellite, and site observations of internal solitary waves in the NE South China Sea.

    Science.gov (United States)

    Tang, Qunshu; Wang, Caixia; Wang, Dongxiao; Pawlowicz, Rich

    2014-06-20

    Internal solitary waves (ISWs) in the NE South China Sea (SCS) are tidally generated at the Luzon Strait. Their propagation, evolution, and dissipation processes involve numerous issues still poorly understood. Here, a novel method of seismic oceanography capable of capturing oceanic finescale structures is used to study ISWs in the slope region of the NE SCS. Near-simultaneous observations of two ISWs were acquired using seismic and satellite imaging, and water column measurements. The vertical and horizontal length scales of the seismic observed ISWs are around 50 m and 1-2 km, respectively. Wave phase speeds calculated from seismic observations, satellite images, and water column data are consistent with each other. Observed waveforms and vertical velocities also correspond well with those estimated using KdV theory. These results suggest that the seismic method, a new option to oceanographers, can be further applied to resolve other important issues related to ISWs.

  4. Co-Seismic Gravity Gradient Changes of the 2006-2007 Great Earthquakes in the Central Kuril Islands from GRACE Observations

    Science.gov (United States)

    Rahimi, A.; Shahrisvand, M.

    2017-09-01

    GRACE satellites (the Gravity Recovery And climate Experiment) are very useful sensors to extract gravity anomalies after earthquakes. In this study, we reveal co-seismic signals of the two combined earthquakes, the 2006 Mw8.3 thrust and 2007 Mw8.1 normal fault earthquakes of the central Kuril Islands from GRACE observations. We compute monthly full gravitational gradient tensor in the local north-east-down frame for Kuril Islands earthquakes without spatial averaging and de-striping filters. Some of gravitational gradient components (e.g. ΔVxx, ΔVxz) enhance high frequency components of the earth gravity field and reveal more details in spatial and temporal domain. Therefore, co-seismic activity can be better illustrated. For the first time, we show that the positive-negative-positive co-seismic ΔVxx due to the Kuril Islands earthquakes ranges from - 0.13 to + 0.11 milli Eötvös, and ΔVxz shows a positive-negative-positive pattern ranges from - 0.16 to + 0.13 milli Eötvös, agree well with seismic model predictions.

  5. Spatial organization of seismicity and fracture pattern at the boundary between Alps and Dinarides

    Science.gov (United States)

    Bressan, Gianni; Ponton, Maurizio; Rossi, Giuliana; Urban, Sandro

    2016-04-01

    The paper affords the study of the spatial organization of seismicity in the easternmost region of the Alps (Friuli, in NE Italy and W Slovenia), dominated by the interference between the Alpine and the Dinaric tectonic systems. Two non-conventional methods of spatial analysis are used: fractal analysis and principal component analysis (PCA). The fractal analysis helps to discriminate the cases in which hypocentres clearly define a plane, from the ones in which hypocenter distribution tends to the planarity, without reaching it. The PCA analysis is used to infer the orientation of planes fitting through earthquake foci, or the direction of propagation of the hypocentres. Furthermore, we study the spatial seismicity pattern at the shallow depths in the context of a general damage model, through the crack density distribution. The results of the three methods concur to a complex and composite model of fracturing in the region. The hypocentre pattern fills only partially a plane, i.e. has a fractal dimension close to 2. The three exceptions regard planes with Dinaric trend, without interference with Alpine lineaments. The shallowest depth range (0-10 km depth) is characterized by the activation of planes with variable orientations, reflecting the interference between the Dinaric and the Alpine tectonic structures, and closely bound to the variation of the mechanical properties of the crust. The seismicity occurs mostly in areas characterized by a variation from low to moderate crack density, indicating the sharp transition from zones of low damage to zones of moderate damage. Low crack density indicates the presence of more competent rocks capable of sustaining high strain energy while high crack density areas pertain to highly fractured rocks that cannot store high strain energy. Brittle failure, i.e. seismic activity, is favoured within the sharp transitions from low to moderate crack density zones. The orientation of the planes depicting the seismic activity

  6. Seismic, satellite, and site observations of internal solitary waves in the NE South China Sea

    Science.gov (United States)

    Tang, Qunshu; Wang, Caixia; Wang, Dongxiao; Pawlowicz, Rich

    2014-01-01

    Internal solitary waves (ISWs) in the NE South China Sea (SCS) are tidally generated at the Luzon Strait. Their propagation, evolution, and dissipation processes involve numerous issues still poorly understood. Here, a novel method of seismic oceanography capable of capturing oceanic finescale structures is used to study ISWs in the slope region of the NE SCS. Near-simultaneous observations of two ISWs were acquired using seismic and satellite imaging, and water column measurements. The vertical and horizontal length scales of the seismic observed ISWs are around 50 m and 1–2 km, respectively. Wave phase speeds calculated from seismic observations, satellite images, and water column data are consistent with each other. Observed waveforms and vertical velocities also correspond well with those estimated using KdV theory. These results suggest that the seismic method, a new option to oceanographers, can be further applied to resolve other important issues related to ISWs. PMID:24948180

  7. Correlation of Crustal Structures and Seismicity Patterns in Northern Appalachians

    Science.gov (United States)

    Yang, X.; Gao, H.

    2017-12-01

    The earthquake distributions in northern Appalachians are bounded by major geologically-defined terrane boundaries. There is a distinct seismic gap within Taconic Belt between the Western Quebec Seismic Zone (WQSZ) to the west and the seismically active Ganderia terrane to the east. It is not clear, however, what crustal structures control the characteristics of earthquake clustering in this region. Here we present a newly constructed crustal shear velocity model for the northern Appalachians using Rayleigh wave data extracted from ambient noises. Our tomographic model reveals strongly heterogeneous seismic structures in the crust. We observe multiple NW-dipping patches of high-velocity anomalies in the upper crust beneath the southeastern WQSZ. The upper crust shear velocities in the Ganderia and Avalonia region are generally lower than those beneath the WQSZ. The middle crust has relatively lower velocities in the study area. The earthquakes in the study area are constrained within the upper crust. Most of the earthquake hypocenters within the WQSZ are concentrated along the NW-dipping boundaries separating the high-velocity anomalies. In contrast, most of the earthquake hypocenters in the Ganderia and Avalonia region are diffusely distributed without clear vertical lineaments. The orientations of maximum compressive stresses change from W-E in the Ganderia and Avalonia region to SW-NE in the WQSZ. The contrasts in seismicity, velocity, and stress field across the Taconic Belt indicate that the Taconic Belt terrane may act as a seismically inactive buffer zone in northern Appalachians.

  8. Identification of temporal patterns in the seismicity of Sumatra using Poisson Hidden Markov models

    Directory of Open Access Journals (Sweden)

    Katerina Orfanogiannaki

    2014-05-01

    Full Text Available On 26 December 2004 and 28 March 2005 two large earthquakes occurred between the Indo-Australian and the southeastern Eurasian plates with moment magnitudes Mw=9.1 and Mw=8.6, respectively. Complete data (mb≥4.2 of the post-1993 time interval have been used to apply Poisson Hidden Markov models (PHMMs for identifying temporal patterns in the time series of the two earthquake sequences. Each time series consists of earthquake counts, in given and constant time units, in the regions determined by the aftershock zones of the two mainshocks. In PHMMs each count is generated by one of m different Poisson processes that are called states. The series of states is unobserved and is in fact a Markov chain. The model incorporates a varying seismicity rate, it assigns a different rate to each state and it detects the changes on the rate over time. In PHMMs unobserved factors, related to the local properties of the region are considered affecting the earthquake occurrence rate. Estimation and interpretation of the unobserved sequence of states that underlie the data contribute to better understanding of the geophysical processes that take place in the region. We applied PHMMs to the time series of the two mainshocks and we estimated the unobserved sequences of states that underlie the data. The results obtained showed that the region of the 26 December 2004 earthquake was in state of low seismicity during almost the entire observation period. On the contrary, in the region of the 28 March 2005 earthquake the seismic activity is attributed to triggered seismicity, due to stress transfer from the region of the 2004 mainshock.

  9. Observations and models of Co- and Post-Seismic Deformation Due to the 2015 Mw 7.8 Gorkha (Nepal) Earthquake

    Science.gov (United States)

    Wang, K.; Fialko, Y. A.

    2016-12-01

    The 2015 Mw 7.8 Gorkha (Nepal) earthquake occurred along the central Himalayan arc, a convergent boundary between India and Eurasian plates. We use space geodetic data to investigate co- and post-seismic deformation due to the Gorkha earthquake. Because the epicentral area of the earthquake is characterized by strong variations in surface relief and material properties, we developed finite element models that explicitly account for topography and 3-D elastic structure. Compared with slip models obtained using homogenous elastic half-space models, the model including elastic heterogeneity and topography exhibits greater (up to 10%) slip amplitude. GPS observations spanning more than 1 year following the earthquake show overall southward movement and uplift after the Gorkha earthquake, qualitatively similar to the coseismic deformation pattern. Kinematic inversions of GPS data, and forward modeling of stress-driven creep indicate that the observed post-seismic transient is consistent with afterslip on a down-dip extention of the seismic rupture. The Main Himalayan Thrust (MHT) has negligible creep updip of the 2015 rupture, reiterating a future seismic hazard. A poro-elastic rebound may contribute to the observed uplift southward motion, but the predicted surface displacements are small (on the order of 1 cm or less). We also tested a wide range of visco-elastic relaxation models, including 1-D and 3-D variations in the viscosity structure. All tested visco-elastic models predict the opposite signs of horizontal and vertical displacements compared to those observed. Available surface deformation data allow one to rule out a model of a low viscosity channel beneath Tibetan Plateau invoked to explain variations in surface relief at the plateau margins.

  10. Seismic hazard estimation based on the distributed seismicity in northern China

    Science.gov (United States)

    Yang, Yong; Shi, Bao-Ping; Sun, Liang

    2008-03-01

    In this paper, we have proposed an alternative seismic hazard modeling by using distributed seismicites. The distributed seismicity model does not need delineation of seismic source zones, and simplify the methodology of probabilistic seismic hazard analysis. Based on the devastating earthquake catalogue, we established three seismicity model, derived the distribution of a-value in northern China by using Gaussian smoothing function, and calculated peak ground acceleration distributions for this area with 2%, 5% and 10% probability of exceedance in a 50-year period by using three attenuation models, respectively. In general, the peak ground motion distribution patterns are consistent with current seismic hazard map of China, but in some specific seismic zones which include Shanxi Province and Shijiazhuang areas, our results indicated a little bit higher peak ground motions and zonation characters which are in agreement with seismicity distribution patterns in these areas. The hazard curves have been developed for Beijing, Tianjin, Taiyuan, Tangshan, and Ji’nan, the metropolitan cities in the northern China. The results showed that Tangshan, Taiyuan, Beijing has a higher seismic hazard than that of other cities mentioned above.

  11. Soft computing analysis of the possible correlation between temporal and energy release patterns in seismic activity

    Science.gov (United States)

    Konstantaras, Anthony; Katsifarakis, Emmanouil; Artzouxaltzis, Xristos; Makris, John; Vallianatos, Filippos; Varley, Martin

    2010-05-01

    This paper is a preliminary investigation of the possible correlation of temporal and energy release patterns of seismic activity involving the preparation processes of consecutive sizeable seismic events [1,2]. The background idea is that during periods of low-level seismic activity, stress processes in the crust accumulate energy at the seismogenic area whilst larger seismic events act as a decongesting mechanism releasing considerable energy [3,4]. A dynamic algorithm is being developed aiming to identify and cluster pre- and post- seismic events to the main earthquake following on research carried out by Zubkov [5] and Dobrovolsky [6,7]. This clustering technique along with energy release equations dependent on Richter's scale [8,9] allow for an estimate to be drawn regarding the amount of the energy being released by the seismic sequence. The above approach is being implemented as a monitoring tool to investigate the behaviour of the underlying energy management system by introducing this information to various neural [10,11] and soft computing models [1,12,13,14]. The incorporation of intelligent systems aims towards the detection and simulation of the possible relationship between energy release patterns and time-intervals among consecutive sizeable earthquakes [1,15]. Anticipated successful training of the imported intelligent systems may result in a real-time, on-line processing methodology [1,16] capable to dynamically approximate the time-interval between the latest and the next forthcoming sizeable seismic event by monitoring the energy release process in a specific seismogenic area. Indexing terms: pattern recognition, long-term earthquake precursors, neural networks, soft computing, earthquake occurrence intervals References [1] Konstantaras A., Vallianatos F., Varley M.R. and Makris J. P.: ‘Soft computing modelling of seismicity in the southern Hellenic arc', IEEE Geoscience and Remote Sensing Letters, vol. 5 (3), pp. 323-327, 2008 [2] Eneva M. and

  12. Seismicity Pattern Changes before the M = 4.8 Aeolian Archipelago (Italy Earthquake of August 16, 2010

    Directory of Open Access Journals (Sweden)

    Salvatore Gambino

    2014-01-01

    Full Text Available We investigated the seismicity patterns associated with an M=4.8 earthquake recorded in the Aeolian Archipelago on 16, August, 2010, by means of the region-time-length (RTL algorithm. This earthquake triggered landslides at Lipari; a rock fall on the flanks of the Vulcano, Lipari, and Salina islands, and some damages to the village of Lipari. The RTL algorithm is widely used for investigating precursory seismicity changes before large and moderate earthquakes. We examined both the spatial and temporal characteristics of seismicity changes in the Aeolian Archipelago region before the M=4.8 earthquake. The results obtained reveal 6-7 months of seismic quiescence which started about 15 months before the earthquake. The spatial distribution shows an extensive area characterized by seismic quiescence that suggests a relationship between quiescence and the Aeolian Archipelago regional tectonics.

  13. Seismicity Pattern and Fault Structure in the Central Himalaya Seismic Gap Using Precise Earthquake Hypocenters and their Source Parameters

    Science.gov (United States)

    Mendoza, M.; Ghosh, A.; Rai, S. S.

    2017-12-01

    seismicity patterns, and assess the potential seismic hazard of the central Himalaya seismic gap.

  14. Seismic network at the Olkiluoto site and microearthquake observations in 2002-2013

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2014-05-01

    This report describes the structure and operation of Posiva's seismic network after the comprehensive upgrade performed in 2013 and presents a summary of its micro-earthquake observations in 2002 - 2013. Excavation of the underground rock characterisation facility called ONKALO started in 2004. Before that, in February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto. The number of seismic stations has increased gradually and communication, hardware and software have developed in over ten years. The upgrade in 2013 included data transmission, the equipment in several seismic stations, the server responsible for the data processing in Olkiluoto and software applied in operation and analysis of observations. After the upgrade Posiva's permanent seismic network consists of 17 seismic stations and 21 triaxial sensors. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas, of which the larger one, the seismic semi-regional area, includes the Olkiluoto island and its surroundings. The aim is to monitor explosions and tectonic earthquakes in regional scale inside that area. All the expected excavation induced events are assumed to occur inside the smaller target area, the seismic ONKALO block, which is a 2 km x 2 km x 2 km cube surrounding the ONKALO. An additional task of monitoring is related to safeguarding of the construction of the ONKALO.In the beginning the network monitored tectonic earthquakes in order to characterise the undisturbed baseline of seismicity in Olkiluoto. After August 2004, the network also monitored excavation induced seismicity. The first three excavation induced earthquakes were recorded in September 2005. At the moment the total number of excavation induced earthquakes is 17. During the same time about 10 000 excavation blasts were located. The

  15. Reservoir Changes Derived from Seismic Observations at The Geysers Geothermal Field, CA, USA

    Science.gov (United States)

    Gritto, R.; Jarpre, S.

    2012-04-01

    Induced seismicity associated with the exploitation of geothermal fields is used as a tool to characterize and delineate changes associated with injection and production of fluids from the reservoir. At the same time public concern of felt seismicity has led to objections against the operation of geothermal reservoirs in close proximity to population centers. Production at the EGS sites in Basel (Switzerland) was stopped after renewed seismicity caused concern and objection from the public in the city. Operations in other geothermal reservoirs had to be scaled back or interrupted due to an unexpected increase in seismicity (Soultz-sous-forêt, France, Berlín, El Salvador). As a consequence of these concerns and in order to optimize the use of induced seismicity for reservoir engineering purposes, it becomes imperative to understand the relationship between seismic events and stress changes in the reservoir. We will address seismicity trends at The Geysers Geothermal Reservoir, CA USA, to understand the role of historical seismicity associated with past injection of water and/or production of steam. Our analysis makes use of a comprehensive database of earthquakes and associated phase arrivals from 2004 to 2011. A high-precision sub-set of the earthquake data was selected to analyze temporal changes in seismic velocities and Vp/Vs-ratio throughout the whole reservoir. We find relatively low Vp/Vs values in 2004 suggestive of a vapor dominated reservoir. With passing time, however, the observed temporal increase in Vp/Vs, coupled with a decrease in P- and S-wave velocities suggests the presence of fluid-filled fractured rock. Considering the start of a continuous water injection project in 2004, it can be concluded that the fluid saturation of the reservoir has successfully recovered. Preliminary results of 3-D velocity inversions of seismic data appear to corroborate earlier findings that the lowest Vp/Vs estimates are observed in the center of the reservoir

  16. Micro-seismicity and seismotectonic study in Western Himalaya-Ladakh-Karakoram using local broadband seismic data

    Science.gov (United States)

    Kanna, Nagaraju; Gupta, Sandeep; Prakasam, K. S.

    2018-02-01

    We document the seismic activity and fault plane solutions (FPSs) in the Western Himalaya, Ladakh and Karakoram using data from 16 broadband seismographs operated during June 2002 to December 2003. We locate 206 earthquakes with a local magnitude in the range of 1.5 to 4.9 and calculate FPSs of 19 selected earthquakes based on moment tensor solutions. The earthquakes are distributed throughout the study region and indicate active tectonics in this region. The observed seismicity pattern is quite different than a well-defined pattern of seismicity, along the Main Central Thrust zone, in the eastern side of the study region (i.e., Kumaon-Garhwal Himalaya). In the Himalaya region, the earthquakes are distributed in the crust and upper mantle, whereas in the Ladakh-Karakoram area the earthquakes are mostly confined up to crustal depths. The fault plane solutions show a mixture of thrust, normal and strike-slip type mechanisms, which are well corroborated with the known faults/tectonics of the region. The normal fault earthquakes are observed along the Southern Tibet Detachment, Zanskar Shear Zone, Tso-Morari dome, and Kaurik-Chango fault; and suggest E-W extension tectonics in the Higher and Tethys Himalaya. The earthquakes of thrust mechanism with the left-lateral strike-slip component are seen along the Kistwar fault. The right-lateral strike-slip faulting with thrust component along the bending of the Main Boundary Thrust and Main Central Thrust shows the transpressional tectonics in this part of the Himalaya. The observed earthquakes with right-lateral strike-slip faulting indicate seismically active nature of the Karakoram fault.

  17. Progressive Seismic Failure, Seismic Gap, and Great Seismic Risk across the Densely Populated North China Basin

    Science.gov (United States)

    Yin, A.; Yu, X.; Shen, Z.

    2014-12-01

    Although the seismically active North China basin has the most complete written records of pre-instrumentation earthquakes in the world, this information has not been fully utilized for assessing potential earthquake hazards of this densely populated region that hosts ~200 million people. In this study, we use the historical records to document the earthquake migration pattern and the existence of a 180-km seismic gap along the 600-km long right-slip Tangshan-Hejian-Cixian (THC) fault zone that cuts across the North China basin. The newly recognized seismic gap, which is centered at Tianjin with a population of 11 million people and ~120 km from Beijing (22 million people) and Tangshan (7 million people), has not been ruptured in the past 1000 years by M≥6 earthquakes. The seismic migration pattern in the past millennium suggests that the epicenters of major earthquakes have shifted towards this seismic gap along the THC fault, which implies that the 180- km gap could be the site of the next great earthquake with M≈7.6 if it is ruptured by a single event. Alternatively, the seismic gap may be explained by aseismic creeping or seismic strain transfer between active faults.

  18. From Geodetic Imaging of Seismic and Aseismic Fault Slip to Dynamic Modeling of the Seismic Cycle

    Science.gov (United States)

    Avouac, Jean-Philippe

    2015-05-01

    Understanding the partitioning of seismic and aseismic fault slip is central to seismotectonics as it ultimately determines the seismic potential of faults. Thanks to advances in tectonic geodesy, it is now possible to develop kinematic models of the spatiotemporal evolution of slip over the seismic cycle and to determine the budget of seismic and aseismic slip. Studies of subduction zones and continental faults have shown that aseismic creep is common and sometimes prevalent within the seismogenic depth range. Interseismic coupling is generally observed to be spatially heterogeneous, defining locked patches of stress accumulation, to be released in future earthquakes or aseismic transients, surrounded by creeping areas. Clay-rich tectonites, high temperature, and elevated pore-fluid pressure seem to be key factors promoting aseismic creep. The generally logarithmic time evolution of afterslip is a distinctive feature of creeping faults that suggests a logarithmic dependency of fault friction on slip rate, as observed in laboratory friction experiments. Most faults can be considered to be paved with interlaced patches where the friction law is either rate-strengthening, inhibiting seismic rupture propagation, or rate-weakening, allowing for earthquake nucleation. The rate-weakening patches act as asperities on which stress builds up in the interseismic period; they might rupture collectively in a variety of ways. The pattern of interseismic coupling can help constrain the return period of the maximum- magnitude earthquake based on the requirement that seismic and aseismic slip sum to match long-term slip. Dynamic models of the seismic cycle based on this conceptual model can be tuned to reproduce geodetic and seismological observations. The promise and pitfalls of using such models to assess seismic hazard are discussed.

  19. New Observations of Seismic Group Velocities in the Western Solomon Islands from Cross-Correlation of Ambient Seismic Noise

    Science.gov (United States)

    Ku, C. S.; You, S. H.; Kuo, Y. T.; Huang, B. S.; Wu, Y. M.; Chen, Y. G.; Taylor, F. W.

    2015-12-01

    A MW 8.1 earthquake occurred on 1 April 2007 in the western Solomon Islands. Following this event, a damaging tsunami was induced and hit the Island Gizo where the capital city of Western Province of Solomon Islands located. Several buildings of this city were destroyed and several peoples lost their lives during this earthquake. However, during this earthquake, no near source seismic instrument has been installed in this region. The seismic evaluations for the aftershock sequence, the possible earthquake early warning and tsunami warning were unavailable. For the purpose of knowing more detailed information about seismic activity in this region, we have installed 9 seismic stations (with Trillium 120PA broadband seismometer and Q330S 24bit digitizer) around the rupture zone of the 2007 earthquake since September of 2009. Within a decade, it has been demonstrated both theoretically and experimentally that the Green's function or impulse response between two seismic stations can be retrieved from the cross-correlation of ambient noise. In this study, 6 stations' observations which are more complete during 2011/10 ~ 2012/12 period, were selected for the purpose of the cross-correlation analysis of ambient seismic noise. The group velocities at period 2-20 seconds of 15 station-pairs were extracted by using multiple filter technique (MFT) method. The analyzed results of this study presented significant results of group velocities with higher frequency contents than other studies (20-60 seconds in usually cases) and opened new opportunities to study the shallow crustal structure of the western Solomon Islands.

  20. Strain, Stress and Seismicity pattern in Switzerland

    Science.gov (United States)

    Houlié, Nicolas; Woessner, Jochen; Villiger, Arturo; Deichmann, Nicholas; Rothacher, Markus; Giardini, Domenico; Geiger, Alain

    2013-04-01

    Switzerland lies across one of the most complex plate boundary in the world. With a 100 Ma of deformation history, and a wide diversity of deformation mechanism, it is an ideal place to study the link(s) between small strain rates measured at the surface and stress dissipated at depth. The link is of genuine interest for seismic hazard assessment as it provides an independent estimate for moment release within the seismogenic volume. We use geodetic (GPS velocities, shortening axes, strain maps) and seismic (anisotropy, P-axes, focal mechanisms) datasets in order to assess whether the stress accumulated at depth due to the continental collision reflects the deformation rates measured at the surface and correlates with the seismic activity as well as the stress directions deduced from earthquake focal mechanisms throughout the area - or not. While the deformation amplitudes of the area are small (less than 10-7 yr-1) in some areas of Switzerland, we can relate long- and short-term features of the tectonic processes occurring over the last 10+ Ma. Preliminary results suggest that while deformation rates measured by GPS are large in the Ticino compared to the Valais region - its seismic activity rate is lower. This implies other processes might play important roles in the generation of seismicity.

  1. Characterization of rotary-percussion drilling as a seismic-while-drilling source

    Science.gov (United States)

    Xiao, Yingjian; Hurich, Charles; Butt, Stephen D.

    2018-04-01

    This paper focuses on an evaluation of rotary-percussion drilling (RPD) as a seismic source. Two field experiments were conducted to characterize seismic sources from different rocks with different strengths, i.e. weak shale and hard arkose. Characterization of RPD sources consist of spectral analysis and mean power measurements, along with field measurements of the source radiation patterns. Spectral analysis shows that increase of rock strength increases peak frequency and widens bandwidth, which makes harder rock more viable for seismic-while-drilling purposes. Mean power analysis infers higher magnitude of body waves in RPD than in conventional drillings. Within the horizontal plane, the observed P-wave energy radiation pattern partially confirms the theoretical radiation pattern under a single vertical bit vibration. However a horizontal lobe of energy is observed close to orthogonal to the axial bit vibration. From analysis, this lobe is attributed to lateral bit vibration, which is not documented elsewhere during RPD. Within the horizontal plane, the observed radiation pattern of P-waves is generally consistent with a spherically-symmetric distribution of energy. In addition, polarization analysis is conducted on P-waves recorded at surface geophones for understanding the particle motions. P-wave particle motions are predominantly in the vertical direction showing the interference of the free-surface.

  2. Seismic Observation in Deep Boreholes and Its Applications - Workshop Proceedings, Niigata Institute of Technology, Kashiwazaki, Japan

    International Nuclear Information System (INIS)

    2014-01-01

    The Kashiwazaki WS was held to develop the recommendations made at the Tsukuba WS entitled 'Seismic Input Motions Incorporating Recent Geological Studies' which was held in November 2004 in Tsukuba City in Japan (hereinafter, the 'Tsukuba WS'). At the Tsukuba WS, the state of the art in defining realistic seismic input for the design and re-evaluation of nuclear facilities as well as advances in seismic source characterization of fault zones using data from deep geological investigations and their possible contribution to improving seismic input definitions were reviewed. Further, the importance and necessity of cooperation between seismology and geology in order to decrease uncertainty in seismic input definition were emphasized. After the Tsukuba WS, the Niigata-ken Chuetsu-oki Earthquake (NCOE, M=6.8) occurred near the Kashiwazaki-Kariwa NPP site. In this earthquake, a focusing effect of ground motion was observed at the Kashiwazaki-Kariwa NPP site, which caused locally amplified ground motion. Units 1 and 2 showed significantly higher responses of more than 50 percent compared to Units 3 to 7. This was thought to be caused by the fact that seismic waves were focused on Units 1 and 2 due to the irregular structure under the site. A similar effect was observed at the Hamaoka site in the earthquake that occurred in Suruga Bay in 2009. Only Unit 5 showed a double or larger response to this earthquake, and similar phenomena were found only for events with hypocenter in the narrow direction from the site. This was also thought to be caused by the irregular geological structure under the site. In the 2011 off the Pacific Coast of Tohoku Earthquake, the peak ground accelerations (PGA) of the Dai-ichi NPP site were about twice as large as those of the Dai-ni NPP site, although the distance between these sites is only slightly more than 10 km. Further, large differences in the PGAs were found among each of the units of the Dai-ichi NPP site. For example, the PGA of Unit

  3. Pattern recognition techniques and neo-deterministic seismic hazard: Time dependent scenarios for North-Eastern Italy

    International Nuclear Information System (INIS)

    Peresan, A.; Vaccari, F.; Panza, G.F.; Zuccolo, E.; Gorshkov, A.

    2009-05-01

    An integrated neo-deterministic approach to seismic hazard assessment has been developed that combines different pattern recognition techniques, designed for the space-time identification of strong earthquakes, with algorithms for the realistic modeling of seismic ground motion. The integrated approach allows for a time dependent definition of the seismic input, through the routine updating of earthquake predictions. The scenarios of expected ground motion, associated with the alarmed areas, are defined by means of full waveform modeling. A set of neo-deterministic scenarios of ground motion is defined at regional and local scale, thus providing a prioritization tool for timely prevention and mitigation actions. Constraints about the space and time of occurrence of the impending strong earthquakes are provided by three formally defined and globally tested algorithms, which have been developed according to a pattern recognition scheme. Two algorithms, namely CN and M8, are routinely used for intermediate-term middle-range earthquake predictions, while a third algorithm allows for the identification of the areas prone to large events. These independent procedures have been combined to better constrain the alarmed area. The pattern recognition of earthquake-prone areas does not belong to the family of earthquake prediction algorithms since it does not provide any information about the time of occurrence of the expected earthquakes. Nevertheless, it can be considered as the term-less zero-approximation, which restrains the alerted areas (e.g. defined by CN or M8) to the more precise location of large events. Italy is the only region of moderate seismic activity where the two different prediction algorithms CN and M8S (i.e. a spatially stabilized variant of M8) are applied simultaneously and a real-time test of predictions, for earthquakes with magnitude larger than 5.4, is ongoing since 2003. The application of the CN to the Adriatic region (s.l.), which is relevant

  4. Recent results of seismic isolation study in CRIEPI: Tests on seismic isolation elements, vibration tests and observations

    International Nuclear Information System (INIS)

    Ishida, Katsuhiko; Shiojiri, Hiroo; Mazda, Taiji; Ohtori, Yasuki; Aoyagi, Sakae

    1992-01-01

    Seismic isolation is expected to be effective in raising reliability during earthquake, reducing cost, enlarging and promoting the design standardization of electric power facilities. In Japan, it has been applied to several buildings. However it is considered that more research is needed to verify the reliability and effectiveness of seismic isolation for fast breeder reactors. In the preliminary study of isolation concepts for FBRs the horizontal base isolation of buildings was investigated in detail. The laminated rubber bearings were considered to be most suitable isolation system. Tests on large scale models of rubber bearing and vibration test of base isolation system have been conducted as well as the earthquake response observation of isolated buildings were conducted

  5. Recent results of seismic isolation study in CRIEPI: Tests on seismic isolation elements, vibration tests and observations

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Katsuhiko; Shiojiri, Hiroo; Mazda, Taiji; Ohtori, Yasuki [Abiko Research Laboratory, Central Research Institute of Electric Power Industry (Japan); Aoyagi, Sakae [Central Research Institute of Electric Power Industry (Japan)

    1992-07-01

    Seismic isolation is expected to be effective in raising reliability during earthquake, reducing cost, enlarging and promoting the design standardization of electric power facilities. In Japan, it has been applied to several buildings. However it is considered that more research is needed to verify the reliability and effectiveness of seismic isolation for fast breeder reactors. In the preliminary study of isolation concepts for FBRs the horizontal base isolation of buildings was investigated in detail. The laminated rubber bearings were considered to be most suitable isolation system. Tests on large scale models of rubber bearing and vibration test of base isolation system have been conducted as well as the earthquake response observation of isolated buildings were conducted.

  6. Patterns of seismicity in a complex volcanic crisis at Brava, Cabo Verde

    Science.gov (United States)

    Faria, B. V. E.; Day, S. J.

    2017-12-01

    Brava is the smallest inhabited island of the Cape Verde archipelago, with an area of 62.5 km2 and a population of 6000. Geologically recent volcanism on Brava has produced lava (including carbonatite) flows, phonolite lava domes, pyroclastic density current deposits, and many phreatomagmatic craters in central Brava (where most of the population lives). Recent geological studies indicate that last eruptive period is about 1000 years old. Brava has experienced recurrent seismic swarms and felt earthquakes. The first permanent seismic station was installed in 1999, and a small network in 2011. From then until 2015 the seismic rate was near constant with sporadic peaks. Most seismic events were located offshore and associated with submarine volcanoes. However, the pattern of activity has been very different since 25th September 2015, when a M4 earthquake occurred in the submarine slopes of Brava. Subsequently, the seismicity became very complex with frequent volcano-tectonic (VT) earthquake swarms beneath Brava itself, with a few offshore events in some months. In addition, long-period, hybrid and hydrothermal events and likely very weak volcanic tremor episodes have been recorded. These non-VT events support the hypothesis that magma emplacement beneath Brava is at the origin of the abnormal seismic activity. The VT swarms indicate deformation around the magma body and possible dike intrusions, and there are indications of perturbation of a shallow hydrothermal system. The largest swarm occurred on the 1st and 2nd August 2016, with almost 1000 shallow events, including a M3.7 VT earthquake, medium-frequency events and weak volcanic tremor. An alert for a possible eruption was issued and a village (about 300 people) was evacuated as a precaution. Distributions of the cumulative number of events with depth in the main swarms suggest that the hypocenters are becoming shallower with time. Thus a possible eruption in the near future cannot be ruled out.

  7. Analyzing crack development pattern of masonry structure in seismic oscillation by digital photography

    Science.gov (United States)

    Zhang, Guojian; Yu, Chengxin; Ding, Xinhua

    2018-01-01

    In this study, digital photography is used to monitor the instantaneous deformation of a masonry wall in seismic oscillation. In order to obtain higher measurement accuracy, the image matching-time baseline parallax method (IM-TBPM) is used to correct errors caused by the change of intrinsic and extrinsic parameters of digital cameras. Results show that the average errors of control point C5 are 0.79mm, 0.44mm and 0.96mm in X, Z and comprehensive direction, respectively. The average errors of control point C6 are 0.49mm, 0.44mm and 0.71mm in X, Z and comprehensive direction, respectively. These suggest that IM-TBPM can meet the accuracy requirements of instantaneous deformation monitoring. In seismic oscillation the middle to lower of the masonry wall develops cracks firstly. Then the shear failure occurs on the middle of masonry wall. This study provides technical basis for analyzing the crack development pattern of masonry structure in seismic oscillation and have significant implications for improved construction of masonry structures in earthquake prone areas.

  8. New seismic array solution for earthquake observations and hydropower plant health monitoring

    Science.gov (United States)

    Antonovskaya, Galina N.; Kapustian, Natalya K.; Moshkunov, Alexander I.; Danilov, Alexey V.; Moshkunov, Konstantin A.

    2017-09-01

    We present the novel fusion of seismic safety monitoring data of the hydropower plant in Chirkey (Caucasus Mountains, Russia). This includes new hardware solutions and observation methods, along with technical limitations for three types of applications: (a) seismic monitoring of the Chirkey reservoir area, (b) structure monitoring of the dam, and (c) monitoring of turbine vibrations. Previous observations and data processing for health monitoring do not include complex data analysis, while the new system is more rational and less expensive. The key new feature of the new system is remote monitoring of turbine vibration. A comparison of the data obtained at the test facilities and by hydropower plant inspection with remote sensors enables early detection of hazardous hydrodynamic phenomena.

  9. Seismic sequences in the Sombrero Seismic Zone

    Science.gov (United States)

    Pulliam, J.; Huerfano, V. A.; ten Brink, U.; von Hillebrandt, C.

    2007-05-01

    The northeastern Caribbean, in the vicinity of Puerto Rico and the Virgin Islands, has a long and well-documented history of devastating earthquakes and tsunamis, including major events in 1670, 1787, 1867, 1916, 1918, and 1943. Recently, seismicity has been concentrated to the north and west of the British Virgin Islands, in the region referred to as the Sombrero Seismic Zone by the Puerto Rico Seismic Network (PRSN). In the combined seismicity catalog maintained by the PRSN, several hundred small to moderate magnitude events can be found in this region prior to 2006. However, beginning in 2006 and continuing to the present, the rate of seismicity in the Sombrero suddenly increased, and a new locus of activity developed to the east of the previous location. Accurate estimates of seismic hazard, and the tsunamigenic potential of seismic events, depend on an accurate and comprehensive understanding of how strain is being accommodated in this corner region. Are faults locked and accumulating strain for release in a major event? Or is strain being released via slip over a diffuse system of faults? A careful analysis of seismicity patterns in the Sombrero region has the potential to both identify faults and modes of failure, provided the aggregation scheme is tuned to properly identify related events. To this end, we experimented with a scheme to identify seismic sequences based on physical and temporal proximity, under the assumptions that (a) events occur on related fault systems as stress is refocused by immediately previous events and (b) such 'stress waves' die out with time, so that two events that occur on the same system within a relatively short time window can be said to have a similar 'trigger' in ways that two nearby events that occurred years apart cannot. Patterns that emerge from the identification, temporal sequence, and refined locations of such sequences of events carry information about stress accommodation that is obscured by large clouds of

  10. Seismicity pattern: an indicator of source region of volcanism at convergent plate margins

    Czech Academy of Sciences Publication Activity Database

    Špičák, Aleš; Hanuš, Václav; Vaněk, Jiří

    2004-01-01

    Roč. 141, č. 4 (2004), s. 303-326 ISSN 0031-9201 R&D Projects: GA AV ČR IAA3012002; GA AV ČR IAA3012303; GA AV ČR KSK3012103 Institutional research plan: CEZ:AV0Z3012916 Keywords : seismicity pattern * volcanism * aseismic gap Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.370, year: 2004

  11. Multiple Seismic Array Observations for Tracing Deep Tremor Activity in Western Shikoku, Japan

    Science.gov (United States)

    Takeda, T.; Matsuzawa, T.; Shiomi, K.; Obara, K.

    2011-12-01

    Deep non-volcanic tremors become very active during episodic slow-slip events in western Japan and Cascadia. The episodic tremor and slow-slip events in western Shikoku, Japan, occur at a typical interval of 6 months. Recently, it has been reported that tremor migration activity is complex and shows different migrating directions depending on time scales (Ghosh et al., 2010). Such characteristics of tremor are important to understand the mechanism of tremor and the relationship between tremor and SSEs. However it is difficult to determine the location of tremors with high accuracy because tremors show faint signals and make the identification of P/S-wave arrivals difficult. Seismic array analysis is useful to evaluate tremor activity, especially to estimate the arrival direction of seismic energy (e.g. Ueno et al., 2010, Ghosh et al., 2010), as it can distinguish multiple tremor sources occurring simultaneously. Here, we have conducted seismic array observation and analyzed seismic data during tremor activity by applying the MUSIC method to trace tremor location and its migration in western Shikoku. We have installed five seismic arrays in western Shikoku since January 2011. One of the arrays contains 30 stations with 3-component seismometers with a natural frequency of 2 Hz (Type-L array). The array aperture size is 2 km and the mean interval between stations is approximately 200 m. Each of the other arrays (Type-S array) contains 9 seismic stations with the same type of seismometers of the Type-L array, and is deployed surrounding the Type-L array. The small array aperture size is 800 m and its mean station interval is approximately 150 m. All array stations have recorded continuous waveform data at a sampling of 200Hz. In May 2011, an episodic tremor and a short-term slip event occurred for the first time during the observation period. We could retrieve the array seismic data during the whole tremor episode. The analysis of data from the type-L array confirms

  12. Development of real time monitor system displaying seismic waveform data observed at seafloor seismic network, DONET, for disaster management information

    Science.gov (United States)

    Horikawa, H.; Takaesu, M.; Sueki, K.; Takahashi, N.; Sonoda, A.; Miura, S.; Tsuboi, S.

    2014-12-01

    Mega-thrust earthquakes are anticipated to occur in the Nankai Trough in southwest Japan. In the source areas, we have deployed seafloor seismic network, DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis), in 2010 in order to monitor seismicity, crustal deformations, and tsunamis. DONET system consists of totally 20 stations, which is composed of six kinds of sensors, including strong-motion seismometers and quartz pressure gauges. Those stations are densely distributed with an average spatial interval of 15-20 km and cover near the trench axis to coastal areas. Observed data are transferred to a land station through a fiber-optical cable and then to JAMSTEC (Japan Agency for Marine-Earth Science and Technology) data management center through a private network in real time. After 2011 off the Pacific coast of Tohoku Earthquake, each local government close to Nankai Trough try to plan disaster prevention scheme. JAMSTEC will disseminate DONET data combined with research accomplishment so that they will be widely recognized as important earthquake information. In order to open DONET data observed for research to local government, we have developed a web application system, REIS (Real-time Earthquake Information System). REIS is providing seismic waveform data to some local governments close to Nankai Trough as a pilot study. As soon as operation of DONET is ready, REIS will start full-scale operation. REIS can display seismic waveform data of DONET in real-time, users can select strong motion and pressure data, and configure the options of trace view arrangement, time scale, and amplitude. In addition to real-time monitoring, REIS can display past seismic waveform data and show earthquake epicenters on the map. In this presentation, we briefly introduce DONET system and then show our web application system. We also discuss our future plans for further developments of REIS.

  13. Seismic activity and thermal regime of low temperature fumaroles at Mt. Vesuvius in 2004-2011: distinguishing among seismic, volcanic and hydrological signals

    Directory of Open Access Journals (Sweden)

    Paola Cusano

    2013-11-01

    Full Text Available Seismological, soil temperature and hydrological data from Mt. Vesuvius are collected to characterize the present-day activity of the volcanic/hydrothermal system and to detect possible unrest-related phenomena. We present patterns of seismicity and soil temperature in the crater area during the period February 2004-December 2011. The temporal distribution of number and depth of Volcano-Tectonic earthquakes and the energy release are considered. Hourly data of soil temperature have been acquired since January 2004 in different locations along the rim and within the crater. The observed changes of temperature are studied to establish a temporal-based correlation with the volcanic activity and/or with external forcing, as variations of the regional and local stress field acting on the volcano or meteorological phenomena. The comparison between seismic activity and temperature data highlights significant variations possibly related to changes in fluid circulation in the hydrothermal system of the volcano. The common continuous observations start just before a very shallow earthquake occurred in August 2005, which was preceded by a thermal anomaly. This coincidence has been interpreted as related to fluid-driven rock fracturing, as observed in other volcanoes. For the successive temporal patterns, the seismicity rate and energy release are characterized by slight variations accompanied by changes in temperature. This evidence of reactivity of the fumarole thermal field to seismic strain can be used to discriminate between tectonic and volcanic signals at Mt. Vesuvius.

  14. Statistical Analysis and ETAS Modeling of Seismicity Induced by Production of Geothermal Energy from Hydrothermal Systems

    Science.gov (United States)

    Dinske, C.; Langenbruch, C.; Shapiro, S. A.

    2017-12-01

    We investigate seismicity related to hydrothermal systems in Germany and Italy, focussing on temporal changes of seismicity rates. Our analysis was motivated by numerical simulations The modeling of stress changes caused by the injection and production of fluid revealed that seismicity rates decrease on a long-term perspective which is not observed in the considered case studies. We analyze the waiting time distributions of the seismic events in both time domain (inter event times) and fluid volume domain (inter event volume). We find clear indications that the observed seismicity comprises two components: (1) seismicity that is directly triggered by production and re-injection of fluid, i.e. induced events, and (2) seismicity that is triggered by earthquake interactions, i.e. aftershock triggering. In order to better constrain our numerical simulations using the observed induced seismicity we apply catalog declustering to seperate the two components. We use the magnitude-dependent space-time windowing approach introduced by Gardner and Knopoff (1974) and test several published algorithms to calculate the space-time windows. After declustering, we conclude that the different hydrothermal reservoirs show a comparable seismic response to the circulation of fluid and additional triggering by earthquake interactions. The declustered catalogs contain approximately 50 per cent of the number of events in the original catalogs. We then perform ETAS (Epidemic Type Aftershock; Ogata, 1986, 1988) modeling for two reasons. First, we want to know whether the different reservoirs are also comparable regarding earthquake interaction patterns. Second, if we identify systematic patterns, ETAS modeling can contribute to forecast seismicity during production of geothermal energy. We find that stationary ETAS models cannot accurately capture real seismicity rate changes. One reason for this finding is given by the rate of observed induced events which is not constant over time. Hence

  15. Seismic anisotropy in localized shear zones versus distributed tectonic fabrics: examples from geologic and seismic observations in western North America and the European Alps

    Science.gov (United States)

    Mahan, Kevin H.; Schulte-Pelkum, Vera; Condit, Cailey; Leydier, Thomas; Goncalves, Philippe; Raju, Anissha; Brownlee, Sarah; Orlandini, Omero F.

    2017-04-01

    amphibolite-facies (0.9-1.0 GPa, 700 °C) mafic metagabbro from Precambrian exposures in Montana (USA) and in greenschist-facies (0.7-0.8 GPa, 450-500 °C) metagranites from the External Crystalline Massifs of the European Central Alps. The shear zones are characterized by strain gradients from undeformed coarse-grained protoliths to very fine grained ultramylonite, and by microstructures dominated by CPO-producing deformation mechanisms in the protomylonite and CPO-weakening mechanisms such as dissolution-precipitation creep and grain boundary sliding in the ultramylonite. In the mafic mylonites, the result is a lower seismic anisotropy ( 2%) in the core of the shear zones despite a well-developed hornblende shape-preferred orientation. Preliminary observations of these examples suggest that marginal gradients may contribute as much or more to the bulk anisotropy signal compared to the higher strained cores of these structures. If true, a similar effect could explain some otherwise puzzling anisotropy studies of larger scale shear zones such as from the Himalaya where anisotropy tilt proximal to the Main Himalayan Thrust is notably steeper than expected. In conclusion, while some anisotropy studies of crustal scale deformation patterns are relatively straightforward, others will require careful consideration of the limitations and potential future improvements to seismic detection methods, including ground truthing based on samples and exposures as well as a better understanding of physical processes involved in deformation localization.

  16. Application of Seismic Observation Data in Borehole for the Development of Attenuation Equation of Response Spectra on Bedrock

    International Nuclear Information System (INIS)

    Si, Hongjun

    2014-01-01

    Ground motion data on seismic bedrock is important, but it is very difficult to obtain such data directly. The data from KiK-net and JNES/SODB is valuable and very useful in developing the attenuation relationship of response spectra on seismic bedrock. NIED has approximately 200 observation points on seismic bedrock with S-wave velocity of more than 2000 m/s in Japan. Using data from observation at these points, a Ground Motion Prediction Equation (GMPE) is under development. (author)

  17. Aim and points of this workshop: The 2. Workshop on Seismic Observation in Deep Borehole (SODB) and its Applications

    International Nuclear Information System (INIS)

    Sugiyama, Yuichi

    2014-01-01

    The achievements of the first WS and the aim of the Second WS were explained. The purposes of this Second WS were: to re-recognize the significance of seismic ground motion evaluation based on newly added deep borehole seismic observation in addition to existing borehole investigation, geological surveys, and geophysical exploration; to acknowledge deep borehole seismic observation and geophysical exploration (hardware) as well as the site characteristic evaluation method (software) required for seismic ground motion evaluation; and to consolidate opinions on multi-purpose application of observation technology and data as well as acknowledge issues to be addressed and technological problems. The final goals of this WS were to clarify items and issues that present challenges for the future based on the discussions in this WS. (author)

  18. Rifting an Archaean Craton: Insights from Seismic Anisotropy Patterns in E. Africa

    Science.gov (United States)

    Ebinger, C. J.; Tiberi, C.; Currie, C. A.; van Wijk, J.; Albaric, J.

    2016-12-01

    Few places worldwide offer opportunities to study active deformation of deeply-keeled cratonic lithosphere. The magma-rich Eastern rift transects the eastern edge of the Archaean Tanzania craton in northeastern Tanzania, which has been affected by a large-scale mantle upwelling. Abundant xenolith locales offer constraints on mantle age, composition, and physical properties. Our aim is to evaluate models for magmatic fluid-alteration (metasomatism) and deformation of mantle lithosphere along the edge of cratons by considering spatial variations in the direction and magnitude of seismic anisotropy, which is strongly influenced by mantle flow patterns along lithosphere-asthenosphere topography, fluid-filled cracks (e.g., dikes), and pre-existing mantle lithosphere strain fabrics. Waveforms of teleseismic earthquakes (SKS, SKKS) recorded on the 39-station CRAFTI-CoLiBREA broadband array in southern Kenya and northern Tanzania are used to determine the azimuth and amount of shear-wave splitting accrued as seismic waves pass through the uppermost mantle and lithosphere at the craton edge. Lower crustal earthquakes enable evaluation of seismic anisotropy throughout the crust along the rift flanks and beneath the heavily intruded Magadi and Natron basins, and the weakly intruded Manyara basin. Our results and those of earlier studies show a consistent N50E splitting direction within the craton, with delay times of ca. 1.5 s, and similar direction east of the rift in thinner Pan-African lithosphere. Stations within the rift zone are rotated to a N15-35E splitting, with the largest delay times of 2.5 s at the margin of the heavily intruded Magadi basin. The short length scale of variations and rift-parallel splitting directions are similar to patterns in the Main Ethiopian rift attributed to melt-filled cracks or oriented pockets rising from the base of the lithosphere. The widespread evidence for mantle metasomatism and magma intrusion to mid-crustal levels suggests that

  19. Co-Seismic Effect of the 2011 Japan Earthquake on the Crustal Movement Observation Network of China

    Directory of Open Access Journals (Sweden)

    Shaomin Yang

    2013-01-01

    Full Text Available Great earthquakes introduce measurable co-seismic displacements over regions of hundreds and thousands of kilometers in width, which, if not accounted for, may significantly bias the long-term surface velocity field constrained by GPS observations performed during a period encompassing that event. Here, we first present an estimation of the far-field co-seismic off-sets associated with the 2011 Japan Mw 9.0 earthquake using GPS measurements from the Crustal Movement Observation Network of China (CMONOC in North China. The uncertainties of co-seismic off-set, either at cGPS stations or at campaign sites, are better than 5 - 6 mm on average. We compare three methods to constrain the co-seismic off-sets at the campaign sites in northeastern China 1 interpolating cGPS coseismic offsets, 2 estimating in terms of sparsely sampled time-series, and 3 predicting by using a well-constrained slip model. We show that the interpolation of cGPS co-seismic off-sets onto the campaign sites yield the best co-seismic off-set solution for these sites. The source model gives a consistent prediction based on finite dislocation in a layered spherical Earth, which agrees with the best prediction with discrepancies of 2 - 10 mm for 32 campaign sites. Thus, the co-seismic off-set model prediction is still a reasonable choice if a good coverage cGPS network is not available for a very active region like the Tibetan Plateau in which numerous campaign GPS sites were displaced by the recent large earthquakes.

  20. Spatial clustering and repeating of seismic events observed along the 1976 Tangshan fault, north China

    Science.gov (United States)

    Li, Le; Chen, Qi-Fu; Cheng, Xin; Niu, Fenglin

    2007-12-01

    Spatial and temporal features of the seismicity occurring along the Tangshan fault in 2001-2006 were investigated with data recorded by the Beijing metropolitan digital Seismic Network. The relocated seismicity with the double difference method clearly exhibits a dextral bend in the middle of the fault. More than 85% of the earthquakes were found in the two clusters forming the northern segment where relatively small coseismic slips were observed during the 1976 M7.8 earthquake. The b values calculated from the seismicity occurring in the northern and southern segment are 1.03 +/- 0.02 and 0.85 +/- 0.03, respectively. The distinct seismicity and b values are probably the collective effect of the fault geometry and the regional stress field that has an ENE-WSW oriented compression. Using cross-correlation and fine relocation analyses, we also identified a total of 21 doublets and 25 multiplets that make up >50% of the total seismicity. Most of the sequences are aperiodic with recurrence intervals varying from a few minutes to hundreds of days. Based on a quasi-periodic sequence, we obtained a fault slip rate of <=2.6 mm/yr at ~15 km, which is consistent with surface GPS measurements.

  1. Yield Estimation for Semipalatinsk Underground Nuclear Explosions Using Seismic Surface-wave Observations at Near-regional Distances

    Science.gov (United States)

    Adushkin, V. V.

    - A statistical procedure is described for estimating the yields of underground nuclear tests at the former Soviet Semipalatinsk test site using the peak amplitudes of short-period surface waves observed at near-regional distances (Δ Semipalatinsk explosions, including the Soviet JVE explosion of September 14, 1988, and it is demonstrated that it provides seismic estimates of explosion yield which are typically within 20% of the yields determined for these same explosions using more accurate, non-seismic techniques based on near-source observations.

  2. Seismic failure modes and seismic safety of Hardfill dam

    Directory of Open Access Journals (Sweden)

    Kun Xiong

    2013-04-01

    Full Text Available Based on microscopic damage theory and the finite element method, and using the Weibull distribution to characterize the random distribution of the mechanical properties of materials, the seismic response of a typical Hardfill dam was analyzed through numerical simulation during the earthquakes with intensities of 8 degrees and even greater. The seismic failure modes and failure mechanism of the dam were explored as well. Numerical results show that the Hardfill dam remains at a low stress level and undamaged or slightly damaged during an earthquake with an intensity of 8 degrees. During overload earthquakes, tensile cracks occur at the dam surfaces and extend to inside the dam body, and the upstream dam body experiences more serious damage than the downstream dam body. Therefore, under the seismic conditions, the failure pattern of the Hardfill dam is the tensile fracture of the upstream regions and the dam toe. Compared with traditional gravity dams, Hardfill dams have better seismic performance and greater seismic safety.

  3. Corroborating a new probabilistic seismic hazard assessment for greater Tokyo from historical intensity observations

    Science.gov (United States)

    Bozkurt, S.; Stein, R.; Toda, S.

    2006-12-01

    The long recorded history of earthquakes in Japan affords an opportunity to forecast seismic shaking exclusively from past observations of shaking. For this we analyzed 10,000 intensity observations recorded during AD 1600-2000 in a 350 x 350 km area centered on Tokyo in a Geographic Information System. A frequency-intensity curve is found for each 5 x 5 km cell, and from this the probability of exceeding any intensity level can be estimated. The principal benefits of this approach is that it builds the fewest possible assumptions into a probabilistic seismic forecast, it includes site and source effects without imposing this behavior, and we do not need to know the size or location of any earthquake or the location and slip rate of any fault. The cost is that we must abandon any attempt to make a time-dependent forecast, which could be quite different. We believe the method is suitable to many applications of probabilistic seismic hazard assessment, and to other regions. The two key assumptions are that the slope of the observed frequency-intensity relation at every site is the same, and that the 400-year record is long enough to encompass the full range of seismic behavior. Tests we conduct suggest that both assumptions are sound. The resulting 30-year probability of IJMA>=6 shaking (roughly equivalent to PGA>=0.9 g or MMI=IX-X) is 30-40% in Tokyo, Kawasaki, and Yokohama, and 10-15% in Chiba and Tsukuba, the range reflecting spatial variability and curve-fitting alternatives. The strongest shaking is forecast along the margins of Tokyo Bay, within the river sediments extending northwest from Tokyo, and at coastal sites near the plate boundary faults. We also produce long- term exceedance maps of peak ground acceleration for building code regulations, and short-term hazard maps associated with hypothetical catastrophe bonds. Our results for greater Tokyo resemble our independent Poisson probability developed from conventional seismic hazard analysis, as well as

  4. Observations and modeling of seismic background noise

    Science.gov (United States)

    Peterson, Jon R.

    1993-01-01

    The preparation of this report had two purposes. One was to present a catalog of seismic background noise spectra obtained from a worldwide network of seismograph stations. The other purpose was to refine and document models of seismic background noise that have been in use for several years. The second objective was, in fact, the principal reason that this study was initiated and influenced the procedures used in collecting and processing the data.With a single exception, all of the data used in this study were extracted from the digital data archive at the U.S. Geological Survey's Albuquerque Seismological Laboratory (ASL). This archive dates from 1972 when ASL first began deploying digital seismograph systems and collecting and distributing digital data under the sponsorship of the Defense Advanced Research Projects Agency (DARPA). There have been many changes and additions to the global seismograph networks during the past twenty years, but perhaps none as significant as the current deployment of very broadband seismographs by the U.S. Geological Survey (USGS) and the University of California San Diego (UCSD) under the scientific direction of the IRIS consortium. The new data acquisition systems have extended the bandwidth and resolution of seismic recording, and they utilize high-density recording media that permit the continuous recording of broadband data. The data improvements and continuous recording greatly benefit and simplify surveys of seismic background noise.Although there are many other sources of digital data, the ASL archive data were used almost exclusively because of accessibility and because the data systems and their calibration are well documented for the most part. Fortunately, the ASL archive contains high-quality data from other stations in addition to those deployed by the USGS. Included are data from UCSD IRIS/IDA stations, the Regional Seismic Test Network (RSTN) deployed by Sandia National Laboratories (SNL), and the TERRAscope network

  5. Observations of short period seismic scattered waves by small seismic arrays

    Directory of Open Access Journals (Sweden)

    M. Simini

    1997-06-01

    Full Text Available The most recent observations of well correlated seismic phases in the high frequency coda of local earthquakes recorded throughout the world are reported. In particular the main results, obtained on two active volcanoes, Teide and Deception, using small array are described. The ZLC (Zero Lag Cross-correlation method and polarization analysis have been applied to the data in order to distinguish the main phases in the recorded seismograms and their azimuths and apparent velocities. The results obtained at the Teide volcano demonstrate that the uncorrelated part of the seismograms may be produced by multiple scattering from randomly distributed heterogeneity, while the well correlated part, showing SH type polarization or the possible presence of Rayleigh surface waves, may be generated by single scattering by strong scatterers. At the Deception Volcano strong scattering, strongly focused in a precise direction, is deduced from the data. In that case, all the coda radiation is composed of surface waves.

  6. Impact of the 2001 Tohoku-oki earthquake to Tokyo Metropolitan area observed by the Metropolitan Seismic Observation network (MeSO-net)

    Science.gov (United States)

    Hirata, N.; Hayashi, H.; Nakagawa, S.; Sakai, S.; Honda, R.; Kasahara, K.; Obara, K.; Aketagawa, T.; Kimura, H.; Sato, H.; Okaya, D. A.

    2011-12-01

    The March 11, 2011 Tohoku-oki earthquake brought a great impact to the Tokyo metropolitan area in both seismological aspect and seismic risk management although Tokyo is located 340 km from the epicenter. The event generated very strong ground motion even in the metropolitan area and resulted severe requifaction in many places of Kanto district. National and local governments have started to discuss counter measurement for possible seismic risks in the area taking account for what they learned from the Tohoku-oki event which is much larger than ever experienced in Japan Risk mitigation strategy for the next greater earthquake caused by the Philippine Sea plate (PSP) subducting beneath the Tokyo metropolitan area is of major concern because it caused past mega-thrust earthquakes, such as the 1703 Genroku earthquake (M8.0) and the 1923 Kanto earthquake (M7.9). An M7 or greater (M7+) earthquake in this area at present has high potential to produce devastating loss of life and property with even greater global economic repercussions. The Central Disaster Management Council of Japan estimates that an M7+ earthquake will cause 11,000 fatalities and 112 trillion yen (about 1 trillion US$) economic loss. In order to mitigate disaster for greater Tokyo, the Special Project for Earthquake Disaster Mitigation in the Tokyo Metropolitan Area was launched in collaboration with scientists, engineers, and social-scientists in nationwide institutions. We will discuss the main results that are obtained in the respective fields which have been integrated to improve information on the strategy assessment for seismic risk mitigation in the Tokyo metropolitan area; the project has been much improved after the Tohoku event. In order to image seismic structure beneath the Metropolitan Tokyo area we have developed Metropolitan Seismic Observation network (MeSO-net; Hirata et al., 2009). We have installed 296 seismic stations every few km (Kasahara et al., 2011). We conducted seismic

  7. Fractal properties and simulation of micro-seismicity for seismic hazard analysis: a comparison of North Anatolian and San Andreas Fault Zones

    Directory of Open Access Journals (Sweden)

    Naside Ozer

    2012-02-01

    Full Text Available We analyzed statistical properties of earthquakes in western Anatolia as well as the North Anatolian Fault Zone (NAFZ in terms of spatio-temporal variations of fractal dimensions, p- and b-values. During statistically homogeneous periods characterized by closer fractal dimension values, we propose that occurrence of relatively larger shocks (M >= 5.0 is unlikely. Decreases in seismic activity in such intervals result in spatial b-value distributions that are primarily stable. Fractal dimensions decrease with time in proportion to increasing seismicity. Conversely, no spatiotemporal patterns were observed for p-value changes. In order to evaluate failure probabilities and simulate earthquake occurrence in the western NAFZ, we applied a modified version of the renormalization group method. Assuming an increase in small earthquakes is indicative of larger shocks, we apply the mentioned model to micro-seismic (M<= 3.0 activity, and test our results using San Andreas Fault Zone (SAFZ data. We propose that fractal dimension is a direct indicator of material heterogeneity and strength. Results from a model suggest simulated and observed earthquake occurrences are coherent, and may be used for seismic hazard estimation on creeping strike-slip fault zones.

  8. New seismic monitoring observation system and data accessibility at Syowa Station

    Directory of Open Access Journals (Sweden)

    Masaki Kanao

    1999-03-01

    Full Text Available The seismic observation system at Syowa Station, East Antarctica was fully replaced in the wintering season of the 38th Japanese Antarctic Research Expedition (JARE-38 in 1996-1998. The old seismographic vault constructed in 1970 was closed at the end of JARE-38 because of cumulative damage to the inner side of the vault by continuous flowing in of water from walls in summer and its freezing in winter. All the seismometers were moved to a new seismographic hut (69°00′24.0″S, 39°35′06.0″E and 20m above mean sea level in April 1997. Seismic signals of the short-period (HES and broadband (STS-1 seismometers in the new hut are transmitted to the Earth Science Laboratory (ESL via analog cable 600m in length. The new acquisition system was installed in the ESL with 6-channel 24-bit A/D converters for both sensor signals. All digitized data are automatically transmitted from the A/D converter to a workstation via TCP/IP protocol. After parallel observations with the old acquisition system by personal computers and the new system during the wintering season of JARE-38,the main system was changed to the new one, which has some advantages for both the reduction of daily maintenance efforts and the data transport/communication processes via Internet by use of LAN at the station. In this report, details of the new seismographic hut and the recording system are described. Additionally, the seismic data accessibility for public use, including Internet service, is described.

  9. Combining mineral physics with seismic observations: What can we deduce about the thermochemical structure of the Earth's deep interior?

    Science.gov (United States)

    Cobden, L. J.

    2017-12-01

    Mineral physics provides the essential link between seismic observations of the Earth's interior, and laboratory (or computer-simulated) measurements of rock properties. In this presentation I will outline the procedure for quantitative conversion from thermochemical structure to seismic structure (and vice versa) using the latest datasets from seismology and mineralogy. I will show examples of how this method can allow us to infer major chemical and dynamic properties of the deep mantle. I will also indicate where uncertainties and limitations in the data require us to exercise caution, in order not to "over-interpret" seismic observations. Understanding and modelling these uncertainties serves as a useful guide for mineralogists to ascertain which mineral parameters are most useful in seismic interpretation, and enables seismologists to optimise their data assembly and inversions for quantitative interpretations.

  10. GrowYourIC: an open access Python code to facilitate comparison between kinematic models of inner core evolution and seismic observations

    Science.gov (United States)

    Lasbleis, M.; Day, E. A.; Waszek, L.

    2017-12-01

    The complex nature of inner core structure has been well-established from seismic studies, with heterogeneities at various length scales, both radially and laterally. Despite this, no geodynamic model has successfully explained all of the observed seismic features. To facilitate comparisons between seismic observations and geodynamic models of inner core growth we have developed a new, open access Python tool - GrowYourIC - that allows users to compare models of inner core structure. The code allows users to simulate different evolution models of the inner core, with user-defined rates of inner core growth, translation and rotation. Once the user has "grown" an inner core with their preferred parameters they can then explore the effect of "their" inner core's evolution on the relative age and growth rate in different regions of the inner core. The code will convert these parameters into seismic properties using either built-in mineral physics models, or user-supplied ones that calculate these seismic properties with users' own preferred mineralogical models. The 3D model of isotropic inner core properties can then be used to calculate the predicted seismic travel time anomalies for a random, or user-specified, set of seismic ray paths through the inner core. A real dataset of inner core body-wave differential travel times is included for the purpose of comparing user-generated models of inner core growth to actual observed travel time anomalies in the top 100km of the inner core. Here, we explore some of the possibilities of our code. We investigate the effect of the limited illumination of the inner core by seismic waves on the robustness of kinematic model interpretation. We test the impact on seismic differential travel time observations of several kinematic models of inner core growth: fast lateral translation; slow differential growth; and inner core super-rotation. We find that a model of inner core evolution incorporating both differential growth and slow

  11. Near-surface neotectonic deformation associated with seismicity in the northeastern United States

    International Nuclear Information System (INIS)

    Alexander, S.S.; Gold, D.P.; Gardner, T.W.; Slingerland, R.L.; Thornton, C.P.

    1989-10-01

    For the Lancaster, PA seismic zone a multifaceted investigation revealed several manifestations of near-surface, neotectonic deformation. Remote sensing data together with surface geological and geophysical observations, and recent seismicity reveal that the neotectonic deformation is concentrated in a NS-trending fault zone some 50 km in length and 10--20 km in width. Anomalies associated with this zone include distinctive lineament and surface erosional patterns; geologically recent uplift evidenced by elevations of stream terraces along the Susquehanna River; and localized contemporary travertine deposits in streams down-drainage from the inferred active fault zone. In the Moodus seismic zone the frequency of tectonically-controlled lineaments was observed to increase in the Moodus quadrangle compared to adjacent areas and dominant lineament directions were observed that are perpendicular and parallel to the orientation of the maximum horizontal stress direction (N80-85E) recently determined from in-situ stress measurements in a 1.5 km-deep borehole in the seismic zone and from well-constrained earthquake focal mechanisms. 284 refs., 33 figs

  12. Near-surface neotectonic deformation associated with seismicity in the northeastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, S.S.; Gold, D.P.; Gardner, T.W.; Slingerland, R.L.; Thornton, C.P. (Pennsylvania State Univ., University Park, PA (USA). Dept. of Geosciences)

    1989-10-01

    For the Lancaster, PA seismic zone a multifaceted investigation revealed several manifestations of near-surface, neotectonic deformation. Remote sensing data together with surface geological and geophysical observations, and recent seismicity reveal that the neotectonic deformation is concentrated in a NS-trending fault zone some 50 km in length and 10--20 km in width. Anomalies associated with this zone include distinctive lineament and surface erosional patterns; geologically recent uplift evidenced by elevations of stream terraces along the Susquehanna River; and localized contemporary travertine deposits in streams down-drainage from the inferred active fault zone. In the Moodus seismic zone the frequency of tectonically-controlled lineaments was observed to increase in the Moodus quadrangle compared to adjacent areas and dominant lineament directions were observed that are perpendicular and parallel to the orientation of the maximum horizontal stress direction (N80-85E) recently determined from in-situ stress measurements in a 1.5 km-deep borehole in the seismic zone and from well-constrained earthquake focal mechanisms. 284 refs., 33 figs.

  13. Development and Examination of Real-time Automatic Scram System Using Deep Vertical Array Seismic Observation System

    International Nuclear Information System (INIS)

    Sugaya, Katsunori

    2014-01-01

    In Japan, observed seismic motions in reactor buildings are currently used for seismic scram, but installing a seismometer at a great depth at the site may possibly shorten scram initiation time. JNES proposed a scram system with a seismometer set at a depth of 3,000 m on the premises of the Niigata Institute of Technology based on preliminary results for a scenario earthquake and is now planning quantitative evaluation. (authors)

  14. Do French macroseismic intensity observations agree with expectations from the European Seismic Hazard Model 2013?

    Science.gov (United States)

    Rey, Julien; Beauval, Céline; Douglas, John

    2018-02-01

    Probabilistic seismic hazard assessments are the basis of modern seismic design codes. To test fully a seismic hazard curve at the return periods of interest for engineering would require many thousands of years' worth of ground-motion recordings. Because strong-motion networks are often only a few decades old (e.g. in mainland France the first accelerometric network dates from the mid-1990s), data from such sensors can be used to test hazard estimates only at very short return periods. In this article, several hundreds of years of macroseismic intensity observations for mainland France are interpolated using a robust kriging-with-a-trend technique to establish the earthquake history of every French mainland municipality. At 24 selected cities representative of the French seismic context, the number of exceedances of intensities IV, V and VI is determined over time windows considered complete. After converting these intensities to peak ground accelerations using the global conversion equation of Caprio et al. (Ground motion to intensity conversion equations (GMICEs): a global relationship and evaluation of regional dependency, Bulletin of the Seismological Society of America 105:1476-1490, 2015), these exceedances are compared with those predicted by the European Seismic Hazard Model 2013 (ESHM13). In half of the cities, the number of observed exceedances for low intensities (IV and V) is within the range of predictions of ESHM13. In the other half of the cities, the number of observed exceedances is higher than the predictions of ESHM13. For intensity VI, the match is closer, but the comparison is less meaningful due to a scarcity of data. According to this study, the ESHM13 underestimates hazard in roughly half of France, even when taking into account the uncertainty in the conversion from intensity to acceleration. However, these results are valid only for the acceleration range tested in this study (0.01 to 0.09 g).

  15. Do French macroseismic intensity observations agree with expectations from the European Seismic Hazard Model 2013?

    Science.gov (United States)

    Rey, Julien; Beauval, Céline; Douglas, John

    2018-05-01

    Probabilistic seismic hazard assessments are the basis of modern seismic design codes. To test fully a seismic hazard curve at the return periods of interest for engineering would require many thousands of years' worth of ground-motion recordings. Because strong-motion networks are often only a few decades old (e.g. in mainland France the first accelerometric network dates from the mid-1990s), data from such sensors can be used to test hazard estimates only at very short return periods. In this article, several hundreds of years of macroseismic intensity observations for mainland France are interpolated using a robust kriging-with-a-trend technique to establish the earthquake history of every French mainland municipality. At 24 selected cities representative of the French seismic context, the number of exceedances of intensities IV, V and VI is determined over time windows considered complete. After converting these intensities to peak ground accelerations using the global conversion equation of Caprio et al. (Ground motion to intensity conversion equations (GMICEs): a global relationship and evaluation of regional dependency, Bulletin of the Seismological Society of America 105:1476-1490, 2015), these exceedances are compared with those predicted by the European Seismic Hazard Model 2013 (ESHM13). In half of the cities, the number of observed exceedances for low intensities (IV and V) is within the range of predictions of ESHM13. In the other half of the cities, the number of observed exceedances is higher than the predictions of ESHM13. For intensity VI, the match is closer, but the comparison is less meaningful due to a scarcity of data. According to this study, the ESHM13 underestimates hazard in roughly half of France, even when taking into account the uncertainty in the conversion from intensity to acceleration. However, these results are valid only for the acceleration range tested in this study (0.01 to 0.09 g).

  16. Seismic and aseismic fault slip in response to fluid injection observed during field experiments at meter scale

    Science.gov (United States)

    Cappa, F.; Guglielmi, Y.; De Barros, L.; Wynants-Morel, N.; Duboeuf, L.

    2017-12-01

    During fluid injection, the observations of an enlarging cloud of seismicity are generally explained by a direct response to the pore pressure diffusion in a permeable fractured rock. However, fluid injection can also induce large aseismic deformations which provide an alternative mechanism for triggering and driving seismicity. Despite the importance of these two mechanisms during fluid injection, there are few studies on the effects of fluid pressure on the partitioning between seismic and aseismic motions under controlled field experiments. Here, we describe in-situ meter-scale experiments measuring synchronously the fluid pressure, the fault motions and the seismicity directly in a fault zone stimulated by controlled fluid injection at 280 m depth in carbonate rocks. The experiments were conducted in a gallery of an underground laboratory in south of France (LSBB, http://lsbb.eu). Thanks to the proximal monitoring at high-frequency, our data show that the fluid overpressure mainly induces a dilatant aseismic slip (several tens of microns up to a millimeter) at the injection. A sparse seismicity (-4 laws, we simulated an experiment and investigated the relative contribution of the fluid pressure diffusion and stress transfer on the seismic and aseismic fault behavior. The model reproduces the hydromechanical data measured at injection, and show that the aseismic slip induced by fluid injection propagates outside the pressurized zone where accumulated shear stress develops, and potentially triggers seismicity. Our models also show that the permeability enhancement and friction evolution are essential to explain the fault slip behavior. Our experimental results are consistent with large-scale observations of fault motions at geothermal sites (Wei et al., 2015; Cornet, 2016), and suggest that controlled field experiments at meter-scale are important for better assessing the role of fluid pressure in natural and human-induced earthquakes.

  17. Evaluation of Fourier and Response Spectra at Ichihasama and Koromogawa Seismic Intensity Observation Sites During the Iwate-Miyagi Nairiku Earthquake in 2008

    Science.gov (United States)

    Nishikawa, Hayato; Miyajima, Masakatsu

    In this study, we evaluate an acceleration Fourier and response spectra at Ichihasama and Koromogawa seismic intensity observation sites which observed JMA seismic intensity of 6 upper but seismic waveform records don't exist during the Iwate-Miyagi Nairiku earthquake in 2008. Firstly, formula to evaluate acceleration Fourier and response spectra are developed using peak ground acceleration, JMA seismic intensity and predominant period of earthquake spectra based on records obtained from crustal earthquakes with Magnitude of 6 to 7. Acceleration Fourier and response spectra are evaluated for another local government site which are not chosen for development of the formula. The evaluated values mostly agree with the observed ones. Finally, acceleration Fourier and response spectra are evaluated for Ichihasama and Koromogawa observation sites. It is clarified that short period below 1 second was predominated in the evaluated spectra.

  18. Ambient seismic noise interferometry in Hawai'i reveals long-range observability of volcanic tremor

    Science.gov (United States)

    Ballmer, Silke; Wolfe, Cecily; Okubo, Paul G.; Haney, Matt; Thurber, Clifford H.

    2013-01-01

    The use of seismic noise interferometry to retrieve Green's functions and the analysis of volcanic tremor are both useful in studying volcano dynamics. Whereas seismic noise interferometry allows long-range extraction of interpretable signals from a relatively weak noise wavefield, the characterization of volcanic tremor often requires a dense seismic array close to the source. We here show that standard processing of seismic noise interferometry yields volcanic tremor signals observable over large distances exceeding 50 km. Our study comprises 2.5 yr of data from the U.S. Geological Survey Hawaiian Volcano Observatory short period seismic network. Examining more than 700 station pairs, we find anomalous and temporally coherent signals that obscure the Green's functions. The time windows and frequency bands of these anomalous signals correspond well with the characteristics of previously studied volcanic tremor sources at Pu'u 'Ō'ō and Halema'uma'u craters. We use the derived noise cross-correlation functions to perform a grid-search for source location, confirming that these signals are surface waves originating from the known tremor sources. A grid-search with only distant stations verifies that useful tremor signals can indeed be recovered far from the source. Our results suggest that the specific data processing in seismic noise interferometry—typically used for Green's function retrieval—can aid in the study of both the wavefield and source location of volcanic tremor over large distances. In view of using the derived Green's functions to image heterogeneity and study temporal velocity changes at volcanic regions, however, our results illustrate how care should be taken when contamination by tremor may be present.

  19. Observational studies to mitigate seismic risks in mines: a new Japanese-South African collaborative research project

    CSIR Research Space (South Africa)

    Durrheim, RJ

    2010-10-01

    Full Text Available and High Stress Mining, 6-8 October 2010, Santiago CHILE 1 Observational studies to mitigate seismic risks in mines: a new Japanese - South African collaborative research project R.J. Durrheim SATREPS*, CSIR Centre for Mining Innovation.... 3. To upgrade the South African national seismic network. The project is carried out under the auspices of the SATREPS (Science and Technology Research Partnership for Sustainable Development) program "Countermeasures towards Global Issues through...

  20. Seismic excitation by space shuttles

    Science.gov (United States)

    Kanamori, H.; Mori, J.; Sturtevant, B.; Anderson, D.L.; Heaton, T.

    1992-01-01

    Shock waves generated by the space shuttles Columbia (August 13, 1989), Atlantis (April 11, 1991) and Discovery (September 18, 1991) on their return to Edwards Air Force Base, California, were recorded by TERRAscope (Caltech's broadband seismic network), the Caltech-U.S.G.S Southern California Seismic Network (SCSN), and the University of Southern California (USC) Los Angeles Basin Seismic Network. The spatial pattern of the arrival times exhibits hyperbolic shock fronts from which the path, velocity and altitude of the space shuttle could be determined. The shock wave was acoustically coupled to the ground, converted to a seismic wave, and recorded clearly at the broadband TERRAscope stations. The acoustic coupling occurred very differently depending on the conditions of the Earth's surface surrounding the station. For a seismic station located on hard bedrock, the shock wave (N wave) was clearly recorded with little distortion. Aside from the N wave, very little acoustic coupling of the shock wave energy to the ground occurred at these sites. The observed N wave record was used to estimate the overpressure of the shock wave accurately; a pressure change of 0.5 to 2.2 mbars was obtained. For a seismic station located close to the ocean or soft sedimentary basins, a significant amount of shock wave energy was transferred to the ground through acoustic coupling of the shock wave and the oceanic Rayleigh wave. A distinct topography such as a mountain range was found effective to couple the shock wave energy to the ground. Shock wave energy was also coupled to the ground very effectively through large man made structures such as high rise buildings and offshore oil drilling platforms. For the space shuttle Columbia, in particular, a distinct pulse having a period of about 2 to 3 seconds was observed, 12.5 s before the shock wave, with a broadband seismograph in Pasadena. This pulse was probably excited by the high rise buildings in downtown Los Angeles which were

  1. Enhancement and feature extraction of RS images from seismic area and seismic disaster recognition technologies

    Science.gov (United States)

    Zhang, Jingfa; Qin, Qiming

    2003-09-01

    Many types of feature extracting of RS image are analyzed, and the work procedure of pattern recognizing in RS images of seismic disaster is proposed. The aerial RS image of Tangshan Great Earthquake is processed, and the digital features of various typical seismic disaster on the RS image is calculated.

  2. Causality between expansion of seismic cloud and maximum magnitude of induced seismicity in geothermal field

    Science.gov (United States)

    Mukuhira, Yusuke; Asanuma, Hiroshi; Ito, Takatoshi; Häring, Markus

    2016-04-01

    Occurrence of induced seismicity with large magnitude is critical environmental issues associated with fluid injection for shale gas/oil extraction, waste water disposal, carbon capture and storage, and engineered geothermal systems (EGS). Studies for prediction of the hazardous seismicity and risk assessment of induced seismicity has been activated recently. Many of these studies are based on the seismological statistics and these models use the information of the occurrence time and event magnitude. We have originally developed physics based model named "possible seismic moment model" to evaluate seismic activity and assess seismic moment which can be ready to release. This model is totally based on microseismic information of occurrence time, hypocenter location and magnitude (seismic moment). This model assumes existence of representative parameter having physical meaning that release-able seismic moment per rock volume (seismic moment density) at given field. Seismic moment density is to be estimated from microseismic distribution and their seismic moment. In addition to this, stimulated rock volume is also inferred by progress of microseismic cloud at given time and this quantity can be interpreted as the rock volume which can release seismic energy due to weakening effect of normal stress by injected fluid. Product of these two parameters (equation (1)) provide possible seismic moment which can be released from current stimulated zone as a model output. Difference between output of this model and observed cumulative seismic moment corresponds the seismic moment which will be released in future, based on current stimulation conditions. This value can be translated into possible maximum magnitude of induced seismicity in future. As this way, possible seismic moment can be used to have feedback to hydraulic stimulation operation in real time as an index which can be interpreted easily and intuitively. Possible seismic moment is defined as equation (1), where D

  3. A New Seismic Hazard Model for Mainland China

    Science.gov (United States)

    Rong, Y.; Xu, X.; Chen, G.; Cheng, J.; Magistrale, H.; Shen, Z. K.

    2017-12-01

    We are developing a new seismic hazard model for Mainland China by integrating historical earthquake catalogs, geological faults, geodetic GPS data, and geology maps. To build the model, we construct an Mw-based homogeneous historical earthquake catalog spanning from 780 B.C. to present, create fault models from active fault data, and derive a strain rate model based on the most complete GPS measurements and a new strain derivation algorithm. We divide China and the surrounding regions into about 20 large seismic source zones. For each zone, a tapered Gutenberg-Richter (TGR) magnitude-frequency distribution is used to model the seismic activity rates. The a- and b-values of the TGR distribution are calculated using observed earthquake data, while the corner magnitude is constrained independently using the seismic moment rate inferred from the geodetically-based strain rate model. Small and medium sized earthquakes are distributed within the source zones following the location and magnitude patterns of historical earthquakes. Some of the larger earthquakes are distributed onto active faults, based on their geological characteristics such as slip rate, fault length, down-dip width, and various paleoseismic data. The remaining larger earthquakes are then placed into the background. A new set of magnitude-rupture scaling relationships is developed based on earthquake data from China and vicinity. We evaluate and select appropriate ground motion prediction equations by comparing them with observed ground motion data and performing residual analysis. To implement the modeling workflow, we develop a tool that builds upon the functionalities of GEM's Hazard Modeler's Toolkit. The GEM OpenQuake software is used to calculate seismic hazard at various ground motion periods and various return periods. To account for site amplification, we construct a site condition map based on geology. The resulting new seismic hazard maps can be used for seismic risk analysis and management.

  4. Seismic Responses of Shot Span Bridge under Three Different Patterns of Earthquake Excitations

    International Nuclear Information System (INIS)

    Zhou Daochuan; Chen Guorong; Lu Yan

    2010-01-01

    This paper presents a study of the influence of three different types of seismic input methods on the longitudinal seismic response of a short, three-span, variable cross-section, reinforced concrete bridge. Research progress of the seismic model is introduced briefly. Finite element model is created for the bridge and time history analysis conducted. Three different types of illustrative excitations are considered: 1) the EI-Centro seismic wave is used as uniform excitations at all bridge supports; 2) fixed apparent wave velocity is used for response analysis of traveling wave excitations on the bridge; 3) conforming to a selected coherency model, the multiple seismic excitation time histories considering spatially variable effects are generated. The contrast study of the response analysis result under the three different seismic excitations is conducted and the influence of different seismic input methods is studied. The comparative analysis of the bridge model shows that the uniform ground motion input can not provide conservative seismic demands-in a number of cases it results in lower response than that predicted by multiple seismic excitations. The result of uniform excitation and traveling wave excitation shows very small difference. Consequently, multiple seismic excitations needs to be applied at the bridge supports for response analysis of short span bridge.

  5. Superresolution with Seismic Arrays using Empirical Matched Field Processing

    Energy Technology Data Exchange (ETDEWEB)

    Harris, D B; Kvaerna, T

    2010-03-24

    Scattering and refraction of seismic waves can be exploited with empirical matched field processing of array observations to distinguish sources separated by much less than the classical resolution limit. To describe this effect, we use the term 'superresolution', a term widely used in the optics and signal processing literature to denote systems that break the diffraction limit. We illustrate superresolution with Pn signals recorded by the ARCES array in northern Norway, using them to identify the origins with 98.2% accuracy of 549 explosions conducted by closely-spaced mines in northwest Russia. The mines are observed at 340-410 kilometers range and are separated by as little as 3 kilometers. When viewed from ARCES many are separated by just tenths of a degree in azimuth. This classification performance results from an adaptation to transient seismic signals of techniques developed in underwater acoustics for localization of continuous sound sources. Matched field processing is a potential competitor to frequency-wavenumber and waveform correlation methods currently used for event detection, classification and location. It operates by capturing the spatial structure of wavefields incident from a particular source in a series of narrow frequency bands. In the rich seismic scattering environment, closely-spaced sources far from the observing array nonetheless produce distinct wavefield amplitude and phase patterns across the small array aperture. With observations of repeating events, these patterns can be calibrated over a wide band of frequencies (e.g. 2.5-12.5 Hertz) for use in a power estimation technique similar to frequency-wavenumber analysis. The calibrations enable coherent processing at high frequencies at which wavefields normally are considered incoherent under a plane wave model.

  6. Seismic anisotropies of the Songshugou peridotites (Qinling orogen, central China) and their seismic implications

    Science.gov (United States)

    Cao, Yi; Jung, Haemyeong; Song, Shuguang

    2018-01-01

    Though extensively studied, the roles of olivine crystal preferred orientations (CPOs or fabrics) in affecting the seismic anisotropies in the Earth's upper mantle are rather complicated and still not fully known. In this study, we attempted to address this issue by analyzing the seismic anisotropies [e.g., P-wave anisotropy (AVp), S-wave polarization anisotropy (AVs), radial anisotropy (ξ), and Rayleigh wave anisotropy (G)] of the Songshugou peridotites (dunite dominated) in the Qinling orogen in central China, based on our previously reported olivine CPOs. The seismic anisotropy patterns of olivine aggregates in our studied samples are well consistent with the prediction for their olivine CPO types; and the magnitude of seismic anisotropies shows a striking positive correlation with equilibrium pressure and temperature (P-T) conditions. Significant reductions of seismic anisotropies (AVp, max. AVs, and G) are observed in porphyroclastic dunite compared to coarse- and fine-grained dunites, as the results of olivine CPO transition (from A-/D-type in coarse-grained dunite, through AG-type-like in porphyroclastic dunite, to B-type-like in fine-grained dunite) and strength variation (weakening: A-/D-type → AG-type-like; strengthening: AG-type-like → B-type-like) during dynamic recrystallization. The transition of olivine CPOs from A-/D-type to B-/AG-type-like in the forearc mantle may weaken the seismic anisotropies and deviate the fast velocity direction and the fast S-wave polarization direction from trench-perpendicular to trench-oblique direction with the cooling and aging of forearc mantle. Depending on the size and distribution of the peridotite body such as the Songshugou peridotites, B- and AG-type-like olivine CPOs can be an additional (despite minor) local contributor to the orogen-parallel fast velocity direction and fast shear-wave polarization direction in the orogenic crust such as in the Songshugou area in Qinling orogen.

  7. Teaching seismic methods using interactive 3D Earth globe

    Science.gov (United States)

    Weeraratne, D. S.; Rogers, D. B.

    2011-12-01

    Instructional techniques for study of seismology are greatly enhanced by three dimensional (3D) visualization. Seismic rays that pass through the Earth's interior are typically viewed in 2D slices of the Earth's interior. Here we present the use of a 3D Earth globe manufactured by Real World Globes. This globe displays a dry-erase high resolution glossy topography and bathymetry from the Smith and Sandwell data archives at its surface for interactive measurements and hands-on marking of many seismic observations such as earthquake locations, source-receiver distances, surface wave propagation, great circle paths, ocean circulation patterns, airplane trajectories, etc.. A new interactive feature (designed collaboratively with geoscientists) allows cut away and disassembly of sections of the exterior shell revealing a full cross section depicting the Earth's interior layers displayed to scale with a dry-erase work board. The interior panel spins to any azimuth and provides a depth measurement scale to allow exact measurements and marking of earthquake depths, true seismic ray path propagation, ray path bottoming depths, shadow zones, and diffraction patterns. A demo of this globe and example activities will be presented.

  8. Earthquake potential in California-Nevada implied by correlation of strain rate and seismicity

    Science.gov (United States)

    Zeng, Yuehua; Petersen, Mark D.; Shen, Zheng-Kang

    2018-01-01

    Rock mechanics studies and dynamic earthquake simulations show that patterns of seismicity evolve with time through (1) accumulation phase, (2) localization phase, and (3) rupture phase. We observe a similar pattern of changes in seismicity during the past century across California and Nevada. To quantify these changes, we correlate GPS strain rates with seismicity. Earthquakes of M > 6.5 are collocated with regions of highest strain rates. By contrast, smaller magnitude earthquakes of M ≥ 4 show clear spatiotemporal changes. From 1933 to the late 1980s, earthquakes of M ≥ 4 were more diffused and broadly distributed in both high and low strain rate regions (accumulation phase). From the late 1980s to 2016, earthquakes were more concentrated within the high strain rate areas focused on the major fault strands (localization phase). In the same time period, the rate of M > 6.5 events also increased significantly in the high strain rate areas. The strong correlation between current strain rate and the later period of seismicity indicates that seismicity is closely related to the strain rate. The spatial patterns suggest that before the late 1980s, the strain rate field was also broadly distributed because of the stress shadows from previous large earthquakes. As the deformation field evolved out of the shadow in the late 1980s, strain has refocused on the major fault systems and we are entering a period of increased risk for large earthquakes in California.

  9. EVALUATION ON THE SEISMIC RESPONSE CHARACTERISTICS OF A ROAD EMBANKMENT BASED ON THE MODERATE EARTHQUAKE OBSERVATION AND THE MICROTREMOR MEASUREMENT

    Science.gov (United States)

    Hata, Yoshiya; Ichii, Koji; Yamada, Masayuki; Tokida, Ken-Ichi; Takezawa, Koichiro; Shibao, Susumu; Mitsushita, Junji; Murata, Akira; Furukawa, Aiko; Koizumi, Keigo

    Accurate evaluation on the seismic response characteristics of a road embankment is very important for the rational seismic assessment. However, in a lot of previous studies, the seismic response characteristics of an embankment were evaluated based on the results of shaking table test, centrifuge model test and dynamic FEM analysis. In this study, the transfer function and the shear wave velocity of a road embankment were evaluated based on the in-situ records of moderate earthquake observation and microtremor measurement. Test results show the possibility that the shear wave velocity of an embankment can be estimated by the earthquake observation or the microtremor measurement and the dynamic linear FEM analysis.

  10. A seismic refraction experiment in 2000 on the Mizuho Plateau, East Antarctica (JARE-41 -Outline of observations-

    Directory of Open Access Journals (Sweden)

    Hiroki Miyamachi

    2001-03-01

    Full Text Available A seismic refraction experiment was successfully conducted along the S17-Z20 profile on the Mizuho route, in East Antarctica, in the austral summer season of 1999-2000 (JARE-41. One hundred sixty seismic stations were temporarily installed along the profile about 180km long and five large shots with dynamite of about 600kg were fired. In addition, two shots with charge sizes of 250kg and 25kg were arranged along the profile. The obtained seismic records show the clear onsets of the first arrivals in a distance range of less than 100km from each large shot. In particular, seismic waves traveling through the ice sheet and the dispersed surface waves are distinctly observed. Some later phases are also detected. The first travel time data obtained show that a P-wave velocity in the ice sheet is 3.6-3.8km/s and an apparent velocity in the rock basement just beneath the ice sheet is almost 6.2km/s. This report describes the basic outline of the experiment and the seismic data obtained.

  11. Forecasting probabilistic seismic shaking for greater Tokyo from 400 years of intensity observations (Invited)

    Science.gov (United States)

    Bozkurt, S.; Stein, R. S.; Toda, S.

    2009-12-01

    The long recorded history of earthquakes in Japan affords an opportunity to forecast seismic shaking exclusively from past shaking. We calculate the time-averaged (Poisson) probability of severe shaking by using more than 10,000 intensity observations recorded since AD 1600 in a 350-km-wide box centered on Tokyo. Unlike other hazard assessment methods, source and site effects are included without modeling, and we do not need to know the size or location of any earthquake or the location and slip rate of any fault. The two key assumptions are that the slope of the observed frequency-intensity relation at every site is the same; and that the 400-year record is long enough to encompass the full range of seismic behavior. Tests we conduct here suggest that both assumptions are sound. The resulting 30-year probability of IJMA≥6 shaking (~PGA≥0.9 g or MMI≥IX) is 30-40% in Tokyo, Kawasaki, and Yokohama, and 10-15% in Chiba and Tsukuba. This result means that there is a 30% chance that 4 million people would be subjected to IJMA≥6 shaking during an average 30-year period. We also produce exceedance maps of peak ground acceleration for building code regulations, and calculate short-term hazard associated with a hypothetical catastrophe bond. Our results resemble an independent assessment developed from conventional seismic hazard analysis for greater Tokyo. Over 10000 intensity observations stored and analyzed using geostatistical tools of GIS. Distribution of historical data is shown on this figure.

  12. Patterns in Seismicity at Mt St Helens and Mt Unzen

    Science.gov (United States)

    Lamb, Oliver; De Angelis, Silvio; Lavallee, Yan

    2014-05-01

    Cyclic behaviour on a range of timescales is a well-documented feature of many dome-forming volcanoes. Previous work on Soufrière Hills volcano (Montserrat) and Volcán de Colima (Mexico) revealed broad-scale similarities in behaviour implying the potential to develop general physical models of sub-surface processes [1]. Using volcano-seismic data from Mt St Helens (USA) and Mt Unzen (Japan) this study explores parallels in long-term behaviour of seismicity at two dome-forming systems. Within the last twenty years both systems underwent extended dome-forming episodes accompanied by large Vulcanian explosions or dome collapses. This study uses a suite of quantitative and analytical techniques which can highlight differences or similarities in volcano seismic behaviour, and compare the behaviour to changes in activity during the eruptive episodes. Seismic events were automatically detected and characterized on a single short-period seismometer station located 1.5km from the 2004-2008 vent at Mt St Helens. A total of 714 826 individual events were identified from continuous recording of seismic data from 22 October 2004 to 28 February 2006 (average 60.2 events per hour) using a short-term/long-term average algorithm. An equivalent count will be produced from seismometer recordings over the later stages of the 1991-1995 eruption at MT Unzen. The event count time-series from Mt St Helens is then analysed using Multi-taper Method and the Short-Term Fourier Transform to explore temporal variations in activity. Preliminary analysis of seismicity from Mt St Helens suggests cyclic behaviour of subannual timescale, similar to that described at Volcán de Colima and Soufrière Hills volcano [1]. Frequency Index and waveform correlation tools will be implemented to analyse changes in the frequency content of the seismicity and to explore their relations to different phases of activity at the volcano. A single station approach is used to gain a fine-scale view of variations in

  13. Second and Third Quarters Hanford Seismic Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, Donald C.; Reidel, Stephen P.; Rohay, Alan C.

    1999-10-08

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site.

  14. Tomographic analysis of self-potential data in a seismic area of Southern Italy

    Energy Technology Data Exchange (ETDEWEB)

    Lapenna, V; Piscitelli, S [Consiglio Nazionale delle Ricerche, Tito, PZ (Italy). Ist. di Metodologie Avanzate di Analisi Ambientale; Patella, D [Naples Univ. Federico II, Naples (Italy). Dipt. di Scienze Fisiche

    2000-04-01

    The time and space anomalous behaviour of the self-potential (SP) field recorded in a seismic area of Southern Apennines (Italy) in the period June 1992-November 1994 are discussed. The SP data are modelled using a new tomographic method based on the search for similarities between the observed SP sequence and the surface signature of the electric field due to a scanning point source with unitary positive charge. The point scanner is ideally moved in a vertical cross-section through the profile and a regular 2D matrix of charge occurrence probability values is thus obtained. These values are used to image the state of electric polarization in the subsoil, compatible with the observed SP surface pattern. A selection of 2D tomographies across the profile is then discussed in order to outline the SP source geometry and dynamics within the faulted structure. Finally, the time pattern of the SP polarization state is compared with the local seismicity in the frame of the rock dilatancy-fluid diffusion theory. This comparison allows to exclude a direct relationship of the SP time behaviour with the seismic sequences which occurred in the area during the SP monitoring period.

  15. AcquisitionFootprintAttenuationDrivenbySeismicAttributes

    Directory of Open Access Journals (Sweden)

    Cuellar-Urbano Mayra

    2014-04-01

    Full Text Available Acquisition footprint, one of the major problems that PEMEX faces in seismic imaging, is noise highly correlated to the geometric array of sources and receivers used for onshore and offshore seismic acquisitions. It prevails in spite of measures taken during acquisition and data processing. This pattern, throughout the image, is easily confused with geological features and misguides seismic attribute computation. In this work, we use seismic data from PEMEX Exploración y Producción to show the conditioning process for removing random and coherent noise using linear filters. Geometric attributes used in a workflow were computed for obtaining an acquisition footprint noise model and adaptively subtract it from the seismic data.

  16. Gaps, tears and seismic anisotropy around the subducting slabs of the Antilles

    Science.gov (United States)

    Schlaphorst, David; Kendall, J.-Michael; Baptie, Brian; Latchman, Joan L.; Tait, Steve

    2017-02-01

    Seismic anisotropy in and beneath the subducting slabs of the Antilles is investigated using observations of shear-wave splitting. We use a combination of teleseismic and local events recorded at three-component broadband seismic stations on every major island in the area to map anisotropy in the crust, the mantle wedge and the slab/sub-slab mantle. To date this is the most comprehensive study of anisotropy in this region, involving 52 stations from 8 seismic networks. Local event delay times (0.21 ± 0.12 s) do not increase with depth, indicating a crustal origin in anisotropy and an isotropic mantle wedge. Teleseismic delay times are much larger (1.34 ± 0.47 s), with fast shear-wave polarisations that are predominantly parallel to trend of the arc. These observations can be interpreted three ways: (1) the presence of pre-existing anisotropy in the subducting slab; (2) anisotropy due to sub-slab mantle flow around the eastern margin of the nearly stationary Caribbean plate; (3) some combination of both mechanisms. However, there are two notable variations in the trench-parallel pattern of anisotropy - trench-perpendicular alignment is observed in narrow regions east of Puerto Rico and south of Martinique. These observations support previously proposed ideas of eastward sublithospheric mantle flow through gaps in the slab. Furthermore, the pattern of anisotropy south of Martinique, near Saint Lucia is consistent with a previously proposed location for the boundary between the North and South American plates.

  17. Time variations in the mechanical characteristics of local crustal segments according to seismic observations

    Science.gov (United States)

    Kocharyan, G. G.; Gamburtseva, N. G.; Sanina, I. A.; Danilova, T. V.; Nesterkina, M. A.; Gorbunova, E. M.; Ivanchenko, G. N.

    2011-04-01

    The results of the seismic observations made with two different experimental setups are presented. In the first case, the signals produced by underground nuclear explosions at the Semipalatinsk Test Site were measured on a linear profile, which allowed one to definitely outline the areas where the mechanical properties of rocks experienced considerable time variations. In the second case, the waves excited by the open-pit mine blasts recorded at a small-aperture seismic array at the Mikhnevo Geophysical Station (Institute of Geosphere Dynamics, Russian Academy of Sciences) on the East European Platform favored the estimation of variations in the integral characteristics of the seismic path. Measurements in aseismic regions characterized by diverse geological structure and different tectonic conditions revealed similar effects of the strong dependency of seismic parameters on the time of explosions. Here, the variations experienced by the maximum amplitudes of oscillations and irrelevant to seasonal changes or local conditions reached a factor of two. The generic periods of these variations including the distinct annual rhythm are probably the fragments of a lower-frequency process. The obtained results suggest that these variations are due to changes in the stressstrain state of active fault zones, which, in turn, can be associated with the macroscale motion of large blocks triggered by tidal strains, tectonic forces and, possibly, variations in the rate of the Earth's rotation.

  18. Multi-Parameter Observation and Detection of Pre-Earthquake Signals in Seismically Active Areas

    Science.gov (United States)

    Ouzounov, D.; Pulinets, S.; Parrot, M.; Liu, J. Y.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    The recent large earthquakes (M9.0 Tohoku, 03/2011; M7.0 Haiti, 01/2010; M6.7 L Aquila, 04/2008; and M7.9 Wenchuan 05/2008) have renewed interest in pre-anomalous seismic signals associated with them. Recent workshops (DEMETER 2006, 2011 and VESTO 2009 ) have shown that there were precursory atmospheric /ionospheric signals observed in space prior to these events. Our initial results indicate that no single pre-earthquake observation (seismic, magnetic field, electric field, thermal infrared [TIR], or GPS/TEC) can provide a consistent and successful global scale early warning. This is most likely due to complexity and chaotic nature of earthquakes and the limitation in existing ground (temporal/spatial) and global satellite observations. In this study we analyze preseismic temporal and spatial variations (gas/radon counting rate, atmospheric temperature and humidity change, long-wave radiation transitions and ionospheric electron density/plasma variations) which we propose occur before the onset of major earthquakes:. We propose an Integrated Space -- Terrestrial Framework (ISTF), as a different approach for revealing pre-earthquake phenomena in seismically active areas. ISTF is a sensor web of a coordinated observation infrastructure employing multiple sensors that are distributed on one or more platforms; data from satellite sensors (Terra, Aqua, POES, DEMETER and others) and ground observations, e.g., Global Positioning System, Total Electron Content (GPS/TEC). As a theoretical guide we use the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model to explain the generation of multiple earthquake precursors. Using our methodology, we evaluated retrospectively the signals preceding the most devastated earthquakes during 2005-2011. We observed a correlation between both atmospheric and ionospheric anomalies preceding most of these earthquakes. The second phase of our validation include systematic retrospective analysis for more than 100 major earthquakes (M>5

  19. Seismic Signals of the 2014 Landslide near Oso, Washington

    Science.gov (United States)

    Allstadt, K.; Moran, S. C.; Malone, S. D.; Iverson, R. M.; George, D. L.

    2014-12-01

    The 22 March 2014 landslide near Oso, Washington rapidly moved a large volume of material (~8 million m^3), resulting in the efficient generation of seismic waves that were recorded over 350 km away. Analysis of these seismic signals significantly improves our understanding of the dynamics and timing of events. In contrast to the double couple mechanism of earthquakes, at long periods, the equivalent mechanism of a landslide is a single force. Inversion of the long-period waves for the forces exerted on the earth by the landslide yields a time-series that peaks at nearly 10^10 N and lasts ~1.5 minutes. This result, when combined with higher-frequency wave analysis, eyewitness reports, and field observations, implies a complex failure sequence. The earliest force pulses begin before the buildup in high-frequency energy, suggesting the slide began coherently before transitioning within a minute into the highly disrupted and destructive debris-avalanche flow that killed 43 people. This transition may have been due to a collapse of additional material that loaded the material downslope. Seismically observable "aftershock" landslides continued for weeks. The first and largest occurred a few minutes after the main failure sequence, and was followed by 15 more over the next ~4 hours that were observable at the closest seismic station (11 km away). Three USGS "spiders" equipped with GPS and seismic sensors were deployed by helicopter 10 days later as part of a monitoring effort. Due to their proximity, these seismometers detected signals from even minor collapses, some visually identified by human observers. This augmented network revealed interesting temporal patterns in the post-slide activity, which was dominated by sloughing of material from the headscarp, but also creep of the upper block of the failure mass at a rate of about 1 cm/day. This study shows the value of seismic analysis in landslide investigations to provide timing constraints and help improve our

  20. Induced Seismicity

    Science.gov (United States)

    Keranen, Katie M.; Weingarten, Matthew

    2018-05-01

    The ability of fluid-generated subsurface stress changes to trigger earthquakes has long been recognized. However, the dramatic rise in the rate of human-induced earthquakes in the past decade has created abundant opportunities to study induced earthquakes and triggering processes. This review briefly summarizes early studies but focuses on results from induced earthquakes during the past 10 years related to fluid injection in petroleum fields. Study of these earthquakes has resulted in insights into physical processes and has identified knowledge gaps and future research directions. Induced earthquakes are challenging to identify using seismological methods, and faults and reefs strongly modulate spatial and temporal patterns of induced seismicity. However, the similarity of induced and natural seismicity provides an effective tool for studying earthquake processes. With continuing development of energy resources, increased interest in carbon sequestration, and construction of large dams, induced seismicity will continue to pose a hazard in coming years.

  1. Mantle wedge structure beneath the Yamato Basin, southern part of the Japan Sea, revealed by long-term seafloor seismic observations

    Science.gov (United States)

    Shinohara, M.; Nakahigashi, K.; Yamashita, Y.; Yamada, T.; Mochizuki, K.; Shiobara, H.

    2016-12-01

    The Japanese Islands are located at subduction zones where Philippine Sea (PHS) plate subducts from the southeast beneath the Eurasian plate and the Pacific plate descends from the east beneath the PHS and Eurasian plates and have a high density of seismic stations. Many seismic tomography studies using land seismic station data were conducted to reveal the seismic structure. These studies discussed the relationship between heterogeneous structures and the release of fluids from the subducting slab, magma generation and movement in the subduction zone. However, regional tomography using the land station data did not have a sufficient resolution to image a deep structure beneath the Japan Sea.To obtain the deep structure, observations of natural earthquakes within the Japan Sea are essential. Therefore, we started the repeating long-term seismic observations using ocean bottom seismometers(OBSs) in the Yamato Basin from 2013 to 2016. We apply travel-time tomography method to the regional earthquake and teleseismic arrival-data recorded by OBSs and land stations. In this presentation, we will report the P and S wave tomographic images down to a depth of 300 km beneath the southern part of the Japan Sea. This study was supported by "Integrated Research Project on Seismic and Tsunami Hazards around the Sea of Japan" conducted by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan.

  2. The Role of Synthetic Reconstruction Tests in Seismic Tomography

    Science.gov (United States)

    Rawlinson, N.; Spakman, W.

    2015-12-01

    Synthetic reconstruction tests are widely used in seismic tomography as a means for assessing the robustness of solutions produced by linear or iterative non-linear inversion schemes. The most common test is the so-called checkerboard resolution test, which uses an alternating pattern of high and low wavespeeds (or some other seismic property such as attenuation). However, checkerboard tests have a number of limitations, including that they (1) only provide indirect evidence of quantitative measures of reliability such as resolution and uncertainty; (2) give a potentially misleading impression of the range of scale-lengths that can be resolved; (3) don't give a true picture of the structural distortion or smearing caused by the data coverage; and (4) result in an inverse problem that is biased towards an accurate reconstruction. The widespread use of synthetic reconstruction tests in seismic tomography is likely to continue for some time yet, so it is important to implement best practice where possible. The goal here is to provide a general set of guidelines, derived from the underlying theory and illustrated by a series of numerical experiments, on their implementation in seismic tomography. In particular, we recommend (1) using a sparse distribution of spikes, rather than the more conventional tightly-spaced checkerboard; (2) using the identical data coverage (e.g. geometric rays) for the synthetic model that was computed for the observation-based model; (3) carrying out multiple tests using anomalies of different scale length; (4) exercising caution when analysing synthetic recovery tests that use anomaly patterns that closely mimic the observation-based model; (5) investigating the trade-off between data noise levels and the minimum wavelength of recovered structure; (6) where possible, test the extent to which preconditioning (e.g. identical parameterization for input and output models) influences the recovery of anomalies.

  3. Annual Hanford seismic report - fiscal year 1996

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.

    1996-12-01

    Seismic monitoring (SM) at the Hanford Site was established in 1969 by the US Geological Survey (USGS) under a contract with the US Atomic Energy Commission. Since 1980, the program has been managed by several contractors under the US Department of Energy (USDOE). Effective October 1, 1996, the Seismic Monitoring workscope, personnel, and associated contracts were transferred to the USDOE Pacific Northwest National Laboratory (PNNL). SM is tasked to provide an uninterrupted collection and archives of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) located on and encircling the Hanford Site. SM is also tasked to locate and identify sources of seismic activity and monitor changes in the historical pattern of seismic activity at the Hanford Site. The data compiled are used by SM, Waste Management, and engineering activities at the Hanford Site to evaluate seismic hazards and seismic design for the Site

  4. 3-D velocity structures, seismicity patterns, and their tectonic implications across the Andean Foreland of San Juan Argentina

    Science.gov (United States)

    Asmerom, Biniam Beyene

    Three-dimensional velocity structures and seismicity patterns have been studied across the Andean Foreland of San Juan Argentina using data acquired by PANDA deployment. Distinct velocity variations are revealed between Precordillera in the west and Pie de Palo in the east. The low velocity anomaly beneath Precordillera is associated with the presence of thick sedimentary rocks and thick sediment cover of Matagusanos valley. Similarly, the high velocity anomaly east of Eastern Precordillera is correlated with the presence of basement rocks. These anomalies are observed from the station corrections of Joint Hypocentral Determination (JHD) analysis. A northeast trending west dipping high velocity anomaly is imaged beneath the southern half of Pie de Palo. This anomaly represents a Grenvillian suture zone formed when Pie de Palo collided with the Precordillera. Relocated seismicity using 3-D Vp and Vs models obtained in this study revealed crustal scale buried faults beneath the Eastern Precordillera and Sierra Pie de Palo. The fault defined by the seismicity extend down to a depth of ˜ 40 km and ~35 km beneath Precordillera and Pie de Palo, respectively, defining the lower bound of the brittle to ductile transition of the crust. These results confirm that present day active crustal thickening involves the entire crust in the tectonic process and results in thick-skinned deformation beneath both the Eastern Precordillera and Pie de Palo. Based on the seismicity pattern, geomorphology, and velocity structures, Sierra Pie de Palo, a basement uplift block, can be divided into two separate semi-blocks separated by a northeast trending fracture zone. The northern block is characterized by a well-defined west dipping fault and low Vp/Vs ratio particularly at a depth of 12 to 16 km, while the southern block shows a poorly-defined east dipping fault with high Vp/Vs ratio at a depth of 20 to 26 km. Spatial distribution of the well-relocated crustal earthquakes along these

  5. Complex Seismic Anisotropy at the Edges of a Very-low Velocity Province in the Lowermost Mantle

    Science.gov (United States)

    Wang, Y.; Wen, L.

    2005-12-01

    phases have similar propagation paths in the lithosphere beneath the array, but different sampling points near the core mantle boundary. The anisotropy in the lithosphere should have a similar influence on SKS and SKKS phases. Therefore, the similar anisotropy obtained from the SKS and SKKS phases sampling inside the VLVP and its correlation with seismic stations suggest that the observed anisotropy variation across the seismic array is mainly due to the anisotropy in the lithosphere beneath the Kaapvaal seismic array, and the interior of the VLVP is isotropic or weakly anisotropic. On the other hand, for the SKS and SKKS phases sampling at the edges of the VLVP, the observed complex anisotropy pattern and the lack of correlation between the results from the SKS and SKKS analyses indicate that part of that anisotropy has to originate from the lowermost mantle near the exit points of these phases at the core mantle boundary, revealing a complex flow pattern at the edges of the VLVP.

  6. A Discrete Element Method Approach to Progressive Localization of Damage in Granular Rocks and Associated Seismicity

    Science.gov (United States)

    Vora, H.; Morgan, J.

    2017-12-01

    Brittle failure in rock under confined biaxial conditions is accompanied by release of seismic energy, known as acoustic emissions (AE). The objective our study is to understand the influence of elastic properties of rock and its stress state on deformation patterns, and associated seismicity in granular rocks. Discrete Element Modeling is used to simulate biaxial tests on granular rocks of defined grain size distribution. Acoustic Energy and seismic moments are calculated from microfracture events as rock is taken to conditions of failure under different confining pressure states. Dimensionless parameters such as seismic b-value and fractal parameter for deformation, D-value, are used to quantify seismic character and distribution of damage in rock. Initial results suggest that confining pressure has the largest control on distribution of induced microfracturing, while fracture energy and seismic magnitudes are highly sensitive to elastic properties of rock. At low confining pressures, localized deformation (low D-values) and high seismic b-values are observed. Deformation at high confining pressures is distributed in nature (high D-values) and exhibit low seismic b-values as shearing becomes the dominant mode of microfracturing. Seismic b-values and fractal D-values obtained from microfracturing exhibit a linear inverse relationship, similar to trends observed in earthquakes. Mode of microfracturing in our simulations of biaxial compression tests show mechanistic similarities to propagation of fractures and faults in nature.

  7. Parameters of the Seismic system in Armenia

    Energy Technology Data Exchange (ETDEWEB)

    Karapetyan, N.K.

    1976-01-01

    An examination is made of the seismic system parameters in Armenia and the adjoining regions of Azerbaidzhan, Georgia, Iran, and Turkey. Data are given on correlations between the energy class, magnitude and intensity scale of earthquakes, and values for the level of activity and angular coefficients as a function of the region under examination, the time of observation, and method of determination; and diagrams are presented which illustrate the pattern of earthquake recurrence for the period 1679 to 1968, and observation times essential for determining earthquake recurrence with a given accuracy of 10% for the Armenian Highlands. 3 references, 2 figures, 2 tables.

  8. Identification of MHF (massive hydraulic fracturing) fracture planes and flow paths: A correlation of well log data with patterns in locations of induced seismicity

    Energy Technology Data Exchange (ETDEWEB)

    Dreesen, D.; Malzahn, M.; Fehler, M.; Dash, Z.

    1987-01-01

    One of the critical steps in developing a hot dry rock geothermal system is the creation of flow paths through the rock between two wellbores. To date, circulation systems have only been created by drilling one wellbore, hydraulically fracturing the well (which induces microearthquakes), locating the microearthquakes and then drilling a second wellbore through the zone of seismicity. A technique for analyzing the pattern of seismicity to determine where fracture planes are located in the seismically active region has recently been developed. This allows us to distinguish portions of the seismically active volume which are most likely to contain significant flow paths. We applied this technique to seismic data collected during a massive hydraulic fracturing (MHF) treatment and found that the fracture planes determined by the seismic method are confirmed by borehole temperature and caliper logs which indicate where permeable fractures and/or zones of weakness intersect the wellbores. A geometric model based on these planes and well log data has enhanced our understanding of the reservoir flow paths created by fracturing and is consistent with results obtained during production testing of the reservoir.

  9. Subduction zone locking, strain partitioning, intraplate deformation and their implications to Seismic Hazards in South America

    Science.gov (United States)

    Galgana, G. A.; Mahdyiar, M.; Shen-Tu, B.; Pontbriand, C. W.; Klein, E.; Wang, F.; Shabestari, K.; Yang, W.

    2014-12-01

    We analyze active crustal deformation in South America (SA) using published GPS observations and historic seismicity along the Nazca Trench and the active Ecuador-Colombia-Venezuela Plate boundary Zone. GPS-constrained kinematisc models that incorporate block and continuum techniques are used to assess patterns of regional tectonic deformation and its implications to seismic potential. We determine interplate coupling distributions, fault slip-rates, and intraplate crustal strain rates in combination with historic earthquakes within 40 seismic zones crust to provide moment rate constraints. Along the Nazca subduction zone, we resolve a series of highly coupled patches, interpreted as high-friction producing "asperities" beneath the coasts of Ecuador, Peru and Chile. These include areas responsible for the 2010 Mw 8.8 Maule Earthquake and the 2014 Mw 8.2 Iquique Earthquake. Predicted tectonic block motions and fault slip rates reveal that the northern part of South America deforms rapidly, with crustal fault slip rates as much as ~20 mm/a. Fault slip and locking patterns reveal that the Oca Ancón-Pilar-Boconó fault system plays a key role in absorbing most of the complex eastward and southward convergence patterns in northeastern Colombia and Venezuela, while the near-parallel system of faults in eastern Colombia and Ecuador absorb part of the transpressional motion due to the ~55 mm/a Nazca-SA plate convergence. These kinematic models, in combination with historic seismicity rates, provide moment deficit rates that reveal regions with high seismic potential, such as coastal Ecuador, Bucaramanga, Arica and Antofagasta. We eventually use the combined information from moment rates and fault coupling patterns to further constrain stochastic seismic hazard models of the region by implementing realistic trench rupture scenarios (see Mahdyiar et al., this volume).

  10. Estimation of Source and Attenuation Parameters from Ground Motion Observations for Induced Seismicity in Alberta

    Science.gov (United States)

    Novakovic, M.; Atkinson, G. M.

    2015-12-01

    We use a generalized inversion to solve for site response, regional source and attenuation parameters, in order to define a region-specific ground-motion prediction equation (GMPE) from ground motion observations in Alberta, following the method of Atkinson et al. (2015 BSSA). The database is compiled from over 200 small to moderate seismic events (M 1 to 4.2) recorded at ~50 regional stations (distances from 30 to 500 km), over the last few years; almost all of the events have been identified as being induced by oil and gas activity. We remove magnitude scaling and geometric spreading functions from observed ground motions and invert for stress parameter, regional attenuation and site amplification. Resolving these parameters allows for the derivation of a regionally-calibrated GMPE that can be used to accurately predict amplitudes across the region in real time, which is useful for ground-motion-based alerting systems and traffic light protocols. The derived GMPE has further applications for the evaluation of hazards from induced seismicity.

  11. Synthetic seismicity for the San Andreas fault

    Directory of Open Access Journals (Sweden)

    S. N. Ward

    1994-06-01

    Full Text Available Because historical catalogs generally span only a few repetition intervals of major earthquakes, they do not provide much constraint on how regularly earthquakes recur. In order to obtain better recurrence statistics and long-term probability estimates for events M ? 6 on the San Andreas fault, we apply a seismicity model to this fault. The model is based on the concept of fault segmentation and the physics of static dislocations which allow for stress transfer between segments. Constraints are provided by geological and seismological observations of segment lengths, characteristic magnitudes and long-term slip rates. Segment parameters slightly modified from the Working Group on California Earthquake Probabilities allow us to reproduce observed seismicity over four orders of magnitude. The model yields quite irregular earthquake recurrence patterns. Only the largest events (M ? 7.5 are quasi-periodic; small events cluster. Both the average recurrence time and the aperiodicity are also a function of position along the fault. The model results are consistent with paleoseismic data for the San Andreas fault as well as a global set of historical and paleoseismic recurrence data. Thus irregular earthquake recurrence resulting from segment interaction is consistent with a large range of observations.

  12. Heat-flow and lateral seismic-velocity heterogeneities near Deep Sea Drilling Project-Ocean Drilling Program Site 504

    Science.gov (United States)

    Lowell, Robert P.; Stephen, Ralph A.

    1991-11-01

    Both conductive heat-flow and seismic-velocity data contain information relating to the permeability of the oceanic crust. Deep Sea Drilling Project-Ocean Drilling Program Site 504 is the only place where both detailed heat-flow and seismic-velocity field studies have been conducted at the same scale. In this paper we examine the correlation between heat flow and lateral heterogeneities in seismic velocity near Site 504. Observed heterogeneities in seismic velocity, which are thought to be related to variations in crack density in the upper 500 m of the basaltic crust, show little correlation with the heat-flow pattern. This lack of correlation highlights some of the current difficulties in using seismic-velocity data to infer details of spatial variations in permeability that are significant in controlling hydrothermal circulation.

  13. Seismic Behavior and Retrofit of Concrete Columns of Old R.C. Buildings Reinforced With Plain Bars

    International Nuclear Information System (INIS)

    Marefat, M. S.; Arani, K. Karbasi; Shirazi, S. M. Hassanzadeh; Amrollahi, A.

    2008-01-01

    Seismic rehabilitation of old buildings has been a major challenge in recent years. The first step in seismic rehabilitation is evaluation of the existing capacity and the seismic behaviour. For investigation of the seismic behaviour of RC members of a real old building in Iran which has been designed and constructed by European engineers in 1940, three half-scale column specimens reinforced with plain bars have been tested. The tests indicate significant differences between the responses of specimens reinforced by plain bars relative to those reinforced by deformed bars. A regular pattern of cracking and a relatively brittle behaviour was observed while a relatively large residual strength appeared after sudden drop of initial strength and stiffness due to slip of longitudinal bars

  14. Martian seismicity

    International Nuclear Information System (INIS)

    Goins, N.R.; Lazarewicz, A.R.

    1979-01-01

    During the Viking mission to Mars, the seismometer on Lander II collected approximately 0.24 Earth years of observations data, excluding periods of time dominated by wind-induced Lander vibration. The ''quiet-time'' data set contains no confirmed seismic events. A proper assessment of the significance of this fact requires quantitative estimates of the expected detection rate of the Viking seismometer. The first step is to calculate the minimum magnitude event detectable at a given distance, including the effects of geometric spreading, anelastic attenuation, seismic signal duration, seismometer frequency response, and possible poor ground coupling. Assuming various numerical quantities and a Martian seismic activity comparable to that of intraplate earthquakes, the appropriate integral gives an expected annual detection rate of 10 events, nearly all of which are local. Thus only two to three events would be expected in the observational period presently on hand and the lack of observed events is not in gross contradiction to reasonable expectations. Given the same assumptions, a seismometer 20 times more sensitive than the present instrument would be expected to detect about 120 events annually

  15. Evaluation of near-surface attenuation of S-waves based on PS logging and vertical array seismic observation

    International Nuclear Information System (INIS)

    Kobayashi, Genyu

    2014-01-01

    As a result of the lessons learned from the experience of Kashiwazaki-Kariwa NPP due to the 2007 Niigata Chuetsu Oki Earthquake, it has become clear that a rational method of near-surface attenuation characteristics covering a depth range from engineering bedrock to seismic bedrock urgently needs to be established. JNES performed PS logging and vertical array seismic ground motion observation at a soil ground site (SODB 1. site), sedimentary rock site, and an igneous rock site (SODB 2. site), and proposed an evaluation method of attenuation characteristics (site characteristics) for the deep underground. (author)

  16. Quantifying seismic anisotropy induced by small-scale chemical heterogeneities

    Science.gov (United States)

    Alder, C.; Bodin, T.; Ricard, Y.; Capdeville, Y.; Debayle, E.; Montagner, J. P.

    2017-12-01

    Observations of seismic anisotropy are usually used as a proxy for lattice-preferred orientation (LPO) of anisotropic minerals in the Earth's mantle. In this way, seismic anisotropy observed in tomographic models provides important constraints on the geometry of mantle deformation associated with thermal convection and plate tectonics. However, in addition to LPO, small-scale heterogeneities that cannot be resolved by long-period seismic waves may also produce anisotropy. The observed (i.e. apparent) anisotropy is then a combination of an intrinsic and an extrinsic component. Assuming the Earth's mantle exhibits petrological inhomogeneities at all scales, tomographic models built from long-period seismic waves may thus display extrinsic anisotropy. In this paper, we investigate the relation between the amplitude of seismic heterogeneities and the level of induced S-wave radial anisotropy as seen by long-period seismic waves. We generate some simple 1-D and 2-D isotropic models that exhibit a power spectrum of heterogeneities as what is expected for the Earth's mantle, that is, varying as 1/k, with k the wavenumber of these heterogeneities. The 1-D toy models correspond to simple layered media. In the 2-D case, our models depict marble-cake patterns in which an anomaly in shear wave velocity has been advected within convective cells. The long-wavelength equivalents of these models are computed using upscaling relations that link properties of a rapidly varying elastic medium to properties of the effective, that is, apparent, medium as seen by long-period waves. The resulting homogenized media exhibit extrinsic anisotropy and represent what would be observed in tomography. In the 1-D case, we analytically show that the level of anisotropy increases with the square of the amplitude of heterogeneities. This relation is numerically verified for both 1-D and 2-D media. In addition, we predict that 10 per cent of chemical heterogeneities in 2-D marble-cake models can

  17. Using Seismic Interferometry to Investigate Seismic Swarms

    Science.gov (United States)

    Matzel, E.; Morency, C.; Templeton, D. C.

    2017-12-01

    Seismicity provides a direct means of measuring the physical characteristics of active tectonic features such as fault zones. Hundreds of small earthquakes often occur along a fault during a seismic swarm. This seismicity helps define the tectonically active region. When processed using novel geophysical techniques, we can isolate the energy sensitive to the fault, itself. Here we focus on two methods of seismic interferometry, ambient noise correlation (ANC) and the virtual seismometer method (VSM). ANC is based on the observation that the Earth's background noise includes coherent energy, which can be recovered by observing over long time periods and allowing the incoherent energy to cancel out. The cross correlation of ambient noise between a pair of stations results in a waveform that is identical to the seismogram that would result if an impulsive source located at one of the stations was recorded at the other, the Green function (GF). The calculation of the GF is often stable after a few weeks of continuous data correlation, any perturbations to the GF after that point are directly related to changes in the subsurface and can be used for 4D monitoring.VSM is a style of seismic interferometry that provides fast, precise, high frequency estimates of the Green's function (GF) between earthquakes. VSM illuminates the subsurface precisely where the pressures are changing and has the potential to image the evolution of seismicity over time, including changes in the style of faulting. With hundreds of earthquakes, we can calculate thousands of waveforms. At the same time, VSM collapses the computational domain, often by 2-3 orders of magnitude. This allows us to do high frequency 3D modeling in the fault region. Using data from a swarm of earthquakes near the Salton Sea, we demonstrate the power of these techniques, illustrating our ability to scale from the far field, where sources are well separated, to the near field where their locations fall within each other

  18. Seismic analysis of four solar-like stars observed during more than eight months by Kepler

    DEFF Research Database (Denmark)

    Mathur, S.; L. Campante, T.; Handberg, R.

    2011-01-01

    Having started science operations in May 2009, the Kepler photometer has been able to provide exquisite data of solar-like stars. Five out of the 42 stars observed continuously during the survey phase show evidence of oscillations, even though they are rather faint (magnitudes from 10.5 to 12). I......). In this paper, we present an overview of the results of the seismic analysis of 4 of these stars observed during more than eight months....

  19. Seismic Analysis of Four Solar-like Stars Observed during More Than Eight Months by Kepler

    Science.gov (United States)

    Mathur, S.; Campante, T. L.; Handberg, R.; García, R. A.; Appourchaux, T.; Bedding, T. R.; Mosser, B.; Chaplin, W. J.; Ballot, J.; Benomar, O.; Bonanno, A.; Corsaro, E.; Gaulme, P.; Hekker, S.; Régulo, C.; Salabert, D.; Verner, G.; White, T. R.; Brandão, I. M.; Creevey, O. L.; Dogan, G.; Bazot, M.; Cunha, M. S.; Elsworth, Y.; Huber, D.; Hale, S. J.; Houdek, G.; Karoff, C.; Lundkvist, M.; Metcalfe, T. S.; Molenda-Zakowicz, J.; Monteiro, M. J. P. F. G.; Thompson, M. J.; Stello, D.; Christensen-Dalsgaard, J.; Gilliland, R. L.; Kawaler, S. D.; Kjeldsen, H.; Clarke, B. D.; Girouard, F. R.; Hall, J. R.; Quintana, E. V.; Sanderfer, D. T.; Seader, S. E.

    2012-09-01

    Having started science operations in May 2009, the Kepler photometer has been able to provide exquisite data for solar-like stars. Five out of the 42 stars observed continuously during the survey phase show evidence of oscillations, even though they are rather faint (magnitudes from 10.5 to 12). In this paper, we present an overview of the results of the seismic analysis of 4 of these stars observed during more than eight months.

  20. Interpretation of Microseismicity Observed From Surface and Borehole Seismic Arrays During Hydraulic Fracturing in Shale - Bedding Plane Slip Model

    Science.gov (United States)

    Stanek, F.; Jechumtalova, Z.; Eisner, L.

    2017-12-01

    We present a geomechanical model explaining microseismicity induced by hydraulic fracturing in shales developed from many datasets acquired with two most common types of seismic monitoring arrays, surface and dual-borehole arrays. The geomechanical model explains the observed source mechanisms and locations of induced events from two stimulated shale reservoirs. We observe shear dip-slip source mechanisms with nodal planes aligned with location trends. We show that such seismicity can be explained as a shearing along bedding planes caused by aseismic opening of vertical hydraulic fractures. The source mechanism inversion was applied only to selected high-quality events with sufficient signal-to-noise ratio. We inverted P- and P- and S-wave arrival amplitudes to full-moment tensor and decomposed it to shear, volumetric and compensated linear vector dipole components. We also tested an effect of noise presented in the data to evaluate reliability of non-shear components. The observed seismicity from both surface and downhole monitoring of shale stimulations is very similar. The locations of induced microseismic events are limited to narrow depth intervals and propagate along distinct trend(s) showing fracture propagation in direction of maximum horizontal stress from injection well(s). The source mechanisms have a small non-shear component which can be partly explained as an effect of noise in the data, i.e. events represent shearing on faults. We observe predominantly dip-slip events with a strike of the steeper (almost vertical) nodal plane parallel to the fracture propagation. Therefore the other possible nodal plane is almost horizontal. The rake angles of the observed mechanisms divide these dip-slips into two groups with opposite polarities. It means that we observe opposite movements on the nearly identically oriented faults. Realizing a typical structural weakness of shale in horizontal planes, we interpret observed microseismicity as a result of shearing

  1. Input for seismic hazard assessment using Vrancea seismic source region

    International Nuclear Information System (INIS)

    Ivan, Iren-Adelina; Enescu, B.D.; Pantea, A.

    1998-01-01

    We use an extended and combined data base including historical and modern, qualitative and quantitative data, i.e., more than 25 events during the period 1790 - 1990 with epicentral/maximum intensities ranging from X to V degree (MSK scale), the variation interval of isoseismal curves ranging from IX th to III rd degree. The data set was analysed using both the sum phasor techniques of Ridelek and Sacks (1984) for different magnitudes and depth intervals and the Stepp's method. For the assessment of seismic hazard we need a pattern of seismic source regions including an estimation for the maximum expected magnitude and the return period for the studied regions. Another necessary step in seismic hazard assessment is to develop attenuation relationships specific to a seismogenic zone, particularly to sub-crustal earthquakes of Vrancea region. The conceptual frame involves the use of appropriate decay models and consideration of the randomness in the attenuation, taking into account the azimuthal variation of the isoseist shapes. (authors)

  2. SEISMIC PICTURE OF A FAULT ZONE. WHAT CAN BE GAINED FROM THE ANALYSIS OF FINE PATTERNS OF SPATIAL DISTRIBUTION OF WEAK EARTHQUAKE CENTERS?

    Directory of Open Access Journals (Sweden)

    Gevorg G. Kocharyan

    2010-01-01

    Full Text Available Association of earthquake hypocenters with fault zones appears more pronounced in cases with more accurately determined positions of the earthquakes. For complex, branched structures of major fault zones, it is assumed that some of the earthquakes occur at feathering fractures of smaller scale.It is thus possible to develop a «seismological» criterion for definition of a zone of dynamic influence of faults, i.e. the zone containing the majority of earthquakes associated with the fault zone under consideration.In this publication, seismogenic structures of several fault zones located in the San-Andreas fault system are reviewed. Based on the data from a very dense network of digital seismic stations installed in this region and with application of modern data processing methods, differential coordinates of microearthquakes can be determined with errors of about first dozens of meters.It is thus possible to precisely detect boundaries of the areas wherein active deformation processes occur and to reveal spatial patterns of seismic event localization.In our analyses, data from the most comprehensive seismic catalog were used. The catalogue includes information on events which occurred and were registered in North California in the period between January 1984 and May 2003. In this publication, the seismic data processing results and regularities revealed during the analyses are compared with the data obtained from studies of fault structures, modeling and numerical simulation results. Results of quantitative research of regularities of localization of seismic sources inside fault zones are presented.It is demonstrated by 3D models that seismic events are localized in the vicinity of an almost plain surface with a nearly constant angle of dip, the majority of events being concentrated at that conventional surface.Detection of typical scopes of seismicity localization may prove critical for solution of problems of technogenic impact on fault zones

  3. Rescaled Range analysis of Induced Seismicity: rapid classification of clusters in seismic crisis

    Science.gov (United States)

    Bejar-Pizarro, M.; Perez Lopez, R.; Benito-Parejo, M.; Guardiola-Albert, C.; Herraiz, M.

    2017-12-01

    Different underground fluid operations, mainly gas storing, fracking and water pumping, can trigger Induced Seismicity (IS). This seismicity is normally featured by small-sized earthquakes (M<2.5), although particular cases reach magnitude as great as 5. It has been up for debate whether earthquakes greater than 5 can be triggered by IS or this level of magnitude only corresponds to tectonic earthquakes caused by stress change. Whatever the case, the characterization of IS for seismic clusters and seismic series recorded close but not into the gas storage, is still under discussion. Time-series of earthquakes obey non-linear patterns where the Hurst exponent describes the persistency or anti-persistency of the sequence. Natural seismic sequences have an H-exponent close to 0.7, which combined with the b-value time evolution during the time clusters, give us valuable information about the stationarity of the phenomena. Tectonic earthquakes consist in a main shock with a decay of time-occurrence of seismic shocks obeying the Omori's empirical law. On the contrary, IS does not exhibit a main shock and the time occurrence depends on the injection operations instead of on the tectonic energy released. In this context, the H-exponent can give information about the origin of the sequence. In 2013, a seismic crisis was declared from the Castor underground gas storing located off-shore in the Mediterranean Sea, close to the Northeastern Spanish cost. The greatest induced earthquake was 3.7. However, a 4.2 earthquake, probably of tectonic origin, occurred few days after the operations stopped. In this work, we have compared the H-exponent and the b-value time evolution according to the timeline of gas injection. Moreover, we have divided the seismic sequence into two groups: (1) Induced Seismicity and (2) Triggered Seismicity. The rescaled range analysis allows the differentiation between natural and induced seismicity and gives information about the persistency and long

  4. The MeSO-net (Metropolitan Seismic Observation network) confronts the Pacific Coast of Tohoku Earthquake, Japan (Mw 9.0)

    Science.gov (United States)

    Kasahara, K.; Nakagawa, S.; Sakai, S.; Nanjo, K.; Panayotopoulos, Y.; Morita, Y.; Tsuruoka, H.; Kurashimo, E.; Obara, K.; Hirata, N.; Aketagawa, T.; Kimura, H.

    2011-12-01

    On April 2007, we have launched the special project for earthquake disaster mitigation in the Tokyo Metropolitan area (Fiscal 2007-2011). As a part of this project, construction of the MeSO-net (Metropolitan Seismic Observation network) has been completed, with about 300 stations deployed at mainly elementary and junior-high schools with an interval of about 5 km in space. This results in a highly dense network that covers the metropolitan area. To achieve stable seismic observation with lower surface ground noise, relative to a measurement on the surface, sensors of all stations were installed in boreholes at a depth of about 20m. The sensors have a wide dynamic range (135dB) and a wide frequency band (DC to 80Hz). Data are digitized with 200Hz sampling and telemetered to the Earthquake Research Institute, University of Tokyo. The MeSO-net that can detect and locate most earthquakes with magnitudes above 2.5 provides a unique baseline in scientific and engineering researches on the Tokyo metropolitan area, as follows. One of the main contributions is to greatly improve the image of the Philippine Sea plate (PSP) (Nakagawa et al., 2010) and provides an accurate estimation of the plate boundaries between the PSP and the Pacific plate, allowing us to possibly discuss clear understanding of the relation between the PSP deformation and M7+ intra-slab earthquake generation. Also, the latest version of the plate model in the metropolitan area, proposed by our project, attracts various researchers, comparing with highly-accurate solutions of fault mechanism, repeating earthquakes, etc. Moreover, long-periods ground motions generated by the 2011 earthquake off the Pacific coast of Tohoku earthquake (Mw 9.0) were observed by the MeSO-net and analyzed to obtain the Array Back-Projection Imaging of this event (Honda et al., 2011). As a result, the overall pattern of the imaged asperities coincides well with the slip distribution determined based on other waveform inversion

  5. Trial to active seismic while drilling; Jinko shingen wo mochiita SWD eno kokoromi

    Energy Technology Data Exchange (ETDEWEB)

    Tsuru, T; Kozawa, T [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1996-10-01

    This paper describes the development of a more stable SWD system with larger energy by adding an artificial seismic source near the bit. SWD is a technique by which the seismic wave generated while drilling of rocks by bit can be observed on the ground surface and the records equivalent to the reverse VSP can be obtained. For this system, a shell with a vibrator was fixed immediately on the bit as a sub-generator, and total energy of usual impact by the bit and vibration by the vibrator was used as a seismic source for SWD. For the seismic wave generation mechanism of this vibrator, the shell was resonated by the magnetostrictive element, and vibration was given to the bit and drilling pipe. When this seismic source is used, only single frequency is obtained for each vibration due to the utilization of resonance of shell. Therefore, the generation patterns should be made, by which wide band energy can be obtained after the interaction. Since the survey was conducted using this bottom hole seismic source at the drilling depth more than 3,000 m, it was necessary to enhance the vibration energy. 2 refs., 2 figs.

  6. Seismic sensitivity study of a generic CANDU nuclear power plant: Soil-structure interaction

    International Nuclear Information System (INIS)

    Lee, L.S.S.; Duff, C.G.

    1983-01-01

    The seismic sensitivity and capability study for a generic CANDU Plant is part of an overall development program of design standardization. The purpose of this paper is to investigate the sensitivities of structural responses and floor response spectra (FRS) to variations of structural and soil parameters. In the seismic design standardization, a wide range of soil conditions is considered and the envelopes of the resulting site spectra (soil-structure interaction effect) are then used for the design of the generic plant. The nuclear island structures considered herein have different relative stiffness and one of them has two layout/structure schemes: one is relatively flexible and the other is moderately stiff. In the preliminary phase of the seismic sensitivity study presented hereby, the soil-structure interaction seismic analysis is based on the half-space modelling (soil-spring lumped-mass) method and the response spectrum method for the seismic responses. Distinct patterns and sensitivity of the site spectrum analysis for structure schemes of different relative stiffness and for different structural elevations are observed and discussed. (orig.)

  7. The Seismicity of Two Hyperextended Margins

    Science.gov (United States)

    Redfield, Tim; Terje Osmundsen, Per

    2013-04-01

    , loads generated by escarpment erosion, offshore sedimentary deposition, and post-glacial rebound have been periodically superimposed throughout the Neogene. Their vertical stress patterns are mutually-reinforcing during deglaciation. However, compared to the post-glacial dome the pattern of maximum uplift/unloading generated by escarpment erosion will be longer, more linear, and located atop the emergent proximal margin. The pattern of offshore maximum deposition/loading will be similar. This may help explain the asymmetric expenditure of Fennoscandia's annual seismic energy budget. It may also help explain the obvious Conundrum: if stress generated by erosion and deposition is sufficiently great, fault reactivation and consequent seismicity can occur at any hyperextended passive margin sector regardless of its glacial history. Onshore Scandinavia, episodic footwall uplift and escarpment rejuvenation may have been driven by just such a mechanism throughout much of the later Cretaceous and Cenozoic. SE Brasil offers a glimpse of how Norway's hyperextended margin might manifest itself seismically in the absence of post-glacial rebound. Compilations suggest two seismic belts may exist. One, offshore, follows the thinned crust of the ultra-deep, hyperextended Campos and Santos basins. Onshore, earthquakes occur more commonly in the elevated highlands of the escarpments, and track especially the long, linear ranges such as the Serra de Mantiquiera and Serra do Espinhaço. Seismicity is more rare in the coastal lowlands, and largely absent in the Brasilian hinterland. Although never glaciated since the time of hyperextension and characterized by significantly fewer earthquakes in toto, SE Brasil's pattern of seismicity closely mimics Scandinavia. Commencing after perhaps just a few tens of millions of years of 'sag' basin infill, accommodation phase fault reactivation and footwall uplift at passive margins is the inexorable product of hyperextension. CITATIONS Redfield, T

  8. Semi-automatic mapping for identifying complex geobodies in seismic images

    Science.gov (United States)

    Domínguez-C, Raymundo; Romero-Salcedo, Manuel; Velasquillo-Martínez, Luis G.; Shemeretov, Leonid

    2017-03-01

    Seismic images are composed of positive and negative seismic wave traces with different amplitudes (Robein 2010 Seismic Imaging: A Review of the Techniques, their Principles, Merits and Limitations (Houten: EAGE)). The association of these amplitudes together with a color palette forms complex visual patterns. The color intensity of such patterns is directly related to impedance contrasts: the higher the contrast, the higher the color intensity. Generally speaking, low impedance contrasts are depicted with low tone colors, creating zones with different patterns whose features are not evident for a 3D automated mapping option available on commercial software. In this work, a workflow for a semi-automatic mapping of seismic images focused on those areas with low-intensity colored zones that may be associated with geobodies of petroleum interest is proposed. The CIE L*A*B* color space was used to perform the seismic image processing, which helped find small but significant differences between pixel tones. This process generated binary masks that bound color regions to low-intensity colors. The three-dimensional-mask projection allowed the construction of 3D structures for such zones (geobodies). The proposed method was applied to a set of digital images from a seismic cube and tested on four representative study cases. The obtained results are encouraging because interesting geobodies are obtained with a minimum of information.

  9. Variations in the microseismic noise level observed at the Bucovina Seismic Array (BURAR)

    International Nuclear Information System (INIS)

    Ghica, Daniela; Radulian, Mircea; Popa, Mihaela

    2005-01-01

    The microseismic noise level analysis for a seismic array is an essential step to accurately process the data recorded by the system. Basically, the observed background noise is a complex combination of natural and cultural sources as local geology, specific area activity (roads traffic, agricultural and industrial activities) or weather conditions.The understanding of the BURAR site noise characteristics is important for the array specific techniques (beamforming, f-k analysis), to apply the correct bandpass filtering, in order to obtain noise suppression and conservation of the 'true' seismic signal. The array monitoring potential of very small earthquakes and explosions will be enhanced, based on the best signal-to-noise ratio.The noise study at BURAR was carried out over one-year period, considering the noise power spectra in a 0.1 to 10 Hz frequency interval, for every 24 hours: 5 minutes during day and 5 minutes during night. Only short-period vertical sensors were considered. Systematic variations in the microseismic noise level at the BURAR site were observed:- diurnal: a decreasing of about 40% in night noise level at 1 Hz frequency; at 6 Hz frequency, the decreasing could reach 80-90% for 'non-winter' months (May to October); - seasonal: during the winter time, a lower noise level is observed, due to the restraining of the local specific activity (especially agriculture and farming) and of the road traffic. To summarize the level of microseismic noise observed at BURAR for one-year observations, a model curve for array noise level has been estimated, including upper and lower bounds of noise power density together with average spectrum. The BURAR noise model will be useful in the process of local site conditions estimation, by eliminating the noise contribution from the array recording. Also, the detection processing, phase identification and events location procedures will be significantly improved. (authors)

  10. Common Observations for Near-Source Ground Motions and Seismo-Traveling Ionosphere Disturbances Following the 2011 off the Pacific Coast of Tohoku Earthquake, Japan

    Directory of Open Access Journals (Sweden)

    Bor-Shouh Huang

    2012-01-01

    Full Text Available The time history and spatial dependence of seismic-wave propagation on the ground surface and through the ionosphere following the 2011 off the Pacific coast of Tohoku Earthquake were reconstructed from dense seismic networks and from Global Positioning System (GPS array observations, respectively. Using total electron content (TEC data recorded by a dense GPS receiver network, the near-source ionosphere perturbations induced by this giant earthquake were analyzed and high-resolution images of seismic-wave propagation in the ionosphere are presented. Similar spatial images of ground motions were reconstructed from observations by a dense seismic array. Observations of this event provide, for the first time, the opportunity to compare near-source ground motions with the near-field seismo-traveling ionosphere disturbance (STID excited by the ground motions. Based on the results, the nature of the source rupture and seismic-wave propagation are discussed. Both seismic and ionosphere observations indicate that seismic energy propagated radially outward initially from the hypocenter, but that the circular shape of the propagation front became gradually distorted as the source rupture became extended. Coherent wavefronts from the two analyses show contrasting patterns during the later stage of propagation, possibly due to different patterns of spatial variations in the physical properties of the solid earth and of the ionosphere.

  11. The 2012 Ferrara seismic sequence: Regional crustal structure, earthquake sources, and seismic hazard

    Science.gov (United States)

    Malagnini, Luca; Herrmann, Robert B.; Munafò, Irene; Buttinelli, Mauro; Anselmi, Mario; Akinci, Aybige; Boschi, E.

    2012-10-01

    Inadequate seismic design codes can be dangerous, particularly when they underestimate the true hazard. In this study we use data from a sequence of moderate-sized earthquakes in northeast Italy to validate and test a regional wave propagation model which, in turn, is used to understand some weaknesses of the current design spectra. Our velocity model, while regionalized and somewhat ad hoc, is consistent with geophysical observations and the local geology. In the 0.02-0.1 Hz band, this model is validated by using it to calculate moment tensor solutions of 20 earthquakes (5.6 ≥ MW ≥ 3.2) in the 2012 Ferrara, Italy, seismic sequence. The seismic spectra observed for the relatively small main shock significantly exceeded the design spectra to be used in the area for critical structures. Observations and synthetics reveal that the ground motions are dominated by long-duration surface waves, which, apparently, the design codes do not adequately anticipate. In light of our results, the present seismic hazard assessment in the entire Pianura Padana, including the city of Milan, needs to be re-evaluated.

  12. Fault-related-folding structures and reflection seismic sections. Study by seismic modeling and balanced cross section; Danso ga kaizaisuru shukyoku kozo no keitai to jishin tansa danmen. 2. Seismic modeling oyobi balanced cross section ni yoru study

    Energy Technology Data Exchange (ETDEWEB)

    Tamagawa, T; Matsuoka, T [Japan Petroleum Exploration Corp., Tokyo (Japan); Tsukui, R [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1997-05-27

    It occasionally happens that there exists a part where reflection near the thrust is not clearly observed in a thrust zone seismic survey cross section. For the effective interpretation of such an occurrence, the use of geological structures as well as the reflected pattern is effective. When the velocity structures for a fold structure having a listric fault caused anticline (unidirectionally inclined with a backlimb, without a forelimb) and for a fault propagation fold are involved, a wrong interpretation may be made since they look alike in reflection wave pattern despite their difference in geological structure. In the concept of balanced cross section, a check is performed, when the stratum after deformation is recovered to the time of deposition, as to whether the geologic stratum area is conserved without excess or shortage. An excess or shortage occurs if there is an error in the model, and this shows that the fault surface or fold structure is not correctly reflected. Positive application of geological knowledge is required in the processing and interpreting of data from a seismic survey. 6 refs., 6 figs.

  13. Detection of Natural Fractures from Observed Surface Seismic Data Based on a Linear-Slip Model

    Science.gov (United States)

    Chen, Huaizhen; Zhang, Guangzhi

    2018-03-01

    Natural fractures play an important role in migration of hydrocarbon fluids. Based on a rock physics effective model, the linear-slip model, which defines fracture parameters (fracture compliances) for quantitatively characterizing the effects of fractures on rock total compliance, we propose a method to detect natural fractures from observed seismic data via inversion for the fracture compliances. We first derive an approximate PP-wave reflection coefficient in terms of fracture compliances. Using the approximate reflection coefficient, we derive azimuthal elastic impedance as a function of fracture compliances. An inversion method to estimate fracture compliances from seismic data is presented based on a Bayesian framework and azimuthal elastic impedance, which is implemented in a two-step procedure: a least-squares inversion for azimuthal elastic impedance and an iterative inversion for fracture compliances. We apply the inversion method to synthetic and real data to verify its stability and reasonability. Synthetic tests confirm that the method can make a stable estimation of fracture compliances in the case of seismic data containing a moderate signal-to-noise ratio for Gaussian noise, and the test on real data reveals that reasonable fracture compliances are obtained using the proposed method.

  14. Green's function representations for seismic interferometry

    NARCIS (Netherlands)

    Wapenaar, C.P.A.; Fokkema, J.T.

    2006-01-01

    The term seismic interferometry refers to the principle of generating new seismic responses by crosscorrelating seismic observations at different receiver locations. The first version of this principle was derived by Claerbout (1968), who showed that the reflection response of a horizontally layered

  15. Distributed power-law seismicity changes and crustal deformation in the SW Hellenic ARC

    Directory of Open Access Journals (Sweden)

    A. Tzanis

    2003-01-01

    Full Text Available A region of definite accelerating seismic release rates has been identified at the SW Hellenic Arc and Trench system, of Peloponnesus, and to the south-west of the island of Kythera (Greece. The identification was made after detailed, parametric time-to-failure modelling on a 0.1° square grid over the area 20° E – 27° E and 34° N–38° N. The observations are strongly suggestive of terminal-stage critical point behaviour (critical exponent of the order of 0.25, leading to a large earthquake with magnitude 7.1 ± 0.4, to occur at time 2003.6 ± 0.6. In addition to the region of accelerating seismic release rates, an adjacent region of decelerating seismicity was also observed. The acceleration/deceleration pattern appears in such a well structured and organised manner, which is strongly suggestive of a causal relationship. An explanation may be that the observed characteristics of distributed power-law seismicity changes may be produced by stress transfer from a fault, to a region already subjected to stress inhomogeneities, i.e. a region defined by the stress field required to rupture a fault with a specified size, orientation and rake. Around a fault that is going to rupture, there are bright spots (regions of increasing stress and stress shadows (regions relaxing stress; whereas acceleration may be observed in bright spots, deceleration may be expected in the shadows. We concluded that the observed seismic release patterns can possibly be explained with a family of NE-SW oriented, left-lateral, strike-slip to oblique-slip faults, located to the SW of Kythera and Antikythera and capable of producing earthquakes with magnitudes MS ~ 7. Time-to-failure modelling and empirical analysis of earthquakes in the stress bright spots yield a critical exponent of the order 0.25 as expected from theory, and a predicted magnitude and critical time perfectly consistent with the figures given above. Although we have determined an approximate location

  16. Construction of System for Seismic Observation in Deep Borehole (SODB) - Overview and Achievement Status of the Project

    International Nuclear Information System (INIS)

    Kobayashi, Genyu

    2014-01-01

    The seismic responses of each unit at the Kashiwazaki-Kariwa NPP differed greatly during the 2007 Niigata-ken Chuetsu-oki Earthquake; the deep sedimentary structure around the site greatly affected these differences. To clarify underground structure and to evaluate ground motion amplification and attenuation effects more accurately in accordance with deep sedimentary structure, JNES initiated the SODB project. Deployment of a vertical seismometer array in a 3000-meter deep borehole was completed in June 2012 on the premises of NIIT. Horizontal arrays were also placed on the ground surface. Experiences and achievements in the JNES project were introduced, including development of seismic observation technology in deep boreholes, site amplification measurements from logging data, application of borehole observation data to maintenance of nuclear power plant safety, and so on. Afterwards, the relationships of other presentations in this WS, were explained. (authors)

  17. A comparison of GPS strain rate and seismicity in mainland China

    Science.gov (United States)

    Ye, J.; Liu, M.

    2011-12-01

    The spatial distribution and moment release of earthquakes should correlate to crustal strain rates, assuming most of the crustal strain is released by earthquakes. However, the correlation between seismicity and crustal strain rates is not always clear, especially in continental interiors where large earthquakes are infrequent and earthquake records often incomplete. Here we compare seismicity and crustal strain rates in mainland China, where in the past decades the GPS measurements by the Crustal Motion Observation Network of China and other teams have determined the velocity at more than a thousand sites, allowing a meaningful calculation of the spatial distribution of the crustal strain rates. Our strain-rate map of mainland China is consistent with tectonic activities. The average scalar strain rate in West China is 17.5x10-16, contrasting to the much lower value (2.5x 10-16) in East China. The high strain rates are mainly found in the Tibetan Plateau, with the highest values clearly delineating the major active faults, including the Himalayan main boundary thrust, the Xianshuihe fault, the Longmanshan fault, the Haiyuan fault, and the southern Tianshan boundary fault. North China also has relatively high strain rates, but the high strain rates around the cities of Tangshan and Xingtai likely result from postseismic deformation following the 1966 Xingtai earthquake (M 7.2) and the 1976 Tangshan earthquake (M 7.8). We calculated the seismic moment release using the Chinese earthquake catalog that goes back to more than 2000 years. The spatial pattern of cumulative seismic moment release is generally comparable with that of the strain rates. Regions of major discrepancies include the Weihe-Shanxi grabens, which had numerous large earthquakes but have been quiescent in the past 300 years. When we use smaller time windows (200 or 500 years) to calculate the seismic moment release, we found strongly variable spatial patterns that is generally incomparable with the

  18. The Effects of Fracture Anisotropy on the Damage Pattern and Seismic Radiation from a Chemical Explosion in a Granite Quarry

    Science.gov (United States)

    Rogers-Martinez, M. A.; Sammis, C. G.; Ezzedine, S. M.

    2017-12-01

    As part of the New England Damage Experiment (NEDE) a 122.7 kg Heavy ANFO charge was detonated at a depth of 13 m in a granite quarry in Barre Vt. Subsequent drill cores from the source region revealed that most of the resultant fracturing was concentrated in the rift plane of the highly anisotropic Barre granite. We simulated this explosion using a dynamic damage mechanics model embedded in the ABAQUS 3D finite element code. The damage mechanics was made anisotropic by taking the critical stress intensity factor to be a function of azimuth in concert with the physics of interacting parallel fractures and laboratory studies of anisotropic granite. In order to identify the effects of anisotropy, the explosion was also simulated assuming 1) no initial damage (pure elasticity) and 2) isotropic initial damage. For the anisotropic case, the calculated fracture pattern simulated that observed in NEDE. The simulated seismic radiation looked very much like that from a tensile fracture oriented in the rift plane, and similar to the crack-like moment tensor observed in the far field of many nuclear explosions.

  19. Experimental study on the seismic performance of new sandwich masonry walls

    Science.gov (United States)

    Xiao, Jianzhuang; Pu, Jie; Hu, Yongzhong

    2013-03-01

    Sandwich masonry walls are widely used as energy-saving panels since the interlayer between the outer leaves can act as an insulation layer. New types of sandwich walls are continually being introduced in research and applications, and due to their unique bond patterns, experimental studies have been performed to investigate their mechanical properties, especially with regard to their seismic performance. In this study, three new types of sandwich masonry wall have been designed, and cyclic lateral loading tests were carried out on five specimens. The results showed that the specimens failed mainly due to slippage along the bottom cracks or the development of diagonal cracks, and the failure patterns were considerably influenced by the aspect ratio. Analysis was undertaken on the seismic response of the new walls, which included ductility, stiffness degradation and energy dissipation capacity, and no obvious difference was observed between the seismic performance of the new walls and traditional walls. Comparisons were made between the experimental results and the calculated results of the shear capacity. It is concluded that the formulas in the two Chinese codes (GB 50011 and GB 50003) are suitable for the calculation of the shear capacity for the new types of walls, and the formula in GB 50011 tends to be more conservative.

  20. Seismic observations of subglacial water discharge from glacier-dammed lake drainage at Lemon Creek Glacier, Alaska

    Science.gov (United States)

    Labedz, C. R.; Bartholomaus, T. C.; Gimbert, F.; Amundson, J. M.; Vore, M. E.; Karplus, M. S.; Tsai, V. C.

    2017-12-01

    Subglacial water flow affects the dynamics of glaciers, influencing basal sliding, sediment transport, fracturing, and terminus dynamics. However, the difficulty of directly observing glacial hydrologic systems creates significant challenges in understanding such glacier behavior. Recently-developed descriptions of ground motion generated by subglacial water flow provide a promising basis for new and unique characterization of glacial hydrologic systems. Particularly, high-frequency ( 1.5-20 Hz) seismic tremor observed near glaciers has been shown to correlate with subglacial runoff. In addition, specific properties of subglacial water flow like water pressure, conduit size, sediment flux, and grain size can be inferred by examining hysteretic behavior over time between different parts of these signals. In this study, we observe the seismic signals generated by subglacial water flow using a high-density array of more than 100 nodes deployed for 10-25 days, and six broadband seismometers deployed for 80 days at Lemon Creek Glacier, Alaska. Specifically, we examine the 36-hour drainage of a glacier-dammed lake into subglacial conduits, comparing hydrologic metrics such as lake level, precipitation, and outlet stream flow rate to the power of seismic signals. Our node array captures this annually-significant hydraulic transient with sensors spaced approximately every 250 m over the majority of the 5.7 km long glacier. This and other lake drainage events provide natural experiments for exploring glaciohydraulic tremor, because the increased water flux through the glacier increases the power of the tremor and hosts the hysteretic behaviors described previously. Analysis of the tremor from events such as this can be extended to further understand subglacial runoff at Lemon Creek glacier and for glacier hydrology in general.

  1. Seismicity and tectonics of Bangladesh

    International Nuclear Information System (INIS)

    Hossain, K.M.

    1989-05-01

    Northern and eastern Bangladesh and surrounding areas belong to a seismically active zone and are associated with the subduction of the Indian plate. The seismicity and tectonics have been studied in detail and the observations have been correlated to understand the earthquake phenomenon in the region. The morphotectonic behaviour of northern Bangladesh shows that it is deeply related to the movement of the Dauki fault system and relative upliftment of the Shillong plateau. Contemporary seismicity in the Dauki fault system is relatively quiet comparing to that in the Naga-Disang-Haflong thrust belt giving rise to the probability of sudden release of energy being accumulated in the vicinity of the Dauki fault system. This observation corresponds with the predicted average return period of a large earthquake (1897 type) and the possibility of M > 8 earthquake in the vicinity of the Dauki fault within this century should not be ruled out. The seismicity in the folded belt in the east follows the general trend of Arakan-Yoma anticlinorium and represents shallow and low-angled thrust movements in conformity with the field observation. Seismotectonic behaviour in the deep basin part of Bangladesh demonstrates that an intraplate movement in the basement rock has been taking place along the deep-seated faults causing relative upliftment and subsidence in the basin. Bangladesh has been divided into three seismic zones on the basis of morphotectonic and seismic behaviour. Zone-I has been identified as the zone of high seismic risk. (author). 43 refs, 5 figs, 3 tabs

  2. Pattern recognition methodologies and deterministic evaluation of seismic hazard: A strategy to increase earthquake preparedness

    International Nuclear Information System (INIS)

    Peresan, Antonella; Panza, Giuliano F.; Gorshkov, Alexander I.; Aoudia, Abdelkrim

    2001-05-01

    Several algorithms, structured according to a general pattern-recognition scheme, have been developed for the space-time identification of strong events. Currently, two of such algorithms are applied to the Italian territory, one for the recognition of earthquake-prone areas and the other, namely CN algorithm, for earthquake prediction purposes. These procedures can be viewed as independent experts, hence they can be combined to better constrain the alerted seismogenic area. We examine here the possibility to integrate CN intermediate-term medium-range earthquake predictions, pattern recognition of earthquake-prone areas and deterministic hazard maps, in order to associate CN Times of Increased Probability (TIPs) to a set of appropriate scenarios of ground motion. The advantage of this procedure mainly consists in the time information provided by predictions, useful to increase preparedness of safety measures and to indicate a priority for detailed seismic risk studies to be performed at a local scale. (author)

  3. Burar seismic station: evaluation of seismic performance

    International Nuclear Information System (INIS)

    Ghica, Daniela; Popa, Mihaela

    2005-01-01

    A new seismic monitoring system, the Bucovina Seismic Array (BURAR), has been established since July 2002, in the Northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics (NIEP), Romania. The small-aperture array consists of 10 seismic sensors (9 vertical short-period and one three-component broad band) located in boreholes and distributed in a 5 x 5 km 2 area. At present, the seismic data are continuously recorded by the BURAR and transmitted in real-time to the Romanian National Data Center in Bucharest and National Data Center of the USA, in Florida. Based on the BURAR seismic information gathered at the National Data Center, NIEP (ROM N DC), in the August 2002 - December 2004 time interval, analysis and statistical assessments were performed. Following the preliminary processing of the data, several observations on the global performance of the BURAR system were emphasized. Data investigation showed an excellent efficiency of the BURAR system particularly in detecting teleseismic and regional events. Also, a statistical analysis for the BURAR detection capability of the local Vrancea events was performed in terms of depth and magnitude for the year 2004. The high signal detection capability of the BURAR resulted, generally, in improving the location solutions for the Vrancea seismic events. The location solution accuracy is enhanced when adding BURAR recordings, especially in the case of low magnitude events (recorded by few stations). The location accuracy is increased, both in terms of constraining hypocenter depth and epicentral coordinates. Our analysis certifies the importance of the BURAR system in NIEP efforts to elaborate seismic bulletins. Furthermore, the specific procedures for array data processing (beam forming, f-k analysis) increase significantly the signal-to-noise ratio by summing up the coherent signals from the array components, and ensure a better accuracy

  4. Observed seismic and infrasonic signals around the Hakone volcano -Discussion based on a finite-difference calculation-

    Science.gov (United States)

    Wakamatu, S.; Kawakata, H.; Hirano, S.

    2017-12-01

    Observation and analysis of infrasonic waves are important for volcanology because they could be associated with mechanisms of volcanic tremors and earthquakes (Sakai et al., 2000). Around the Hakone volcano area, Japan, infrasonic waves had been observed many times in 2015 (Yukutake et al., 2016, JpGU). In the area, seismometers have been installed more than microphones, so that analysis of seismograms may also contribute to understanding some characteristics of the infrasonic waves. In this study, we focused on the infrasonic waves on July 1, 2015, at the area and discussed their propagation. We analyzed the vertical component of seven seismograms and two infrasound records; instruments for these data have been installed within 5 km from the vent emerged in the June 2015 eruption(HSRI, 2015). We summarized distances of the observation points from the vent and appearance of the signals in the seismograms and the microphone records in Table 1. We confirmed that, when the OWD microphone(Fig1) observed the infrasonic waves, seismometers of the OWD and the KIN surface seismic stations(Fig1) recorded pulse-like signals repeatedly while the other five buried seismometers did not. At the same time, the NNT microphone(Fig1) recorded no more than unclear signals despite the shorter distance to the vent than that of the KIN station. We found that the appearance of pulse-like signals at the KIN seismic station usually 10-11 seconds delay after the appearance at the OWD seismic station. The distance between these two stations is 3.5km, so that the signals in seismograms could represent propagation of the infrasonic waves rather than the seismic waves. If so, however, the infrasound propagation could be influenced by the topography of the area because the signals are unclear in the NNT microphone record.To validate the above interpretation, we simulated the diffraction of the infrasonic waves due to the topography. We executed a 3-D finite-difference calculation by

  5. Parabolic distribution of circumeastern Snake River Plain seismicity and latest Quaternary faulting: Migratory pattern and association with the Yellowstone hotspot

    Science.gov (United States)

    Anders, Mark H.; Geissman, John Wm.; Piety, Lucille A.; Sullivan, J. Timothy

    1989-02-01

    . Mapping of fault scarps and unfaulted deposits along the Grand Valley fault system shows that latest Quaternary fault scarps are restricted to the portion farthest from the eastern SRP, the southern part of the Star Valley fault. Surface displacements estimated from scarp profiles and deposit ages estimated from soil development suggest a latest Quaternary displacement rate of 0.6-1.2 mm/yr for the southern portion of the Star Valley fault. Morphologic evidence suggests that this displacement rate persisted on the Star Valley fault throughout most of the Quaternary. The latest Quaternary displacement rate calculated for the southern portion of the Star Valley fault is similar to the rate calculated for Swan Valley during the interval from 2.0 to 4.4 Ma. This similarity, together with evidence for a low Quaternary displacement rate on the fault system in Swan Valley, suggests that the location of the highest displacement rate has migrated away from the eastern SRP. Other normal faults in southeastern Idaho, northwestern Wyoming, and southwestern Montana, while less well described than the Grand Valley fault system, exhibit a similar outward migrating pattern of increased fault activity followed by quiescence. Furthermore, a temporal and spatial relationship between fault activity and the 3.5 cm/yr northeastward track of the Yellowstone hotspot is observable on the Grand Valley fault system and on other north-northwest trending late Cenozoic faults that border the eastern SRP. The temporal and spatial relationship of Miocene to present high displacement rates for other circumeastern SRP faults and the observable outwardly migrating pattern of fault activity suggest that a similar parabolic distribution of seismicity and high displacement rates was symmetrically positioned about the former position of the hotspot. Moreover, the tandem migration of the hotspot and the parabolic distribution of increased fault activity and seismicity are closely followed by a parabolic

  6. Micro-seismic earthquakes characteristics at natural and exploited hydrothermal systems in West Java, Indonesia

    Science.gov (United States)

    Jousset, P. G.; Jaya, M. S.; Sule, R.; Diningrat, W.; Gassner, A.; Akbar, F.; Ryannugroho, R.; Hendryana, A.; Kusnadi, Y.; Syahbana, D.; Nugraha, A. D.; Umar, M.; Indrinanto, Y.; Erbas, K.

    2013-12-01

    The assessment of geothermal resources requires the understanding of the structure and the dynamics of geothermal reservoirs. We deployed a multidisciplinary geophysical network around geothermal areas in the south of Bandung, West Java, Indonesia. The first deployment included a network of 30 broadband and 4 short-period seismic stations with Güralp and Trillium sensors (0.008 - 100 Hz) since October 2012. In a second step, we extended the network in June 2013 with 16 short-period (1 Hz) seismometers. We describe the set-up of the seismic networks and discuss first observations and results. The co-existence of a large variety of intense surface manifestations like geysers, hot-steaming grounds, hot water pools, and active volcanoes suggest an intimate coupling between volcanic, tectonic and hydrothermal processes in this area. Preliminary location of earthquakes is performed using a non-linear algorithm, which allows us to define at least 3 seismic clusters. We discuss this seismic pattern within the geothermal fields.

  7. Mining-induced seismicity at the Lucky Friday Mine: Seismic events of magnitude >2.5, 1989--1994

    Energy Technology Data Exchange (ETDEWEB)

    Whyatt, J.K.; Williams, T.J. [USDOE, Spokane, WA (United States). Spokane Research Center; Blake, W. [Blake (W.), Hayden Lake, ID (United States); Sprenke, K. [Idaho Univ., Moscow, ID (United States); Wideman, C. [Montana Tech, Butte, MT (United States)

    1996-09-01

    An understanding of the types of seismic events that occur in a deep mine provides a foundation for assessing the seismic characteristics of these events and the degree to which initiation of these events can be anticipated or controlled. This study is a first step toward developing such an understanding of seismic events generated by mining in the Coeur d`Alene Mining District of northern Idaho. It is based on information developed in the course of a long-standing rock burst research effort undertaken by the U. S. Bureau of Mines in cooperation with Coeur d`Alene Mining District mines and regional universities. This information was collected for 39 seismic events with local magnitudes greater than 2.5 that occurred between 1989 and 1994. One of these events occurred, on average, every 8 weeks during the study period. Five major types of characteristic events were developed from the data; these five types describe all but two of the 39 events that were studied. The most common types of events occurred, on average, once every 30 weeks. The characteristic mechanisms, first-motion patterns, damage patterns, and relationships to mining and major geologic structures were defined for each type of event. These five types of events need to be studied further to assess their ability to camouflage clandestine nuclear tests as well as the degree to which they can be anticipated and controlled.

  8. Dynamic characteristics of background seismic noise according to records of nuclear monitoring seismic stations in Kazakstan

    International Nuclear Information System (INIS)

    Belyashova, N.N.; Sinyova, Z.I.; Komarov, I.I.; Mikhailova, N.N.

    1998-01-01

    The seismic stations of Kazakstan, included into nuclear monitoring network (see fig.1) are equipped with broad hand seismometers; seismic data are recorded in digital format. All this allows to investigate spectral and time characteristics of seismic background noise in very large frequency diapason (more than 3-5 orders), for all three components of oscillation vector. The spectral density of background seismic noise for vertical and both horizontal components (fig.2) was calculated for all of the observation points. The regular features of structure of noise spectra, inherent for all of the studied observation points, as well as some features, specific for studied places were found. The curves of spectral noise density were compared with global noise model, determined by the data of Global Seismological Network (GSN)

  9. Georgia-Armenia Transboarder seismicity studies

    Science.gov (United States)

    Godoladze, T.; Tvaradze, N.; Javakishvili, Z.; Elashvili, M.; Durgaryan, R.; Arakelyan, A.; Gevorgyan, M.

    2012-12-01

    In the presented study we performed Comprehensive seismic analyses for the Armenian-Georgian transboarder active seismic fault starting on Armenian territory, cutting the state boarder and having possibly northern termination on Adjara-Triealeti frontal structure in Georgia. In the scope of International projects: ISTC A-1418 "Open network of scientific Centers for mitigation risk of natural hazards in the Southern Caucasus and Central Asia" and NATO SfP- 983284 Project "Caucasus Seismic Emergency Response" in Akhalkalaki (Georgia) seismic center, Regional Summer school trainings and intensive filed investigations were conducted. Main goal was multidisciplinary study of the Javakheti fault structure and better understanding seismicity of the area. Young scientists from Turkey, Armenia, Azerbaijan and Georgia were participated in the deployment of temporal seismic network in order to monitor seisimity on the Javakheti highland and particularly delineate fault scarf and identify active seismic structures. In the scope of international collaboration the common seismic database has been created in the southern Caucasus and collected data from the field works is available now online. Javakheti highland, which is located in the central part of the Caucasus, belongs to the structure of the lesser Caucasus and represents a history of neotectonic volcanism existed in the area. Jasvakheti highland is seismicalu active region devastating from several severe earthquakes(1088, 1283, 1899…). Hypocenters located during analogue network were highly scattered and did not describe real pattern of seismicity of the highland. We relocated hypocenters of the region and improved local velocity model. The hypocenters derived from recently deployed local seismic network in the Javakheti highland, clearly identified seismically active structures. Fault plane solutions of analogue data of the Soviet times have been carefully analyzed and examined. Moment tensor inversion were preformed

  10. Seasonal patterns of seismicity and deformation at the Alutu geothermal reservoir, Ethiopia, induced by hydrological loading

    Science.gov (United States)

    Birhanu, Yelebe; Wilks, Matthew; Biggs, Juliet; Kendall, J.-Michael; Ayele, Atalay; Lewi, Elias

    2018-05-01

    Seasonal variations in the seismicity of volcanic and geothermal reservoirs are usually attributed to the hydrological cycle. Here, we focus on the Aluto-Langano geothermal system, Ethiopia, where the climate is monsoonal and there is abundant shallow seismicity. We deployed temporary networks of seismometers and GPS receivers to understand the drivers of unrest. First, we show that a statistically significant peak in seismicity occurred 2-3 months after the main rainy season, with a second, smaller peak of variable timing. Seasonal seismicity is commonly attributed to variations in either surface loading or reservoir pore pressure. As loading will cause subsidence and overpressure will cause uplift, comparing seismicity rates with continuous GPS, enables us to distinguish between mechanisms. At Aluto, the major peak in seismicity is coincident with the high stand of nearby lakes and maximum subsidence, indicating that it is driven by surface loading. The magnitude of loading is insufficient to trigger widespread crustal seismicity but the geothermal reservoir at Aluto is likely sensitive to small perturbations in the stress field. Thus we demonstrate that monsoonal loading can produce seismicity in geothermal reservoirs, and the likelihood of both triggered and induced seismicity varies seasonally.

  11. Seismic Observations in the Taipei Metropolitan Area Using the Downhole Network

    Directory of Open Access Journals (Sweden)

    Win-Gee Huang

    2010-01-01

    Full Text Available Underlain by soft soils, the Taipei Metropolitan Area (TMA experienced major damage due to ground-motion amplification during the Hualien earthquake of 1986, the Chi-Chi earthquake of 1999, the Hualien earthquake of 2002 and the Taitung earthquake of 2003. To study how a local site can substantially change the characteristics of seismic waves as they pass through soft deposits below the free surface, two complementary downhole seismic arrays have been operated in the TMA, since 1991 and 2008. The accelerometer downhole array is composed of eight boreholes at depths in excess of 300 meters. The downhole array velocity sensor collocated with accelerometer composed of four boreholes at depths up to 90 meters. The integrated seismic network monitors potential earthquakes originating from faults in and around the TMA and provides wide-dynamic range measurement of data ranging in amplitude from seismic background noise levels to damage levels as a result of shaking. The data sets can be used to address on the response of soft-soil deposits to ground motions. One of the major considerations is the nonlinear response of soft soil deposits at different levels of excitation. The collocated acceloerometer and velocity sensors at boreholes give the necessary data for studies of non-linearity to be acquired. Such measurements in anticipation of future large, damaging earthquakes will be of special importance for the mitigation of earthquake losses.

  12. Seismic properties of lawsonite eclogites from the southern Motagua fault zone, Guatemala

    Science.gov (United States)

    Kim, Daeyeong; Wallis, Simon; Endo, Shunsuke; Ree, Jin-Han

    2016-05-01

    We present new data on the crystal preferred orientation (CPO) and seismic properties of omphacite and lawsonite in extremely fresh eclogite from the southern Motagua fault zone, Guatemala, to discuss the seismic anisotropy of subducting oceanic crust. The CPO of omphacite is characterized by (010)[001], and it shows P-wave seismic anisotropies (AVP) of 1.4%-3.2% and S-wave seismic anisotropies (AVS) of 1.4%-2.7%. Lawsonite exhibits (001) planes parallel to the foliation and [010] axes parallel to the lineation, and seismic anisotropies of 1.7%-6.6% AVP and 3.4%-14.7% AVS. The seismic anisotropy of a rock mass consisting solely of omphacite and lawsonite is 1.2%-4.1% AVP and 1.8%-6.8% AVS. For events that propagate more or less parallel to the maximum extension direction, X, the fast S-wave velocity (VS) polarization is parallel to the Z in the Y-Z section (rotated from the X-Z section), causing trench-normal seismic anisotropy for orthogonal subduction. Based on the high modal abundance and strong fabric of lawsonite, the AVS of eclogites is estimated as ~ 11.7% in the case that lawsonite makes up ~ 75% of the rock mass. On this basis, we suggest that lawsonite in both blueschist and eclogite may play important roles in the formation of complex pattern of seismic anisotropy observed in NE Japan: weak trench-parallel anisotropy in the forearc basin domains and trench-normal anisotropy in the backarc region.

  13. Seismic Intensity Map Triggered by Observed Strong Motion Records Considering Site Amplification and its service based on Geo-spatial International Standard

    International Nuclear Information System (INIS)

    Matsuoka, Masashi

    2014-01-01

    Instrumental seismic intensity measurement is carried out at approximately 4,200 points in Japan, but the correct values at points without seismometers cannot always be provided because seismic motion depends on geologic and geomorphologic features. Quick provision of accurate information on seismic intensity distribution over wide areas is required for disaster mitigation. To estimate seismic intensity at specific points, it is important to prepare ground amplification characteristics for local areas beforehand and use an interpolation algorithm. The QuiQuake system (quick estimation system for earthquake maps triggered by using observation records from K-NET and KiK-net that have been released by the National Research Institute for Earth Science and Disaster Prevention), which uses these, was developed; it can be started up automatically using seismograms and can immediately display a seismic intensity distribution map. The calculation results are sent to IAEA and JNES in the form of strong motion evaluation maps with a mesh size of 250 x 250 m. These maps are also sent to the general public via social networking web sites. (author)

  14. Structural patterns of the Lake Erçek Basin, eastern Anatolia (Turkey): evidence from single-channel seismic interpretation

    Science.gov (United States)

    Toker, Mustafa; Tur, Hüseyin

    2017-11-01

    This study presents an analysis of the single-channel high-resolution shallow seismic reflection data from Lake Erçek, eastern Anatolia, to provide key information on the deformational elements, on the fault patterns and on the overall tectonic structure of the Lake Erçek Basin. High-resolution seismic data reveal major structural and deformational features, including N-S trending normal faults and W-E trending reverse faults bounding the Lake Erçek Basin, basement highs and folded structures along the marginal sections of the lake. The N-S trending normal faults asymmetrically control the steep western margin and the gentle eastern deltaic section, while the W-E trending reverse faults appear at the northern and southern margins. The N-S trending normal faults, half-graben structure, and the gradual thickening of sediments in the Erçek Basin toward the fault scarps strongly suggest an extensional tectonic regime resulting from an N-S compression. The Erçek Basin is an extension-controlled depocenter; it is a relatively undeformed and flat-lying deep Basin, forming a typical example of the half-graben structure. The N-S trending normal faults appear to be currently active and control the lake center and the E-delta section, resulting in subsidence in the lake floor. In the N- and S-margins of the lake, there is evidence of folding, faulting and accompanying block uplifting, suggesting a significant N-S compressional regime that results in the reverse faulting and basement highs along the marginal sections. The folding and faulting caused strong uplift of the basement blocks in the N- and S- margins, subsequently exposing the shelf and slope areas. The exposed areas are evident in the erosional unconformity of the surface of the basement highs and thinned sediments. The tilted basement strata and subsequent erosion over the basement block highs suggest prominent structural inversion, probably long before the formation of the lake. New high-resolution seismic

  15. Tomographic analysis of self-potential data in a seismic area of Southern Italy

    Directory of Open Access Journals (Sweden)

    S. Piscitelli

    2000-06-01

    Full Text Available The time and space anomalous behaviour of the Self-Potential (SP field recorded in a seismic area of Southern Apennines, Italy, is discussed. The SP data were collected in the period June 1992-November 1994 along a profile located north of the town of Potenza in the Basilicata region, Italy. The profile is perpendicular to an active fault system, where a W-E directed strike-slip structure has been identified from recent earthquakes. The SP data are modelled using a new tomographic method based on the search for similarities between the observed SP sequence and the surface signature of the electric field due to a scanning point source with unitary positive charge. The point scanner is ideally moved in a vertical cross-section through the profile and a regular 2D matrix of charge occurrence probability values is thus obtained. These values are used to image the state of electric polarization in the subsoil, compatible with the observed SP surface pattern. A selection of 2D tomographies across the profile is then discussed in order to outline the SP source geometry and dynamics within the faulted structure. Finally, the time pattern of the SP polarization state is compared with the local seismicity in the frame of the rock dilatancy-fluid diffusion theory. This comparison allows us to exclude a direct relationship of the SP time behaviour with the seismic sequences which occurred in the area during the SP monitoring period.

  16. Linkages of fracture network geometry and hydro-mechanical properties to spatio-temporal variations of seismicity in Koyna-Warna Seismic Zone

    Science.gov (United States)

    Selles, A.; Mikhailov, V. O.; Arora, K.; Ponomarev, A.; Gopinadh, D.; Smirnov, V.; Srinu, Y.; Satyavani, N.; Chadha, R. K.; Davulluri, S.; Rao, N. P.

    2017-12-01

    Well logging data and core samples from the deep boreholes in the Koyna-Warna Seismic Zone (KWSZ) provided a glimpse of the 3-D fracture network responsible for triggered earthquakes in the region. The space-time pattern of earthquakes during the last five decades show strong linkage of favourably oriented fractures system deciphered from airborne LiDAR and borehole structural logging to the seismicity. We used SAR interferometry data on surface displacements to estimate activity of the inferred faults. The failure in rocks at depths is largely governed by overlying lithostatic and pore fluid pressure in the rock matrix which are subject to change in space and time. While lithostatic pressure tends to increase with depth pore pressure is prone to fluctuations due to any change in the hydrological regime. Based on the earthquake catalogue data, the seasonal variations in seismic activity associated with annual fluctuations in the reservoir water level were analyzed over the time span of the entire history of seismological observations in this region. The regularities in the time changes in the structure of seasonal variations are revealed. An increase in pore fluid pressure can result in rock fracture and oscillating pore fluid pressures due to a reservoir loading and unloading cycles can cause iterative and cumulative damage, ultimately resulting in brittle failure under relatively low effective mean stress conditions. These regularities were verified by laboratory physical modeling. Based on our observations of main trends of spatio-temporal variations in seismicity as well as the spatial distribution of fracture network a conceptual model is presented to explain the triggered earthquakes in the KWSZ. The work was supported under the joint Russian-Indian project of the Russian Science Foundation (RSF) and the Department of Science and Technology (DST) of India (RSF project no. 16-47-02003 and DST project INT/RUS/RSF/P-13).

  17. Site response assessment using borehole seismic records

    Energy Technology Data Exchange (ETDEWEB)

    Park, Donghee; Chang, Chunjoong; Choi, Weonhack [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. The Korea Meteorological Administration (KMA) and the Korea Institute of Geology and Mining (KIGAM) have installed and are operating borehole seismometers at a depth of 70∼100 meters for the precise determination of epicenters. Also, Korea Hydro and Nuclear Power Co., Ltd. (KHNP) has installed and is operating 2 borehole seismic stations near Weolseong area to observe at a depth of 140 meters seismic activities connected to fault activity. KHNP plans to operate in the second half of 2014 a borehole seismic station for depths less than 300 and 600 meters in order to study the seismic response characteristics in deep strata. As a basic study for analyzing ground motion response characteristics at depths of about 300 to 600 meters in connection with the deep geological disposal of spent nuclear fuel, the present study examined the background noise response characteristics of the borehole seismic station operated by KHNP. In order to analyze the depth-dependent impact of seismic waves at deeper depths than in Korea, seismic data collected by Japan's KIK-net seismic stations were used and the seismic wave characteristics analyzed by size and depth. In order to analyze the borehole seismic observation data from the seismic station operated by KHNP, this study analyzed the background noise characteristics by using a probability density function.

  18. Site response assessment using borehole seismic records

    International Nuclear Information System (INIS)

    Park, Donghee; Chang, Chunjoong; Choi, Weonhack

    2014-01-01

    In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. The Korea Meteorological Administration (KMA) and the Korea Institute of Geology and Mining (KIGAM) have installed and are operating borehole seismometers at a depth of 70∼100 meters for the precise determination of epicenters. Also, Korea Hydro and Nuclear Power Co., Ltd. (KHNP) has installed and is operating 2 borehole seismic stations near Weolseong area to observe at a depth of 140 meters seismic activities connected to fault activity. KHNP plans to operate in the second half of 2014 a borehole seismic station for depths less than 300 and 600 meters in order to study the seismic response characteristics in deep strata. As a basic study for analyzing ground motion response characteristics at depths of about 300 to 600 meters in connection with the deep geological disposal of spent nuclear fuel, the present study examined the background noise response characteristics of the borehole seismic station operated by KHNP. In order to analyze the depth-dependent impact of seismic waves at deeper depths than in Korea, seismic data collected by Japan's KIK-net seismic stations were used and the seismic wave characteristics analyzed by size and depth. In order to analyze the borehole seismic observation data from the seismic station operated by KHNP, this study analyzed the background noise characteristics by using a probability density function

  19. Deformation patterns and seismic hazard along the eastern Sunda margin

    Science.gov (United States)

    Kopp, Heidrun; Djajadihardja, Yusuf; Flueh, Ernst R.; Hindle, David; Klaeschen, Dirk; Mueller, Christian; Planert, Lars; Reichert, Christian; Shulgin, Alexey; Wittwer, Andreas

    2010-05-01

    The eastern Sunda margin offshore Java, Bali, Lombok and Sumba is the site of oceanic subduction of the Indo-Australian plate underneath the Indonesian archipelago. Data from a suite of geophysical experiments conducted between 1997-2006 using RV SONNE as platform include seismic and seismological studies, potential field measurements and high-resolution seafloor bathymetry mapping. Tomographic inversions provide an image of the ongoing deformation of the forearc and the deep subsurface. We investigate the role of various key mechanisms that shape the first-order features characterizing the present margin architecture. Our contribution evaluates the differences in architecture and evolution along the Java forearc from a marine perspective to better understand the variation in tectonic styles and segmentation of the convergent margin, including its seismic risk potential.

  20. Reservoir characterization using production data and time-lapse seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Dadashpour, Mohsen

    2009-12-15

    algorithm in conditions which are case dependent and under some technical limitations. Both derivative based (Gauss-Newton (GN), and Spares non-linear optimizer (SNOPT)) and derivative-free (Hooke-Jeeves direct search (HJDS), General pattern search (GPS), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA)) approaches are tested in two different type of inversion problem. The observation data consists of production and seismic data. We study two different types of seismic observables (diffraction and travel time tomography). Both of them are computed along the two perpendicular cross-well sections from the injectors, and only at the end of production. While in the second case, the optimization variables are porosity and permeability at every grid block and the observation data were production and 4D seismic data. 4D seismic data was in the form of zero offset amplitude and Amplitude versus offset (AVO) gradients.

  1. Observation of ground deformation associated with hydraulic fracturing and seismicity in the Western Canadian Sedimentary Basin

    Science.gov (United States)

    Kubanek, J.; Liu, Y.; Harrington, R. M.; Samsonov, S.

    2017-12-01

    GNSS positioning and acceleration. We expect the joint data analysis of dense seismic and geodetic observations to give new insights about the correlation between surface deformation, fluid injection, and induced seismicity that can be used to assess the hazard potential of hydraulic fracturing in the WCSB.

  2. Moment magnitude determination of local seismic events recorded at selected Polish seismic stations

    Science.gov (United States)

    Wiejacz, Paweł; Wiszniowski, Jan

    2006-03-01

    The paper presents the method of local magnitude determination used at Polish seismic stations to report events originating in one of the four regions of induced seismicity in Poland or its immediate vicinity. The method is based on recalculation of the seismic moment into magnitude, whereas the seismic moment is obtained from spectral analysis. The method has been introduced at Polish seismic stations in the late 1990s but as of yet had not been described in full because magnitude discrepancies have been found between the results of the individual stations. The authors have performed statistics of these differences, provide their explanation and calculate station corrections for each station and each event source region. The limitations of the method are also discussed. The method is found to be a good and reliable method of local magnitude determination provided the limitations are observed and station correction applied.

  3. Toward 2D Seismic Wavefield Monitoring: Seismic Gradiometry for Long-Period Seismogram and Short-Period Seismogram Envelope applied to the Hi-net Array

    Science.gov (United States)

    Maeda, T.; Nishida, K.; Takagi, R.; Obara, K.

    2015-12-01

    The high-sensitive seismograph network Japan (Hi-net) operated by National Research Institute for Earth Science and Disaster Prevention (NIED) has about 800 stations with average separation of 20 km. We can observe long-period seismic wave propagation as a 2D wavefield with station separations shorter than wavelength. In contrast, short-period waves are quite incoherent at stations, however, their envelope shapes resemble at neighbor stations. Therefore, we may be able to extract seismic wave energy propagation by seismogram envelope analysis. We attempted to characterize seismic waveform at long-period and its envelope at short-period as 2D wavefield by applying seismic gradiometry. We applied the seismic gradiometry to a synthetic long-period (20-50s) dataset prepared by numerical simulation in realistic 3D medium at the Hi-net station layout. Wave amplitude and its spatial derivatives are estimated by using data at nearby stations. The slowness vector, the radiation pattern and the geometrical spreading are extracted from estimated velocity, displacement and its spatial derivatives. For short-periods at shorter than 1 s, seismogram envelope shows temporal and spatial broadening through scattering by medium heterogeneity. It is expected that envelope shape may be coherent among nearby stations. Based on this idea, we applied the same method to the time-integration of seismogram envelope to estimate its spatial derivatives. Together with seismogram envelope, we succeeded in estimating the slowness vector from the seismogram envelope as well as long-period waveforms by synthetic test, without using phase information. Our preliminarily results show that the seismic gradiometry suits the Hi-net to extract wave propagation characteristics both at long and short periods. This method is appealing that it can estimate waves at homogeneous grid to monitor seismic wave as a wavefield. It is promising to obtain phase velocity variation from direct waves, and to grasp wave

  4. Hanford Seismic Annual Report and Fourth Quarter Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    AC Rohay; DC Hartshorn; SP Reidel

    1999-12-07

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network. (EWRN) consist of 40 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. A major reconfiguration of the HSN was initiated at the end of this quarter and the results will be reported in the first quarter report for next fiscal year (FY2000). For the HSN, there were 390 triggers during the fourth quarter of fiscal year(FY) 1999 on the primary recording system. With the implementation of dual backup systems during the second quarter of the fiscal year and an overall increase observed in sensitivity, a total of 1632 triggers were examined, identified, and processed during this fiscal year. During the fourth quarter, 24 seismic events were located by the HSN within the reporting region of 46 degrees to 47 degrees north latitude and 119 degrees to 120 degrees west longitude 9 were earthquakes in the Columbia River Basalt Group, 2 were earthquakes in the pre-basalt sediments, 10 were earthquakes in the crystalline basement; and 2 were quarry blasts. One earthquake appears to be related to a major geologic structure, 14 earthquakes occurred in known swarm areas, and 7 earthquakes were random occurrences.

  5. Chaotic behavior of seismic mechanisms: experiment and observation

    Directory of Open Access Journals (Sweden)

    Mourad Bezzeghoud

    2012-04-01

    Full Text Available

    To simulate the dynamics of earthquakes, a mechanical prototype was constructed that was inspired by the Burridge-Knopoff model and equipped with accurate instrumental devices. The data obtained by the prototype appeared to be consistent with seismic data from the San Andreas Fault, California, USA, which were analyzed using two different methodologies: seismology and modern developments of chaos theory. Perspectives for future work are also presented.

  6. Observational studies in South African mines to mitigate seismic risks: a mid-project progress report

    CSIR Research Space (South Africa)

    Durrheim, RJ

    2013-10-01

    Full Text Available such as Japan. A 5-year collaborative project entitled "Observational studies in South African mines to mitigate seismic risks" was launched in 2010 to address these risks, drawing on over a century of South African and Japanese research experience... network in the mining districts. Figure 1. Schematic illustration of the research design. Jpn - Japanese researchers; CSIR - Council for Scientific and Industrial Research; CGS - Council for Geoscience The knowledge gained during the course...

  7. Seismic risks posed by mine flooding

    CSIR Research Space (South Africa)

    Goldbach, OD

    2009-09-01

    Full Text Available are allowed to flood. Such flooding-induced seismicity can have significant environmental, social and economic consequences, and may endanger neighbouring mines and surface communities. While fluid-induced seismicity has been observed in other settings (e...

  8. Quantitative identification and analysis of sub-seismic extensional structure system: technique schemes and processes

    International Nuclear Information System (INIS)

    Chenghua, Ou; Chen, Wei; Ma, Zhonggao

    2015-01-01

    Quantitative characterization of complex sub-seismic extensional structure system that essentially controls petroleum exploitation is difficult to implement in seismic profile interpretation. This research, based on a case study in block M of Myanmar, established a set of quantitative treatment schemes and technique processes for the identification of sub-seismic low-displacement (SSLD) extensional faults or fractures upon structural deformation restoration and geometric inversion. Firstly, the master-subsidiary inheritance relations and configuration of the seismic-scale extensional fault systems are determined by analyzing the structural pattern. Besides, three-dimensional (3D) pattern and characteristics of the seismic-scale extensional structure have been illustrated by a 3D structure model built upon seismic sections. Moreover, according to the dilatancy obtained from structural restoration on the basis of inclined shear method, as well as the fracture-flow index, potential SSLD extensional faults or fractures have been quantitatively identified. Application of the technique processes to the sub-seismic low-displacement extensional structures in block M in Myanmar is instructive to quantitatively interpret those SSLD extensional structure systems in practice. (paper)

  9. Seismic signal and noise on Europa

    Science.gov (United States)

    Panning, Mark; Stähler, Simon; Bills, Bruce; Castillo Castellanos, Jorge; Huang, Hsin-Hua; Husker, Allen; Kedar, Sharon; Lorenz, Ralph; Pike, William T.; Schmerr, Nicholas; Tsai, Victor; Vance, Steven

    2017-10-01

    Seismology is one of our best tools for detailing interior structure of planetary bodies, and a seismometer is included in the baseline and threshold mission design for the upcoming Europa Lander mission. Guiding mission design and planning for adequate science return, though, requires modeling of both the anticipated signal and noise. Assuming ice seismicity on Europa behaves according to statistical properties observed in Earth catalogs and scaling cumulative seismic moment release to the moon, we can simulate long seismic records and estimate background noise and peak signal amplitudes (Panning et al., 2017). This suggests a sensitive instrument comparable to many broadband terrestrial instruments or the SP instrument from the InSight mission to Mars will be able to record signals, while high frequency geophones are likely inadequate. We extend this analysis to also begin incorporation of spatial and temporal variation due to the tidal cycle, which can help inform landing site selection. We also begin exploration of how chaotic terrane at the bottom of the ice shell and inter-ice heterogeneities (i.e. internal melt structures) may affect anticipated seismic observations using 2D numerical seismic simulations.M. P. Panning, S. C. Stähler, H.-H. Huang, S. D. Vance, S. Kedar, V. C. Tsai, W. T. Pike, R. D. Lorenz, “Expected seismicity and the seismic noise environment of Europa,” J. Geophys. Res., in revision, 2017.

  10. Assessment of Quantitative Aftershock Productivity Potential in Mining-Induced Seismicity

    Science.gov (United States)

    Kozłowska, Maria; Orlecka-Sikora, Beata

    2017-03-01

    Strong mining-induced earthquakes exhibit various aftershock patterns. The aftershock productivity is governed by the geomechanical properties of rock in the seismogenic zone, mining-induced stress and coseismic stress changes related to the main shock's magnitude, source geometry and focal mechanism. In order to assess the quantitative aftershock productivity potential in the mining environment we apply a forecast model based on natural seismicity properties, namely constant tectonic loading and the Gutenberg-Richter frequency-magnitude distribution. Although previous studies proved that mining-induced seismicity does not obey the simple power law, here we apply it as an approximation of seismicity distribution to resolve the number of aftershocks, not considering their magnitudes. The model used forecasts the aftershock productivity based on the background seismicity level estimated from an average seismic moment released per earthquake and static stress changes caused by a main shock. Thus it accounts only for aftershocks directly triggered by coseismic process. In this study we use data from three different mines, Mponeng (South Africa), Rudna and Bobrek (Poland), representing different geology, exploitation methods and aftershock patterns. Each studied case is treated with individual parameterization adjusted to the data specifics. We propose the modification of the original model, i.e. including the non-uniformity of M 0, resulting from spatial correlation of mining-induced seismicity with exploitation. The results show that, even when simplified seismicity distribution parameters are applied, the modified model predicts the number of aftershocks for each analyzed case well and accounts for variations between these values. Such results are thus another example showing that coseismic processes of mining-induced seismicity reflect features of natural seismicity and that similar models can be applied to study the aftershock rate in both the natural and the

  11. Implications of Seismically Active Fault Structures in Ankay and Alaotra Regions of Northern and Central Madagascar

    Science.gov (United States)

    Malloy, S.; Stamps, D. S.

    2017-12-01

    The purpose of the study is to gain a better understanding of the seismically active fault structures in central and northern Madagascar. We study the Ankay and Lake Alaotra regions of Madagascar, which are segmented by multiple faults that strike N-S. In general, normal seismic events occur on faults bounding the Alaotra-Ankay rift basin where Quaternary alluvium is present. Due to this pattern and moderate amounts of low magnitude seismic activity along these faults, it is hypothesized the region currently undergoes E-W extension. In this work we test how variations in fault strength and net slip changes influence expected crustal movement in the region. Using the Coulomb stress failure point as a test of strength we are able to model the Alaotra-Ankay region using MATLAB Coulomb 3.3.01. This program allows us to define realistic Poisson's ratio and Young's modulus of mapped rock compositions in the region, i.e. paragneiss and orthogneiss, create 3D fault geometries, and calculate static stress changes with coinciding surface displacements. We impose slip along multiple faults and calculate seismic moment that we balance by the 3 observed earthquake magnitudes available in the USGS CMT database. Our calculations of surface displacements indicate 1-3 millimeters could be observed across the Alaotra-Ankay rift. These values are within the observable range of precision GNSS observations, therefore our results will guide future research into the area and direct potential GNSS station installation.

  12. A new view for the geodynamics of Ecuador: Implication in seismogenic source definition and seismic hazard assessment

    Science.gov (United States)

    Yepes, Hugo; Audin, Laurence; Alvarado, Alexandra; Beauval, Céline; Aguilar, Jorge; Font, Yvonne; Cotton, Fabrice

    2016-05-01

    A new view of Ecuador's complex geodynamics has been developed in the course of modeling seismic source zones for probabilistic seismic hazard analysis. This study focuses on two aspects of the plates' interaction at a continental scale: (a) age-related differences in rheology between Farallon and Nazca plates—marked by the Grijalva rifted margin and its inland projection—as they subduct underneath central Ecuador, and (b) the rapidly changing convergence obliquity resulting from the convex shape of the South American northwestern continental margin. Both conditions satisfactorily explain several characteristics of the observed seismicity and of the interseismic coupling. Intermediate-depth seismicity reveals a severe flexure in the Farallon slab as it dips and contorts at depth, originating the El Puyo seismic cluster. The two slabs position and geometry below continental Ecuador also correlate with surface expressions observable in the local and regional geology and tectonics. The interseismic coupling is weak and shallow south of the Grijalva rifted margin and increases northward, with a heterogeneous pattern locally associated to the Carnegie ridge subduction. High convergence obliquity is responsible for the North Andean Block northeastward movement along localized fault systems. The Cosanga and Pallatanga fault segments of the North Andean Block-South American boundary concentrate most of the seismic moment release in continental Ecuador. Other inner block faults located along the western border of the inter-Andean Depression also show a high rate of moderate-size earthquake production. Finally, a total of 19 seismic source zones were modeled in accordance with the proposed geodynamic and neotectonic scheme.

  13. The seismic cycle at subduction thrusts: 1. Insights from laboratory models

    KAUST Repository

    Corbi, F.; Funiciello, F.; Moroni, M.; van Dinther, Y.; Mai, Paul Martin; Dalguer, L. A.; Faccenna, C.

    2013-01-01

    Subduction megathrust earthquakes occur at the interface between the subducting and overriding plates. These hazardous phenomena are only partially understood because of the absence of direct observations, the restriction of the instrumental seismic record to the past century, and the limited resolution/completeness of historical to geological archives. To overcome these restrictions, modeling has become a key-tool to study megathrust earthquakes. We present a novel model to investigate the seismic cycle at subduction thrusts using complementary analog (paper 1) and numerical (paper 2) approaches. Here we introduce a simple scaled gelatin-on-sandpaper setup including realistic tectonic loading, spontaneous rupture nucleation, and viscoelastic response of the lithosphere. Particle image velocimetry allows to derive model deformation and earthquake source parameters. Analog earthquakes are characterized by “quasi-periodic” recurrence. Consistent with elastic theory, the interseismic stage shows rearward motion, subsidence in the outer wedge and uplift of the “coastal area” as a response of locked plate interface at shallow depth. The coseismic stage exhibits order of magnitude higher velocities and reversal of the interseismic deformation pattern in the seaward direction, subsidence of the coastal area, and uplift in the outer wedge. Like natural earthquakes, analog earthquakes generally nucleate in the deeper portion of the rupture area and preferentially propagate upward in a crack-like fashion. Scaled rupture width-slip proportionality and seismic moment-duration scaling verifies dynamic similarities with earthquakes. Experimental repeatability is statistically verified. Comparing analog results with natural observations, we conclude that this technique is suitable for investigating the parameter space influencing the subduction interplate seismic cycle.

  14. The seismic cycle at subduction thrusts: 1. Insights from laboratory models

    KAUST Repository

    Corbi, F.

    2013-04-01

    Subduction megathrust earthquakes occur at the interface between the subducting and overriding plates. These hazardous phenomena are only partially understood because of the absence of direct observations, the restriction of the instrumental seismic record to the past century, and the limited resolution/completeness of historical to geological archives. To overcome these restrictions, modeling has become a key-tool to study megathrust earthquakes. We present a novel model to investigate the seismic cycle at subduction thrusts using complementary analog (paper 1) and numerical (paper 2) approaches. Here we introduce a simple scaled gelatin-on-sandpaper setup including realistic tectonic loading, spontaneous rupture nucleation, and viscoelastic response of the lithosphere. Particle image velocimetry allows to derive model deformation and earthquake source parameters. Analog earthquakes are characterized by “quasi-periodic” recurrence. Consistent with elastic theory, the interseismic stage shows rearward motion, subsidence in the outer wedge and uplift of the “coastal area” as a response of locked plate interface at shallow depth. The coseismic stage exhibits order of magnitude higher velocities and reversal of the interseismic deformation pattern in the seaward direction, subsidence of the coastal area, and uplift in the outer wedge. Like natural earthquakes, analog earthquakes generally nucleate in the deeper portion of the rupture area and preferentially propagate upward in a crack-like fashion. Scaled rupture width-slip proportionality and seismic moment-duration scaling verifies dynamic similarities with earthquakes. Experimental repeatability is statistically verified. Comparing analog results with natural observations, we conclude that this technique is suitable for investigating the parameter space influencing the subduction interplate seismic cycle.

  15. New Directions in Seismic Hazard Assessment Through Focused Earth Observation in the MARmara SuperSITE - Project Achievements

    Science.gov (United States)

    Meral OZel, Nurcan; Necmioǧlu, Öcal; Ergintav, Semih; Ozel, Oǧuz; Favali, Paolo; Bigarre, Pascal; Çakır, Ziyadin; Ozeren, Sinan; Geli, Louis; Douglas, John; Aochi, Hideo; Bossu, Remy; Zülfikar, Can; Şeşetyan, Karin; Erdik, Mustafa

    2016-04-01

    The MARsite Project, which started in November 2012,funded by the EC/ FP7-ENV.2012 6.4-2 (Grant 308417) identifies the Marmara region as a 'Supersite' within European initiatives to aggregate on-shore, off-shore and space-based observations, comprehensive geophysical monitoring, improved hazard and risk assessments encompassed in an integrated set of activities. MARsite aimed to harmonize geological, geophysical, geodetic and geochemical observations to provide a better view of the post-seismic deformation of the 1999 Izmit earthquake (in addition to the post-seismic signature of previous earthquakes), loading of submarine and inland active fault segments and transient pre-earthquake signals, related to stress loading with different tectonic properties in and around Marmara Sea. This presentation provides an overview of the achievements of MARSite which aimed to coordinate research groups ranging from seismology to gas geochemistry in a comprehensive monitoring activity developed in the Marmara Region based on collection of multidisciplinary data to be shared, interpreted and merged in consistent theoretical and practical models suitable for the implementation of good practices to move the necessary information to the end users in charge of seismic risk management of the region. In addition, processes involved in earthquake generation and the physics of short-term seismic transients, 4D deformations to understand earthquake cycle processes, fluid activity monitoring and seismicity under the sea floor using existing autonomous instrumentation, early warning and development of real-time shake and loss information, real- and quasi-real-time earthquake and tsunami hazard monitoring and earthquake-induced landslide hazard topics are also covered within MARSite. In particular, achievements and progress in the design and building of a multi-parameter borehole system consisting of very wide dynamic range and stable borehole (VBB) broad band seismic sensor, with

  16. Simulations of seismic acquisition footprint

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J.; Margrave, G.; Lawton, D. [Calgary Univ., AB (Canada)

    2008-07-01

    Numerical simulations were performed to investigate the causes of commonly observed artefacts in seismic field data. These seismic acquisition footprints typically consist of modulations in recorded amplitudes that are spatially correlated to the surface locations of sources and receivers used in a survey. Two broad classes of footprint were considered, notably amplitude variations related to the edges of the survey and the amplitude variations in the interior of the survey. The variations in amplitude obscure the true reflection response of the subsurface. The MATLAB numerical modelling code was used to produce the synthetic seismic data and create a thorough dataset using a survey design incorporating dense grids of sources and receivers. The footprint consisting of periodic amplitude variations in the interior of the surveys, similar to that observed in field data and likely produced by poor sampling, was observed in the decimated dataset. This type of footprint varied in strength between images produced with different processing algorithms. The observed footprint in these simulations was most organized in the unmigrated stack and was somewhat randomized after poststack. 2 refs., 1 tab., 3 figs.

  17. Intercomparison of liquid metal fast reactor seismic analysis codes. V. 3: Comparison of observed effects with computer simulated effects on reactor cores from seismic disturbances. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    1996-05-01

    This publication contains the final papers summarizing the validation of the codes on the basis of comparison of observed effects with computer simulated effects on reactor cores from seismic disturbances. Refs, figs tabs

  18. A seismic refraction and wide-angle reflection exploration in 2002 on the Mizuho Plateau, East Antarctica-Outline of observations (JARE-43-

    Directory of Open Access Journals (Sweden)

    Hiroki Miyamachi

    2003-03-01

    Full Text Available A seismic refraction and wide-angle reflection exploration was successfully conducted along a profile crossing the JARE-41 seismic profile on the Mizuho Plateau, in East Antarctica, in the austral summer season of 2001-2002 (JARE-43. One hundred sixty-one seismic stations were temporarily installed along a profile about 151 km long and seven large shots with about 700 kg of dynamite were fired. In addition, one shot with charge size of 20 kg was also arranged along the profile. The obtained seismic records show the clear onsets of the first arrivals at distances of less than 100 km from each large shot. In particular, seismic waves traveling through the ice sheet and dispersed surface waves were clearly observed. Some later reflection phases were also detected. The obtained first travel time data show that the ice sheet is a two-layered structure consisting of an upper layer with a P wave velocity of 2.7-2.9 km/s and a lower layer of 3.7-3.9 km/s. The thickness of the upper layer is estimated to be about 36-45 m. The apparent velocity in the basement rock just beneath the ice sheet is 6.1-6.2 km/s in the central and southern parts of the profile and almost 5.9 km/s in the northern part. This report describes basic outlines of the exploration and the obtained seismic data.

  19. Quasi-seismic scaling processes in sea ice

    International Nuclear Information System (INIS)

    Chmel, A; Smirnov, V N

    2011-01-01

    The cracking, shearing and stick–slip motions in sea ice are similar to those in fracturing geostructures. In this work, the fracture-related, quasi-seismic activity in the Arctic ice pack was monitored during a large-scale ice cover fragmentation that occurred in March 2008. This fragmentation resulted in the formation of a two-dimensional 'fault' clearly seen in satellite images. The energy distribution in elastic waves detected by seismic tiltmeters follows the power law in pre- and post-faulting periods. The power exponent decreases as the 'catastrophe' approaches, and exhibits a trend to restore its initial value after the large-scale perturbation. The detected fracture events are correlated in time in the sense of a scaling relation. A quiescent period (very low quasi-seismic activity) was observed before 'faulting'. A close similarity in scaling characteristics between the crustal seismicity and quasi-seismic activity observed in the ice pack is discussed from the viewpoint of the role of heterogeneity in the behavior of large-scale critical systems

  20. Seismic and Geodetic Monitoring of the Nicoya, Costa Rica, Seismic Gap

    Science.gov (United States)

    Protti, M.; Gonzalez, V.; Schwartz, S.; Dixon, T.; Kato, T.; Kaneda, Y.; Simila, G.; Sampson, D.

    2007-05-01

    The Nicoya segment of the Middle America Trench has been recognized as a mature seismic gap with potential to generate a large earthquake in the near future (it ruptured with large earthquakes in 1853, 1900 and 1950). Low level of background seismicity and fast crustal deformation of the forearc are indicatives of strong coupling along the plate interface. Given its high seismic potential, the available data and especially the fact that the Nicoya peninsula extends over large part of the rupture area, this gap was selected as one of the two sites for a MARGINS-SEIZE experiment. With the goal of documenting the evolution of loading and stress release along this seismic gap, an international effort involving several institutions from Costa Rica, the United States and Japan is being carried out for over a decade in the region. This effort involves the installation of temporary and permanent seismic and geodetic networks. The seismic network includes short period, broad band and strong motion instruments. The seismic monitoring has provided valuable information on the geometry and characteristics of the plate interface. The geodetic network includes temporary and permanent GPS stations as well as surface and borehole tiltmeters. The geodetic networks have helped quantify the extend and degree of coupling. A continuously recording, three- station GPS network on the Nicoya Peninsula, Costa Rica, recorded what we believe is the first slow slip event observed along the plate interface of the Costa Rica subduction zone. We will present results from these monitoring networks. Collaborative international efforts are focused on expanding these seismic and geodetic networks to provide improved resolution of future creep events, to enhanced understanding of the mechanical behavior of the Nicoya subduction segment of the Middle American Trench and possibly capture the next large earthquake and its potential precursor deformation.

  1. Use of the t-distribution to construct seismic hazard curves for seismic probabilistic safety assessments

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Eric [KEPCO International Nuclear Graduate School, Dept. of Nuclear Power Plant Engineering, Ulsan (Korea, Republic of)

    2017-03-15

    Seismic probabilistic safety assessments are used to help understand the impact potential seismic events can have on the operation of a nuclear power plant. An important component to seismic probabilistic safety assessment is the seismic hazard curve which shows the frequency of seismic events. However, these hazard curves are estimated assuming a normal distribution of the seismic events. This may not be a strong assumption given the number of recorded events at each source-to-site distance. The use of a normal distribution makes the calculations significantly easier but may underestimate or overestimate the more rare events, which is of concern to nuclear power plants. This paper shows a preliminary exploration into the effect of using a distribution that perhaps more represents the distribution of events, such as the t-distribution to describe data. The integration of a probability distribution with potentially larger tails basically pushes the hazard curves outward, suggesting a different range of frequencies for use in seismic probabilistic safety assessments. Therefore the use of a more realistic distribution results in an increase in the frequency calculations suggesting rare events are less rare than thought in terms of seismic probabilistic safety assessment. However, the opposite was observed with the ground motion prediction equation considered.

  2. Use of the t-distribution to construct seismic hazard curves for seismic probabilistic safety assessments

    International Nuclear Information System (INIS)

    Yee, Eric

    2017-01-01

    Seismic probabilistic safety assessments are used to help understand the impact potential seismic events can have on the operation of a nuclear power plant. An important component to seismic probabilistic safety assessment is the seismic hazard curve which shows the frequency of seismic events. However, these hazard curves are estimated assuming a normal distribution of the seismic events. This may not be a strong assumption given the number of recorded events at each source-to-site distance. The use of a normal distribution makes the calculations significantly easier but may underestimate or overestimate the more rare events, which is of concern to nuclear power plants. This paper shows a preliminary exploration into the effect of using a distribution that perhaps more represents the distribution of events, such as the t-distribution to describe data. The integration of a probability distribution with potentially larger tails basically pushes the hazard curves outward, suggesting a different range of frequencies for use in seismic probabilistic safety assessments. Therefore the use of a more realistic distribution results in an increase in the frequency calculations suggesting rare events are less rare than thought in terms of seismic probabilistic safety assessment. However, the opposite was observed with the ground motion prediction equation considered

  3. Seismic sequences and swarms in the Latium-Abruzzo-Molise Apennines (central Italy): New observations and analysis from a dense monitoring of the recent activity

    Science.gov (United States)

    Frepoli, A.; Cimini, G. B.; De Gori, P.; De Luca, G.; Marchetti, A.; Monna, S.; Montuori, C.; Pagliuca, N. M.

    2017-08-01

    We present a detailed analysis of the seismic activity in the central Apennines based on a high quality seismogram data set collected from two temporary and three permanent networks. This integrated network recorded, between January 2009 and December 2013, a total of 7011 local earthquakes (6270 selected for this study), with local magnitudes ML ranging from 0.4 to 4.7. Hypocentres were located by using a reference 1D crustal velocity model determined with a genetic algorithm. The majority of the hypocenters are located beneath the axis of the Apenninic belt, while the rest are found along the peri-Tyrrhenian margin. Hypocentral depth distribution extends to a depth of 31 km with a pronounced peak between 8 and 12 km. Both low-to-moderate magnitude seismic sequences and diffuse swarm-like seismicity was observed. There were two major seismic swarms and a seismic sequence, which included the Marsica-Sora ML 4.7 main shock. A total of 468 fault plane solutions were derived from P-wave polarities. This new data set more than quadruples the number of focal mechanisms that was previously available for regional stress field analysis in the study region. The majority of the fault plane solutions in the central Apennines show predominantly normal fault movements, with T-axis trends oriented NE-SW. Focal mechanisms calculated in this study confirm that this area is in extension. For the seismic swarms-sequence in the Marsica-Sora area we also derived the azimuth and plunge of the principal stress axes by inverting fault plane solutions. We find a few right-lateral strike-slip focal mechanisms that possibly identify the prolongation of the strike-slip kinematics in the Gargano-Apulia foreland to the west, and mark the passage to the NW-SE striking normal faults of the inner Apenninic belt. The seismicity and stress distribution we observe might be consistent with a fragmented tectonic scenario in which faults with small dimensions release seismic energy in a diffused way.

  4. Vertical seismic profiling and integration with reflection seismic studies at Laxemar, 2000

    International Nuclear Information System (INIS)

    Juhlin, C.; Bergman, B.; Cosma, C.; Keskinen, J.; Enescu, N.

    2002-02-01

    Vertical seismic profile (VSP) data were acquired in October 2000 in the 1700 m deep KLX02 borehole, near Laxemar in southeastern Sweden. The objectives of the VSP were to image reflectors in the borehole for correlation with surface seismic and borehole data, study the signal penetration of explosive versus mechanical sources and determine the seismic velocity as a function of depth. Five principal source points were used, one located close to the KLX02 wellhead and 4 others that were offset by about 200 m to 400 m. An explosive source was only used at the wellhead and consisted of 15 grams of dynamite in 90 cm deep shot holes in bedrock. A swept impact seismic source (SIST) was also used at the wellhead, as well as at the other four offset source points. The primary SIST source consisted of a computer controlled mechanical hammer mounted on a tractor. By activating the hammer over a 15 second sweep length, the total energy transferred to the ground is on the same order as that produced by the dynamite. The recorded data are then processed to generate seismic records that are equivalent to a single impact source. A smaller hand held SIST source was also tested at the wellhead. Tests of both the tractor mounted source and dynamite were made at a location offset somewhat from the wellhead at a site containing loose sediments at the surface. Full waveform sonic, resistivity and gamma logs were also acquired in conjunction the VSP survey. A comparison between the explosive and large SIST source shows that comparable energy levels are produced by the two methods. The SIST source appears to be more stable in terms of the energy level, although the frequency content of data are somewhat lower. However, its most significant advantage is the low cost of preparation of the source points and the speed of the acquisition. Numerous reflections are observed on the VSP, as is the case on the surface seismic, implying a complex structure in the vicinity of the KLX02 borehole

  5. Vertical seismic profiling and integration with reflection seismic studies at Laxemar, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Juhlin, C.; Bergman, B. [Uppsala Univ. (Sweden); Cosma, C.; Keskinen, J.; Enescu, N. [Vibrometric Oy, Helsinki (Finland)

    2002-02-01

    Vertical seismic profile (VSP) data were acquired in October 2000 in the 1700 m deep KLX02 borehole, near Laxemar in southeastern Sweden. The objectives of the VSP were to image reflectors in the borehole for correlation with surface seismic and borehole data, study the signal penetration of explosive versus mechanical sources and determine the seismic velocity as a function of depth. Five principal source points were used, one located close to the KLX02 wellhead and 4 others that were offset by about 200 m to 400 m. An explosive source was only used at the wellhead and consisted of 15 grams of dynamite in 90 cm deep shot holes in bedrock. A swept impact seismic source (SIST) was also used at the wellhead, as well as at the other four offset source points. The primary SIST source consisted of a computer controlled mechanical hammer mounted on a tractor. By activating the hammer over a 15 second sweep length, the total energy transferred to the ground is on the same order as that produced by the dynamite. The recorded data are then processed to generate seismic records that are equivalent to a single impact source. A smaller hand held SIST source was also tested at the wellhead. Tests of both the tractor mounted source and dynamite were made at a location offset somewhat from the wellhead at a site containing loose sediments at the surface. Full waveform sonic, resistivity and gamma logs were also acquired in conjunction the VSP survey. A comparison between the explosive and large SIST source shows that comparable energy levels are produced by the two methods. The SIST source appears to be more stable in terms of the energy level, although the frequency content of data are somewhat lower. However, its most significant advantage is the low cost of preparation of the source points and the speed of the acquisition. Numerous reflections are observed on the VSP, as is the case on the surface seismic, implying a complex structure in the vicinity of the KLX02 borehole

  6. Integrate urban‐scale seismic hazard analyses with the U.S. National Seismic Hazard Model

    Science.gov (United States)

    Moschetti, Morgan P.; Luco, Nicolas; Frankel, Arthur; Petersen, Mark D.; Aagaard, Brad T.; Baltay, Annemarie S.; Blanpied, Michael; Boyd, Oliver; Briggs, Richard; Gold, Ryan D.; Graves, Robert; Hartzell, Stephen; Rezaeian, Sanaz; Stephenson, William J.; Wald, David J.; Williams, Robert A.; Withers, Kyle

    2018-01-01

    For more than 20 yrs, damage patterns and instrumental recordings have highlighted the influence of the local 3D geologic structure on earthquake ground motions (e.g., M">M 6.7 Northridge, California, Gao et al., 1996; M">M 6.9 Kobe, Japan, Kawase, 1996; M">M 6.8 Nisqually, Washington, Frankel, Carver, and Williams, 2002). Although this and other local‐scale features are critical to improving seismic hazard forecasts, historically they have not been explicitly incorporated into the U.S. National Seismic Hazard Model (NSHM, national model and maps), primarily because the necessary basin maps and methodologies were not available at the national scale. Instead,...

  7. Analysis of seismic reflectivity and AVO pattern of BSR using OBS data in the southwestern offshore region of Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, W.B.; Yang, H.R. [Jinwen Univ. of Science and Technology, Hsintien City, Taipei County, Taiwan (China). Dept. of Environment and Property Management; Schnurle, P.; Liu, C.S. [National Taiwan Univ., Taipei, Taiwan (China). Inst. of Oceanography; Lee, C.S. [National Taiwan Ocean Univ., Keelung, Taiwan (China). Inst. of Applied Earth Science; Wang, Y.; Chung, S.H.; Chen, S.C. [Ministry of Economic Affairs, Taiwan (China). Central Geological Survey

    2008-07-01

    Regional multi-channel seismic reflection profiles that were conducted in Taiwan from 2003 to 2006 resulted in the identification of a gas hydrate-related bottom simulating reflector (BSR) in the broad southwestern offshore region of Taiwan. In order to understand the regional distribution of methane hydrate bearing layers and explore concentrated hydrate bearing layers, this paper presented a comprehensive analysis of reflection coefficient and amplitude-versus-offset (AVO) pattern of BSR using ocean bottom seismographs (OBSs) seismic data acquired in the southwestern offshore region of Taiwan. The study focused on the analysis and interpretation of airgun array signals recorded by OBSs during 2004 and 2006. Ten profiles of seismic reflection/refraction with a total length of about 140 km and recorded by 50 recovered OBSs were acquired on the active and passive margins in offshore southwestern Taiwan. Amplitudes of the direct water arrival, the multiple, and the BSR were picked interactively for all the OBS lines. A quantitative representation of reflector strength was provided by calculation of reflection coefficients. In general, the seafloor reflection coefficients for the active and passive margins were estimated as 0.1-0.25. The paper presented the data and analysis as well as the results of the study. It was concluded that the results of calculated reflection coefficient of the BSR in offshore southwest Taiwan suggested that inferred hydrate concentration for the passive margin profiles was relatively higher than that for the active margin profiles. 4 refs.

  8. The exponential rise of induced seismicity with increasing stress levels in the Groningen gas field and its implications for controlling seismic risk

    Science.gov (United States)

    Bourne, S. J.; Oates, S. J.; van Elk, J.

    2018-06-01

    Induced seismicity typically arises from the progressive activation of recently inactive geological faults by anthropogenic activity. Faults are mechanically and geometrically heterogeneous, so their extremes of stress and strength govern the initial evolution of induced seismicity. We derive a statistical model of Coulomb stress failures and associated aftershocks within the tail of the distribution of fault stress and strength variations to show initial induced seismicity rates will increase as an exponential function of induced stress. Our model provides operational forecasts consistent with the observed space-time-magnitude distribution of earthquakes induced by gas production from the Groningen field in the Netherlands. These probabilistic forecasts also match the observed changes in seismicity following a significant and sustained decrease in gas production rates designed to reduce seismic hazard and risk. This forecast capability allows reliable assessment of alternative control options to better inform future induced seismic risk management decisions.

  9. Present mantle flow in North China Craton constrained by seismic anisotropy and numerical modelling

    Science.gov (United States)

    Qu, W.; Guo, Z.; Zhang, H.; Chen, Y. J.

    2017-12-01

    North China Carton (NCC) has undergone complicated geodynamic processes during the Cenozoic, including the westward subduction of the Pacific plate to its east and the collision of the India-Eurasia plates to its southwest. Shear wave splitting measurements in NCC reveal distinct seismic anisotropy patterns at different tectonic blocks, that is, the predominantly NW-SE trending alignment of fast directions in the western NCC and eastern NCC, weak anisotropy within the Ordos block, and N-S fast polarization beneath the Trans-North China Orogen (TNCO). To better understand the origin of seismic anisotropy from SKS splitting in NCC, we obtain a high-resolution dynamic model that absorbs multi-geophysical observations and state-of-the-art numerical methods. We calculate the mantle flow using a most updated version of software ASPECT (Kronbichler et al., 2012) with high-resolution temperature and density structures from a recent 3-D thermal-chemical model by Guo et al. (2016). The thermal-chemical model is obtained by multi-observable probabilistic inversion using high-quality surface wave measurements, potential fields, topography, and surface heat flow (Guo et al., 2016). The viscosity is then estimated by combining the dislocation creep, diffusion creep, and plasticity, which is depended on temperature, pressure, and chemical composition. Then we calculate the seismic anisotropy from the shear deformation of mantle flow by DREX, and predict the fast direction and delay time of SKS splitting. We find that when complex boundary conditions are applied, including the far field effects of the deep subduction of Pacific plate and eastward escaping of Tibetan Plateau, our model can successfully predict the observed shear wave splitting patterns. Our model indicates that seismic anisotropy revealed by SKS is primarily resulting from the LPO of olivine due to the shear deformation from asthenospheric flow. We suggest that two branches of mantle flow may contribute to the

  10. Estimation of subsurface structures in a Minami Noshiro 3D seismic survey region by seismic-array observations of microtremors; Minami Noshiro sanjigen jishin tansa kuikinai no hyoso kozo ni tsuite. Bido no array kansoku ni yoru suitei

    Energy Technology Data Exchange (ETDEWEB)

    Okada, H; Ling, S; Ishikawa, K [Hokkaido University, Sapporo (Japan); Tsuburaya, Y; Minegishi, M [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1997-05-27

    Japan National Oil Corporation Technology Research Center has carried out experiments on the three-dimensional seismic survey method which is regarded as an effective means for petroleum exploration. The experiments were conducted at the Minami Noshiro area in Akita Prefecture. Seismometer arrays were developed in radii of 30 to 300 m at seven points in the three-dimensional seismic exploration region to observe microtremors. The purpose is to estimate S-wave velocities from the ground surface to the foundation by using surface waves included in microtremors. Estimation of the surface bed structure is also included in the purpose since this is indispensable in seismic exploration using the reflection method. This paper reports results of the microtremor observations and the estimation on S-wave velocities (microtremor exploration). One or two kinds of arrays with different sizes composed of seven observation points per area were developed to observe microtremors independently. The important point in the result obtained in the present experiments is that a low velocity bed suggesting existence of faults was estimated. It will be necessary to repeat experiments and observations in the future to verify whether this microtremor exploration method has that much of exploration capability. For the time being, however, interest is addressed to considerations on comparison with the result of 3D experiments using the reflection method. 4 refs., 7 figs.

  11. Multi-Attribute Seismic/Rock Physics Approach to Characterizing Fractured Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Gary Mavko

    2004-11-30

    Most current seismic methods to seismically characterize fractures in tight reservoirs depend on a few anisotropic wave propagation signatures that can arise from aligned fractures. While seismic anisotropy can be a powerful fracture diagnostic, a number of situations can lessen its usefulness or introduce interpretation ambiguities. Fortunately, laboratory and theoretical work in rock physics indicates that a much broader spectrum of fracture seismic signatures can occur, including a decrease in P- and S-wave velocities, a change in Poisson's ratio, an increase in velocity dispersion and wave attenuation, as well as well as indirect images of structural features that can control fracture occurrence. The goal of this project was to demonstrate a practical interpretation and integration strategy for detecting and characterizing natural fractures in rocks. The approach was to exploit as many sources of information as possible, and to use the principles of rock physics as the link among seismic, geologic, and log data. Since no single seismic attribute is a reliable fracture indicator in all situations, the focus was to develop a quantitative scheme for integrating the diverse sources of information. The integrated study incorporated three key elements: The first element was establishing prior constraints on fracture occurrence, based on laboratory data, previous field observations, and geologic patterns of fracturing. The geologic aspects include analysis of the stratigraphic, structural, and tectonic environments of the field sites. Field observations and geomechanical analysis indicates that fractures tend to occur in the more brittle facies, for example, in tight sands and carbonates. In contrast, strain in shale is more likely to be accommodated by ductile flow. Hence, prior knowledge of bed thickness and facies architecture, calibrated to outcrops, are powerful constraints on the interpreted fracture distribution. Another important constraint is that

  12. Coherent Waves in Seismic Researches

    Science.gov (United States)

    Emanov, A.; Seleznev, V. S.

    2013-05-01

    Development of digital processing algorithms of seismic wave fields for the purpose of useful event picking to study environment and other objects is the basis for the establishment of new seismic techniques. In the submitted paper a fundamental property of seismic wave field coherence is used. The authors extended conception of coherence types of observed wave fields and devised a technique of coherent component selection from observed wave field. Time coherence and space coherence are widely known. In this paper conception "parameter coherence" has been added. The parameter by which wave field is coherent can be the most manifold. The reason is that the wave field is a multivariate process described by a set of parameters. Coherence in the first place means independence of linear connection in wave field of parameter. In seismic wave fields, recorded in confined space, in building-blocks and stratified mediums time coherent standing waves are formed. In prospecting seismology at observation systems with multiple overlapping head waves are coherent by parallel correlation course or, in other words, by one measurement on generalized plane of observation system. For detail prospecting seismology at observation systems with multiple overlapping on basis of coherence property by one measurement of area algorithms have been developed, permitting seismic records to be converted to head wave time sections which have neither reflected nor other types of waves. Conversion in time section is executed on any specified observation base. Energy storage of head waves relative to noise on basis of multiplicity of observation system is realized within area of head wave recording. Conversion on base below the area of wave tracking is performed with lack of signal/noise ratio relative to maximum of this ratio, fit to observation system. Construction of head wave time section and dynamic plots a basis of automatic processing have been developed, similar to CDP procedure in method of

  13. Waveform through the subducted plate under the Tokyo region in Japan observed by a ultra-dense seismic network (MeSO-net) and seismic activity around mega-thrust earthquakes area

    Science.gov (United States)

    Sakai, S.; Kasahara, K.; Nanjo, K.; Nakagawa, S.; Tsuruoka, H.; Morita, Y.; Kato, A.; Iidaka, T.; Hirata, N.; Tanada, T.; Obara, K.; Sekine, S.; Kurashimo, E.

    2009-12-01

    In central Japan, the Philippine Sea plate (PSP) subducts beneath the Tokyo Metropolitan area, the Kanto region, where it causes mega-thrust earthquakes, such as the 1703 Genroku earthquake (M8.0) and the 1923 Kanto earthquake (M7.9) which had 105,000 fatalities. A M7 or greater earthquake in this region at present has high potential to produce devastating loss of life and property with even greater global economic repercussions. The Central Disaster Management Council of Japan estimates the next great earthquake will cause 11,000 fatalities and 112 trillion yen (1 trillion US$) economic loss. This great earthquake is evaluated to occur with a probability of 70 % in 30 years by the Earthquake Research Committee of Japan. We had started the Special Project for Earthquake Disaster Mitigation in Tokyo Metropolitan area (2007-2012). Under this project, the construction of the Metropolitan Seismic Observation network (MeSO-net) that consists of about 400 observation sites was started [Kasahara et al., 2008; Nakagawa et al., 2008]. Now, we had 178 observation sites. The correlation of the wave is high because the observation point is deployed at about 2 km intervals, and the identification of the later phase is recognized easily thought artificial noise is very large. We also discuss the relation between a deformation of PSP and intra-plate M7+ earthquakes: the PSP is subducting beneath the Honshu arc and also colliding with the Pacific plate. The subduction and collision both contribute active seismicity in the Kanto region. We are going to present a high resolution tomographic image to show low velocity zone which suggests a possible internal failure of the plate; a source region of the M7+ intra-plate earthquake. Our study will contribute a new assessment of the seismic hazard at the Metropolitan area in Japan. Acknowledgement: This study was supported by the Earthquake Research Institute cooperative research program.

  14. Seismicity patterns during a period of inflation at Sierra Negra volcano, Galápagos Ocean Island Chain

    Science.gov (United States)

    Davidge, Lindsey; Ebinger, Cynthia; Ruiz, Mario; Tepp, Gabrielle; Amelung, Falk; Geist, Dennis; Coté, Dustin; Anzieta, Juan

    2017-03-01

    Basaltic shield volcanoes of the western Galápagos islands are among the most rapidly deforming volcanoes worldwide, but little was known of the internal structure and brittle deformation processes accompanying inflation and deflation cycles. A 15-station broadband seismic array was deployed on and surrounding Sierra Negra volcano, Galápagos from July 2009 through June 2011 to characterize seismic strain patterns during an inter-eruption inflation period and to evaluate single and layered magma chamber models for ocean island volcanoes. We compare precise earthquake locations determined from a 3D velocity model and from a double difference cluster method. Using first-motion of P-arrivals, we determine focal mechanisms for 8 of the largest earthquakes (ML ≤ 1.5) located within the array. Most of the 2382 earthquakes detected by the array occurred beneath the broad (∼9 km-wide) Sierra Negra caldera, at depths from surface to about 8 km below sea level. Although outside our array, frequent and larger magnitude (ML ≤ 3.4) earthquakes occurred at Alcedo and Fernandina volcano, and in a spatial cluster beneath the shallow marine platform between Fernandina and Sierra Negra volcanoes. The time-space relations and focal mechanism solutions from a 4-day long period of intense seismicity June 4-9, 2010 along the southeastern flank of Sierra Negra suggests that the upward-migrating earthquake swarm occurred during a small volume intrusion at depths 5-8 km subsurface, but there was no detectable signal in InSAR data to further constrain geometry and volume. Focal mechanisms of earthquakes beneath the steep intra-caldera faults and along the ring fault system are reverse and strike-slip. These new seismicity data integrated with tomographic, geodetic, and petrological models indicate a stratified magmatic plumbing system: a shallow sill beneath the large caldera that is supplied by magma from a large volume deeper feeding system. The large amplitude inter

  15. Third Quarter Hanford Seismic Report for Fiscal Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Reidel, Steve P.; Rohay, Alan C.; Hartshorn, Donald C.; Clayton, Ray E.; Sweeney, Mark D.

    2005-09-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the Hanford Seismic Network, there were 337 triggers during the third quarter of fiscal year 2005. Of these triggers, 20 were earthquakes within the Hanford Seismic Network. The largest earthquake within the Hanford Seismic Network was a magnitude 1.3 event May 25 near Vantage, Washington. During the third quarter, stratigraphically 17 (85%) events occurred in the Columbia River basalt (approximately 0-5 km), no events in the pre-basalt sediments (approximately 5-10 km), and three (15%) in the crystalline basement (approximately 10-25 km). During the first quarter, geographically five (20%) earthquakes occurred in swarm areas, 10 (50%) earthquakes were associated with a major geologic structure, and 5 (25%) were classified as random events.

  16. Third Quarter Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-09-01

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, fourteen local earthquakes were recorded during the third quarter of fiscal year 2008. The largest event recorded by the network during the third quarter (May 18, 2008 - magnitude 3.7 Mc) was located approximately 17 km east of Prosser at a depth of 20.5 km. With regard to the depth distribution, five earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), six earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and three earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, eight earthquakes occurred in swarm areas and six earthquakes were classified as random events. The largest event recorded by the network during the third quarter occurred on May 18 (magnitude 3.7 Mc) and was located approximately 17 km east of Prosser at a depth of 20.5 km. This earthquake was the highest magnitude event recorded in the 46-47 N. latitude / 119-120 W. longitude sector since 1975

  17. Weak localization of seismic waves

    International Nuclear Information System (INIS)

    Larose, E.; Margerin, L.; Tiggelen, B.A. van; Campillo, M.

    2004-01-01

    We report the observation of weak localization of seismic waves in a natural environment. It emerges as a doubling of the seismic energy around the source within a spot of the width of a wavelength, which is several tens of meters in our case. The characteristic time for its onset is the scattering mean-free time that quantifies the internal heterogeneity

  18. Geodynamic Constraints on the Sources of Seismic Anisotropy Beneath Madagascar

    Science.gov (United States)

    Rajaonarison, T. A.; Stamps, D. S.; Fishwick, S.

    2017-12-01

    The rheological structure of the lithosphere-asthenosphere system controls the degree in which the mantle drives surface motions. Seismic anisotropy is a proxy to infer information about previous tectonic events imprinted in lithospheric structures and/or asthenospheric flow pattern in regions absent of active volcanism, however, distinguishing between the shallow and deeper sources, respectively, remains ambiguous. Madagascar is an ideal natural laboratory to study the sources of anisotropy and the rheological implications for lithosphere-asthenosphere system because 1) active volcanism is minimal or absent, 2) there are well-exposed tectonic fabrics for comparison, and 3) numerous geological and geophysical observations provides evidence of present-day tectonic activities. Recent studies suggest new seismic anisotropy observations in southern Madagascar are sourced from both fossilized lithospheric structure and asthenospheric flow driven by rigid lithospheric plate motion. In this work we compare geodynamic simulations of the lithosphere-asthenosphere system with seismic anisotropy data set that includes all of Madagascar. We use the numerical code Advanced Solver for Problems in Earth's ConvecTion (ASPECT) to calculate instantaneous deformation in the lithosphere and edge-driven convective flow in the asthenosphere accounting for variations in buoyancy forces and temperature dependent viscosity. The initial temperature conditions are based on interpretations from high resolution regional surface wave tomography. We assume visco-plastic rheology for a uniform crust, dislocation creep for a laterally varying mantle lithospheric structure, and diffusion creep for the asthenosphere. To test for the source of anisotropy we compare our velocity solution azimuths with azimuths of anisotropy at 25 km depth intervals. Calculated asthenospheric flow aligns with measured seismic anisotropy with a 15° WRMS at 175 km depth and possibly down to 250 km suggesting the

  19. A model of characteristic earthquakes and its implications for regional seismicity

    DEFF Research Database (Denmark)

    López-Ruiz, R.; Vázquez-Prada, M.; Pacheco, A.F.

    2004-01-01

    Regional seismicity (i.e. that averaged over large enough areas over long enough periods of time) has a size-frequency relationship, the Gutenberg-Richter law, which differs from that found for some seismic faults, the Characteristic Earthquake relationship. But all seismicity comes in the end from...... active faults, so the question arises of how one seismicity pattern could emerge from the other. The recently introduced Minimalist Model of Vázquez-Prada et al. of characteristic earthquakes provides a simple representation of the seismicity originating from a single fault. Here, we show...... that a Characteristic Earthquake relationship together with a fractal distribution of fault lengths can accurately describe the total seismicity produced in a region. The resulting earthquake catalogue accounts for the addition of both all the characteristic and all the non-characteristic events triggered in the faults...

  20. Analysis of induced seismicity in geothermal reservoirs – An overview

    Science.gov (United States)

    Zang, Arno; Oye, Volker; Jousset, Philippe; Deichmann, Nicholas; Gritto, Roland; McGarr, Arthur F.; Majer, Ernest; Bruhn, David

    2014-01-01

    In this overview we report results of analysing induced seismicity in geothermal reservoirs in various tectonic settings within the framework of the European Geothermal Engineering Integrating Mitigation of Induced Seismicity in Reservoirs (GEISER) project. In the reconnaissance phase of a field, the subsurface fault mapping, in situ stress and the seismic network are of primary interest in order to help assess the geothermal resource. The hypocentres of the observed seismic events (seismic cloud) are dependent on the design of the installed network, the used velocity model and the applied location technique. During the stimulation phase, the attention is turned to reservoir hydraulics (e.g., fluid pressure, injection volume) and its relation to larger magnitude seismic events, their source characteristics and occurrence in space and time. A change in isotropic components of the full waveform moment tensor is observed for events close to the injection well (tensile character) as compared to events further away from the injection well (shear character). Tensile events coincide with high Gutenberg-Richter b-values and low Brune stress drop values. The stress regime in the reservoir controls the direction of the fracture growth at depth, as indicated by the extent of the seismic cloud detected. Stress magnitudes are important in multiple stimulation of wells, where little or no seismicity is observed until the previous maximum stress level is exceeded (Kaiser Effect). Prior to drilling, obtaining a 3D P-wave (Vp) and S-wave velocity (Vs) model down to reservoir depth is recommended. In the stimulation phase, we recommend to monitor and to locate seismicity with high precision (decametre) in real-time and to perform local 4D tomography for velocity ratio (Vp/Vs). During exploitation, one should use observed and model induced seismicity to forward estimate seismic hazard so that field operators are in a position to adjust well hydraulics (rate and volume of the

  1. Hanford annual second quarter seismic report, fiscal year 1998: Seismicity on and near the Hanford Site, Pasco, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1998-06-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (ENN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the second quarter of FY98 for stations in the HSN was 99.92%. The operational rate for the second quarter of FY98 for stations of the EWRN was 99.46%. For the second quarter of FY98, the acquisition computer triggered 159 times. Of these triggers 14 were local earthquakes: 7 (50%) in the Columbia River Basalt Group, 3 (21%) in the pre-basalt sediments, and 4 (29%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report. The most significant seismic event for the second quarter was on March 23, 1998 when a 1.9 Mc occurred near Eltopia, WA and was felt by local residents. Although this was a small event, it was felt at the surface and is an indication of the potential impact on Hanford of seismic events that are common to the Site.

  2. Detection capability of the IMS seismic network based on ambient seismic noise measurements

    Science.gov (United States)

    Gaebler, Peter J.; Ceranna, Lars

    2016-04-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection threshold can be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  3. Seismic-Scale Rock Physics of Methane Hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Amos Nur

    2009-01-08

    We quantify natural methane hydrate reservoirs by generating synthetic seismic traces and comparing them to real seismic data: if the synthetic matches the observed data, then the reservoir properties and conditions used in synthetic modeling might be the same as the actual, in-situ reservoir conditions. This approach is model-based: it uses rock physics equations that link the porosity and mineralogy of the host sediment, pressure, and hydrate saturation, and the resulting elastic-wave velocity and density. One result of such seismic forward modeling is a catalogue of seismic reflections of methane hydrate which can serve as a field guide to hydrate identification from real seismic data. We verify this approach using field data from known hydrate deposits.

  4. Regional passive seismic monitoring reveals dynamic glacier activity on Spitsbergen, Svalbard

    Directory of Open Access Journals (Sweden)

    Andreas Köhler

    2015-12-01

    Full Text Available Dynamic glacier activity is increasingly observed through passive seismic monitoring. We analysed near-regional-scale seismicity on the Arctic archipelago of Svalbard to identify seismic icequake signals and to study their spatial–temporal distribution within the 14-year period from 2000 until 2013. This is the first study that uses seismic data recorded on permanent broadband stations to detect and locate icequakes in different regions of Spitsbergen, the main island of the archipelago. A temporary local seismic network and direct observations of glacier calving and surging were used to identify icequake sources. We observed a high number of icequakes with clear spectral peaks between 1 and 8 Hz in different parts of Spitsbergen. Spatial clusters of icequakes could be associated with individual grounded tidewater glaciers and exhibited clear seasonal variability each year with more signals observed during the melt season. Locations at the termini of glaciers, and correlation with visual calving observations in situ at Kronebreen, a glacier in the Kongsfjorden region, show that these icequakes were caused dominantly by calving. Indirect evidence for glacier surging through increased calving seismicity was found in 2003 at Tunabreen, a glacier in central Spitsbergen. Another type of icequake was observed in the area of the Nathorstbreen glacier system. Seismic events occurred upstream of the glacier within a short time period between January and May 2009 during the initial phase of a major glacier surge. This study is the first step towards the generation and implementation of an operational seismic monitoring strategy for glacier dynamics in Svalbard.

  5. Three decades of seismic activity at Mt. Vesuvius: 1972-1999

    International Nuclear Information System (INIS)

    De Natale, Giuseppe; Troise, Claudia; Kuznetzov, Igor; Kronrod, Tanya; Peresan, Antonella; Sarao, Angela; Panza, Gluliano F.

    2002-06-01

    We analyse the seismic catalogue of the local earthquakes which occurred at Somma- Vesuvius volcano in the past three decades (1972-2000). The seismicity in this period can be described as composed by a background level, characterised by a low and rather uniform rate of energy release and by sporadic periods of increased seismic activity. Such relatively intense seismicity periods are characterised by energy rates and magnitudes progressively increasing in the critical periods. The analyses of the b value in the whole period evidences a well defined pattern, with values of b progressively decreasing, from about 1.8, at the beginning of the considered period, to about 1.0 at present. This steady variation indicates an increasing dynamics in the volcanic system. Within this general trend it is possible to identity a sub-structure in the time sequence of the seismic events, formed by the alternating episodes of quiescence and activity. The analysis of the source moment tensor of the largest earthquakes shows that the processes at the seismic source are generally not consistent with simple double-couples, but that they are compatible with large isotropic components, mostly indicating volumetric expansion. These components are shown to be statistically significant for almost all the analysed events. Such focal mechanisms can be interpreted as the effect of explosion phenomena, possibly related to volatile exsolution from the crystallising magma. The availability of a reduced amount of high quality data necessary for the inversion of the source moment tensor, the still limited period of systematic observation of Vesuvius micro- earthquakes and, above all, the absence of eruptive events during such interval of time, cannot obviously permit to outline any formal premonitory signal. Nevertheless, the analysis reported in this paper indicates a progressively evolving dynamics, characterised by a general increasing trend in the seismic activity in the volcanic system and by a

  6. Estimating Fault Friction From Seismic Signals in the Laboratory

    Science.gov (United States)

    Rouet-Leduc, Bertrand; Hulbert, Claudia; Bolton, David C.; Ren, Christopher X.; Riviere, Jacques; Marone, Chris; Guyer, Robert A.; Johnson, Paul A.

    2018-02-01

    Nearly all aspects of earthquake rupture are controlled by the friction along the fault that progressively increases with tectonic forcing but in general cannot be directly measured. We show that fault friction can be determined at any time, from the continuous seismic signal. In a classic laboratory experiment of repeating earthquakes, we find that the seismic signal follows a specific pattern with respect to fault friction, allowing us to determine the fault's position within its failure cycle. Using machine learning, we show that instantaneous statistical characteristics of the seismic signal are a fingerprint of the fault zone shear stress and frictional state. Further analysis of this fingerprint leads to a simple equation of state quantitatively relating the seismic signal power and the friction on the fault. These results show that fault zone frictional characteristics and the state of stress in the surroundings of the fault can be inferred from seismic waves, at least in the laboratory.

  7. Two types of SDR recognised in pre-stack velocity analysis of ultra-long-offset seismic reflection data in the South Atlantic

    Science.gov (United States)

    Collier, J.; McDermott, C.; Lonergan, L.; McDermott, K.; Bellingham, P.

    2017-12-01

    Our understanding of continental breakup at volcanic margins has lagged behind that of non-volcanic margins in recent years. This is largely due to seismic imaging problems caused by the presence of thick packages of Seaward-Dipping Reflectors (SDRs) in the continent-ocean transition zone. These packages consist of interbedded tholeiitic lava flows, volcanic tuffs and terrestrial sediment that results in scattering, peg-leg multiples and defocusing of seismic energy. Here we analyse three ultra-long-offset (10.2 km), wide-bandwidth (5-100 Hz) seismic reflection profiles acquired by ION-GXT offshore South America during 2009-12 to gain new insights into the velocity structure of the SDRs and hence pattern of magmatism during continental breakup. We observe two seismic velocity patterns within the SDRs. The most landward packages show high velocity anomaly "bulls-eyes" of up to 1 km s-1. These highs occur where the stacked section shows them to thicken at the down-dip end of individual packages that are bounded by faults. All lines show 5-6 velocity highs spaced approximately 10 km apart. We interpret the velocity bulls-eyes as depleted mafic or ultramafic bodies that fed the sub-aerial tholeiitic lava flows during continental stretching. Similar relationships have been observed in outcrop onshore but have not been previously demonstrated in seismic data. The bulls-eye packages pass laterally into SDR packages that show no velocity highs. These packages are not associated with faulting and become more extensive going north towards the impact point of the Tristan da Cunha hotspot. This second type of SDR coincides with linear magnetic anomalies. We interpret these SDRs as the products of sub-aerial oceanic spreading similar to those seen on Iceland and described in the classic "Hinz model" and marine geophysical literature. Our work demonstrates that these SDRs are preceded by ones generated during an earlier phase of mechanical thinning of the continental crust. The

  8. Use of seismic pulses in surface sources of excitation

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, L.

    1982-01-01

    A discussion is held of the experimental use of surface plus seismic sources. An examination is made of the technicalgeophysical criteria for using the pulse sources. Results are presented from measurements and tests obtained with the help of an air cushion and dinoseis. A comparison is made of the amplitude spectra of the seismic recordings obtained with the help of blasting, dinoseis and air cushion. Possibilities and limitations for using the surface sources in industrial exploration for oil and gas are discussed. Seismic profile is presented which intersects the Tisu River. It was obtained with the help of a dinoseis which notes a sharp change in the wave pattern.

  9. The sequentially discounting autoregressive (SDAR) method for on-line automatic seismic event detecting on long term observation

    Science.gov (United States)

    Wang, L.; Toshioka, T.; Nakajima, T.; Narita, A.; Xue, Z.

    2017-12-01

    In recent years, more and more Carbon Capture and Storage (CCS) studies focus on seismicity monitoring. For the safety management of geological CO2 storage at Tomakomai, Hokkaido, Japan, an Advanced Traffic Light System (ATLS) combined different seismic messages (magnitudes, phases, distributions et al.) is proposed for injection controlling. The primary task for ATLS is the seismic events detection in a long-term sustained time series record. Considering the time-varying characteristics of Signal to Noise Ratio (SNR) of a long-term record and the uneven energy distributions of seismic event waveforms will increase the difficulty in automatic seismic detecting, in this work, an improved probability autoregressive (AR) method for automatic seismic event detecting is applied. This algorithm, called sequentially discounting AR learning (SDAR), can identify the effective seismic event in the time series through the Change Point detection (CPD) of the seismic record. In this method, an anomaly signal (seismic event) can be designed as a change point on the time series (seismic record). The statistical model of the signal in the neighborhood of event point will change, because of the seismic event occurrence. This means the SDAR aims to find the statistical irregularities of the record thought CPD. There are 3 advantages of SDAR. 1. Anti-noise ability. The SDAR does not use waveform messages (such as amplitude, energy, polarization) for signal detecting. Therefore, it is an appropriate technique for low SNR data. 2. Real-time estimation. When new data appears in the record, the probability distribution models can be automatic updated by SDAR for on-line processing. 3. Discounting property. the SDAR introduces a discounting parameter to decrease the influence of present statistic value on future data. It makes SDAR as a robust algorithm for non-stationary signal processing. Within these 3 advantages, the SDAR method can handle the non-stationary time-varying long

  10. Statistical physics, seismogenesis, and seismic hazard

    Science.gov (United States)

    Main, Ian

    1996-11-01

    generic statistical properties similar to the "universal" behavior seen in a wide variety of critical phenomena, with significant implications for practical problems in probabilistic seismic hazard evaluation. In particular, the notion of self-organized criticality (or near-criticality) gives a scientific rationale for the a priori assumption of "stationarity" used as a first step in the prediction of the future level of hazard. The Gutenberg-Richter law (a power law in energy or seismic moment) is found to apply only within a finite scale range, both in model and natural seismicity. Accordingly, the frequency-magnitude distribution can be generalized to a gamma distribution in energy or seismic moment (a power law, with an exponential tail). This allows extrapolations of the frequency-magnitude distribution and the maximum credible magnitude to be constrained by observed seismic or tectonic moment release rates. The answers to other questions raised are less clear, for example, the effect of the a priori assumption of a Poisson process in a system with strong local interactions, and the impact of zoning a potentially multifractal distribution of epicentres with smooth polygons. The results of some models show premonitory patterns of seismicity which could in principle be used as mainshock precursors. However, there remains no consensus, on both theoretical and practical grounds, on the possibility or otherwise of reliable intermediate-term earthquake prediction.

  11. Seismic isolation - efficient procedure for seismic response assessement

    International Nuclear Information System (INIS)

    Zamfir, M. A.; Androne, M.

    2016-01-01

    The aim of this analysis is to reduce the dynamic response of a structure. The seismic isolation solution must take into consideration the specific site ground motion. In this paper will be presented results obtained by applying the seismic isolation method. Based on the obtained results, important conclusions can be outlined: the seismic isolation device has the ability to reduce seismic acceleration of the seismic isolated structure to values that no longer present a danger to people and environment; the seismic isolation solution is limiting devices deformations to safety values for ensuring structural integrity and stability of the entire system; the effective seismic energy dissipation and with no side effects both for the seismic isolated building and for the devices used, and the return to the initial position before earthquake occurence are obtained with acceptable permanent displacement. (authors)

  12. Seismic wave interaction with underground cavities

    Science.gov (United States)

    Schneider, Felix M.; Esterhazy, Sofi; Perugia, Ilaria; Bokelmann, Götz

    2016-04-01

    Realization of the future Comprehensive Nuclear Test Ban Treaty (CTBT) will require ensuring its compliance, making the CTBT a prime example of forensic seismology. Following indications of a nuclear explosion obtained on the basis of the (IMS) monitoring network further evidence needs to be sought at the location of the suspicious event. For such an On-Site Inspection (OSI) at a possible nuclear test site the treaty lists several techniques that can be carried out by the inspection team, including aftershock monitoring and the conduction of active seismic surveys. While those techniques are already well established, a third group of methods labeled as "resonance seismometry" is less well defined and needs further elaboration. A prime structural target that is expected to be present as a remnant of an underground nuclear explosion is a cavity at the location and depth the bomb was fired. Originally "resonance seismometry" referred to resonant seismic emission of the cavity within the medium that could be stimulated by an incident seismic wave of the right frequency and observed as peaks in the spectrum of seismic stations in the vicinity of the cavity. However, it is not yet clear which are the conditions for which resonant emissions of the cavity could be observed. In order to define distance-, frequency- and amplitude ranges at which resonant emissions could be observed we study the interaction of seismic waves with underground cavities. As a generic model for possible resonances we use a spherical acoustic cavity in an elastic full-space. To solve the forward problem for the full elastic wave field around acoustic spherical inclusions, we implemented an analytical solution (Korneev, 1993). This yields the possibility of generating scattering cross-sections, amplitude spectrums and synthetic seismograms for plane incident waves. Here, we focus on the questions whether or not we can expect resonant responses in the wave field scattered from the cavity. We show

  13. Body and Surface Wave Modeling of Observed Seismic Events

    Science.gov (United States)

    1981-04-30

    mechanisms for foreshock , mainshock, and aftershock sequences using Seismic Research Observatory (SRO) data, EOS, 57(12), p. 954, 1976. Bache, T.C., W.L...the event as well as that of the immediate foreshock were 95 located (Allen and Nordquist, 1972) and where the largest surface displacements were...1972). Foreshock , main shock and larger aftershocks of the Borrego Mountain earthquake, U. S. Geological Survey Professional Paper 787, 16-23. Bache

  14. Realistic modelling of observed seismic motion in complex sedimentary basins

    International Nuclear Information System (INIS)

    Faeh, D.; Panza, G.F.

    1994-03-01

    Three applications of a numerical technique are illustrated to model realistically the seismic ground motion for complex two-dimensional structures. First we consider a sedimentary basin in the Friuli region, and we model strong motion records from an aftershock of the 1976 earthquake. Then we simulate the ground motion caused in Rome by the 1915, Fucino (Italy) earthquake, and we compare our modelling with the damage distribution observed in the town. Finally we deal with the interpretation of ground motion recorded in Mexico City, as a consequence of earthquakes in the Mexican subduction zone. The synthetic signals explain the major characteristics (relative amplitudes, spectral amplification, frequency content) of the considered seismograms, and the space distribution of the available macroseismic data. For the sedimentary basin in the Friuli area, parametric studies demonstrate the relevant sensitivity of the computed ground motion to small changes in the subsurface topography of the sedimentary basin, and in the velocity and quality factor of the sediments. The total energy of ground motion, determined from our numerical simulation in Rome, is in very good agreement with the distribution of damage observed during the Fucino earthquake. For epicentral distances in the range 50km-100km, the source location and not only the local soil conditions control the local effects. For Mexico City, the observed ground motion can be explained as resonance effects and as excitation of local surface waves, and the theoretical and the observed maximum spectral amplifications are very similar. In general, our numerical simulations permit the estimate of the maximum and average spectral amplification for specific sites, i.e. are a very powerful tool for accurate micro-zonation. (author). 38 refs, 19 figs, 1 tab

  15. The new Central American seismic hazard zonation: Mutual consensus based on up to day seismotectonic framework

    Science.gov (United States)

    Alvarado, Guillermo E.; Benito, Belén; Staller, Alejandra; Climent, Álvaro; Camacho, Eduardo; Rojas, Wilfredo; Marroquín, Griselda; Molina, Enrique; Talavera, J. Emilio; Martínez-Cuevas, Sandra; Lindholm, Conrad

    2017-11-01

    Central America is one of the most active seismic zones in the World, due to the interaction of five tectonic plates (North America, Caribbean, Coco, Nazca and South America), and its internal deformation, which generates almost one destructive earthquakes (5.4 ≤ Mw ≤ 8.1) every year. A new seismological zonation for Central America is proposed based on seismotectonic framework, a geological context (tectonic and geological maps), geophysical and geodetic evidence (gravimetric maps, magnetometric, GPS observations), and previous works. As a main source of data a depurated earthquake catalog was collected covering the period from 1522 to 2015. This catalog was homogenized to a moment magnitude scale (Mw). After a careful analysis of all the integrated geological and seismological information, the seismogenic zones were established into seismic areas defined by similar patterns of faulting, seismicity, and rupture mechanism. The tectonic environment has required considering seismic zones in two particular seismological regimes: a) crustal faulting (including local faults, major fracture zones of plate boundary limits, and thrust fault of deformed belts) and b) subduction, taking into account the change in the subduction angle along the trench, and the type and location of the rupture. The seismicity in the subduction zone is divided into interplate and intraplate inslab seismicity. The regional seismic zonation proposed for the whole of Central America, include local seismic zonations, avoiding discontinuities at the national boundaries, because of a consensus between the 7 countries, based on the cooperative work of specialists on Central American seismotectonics and related topics.

  16. Seismicity and crustal structure at the Mendocino triple junction, Northern California

    Energy Technology Data Exchange (ETDEWEB)

    Dicke, M.

    1998-12-01

    A high level of seismicity at the Mendocino triple junction in Northern California reflects the complex active tectonics associated with the junction of the Pacific, North America, and Gorda plates. To investigate seismicity patterns and crustal structure, 6193 earthquakes recorded by the Northern California Seismic Network (NCSN) are relocated using a one-dimensional crustal velocity model. A near vertical truncation of the intense seismic activity offshore Cape Mendocino follows the strike of the Mattole Canyon fault and is interpreted to define the Pacific plate boundary. Seismicity along this boundary displays a double seismogenic layer that is attributed to interplate activity with the North America plate and Gorda plate. The interpretation of the shallow seismogenic zone as the North America - Pacific plate boundary implies that the Mendocino triple junction is situated offshore at present. Seismicity patterns and focal mechanisms for events located within the subducting Gorda pl ate are consistent with internal deformation on NE-SW and NW-SE trending rupture planes in response to north-south compression. Seismic sections indicate that the top of the Gorda plate locates at a depth of about 18 Km beneath Cape Mendocino and dips gently east-and southward. Earthquakes that are located in the Wadati-Benioff zone east of 236{sup o}E show a change to an extensional stress regime indicative of a slab pull force. This slab pull force and scattered seismicity within the contractional forearc region of the Cascadia subduction zone suggest that the subducting Gorda plate and the overriding North America plate are strongly coupled. The 1992 Cape Mendocino thrust earthquake is believed to have ruptured a blind thrust fault in the forearc region, suggesting that strain is accumulating that must ultimately be released in a potential M 8+ subduction earthquake.

  17. Monitoring and Characterizing the Geysering and Seismic Activity at the Lusi Mud Eruption Site, East Java, Indonesia

    Science.gov (United States)

    Karyono, Karyono; Obermann, Anne; Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Abdurrokhim, Abdurrokhim; Masturyono, Masturyono; Hadi, Soffian

    2016-04-01

    The Lusi eruption began on May 29, 2006 in the northeast of Java Island, Indonesia, and to date is still active. Lusi is a newborn sedimentary-hosted hydrothermal system characterized by continuous expulsion of liquefied mud and breccias and geysering activity. Lusi is located upon the Watukosek fault system, a left lateral wrench system connecting the volcanic arc and the bakarc basin. This fault system is still periodically reactivated as shown by field data. In the framework of the Lusi Lab project (ERC grant n° 308126) we conducted several types of monitoring. Based on camera observations, we characterized the Lusi erupting activity by four main behaviors occurring cyclically: (1) Regular activity, which consists in the constant emission of water and mud breccias (i.e. viscous mud containing clay, silt, sand and clasts) associated with the constant expulsion of gas (mainly aqueous vapor with minor amounts of CO2 and CH4) (2) Geysering phase with intense bubbling, consisting in reduced vapor emission and more powerful bursting events that do not seem to have a regular pattern. (3) Geysering phase with intense vapor and degassing discharge and a typically dense plume that propagates up to 100 m height. (4) Quiescent phase marking the end of the geysering activity (and the observed cycle) with no gas emissions or bursts observed. To investigate the possible seismic activity beneath Lusi and the mechanisms controlling the Lusi pulsating behaviour, we deployed a network of 5 seismic stations and a HD camera around the Lusi crater. We characterize the observed types of seismic activity as tremor and volcano-tectonic events. Lusi tremor events occur in 5-10 Hz frequency band, while volcano tectonic events are abundant in the high frequencies range from 5 Hz until 25 Hz. We coupled the seismic monitoring with the images collected with the HD camera to study the correlation between the seismic tremor and the different phases of the geysering activity. Key words: Lusi

  18. Evolution in the lineament patterns associated to strong earthquakes revealed by satellite observations

    Science.gov (United States)

    Soto-Pinto, C. A.; Arellano-Baeza, A. A.; Ouzounov, D. P.

    2011-12-01

    We study the temporal evolution of the stress patterns in the crust by using high-resolution (10-300 m) satellite images from MODIS and ASTER satellite sensors. We are able to detect some changes in density and orientation of lineaments preceding earthquake events. A lineament is generally defined as a straight or a somewhat curved feature in the landscape visible in a satellite image as an aligned sequence of pixels of a contrasting intensity compared to the background. The system of lineaments extracted from the satellite images is not identical to the geological lineaments; nevertheless, it generally reflects the structure of the faults and fractures in the Earth's crust. Our analysis has shown that the system of lineaments is very dynamical, and the significant number of lineaments appeared approximately one month before an earthquake, while one month after the earthquake the lineament configuration returned to its initial state. These features were not observed in the test areas that are free of any seismic activity in that period (null hypothesis). We have designed a computational prototype capable to detect lineament evolution and to utilize both ASTER and MODIS satellite L1/L2. We will demonstrate the first successful test results for several Mw> 5 earthquakes in Chile, Peru, China, and California (USA).

  19. Seismic testing

    International Nuclear Information System (INIS)

    Sollogoub, Pierre

    2001-01-01

    This lecture deals with: qualification methods for seismic testing; objectives of seismic testing; seismic testing standards including examples; main content of standard; testing means; and some important elements of seismic testing

  20. Second Quarter Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-06-26

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, seven local earthquakes were recorded during the second quarter of fiscal year 2008. The largest event recorded by the network during the second quarter (February 3, 2008 - magnitude 2.3 Mc) was located northeast of Richland in Franklin County at a depth of 22.5 km. With regard to the depth distribution, two earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), three earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and two earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, five earthquakes occurred in swarm areas and two earthquakes were classified as random events.

  1. Innovations in seismic tomography, their applications and induced seismic events in carbon sequestration

    Science.gov (United States)

    Li, Peng

    algorithm with the inclusion of full topography that is integrated from the Digital Elevation Model data. We present both synthetic and real data tests based on the compressional (P) wave arrival time data for Kilauea volcano in Hawai'i. A total of 33,768 events with 515,711 P-picks recorded by 35 stations at the Hawaiian Volcano Observatory are used in these tests. The comparison between the new and traditional methods based on the synthetic test shows that our new algorithm significantly improves the accuracy of the velocity model, especially at shallow depths. In the real data test, the P-wave velocity model of Kilauea shows some intriguing features. Velocity decrease from the surface to 2 km depth beneath Kilauea caldera indicates a state change of the basalt. Low velocity zones beneath Pu'u'O'o, Heiheiahulu and the Hilina fault system between 5 and 12 km are possible partial melting zones. High velocity anomalies are resolved below 6 km depth beneath the summit caldera, which may suggest the presence of consolidated gabbro-ultramafic cumulates. In the third work, we installed three broadband seismic stations (Test1, Test2 and Test3) in an Enhanced Oil Recovery field to monitor the potential seismic events associated with CO 2 injection. In the two years of continuous seismic data between October 2011 and October 2013, we observed a type of long duration (LD) events instead of typical micro earthquakes, with an average daily rate of 12. The LD events have the following characteristics: (1) their duration varies from ˜30 to ˜300 sec; (2) the amplitude changes smoothly from the beginning to the end of the LD event window; (3) they are local seismic events and were not recorded by regional seismic stations (e.g., ˜200 km away); (4) the waveforms are very different from those of typical earthquakes, but similar to volcanic tremors; (5) the frequency content is mainly concentrated between 0.5 and 6 Hz, which is similar to the frequency band of volcanic tremors; and (6

  2. Some preliminary results of a worldwide seismicity estimation: a case study of seismic hazard evaluation in South America

    Directory of Open Access Journals (Sweden)

    C. V. Christova

    2000-06-01

    Full Text Available Global data have been widely used for seismicity and seismic hazard assessment by seismologists. In the present study we evaluate worldwide seismicity in terms of maps of maximum observed magnitude (Mmax, seismic moment (M 0 and seismic moment rate (M 0S. The data set used consists of a complete and homogeneous global catalogue of shallow (h £ 60 km earthquakes of magnitude MS ³ 5.5 for the time period 1894-1992. In order to construct maps of seismicity and seismic hazard the parameters a and b derived from the magnitude-frequency relationship were estimated by both: a the least squares, and b the maximum likelihood, methods. The values of a and b were determined considering circles centered at each grid point 1° (of a mesh 1° ´1° and of varying radius, which starts from 30 km and moves with a step of 10 km. Only a and b values which fulfill some predefined conditions were considered in the further procedure for evaluating the seismic hazard maps. The obtained worldwide M max distribution in general delineates the contours of the plate boundaries. The highest values of M max observed are along the circum-Pacific belt and in the Himalayan area. The subduction plate boundaries are characterized by the largest amount of M 0 , while areas of continental collision are next. The highest values of seismic moment rate (per 1 year and per equal area of 10 000 km 2 are found in the Southern Himalayas. The western coasts of U.S.A., Northwestern Canada and Alaska, the Indian Ocean and the eastern rift of Africa are characterized by high values of M 0 , while most of the Pacific subduction zones have lower values of seismic moment rate. Finally we analyzed the seismic hazard in South America comparing the predicted by the NUVEL1 model convergence slip rate between Nazca and South America plates with the average slip rate due to earthquakes. This consideration allows for distinguishing between zones of high and low coupling along the studied convergence

  3. Seismic Barrier Protection of Critical Infrastructure from Earthquakes

    Science.gov (United States)

    2017-05-01

    We observe that such barrier structures reduce seismic wave powers by 10 – 40 dB that would otherwise reach the foundation location. Moreover, the... structure composed of opposing boreholes or trenches to mitigate seismic waves from diffracting and traveling in the vertical plane. Computational...seismic wave propagation models suggest that air or fluid filled subsurface V- shaped muffler structures are critical to the redirection and self

  4. seismic-py: Reading seismic data with Python

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available The field of seismic exploration of the Earth has changed
    dramatically over the last half a century. The Society of Exploration
    Geophysicists (SEG has worked to create standards to store the vast
    amounts of seismic data in a way that will be portable across computer
    architectures. However, it has been impossible to predict the needs of the
    immense range of seismic data acquisition systems. As a result, vendors have
    had to bend the rules to accommodate the needs of new instruments and
    experiment types. For low level access to seismic data, there is need for a
    standard open source library to allow access to a wide range of vendor data
    files that can handle all of the variations. A new seismic software package,
    seismic-py, provides an infrastructure for creating and managing drivers for
    each particular format. Drivers can be derived from one of the known formats
    and altered to handle any slight variations. Alternatively drivers can be
    developed from scratch for formats that are very different from any previously
    defined format. Python has been the key to making driver development easy
    and efficient to implement. The goal of seismic-py is to be the base system
    that will power a wide range of experimentation with seismic data and at the
    same time provide clear documentation for the historical record of seismic
    data formats.

  5. Observation of domain patterns on a ferroelectric ceramic

    International Nuclear Information System (INIS)

    Ibrahim, R.C.; Zavaglia, C.A.C.

    1992-01-01

    In this work ferroelectric domain patterns are observed on a PZT-like ceramic material produced in Brazil. This material has tetragonal unit cell composing a perovskite type structure. The samples, after grinding and polishing, were chemically etched and observed on optical microscope and scanning electron microscope. (author)

  6. Modeling the Geometry of Plate Boundary and Seismic Structure in the Southern Ryukyu Trench Subduction Zone, Japan, Using Amphibious Seismic Observations

    Science.gov (United States)

    Yamamoto, Y.; Takahashi, T.; Ishihara, Y.; Kaiho, Y.; Arai, R.; Obana, K.; Nakanishi, A.; Miura, S.; Kodaira, S.; Kaneda, Y.

    2018-02-01

    Here we present the new model, the geometry of the subducted Philippine Sea Plate interface beneath the southern Ryukyu Trench subduction zone, estimated from seismic tomography and focal mechanism estimation by using passive and active data from a temporary amphibious seismic network and permanent land stations. Using relocated low-angle thrust-type earthquakes, repeating earthquakes, and structural information, we constrained the geometry of plate boundary from the trench axis to a 60 km depth with uncertainties of less than 5 km. The estimated plate geometry model exhibited large variation, including a pronounced convex structure that may be evidence of a subducted seamount in the eastern portion of study area, whereas the western part appeared smooth. We also found that the active earthquake region near the plate boundary, defined by the distance from our plate geometry model, was clearly separated from the area dominated by short-term slow-slip events (SSEs). The oceanic crust just beneath the SSE-dominant region, the western part of the study area, showed high Vp/Vs ratios (>1.8), whereas the eastern side showed moderate or low Vp/Vs (<1.75). We interpreted this as an indication that high fluid pressures near the surface of the slab are contributing to the SSE activities. Within the toe of the mantle wedge, P and S wave velocities (<7.5 and <4.2 km/s, respectively) lower than those observed through normal mantle peridotite might suggest that some portions of the mantle may be at least 40% serpentinized.

  7. Hanford quarterly seismic report - 97B seismicity on and near the Hanford Site, Pasco Basin, Washington, January 1, 1997--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.

    1997-05-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organizations works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 97.23% and for stations of the EWRN was 99.93%. For fiscal year (FY) 1997 second quarter (97B), the acquisition computer triggered two hundred and forth-eight times. Of these triggers three were local earthquakes: one in the pre-basalt sediments, and two in the crystalline basement. The geologic and tectonic environments are discussed in the report.

  8. Hanford quarterly seismic report - 97B seismicity on and near the Hanford Site, Pasco Basin, Washington, January 1, 1997 - March 31, 1997

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.

    1997-05-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organizations works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 97.23% and for stations of the EWRN was 99.93%. For fiscal year (FY) 1997 second quarter (97B), the acquisition computer triggered two hundred and forth-eight times. Of these triggers three were local earthquakes: one in the pre-basalt sediments, and two in the crystalline basement. The geologic and tectonic environments are discussed in the report

  9. Identification of seismically susceptible areas in western Himalaya ...

    Indian Academy of Sciences (India)

    This study is an attempt to identify seismically susceptible areas in western Himalaya, using pattern recognition ... a combination of both qualitative and quantita- tive features. .... Three distinct types of zones were identified: S1 was identified as ...

  10. Analysis of short time-space range seismicity patterns in Italy

    Directory of Open Access Journals (Sweden)

    M. Imotof

    1997-06-01

    Full Text Available In our paper we analyze the data base obtained from the observations of the Italian Seismological Network from 1975 to 1994 by using a simple algotithm to determine the rate of occurrence of seismic events condi- tioned by the occurrence of previous events after a period of quiescence. The number of observed pairs of earthquakes depends on several parameters: the magnitude threshold of the two events, the spatial and tempo- ral ranges of the quiescence period preceding the first (non aftershock event, the time elapsed between the first and the second events and the spatial dimension of the alarm area. The Akaike information criterion was adopted to assess the optimal set of space-time parameters used in the definition of non-aftershock (events not related to a stronger previous one. In Central Italy, the rate of M ³3.8 earthquakes preceded by at least one M ~ 3.3 foreshock within 14.1 km and 2 days is 30%, while the rate of M ~ 3.3 earthquakes followed by a M ~ 3.8 mainshock in the same space time range is 7%. We observed that the probability that an earthquake of magnitude MI will be followed by an earthquake of magnitude M2 (success rate fits the law log À = a+b (Mi -M2 with b approximately equal to l. By computing the success rate for given values of magnitude threshold of the first and the second events over a dense grid of spatial coordinates, we obtained maps of this feature over the investigated area. The results of this process document variations larger than a factor of five in the success rate over the Italian territory.

  11. Electric effects induced by artificial seismic sources at Somma-Vesuvius volcano

    Directory of Open Access Journals (Sweden)

    Rosa Di Maio

    2013-11-01

    Full Text Available In this paper, we present a series of self-potential measurements at Somma-Vesuvius volcanic area acquired in conjunction with an active seismic tomography survey. The aim of our study is both to provide further confirmation to the occurrence of seismo-electric coupling and to identify sites suitable for self-potential signal monitoring at Somma-Vesuvius district. The data, which were collected along two perpendicular dipoles, show significant changes on the natural electric field pattern. These variations, attributable to electrokinetic processes triggered by the artificial seismic waves, were observed after explosions occurred at a distance less than 5 km from the SP dipole arrays. In particular, we found that the NW-SE component of the natural electric field was more sensible to the shots than the NE-SW one, and the major effects did not correspond to the nearest shots. Such evidences were interpreted considering the underground electrical properties as deduced by previous detailed resistivity and self-potential surveys performed in the study area.

  12. Seismological observations at discrete sites during the seismic experiment Sudetes 2003

    Czech Academy of Sciences Publication Activity Database

    Holub, Karel; Knejzlík, Jaromír; Rušajová, Jana

    2005-01-01

    Roč. 5, č. 2 (2005), s. 45-52 ISSN 1213-1962 R&D Projects: GA ČR(CZ) GA205/03/0999 Institutional research plan: CEZ:AV0Z30860518 Keywords : seismic experiment * Sudetes 2003 Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  13. The Banat seismic network: Evolution and performance

    International Nuclear Information System (INIS)

    Oros, E.

    2002-01-01

    In the Banat Seismic Region, with its important seismogenic zones (Banat and Danube), operates today the Banat Seismic Network. This network has four short period seismic stations telemetered at the Timisoara Seismological Observatory (since 1995): Siria, Banloc, Buzias and Timisoara. The stations are equipped with short-period S13 seismometers (1 second). The data recorded by the short-period stations are telemetered to Timisoara where they are digitized at 50 samples per second, with 16 bit resolution. At Timisoara works SAPS, an automated system for data acquisition and processing, which performs real-time event detection (based on Allen algorithm), discrimination between local and teleseismic events, automatic P and S waves picking, location and magnitude determination for local events and teleseisms, 'feeding' of an Automatic Data Request Manager with phases, locations and waveforms, sending of earthquake information (as phases and location), by e-mail to Bucharest. The beginning of the seismological observations in Banat is in the 1880's (Timisoara Meteorological Observatory). The first seismograph was installed in Timisoara in 1901, and its systematic observations began in 1902. The World War I interrupted its work. In 1942 Prof. I. Curea founded the Seismic Station Timisoara, and since 1967 until today this station worked into a special building. After 1972 two stations with high amplification were installed in Retezat Mts (Gura Zlata) and on Nera Valey (Susara), as a consequence of the research results. Since 1982 Buzias station began to work completing the Banat Seismic Network. Therefore, the network could detect and locate any local seismic event with M > 2.2. Moreover, up to 20 km distance from each station any seismic event could be detected over M = 0.5. The paper also presents the quality of the locations versus different local seismic sources. (author)

  14. PARAMETERS OF KAMCHATKA SEISMICITY IN 2008

    Directory of Open Access Journals (Sweden)

    Vadim A. Saltykov

    2010-01-01

    Full Text Available The paper describes seismicity of Kamchatka for the period of 2008 and presents 2D distribution of background seismicity parameters calculated from data published in the Regional Catalogue of Kamchatka Earthquakes. Parameters under study are total released seismic energy, seismic activity A10, slope of recurrence graph γ, parameters of RTL, ΔS and Z-function methods, and clustering of earthquakes. Estimations of seismicity are obtained for a region bordered by latitude 50.5–56.5N, longitude 156E–167E, with depths to 300 km. Earthquakes of energy classes not less than 8.5 as per the Fedotov’s classification are considered. The total seismic energy released in 2008 is estimated. According to a function of annual seismic energy distribution, an amount of seismic energy released in 2008 was close to the median level (Fig. 1. Over 2/3 of the total amount of seismic energy released in 2008 resulted from three largest earthquakes (МW ≥ 5.9. About 5 percent of the total number of seismic events are comprised of grouped earthquakes, i.e. aftershocks and swarms. A schematic map of the largest earthquakes (МW ≥ 5.9 and grouped seismic events which occurred in 2008 is given in Fig. 2; their parameters are listed in Table 1. Grouped earthquakes are excluded from the catalogue. A map showing epicenters of independent earthquakes is given in Fig. 3. The slope of recurrence graph γ and seismic activity A10 is based on the Gutenberg-Richter law stating the fundamental property of seismic process. The recurrence graph slope is calculated from continuous exponential distribution of earthquakes by energy classes. Using γ is conditioned by observations that in some cases the slope of the recurrence graph decreases prior to a large earthquake. Activity A10 is calculated from the number of earthquakes N and recurrence graph slope γ. Average slopes of recurrence graph γ and seismic activity A10 for the area under study in 2008 are calculated; our

  15. First Quarter Hanford Seismic Report for Fiscal Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Clayton, Ray E.; Devary, Joseph L.

    2011-03-31

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 16 local earthquakes during the first quarter of FY 2011. Six earthquakes were located at shallow depths (less than 4 km), seven earthquakes at intermediate depths (between 4 and 9 km), most likely in the pre-basalt sediments, and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, thirteen earthquakes were located in known swarm areas and three earthquakes were classified as random events. The highest magnitude event (1.8 Mc) was recorded on October 19, 2010 at depth 17.5 km with epicenter located near the Yakima River between the Rattlesnake Mountain and Horse Heaven Hills swarm areas.

  16. Heterogeneous distribution of water in the mantle transition zone beneath United States inferred from seismic observations

    Science.gov (United States)

    Wang, Y.; Pavlis, G. L.; Li, M.

    2017-12-01

    The amount of water in the Earth's deep mantle is critical for the evolution of the solid Earth and the atmosphere. Mineral physics studies have revealed that Wadsleyite and Ringwoodite in the mantle transition zone could store several times the volume of water in the ocean. However, the water content and its distribution in the transition zone remain enigmatic due to lack of direct observations. Here we use seismic data from the full deployment of the Earthscope Transportable Array to produce 3D image of P to S scattering of the mantle transition zone beneath the United States. We compute the image volume from 141,080 pairs of high quality receiver functions defined by the Earthscope Automated Receiver Survey, reprocessed by the generalized iterative deconvolution method and imaged by the plane wave migration method. We find that the transition zone is filled with previously unrecognized small-scale heterogeneities that produce pervasive, negative polarity P to S conversions. Seismic synthetic modeling using a point source simulation method suggests two possible structures for these objects: 1) a set of randomly distributed blobs of slight difference in size, and 2) near vertical diapir structures from small scale convections. Combining with geodynamic simulations, we interpret the observation as compositional heterogeneity from small-scale, low-velocity bodies that are water enriched. Our results indicate there is a heterogeneous distribution of water through the entire mantle transition zone beneath the contiguous United States.

  17. Examining seismicity patterns in the 2010 M 8.8 Maule rupture zone.

    Science.gov (United States)

    Diniakos, R. S.; Bilek, S. L.; Rowe, C. A.; Draganov, D.

    2016-12-01

    The subduction of the Nazca Plate beneath the South American Plate along Chile has produced some of the largest earthquakes recorded on modern seismic instrumentation. These include the 1960 M 9.5 Valdivia, 2010 M 8.8 Maule, 2014 M 8.1 Iquique, and more recently the 2015 M 8.3 Illapel earthquakes. Slip heterogeneity in the 2010 Maule earthquake has been noted in various studies, with bilateral slip and peak slip of 15 m north of the epicenter. For other great subduction zone earthquakes, such as the 2004 M 9.1 Sumatra, 2010 M 8.8 Maule, and 2011 M 9.0 Tohoku, there was an increase in normal-faulting earthquakes in regions of high slip. In order to understand aftershock behavior of the 2010 Maule event, we are expanding the catalog of small magnitude earthquakes using a template-matching algorithm to find other small earthquakes in the rupture area. We use a starting earthquake catalog (magnitudes between 2.5-4.0) developed from regional and local array seismic data; these comprise our template catalog from Jan. - Dec. 2012 that we use to search through seismic waveforms recorded by a 2012 temporary seismic array in Malargüe, Argentina located 300 km east of the Maule rupture area. We use waveform cross correlation techniques in order to detect new events, and then we use HYPOINVERSE2000 (Klein, 2002) and a velocity model designed for the south-central Chilean region (Haberland et al., 2006) to locate new detections. We also determine focal mechanisms to further analyze aftershock behavior for the region. To date, over 2400 unique detections have been found, of which we have located 133 events with an RMS <1. Many of these events are located in the region of greatest coseismic slip, north of the 2010 epicenter, whereas catalog events are located north and south of the epicenter, along the regions of bilateral slip. Focal mechanisms for the new locations will also be presented.

  18. The Maule, 2010, earthquake - geophysical and kinematic observations of the South American margin prior to the earthquake (Invited)

    Science.gov (United States)

    Oncken, O.; Haberland, C. A.; Moreno, M.; Melnick, D.; Tilmann, F.; Tipteq Research Groups

    2010-12-01

    Accumulation of deformation at convergent plate margins is recently identified to be highly discontinuous and transient in nature: silent slip events, non-volcanic tremors, afterslip, fault coupling and complex response patterns of the upper plate during a single event as well as across several seismic cycles have all been observed in various settings and combinations. Segments of convergent plate margins with high recurrence rates and at different stages of the rupture cycle like the Chilean margin offer an exceptional opportunity to study these features and their interaction resolving behaviour during the seismic cycle and over repeated cycles. A past (TIPTEQ) and several active international initiatives (Integrated Plate Boundary Observatory Chile; IPOC-network.org) address these goals with research groups from IPG Paris, Seismological Survey of Chile, Free University Berlin, Potsdam University, Hamburg University, IFM-GEOMAR Kiel, GFZ Potsdam, and Caltech (USA) employing an integrated plate boundary observatory and associated projects. Results from these studies allow us to define the preseismic state - with respect to the Maule eartghquake - of the margin system at the south Central Chilean convergent margin. Here, two major seismic events have occurred in adjoining segments (Valdivia 1960, Mw = 9.5; Maule 2010, Mw = 8.8) yielding observations from critical time windows of the seismic cycle in the same region. Seismic imaging and seismological data have allowed us to relocate major rupture hypocentres and to locate the geometry and properties of the seismogenic zone. The reflection seismic data exhibit well defined changes of reflectivity and Vp/Vs ratio along the plate interface that can be correlated with different parts of the coupling zone and its hanging wall as well as with changes during the seismic cycle. Observations suggest an important role of the hydraulic system, and of lateral variation of locking degree on subsequent rupture and aftershock

  19. Seismic monitoring: a unified system for research and verifications

    International Nuclear Information System (INIS)

    Thigpen, L.

    1979-01-01

    A system for characterizing either a seismic source or geologic media from observational data was developed. This resulted from an examination of the forward and inverse problems of seismology. The system integrates many seismic monitoring research efforts into a single computational capability. Its main advantage is that it unifies computational and research efforts in seismic monitoring. 173 references, 9 figures, 3 tables

  20. Seismic Barrier Protection of Critical Infrastructure

    Science.gov (United States)

    2017-05-14

    structures , earthquake mitigation I. Introduction Damage caused by earthquakes to critical structures such as nuclear power plants, regional hospitals...the seismic power drop in dB to magnitude drop using the seismic moment magnitude scale, Mw. In figures 5 and 6, the V-trench structure as modeled...representing geological media and V-shaped muffler borehole / trench component structures . Bottom: In this simple analysis, the power drop observed

  1. Hanford Quarter Seismic Report - 98C Seismicity On and Near the Hanford Site, Pasco Basin, Washington: April 1, 1998 Through June 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn, SP Reidel, AC Rohay

    1998-10-23

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. The staff also locates aud identifies sources of seismic activity and monitors changes in the hi~orical pattern of seismic activity at the Hanford Site. The data are. compiled archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of zin earthquake on the Hanford Site. The HSN and Ihe Eastern Washington Regional Network (EN/RN) consist-of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the third quarter of FY 1998 for stations in the HSN was 99.99%. The operational rate for the third quarter of FY 1998 for stations of the EWRN was 99.95%. For the third quarter of FY 1998, the acquisition computer triggered 133 times. Of these triggers 11 were local earthquakes: 5 (45Yo) in the Columbia River Basalt Group, 2(1 8%) in the pre-basalt sediments, and 4 (36%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report.

  2. Accelerometer Sensor Specifications to Predict Hydrocarbon Using Passive Seismic Technique

    Directory of Open Access Journals (Sweden)

    M. H. Md Khir

    2016-01-01

    Full Text Available The ambient seismic ground noise has been investigated in several surveys worldwide in the last 10 years to verify the correlation between observed seismic energy anomalies at the surface and the presence of hydrocarbon reserves beneath. This is due to the premise that anomalies provide information about the geology and potential presence of hydrocarbon. However a technology gap manifested in nonoptimal detection of seismic signals of interest is observed. This is due to the fact that available sensors are not designed on the basis of passive seismic signal attributes and mainly in terms of amplitude and bandwidth. This is because of that fact that passive seismic acquisition requires greater instrumentation sensitivity, noise immunity, and bandwidth, with active seismic acquisition, where vibratory or impulsive sources were utilized to receive reflections through geophones. Therefore, in the case of passive seismic acquisition, it is necessary to select the best monitoring equipment for its success or failure. Hence, concerning sensors performance, this paper highlights the technological gap and motivates developing dedicated sensors for optimal solution at lower frequencies. Thus, the improved passive seismic recording helps in oil and gas industry to perform better fracture mapping and identify more appropriate stratigraphy at low frequencies.

  3. What controls intermediate depth seismicity in subduction zones?

    Science.gov (United States)

    Florez, M. A.; Prieto, G. A.

    2017-12-01

    Intermediate depth earthquakes seem to cluster in two distinct planes of seismicity along the subducting slab, known as Double Seismic Zones (DSZ). Precise double difference relocations in Tohoku, Japan and northern Chile confirm this pattern with striking accuracy. Furthermore, past studies have used statistical tests on the EHB global seismicity catalog to suggest that DSZs might be a dominant global feature. However, typical uncertainties associated with hypocentral depth prevent us from drawing meaningful conclusions about the detailed structure of intermediate depth seismicity and its relationship to the physical and chemical environment of most subduction zones. We have recently proposed a relative earthquake relocation algorithm based on the precise picking of the P and pP phase arrivals using array processing techniques [Florez and Prieto, 2017]. We use it to relocate seismicity in 24 carefully constructed slab segments that sample every subduction zone in the world. In all of the segments we are able to precisely delineate the structure of the double seismic zone. Our results indicate that whenever the lower plane of seismicity is active enough the width of the DSZ decreases in the down dip direction; the two planes merge at depths between 140 km and 300 km. We develop a method to unambiguously pick the depth of this merging point, the end of the DSZ, which appears to be correlated with the slab thermal parameter. We also confirm that the width of the DSZ increases with plate age. Finally, we estimate b-values for the upper and lower planes of seismicity and explore their relationships to the physical parameters that control slab subduction.

  4. Study on structural seismic margin and probabilistic seismic risk. Development of a structural capacity-seismic risk diagram

    International Nuclear Information System (INIS)

    Nakajima, Masato; Ohtori, Yasuki; Hirata, Kazuta

    2010-01-01

    Seismic margin is extremely important index and information when we evaluate and account seismic safety of critical structures, systems and components quantitatively. Therefore, it is required that electric power companies evaluate the seismic margin of each plant in back-check of nuclear power plants in Japan. The seismic margin of structures is usually defined as a structural capacity margin corresponding to design earthquake ground motion. However, there is little agreement as to the definition of the seismic margin and we have no knowledge about a relationship between the seismic margin and seismic risk (annual failure probability) which is obtained in PSA (Probabilistic Safety Assessment). The purpose of this report is to discuss a definition of structural seismic margin and to develop a diagram which can identify a relation between seismic margin and seismic risk. The main results of this paper are described as follows: (1) We develop seismic margin which is defined based on the fact that intensity of earthquake ground motion is more appropriate than the conventional definition (i.e., the response-based seismic margin) for the following reasons: -seismic margin based on earthquake ground motion is invariant where different typed structures are considered, -stakeholders can understand the seismic margin based on the earthquake ground motion better than the response-based one. (2) The developed seismic margin-risk diagram facilitates us to judge easily whether we need to perform detailed probabilistic risk analysis or only deterministic analysis, given that the reference risk level although information on the uncertainty parameter beta is not obtained. (3) We have performed numerical simulations based on the developed method for four sites in Japan. The structural capacity-risk diagram differs depending on each location because the diagram is greatly influenced by seismic hazard information for a target site. Furthermore, the required structural capacity

  5. Real-time capture of seismic waves using high-rate multi-GNSS observations: Application to the 2015 Mw 7.8 Nepal earthquake

    Science.gov (United States)

    Geng, Tao; Xie, Xin; Fang, Rongxin; Su, Xing; Zhao, Qile; Liu, Gang; Li, Heng; Shi, Chuang; Liu, Jingnan

    2016-01-01

    The variometric approach is investigated to measure real-time seismic waves induced by the 2015 Mw 7.8 Nepal earthquake with high-rate multi-GNSS observations, especially with the contribution of newly available BDS. The velocity estimation using GPS + BDS shows an additional improvement of around 20% with respect to GPS-only solutions. We also reconstruct displacements by integrating GNSS-derived velocities after a linear trend removal (IGV). The displacement waveforms with accuracy of better than 5 cm are derived when postprocessed GPS precise point positioning results are used as ground truth, even if those stations have strong ground motions and static offsets of up to 1-2 m. GNSS-derived velocity and displacement waveforms with the variometric approach are in good agreement with results from strong motion data. We therefore conclude that it is feasible to capture real-time seismic waves with multi-GNSS observations using the IGV-enhanced variometric approach, which has critical implications for earthquake early warning, tsunami forecasting, and rapid hazard assessment.

  6. Investigating Deep-Marine Sediment Waves in the Northern Gulf of Mexico Using 3D Seismic Data

    Science.gov (United States)

    Wang, Z.; Gani, M. R.

    2016-12-01

    Deep-water depositional elements have been studied for decades using outcrop, flume tank, sidescan sonar, and seismic data. Even though they have been well recognized by researchers, the improvements in the quality of 3D seismic data with increasingly larger dimension allow detailed analysis of deep-water depositional elements with new insights. This study focuses on the deep-marine sediment waves in the northern Gulf of Mexico. By interpreting a 3D seismic dataset covering 635 km2 at Mississippi Canyon and Viosca Knoll areas, large sediment waves, generated by sediment gravity flows, were mapped and analyzed with various seismic attributes. A succession of sediment waves, approximately 100 m in thickness, is observed on the marine slope that tapers out at the toe of the slope. The individual sediment wave exhibits up to 500 m in wavelength and up to 20 m in height. The wave crests oriented northeast-southwest are broadly aligned parallel to the regional slope-strike, indicating their sediment gravity flow origin. The crestlines are straight or slightly sinuous, with sinuosity increasing downslope. Their anti-dune patterns likely imply the presence of supercritical flows. The sediment waves have a retrogradational stacking pattern. Seismic amplitude maps of each sediment wave revealed that after depositing the majority of sheet-like sands on the upper slope, sediment gravity flows started to form large sediment waves on the lower slope. The steep and narrow upcurrent flanks of the sediment waves always display higher amplitudes than the gentle and wide downcurrent flanks, indicating that the sands were likely preferentially trapped along the upcurrent flanks, whereas the muds spread along the downcurrent flanks. The formation of sediment waves likely requires a moderate sand-mud ratio, as suggested by these observations: (1) absence of sediment waves on the upper slope where the sands were mainly deposited as unconfined sheets with a high sand-mud ratio; (2

  7. Seismic behavior with sliding of overhead travelling crane

    International Nuclear Information System (INIS)

    Komori, Akio; Ueki, Takashi; Hirata, Masami; Hoshii, Tsutomu; Kashiwazaki, Akihiro.

    1989-01-01

    In this study, the seismic behavior of an overhead travelling crane with the sliding between travelling wheels and rails is examined. First, the dynamic characteristic test of the actual crane installed in a reactor building and the sliding test of the rigid-element model to observe the basic sliding characteristic were performed. Next, to examine the dynamic response with sliding, shaking tests using the scaled model of an actual crane were conducted. From these results, useful design information about seismic behavior of an overhead travelling crane was obtained. It was also observed that numerical predictions considering sliding behavior have good agreement with the experimental results and are applicable to seismic design. (author)

  8. Seismic Ecology

    Science.gov (United States)

    Seleznev, V. S.; Soloviev, V. M.; Emanov, A. F.

    The paper is devoted to researches of influence of seismic actions for industrial and civil buildings and people. The seismic actions bring influence directly on the people (vibration actions, force shocks at earthquakes) or indirectly through various build- ings and the constructions and can be strong (be felt by people) and weak (be fixed by sensing devices). The great number of work is devoted to influence of violent seismic actions (first of all of earthquakes) on people and various constructions. This work is devoted to study weak, but long seismic actions on various buildings and people. There is a need to take into account seismic oscillations, acting on the territory, at construction of various buildings on urbanized territories. Essential influence, except for violent earthquakes, man-caused seismic actions: the explosions, seismic noise, emitted by plant facilities and moving transport, radiation from high-rise buildings and constructions under action of a wind, etc. can exert. Materials on increase of man- caused seismicity in a number of regions in Russia, which earlier were not seismic, are presented in the paper. Along with maps of seismic microzoning maps to be built indicating a variation of amplitude spectra of seismic noise within day, months, years. The presence of an information about amplitudes and frequencies of oscillations from possible earthquakes and man-caused oscillations in concrete regions allows carry- ing out soundly designing and construction of industrial and civil housing projects. The construction of buildings even in not seismically dangerous regions, which have one from resonance frequencies coincident on magnitude to frequency of oscillations, emitted in this place by man-caused objects, can end in failure of these buildings and heaviest consequences for the people. The practical examples of detail of engineering- seismological investigation of large industrial and civil housing projects of Siberia territory (hydro power

  9. Post-seismic velocity changes following the 2010 Mw 7.1 Darfield earthquake, New Zealand, revealed by ambient seismic field analysis

    Science.gov (United States)

    Heckels, R. EG; Savage, M. K.; Townend, J.

    2018-05-01

    Quantifying seismic velocity changes following large earthquakes can provide insights into fault healing and reloading processes. This study presents temporal velocity changes detected following the 2010 September Mw 7.1 Darfield event in Canterbury, New Zealand. We use continuous waveform data from several temporary seismic networks lying on and surrounding the Greendale Fault, with a maximum interstation distance of 156 km. Nine-component, day-long Green's functions were computed for frequencies between 0.1 and 1.0 Hz for continuous seismic records from immediately after the 2010 September 04 earthquake until 2011 January 10. Using the moving-window cross-spectral method, seismic velocity changes were calculated. Over the study period, an increase in seismic velocity of 0.14 ± 0.04 per cent was determined near the Greendale Fault, providing a new constraint on post-seismic relaxation rates in the region. A depth analysis further showed that velocity changes were confined to the uppermost 5 km of the subsurface. We attribute the observed changes to post-seismic relaxation via crack healing of the Greendale Fault and throughout the surrounding region.

  10. Next-generation probabilistic seismicity forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Hiemer, S.

    2014-07-01

    The development of probabilistic seismicity forecasts is one of the most important tasks of seismologists at present time. Such forecasts form the basis of probabilistic seismic hazard assessment, a widely used approach to generate ground motion exceedance maps. These hazard maps guide the development of building codes, and in the absence of the ability to deterministically predict earthquakes, good building and infrastructure planning is key to prevent catastrophes. Probabilistic seismicity forecasts are models that specify the occurrence rate of earthquakes as a function of space, time and magnitude. The models presented in this thesis are time-invariant mainshock occurrence models. Accordingly, the reliable estimation of the spatial and size distribution of seismicity are of crucial importance when constructing such probabilistic forecasts. Thereby we focus on data-driven approaches to infer these distributions, circumventing the need for arbitrarily chosen external parameters and subjective expert decisions. Kernel estimation has been shown to appropriately transform discrete earthquake locations into spatially continuous probability distributions. However, we show that neglecting the information from fault networks constitutes a considerable shortcoming and thus limits the skill of these current seismicity models. We present a novel earthquake rate forecast that applies the kernel-smoothing method to both past earthquake locations and slip rates on mapped crustal faults applied to Californian and European data. Our model is independent from biases caused by commonly used non-objective seismic zonations, which impose artificial borders of activity that are not expected in nature. Studying the spatial variability of the seismicity size distribution is of great importance. The b-value of the well-established empirical Gutenberg-Richter model forecasts the rates of hazard-relevant large earthquakes based on the observed rates of abundant small events. We propose a

  11. Next-generation probabilistic seismicity forecasting

    International Nuclear Information System (INIS)

    Hiemer, S.

    2014-01-01

    The development of probabilistic seismicity forecasts is one of the most important tasks of seismologists at present time. Such forecasts form the basis of probabilistic seismic hazard assessment, a widely used approach to generate ground motion exceedance maps. These hazard maps guide the development of building codes, and in the absence of the ability to deterministically predict earthquakes, good building and infrastructure planning is key to prevent catastrophes. Probabilistic seismicity forecasts are models that specify the occurrence rate of earthquakes as a function of space, time and magnitude. The models presented in this thesis are time-invariant mainshock occurrence models. Accordingly, the reliable estimation of the spatial and size distribution of seismicity are of crucial importance when constructing such probabilistic forecasts. Thereby we focus on data-driven approaches to infer these distributions, circumventing the need for arbitrarily chosen external parameters and subjective expert decisions. Kernel estimation has been shown to appropriately transform discrete earthquake locations into spatially continuous probability distributions. However, we show that neglecting the information from fault networks constitutes a considerable shortcoming and thus limits the skill of these current seismicity models. We present a novel earthquake rate forecast that applies the kernel-smoothing method to both past earthquake locations and slip rates on mapped crustal faults applied to Californian and European data. Our model is independent from biases caused by commonly used non-objective seismic zonations, which impose artificial borders of activity that are not expected in nature. Studying the spatial variability of the seismicity size distribution is of great importance. The b-value of the well-established empirical Gutenberg-Richter model forecasts the rates of hazard-relevant large earthquakes based on the observed rates of abundant small events. We propose a

  12. The Community Seismic Network: Enabling Observations Through Citizen Science Participation

    Science.gov (United States)

    Kohler, M. D.; Clayton, R. W.; Heaton, T. H.; Bunn, J.; Guy, R.; Massari, A.; Chandy, K. M.

    2017-12-01

    The Community Seismic Network is a dense accelerometer array deployed in the greater Los Angeles area and represents the future of densely instrumented urban cities where localized vibration measurements are collected continuously throughout the free-field and built environment. The hardware takes advantage of developments in the semiconductor industry in the form of inexpensive MEMS accelerometers that are each coupled with a single board computer. The data processing and archival architecture borrows from developments in cloud computing and network connectedness. The ability to deploy densely in the free field and in upper stories of mid/high-rise buildings is enabled by community hosts for sensor locations. To this end, CSN has partnered with the Los Angeles Unified School District (LAUSD), the NASA-Jet Propulsion Laboratory (JPL), and commercial and civic building owners to host sensors. At these sites, site amplification estimates from RMS noise measurements illustrate the lateral variation in amplification over length scales of 100 m or less, that correlate with gradients in the local geology such as sedimentary basins that abut crystalline rock foothills. This is complemented by high-resolution, shallow seismic velocity models obtained using an H/V method. In addition, noise statistics are used to determine the reliability of sites for ShakeMap and earthquake early warning data. The LAUSD and JPL deployments are examples of how situational awareness and centralized warning products such as ShakeMap and ShakeCast are enabled by citizen science participation. Several buildings have been instrumented with at least one triaxial accelerometer per floor, providing measurements for real-time structural health monitoring through local, customized displays. For real-time and post-event evaluation, the free-field and built environment CSN data and products illustrate the feasibility of order-of-magnitude higher spatial resolution mapping compared to what is currently

  13. Nonlinear acoustic/seismic waves in earthquake processes

    International Nuclear Information System (INIS)

    Johnson, Paul A.

    2012-01-01

    Nonlinear dynamics induced by seismic sources and seismic waves are common in Earth. Observations range from seismic strong ground motion (the most damaging aspect of earthquakes), intense near-source effects, and distant nonlinear effects from the source that have important consequences. The distant effects include dynamic earthquake triggering—one of the most fascinating topics in seismology today—which may be elastically nonlinearly driven. Dynamic earthquake triggering is the phenomenon whereby seismic waves generated from one earthquake trigger slip events on a nearby or distant fault. Dynamic triggering may take place at distances thousands of kilometers from the triggering earthquake, and includes triggering of the entire spectrum of slip behaviors currently identified. These include triggered earthquakes and triggered slow, silent-slip during which little seismic energy is radiated. It appears that the elasticity of the fault gouge—the granular material located between the fault blocks—is key to the triggering phenomenon.

  14. Attenuation and velocity dispersion in the exploration seismic frequency band

    Science.gov (United States)

    Sun, Langqiu

    In an anelastic medium, seismic waves are distorted by attenuation and velocity dispersion, which depend on petrophysical properties of reservoir rocks. The effective attenuation and velocity dispersion is a combination of intrinsic attenuation and apparent attenuation due to scattering, transmission response, and data acquisition system. Velocity dispersion is usually neglected in seismic data processing partly because of insufficient observations in the exploration seismic frequency band. This thesis investigates the methods of measuring velocity dispersion in the exploration seismic frequency band and interprets the velocity dispersion data in terms of petrophysical properties. Broadband, uncorrelated vibrator data are suitable for measuring velocity dispersion in the exploration seismic frequency band, and a broad bandwidth optimizes the observability of velocity dispersion. Four methods of measuring velocity dispersion in uncorrelated vibrator VSP data are investigated, which are the sliding window crosscorrelation (SWCC) method, the instantaneous phase method, the spectral decomposition method, and the cross spectrum method. Among them, the SWCC method is a new method and has satisfactory robustness, accuracy, and efficiency. Using the SWCC method, velocity dispersion is measured in the uncorrelated vibrator VSP data from three areas with different geological settings, i.e., Mallik gas hydrate zone, McArthur River uranium mines, and Outokumpu crystalline rocks. The observed velocity dispersion is fitted to a straight line with respect to log frequency for a constant (frequency-independent) Q value. This provides an alternative method for calculating Q. A constant Q value does not directly link to petrophysical properties. A modeling study is implemented for the Mallik and McArthur River data to interpret the velocity dispersion observations in terms of petrophysical properties. The detailed multi-parameter petrophysical reservoir models are built according to

  15. Tools for educational access to seismic data

    Science.gov (United States)

    Taber, J. J.; Welti, R.; Bravo, T. K.; Hubenthal, M.; Frechette, K.

    2017-12-01

    Student engagement can be increased both by providing easy access to real data, and by addressing newsworthy events such as recent large earthquakes. IRIS EPO has a suite of access and visualization tools that can be used for such engagement, including a set of three tools that allow students to explore global seismicity, use seismic data to determine Earth structure, and view and analyze near-real-time ground motion data in the classroom. These tools are linked to online lessons that are designed for use in middle school through introductory undergraduate classes. The IRIS Earthquake Browser allows discovery of key aspects of plate tectonics, earthquake locations (in pseudo 3D) and seismicity rates and patterns. IEB quickly displays up to 20,000 seismic events over up to 30 years, making it one of the most responsive, practical ways to visualize historical seismicity in a browser. Maps are bookmarkable and preserve state, meaning IEB map links can be shared or worked into a lesson plan. The Global Seismogram Plotter automatically creates visually clear seismic record sections from selected large earthquakes that are tablet-friendly and can also to be printed for use in a classroom without computers. The plots are designed to be appropriate for use with no parameters to set, but users can also modify the plots, such as including a recording station near a chosen location. A guided exercise is provided where students use the record section to discover the diameter of Earth's outer core. Students can pick and compare phase arrival times onscreen which is key to performing the exercise. A companion station map shows station locations and further information and is linked to the record section. jAmaSeis displays seismic data in real-time from either a local instrument and/or from remote seismic stations that stream data using standard seismic data protocols, and can be used in the classroom or as a public display. Users can filter data, fit a seismogram to travel time

  16. Plate tectonics, mantle convection and D'' seismic structures

    Science.gov (United States)

    Wen, Lianxing

    This thesis adopts multidisciplinary (geodynamical and seismological) approaches toward understanding dynamics of the Earth's mantle. My geodynamical approach is directed at understanding the relationship between large-scale surface observables (geoid, topography, plate motions) and mantle rheology and convection of the present-day Earth. In chapter 2, I remove shallow mantle structure of various tectonic features to generate "residual tomography." In chapter 3, I show that the pattern, spectrum and amplitude of the "residual topography" are consistent with shallow origin of the "Earth surface dynamic topography;" the long wavelength geoid and topography (l = 2-3) are successfully explained by density models inferred from the "residual tomography," assuming layered mantle convection stratified at the "920 km seismic discontinuity." In chapter 4, I develop a new method to calculate mantle flow with lateral variation of viscosity. The viscosity contrast between continental and oceanic regions is identified to have dominating effects on both the observed poloidal/toroidal ratio and pattern of toroidal motions at long wavelengths. My seismological approach is focused on exploring fine structures near the core-mantle boundary (CMB) and developing new seismic techniques. I discuss the method development and strategies to explore fine structures in the following chapters. In chapter 5, I develop a hybrid method, a combination of analytical and numerical methods, with numerical methods applied in heterogeneous regions only. In chapter 6, I constrain the general structures of the ultra low velocity zones (ULVZ) near the CMB under the south-east Pacific and Iceland. The SKS-SPdKS data are explained by ULVZ with P-velocity reduction of 10%, horizontal length-scales of about 250 km and height of about 40 km. S-velocity reduction of 30% is consistent with the data. In chapter 7, I constrain the detailed structures of the ULVZ near the CMB from observed broadband PKP precursors

  17. Statistical Seismology and Induced Seismicity

    Science.gov (United States)

    Tiampo, K. F.; González, P. J.; Kazemian, J.

    2014-12-01

    While seismicity triggered or induced by natural resources production such as mining or water impoundment in large dams has long been recognized, the recent increase in the unconventional production of oil and gas has been linked to rapid rise in seismicity in many places, including central North America (Ellsworth et al., 2012; Ellsworth, 2013). Worldwide, induced events of M~5 have occurred and, although rare, have resulted in both damage and public concern (Horton, 2012; Keranen et al., 2013). In addition, over the past twenty years, the increase in both number and coverage of seismic stations has resulted in an unprecedented ability to precisely record the magnitude and location of large numbers of small magnitude events. The increase in the number and type of seismic sequences available for detailed study has revealed differences in their statistics that previously difficult to quantify. For example, seismic swarms that produce significant numbers of foreshocks as well as aftershocks have been observed in different tectonic settings, including California, Iceland, and the East Pacific Rise (McGuire et al., 2005; Shearer, 2012; Kazemian et al., 2014). Similarly, smaller events have been observed prior to larger induced events in several occurrences from energy production. The field of statistical seismology has long focused on the question of triggering and the mechanisms responsible (Stein et al., 1992; Hill et al., 1993; Steacy et al., 2005; Parsons, 2005; Main et al., 2006). For example, in most cases the associated stress perturbations are much smaller than the earthquake stress drop, suggesting an inherent sensitivity to relatively small stress changes (Nalbant et al., 2005). Induced seismicity provides the opportunity to investigate triggering and, in particular, the differences between long- and short-range triggering. Here we investigate the statistics of induced seismicity sequences from around the world, including central North America and Spain, and

  18. Third Quarter Hanford Seismic Report for Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-09-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its con-tractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (E WRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 818 triggers on two parallel detection and recording systems during the third quarter of fiscal year (FY) 2000. Thirteen seismic events were located by the Hanford Seismic Network within the reporting region of 46-47{degree} N latitude and 119-120{degree} W longitude; 7 were earthquakes in the Columbia River Basalt Group, 1 was an earthquake in the pre-basalt sediments, and 5 were earthquakes in the crystalline basement. Three earthquakes occurred in known swarm areas, and 10 earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers during the third quarter of FY 2000.

  19. First Quarter Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-03-21

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, forty-four local earthquakes were recorded during the first quarter of fiscal year 2008. A total of thirty-one micro earthquakes were recorded within the Rattlesnake Mountain swarm area at depths in the 5-8 km range, most likely within the pre-basalt sediments. The largest event recorded by the network during the first quarter (November 25, 2007 - magnitude 1.5 Mc) was located within this swarm area at a depth of 4.3 km. With regard to the depth distribution, three earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), thirty-six earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and five earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, thirty-eight earthquakes occurred in swarm areas and six earth¬quakes were classified as random events.

  20. Southern Appalachian Regional Seismic Network

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, S.C.C.; Johnston, A.C.; Chiu, J.M. [Memphis State Univ., TN (United States). Center for Earthquake Research and Information

    1994-08-01

    The seismic activity in the southern Appalachian area was monitored by the Southern Appalachian Regional Seismic Network (SARSN) since late 1979 by the Center for Earthquake Research and Information (CERI) at Memphis State University. This network provides good spatial coverage for earthquake locations especially in east Tennessee. The level of activity concentrates more heavily in the Valley and Ridge province of eastern Tennessee, as opposed to the Blue Ridge or Inner Piedmont. The large majority of these events lie between New York - Alabama lineament and the Clingman/Ocoee lineament, magnetic anomalies produced by deep-seated basement structures. Therefore SARSN, even with its wide station spacing, has been able to define the essential first-order seismological characteristics of the Southern Appalachian seismic zone. The focal depths of the southeastern U.S. earthquakes concentrate between 8 and 16 km, occurring principally beneath the Appalachian overthrust. In cross-sectional views, the average seismicity is shallower to the east beneath the Blue Ridge and Piedmont provinces and deeper to the west beneath the Valley and Ridge and the North American craton. Results of recent focal mechanism studies by using the CERI digital earthquake catalog between October, 1986 and December, 1991, indicate that the basement of the Valley and Ridge province is under a horizontal, NE-SW compressive stress. Right-lateral strike-slip faulting on nearly north-south fault planes is preferred because it agrees with the trend of the regional magnetic anomaly pattern.

  1. Southern Appalachian Regional Seismic Network

    International Nuclear Information System (INIS)

    Chiu, S.C.C.; Johnston, A.C.; Chiu, J.M.

    1994-08-01

    The seismic activity in the southern Appalachian area was monitored by the Southern Appalachian Regional Seismic Network (SARSN) since late 1979 by the Center for Earthquake Research and Information (CERI) at Memphis State University. This network provides good spatial coverage for earthquake locations especially in east Tennessee. The level of activity concentrates more heavily in the Valley and Ridge province of eastern Tennessee, as opposed to the Blue Ridge or Inner Piedmont. The large majority of these events lie between New York - Alabama lineament and the Clingman/Ocoee lineament, magnetic anomalies produced by deep-seated basement structures. Therefore SARSN, even with its wide station spacing, has been able to define the essential first-order seismological characteristics of the Southern Appalachian seismic zone. The focal depths of the southeastern U.S. earthquakes concentrate between 8 and 16 km, occurring principally beneath the Appalachian overthrust. In cross-sectional views, the average seismicity is shallower to the east beneath the Blue Ridge and Piedmont provinces and deeper to the west beneath the Valley and Ridge and the North American craton. Results of recent focal mechanism studies by using the CERI digital earthquake catalog between October, 1986 and December, 1991, indicate that the basement of the Valley and Ridge province is under a horizontal, NE-SW compressive stress. Right-lateral strike-slip faulting on nearly north-south fault planes is preferred because it agrees with the trend of the regional magnetic anomaly pattern

  2. Long seismic activity in the Porto dos Gaúchos Seismic Zone(PGSZ) - Amazon Craton Brazil

    Science.gov (United States)

    Barros, L. V.; Bowen, B. M. D.; Schmidt, K.

    2017-12-01

    The largest earthquake ever observed in the stable continental interior of the South American plate occurred in Serra do Tombador (ST), Mato Grosso state - Brazil, on January 31, 1955 with magnitude 6.2 m b . Since then no other earthquake has been located near the 1955 epicenter. However, in Porto dos Gaúchos (PG), 100 km northeast of ST, a recurrent seismicity has been observed since 1959. Both ST and PG are located in the Phanerozoic Parecis basin whose sediments overlies the crystalline basement of Amazon craton. Two magnitude 5 earthquakes occurred in PG, in 1998 and 2005 with intensities up to VI and V, respectively. These two main shocks were followed by aftershock sequences, studied by local seismic networks, last up today, almost 30 years later, period in which it was detected more than seven thousand of seismic events. Both sequences occurred in the same WSW-ENE oriented fault zone with right-lateral strike-slip mechanisms. The epicentral zone is near the northern border of Parecis basin, where there are buried grabens, generally trending WNW-ESE, such as the deep Mesoproterozoic Caiabis graben which lies partly beneath the Parecis basin. The seismogenic fault is located in a basement high, which is probably related with the same seismogenic feature responsible for the earthquakes in PGSZ. The 1955 earthquake, despite the uncertainty in its epicenter, does not seem to be directly related to any buried graben either. The seismicity in the PGSZ, therefore, is not directly related to rifted crust.Not considering the possibility of miss location in the ST earthquake, its isolated occurrence - from the perspective of new studies on intraplate seismicity - lead us to think that the PGSZ was activated by stresses released by the earthquake of 1955 and that the seismogenic fault of ST would have closed a cycle of activity. This would explain its seismic quiescence. However, other studies are necessary to prove this hypothesis, such as the measurement of the

  3. Demonstration of improved seismic source inversion method of tele-seismic body wave

    Science.gov (United States)

    Yagi, Y.; Okuwaki, R.

    2017-12-01

    Seismic rupture inversion of tele-seismic body wave has been widely applied to studies of large earthquakes. In general, tele-seismic body wave contains information of overall rupture process of large earthquake, while the tele-seismic body wave is inappropriate for analyzing a detailed rupture process of M6 7 class earthquake. Recently, the quality and quantity of tele-seismic data and the inversion method has been greatly improved. Improved data and method enable us to study a detailed rupture process of M6 7 class earthquake even if we use only tele-seismic body wave. In this study, we demonstrate the ability of the improved data and method through analyses of the 2016 Rieti, Italy earthquake (Mw 6.2) and the 2016 Kumamoto, Japan earthquake (Mw 7.0) that have been well investigated by using the InSAR data set and the field observations. We assumed the rupture occurring on a single fault plane model inferred from the moment tensor solutions and the aftershock distribution. We constructed spatiotemporal discretized slip-rate functions with patches arranged as closely as possible. We performed inversions using several fault models and found that the spatiotemporal location of large slip-rate area was robust. In the 2016 Kumamoto, Japan earthquake, the slip-rate distribution shows that the rupture propagated to southwest during the first 5 s. At 5 s after the origin time, the main rupture started to propagate toward northeast. First episode and second episode correspond to rupture propagation along the Hinagu fault and the Futagawa fault, respectively. In the 2016 Rieti, Italy earthquake, the slip-rate distribution shows that the rupture propagated to up-dip direction during the first 2 s, and then rupture propagated toward northwest. From both analyses, we propose that the spatiotemporal slip-rate distribution estimated by improved inversion method of tele-seismic body wave has enough information to study a detailed rupture process of M6 7 class earthquake.

  4. First Quarter Hanford Seismic Report for Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-03-15

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. This includes three recently acquired Transportable Array stations located at Cold Creek, Didier Farms, and Phinney Hill. For the Hanford Seismic Network, ten local earthquakes were recorded during the first quarter of fiscal year 2009. All earthquakes were considered as “minor” with magnitudes (Mc) less than 1.0. Two earthquakes were located at shallow depths (less than 4 km), most likely in the Columbia River basalts; five earthquakes at intermediate depths (between 4 and 9 km), most likely in the sub-basalt sediments); and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, four earthquakes occurred in known swarm areas and six earthquakes were classified as random events.

  5. A new seismic station in Romania the Bucovina seismic array

    International Nuclear Information System (INIS)

    Grigore, Adrian; Grecu, Bogdan; Ionescu, Constantin; Ghica, Daniela; Popa, Mihaela; Rizescu, Mihaela

    2002-01-01

    Recently, a new seismic monitoring station, the Bucovina Seismic Array, has been established in the northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics, Romania. The array consists of 10 seismic sensors (9 short-period and one broad band) located in boreholes and distributed in a 5 x 5 km area. On July 24, 2002 the official Opening Ceremony of Bucovina Seismic Array took place in the area near the city of Campulung Moldovenesc in the presence of Romanian Prime Minister, Adrian Nastase. Starting with this date, the new seismic monitoring system became fully operational by continuous recording and transmitting data in real-time to the National Data Center of Romania, in Bucharest and to the National Data Center of USA, in Florida. Bucovina Seismic Array, added to the present Seismic Network, will provide much better seismic monitoring coverage of Romania's territory, on-scale recording for weak-to-strong events, and will contribute to advanced seismological studies on seismic hazard and risk, local effects and microzonation, seismic source physics, Earth structure. (authors)

  6. Hanford quarterly seismic report - 97C seismicity on and near the Hanford Site, Pasco Basin, Washington. Quarterly report, April 1, 1997--June 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1997-08-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 100% and for stations of the EWRN was 99.99%. For fiscal year (FY) 1997 third quarter (97C), the acquisition computer triggered 183. Of these triggers twenty one were local earthquakes: sixteen in the Columbus River Basalt Group, one in the pre-basalt sediments, and four in the crystalline basement. The geologic and tectonic environments are discussed in the report.

  7. 3D Modelling of Seismically Active Parts of Underground Faults via Seismic Data Mining

    Science.gov (United States)

    Frantzeskakis, Theofanis; Konstantaras, Anthony

    2015-04-01

    , E. and Papathanassiou, G.: 'Aftershock relocation and frequency-size distribution, stress inversion and seismotectonic setting of the 7 August 2013 M=5.4 earthquake in Kallidromon Mountain, central Greece', Tectonophysics, vol. 617, pp. 101-113, 2014 [4] Maravelakis, E., Bilalis, N., Mantzorou, I., Konstantaras, A. and Antoniadis, A.: '3D modelling of the oldest olive tree of the world', International Journal Of Computational Engineering Research, vol. 2 (2), pp. 340-347, 2012 [5] Konstantaras, A., Katsifarakis, E, Maravelakis, E, Skounakis, E, Kokkinos, E. and Karapidakis, E.: 'Intelligent spatial-clustering of seismicity in the vicinity of the Hellenic seismic arc', Earth Science Research, vol. 1 (2), pp. 1- 10, 2012 [6] Georgoulas, G., Konstantaras, A., Katsifarakis, E., Stylios, C., Maravelakis, E and Vachtsevanos, G.: 'Seismic-mass" density-based algorithm for spatio-temporal clustering', Expert Systems with Applications, vol. 40 (10), pp. 4183-4189, 2013 [7] Konstantaras, A.: 'Classification of Distinct Seismic Regions and Regional Temporal Modelling of Seismicity in the Vicinity of the Hellenic Seismic Arc', Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of', vol. 99, pp. 1-7, 2013

  8. Lunar seismicity, structure, and tectonics

    Science.gov (United States)

    Lammlein, D. R.; Latham, G. V.; Dorman, J.; Nakamura, Y.; Ewing, M.

    1974-01-01

    Natural seismic events have been detected by the long-period seismometers at Apollo stations 16, 14, 15, and 12 at annual rates of 3300, 1700, 800, and 700, respectively, with peak activity at 13- to 14-day intervals. The data are used to describe magnitudes, source characteristics, and periodic features of lunar seismicity. In a present model, the rigid lithosphere overlies an asthenosphere of reduced rigidity in which present-day partial melting is probable. Tidal deformation presumably leads to critical stress concentrations at the base of the lithosphere, where moonquakes are found to occur. The striking tidal periodicities in the pattern of moonquake occurrence and energy release suggest that tidal energy is the dominant source of energy released as moonquakes. Thus, tidal energy is dissipated by moonquakes in the lithosphere and probably by inelastic processes in the asthenosphere.

  9. Seismic Hazard and risk assessment for Romania -Bulgaria cross-border region

    Science.gov (United States)

    Simeonova, Stela; Solakov, Dimcho; Alexandrova, Irena; Vaseva, Elena; Trifonova, Petya; Raykova, Plamena

    2016-04-01

    parameter in the historical earthquake catalogues. A particular advantage of using intensities is that the very irregular pattern of the attenuation field of the Vrancea intermediate depth earthquakes can be estimated from detailed macroseismic observations that are available (in both countries) for the study region. Additionally, de-aggregation of the seismic hazard for a recurrence period of 475 years (probability of exceedance of 10% in 50 years) for intensity was performed for 9 cities (administrative centers) situated in northern Bulgaria. Finally, applying SELENA software earthquake risk for Bulgarian part of the cross-boarder region is analyzed. The results presented for the Romania-Bulgaria cross border region are part of the work carried out in the DACEA Project (2010-2013) that was implemented in the framework of the Romania - Bulgaria Cross Border Cooperation Programme (2007-2013).

  10. Third Quarter Hanford Seismic Report for Fiscal Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2010-09-29

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 23 local earthquakes during the third quarter of FY 2010. Sixteen earthquakes were located at shallow depths (less than 4 km), five earthquakes at intermediate depths (between 4 and 9 km), most likely in the pre-basalt sediments, and two earthquakes were located at depths greater than 9 km, within the basement. Geographically, twelve earthquakes were located in known swarm areas, 3 earthquakes occurred near a geologic structure (Saddle Mountain anticline), and eight earthquakes were classified as random events. The highest magnitude event (3.0 Mc) was recorded on May 8, 2010 at depth 3.0 km with epicenter located near the Saddle Mountain anticline. Later in the quarter (May 24 and June 28) two additional earthquakes were also recorded nearly at the same location. These events are not considered unusual in that earthquakes have been previously recorded at this location, for example, in October 2006 (Rohay et al; 2007). Six earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just

  11. First Quarter Hanford Seismic Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    1999-05-26

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. They also locate and identify sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consists of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the first quarter of FY99 for stations in the HSN was 99.8%. There were 121 triggers during the first quarter of fiscal year 1999. Fourteen triggers were local earthquakes; seven (50%) were in the Columbia River Basalt Group, no earthquakes occurred in the pre-basalt sediments, and seven (50%) were in the crystalline basement. One earthquake (7%) occurred near or along the Horn Rapids anticline, seven earthquakes (50%) occurred in a known swarm area, and six earthquakes (43%) were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometer during the first quarter of FY99.

  12. Non-seismic tsunamis: filling the forecast gap

    Science.gov (United States)

    Moore, C. W.; Titov, V. V.; Spillane, M. C.

    2015-12-01

    Earthquakes are the generation mechanism in over 85% of tsunamis. However, non-seismic tsunamis, including those generated by meteorological events, landslides, volcanoes, and asteroid impacts, can inundate significant area and have a large far-field effect. The current National Oceanographic and Atmospheric Administration (NOAA) tsunami forecast system falls short in detecting these phenomena. This study attempts to classify the range of effects possible from these non-seismic threats, and to investigate detection methods appropriate for use in a forecast system. Typical observation platforms are assessed, including DART bottom pressure recorders and tide gauges. Other detection paths include atmospheric pressure anomaly algorithms for detecting meteotsunamis and the early identification of asteroids large enough to produce a regional hazard. Real-time assessment of observations for forecast use can provide guidance to mitigate the effects of a non-seismic tsunami.

  13. Persistent pre-seismic signature detected by means of Na-K-Mg geothermometry records in a saline spring of Vrancea area (Romania

    Directory of Open Access Journals (Sweden)

    H. Mitrofan

    2010-02-01

    Full Text Available A six year-long hydrochemical monitoring operation was conducted in Vrancea seismic zone (Romania, addressing a saline spring that proved to be suitable for Na-K-Mg geothermometry diagnosis. During the considered time-interval (2003–2009, only one important earthquake (mb=5.8 occurred in Vrancea region, this circumstance providing an unambiguous reference-moment between pre-seismic and post-seismic periods. On occurrence of that earthquake, an anomalous fluctuation of the Na-K temperature was detected – a result largely similar to previous ones recorded worldwide (California, southwest Egypt, northeast India. Yet such fluctuations may not necessarily be induced by earthquake-associated processes: they can occur also "routinely", possibly reflecting some environmental, meteorologically-induced "noise". It was therefore important to examine whether the variations observed in the data values could be plausibly related to a seismogenesis process. By additionally investigating (in a "scattterplot" diagram the correlation between the Na-K temperatures and the values of a so-called "maturity index", a specific pattern emerged, with pre-seismic data-points plotting in a distinct domain of the diagram; moreover, those data-points appeared to describe a "drift away" pathway with respect to the remaining data-points "cluster", recorded during the subsequent 4 years of post-seismic monitoring. The "drift away" pattern persistently evolved for at least 18 months, ending just before the mb=5.8 earthquake and consequently suggesting the existence of some kind of long-term precursory phenomenon.

  14. Influence of LOD variations on seismic energy release

    Science.gov (United States)

    Riguzzi, F.; Krumm, F.; Wang, K.; Kiszely, M.; Varga, P.

    2009-04-01

    Tidal friction causes significant time variations of geodynamical parameters, among them geometrical flattening. The axial despinning of the Earth due to tidal friction through the change of flattening generates incremental meridional and azimuthal stresses. The stress pattern in an incompressible elastic upper mantle and crust is symmetric to the equator and has its inflection points at the critical latitude close to ±45°. Consequently the distribution of seismic energy released by strong, shallow focus earthquakes should have also sharp maxima at this latitude. To investigate the influence of length of day (LOD) variations on earthquake activity an earthquake catalogue of strongest seismic events (M>7.0) was completed for the period 1900-2007. It is shown with the use of this catalogue that for the studied time-interval the catalogue is complete and consists of the seismic events responsible for more than 90% of released seismic energy. Study of the catalogue for earthquakes M>7.0 shows that the seismic energy discharged by the strongest seismic events has significant maxima at ±45°, what renders probably that the seismic activity of our planet is influenced by an external component, i.e. by the tidal friction, which acts through the variation of the hydrostatic figure of the Earth caused by it. Distribution along the latitude of earthquake numbers and energies was investigated also for the case of global linear tectonic structures, such as mid ocean ridges and subduction zones. It can be shown that the number of the shallow focus shocks has a repartition along the latitude similar to the distribution of the linear tectonic structures. This means that the position of foci of seismic events is mainly controlled by the tectonic activity.

  15. The Seismic Analyzer: Interpreting and Illustrating 2D Seismic Data

    OpenAIRE

    Patel, Daniel; Giertsen, Christopher; Thurmond, John; Gjelberg, John; Gröller, Eduard

    2008-01-01

    We present a toolbox for quickly interpreting and illustrating 2D slices of seismic volumetric reflection data. Searching for oil and gas involves creating a structural overview of seismic reflection data to identify hydrocarbon reservoirs. We improve the search of seismic structures by precalculating the horizon structures of the seismic data prior to interpretation. We improve the annotation of seismic structures by applying novel illustrative rendering algorithms tailored to seism...

  16. Experimental study on the influence of the opening in brick-masonry wall to seismic performance of reinforced concrete frame structures

    Science.gov (United States)

    Maidiawati, Tanjung, Jafril; Medriosa, Hamdeni

    2017-10-01

    Reinforced concrete (RC) frame structures with brick-masonry infills are commonly used in developing countries and high-risk seismic area, such as Indonesia. Significant researches have been carried out for studying the seismic performance of RC frame structures with brick-masonry infills. Only few of them focused on effects of the opening in the brick-masonry infill to the seismic performance of the RC frame structures. The presence of opening in brick-masonry infill is often used for placing doors and windows as well, however, it may reduce the seismic performance of the RC frame structure. In the current study, they influence of the opening in brick-masonry infills to the seismic performance RC frame structure will experimentally evaluated. Five of 1/4-scaled single story and single bay RC frame specimens were prepared, i.e. an RC bare frame, a clay brick-masonry infilled RC frame and three of clay brick-masonry infilled RC frame with openings in the brick-masonry infills. The last three specimens were clay brick infilled RC frame with a center opening, clay brick infilled RC frame with two openings used for placing the windows and clay brick infilled RC frame with opening for placing the door. The specimens pushed over by applying the static monotonic lateral load to the upper beam of the RC frame structures. The incremental of the lateral load and the lateral displacement of RC frame's column was recorded during test. The crack propagation and the major cracks were also observed to identify the mechanism failure of specimens. As the results, the opening in the brick-masonry wall controls the failure mechanism, the lateral strength and the stiffness of the overall of infilled RC frame structure. The diagonal shear crack pattern was found on brick-masonry wall without opening, on other hand the different crack patterns were observed on brick-masonry wall with openings. Although the opening in the brick masonry infill reduced the lateral strength and stiffness of

  17. Focal mechanism of seismic events with a dipolar component

    Directory of Open Access Journals (Sweden)

    R. Console

    1995-06-01

    Full Text Available In this paper we model the geometry of a seismic source as a dislocation occurring on an elemental flat fault in an arbitrary direction with respect to the fault plane. This implies the use of a fourth parameter in addition to the three usual ones describing a simple double couple mechanism. We applied the radiation pattern obtained from the theory to a computer code written for the inversion of the observation data (amplitudes and polarities of the first onsets recorded by a network of stations. It allows the determination of the fault mechanism gener- alized in the above mentioned way. The computer code was verified on synthetic data and then applied to real data recorded by the seismic network operated by the Ente Nazionale per l'Energia Elettrica (ENEL, monitoring the geothermal field of Larderello. The experimental data show that for some events the source mechanism exhibits a significant dipolar component. However, due to the high standard deviation of the amplitude data, F-test applied to the results of the analysis shows that only for two events the confidence level for the general- ized model exceeds 90%.

  18. 4D seismic data acquisition method during coal mining

    International Nuclear Information System (INIS)

    Du, Wen-Feng; Peng, Su-Ping

    2014-01-01

    In order to observe overburden media changes caused by mining processing, we take the fully-mechanized working face of the BLT coal mine in Shendong mine district as an example to develop a 4D seismic data acquisition methodology during coal mining. The 4D seismic data acquisition is implemented to collect 3D seismic data four times in different periods, such as before mining, during the mining process and after mining to observe the changes of the overburden layer during coal mining. The seismic data in the research area demonstrates that seismic waves are stronger in energy, higher in frequency and have better continuous reflectors before coal mining. However, all this is reversed after coal mining because the overburden layer has been mined, the seismic energy and frequency decrease, and reflections have more discontinuities. Comparing the records collected in the survey with those from newly mined areas and other records acquired in the same survey with the same geometry and with a long time for settling after mining, it clearly shows that the seismic reflections have stronger amplitudes and are more continuous because the media have recovered by overburden layer compaction after a long time of settling after mining. By 4D seismic acquisition, the original background investigation of the coal layers can be derived from the first records, then the layer structure changes can be monitored through the records of mining action and compaction action after mining. This method has laid the foundation for further research into the variation principles of the overburden layer under modern coal-mining conditions. (paper)

  19. Regional seismic observations of the Non-Proliferation Experiment at the Livermore NTS Network

    Energy Technology Data Exchange (ETDEWEB)

    Walter, W.R.; Mayeda, K.; Patton, H.J. [Lawrence Livermore National Lab., CA (United States)] [and others

    1994-12-31

    The Non-Proliferation Experiment (NPE), a 1-kiloton chemical explosion in N-tunnel at Rainier Mesa on the Nevada Test Site (NTS), was recorded by the four station, regional seismic Livermore NTS Network, (LNN). In this study we compare the NPE`s seismic yield, frequency content, and discrimination performance with other NTS events recorded at LNN. Preliminary findings include: The NPE LNN average magnitudes are 4.16 for m{sub b}(P{sub n}) and 4.59 for m{sub b}(L{sub g}). Using published magnitude-yield relations gives nuclear equivalent yields of 2.3 and 2.2 kilotons respectively, implying enhanced coupling of chemical relative to nuclear explosions. A comparison of the NPE seismograms with those with similar magnitude N-tunnel nuclear explosions shows remarkable similarity over the frequency band 0.5 to 5.0 Hz. Outside this band the explosions show more variability, with the NPE having the least relative energy below 0.5 Hz and the most energy above 5 Hz when scaled by magnitude. Considering the variability within the N-tunnel nuclear explosions, these low- and high-frequency NPE-nuclear differences may not reflect chemical-nuclear source differences. The NPE was compared to a large number of NTS nuclear explosions and earthquakes as part of an ongoing short-period discrimination study of P{sub N}/L{sub g},P{sub g}/L{sub g}, and spectral ratios in the P{sub n}, P{sub g},L{sub g}, and coda phases. For these discriminants, the NPE looks very similar to N-tunnel nuclear explosions and other NTS nuclear explosions, implying seismic identification of contained, non-ripple-fired, chemical explosions as non-nuclear may not be possible. However, such blasts might serve as surrogate nuclear explosions when calibrating seismic discriminants in regions where nuclear testing has not occurred.

  20. Review of scientific information on impacts of seismic sound on fish, invertebrates, marine turtles and marine mammals

    Energy Technology Data Exchange (ETDEWEB)

    Bain, H.

    2004-09-01

    This review of scientific literature on impacts of seismic sound on aquatic organisms was initiated following a 2003 workshop to develop a decision framework for seismic survey referrals in Canadian waters. That workshop revealed that there are sources of uncertainty about the effects of seismic sound on aquatic organisms. It was determined that seismic sounds on the marine environment are not completely without consequence nor are they certain to result in serious harm. Following the workshop, and in order to clearly determine the level of risk posed by seismic sounds, teams of scientists prepared reviews of literature on experimental studies and field monitoring on the effects of seismic sound on marine organisms. Standards and mitigation methods were also reviewed. The scientific deliberations resulted in a body of information that allowed several conclusions to be reached that provide a scientific basis for developing a regulatory framework for conducting seismic surveys in marine environments. This paper presented literature highlights regarding: habitat concern; management considerations; physical and behavioural effects on fish; functional uses of sound; physical, physiological and behavioural effects on invertebrates; effects of seismic sound on zooplankton, eggs, larvae of fish and invertebrates; effect of seismic sound on marine turtles; and mortality, physical and behavioural effects on marine mammals. The literature review sought to seek if seismic sound contributed to displacement and migratory diversion; changes in dive and respiratory patterns; changes in social behaviour; and changes in vocalisation patterns. Several areas of future research needs were identified following this literature review which revealed that the long-term effects of seismic sound on marine animals remain inconclusive. 2 refs., 1 fig.

  1. Structure of the Koyna-Warna Seismic Zone, Maharashtra, India: A possible model for large induced earthquakes elsewhere

    Science.gov (United States)

    Catchings, Rufus D.; Dixit, M.M.; Goldman, Mark R.; Kumar, S.

    2015-01-01

    The Koyna-Warna area of India is one of the best worldwide examples of reservoir-induced seismicity, with the distinction of having generated the largest known induced earthquake (M6.3 on 10 December 1967) and persistent moderate-magnitude (>M5) events for nearly 50 years. Yet, the fault structure and tectonic setting that has accommodated the induced seismicity is poorly known, in part because the seismic events occur beneath a thick sequence of basalt layers. On the basis of the alignment of earthquake epicenters over an ~50 year period, lateral variations in focal mechanisms, upper-crustal tomographic velocity images, geophysical data (aeromagnetic, gravity, and magnetotelluric), geomorphic data, and correlation with similar structures elsewhere, we suggest that the Koyna-Warna area lies within a right step between northwest trending, right-lateral faults. The sub-basalt basement may form a local structural depression (pull-apart basin) caused by extension within the step-over zone between the right-lateral faults. Our postulated model accounts for the observed pattern of normal faulting in a region that is dominated by north-south directed compression. The right-lateral faults extend well beyond the immediate Koyna-Warna area, possibly suggesting a more extensive zone of seismic hazards for the central India area. Induced seismic events have been observed many places worldwide, but relatively large-magnitude induced events are less common because critically stressed, preexisting structures are a necessary component. We suggest that releasing bends and fault step-overs like those we postulate for the Koyna-Warna area may serve as an ideal tectonic environment for generating moderate- to large- magnitude induced (reservoir, injection, etc.) earthquakes.

  2. Dynamic Assessment of Seismic Risk (DASR) by Multi-parametric Observations: Preliminary Results of PRIME experiment within the PRE-EARTHQUAKES EU-FP7 Project

    Science.gov (United States)

    Tramutoli, V.; Inan, S.; Jakowski, N.; Pulinets, S. A.; Romanov, A.; Filizzola, C.; Shagimuratov, I.; Pergola, N.; Ouzounov, D. P.; Papadopoulos, G. A.; Parrot, M.; Genzano, N.; Lisi, M.; Alparlsan, E.; Wilken, V.; Tsybukia, K.; Romanov, A.; Paciello, R.; Zakharenkova, I.; Romano, G.

    2012-12-01

    The integration of different observations together with the refinement of data analysis methods, is generally expected to improve our present knowledge of preparatory phases of earthquakes and of their possible precursors. This is also the main goal of PRE-EARTHQUAKES (Processing Russian and European EARTH observations for earthQUAKE precursors Studies) the FP7 Project which, to this aim, committed together, different international expertise and observational capabilities, in the last 2 years. In the learning phase of the project, different parameters (e.g. thermal anomalies, total electron content, radon concentration, etc.), measured from ground and satellite systems and analyzed by using different data analysis approaches, have been studied for selected geographic areas and specific seismic events in the past. Since July 2012 the PRIME (PRE-EARTHQUAKES Real-time Integration and Monitoring Experiment) started attempting to perform, on the base of independent observations collected and integrated in real-time through the PEG (PRE-EARTHQUAKES Geo-portal), a Dynamic Assessment of Seismic Risk (DASR) on selected geographic areas of Europe (Italy-Greece-Turkey) and Asia (Kamchatka, Sakhalin, Japan). In this paper, results so far achieved as well as the potential and opportunities they open for a worldwide Earthquake Observation System (EQuOS) - as a dedicated component of GEOSS (Global Earth Observation System of Systems) - will be presented.

  3. Uncertainty in Seismic Capacity of Masonry Buildings

    Directory of Open Access Journals (Sweden)

    Nicola Augenti

    2012-07-01

    Full Text Available Seismic assessment of masonry structures is plagued by both inherent randomness and model uncertainty. The former is referred to as aleatory uncertainty, the latter as epistemic uncertainty because it depends on the knowledge level. Pioneering studies on reinforced concrete buildings have revealed a significant influence of modeling parameters on seismic vulnerability. However, confidence in mechanical properties of existing masonry buildings is much lower than in the case of reinforcing steel and concrete. This paper is aimed at assessing whether and how uncertainty propagates from material properties to seismic capacity of an entire masonry structure. A typical two-story unreinforced masonry building is analyzed. Based on previous statistical characterization of mechanical properties of existing masonry types, the following random variables have been considered in this study: unit weight, uniaxial compressive strength, shear strength at zero confining stress, Young’s modulus, shear modulus, and available ductility in shear. Probability density functions were implemented to generate a significant number of realizations and static pushover analysis of the case-study building was performed for each vector of realizations, load combination and lateral load pattern. Analysis results show a large dispersion in displacement capacity and lower dispersion in spectral acceleration capacity. This can directly affect decision-making because both design and retrofit solutions depend on seismic capacity predictions. Therefore, engineering judgment should always be used when assessing structural safety of existing masonry constructions against design earthquakes, based on a series of seismic analyses under uncertain parameters.

  4. Seismic data classification and artificial neural networks: can software replace eyeballs?

    Science.gov (United States)

    Reusch, D. B.; Larson, A. M.

    2006-05-01

    Modern seismic datasets are providing many new opportunities for furthering our understanding of our planet, ranging from the deep earth to the sub-ice sheet interface. With many geophysical applications, the large volume of these datasets raises issues of manageability in areas such as quality control (QC) and event identification (EI). While not universally true, QC can be a labor intensive, subjective (and thus not entirely reproducible) and uninspiring task when such datasets are involved. The EI process shares many of these drawbacks but has the benefit of (usually) being closer to interesting science-based questions. Here we explore two techniques from the field of artificial neural networks (ANNs) that seek to reduce the time requirements and increase the objectivity of QC and EI on seismic datasets. In particular, we focus on QC of receiver functions from broadband seismic data collected by the 2000-2003 Transantarctic Mountains Seismic Experiment (TAMSEIS). Self-organizing maps (SOMs) enable unsupervised classification of large, complex geophysical data sets (e.g., time series of the atmospheric circulation) into a fixed number of distinct generalized patterns or modes representing the probability distribution function of the input data. These patterns are organized spatially as a two-dimensional grid such that distances represent similarity (adjacent patterns will be most similar). After training, input data are matched to their most similar generalized pattern to produce frequency maps, i.e., what fraction of the data is represented best by each individual SOM pattern. Given a priori information on data quality (from previous manual grading) or event type, a probabilistic classification can be developed that gives a likelihood for each category of interest for each SOM pattern. New data are classified by identifying the closest matching pattern (without retraining) and examining the associated probabilities. Feed-forward ANNs (FFNNs) are a supervised

  5. Academia Sinica, TW E-science to Assistant Seismic Observations for Earthquake Research, Monitor and Hazard Reduction Surrounding the South China Sea

    Science.gov (United States)

    Huang, Bor-Shouh; Liu, Chun-Chi; Yen, Eric; Liang, Wen-Tzong; Lin, Simon C.; Huang, Win-Gee; Lee, Shiann-Jong; Chen, Hsin-Yen

    Experience from the 1994 giant Sumatra earthquake, seismic and tsunami hazard have been considered as important issues in the South China Sea and its surrounding region, and attracted many seismologist's interesting. Currently, more than 25 broadband seismic instruments are currently operated by Institute of Earth Sciences, Academia Sinica in northern Vietnam to study the geodynamic evolution of the Red river fracture zone and rearranged to distribute to southern Vietnam recently to study the geodynamic evolution and its deep structures of the South China Sea. Similar stations are planned to deploy in Philippines in near future. In planning, some high quality stations may be as permanent stations and added continuous GPS observations, and instruments to be maintained and operated by several cooperation institutes, for instance, Institute of Geophysics, Vietnamese Acadamy of Sciences and Technology in Vietnam and Philippine Institute of Volcanology and Seismology in Philippines. Finally, those stations will be planed to upgrade as real time transmission stations for earthquake monitoring and tsunami warning. However, high speed data transfer within different agencies is always a critical issue for successful network operation. By taking advantage of both EGEE and EUAsiaGrid e-Infrastructure, Academia Sinica Grid Computing Centre coordinates researchers from various Asian countries to construct a platform to high performance data transfer for huge parallel computation. Efforts from this data service and a newly build earthquake data centre for data management may greatly improve seismic network performance. Implementation of Grid infrastructure and e-science issues in this region may assistant development of earthquake research, monitor and natural hazard reduction. In the near future, we will search for new cooperation continually from the surrounding countries of the South China Sea to install new seismic stations to construct a complete seismic network of the

  6. Design response spectra-compliant real and synthetic GMS for seismic analysis of seismically isolated nuclear reactor containment building

    Directory of Open Access Journals (Sweden)

    Ahmer Ali

    2017-06-01

    Full Text Available Due to the severe impacts of recent earthquakes, the use of seismic isolation is paramount for the safety of nuclear structures. The diversity observed in seismic events demands ongoing research to analyze the devastating attributes involved, and hence to enhance the sustainability of base-isolated nuclear power plants. This study reports the seismic performance of a seismically-isolated nuclear reactor containment building (NRCB under strong short-period ground motions (SPGMs and long-period ground motions (LPGMs. The United States Nuclear Regulatory Commission-based design response spectrum for the seismic design of nuclear power plants is stipulated as the reference spectrum for ground motion selection. Within the period range(s of interest, the spectral matching of selected records with the target spectrum is ensured using the spectral-compatibility approach. NRC-compliant SPGMs and LPGMs from the mega-thrust Tohoku earthquake are used to obtain the structural response of the base-isolated NRCB. To account for the lack of earthquakes in low-to-moderate seismicity zones and the gap in the artificial synthesis of long-period records, wavelet-decomposition based autoregressive moving average modeling for artificial generation of real ground motions is performed. Based on analysis results from real and simulated SPGMs versus LPGMs, the performance of NRCBs is discussed with suggestions for future research and seismic provisions.

  7. Design response spectra-compliant real and synthetic GMS for seismic analysis of seismically isolated nuclear reactor containment building

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmer [ENVICO Consultants Co. Ltd., Seoul (Korea, Republic of); Abu-Hayah, Nadin; Kim, Doo Kie [Civil and Environmental Engineering, Kunsan National University, Gunsan (Korea, Republic of); Cho, Sung Gook [Innose Tech Co., Ltd., Incheon (Korea, Republic of)

    2017-06-15

    Due to the severe impacts of recent earthquakes, the use of seismic isolation is paramount for the safety of nuclear structures. The diversity observed in seismic events demands ongoing research to analyze the devastating attributes involved, and hence to enhance the sustainability of base-isolated nuclear power plants. This study reports the seismic performance of a seismically-isolated nuclear reactor containment building (NRCB) under strong short-period ground motions (SPGMs) and long-period ground motions (LPGMs). The United States Nuclear Regulatory Commission-based design response spectrum for the seismic design of nuclear power plants is stipulated as the reference spectrum for ground motion selection. Within the period range(s) of interest, the spectral matching of selected records with the target spectrum is ensured using the spectral-compatibility approach. NRC-compliant SPGMs and LPGMs from the mega-thrust Tohoku earthquake are used to obtain the structural response of the base-isolated NRCB. To account for the lack of earthquakes in low-to-moderate seismicity zones and the gap in the artificial synthesis of long-period records, wavelet-decomposition based autoregressive moving average modeling for artificial generation of real ground motions is performed. Based on analysis results from real and simulated SPGMs versus LPGMs, the performance of NRCBs is discussed with suggestions for future research and seismic provisions.

  8. The Formation of Laurentia: Evidence from Shear Wave Splitting and Seismic Tomography

    Science.gov (United States)

    Liddell, M. V.; Bastow, I. D.; Rawlinson, N.; Darbyshire, F. A.; Gilligan, A.

    2017-12-01

    The northern Hudson Bay region of Canada comprises several Archean cratonic nuclei, assembled by Paleoproterozoic orogenies including the 1.8 Ga Trans-Hudson Orogen (THO) and Rinkian-Nagssugtoqidian Orogen (NO). Questions remain about how similar in scale and nature these orogens were compared to modern orogens like the Himalayas. Also in question is whether the thick Laurentian cratonic root below Hudson Bay is stratified, with a seismically-fast Archean core underlain by a lower, younger, thermal layer. We investigate these problems via shear-wave splitting and teleseismic tomography using up to 25 years of data from 65 broadband seismic stations across northern Hudson Bay. The results of the complementary studies comprise the most comprehensive study to date of mantle seismic velocity and anisotropy in northern Laurentia. Splitting parameter patterns are used to interpret multiple layers, lithospheric boundaries, dipping anisotropy, and deformation zone limits for the THO and NO. Source-side waveguide effects from Japan and the Aleutian trench are observed despite the tomographic data being exclusively relative arrival time. Mitigating steps to ensure data quality are explained and enforced. In the Hudson Strait, anisotropic fast directions (φ) generally parallel the THO, which appears in tomographic images as a strong low velocity feature relative to the neighbouring Archean cratons. Several islands in northern Hudson Bay show short length-scale changes in φ coincident with strong velocity contrasts. These are interpreted as distinct lithospheric blocks with unique deformational histories, and point to a complex, rather than simple 2-plate, collisional history for the THO. Strong evidence is presented for multiple anisotropic layers beneath Archean zones, consistent with the episodic development model of cratonic keels (e.g., Yuan & Romanowicz 2010). We show via both tomographic inversion models and SKS splitting patterns that southern Baffin Island was

  9. Where Do I Look? Preservice Teachers' Classroom Observation Patterns

    Science.gov (United States)

    Young, Teresa; Bender-Slack, Delane

    2011-01-01

    During field experiences, preservice teachers are typically required to observe mentor teachers in schools, but what exactly are they seeing? This research examined the patterns and variations that existed with regard to preservice teachers' classroom observations during recent field experiences. Data were collected from 24 preservice teachers…

  10. The Global Detection Capability of the IMS Seismic Network in 2013 Inferred from Ambient Seismic Noise Measurements

    Science.gov (United States)

    Gaebler, P. J.; Ceranna, L.

    2016-12-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection thresholdcan be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  11. First Quarter Hanford Seismic Report for Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, Donald C.; Reidel, Stephen P.; Rohay, Alan C.; Valenta, Michelle M.

    2001-02-27

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the HSN, there were 477 triggers during the first quarter of fiscal year (FY) 2001 on the data acquisition system. Of these triggers, 176 were earthquakes. Forty-five earthquakes were located in the HSN area; 1 earthquake occurred in the Columbia River Basalt Group, 43 were earthquakes in the pre-basalt sediments, and 1 was earthquakes in the crystalline basement. Geographically, 44 earthquakes occurred in swarm areas, 1 earthquake was on a major structure, and no earthquakes were classified as random occurrences. The Horse Heaven Hills earthquake swarm area recorded all but one event during the first quarter of FY 2001. The peak of the activity occurred over December 12th, 13th, and 14th when 35 events occurred. No earthquakes triggered the Hanford Strong Motion Accelerometers during the first quarter of FY 2001.

  12. Seismic Microzonation for Refinement of Seismic Load Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Savich, A. I.; Bugaevskii, A. G., E-mail: office@geodyn.ru, E-mail: bugaevskiy@geodyn.ru [Center of the Office of Geodynamic Observations in the Power Sector, an affiliate of JSC “Institut Gidroproekt” (Russian Federation)

    2016-05-15

    Functional dependencies are established for the characteristics of seismic transients recorded at various points of a studied site, which are used to propose a new approach to seismic microzonation (SMZ) that enables the creation of new SMZ maps of strong seismic motion, with due regard for dynamic parameters of recorded transients during weak earthquakes.

  13. The seismic analyzer: interpreting and illustrating 2D seismic data.

    Science.gov (United States)

    Patel, Daniel; Giertsen, Christopher; Thurmond, John; Gjelberg, John; Gröller, M Eduard

    2008-01-01

    We present a toolbox for quickly interpreting and illustrating 2D slices of seismic volumetric reflection data. Searching for oil and gas involves creating a structural overview of seismic reflection data to identify hydrocarbon reservoirs. We improve the search of seismic structures by precalculating the horizon structures of the seismic data prior to interpretation. We improve the annotation of seismic structures by applying novel illustrative rendering algorithms tailored to seismic data, such as deformed texturing and line and texture transfer functions. The illustrative rendering results in multi-attribute and scale invariant visualizations where features are represented clearly in both highly zoomed in and zoomed out views. Thumbnail views in combination with interactive appearance control allows for a quick overview of the data before detailed interpretation takes place. These techniques help reduce the work of seismic illustrators and interpreters.

  14. Toward uniform probabilistic seismic hazard assessments for Southeast Asia

    Science.gov (United States)

    Chan, C. H.; Wang, Y.; Shi, X.; Ornthammarath, T.; Warnitchai, P.; Kosuwan, S.; Thant, M.; Nguyen, P. H.; Nguyen, L. M.; Solidum, R., Jr.; Irsyam, M.; Hidayati, S.; Sieh, K.

    2017-12-01

    Although most Southeast Asian countries have seismic hazard maps, various methodologies and quality result in appreciable mismatches at national boundaries. We aim to conduct a uniform assessment across the region by through standardized earthquake and fault databases, ground-shaking scenarios, and regional hazard maps. Our earthquake database contains earthquake parameters obtained from global and national seismic networks, harmonized by removal of duplicate events and the use of moment magnitude. Our active-fault database includes fault parameters from previous studies and from the databases implemented for national seismic hazard maps. Another crucial input for seismic hazard assessment is proper evaluation of ground-shaking attenuation. Since few ground-motion prediction equations (GMPEs) have used local observations from this region, we evaluated attenuation by comparison of instrumental observations and felt intensities for recent earthquakes with predicted ground shaking from published GMPEs. We then utilize the best-fitting GMPEs and site conditions into our seismic hazard assessments. Based on the database and proper GMPEs, we have constructed regional probabilistic seismic hazard maps. The assessment shows highest seismic hazard levels near those faults with high slip rates, including the Sagaing Fault in central Myanmar, the Sumatran Fault in Sumatra, the Palu-Koro, Matano and Lawanopo Faults in Sulawesi, and the Philippine Fault across several islands of the Philippines. In addition, our assessment demonstrates the important fact that regions with low earthquake probability may well have a higher aggregate probability of future earthquakes, since they encompass much larger areas than the areas of high probability. The significant irony then is that in areas of low to moderate probability, where building codes are usually to provide less seismic resilience, seismic risk is likely to be greater. Infrastructural damage in East Malaysia during the 2015

  15. Seismic constraints on dynamic links between geomorphic processes and routing of sediment in a steep mountain catchment

    Science.gov (United States)

    Burtin, A.; Hovius, N.; McArdell, B. W.; Turowski, J. M.; Vergne, J.

    2014-01-01

    Landscape dynamics are determined by interactions amongst geomorphic processes. These interactions allow the effects of tectonic, climatic and seismic perturbations to propagate across topographic domains, and permit the impacts of geomorphic process events to radiate from their point of origin. Visual remote sensing and in situ observations do not fully resolve the spatiotemporal patterns of surface processes in a landscape. As a result, the mechanisms and scales of geomorphic connectivity are poorly understood. Because many surface processes emit seismic signals, seismology can determine their type, location and timing with a resolution that reveals the operation of integral landscapes. Using seismic records, we show how hillslopes and channels in an Alpine catchment are interconnected to produce evolving, sediment-laden flows. This is done for a convective storm, which triggered a sequence of hillslope processes and debris flows. We observe the evolution of these process events and explore the operation of two-way links between mass wasting and channel processes, which are fundamental to the dynamics of most erosional landscapes. We also track the characteristics and propagation of flows along the debris flow channel, relating changes of observed energy to the deposition/mobilization of sediments, and using the spectral content of debris flow seismic signals to qualitatively infer sediment characteristics and channel abrasion potential. This seismological approach can help to test theoretical concepts of landscape dynamics and yield understanding of the nature and efficiency of links between individual geomorphic processes, which is required to accurately model landscape dynamics under changing tectonic or climatic conditions and to anticipate the natural hazard risk associated with specific meteorological events.

  16. Seismicity and seismic monitoring in the Asse salt mine

    International Nuclear Information System (INIS)

    Flach, D.; Gommlich, G.; Hente, B.

    1987-01-01

    Seismicity analyses are made in order to assess the safety of candidate sites for ultimate disposal of hazardous wastes. The report in hand reviews the seismicity history of the Asse salt mine and presents recent results of a measuring campaign made in the area. The monitoring network installed at the site supplies data and information on the regional seismicity, on seismic amplitudes under ground and above ground, and on microseismic activities. (DG) [de

  17. Application of neural networks to seismic active control

    International Nuclear Information System (INIS)

    Tang, Yu.

    1995-01-01

    An exploratory study on seismic active control using an artificial neural network (ANN) is presented in which a singledegree-of-freedom (SDF) structural system is controlled by a trained neural network. A feed-forward neural network and the backpropagation training method are used in the study. In backpropagation training, the learning rate is determined by ensuring the decrease of the error function at each training cycle. The training patterns for the neural net are generated randomly. Then, the trained ANN is used to compute the control force according to the control algorithm. The control strategy proposed herein is to apply the control force at every time step to destroy the build-up of the system response. The ground motions considered in the simulations are the N21E and N69W components of the Lake Hughes No. 12 record that occurred in the San Fernando Valley in California on February 9, 1971. Significant reduction of the structural response by one order of magnitude is observed. Also, it is shown that the proposed control strategy has the ability to reduce the peak that occurs during the first few cycles of the time history. These promising results assert the potential of applying ANNs to active structural control under seismic loads

  18. Multi-point ground-based ULF magnetic field observations in Europe during seismic active periods in 2004 and 2005

    Directory of Open Access Journals (Sweden)

    G. Prattes

    2008-05-01

    Full Text Available We present the results of ground-based Ultra Low Frequency (ULF magnetic field measurements observed from June to August 2004 during the Bovec earthquake on 12 July 2004. Further we give information about the seismic activity in the local observatory region for an extended time span 2004 and 2005. ULF magnetic field data are provided by the South European Geomagnetic Array (SEGMA where the experience and heritage from the CHInese MAGnetometer (CHIMAG fluxgate magnetometer comes to application. The intensities of the horizontal H and vertical Z magnetic field and the polarization ratio R of the vertical and horizontal magnetic field intensity are analyzed taking into consideration three SEGMA observatories located at different close distances and directions from the earthquake epicenter. We observed a significant increase of high polarization ratios during strong seismic activity at the observatory nearest to the Bovec earthquake epicenter. Apart from indirect ionospheric effects electromagnetic noise could be emitted in the lithosphere due to tectonic effects in the earthquake focus region causing anomalies of the vertical magnetic field intensity. Assuming that the measured vertical magnetic field intensities are of lithospheric origin, we roughly estimate the amplitude of electromagnetic noise in the Earths crust considering an average electrical conductivity of <σ>=10−3 S/m and a certain distance of the observatory to the earthquake epicenter.

  19. Seismic signal and noise on Europa and how to use it

    Science.gov (United States)

    Panning, M. P.; Stähler, S. C.; Bills, B. G.; Castillo, J.; Huang, H. H.; Husker, A. L.; Kedar, S.; Lorenz, R. D.; Pike, W. T.; Schmerr, N. C.; Tsai, V. C.; Vance, S.

    2017-12-01

    Seismology is one of our best tools for detailing interior structure of planetary bodies, and a seismometer is included in the baseline and threshold mission design for a potential Europa lander mission. Guiding mission design and planning for adequate science return, though, requires modeling of both the anticipated signal and noise. Assuming ice seismicity on Europa behaves according to statistical properties observed in Earth catalogs and scaling cumulative seismic moment release to the moon, we simulate long seismic records and estimate background noise and peak signal amplitudes (Panning et al., 2017). This suggests a sensitive instrument comparable to many broadband terrestrial instruments or the SP instrument from the InSight mission to Mars will be able to record signals, while high frequency geophones are likely inadequate. We extend this analysis to also begin incorporation of spatial and temporal variation due to the tidal cycle, which can help inform landing site selection. We also begin exploration of how chaotic terrane at the bottom of the ice shell and inter-ice heterogeneities (i.e. internal melt structures) may affect predicted seismic observations using 2D numerical seismic simulations. We also show some of the key seismic observations to determine interior properties of Europa (Stähler et al., 2017). M. P. Panning, S. C. Stähler, H.-H. Huang, S. D. Vance, S. Kedar, V. C. Tsai, W. T. Pike, R. D. Lorenz, "Expected seismicity and the seismic noise environment of Europa," J. Geophys. Res., in revision, 2017. S. C. Stähler, M. P. Panning, S. D. Vance, R. D. Lorenz, M. van Driel, T. Nissen-Meyer, S. Kedar, "Seismic wave propagation in icy ocean worlds," J. Geophys. Res., in revision, 2017.

  20. What is the seismic risk of mine flooding?

    CSIR Research Space (South Africa)

    Goldbach, O

    2010-09-01

    Full Text Available of reservoirs and the injection of fluids into rocks at depth. Fluid-induced seismicity has been observed to occur in oil-well stimulation (Parotidis et al., 2004; Gibbs et al., 1973; Raleigh et al., 1976), where high-pressure water is pumped into a... stimulation well in an oil field in order to increase the oil yield of a nearby production well. Reservoir-induced seismicity is another example where the filling of newly constructed dams has resulted in the onset of seismicity around the dam as water...

  1. German seismic regulations

    International Nuclear Information System (INIS)

    Danisch, Ruediger

    2002-01-01

    Rules and regulations for seismic design in Germany cover the following: seismic design of conventional buildings; and seismic design of nuclear facilities. Safety criteria for NPPs, accident guidelines, and guidelines for PWRs as well as safety standards are cited. Safety standards concerned with NPPs seismic design include basic principles, soil analysis, design of building structures, design of mechanical and electrical components, seismic instrumentation, and measures to be undertaken after the earthquake

  2. Seismic Evidence of Ancient Westward Residual Slab Subduction Beneath Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Cheng-Horng Lin

    2015-01-01

    Full Text Available The northeastern convergence of the Philippine Sea plate toward the Eurasian plate causes the major western Philippine Sea plate boundary to subduct toward the northwest or west directions. However, this phenomenon is not clearly observed along the plate boundary between Luzon and Taiwan. Careful examination of deep seismicity in the southern Taiwan area from the earthquake catalog reported by the Central Weather Bureau shows two seismic zones dipping toward the opposing directions. The first dips toward the east from the surface down to 150 km in depth, while the second dips westward at depths between 150 and 200 km. These two seismic zones are confirmed further by seismogram observation and modeling results generated by two deep faults in the southern Taiwan area. The eastward seismic zone clearly results from the Eurasia plate subduction along the Manila trench, while a small section of the westward seismic zone might likely be a residual slab from the ancient subducted Philippine Sea plate. Based on the subduction speed obtained from GPS observations and the subducted Eurasian plate geometry, we can further estimate the eastward Eurasian plate subduction started at least 3.35 million years ago. This result is roughly consistent with the volcanic ages (3 - 4 Ma observed in the arc between Luzon and Taiwan.

  3. Establishing seismic design criteria to achieve an acceptable seismic margin

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1997-01-01

    In order to develop a risk based seismic design criteria the following four issues must be addressed: (1) What target annual probability of seismic induced unacceptable performance is acceptable? (2). What minimum seismic margin is acceptable? (3) Given the decisions made under Issues 1 and 2, at what annual frequency of exceedance should the Safe Shutdown Earthquake ground motion be defined? (4) What seismic design criteria should be established to reasonably achieve the seismic margin defined under Issue 2? The first issue is purely a policy decision and is not addressed in this paper. Each of the other three issues are addressed. Issues 2 and 3 are integrally tied together so that a very large number of possible combinations of responses to these two issues can be used to achieve the target goal defined under Issue 1. Section 2 lays out a combined approach to these two issues and presents three potentially attractive combined resolutions of these two issues which reasonably achieves the target goal. The remainder of the paper discusses an approach which can be used to develop seismic design criteria aimed at achieving the desired seismic margin defined in resolution of Issue 2. Suggestions for revising existing seismic design criteria to more consistently achieve the desired seismic margin are presented

  4. Seismic capacity of a reinforced concrete frame structure without seismic detailing and limited ductility seismic design in moderate seismicity

    International Nuclear Information System (INIS)

    Kim, J. K.; Kim, I. H.

    1999-01-01

    A four-story reinforced concrete frame building model is designed for the gravity loads only. Static nonlinear pushover analyses are performed in two orthogonal horizontal directions. The overall capacity curves are converted into ADRS spectra and compared with demand spectra. At several points the deformed shape, moment and shear distribution are calculated. Based on these results limited ductility seismic design concept is proposed as an alternative seismic design approach in moderate seismicity resign

  5. Time-dependent seismic tomography

    Science.gov (United States)

    Julian, B.R.; Foulger, G.R.

    2010-01-01

    Of methods for measuring temporal changes in seismic-wave speeds in the Earth, seismic tomography is among those that offer the highest spatial resolution. 3-D tomographic methods are commonly applied in this context by inverting seismic wave arrival time data sets from different epochs independently and assuming that differences in the derived structures represent real temporal variations. This assumption is dangerous because the results of independent inversions would differ even if the structure in the Earth did not change, due to observational errors and differences in the seismic ray distributions. The latter effect may be especially severe when data sets include earthquake swarms or aftershock sequences, and may produce the appearance of correlation between structural changes and seismicity when the wave speeds are actually temporally invariant. A better approach, which makes it possible to assess what changes are truly required by the data, is to invert multiple data sets simultaneously, minimizing the difference between models for different epochs as well as the rms arrival-time residuals. This problem leads, in the case of two epochs, to a system of normal equations whose order is twice as great as for a single epoch. The direct solution of this system would require twice as much memory and four times as much computational effort as would independent inversions. We present an algorithm, tomo4d, that takes advantage of the structure and sparseness of the system to obtain the solution with essentially no more effort than independent inversions require. No claim to original US government works Journal compilation ?? 2010 RAS.

  6. Evaluation of camouflage pattern performance of textiles by human observers and CAMAELEON

    Science.gov (United States)

    Heinrich, Daniela H.; Selj, Gorm K.

    2017-10-01

    Military textiles with camouflage pattern are an important part of the protection measures for soldiers. Military operational environments differ a lot depending on climate and vegetation. This requires very different camouflage pattern to achieve good protection. To find the best performing pattern for given environments we have in earlier evaluations mainly applied observer trials as evaluation method. In these camouflage evaluation test human observers were asked to search for targets (in natural settings) presented on a high resolution PC screen, and the corresponding detection times were recorded. Another possibility is to base the evaluation on simulations. CAMAELEON is a licensed tool that ranks camouflaged targets by their similarity with local backgrounds. The similarity is estimated through the parameters local contrast, orientation of structures in the pattern and spatial frequency, by mimicking the response and signal processing in the visual cortex of the human eye. Simulations have a number of advantages over observer trials, for example, that they are more flexible, cheaper, and faster. Applying these two methods to the same images of camouflaged targets we found that CAMAELEON simulation results didn't match observer trial results for targets with disruptive patterns. This finding now calls for follow up studies in order to learn more about the advantages and pitfalls of CAMAELEON. During recent observer trials we studied new camouflage patterns and the effect of additional equipment, such as combat vests. In this paper we will present the results from a study comparing evaluation results of human based observer trials and CAMAELEON.

  7. Extraction of Pn seismic signals from air-gun shots recorded by the Cascadia Amphibious seismic experiment

    Science.gov (United States)

    Rathnayaka, S.; Gao, H.

    2017-12-01

    The goal of this study is to extract Pn (head wave) seismic waveforms recorded by both offshore and onshore (broadband and short period) seismic stations and evaluate the data quality. Two offshore active-source seismic experiments, MGL 1211 and MGL 1212, were conducted from 13th June to 24th July 2012, during the first year deployment of the Cascadia Initiative Amphibious Array. In total, we choose 110 ocean bottom seismometers and 209 inland stations that are located along the entire Cascadia subduction zone. We first remove the instrument response, and then explore the potential frequency ranges and the diurnal effect. We make the common receiver gathering for each seismic station and filter the seismic waveforms at multiple frequency bands, ranging from 3-5 Hz, 5-10 Hz, 10-20 Hz, to 20-40 Hz, respectively. To quantitatively evaluate the data quality, we calculate the signal-to-noise ratio (SNR) of the waveforms for usable stations that record clear Pn arrivals at multiple frequency bands. Our results show that most offshore stations located at deep water (>1.5 km) record clear air-gun shot signals at frequencies higher than 3 Hz and up to 550 km away from the source. For most stations located on the shallow continental shelf, the seismic recordings appear much noisier at all the frequencies compared to stations at deep water. Three general trends are observed for the SNR distribution; First, the SNR ratio increases from lower to higher frequency bands; Second, the ratio decreases with the increasing source-to-receiver distance; And third, the ratio increases from shallow to deep water. We also observe a rough negative relationship of the signal-to-noise ratio with the thickness of the marine sediment. Only 5 inland stations record clear air-gun shot arrivals up to 200 km away from the source. More detailed data quality analysis with more results will also be present.

  8. Seismic characterization of the NPP Krsko site

    International Nuclear Information System (INIS)

    Obreza, J.

    2000-01-01

    The goal of NPP Krsko PSA Project Update was the inclusion of plant changes (i.e. configuration/operational related) through the period January 1, 1993 till the OUTAGE99 (April 1999) into the integrated Internal/External Level 1/Level 2 NPP Krsko PSA RISK SPECTRUM model. NPP Krsko is located on seismotectonic plate. Highest earthquake was recorded in 1917 with magnitude 5.8 at a distance of 7-9 km. Site (founded) on Pliocene sediments which are as deep as several hundred meters. No surface faulting at the Krsko site has been observed and thus it is not to be expected. NPP Krsko is equipped with seismic instrumentation, which allows it to complete OBE (SSE). The seismic PSA successfully showed high seismic margin at Krsko plant. NPP Krsko seismic design is based on US regulations and standards

  9. Second Quarter Hanford Seismic Report for Fiscal Year 2000

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    2000-01-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 506 triggers on two parallel detection and recording systems during the second quarter of fiscal year (FY) 2000. Twenty-seven seismic events were located by the Hanford Seismic Network within the reporting region of 46--47degree N latitude and 119--120degree W longitude; 12 were earthquakes in the Columbia River Basalt Group, 2 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 5 were quarry blasts. Three earthquakes appear to be related to geologic structures, eleven earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion

  10. Second Quarter Hanford Seismic Report for Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-07-17

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 506 triggers on two parallel detection and recording systems during the second quarter of fiscal year (FY) 2000. Twenty-seven seismic events were located by the Hanford Seismic Network within the reporting region of 46--47{degree} N latitude and 119--120{degree} W longitude; 12 were earthquakes in the Columbia River Basalt Group, 2 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 5 were quarry blasts. Three earthquakes appear to be related to geologic structures, eleven earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion

  11. First quarter Hanford seismic report for fiscal year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-02-23

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EW uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 311 triggers on two parallel detection and recording systems during the first quarter of fiscal year (FY) 2000. Twelve seismic events were located by the Hanford Seismic Network within the reporting region of 46--47{degree}N latitude and 119--120{degree}W longitude; 2 were earthquakes in the Columbia River Basalt Group, 3 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 1 was a quarry blast. Two earthquakes appear to be related to a major geologic structure, no earthquakes occurred in known swarm areas, and 9 earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers

  12. Pre-, Co-, and Post-Seismic Fault Slip in the Northern Chile Seismic Gap Associated with the April 1, 2014 (Mw 8.2) Pisagua Earthquake.

    Science.gov (United States)

    Simons, M.; Duputel, Z.; Fielding, E. J.; Galetzka, J.; Genrich, J. F.; Jiang, J.; Jolivet, R.; Kanamori, H.; Moore, A. W.; Ortega Culaciati, F. H.; Owen, S. E.; Riel, B. V.; Rivera, L. A.; Carrizo, D.; Cotte, N.; Jara, J.; Klotz, J.; Norabuena, E. O.; Ortega, I.; Socquet, A.; Samsonov, S. V.; Valderas Bermejo, M.

    2014-12-01

    The April 1, 2014 (Mw 8.2) Pisagua Earthquake occurred in Northern Chile, within a long recognized seismic gap in the Central Andean region that last experienced major megathrust events in 1868 and 1877. We built a continuous GPS network starting in 2005, with the ultimate goal of understanding the kinematics and dynamics of this portion of the subduction zone. Using observations from this network, as well as others in the region, combined with InSAR, seismic and tsunami observations, we obtain estimates of inter-seismic, co-seismic and initial post-seismic fault slip using an internally consistent Bayesian unregularized approach. We evaluate the extent of spatial overlap between regions of fault slip during this different time periods. Of particular interest to this event is the extent and nature of any geodetic evidence for transient slow fault slip preceding the Pisagua Earthquake mainshock. To this end, we compare daily and high rate GPS solutions, the former of which shows long period transient motion started about 15 days before the mainshock and with maximum registered amplitude of 14.2 +/- 2 [mm] at site PSGA. Contrary to published findings, we find that pre-seismic deformation seen by the GPS network can be explained as coseismic motion associated with the multiple foreshocks.

  13. Fluid injection and induced seismicity

    Science.gov (United States)

    Kendall, Michael; Verdon, James

    2016-04-01

    The link between fluid injection, or extraction, and induced seismicity has been observed in reservoirs for many decades. In fact spatial mapping of low magnitude events is routinely used to estimate a stimulated reservoir volume. However, the link between subsurface fluid injection and larger felt seismicity is less clear and has attracted recent interest with a dramatic increase in earthquakes associated with the disposal of oilfield waste fluids. In a few cases, hydraulic fracturing has also been linked to induced seismicity. Much can be learned from past case-studies of induced seismicity so that we can better understand the risks posed. Here we examine 12 case examples and consider in particular controls on maximum event size, lateral event distributions, and event depths. Our results suggest that injection volume is a better control on maximum magnitude than past, natural seismicity in a region. This might, however, simply reflect the lack of baseline monitoring and/or long-term seismic records in certain regions. To address this in the UK, the British Geological Survey is leading the deployment of monitoring arrays in prospective shale gas areas in Lancashire and Yorkshire. In most cases, seismicity is generally located in close vicinity to the injection site. However, in some cases, the nearest events are up to 5km from the injection point. This gives an indication of the minimum radius of influence of such fluid injection projects. The most distant events are never more than 20km from the injection point, perhaps implying a maximum radius of influence. Some events are located in the target reservoir, but most occur below the injection depth. In fact, most events lie in the crystalline basement underlying the sedimentary rocks. This suggests that induced seismicity may not pose a leakage risk for fluid migration back to the surface, as it does not impact caprock integrity. A useful application for microseismic data is to try and forecast induced seismicity

  14. Studies of infrasound propagation using the USArray seismic network (Invited)

    Science.gov (United States)

    Hedlin, M. A.; Degroot-Hedlin, C. D.; Walker, K. T.

    2010-12-01

    Although there are currently ~ 100 infrasound arrays worldwide, more than ever before, the station density is still insufficient to provide validation for detailed propagation modeling. Much structure in the atmosphere is short-lived and occurs at spatial scales much smaller than the average distance between infrasound stations. Relatively large infrasound signals can be observed on seismic channels due to coupling at the Earth's surface. Recent research, using data from the 70-km spaced 400-station USArray and other seismic network deployments, has shown the value of dense seismic network data for filling in the gaps between infrasound arrays. The dense sampling of the infrasound wavefield has allowed us to observe complete travel-time branches of infrasound signals and shed more light on the nature of infrasound propagation. We present early results from our studies of impulsive atmospheric sources, such as series of UTTR rocket motor detonations in Utah. The Utah blasts have been well recorded by USArray seismic stations and infrasound arrays in Nevada and Washington State. Recordings of seismic signals from a series of six events in 2007 are used to pinpoint the shot times to < 1 second. Variations in the acoustic branches and signal arrival times at the arrays are used to probe variations in atmospheric structure. Although we currently use coupled signals we anticipate studying dense acoustic network recordings as the USArray is currently being upgraded with infrasound microphones. These new sensors will allow us to make semi-continental scale network recordings of infrasound signals free of concerns about how the signals observed on seismic channels were modified when being coupled to seismic.

  15. Quantifying uncertainties of seismic Bayesian inversion of Northern Great Plains

    Science.gov (United States)

    Gao, C.; Lekic, V.

    2017-12-01

    Elastic waves excited by earthquakes are the fundamental observations of the seismological studies. Seismologists measure information such as travel time, amplitude, and polarization to infer the properties of earthquake source, seismic wave propagation, and subsurface structure. Across numerous applications, seismic imaging has been able to take advantage of complimentary seismic observables to constrain profiles and lateral variations of Earth's elastic properties. Moreover, seismic imaging plays a unique role in multidisciplinary studies of geoscience by providing direct constraints on the unreachable interior of the Earth. Accurate quantification of uncertainties of inferences made from seismic observations is of paramount importance for interpreting seismic images and testing geological hypotheses. However, such quantification remains challenging and subjective due to the non-linearity and non-uniqueness of geophysical inverse problem. In this project, we apply a reverse jump Markov chain Monte Carlo (rjMcMC) algorithm for a transdimensional Bayesian inversion of continental lithosphere structure. Such inversion allows us to quantify the uncertainties of inversion results by inverting for an ensemble solution. It also yields an adaptive parameterization that enables simultaneous inversion of different elastic properties without imposing strong prior information on the relationship between them. We present retrieved profiles of shear velocity (Vs) and radial anisotropy in Northern Great Plains using measurements from USArray stations. We use both seismic surface wave dispersion and receiver function data due to their complementary constraints of lithosphere structure. Furthermore, we analyze the uncertainties of both individual and joint inversion of those two data types to quantify the benefit of doing joint inversion. As an application, we infer the variation of Moho depths and crustal layering across the northern Great Plains.

  16. Seismic Observations Indicating That the 2015 Ogasawara (Bonin) Earthquake Ruptured Beneath the 660 km Discontinuity

    Science.gov (United States)

    Kuge, Keiko

    2017-11-01

    The termination of deep earthquakes at a depth of 700 km is a key feature for understanding the physical mechanism of deep earthquakes. The 680 km deep 30 May 2015, Ogasawara (Bonin) earthquake (Mw 7.9) and its aftershocks were recorded by seismic stations at distances from 7° to 19°. Synthetic seismograms indicate that the P waveforms depend on whether the earthquake is located above or below the 660 km discontinuity. In this study, I show that broadband recordings indicate that the 2015 earthquake may have occurred below the 660 km velocity discontinuity. Recordings of the P wave from the strongest aftershock lack evidence for wave triplication expected when a subhorizontal discontinuity underlies the hypocenter. Theoretical waveforms computed with a 660 km discontinuity above the aftershock and mainshock match the observed waveforms more accurately. These observations may indicate earthquake ruptures due to mantle minerals other than olivine or strong deformation of the 660 km phase transition.

  17. Calculation of anti-seismic design for Xi'an pulsed reactor

    International Nuclear Information System (INIS)

    Li Shuian

    2002-01-01

    The author describes the reactor safety rule, safety regulation and design code that must be observed to anti-seismic design in Xi'an pulsed reactor. It includes the classification of reactor installation, determination of seismic loads, calculate contents, program, method, results and synthetically evaluation. According to the different anti-seismic structure character of reactor installation, an appropriate method was selected to calculate the seismic response. The results were evaluated synthetically using the design code and design requirement. The evaluate results showed that the anti-seismic design function of reactor installation of Xi'an pules reactor is well, and the structure integrality and normal property of reactor installation can be protect under the designed classification of the earthquake

  18. Induced seismicity in Carbon and Emery counties, Utah

    Science.gov (United States)

    Brown, Megan R. M.

    Utah is one of the top producers of oil and natural gas in the United States. Over the past 18 years, more than 4.2 billion gallons of wastewater from the petroleum industry have been injected into the Navajo Sandstone, Kayenta Formation, and Wingate Sandstone in two areas in Carbon and Emery County, Utah, where seismicity has increased during the same period. In this study, I investigated whether or not wastewater injection is related to the increased seismicity. Previous studies have attributed all of the seismicity in central Utah to coal mining activity. I found that water injection might be a more important cause. In the coal mining area, seismicity rate increased significantly 1-5 years following the commencement of wastewater injection. The increased seismicity consists almost entirely of earthquakes with magnitudes of less than 3, and is localized in areas seismically active prior to the injection. I have established the spatiotemporal correlations between the coal mining activities, the wastewater injection, and the increased seismicity. I used simple groundwater models to estimate the change in pore pressure and evaluate the observed time gap between the start of injection and the onset of the increased seismicity in the areas surrounding the injection wells. To ascertain that the increased seismicity is not fluctuation of background seismicity, I analyzed the magnitude-frequency relation of these earthquakes and found a clear increase in the b-value following the wastewater injection. I conclude that the marked increase of seismicity rate in central Utah is induced by both mining activity and wastewater injection, which raised pore pressure along pre-existing faults.

  19. Time-Independent Annual Seismic Rates, Based on Faults and Smoothed Seismicity, Computed for Seismic Hazard Assessment in Italy

    Science.gov (United States)

    Murru, M.; Falcone, G.; Taroni, M.; Console, R.

    2017-12-01

    In 2015 the Italian Department of Civil Protection, started a project for upgrading the official Italian seismic hazard map (MPS04) inviting the Italian scientific community to participate in a joint effort for its realization. We participated providing spatially variable time-independent (Poisson) long-term annual occurrence rates of seismic events on the entire Italian territory, considering cells of 0.1°x0.1° from M4.5 up to M8.1 for magnitude bin of 0.1 units. Our final model was composed by two different models, merged in one ensemble model, each one with the same weight: the first one was realized by a smoothed seismicity approach, the second one using the seismogenic faults. The spatial smoothed seismicity was obtained using the smoothing method introduced by Frankel (1995) applied to the historical and instrumental seismicity. In this approach we adopted a tapered Gutenberg-Richter relation with a b-value fixed to 1 and a corner magnitude estimated with the bigger events in the catalogs. For each seismogenic fault provided by the Database of the Individual Seismogenic Sources (DISS), we computed the annual rate (for each cells of 0.1°x0.1°) for magnitude bin of 0.1 units, assuming that the seismic moments of the earthquakes generated by each fault are distributed according to the same tapered Gutenberg-Richter relation of the smoothed seismicity model. The annual rate for the final model was determined in the following way: if the cell falls within one of the seismic sources, we merge the respective value of rate determined by the seismic moments of the earthquakes generated by each fault and the value of the smoothed seismicity model with the same weight; if instead the cells fall outside of any seismic source we considered the rate obtained from the spatial smoothed seismicity. Here we present the final results of our study to be used for the new Italian seismic hazard map.

  20. Seismic noise level variation in South Korea

    Science.gov (United States)

    Sheen, D.; Shin, J.

    2008-12-01

    The variations of seismic background noise in South Korea have been investigated by means of power spectral analysis. The Korea Institute of Geoscience and Mineral Resources (KIGAM) and the Korea Meteorological Administation (KMA) have national wide seismic networks in South Korea, and, in the end of 2007, there are 30 broadband stations which have been operating for more than a year. In this study, we have estimated the power spectral density of seismic noise for 30 broadband stations from 2005 to 2007. Since we estimate PSDs from a large dataset of continuous waveform in this study, a robust PSD estimate of McNamara and Buland (2004) is used. In the frequency range 1-5 Hz, the diurnal variations of noise are observed at most of stations, which are especially larger at coastal stations and at insular than at inland. Some stations shows daily difference of diurnal variations, which represents that cultural activities contribute to the noise level of a station. The variation of number of triggered stations, however, shows that cultural noise has little influence on the detection capability of seismic network in South Korea. Seasonal variations are observed well in the range 0.1-0.5 Hz, while much less found in the frequency range 1-5 Hz. We observed that strong peaks in the range 0.1-0.5 Hz occur at the summer when Pacific typhoons are close to the Korean Peninsula.

  1. Velocity variations associated with the large 2010 eruption of Merapi volcano, Java, retrieved from seismic multiplets and ambient noise cross-correlation

    Science.gov (United States)

    Budi-Santoso, Agus; Lesage, Philippe

    2016-07-01

    We present a study of the seismic velocity variations that occurred in the structure before the large 2010 eruption of Merapi volcano. For the first time to our knowledge, the technique of coda wave interferometry is applied to both families of similar events (multiplets) and to correlation functions of seismic noise. About half of the seismic events recorded at the summit stations belong to one of the ten multiplets identified, including 120 similar events that occurred in the last 20 hr preceding the eruption onset. Daily noise cross-correlation functions (NCF) were calculated for the six pairs of short-period stations available. Using the stretching method, we estimate time-series of apparent velocity variation (AVV) for each multiplet and each pair of stations. No significant velocity change is detected until September 2010. From 10 October to the beginning of the eruption on 26 October, a complex pattern of AVV is observed with amplitude of up to ±1.5 per cent. Velocity decrease is first observed from families of deep events and then from shallow earthquakes. In the same period, AVV with different signs and chronologies are estimated from NCF calculated for various station pairs. The location in the horizontal plane of the velocity perturbations related with the AVV obtained from NCF is estimated by using an approach based on the radiative transfer approximation. Although their spatial resolution is limited, the resulting maps display velocity decrease in the upper part of the edifice in the period 12-25 October. After the eruption onset, the pattern of velocity perturbations is significantly modified with respect to the previous one. We interpret these velocity variations in the framework of a scenario of magmatic intrusion that integrates most observations. The perturbation of the stress field associated with the magma migration can induce both decrease and increase of the seismic velocity of rocks. Thus the detected AVVs can be considered as precursors of

  2. Seismic Hazard Assessment for a Characteristic Earthquake Scenario: Probabilistic-Deterministic Method

    Science.gov (United States)

    mouloud, Hamidatou

    2016-04-01

    The objective of this paper is to analyze the seismic activity and the statistical treatment of seismicity catalog the Constantine region between 1357 and 2014 with 7007 seismic event. Our research is a contribution to improving the seismic risk management by evaluating the seismic hazard in the North-East Algeria. In the present study, Earthquake hazard maps for the Constantine region are calculated. Probabilistic seismic hazard analysis (PSHA) is classically performed through the Cornell approach by using a uniform earthquake distribution over the source area and a given magnitude range. This study aims at extending the PSHA approach to the case of a characteristic earthquake scenario associated with an active fault. The approach integrates PSHA with a high-frequency deterministic technique for the prediction of peak and spectral ground motion parameters in a characteristic earthquake. The method is based on the site-dependent evaluation of the probability of exceedance for the chosen strong-motion parameter. We proposed five sismotectonique zones. Four steps are necessary: (i) identification of potential sources of future earthquakes, (ii) assessment of their geological, geophysical and geometric, (iii) identification of the attenuation pattern of seismic motion, (iv) calculation of the hazard at a site and finally (v) hazard mapping for a region. In this study, the procedure of the earthquake hazard evaluation recently developed by Kijko and Sellevoll (1992) is used to estimate seismic hazard parameters in the northern part of Algeria.

  3. Instrument Correction and Dynamic Site Profile Validation at the Central United States Seismic Observatory, New Madrid Seismic Zone

    Science.gov (United States)

    Brengman, C.; Woolery, E. W.; Wang, Z.; Carpenter, S.

    2016-12-01

    The Central United States Seismic Observatory (CUSSO) is a vertical seismic array located in southwestern Kentucky within the New Madrid seismic zone. It is intended to describe the effects of local geology, including thick sediment overburden, on seismic-wave propagation, particularly strong-motion. The three-borehole array at CUSSO is composed of seismic sensors placed on the surface, and in the bedrock at various depths within the 585 m thick sediment overburden. The array's deep borehole provided a unique opportunity in the northern Mississippi embayment for the direct geological description and geophysical measurement of the complete late Cretaceous-Quaternary sediment column. A seven layer, intra-sediment velocity model is interpreted from the complex, inhomogeneous stratigraphy. The S- and P-wave sediment velocities range between 160 and 875 m/s and between 1000 and 2300 m/s, respectively, with bedrock velocities of 1452 and 3775 m/s, respectively. Cross-correlation and direct comparisons were used to filter out the instrument response and determine the instrument orientation, making CUSSO data ready for analysis, and making CUSSO a viable calibration site for other free-field sensors in the area. The corrected bedrock motions were numerically propagated through the CUSSO soil profile (transfer function) and compared, in terms of both peak acceleration and amplitude spectra, to the recorded surface observations. Initial observations reveal a complex spectral mix of amplification and de-amplification across the array, indicating the site effect in this deep sediment setting is not simply generated by the shallowest layers.

  4. The Apollo passive seismic experiment

    Science.gov (United States)

    Latham, G. V.; Dorman, H. J.; Horvath, P.; Ibrahim, A. K.; Koyama, J.; Nakamura, Y.

    1979-01-01

    The completed data set obtained from the 4-station Apollo seismic network includes signals from approximately 11,800 events of various types. Four data sets for use by other investigators, through the NSSDC, are in preparation. Some refinement of the lunar model based on seismic data can be expected, but its gross features remain as presented two years ago. The existence of a small, molten core remains dependent upon the analysis of signals from a single, far-side impact. Analysis of secondary arrivals from other sources may eventually resolve this issue, as well as continued refinement of the magnetic field measurements. Evidence of considerable lateral heterogeneity within the moon continues to build. The mystery of the much meteoroid flux estimate derived from lunar seismic measurements, as compared with earth-based estimates, remains; although, significant correlations between terrestrial and lunar observations are beginning to emerge.

  5. The hydraulic structure of the Gole Larghe Fault Zone (Italian Southern Alps) through the seismic cycle

    Science.gov (United States)

    Bistacchi, A.; Mittempergher, S.; Di Toro, G.; Smith, S. A. F.; Garofalo, P. S.

    2017-12-01

    The 600 m-thick, strike slip Gole Larghe Fault Zone (GLFZ) experienced several hundred seismic slip events at c. 8 km depth, well-documented by numerous pseudotachylytes, was then exhumed and is now exposed in beautiful and very continuous outcrops. The fault zone was also characterized by hydrous fluid flow during the seismic cycle, demonstrated by alteration halos and precipitation of hydrothermal minerals in veins and cataclasites. We have characterized the GLFZ with > 2 km of scanlines and semi-automatic mapping of faults and fractures on several photogrammetric 3D Digital Outcrop Models (3D DOMs). This allowed us obtaining 3D Discrete Fracture Network (DFN) models, based on robust probability density functions for parameters of fault and fracture sets, and simulating the fault zone hydraulic properties. In addition, the correlation between evidences of fluid flow and the fault/fracture network parameters have been studied with a geostatistical approach, allowing generating more realistic time-varying permeability models of the fault zone. Based on this dataset, we have developed a FEM hydraulic model of the GLFZ for a period of some tens of years, covering one seismic event and a postseismic period. The higher permeability is attained in the syn- to early post-seismic period, when fractures are (re)opened by off-fault deformation, then permeability decreases in the postseismic due to fracture sealing. The flow model yields a flow pattern consistent with the observed alteration/mineralization pattern and a marked channelling of fluid flow in the inner part of the fault zone, due to permeability anisotropy related to the spatial arrangement of different fracture sets. Amongst possible seismological applications of our study, we will discuss the possibility to evaluate the coseismic fracture intensity due to off-fault damage, and the heterogeneity and evolution of mechanical parameters due to fluid-rock interaction.

  6. Delineation of seismic source zones based on seismicity parameters ...

    Indian Academy of Sciences (India)

    In the present study, an attempt has been made to delineate seismic source zones in the study area (south India) based on the seismicity parameters. Seismicity parameters and the maximum probable earthquake for these source zones were evaluated and were used in the hazard evaluation. The probabilistic evaluation of ...

  7. Observations on some current issues pertaining to nuclear power plant seismic design

    International Nuclear Information System (INIS)

    Hall, W.J.

    1982-01-01

    In this paper the author addresses some of those areas in which it is believed major research and development should be undertaken in the years immediately ahead if significant advances in earthquake engineering especially applicable to nuclear power plant design are to be achieved. From the standpoint of excitation (loading) the paper dwells extensively on concepts of so-called effective acceleration, with some comments also given on response spectra and modifications thereto. In the areas of resistance of structures attention is devoted to the topics of damping, ductility (energy absorption), and associated margins of strength to resist overloading. The need for developing comprehensive field measurement programs of ground and structural response throughout the world is cited. Future progress in earthquake engineering hinges in large part on developing a confirmatory basis for the technology, partly through continuing developments of analysis techniques and corresponding laboratory testing, but most importantly field observations in actual earthquakes which can be interpreted rationally to lend verification and support to the theoretical and design bases. Finally, the important topic of equipment seismic resistance is singled out for attention. (orig.)

  8. Rock property estimates using multiple seismic attributes and neural networks; Pegasus Field, West Texas

    Energy Technology Data Exchange (ETDEWEB)

    Schuelke, J.S.; Quirein, J.A.; Sarg, J.F.

    1998-12-31

    This case study shows the benefit of using multiple seismic trace attributes and the pattern recognition capabilities of neural networks to predict reservoir architecture and porosity distribution in the Pegasus Field, West Texas. The study used the power of neural networks to integrate geologic, borehole and seismic data. Illustrated are the improvements between the new neural network approach and the more traditional method of seismic trace inversion for porosity estimation. Comprehensive statistical methods and interpretational/subjective measures are used in the prediction of porosity from seismic attributes. A 3-D volume of seismic derived porosity estimates for the Devonian reservoir provide a very detailed estimate of porosity, both spatially and vertically, for the field. The additional reservoir porosity detail provided, between the well control, allows for optimal placement of horizontal wells and improved field development. 6 refs., 2 figs.

  9. Earthquake Source Parameters Inferred from T-Wave Observations

    Science.gov (United States)

    Perrot, J.; Dziak, R.; Lau, T. A.; Matsumoto, H.; Goslin, J.

    2004-12-01

    The seismicity of the North Atlantic Ocean has been recorded by two networks of autonomous hydrophones moored within the SOFAR channel on the flanks of the Mid-Atlantic Ridge (MAR). In February 1999, a consortium of U.S. investigators (NSF and NOAA) deployed a 6-element hydrophone array for long-term monitoring of MAR seismicity between 15o-35oN south of the Azores. In May 2002, an international collaboration of French, Portuguese, and U.S. researchers deployed a 6-element hydrophone array north of the Azores Plateau from 40o-50oN. The northern network (referred to as SIRENA) was recovered in September 2003. The low attenuation properties of the SOFAR channel for earthquake T-wave propagation results in a detection threshold reduction from a magnitude completeness level (Mc) of ˜ 4.7 for MAR events recorded by the land-based seismic networks to Mc=3.0 using hydrophone arrays. Detailed focal depth and mechanism information, however, remain elusive due to the complexities of seismo-acoustic propagation paths. Nonetheless, recent analyses (Dziak, 2001; Park and Odom, 2001) indicate fault parameter information is contained within the T-wave signal packet. We investigate this relationship further by comparing an earthquake's T-wave duration and acoustic energy to seismic magnitude (NEIC) and radiation pattern (for events M>5) from the Harvard moment-tensor catalog. First results show earthquake energy is well represented by the acoustic energy of the T-waves, however T-wave codas are significantly influenced by acoustic propagation effects and do not allow a direct determination of the seismic magnitude of the earthquakes. Second, there appears to be a correlation between T-wave acoustic energy, azimuth from earthquake source to the hydrophone, and the radiation pattern of the earthquake's SH waves. These preliminary results indicate there is a relationship between the T-wave observations and earthquake source parameters, allowing for additional insights into T

  10. Russian regulatory approaches to seismic design and seismic analysis of NPP piping

    International Nuclear Information System (INIS)

    Kaliberda, Y.V.

    2003-01-01

    The paper presents an overview of Russian regulatory approaches to seismic design and seismic analysis of NPP piping. The paper is focused on categorization and seismic analysis of nuclear power plant items (piping, equipment, supports, valves, but not building structures). The paper outlines the current seismic recommendations, corresponding methods with the examples of calculation models. The paper considers calculation results of the mechanisms of dynamic behavior and the problems of developing a rational and economical approaches to seismic design and seismic protection. (author)

  11. An extraordinary locally generated nonlinear internal wave on the shelf of northern South China Sea from marine seismic observation

    Science.gov (United States)

    Tang, Q.

    2017-12-01

    A secondary nonlinear internal wave (NIW) on the continental shelf of northern South China Sea (SCS) is studied from high resolution seismic data. It is an extraordinary complex NIW combination of two mode-2 NIWs and an NIW of elevation within a short distance of 2 km. The most energetic part of the NIW could be regarded as a mode-2 NIW localized in the upper layer between 40 and 120 m with its onset at 92 km. The vertical particle velocity of 41 cm/s may exceed the critical value of wave breaking and thus collapse the strongest stratification followed by a series of processes including internal wave breaking, overturning, Kelvin-Helmholtz (KH) instability, stratification splitting, and re-stratification eventually. Among these processes, the shear induced KH billows are directly imaged using the seismic method for the first time. The stratification splitting and re-stratification show that the unstable stage lasts only for a few hours and several kilometers. No previous work has reported the wave of elevation occurred in the deep water of 370 m. Different from the periodical NIWs originated from Luzon Strait, this secondary NIW is most likely generated locally at the shelf break during ebb tide. This is also the first seismic observation that a locally generated NIW is analyzed in detail on the continental shelf of northern SCS. A more sophisticated numerical model is necessary to simulate the extraordinary NIW and its accompanying features.

  12. Critical assessment of seismic and geomechanics literature related to a high-level nuclear waste underground repository

    Energy Technology Data Exchange (ETDEWEB)

    Kana, D.D.; Vanzant, B.W.; Nair, P.K. [Southwest Research Inst., San Antonio, TX (USA). Center for Nuclear Waste Regulatory Analyses; Brady, B.H.G. [ITASCA Consulting Group, Inc., Minneapolis, MN (USA)

    1991-06-01

    A comprehensive literature assessment has been conducted to determine the nature and scope of technical information available to characterize the seismic performance of an underground repository and associated facilities. Significant deficiencies were identified in current practices for prediction of seismic response of underground excavations in jointed rock. Conventional analytical methods are based on a continuum representation of the host rock mass. Field observations and laboratory experiments indicate that, in jointed rock, the behavior of the joints controls the overall performance of underground excavations. Further, under repetitive seismic loading, shear displacement develops progressively at block boundaries. Field observations correlating seismicity and groundwater conditions have provided significant information on hydrological response to seismic events. However, lack of a comprehensive model of geohydrological response to seismicity has limited the transportability conclusions from field observations. Based on the literature study, matters requiring further research in relation to the Yucca Mountain repository are identified. The report focuses on understanding seismic processes in fractured tuff, and provides a basis for work on the geohydrologic response of a seismically disturbed rock mass. 220 refs., 43 figs., 11 tabs.

  13. Critical assessment of seismic and geomechanics literature related to a high-level nuclear waste underground repository

    International Nuclear Information System (INIS)

    Kana, D.D.; Vanzant, B.W.; Nair, P.K.

    1991-06-01

    A comprehensive literature assessment has been conducted to determine the nature and scope of technical information available to characterize the seismic performance of an underground repository and associated facilities. Significant deficiencies were identified in current practices for prediction of seismic response of underground excavations in jointed rock. Conventional analytical methods are based on a continuum representation of the host rock mass. Field observations and laboratory experiments indicate that, in jointed rock, the behavior of the joints controls the overall performance of underground excavations. Further, under repetitive seismic loading, shear displacement develops progressively at block boundaries. Field observations correlating seismicity and groundwater conditions have provided significant information on hydrological response to seismic events. However, lack of a comprehensive model of geohydrological response to seismicity has limited the transportability conclusions from field observations. Based on the literature study, matters requiring further research in relation to the Yucca Mountain repository are identified. The report focuses on understanding seismic processes in fractured tuff, and provides a basis for work on the geohydrologic response of a seismically disturbed rock mass. 220 refs., 43 figs., 11 tabs

  14. Angola Seismicity MAP

    Science.gov (United States)

    Neto, F. A. P.; Franca, G.

    2014-12-01

    The purpose of this job was to study and document the Angola natural seismicity, establishment of the first database seismic data to facilitate consultation and search for information on seismic activity in the country. The study was conducted based on query reports produced by National Institute of Meteorology and Geophysics (INAMET) 1968 to 2014 with emphasis to the work presented by Moreira (1968), that defined six seismogenic zones from macro seismic data, with highlighting is Zone of Sá da Bandeira (Lubango)-Chibemba-Oncócua-Iona. This is the most important of Angola seismic zone, covering the epicentral Quihita and Iona regions, geologically characterized by transcontinental structure tectono-magmatic activation of the Mesozoic with the installation of a wide variety of intrusive rocks of ultrabasic-alkaline composition, basic and alkaline, kimberlites and carbonatites, strongly marked by intense tectonism, presenting with several faults and fractures (locally called corredor de Lucapa). The earthquake of May 9, 1948 reached intensity VI on the Mercalli-Sieberg scale (MCS) in the locality of Quihita, and seismic active of Iona January 15, 1964, the main shock hit the grade VI-VII. Although not having significant seismicity rate can not be neglected, the other five zone are: Cassongue-Ganda-Massano de Amorim; Lola-Quilengues-Caluquembe; Gago Coutinho-zone; Cuima-Cachingues-Cambândua; The Upper Zambezi zone. We also analyzed technical reports on the seismicity of the middle Kwanza produced by Hidroproekt (GAMEK) region as well as international seismic bulletins of the International Seismological Centre (ISC), United States Geological Survey (USGS), and these data served for instrumental location of the epicenters. All compiled information made possible the creation of the First datbase of seismic data for Angola, preparing the map of seismicity with the reconfirmation of the main seismic zones defined by Moreira (1968) and the identification of a new seismic

  15. Reflection seismic methods applied to locating fracture zones in crystalline rock

    International Nuclear Information System (INIS)

    Juhlin, C.

    1998-01-01

    The reflection seismic method is a potentially powerful tool for identifying and localising fracture zones in crystalline rock if used properly. Borehole sonic logs across fracture zones show that they have reduced P-wave velocities compared to the surrounding intact rock. Diagnostically important S-wave velocity log information across the fracture zones is generally lacking. Generation of synthetic reflection seismic data and subsequent processing of these data show that structures dipping up towards 70 degrees from horizontal can be reliably imaged using surface seismic methods. Two real case studies where seismic reflection methods have been used to image fracture zones in crystalline rock are presented. Two examples using reflection seismic are presented. The first is from the 5354 m deep SG-4 borehole in the Middle Urals, Russia where strong seismic reflectors dipping from 25 to 50 degrees are observed on surface seismic reflection data crossing over the borehole. On vertical seismic profile data acquired in the borehole, the observed P-wave reflectivity is weak from these zones, however, strong converted P to S waves are observed. This can be explained by the source of the reflectors being fracture zones with a high P wave to S wave velocity ratio compared to the surrounding rock resulting in a high dependence on the angle of incidence for the reflection coefficient. A high P wave to S wave velocity ratio (high Poisson's ratio) is to be expected in fluid filled fractured rock. The second case is from Aevroe, SE Sweden, where two 1 km long crossing high resolution seismic reflection lines were acquired in October 1996. An E-W line was shot with 5 m geophone and shotpoint spacing and a N-S one with 10 m geophone and shotpoint spacing. An explosive source with a charge size of 100 grams was used along both lines. The data clearly image three major dipping reflectors in the upper 200 ms (600 m). The dipping ones intersect or project to the surface at/or close to

  16. France's seismic zoning

    International Nuclear Information System (INIS)

    Mohammadioun, B.

    1997-01-01

    In order to assess the seismic hazard in France in relation to nuclear plant siting, the CEA, EDF and the BRGM (Mine and Geology Bureau) have carried out a collaboration which resulted in a seismic-tectonic map of France and a data base on seismic history (SIRENE). These studies were completed with a seismic-tectonic zoning, taking into account a very long period of time, that enabled a probabilistic evaluation of the seismic hazard in France, and that may be related to adjacent country hazard maps

  17. Evolution of the 2015 Cotopaxi eruption revealed by combined geochemical & seismic observations

    Science.gov (United States)

    Hidalgo, Silvana; Battaglia, Jean; Arellano, Santiago; Sierra, Daniel; Bernard, Benjamin; Parra, Rene; Kelly, Peter; Dinger, Florian; Barrington, Charlotte; Samaniego, Pablo

    2018-01-01

    Through integration of multiple data streams to monitor volcanic unrest scientists are able to make more robust eruption forecast and to obtain a more holistic interpretation of volcanic systems. We examined gas emission and gas geochemistry, seismic and petrologic data recorded during the 2015 unrest of Cotopaxi (Ecuador) in order to decipher the origin and temporal evolution of this eruption. Identification of families of similar seismic events and the use of seismic amplitude ratios reveals temporal changes in volcanic processes. SO2 (300 to 24000 t/d), BrO/SO2 (5-10 x10-5), SO2/HCl (5.8 ± 4.8 and 6.6 ± 3.0) and CO2/SO2 (0.6 to 2.1) measured throughout the eruption indicate a shallow magmatic source. Bulk ash and glass chemistry indicate a homogenous andesitic (SiO2 wt%=56.94 ± 0.25) magma having undergone extensive S-exsolution and degassing during ascent. These data lead us to interpret this eruption as a magma intrusion and ascend to shallow levels. The intrusion progressively interacted with the hydrothermal system, boiled off water, and produced hydromagmatic explosions. A small volume of this intrusion continued to fragment and produced episodic ash emissions until it was sufficiently degassed and rheologically stiff. Based on the 470 kt of measured SO2 we estimate that ~ 65.3 x106 m3 of magma were required to supply the emitted gases. This volume exceeds the volume of erupted juvenile material by a factor of 50. This result emphasizes the importance of careful monitoring of Cotopaxi to identify the intrusion of a new batch of magma, which could rejuvenate the non-erupted material.

  18. Sparsity- and continuity-promoting seismic image recovery with curvelet frames

    NARCIS (Netherlands)

    Herrmann, Felix J.; Moghaddam, Peyman; Stolk, C.C.

    2008-01-01

    A nonlinear singularity-preserving solution to seismic image recovery with sparseness and continuity constraints is proposed. We observe that curvelets, as a directional frame expansion, lead to sparsity of seismic images and exhibit invariance under the normal operator of the linearized imaging

  19. Hanford annual first quarter seismic report, fiscal year 1998: Seismicity on and near the Hanford Site, Pasco Basin, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1998-02-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the first quarter of FY98 for stations in the HSN was 98.5%. The operational rate for the first quarter of FY98 for stations of the EWRN was 99.1%. For the first quarter of FY98, the acquisition computer triggered 184 times. Of these triggers 23 were local earthquakes: 7 in the Columbia River Basalt Group, and 16 in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report. The most significant earthquakes in this quarter were a series of six events which occurred in the Cold Creek depression (approximately 4 km SW of the 200 West Area), between November 6 and November 11, 1997. All events were deep (> 15 km) and were located in the crystalline basement. The first event was the largest, having a magnitude of 3.49 M{sub c}. Two events on November 9, 1997 had magnitudes of 2.81 and 2.95 M{sub c}, respectively. The other events had magnitudes between 0.7 and 1.2 M{sub c}.

  20. Seismic Noise Analysis and Reduction through Utilization of Collocated Seismic and Atmospheric Sensors at the GRO Chile Seismic Network

    Science.gov (United States)

    Farrell, M. E.; Russo, R. M.

    2013-12-01

    The installation of Earthscope Transportable Array-style geophysical observatories in Chile expands open data seismic recording capabilities in the southern hemisphere by nearly 30%, and has nearly tripled the number of seismic stations providing freely-available data in southern South America. Through the use of collocated seismic and atmospheric sensors at these stations we are able to analyze how local atmospheric conditions generate seismic noise, which can degrade data in seismic frequency bands at stations in the ';roaring forties' (S latitudes). Seismic vaults that are climate-controlled and insulated from the local environment are now employed throughout the world in an attempt to isolate seismometers from as many noise sources as possible. However, this is an expensive solution that is neither practical nor possible for all seismic deployments; and also, the increasing number and scope of temporary seismic deployments has resulted in the collection and archiving of terabytes of seismic data that is affected to some degree by natural seismic noise sources such as wind and atmospheric pressure changes. Changing air pressure can result in a depression and subsequent rebound of Earth's surface - which generates low frequency noise in seismic frequency bands - and even moderate winds can apply enough force to ground-coupled structures or to the surface above the seismometers themselves, resulting in significant noise. The 10 stations of the permanent Geophysical Reporting Observatories (GRO Chile), jointly installed during 2011-12 by IRIS and the Chilean Servicio Sismológico, include instrumentation in addition to the standard three seismic components. These stations, spaced approximately 300 km apart along the length of the country, continuously record a variety of atmospheric data including infrasound, air pressure, wind speed, and wind direction. The collocated seismic and atmospheric sensors at each station allow us to analyze both datasets together, to

  1. Seismic source characterisation of a Tunnel Boring Machine (TBM)

    Science.gov (United States)

    Kreutzer, Ingrid; Brückl, Ewald; Radinger, Alexander

    2015-04-01

    The Tunnel Seismic While Drilling (TSWD) method aims at predicting continuously the geological situation ahead of the tunnel without disturbing the construction work. Thereby the Tunnel Boring Machine (TBM) itself is used as seismic source. The cutting process generates seismic waves radiating into the rock mass and vibrations propagating to the main bearing of the cutter head. These vibrations are monitored and used as pilot signal. For the processing and interpretation it was hypothesized so far that the TBM acts like a single force. To prove this assumption the radiation pattern of several TBM's under construction were investigated. Therefore 3-components geophones were installed at the surface, which were situated directly above the tunnel axes and also with lateral offset. Additional, borehole geophones were placed in the wall of one tube of a two-tube tunnel. The geophones collected the forward and backward radiated wave field, as the TBM, operating in the other tube, passed their positions. The obtained seismic data contains continuous records over a range of 600 m of the TBM position. The offsets vary from 25 m to 400 m and the frequency ranges from 20-250 Hertz. The polarisation of the p-wave and the s-wave and their amplitude ratio were determined and compared with modelled seismograms with different source mechanism. The results show that the description of the source mechanism by a single force can be used as a first order approximation. More complex radiation pattern including tensile forces and several source locations like the transmission of reaction forces over the gripper to the tunnel wall are further tested and addressed.

  2. What can He II 304 Å tell us about transient seismic emission from solar flares?

    Science.gov (United States)

    Lindsey, C.; Donea, A. C.

    2017-10-01

    After neary 20 years since their discovery by Kosovichev and Zharkova, the mechanics of the release of seismic transients into the solar interior from some flares remain a mystery. Seismically emissive flares invariably show the signatures of intense chromosphere heating consistent with pressure variations sufficient to drive seismic transients commensurate with helioseismic observations-under certain conditions. Magnetic observations show the signatures of apparent magnetic changes, suggesting Lorentz-force transients that could likewise drive seismic transients-similarly subject to certain conditions. But, the diagnostic signatures of both of these prospective drivers are apparent over vast regions from which no significant seismic emission emanates. What distinguishes the source regions of transient seismic emission from the much vaster regions that show the signatures of both transient heating and magnetic variations but are acoustically unproductive? Observations of acoustically active flares in He II 304 Å by the Atomospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory (SDO) offer a promising new resource with which to address this question.

  3. Seismic re-evaluation of Mochovce nuclear power plant. Seismic reevaluation of civil structures

    International Nuclear Information System (INIS)

    Podrouzek, P.

    1997-01-01

    In this contribution, an overview of seismic design procedures used for reassessment of seismic safety of civil structures at the Mochovce NPP in Slovak Republic presented. As an introduction, the objectives, history, and current status of seismic design of the NPP have been explained. General philosophy of design methods, seismic classification of buildings, seismic data, calculation methods, assumptions on structural behavior under seismic loading and reliability assessment were described in detail in the subsequent section. Examples of calculation models used for dynamic calculations of seismic response are given in the last section. (author)

  4. High-resolution 3D seismic reflection imaging across active faults and its impact on seismic hazard estimation in the Tokyo metropolitan area

    Science.gov (United States)

    Ishiyama, Tatsuya; Sato, Hiroshi; Abe, Susumu; Kawasaki, Shinji; Kato, Naoko

    2016-10-01

    We collected and interpreted high-resolution 3D seismic reflection data across a hypothesized fault scarp, along the largest active fault that could generate hazardous earthquakes in the Tokyo metropolitan area. The processed and interpreted 3D seismic cube, linked with nearby borehole stratigraphy, suggests that a monocline that deforms lower Pleistocene units is unconformably overlain by middle Pleistocene conglomerates. Judging from structural patterns and vertical separation on the lower-middle Pleistocene units and the ground surface, the hypothesized scarp was interpreted as a terrace riser rather than as a manifestation of late Pleistocene structural growth resulting from repeated fault activity. Devastating earthquake scenarios had been predicted along the fault in question based on its proximity to the metropolitan area, however our new results lead to a significant decrease in estimated fault length and consequently in the estimated magnitude of future earthquakes associated with reactivation. This suggests a greatly reduced seismic hazard in the Tokyo metropolitan area from earthquakes generated by active intraplate crustal faults.

  5. Observations of Near-Field Rotational Motions from Oklahoma Seismicity using Applied Technology Associate Sensors

    Science.gov (United States)

    Ringler, A. T.; Anthony, R. E.; Holland, A. A.; Wilson, D. C.

    2017-12-01

    Characterizing rotational motions from moderate-sized earthquakes in the near-field has the potential to improve earthquake engineering and seismic gradiometry by better characterizing the rotational component of the seismic wavefield, but has remained challenging due to the limited development of portable, low-noise rotational sensors. Here, we test Applied Technology Associate (ATA) Proto-Seismic Magnetohydrodynamic (SMHD) three-component rotational rate sensors at Albuquerque Seismological Laboratory (ASL) for self-noise and sensitivity before deploying them at U.S. Geological Survey (USGS) temporary aftershock station OK38 in Waynoka, Oklahoma. The sensors have low self-noise levels below 2 Hz, making them ideal to record local rotations. From April 11, 2017 to June 6, 2017 we recorded the translational and rotational motions of over 155 earthquakes of ML≥2.0 within 2 degrees of the station. Using the recorded events we compare Peak Ground Velocity (PGV) with Peak Ground Rotation Rate (PG). For example, we measured a maximal PG of 0.00211 radians/s and 0.00186 radians/s for the horizontal components of the two rotational sensors during the Mwr=4.2 event on May 13, 2017 which was 0.5 km from that station. Similarly, our PG for the vertical rotational components were 0.00112 radians/s and 0.00085 radians/s. We also measured Peak Ground Rotations (PGω) as a function of seismic moment, as well as mean vertical Power Spectral Density (PSD) with mean horizontal PSD power levels. We compute apparent phase velocity directly from the rotational data, which may have may improve estimates of local site effects. Finally, by comparing various rotational and translational components we look at potential implications for estimating local event source parameters, which may help in identifying phenomena such as repeating earthquakes by using differences in the rotational components correlation.

  6. Second and Third Quarters Hanford Seismic Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    1999-11-09

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the HSN, there were 270 triggers during the second quarter of fiscal year (FY) 1999 and 229 triggers during the third quarter on the primary recording system. During the second quarter, 22 seismic events were located; 11 were earthquakes in the Columbia River Basalt Group, 6 were earthquakes in the crystalline basement, and 5 were quarry blasts. Two earthquakes appear to be related to major geologic structures, eight earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. During the third quarter, 23 seismic events were located; 11 were earthquakes in the Columbia River Basalt Group, 4 were earthquakes in the pre-basalt sediments, 4 were earthquakes in the crystalline basement, and 4 were quarry blasts. Five earthquakes occurred in known swarm areas, six earthquakes formed a new swarm near the Horse Heavens Hills and Presser, Washington, and eight earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers during the second or third quarters of FY 1999.

  7. Sub-crustal seismic activity beneath Klyuchevskoy Volcano

    Science.gov (United States)

    Carr, M. J.; Droznina, S.; Levin, V. L.; Senyukov, S.

    2013-12-01

    Seismic activity is extremely vigorous beneath the Klyuchevskoy Volcanic Group (KVG). The unique aspect is the distribution in depth. In addition to upper-crustal seismicity, earthquakes take place at depths in excess of 20 km. Similar observations are known in other volcanic regions, however the KVG is unique in both the number of earthquakes and that they occur continuously. Most other instances of deep seismicity beneath volcanoes appear to be episodic or transient. Digital recording of seismic signals started at the KVG in early 2000s.The dense local network reliably locates earthquakes as small as ML~1. We selected records of 20 earthquakes located at depths over 20 km. Selection was based on the quality of the routine locations and the visual clarity of the records. Arrivals of P and S waves were re-picked, and hypocentral parameters re-established. Newl locations fell within the ranges outlined by historical seismicity, confirming the existence of two distinct seismically active regions. A shallower zone is at ~20 km depth, and all hypocenters are to the northeast of KVG, in a region between KVG and Shiveluch volcano. A deeper zone is at ~30 km, and all hypocenters cluster directly beneath the edifice of the Kyuchevskoy volcano. Examination of individual records shows that earthquakes in both zones are tectonic, with well-defined P and S waves - another distinction of the deep seismicity beneath KVG. While the upper seismic zone is unquestionably within the crust, the provenance of the deeper earthquakes is enigmatic. The crustal structure beneath KVG is highly complex, with no agreed-upon definition of the crust-mantle boundary. Rather, a range of values, from under 30 to over 40 km, exists in the literature. Similarly, a range of velocity structures has been reported. Teleseismic receiver functions (RFs) provide a way to position the earthquakes with respect to the crust-mantle boundary. We compare the differential travel times of S and P waves from deep

  8. Role of seismic PRA in seismic safety decisions of nuclear power plants

    International Nuclear Information System (INIS)

    Ravindra, M.K.; Kennedy, R.P.; Sues, R.H.

    1985-01-01

    This paper highlights the important roles that seismic probabilistic risk assessments (PRAs) can play in the seismic safety decisions of nuclear power plants. If a seismic PRA has been performed for a plant, its results can be utilized to evaluate the seismic capability beyond the safe shutdown event (SSE). Seismic fragilities of key structures and equipment, fragilities of dominant plant damage states and the frequencies of occurrence of these plant damage states are reviewed to establish the seismic safety of the plant beyond the SSE level. Guidelines for seismic margin reviews and upgrading may be developed by first identifying the generic classes of structures and equipment that have been shown to be dominant risk contributors in the completed seismic PRAs, studying the underlying causes for their contribution and examining why certain other items (e.g., piping) have not proved to be high-risk-contributors

  9. Terrane accumulation and collapse in central Europe: seismic and rheological constraints

    Science.gov (United States)

    Meissner, R.

    1999-05-01

    An attempt is made to compare the tectonic units and their evolution in central Europe with the deep seismic velocity structure and patterns of reflectivity. Caledonian and Variscan terrane accretion and orogenic collapse dominate the tectonic development in central and western Europe and have left their marks in a distinct velocity structure and crustal thickness as well as in the various reflectivity patterns. Whereas the memory of old collisional structures is still preserved in the rigid upper crust, collapse processes have formed and modified the lower crust. They have generally created rejuvenated, thin crusts with shallow Mohos. In the Variscan internides, the center of collision and post-orogenic heat pulses, the lower crust developed strong and thick seismic lamellae, the (cooler) externides show a thrust and shear pattern in the whole crust, and the North German Basin experienced large mafic intrusions in the lower crust and developed a high-velocity structure with only very thin lamellae on top of the Moho. The various kinds of reflectivity patterns in the lithosphere can be explained by a thermo-rheological model from terrane collision, with crustal thickening to collapse in a hot, post-orogenic setting.

  10. DEFORMATION WAVES AS A TRIGGER MECHANISM OF SEISMIC ACTIVITY IN SEISMIC ZONES OF THE CONTINENTAL LITHOSPHERE

    Directory of Open Access Journals (Sweden)

    S. I. Sherman

    2013-01-01

    fault zones, a brief description of the method for assessment of spatial and temporal regularities in locations of earthquake epicentres in zones of dynamic influence of faults is provided. The method can be applied to estimate a dominating direction of movement of the epicentres, which corresponds to the phase velocity of the deformation wave disturbing meta-stability of the fault-block medium, leading to displacement of neighbouring blocks and thus causing a seismic event (Fig. 14. By integration of vectors of migration of epicentres at active faults, it is possible to demonstrate a pattern of vectors of movements of the deformation waves in the seismic zones of the continental lithosphere (Fig. 18.Regional and trans-regional deformation waves are analyzed. For seismic zones of Central Asia, vectors of deformation waves are established, a scheme showing regional orientations of the waves is developed, and main wave parameters (length and time period are estimated (Fig. 19. Three depth levels of deformation waves are distinguished: the whole lithosphere, the upper brittle part of the lithosphere, and the top part of the brittle layer (Fig. 20.It is concluded that the leading factor of gradual accumulation of earthquake foci, which takes place regularly in space and time in seismic zones, are deformation waves that influence the geophysical medium. This understanding of the fundamental basis of seismic process needs to be more thoroughly justified with application of modern concepts, its revised phenomenological concept and development of a model representing a seismic zones as a geologically and geophysically independent structure of the lithosphere, which has its specific properties, based on which testing of the lithosphere becomes possible for purposes of potential earthquake prediction.

  11. CRUSTAL THICKNESS VARIATIONS AND SEISMICITY OF NORTHWESTERN SOUTH AMERICA

    Directory of Open Access Journals (Sweden)

    Woo Kim Jeong

    2007-06-01

    Full Text Available Any uncompensated mass of the northern Andes Mountains is presumably under pressure to adjust within the Earth to its ideal state of isostatic equilibrium. Isostasy is the ideal state that any
    uncompensated mass seeks to achieve in time. These pressures interact with the relative motions between adjacent plates that give rise to earthquakes along the plate boundaries. By combining the
    gravity MOHO estimates and crustal discontinuities with historical and instrumental seismological catalogs the correlation between isostatically disturbed terrains and seismicity has been established.
    The thinner and thicker crustal regions were mapped from the zero horizontal curvature of the crustal thickness estimates. These boundaries or edges of crustal thickness variations were compared to
    crustal discontinuities inferred from gravity and magnetic anomalies and the patterns of seismicity that have been catalogued for the last 363 years. The seismicity is very intense along the Nazca-North
    Andes, Caribbean-North American and North Andes-South American collision zones and associated with regional tectonic compressional stresses that have locally increased and/or diminished by
    compressional and tensional stress, respectively, due to crustal thickness variations. High seismicity is also associated with the Nazca-Cocos diverging plate boundary whereas low seismicity is associated with the Panama-Nazca Transform Fault and the South American Plate.

  12. Seismic response of rock joints and jointed rock mass

    International Nuclear Information System (INIS)

    Ghosh, A.; Hsiung, S.M.; Chowdhury, A.H.

    1996-06-01

    Long-term stability of emplacement drifts and potential near-field fluid flow resulting from coupled effects are among the concerns for safe disposal of high-level nuclear waste (HLW). A number of factors can induce drift instability or change the near-field flow patterns. Repetitive seismic loads from earthquakes and thermal loads generated by the decay of emplaced waste are two significant factors. One of two key technical uncertainties (KTU) that can potentially pose a high risk of noncompliance with the performance objectives of 10 CFR Part 60 is the prediction of thermal-mechanical (including repetitive seismic load) effects on stability of emplacement drifts and the engineered barrier system. The second KTU of concern is the prediction of thermal-mechanical-hydrological (including repetitive seismic load) effects on the host rock surrounding the engineered barrier system. The Rock Mechanics research project being conducted at the Center for Nuclear Waste Regulatory Analyses (CNWRA) is intended to address certain specific technical issues associated with these two KTUs. This research project has two major components: (i) seismic response of rock joints and a jointed rock mass and (ii) coupled thermal-mechanical-hydrological (TMH) response of a jointed rock mass surrounding the engineered barrier system (EBS). This final report summarizes the research activities concerned with the repetitive seismic load aspect of both these KTUs

  13. Comparison of seismic margin assessment and probabilistic risk assessment in seismic IPE

    International Nuclear Information System (INIS)

    Reed, J.W.; Kassawara, R.P.

    1993-01-01

    A comparison of technical requirements and managerial issues between seismic margin assessment (SMA) and seismic probabilistic risk assessment (SPRA) in a seismic Individual Plant Examination (IPE) is presented and related to requirements for an Unresolved Safety Issue (USI) A-46 review which is required for older nuclear power plants. Advantages and disadvantages are discussed for each approach. Technical requirements reviewed for a seismic IPE include: scope of plants covered, seismic input, scope of review, selection of equipment, required experience and training of engineers, walkdown procedure, evaluation of components, relay review, containment review, quality assurance, products, documentation requirements, and closure procedure. Managerial issues discussed include regulatory acceptability, compatibility with seismic IPE, compliance with seismic IPE requirements, ease of use by utilities, and relative cost

  14. Evaluation of induced seismicity forecast models in the Induced Seismicity Test Bench

    Science.gov (United States)

    Király, Eszter; Gischig, Valentin; Zechar, Jeremy; Doetsch, Joseph; Karvounis, Dimitrios; Wiemer, Stefan

    2016-04-01

    Induced earthquakes often accompany fluid injection, and the seismic hazard they pose threatens various underground engineering projects. Models to monitor and control induced seismic hazard with traffic light systems should be probabilistic, forward-looking, and updated as new data arrive. Here, we propose an Induced Seismicity Test Bench to test and rank such models. We apply the test bench to data from the Basel 2006 and Soultz-sous-Forêts 2004 geothermal stimulation projects, and we assess forecasts from two models that incorporate a different mix of physical understanding and stochastic representation of the induced sequences: Shapiro in Space (SiS) and Hydraulics and Seismics (HySei). SiS is based on three pillars: the seismicity rate is computed with help of the seismogenic index and a simple exponential decay of the seismicity; the magnitude distribution follows the Gutenberg-Richter relation; and seismicity is distributed in space based on smoothing seismicity during the learning period with 3D Gaussian kernels. The HySei model describes seismicity triggered by pressure diffusion with irreversible permeability enhancement. Our results show that neither model is fully superior to the other. HySei forecasts the seismicity rate well, but is only mediocre at forecasting the spatial distribution. On the other hand, SiS forecasts the spatial distribution well but not the seismicity rate. The shut-in phase is a difficult moment for both models in both reservoirs: the models tend to underpredict the seismicity rate around, and shortly after, shut-in. Ensemble models that combine HySei's rate forecast with SiS's spatial forecast outperform each individual model.

  15. Groundwater geochemistry of the Mt. Vesuvius area: implications for volcano surveillance and relationship with hydrological and seismic signals

    Directory of Open Access Journals (Sweden)

    Cinzia Federico

    2013-11-01

    Full Text Available Geochemical data obtained between 1998 and 2011 at the Mt. Vesuvius aquifer are discussed, focusing on the effects of both the hydrological regime and the temporal pattern of local seismicity. Water samples were collected in a permanent network of wells and springs located in the areas that are mostly affected by the ascent of magmatic volatiles, and their chemical composition and dissolved gas content were analyzed. As well as the geochemical parameters that describe the behavior of groundwater at Mt. Vesuvius, we discuss the temporal distribution of volcano-tectonic earthquakes. The seismological data set was collected by the stations forming the permanent and mobile network of the Istituto Nazionale di Geofisica e Vulcanologia - Osservatorio Vesuviano (INGV-OV. Our analysis of seismic data collected during 1998-2011 identified statistically significant variations in the seismicity rate, marked by phases of decreasing activity from October 1999 to May 2001 and increasing activity from August 2004 to mid-2006. The water chemistry shows peculiar patterns, characterized by a changeable input of CO2-rich and saline water, which must be related to either a changing stress field or an increased input of CO2-rich vapor. The water chemistry data from 1999 to 2003 account for both higher fluid pressure (which induced the seismic crisis of 1999 that peaked with a 3.6-magnitude earthquake in October 1999 and the increased input of CO2-rich fluids. The highest emission of CO2 from the crater fumaroles and the corresponding increase in dissolved carbon in groundwater characterize the phase of low seismicity. The termination of the phase of intense deep degassing is associated with a change in water chemistry and a peculiar seismic event that was recorded in July 2003. All these seismic and geochemical patterns are interpreted according to temporal variations in the regional and local stress field.

  16. Performances of the UNDERground SEISmic array for the analysis of seismicity in Central Italy

    Directory of Open Access Journals (Sweden)

    R. Scarpa

    2006-06-01

    Full Text Available This paper presents the first results from the operation of a dense seismic array deployed in the underground Physics Laboratories at Gran Sasso (Central Italy. The array consists of 13 short-period, three-component seismometers with an aperture of about 550 m and average sensor spacing of 90 m. The reduced sensor spacing, joined to the spatially-white character of the background noise allows for quick and reliable detection of coherent wavefront arrivals even under very poor SNR conditions. We apply high-resolution frequency-slowness and polarization analyses to a set of 27 earthquakes recorded between November, 2002, and September, 2003, at epicentral distances spanning the 20-140 km interval. We locate these events using inversion of P- and S-wave backazimuths and S-P delay times, and compare the results with data from the Centralized National Seismic Network catalog. For the case of S-wave, the discrepancies among the two set of locations never exceed 10 km; the largest errors are instead observed for the case of P-waves. This observation may be due to the fact that the small array aperture does not allow for robust assessment of waves propagating at high apparent velocities. This information is discussed with special reference to the directions of future studies aimed at elucidating the location of seismogenetic structures in Central Italy from extended analysis of the micro-seismicity.

  17. Fault Mechanics and Post-seismic Deformation at Bam, SE Iran

    Science.gov (United States)

    Wimpenny, S. E.; Copley, A.

    2017-12-01

    The extent to which aseismic deformation relaxes co-seismic stress changes on a fault zone is fundamental to assessing the future seismic hazard following any earthquake, and in understanding the mechanical behaviour of faults. We used models of stress-driven afterslip and visco-elastic relaxation, in conjunction with a dense time series of post-seismic InSAR measurements, to show that there has been minimal release of co-seismic stress changes through post-seismic deformation following the 2003 Mw 6.6 Bam earthquake. Our modelling indicates that the faults at Bam may remain predominantly locked, and that the co- plus inter-seismically accumulated elastic strain stored down-dip of the 2003 rupture patch may be released in a future Mw 6 earthquake. Modelling also suggests parts of the fault that experienced post-seismic creep between 2003-2009 overlapped with areas that also slipped co-seismically. Our observations and models also provide an opportunity to probe how aseismic fault slip leads to the growth of topography at Bam. We find that, for our modelled afterslip distribution to be consistent with forming the sharp step in the local topography at Bam over repeated earthquake cycles, and also to be consistent with the geodetic observations, requires either (1) far-field tectonic loading equivalent to a 2-10 MPa deviatoric stress acting across the fault system, which suggests it supports stresses 60-100 times less than classical views of static fault strength, or (2) that the fault surface has some form of mechanical anisotropy, potentially related to corrugations on the fault plane, that controls the sense of slip.

  18. Geothermal Induced Seismicity National Environmental Policy Act Review

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Aaron L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cook, Jeffrey J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beckers, Koenraad J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Young, Katherine R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-04

    In 2016, the U.S. Bureau of Land Management (BLM) contracted with the National Renewable Energy Laboratory (NREL) to assist the BLM in developing and building upon tools to better understand and evaluate induced seismicity caused by geothermal projects. This review of NEPA documents for four geothermal injection or EGS projects reveals the variety of approaches to analyzing and mitigating induced seismicity. With the exception of the Geysers, where induced seismicity has been observed and monitored for an extended period of time due to large volumes of water being piped in to recharge the hydrothermal reservoir, induced seismicity caused by geothermal projects is a relative new area of study. As this review highlights, determining the level of mitigation required for induced seismic events has varied based on project location, when the review took place, whether the project utilized the International Energy Agency or DOE IS protocols, and the federal agency conducting the review. While the NEPA reviews were relatively consistent for seismic monitoring and historical evaluation of seismic events near the project location, the requirements for public outreach and mitigation for induced seismic events once stimulation has begun varied considerably between the four projects. Not all of the projects were required to notify specific community groups or local government entities before beginning the project, and only one of the reviews specifically stated the project proponent would hold meetings with the public to answer questions or address concerns.

  19. Seismic hydraulic fracture migration originated by successive deep magma pulses: The 2011-2013 seismic series associated to the volcanic activity of El Hierro Island

    Science.gov (United States)

    Díaz-Moreno, A.; Ibáñez, J. M.; De Angelis, S.; García-Yeguas, A.; Prudencio, J.; Morales, J.; Tuvè, T.; García, L.

    2015-11-01

    In this manuscript we present a new interpretation of the seismic series that accompanied eruptive activity off the coast of El Hierro, Canary Islands, during 2011-2013. We estimated temporal variations of the Gutenberg-Richter b value throughout the period of analysis, and performed high-precision relocations of the preeruptive and syneruptive seismicity using a realistic 3-D velocity model. Our results suggest that eruptive activity and the accompanying seismicity were caused by repeated injections of magma from the mantle into the lower crust. These magma pulses occurred within a small and well-defined volume resulting in the emplacement of fresh magma along the crust-mantle boundary underneath El Hierro. We analyzed the distribution of earthquake hypocenters in time and space in order to assess seismic diffusivity in the lower crust. Our results suggest that very high earthquake rates underneath El Hierro represent the response of a stable lower crust to stress perturbations with pulsatory character, linked to the injection of magma from the mantle. Magma input from depth caused large stress perturbations to propagate into the lower crust generating energetic seismic swarms. The absence of any preferential alignment in the spatial pattern of seismicity reinforces our hypothesis that stress perturbation and related seismicity, had diffusive character. We conclude that the temporal and spatial evolution of seismicity was neither tracking the path of magma migration nor it defines the boundaries of magma storage volumes such as a midcrustal sill. Our conceptual model considers pulsatory magma injection from the upper mantle and its propagation along the Moho. We suggest, within this framework, that the spatial and temporal distributions of earthquake hypocenters reflect hydraulic fracturing processes associated with stress propagation due to magma movement.

  20. Seismic detection of tornadoes

    Science.gov (United States)

    Tatom, F. B.

    1993-01-01

    Tornadoes represent the most violent of all forms of atmospheric storms, each year resulting in hundreds of millions of dollars in property damage and approximately one hundred fatalities. In recent years, considerable success has been achieved in detecting tornadic storms by means of Doppler radar. However, radar systems cannot determine when a tornado is actually in contact with the ground, expect possibly at extremely close range. At the present time, human observation is the only truly reliable way of knowing that a tornado is actually on the ground. However, considerable evidence exists indicating that a tornado in contact with the ground produces a significant seismic signal. If such signals are generated, the seismic detection and warning of an imminent tornado can become a distinct possibility. 

  1. A Percolation Perspective for Gutenburg-Richter Scaling and b-values for Fracking Assocated Seismicity

    Science.gov (United States)

    Norris, J. Q.

    2016-12-01

    Published 60 years ago, the Gutenburg-Richter law provides a universal frequency-magnitude distribution for natural and induced seismicity. The GR law is a two parameter power-law with the b-value specifying the relative frequency of small and large events. For large catalogs of natural seismicity, the observed b-values are near one, while fracking associated seismicity has observed b-values near two, indicating relatively fewer large events. We have developed a computationally inexpensive percolation model for fracking that allows us to generate large catalogs of fracking associated seismicity. Using these catalogs, we show that different power-law fitting procedures produce different b-values for the same data set. This shows that care must be taken when determining and comparing b-values for fracking associated seismicity.

  2. Observation of rotational component in digital data of mining induced seismic events

    Czech Academy of Sciences Publication Activity Database

    Kaláb, Zdeněk; Knejzlík, Jaromír; Lednická, Markéta

    2012-01-01

    Roč. 7, č. 1 (2012), s. 75-85 ISSN 1896-3145. [Ochrona środowiska w górnictwie podziemnym, odkrywkowym i otworowym. Wieliczka - Zakrzow, 16.05.2012-18.05.2012] Institutional research plan: CEZ:AV0Z30860518 Keywords : rotational component * mining induced seismic event * field measurement Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  3. Comparison of seismic sources for shallow seismic: sledgehammer and pyrotechnics

    Directory of Open Access Journals (Sweden)

    Brom Aleksander

    2015-10-01

    Full Text Available The pyrotechnic materials are one of the types of the explosives materials which produce thermal, luminous or sound effects, gas, smoke and their combination as a result of a self-sustaining chemical reaction. Therefore, pyrotechnics can be used as a seismic source that is designed to release accumulated energy in a form of seismic wave recorded by tremor sensors (geophones after its passage through the rock mass. The aim of this paper was to determine the utility of pyrotechnics for shallow seismic engineering. The work presented comparing the conventional method of seismic wave excitation for seismic refraction method like plate and hammer and activating of firecrackers on the surface. The energy released by various sources and frequency spectra was compared for the two types of sources. The obtained results did not determine which sources gave the better results but showed very interesting aspects of using pyrotechnics in seismic measurements for example the use of pyrotechnic materials in MASW.

  4. Post-seismic relaxation from geodetic and seismic data

    Directory of Open Access Journals (Sweden)

    Mikhail V. Rodkin

    2017-01-01

    Full Text Available We have examined the aftershock sequence and the post-seismic deformation process of the Parkfield earthquake (2004, M = 6, California, USA source area using GPS data. This event was chosen because of the possibility of joint analysis of data from the rather dense local GPS network (from SOPAC Internet archive and of the availability of the rather detailed aftershock sequence data (http://www.ncedc.org/ncedc/catalog-search.html. The relaxation process of post-seismic deformation prolongs about the same 400 days as the seismic aftershock process does. Thus, the aftershock process and the relaxation process in deformation could be the different sides of the same process. It should be noted that the ratio of the released seismic energy and of the GPS obtained deformation is quite different for the main shock and for the aftershock stage. The ratio of the released seismic energy to the deformation value decreases essentially for the post-shock process. The similar change in the seismic energy/deformation value ratio is valid in a few other strong earthquakes. Thus, this decrease seems typical of aftershock sequences testifying for decrease of ratio of elastic to inelastic deformation in the process of post-shock relaxation when the source area appears to be mostly fractured after the main shock occurs, but the healing process had no yet sufficient time to develop.

  5. Seismic texture classification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vinther, R.

    1997-12-31

    The seismic texture classification method, is a seismic attribute that can both recognize the general reflectivity styles and locate variations from these. The seismic texture classification performs a statistic analysis for the seismic section (or volume) aiming at describing the reflectivity. Based on a set of reference reflectivities the seismic textures are classified. The result of the seismic texture classification is a display of seismic texture categories showing both the styles of reflectivity from the reference set and interpolations and extrapolations from these. The display is interpreted as statistical variations in the seismic data. The seismic texture classification is applied to seismic sections and volumes from the Danish North Sea representing both horizontal stratifications and salt diapers. The attribute succeeded in recognizing both general structure of successions and variations from these. Also, the seismic texture classification is not only able to display variations in prospective areas (1-7 sec. TWT) but can also be applied to deep seismic sections. The seismic texture classification is tested on a deep reflection seismic section (13-18 sec. TWT) from the Baltic Sea. Applied to this section the seismic texture classification succeeded in locating the Moho, which could not be located using conventional interpretation tools. The seismic texture classification is a seismic attribute which can display general reflectivity styles and deviations from these and enhance variations not found by conventional interpretation tools. (LN)

  6. Observations of exotic inner core waves

    NARCIS (Netherlands)

    Waszek, Lauren; Deuss, A.F.|info:eu-repo/dai/nl/412396610

    2015-01-01

    The seismic structure of Earth’s inner core is highly complex, displaying strong anisotropy and further regional variations. However, few seismic waves are sensitive to the inner core and fundamental questions regarding the origin of the observed seismic features remain unanswered. Thus, new

  7. Shallow lunar structure determined from the passive seismic experiment

    International Nuclear Information System (INIS)

    Nakamura, Y.; Dorman, J.; Duennebier, F.; Lammlein, D.; Latham, G.

    1975-01-01

    Data relevant to the shallow structure of the Moon obtained at the Apollo seismic stations are compared with previously published results of the active seismic experiments. It is concluded that the lunar surface is covered by a layer of low seismic velocity (Vsub(p) approximately equal to 100 ms -1 ), which appears to be equivalent to the lunar regolith defined previously by geological observations. This layer is underlain by a zone of distinctly higher seismic velocity at all of the Apollo landing sites. The regolith thicknesses at the Apollo 11, 12, and 15 sites are estimated from the shear-wave resonance to be 4.4, 3.7, and 4.4m, respectively. These thicknesses and those determined at the other Apollo sites by the active seismic experiments appear to be correlated with the age determinations and the abundances of extra-lunar components at the sites. (Auth.)

  8. Recent Vs. Historical Seismicity Analysis For Banat Seismic Region (Western Part Of Romania)

    OpenAIRE

    Oros Eugen; Diaconescu Mihai

    2015-01-01

    The present day seismic activity from a region reflects the active tectonics and can confirm the seismic potential of the seismogenic sources as they are modelled using the historical seismicity. This paper makes a comparative analysis of the last decade seismicity recorded in the Banat Seismic Region (western part of Romania) and the historical seismicity of the region (Mw≥4.0). Four significant earthquake sequences have been recently localized in the region, three of them nearby the city of...

  9. Seismicity within the Irpinia Fault System As Monitored By Isnet (Irpinia Seismic Network) and Its Possible Relation with Fluid Storage

    Science.gov (United States)

    Festa, G.; Zollo, A.; Amoroso, O.; Ascione, A.; Colombelli, S.; Elia, L.; Emolo, A.; Martino, C.; Mazzoli, S.; Orefice, A.; Russo, G.

    2014-12-01

    ISNet (http://isnet.fisica.unina.it) is deployed in Southern Apennines along the active fault system responsible for the 1980, M 6.9 Irpinia earthquake. ISNet consists of 32 seismic stations equipped with both strong motion and velocimetric instruments (either broadband or short-period), with the aim of capture a broad set of seismic signals, from ambient noise to strong motion. Real time and near real time procedures run at ISNet with the goal of monitoring the seismicity, check possible space-time anomalies, detect seismic sequences and launch an earthquake early warning in the case of potential significant ground shaking in the area. To understand the role of fluids on the seismicity of the area, we investigated velocity and attenuation models. The former is built from accurate cross-correlation picking and S wave detection based onto polarization analysis. Joint inversion of both P and S arrival times is then based on a linearized multi-scale tomographic approach. Attenuation is instead obtained from inversion of displacement spectra, deconvolving for the source effect. High VP/VS and QS/QP >1 were found within a ~15 km wide rock volume where intense microseismicity is located. This indicates that concentration of seismicity is possibly controlled by high pore fluid pressure. This earthquake reservoir may come from a positive feedback between the seismic pumping that controls the fluid transmission through the fractured damage zone and the low permeability of cross fault barrier, increasing the fluid pore pressure within the fault bounded block. In this picture, sequences mostly occur at the base of this fluid rich layer. They show an anomalous pattern in the earthquake occurrence per magnitude classes; main events evolve with a complex source kinematics, as obtained from backprojection of apparent source time functions, indicating possible directivity effects. In this area sequences might be the key for understanding the transition between the deep

  10. Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging

    Science.gov (United States)

    Anderson, R.N.; Boulanger, A.; Bagdonas, E.P.; Xu, L.; He, W.

    1996-12-17

    The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells. 22 figs.

  11. Seismic changes industry

    International Nuclear Information System (INIS)

    Taylor, G.

    1992-01-01

    This paper discusses the growth in the seismic industry as a result of the recent increases in the foreign market. With the decline of communism and the opening of Latin America to exploration, seismic teams have moved out into these areas in support of the oil and gas industry. The paper goes on to discuss the improved technology available for seismic resolution and the subsequent use of computers to field-proof the data while the seismic team is still on-site. It also discusses the effects of new computer technology on reducing the amount of support staff that is required to both conduct and interpret seismic information

  12. National Seismic Station

    International Nuclear Information System (INIS)

    Stokes, P.A.

    1982-06-01

    The National Seismic Station was developed to meet the needs of regional or worldwide seismic monitoring of underground nuclear explosions to verify compliance with a nuclear test ban treaty. The Station acquires broadband seismic data and transmits it via satellite to a data center. It is capable of unattended operation for periods of at least a year, and will detect any tampering that could result in the transmission of unauthentic seismic data

  13. Universality in the dynamical properties of seismic vibrations

    Science.gov (United States)

    Chatterjee, Soumya; Barat, P.; Mukherjee, Indranil

    2018-02-01

    We have studied the statistical properties of the observed magnitudes of seismic vibration data in discrete time in an attempt to understand the underlying complex dynamical processes. The observed magnitude data are taken from six different geographical locations. All possible magnitudes are considered in the analysis including catastrophic vibrations, foreshocks, aftershocks and commonplace daily vibrations. The probability distribution functions of these data sets obey scaling law and display a certain universality characteristic. To investigate the universality features in the observed data generated by a complex process, we applied Random Matrix Theory (RMT) in the framework of Gaussian Orthogonal Ensemble (GOE). For all these six places the observed data show a close fit with the predictions of RMT. This reinforces the idea of universality in the dynamical processes generating seismic vibrations.

  14. Final report of the cooperative study on seismic isolation design. The second stage

    Energy Technology Data Exchange (ETDEWEB)

    Uryu, Mitsuru; Terada, Syuji; Shioya, Tsutomu (and others)

    1999-05-01

    The applicability of the seismic isolation design onto the nuclear fuel facilities, which must clear severe criteria of integrity, has been examined. Following the first stage of the cooperative study, conducted from 1988 to 1991, the second stage included critical vibration testing, seismic observation of seismic isolation building and founded buildings of non-isolation, with the objectives of clarifying the policies on critical design of seismic isolation building. Integrity of the seismic isolation piping system was tested by means of static deformation test, with variable inner water pressure and relative deformation. (Yamamoto, A.)

  15. 3D and 4D Seismic Technics Today

    Directory of Open Access Journals (Sweden)

    Marcin Marian

    2004-09-01

    Full Text Available Years ago, exploration was done through surface observations and „divining rods“ – now, it is done by satellites, microprocessors, remote sensing, and supercomputers. In the 1970´ s, the exploration success rate was 14 percent, today, it is nearly 29 percent. Not so long ago, three – dimension (3D seismic diagnostic techniques helped recover 25-50 percent of the oil in place – now, 4D seismic helps recover up to 70 percent of the oil in place. 3D and 4D seismic and earth imaging systems also help in understanding the subsurface flow of other fluids, such as groundwater and pollutants.Seismic surveys – a technique in which sound waves are bounced off underground rock struktures to reveal possible oil and gas bearing formation – are now standard fare for the modern petroleum industry. But today’s seismic methods are best at locating „structural traps“ where faults or folds in the underground rock have created zones where oil can become trapped.

  16. Overview of seismic margin insights gained from seismic PRA results

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Sues, R.H.; Campbell, R.D.

    1986-01-01

    This paper presents the findings of a study conducted under NRC and EPRI sponsorship in which published seismic PRAs were reviewed in order to gain insight to the seismic margins inherent in existing nuclear plants. The approach taken was to examine the fragilities of those components which have been found to be dominant contributors to seismic risk at plants in low-to-moderate seismic regions (SSE levels between 0.12g and 0.25g). It is concluded that there is significant margin inherent in the capacity of most critical components above the plant design basis. For ground motions less than about 0.3g, the predominant sources of seismic risk are loss of offsite power coupled with random failure of the emergency diesels, non-recoverable circuit breaker trip due to relay chatter, unanchored equipment, unreinforced non-load bearing block walls, vertical water storage tanks, systems interactions and possibly soil liquefaction. Recommendations as to which components should be reviewed in seismic margin studies for margin earthquakes less than 0.3g, between 0.3g and 0.5g, and greater than 0.5g, developed by the NRC expert panel on the quantification of seismic margins (based on the review of past PRA data, earthquake experience data, and their own personal experience) are presented

  17. Adding seismic broadband analysis to characterize Andean backarc seismicity in Argentina

    Science.gov (United States)

    Alvarado, P.; Giuliano, A.; Beck, S.; Zandt, G.

    2007-05-01

    Characterization of the highly seismically active Andean backarc is crucial for assessment of earthquake hazards in western Argentina. Moderate-to-large crustal earthquakes have caused several deaths, damage and drastic economic consequences in Argentinean history. We have studied the Andean backarc crust between 30°S and 36°S using seismic broadband data available from a previous ("the CHARGE") IRIS-PASSCAL experiment. We collected more than 12 terabytes of continuous seismic data from 22 broadband instruments deployed across Chile and Argentina during 1.5 years. Using free software we modeled full regional broadband waveforms and obtained seismic moment tensor inversions of crustal earthquakes testing for the best focal depth for each event. We also mapped differences in the Andean backarc crustal structure and found a clear correlation with different types of crustal seismicity (i.e. focal depths, focal mechanisms, magnitudes and frequencies of occurrence) and previously mapped terrane boundaries. We now plan to use the same methodology to study other regions in Argentina using near-real time broadband data available from the national seismic (INPRES) network and global seismic networks operating in the region. We will re-design the national seismic network to optimize short-period and broadband seismic station coverage for different network purposes. This work is an international effort that involves researchers and students from universities and national government agencies with the goal of providing more information about earthquake hazards in western Argentina.

  18. Ambient Seismic Noise Interferometry on the Island of Hawai`i

    Science.gov (United States)

    Ballmer, Silke

    Ambient seismic noise interferometry has been successfully applied in a variety of tectonic settings to gain information about the subsurface. As a passive seismic technique, it extracts the coherent part of ambient seismic noise in-between pairs of seismic receivers. Measurements of subtle temporal changes in seismic velocities, and high-resolution tomographic imaging are then possible - two applications of particular interest for volcano monitoring. Promising results from other volcanic settings motivate its application in Hawai'i, with this work being the first to explore its potential. The dataset used for this purpose was recorded by the Hawaiian Volcano Observatory's permanent seismic network on the Island of Hawai'i. It spans 2.5 years from 5/2007 to 12/2009 and covers two distinct sources of volcanic tremor. After applying standard processing for ambient seismic noise interferometry, we find that volcanic tremor strongly affects the extracted noise information not only close to the tremor source, but unexpectedly, throughout the island-wide network. Besides demonstrating how this long-range observability of volcanic tremor can be used to monitor volcanic activity in the absence of a dense seismic array, our results suggest that care must be taken when applying ambient seismic noise interferometry in volcanic settings. In a second step, we thus exclude days that show signs of volcanic tremor, reducing the dataset to three months, and perform ambient seismic noise tomography. The resulting two-dimensional Rayleigh wave group velocity maps for 0.1 - 0.9 Hz compare very well with images from previous travel time tomography, both, for the main volcanic structures at low frequencies as well as for smaller features at mid-to-high frequencies - a remarkable observation for the temporally truncated dataset. These robust results suggest that ambient seismic noise tomography in Hawai'i is suitable 1) to provide a three-dimensional S-wave model for the volcanoes and 2

  19. Anatomy of the high-frequency ambient seismic wave field at the TCDP borehole.

    OpenAIRE

    Hillers , Gregor; Campillo , Michel; Lin , Y.-Y.; Ma , K.F.; Roux , Philippe

    2012-01-01

    International audience; The Taiwan Chelungpu-fault Drilling Project (TCDP) installed a vertical seismic array between 950 and 1270 m depth in an active thrust fault environment. In this paper we analyze continuous noise records of the TCDP array between 1 and 16 Hz. We apply multiple array processing and noise correlation techniques to study the noise source process, properties of the propagation medium, and the ambient seismic wave field. Diurnal amplitude and slowness patterns suggest that ...

  20. Effects of seismic survey sound on cetaceans in the Northwest Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Moulton, Valerie D.; Holst, Meike [LGL Limited, Environmental Research Associates (Canada)

    2010-06-15

    Hydrocarbon exploration with marine seismic programs in the Canadian Beaufort Sea is expected to continue in the future. However the effect of those seismic surveys on cetaceans is a controversial subject, the sound emitted by airguns might result in hearing impairment or injury to marine mammals if they are at close range. The aim of this paper is to determine the behavior of cetaceans during seismic surveys. From 2003 to 2008, studies were conducted for 9180 hours over 8 seismic programs to observe the difference in number, sighting distance and behavior of marine mammals between seismic and non-seismic periods. Results showed that mysticetes and baleen whales tend to avoid the active airgun array while large toothed whales showed no difference in sighting rate and distances whether the airgun was active or not. This study showed that the effectiveness of ramping up the airgun to alert cetaceans of seismic operations depends on the species.

  1. Utilities/industries joint study on seismic isolation systems for LWR: Part II. Observed behaviors of base-isolated general buildings under real earthquakes

    International Nuclear Information System (INIS)

    Matsumura, Takao; Sato, Shoji; Kato, Muneaki

    1989-01-01

    This paper describes the observed behavior of base-isolated buildings under real earthquake conditions. These buildings were constructed by five construction companies participating in the Joint Study on Seismic Isolation Systems for lightwater reactors. All the buildings are medium- or low-height buildings of reinforced-concrete structures with combinations of laminated rubber bearing or sliding bearings and various damping devices

  2. Monitoring Instrument Performance in Regional Broadband Seismic Network Using Ambient Seismic Noise

    Science.gov (United States)

    Ye, F.; Lyu, S.; Lin, J.

    2017-12-01

    In the past ten years, the number of seismic stations has increased significantly, and regional seismic networks with advanced technology have been gradually developed all over the world. The resulting broadband data help to improve the seismological research. It is important to monitor the performance of broadband instruments in a new network in a long period of time to ensure the accuracy of seismic records. Here, we propose a method that uses ambient noise data in the period range 5-25 s to monitor instrument performance and check data quality in situ. The method is based on an analysis of amplitude and phase index parameters calculated from pairwise cross-correlations of three stations, which provides multiple references for reliable error estimates. Index parameters calculated daily during a two-year observation period are evaluated to identify stations with instrument response errors in near real time. During data processing, initial instrument responses are used in place of available instrument responses to simulate instrument response errors, which are then used to verify our results. We also examine feasibility of the tailing noise using data from stations selected from USArray in different locations and analyze the possible instrumental errors resulting in time-shifts used to verify the method. Additionally, we show an application that effects of instrument response errors that experience pole-zeros variations on monitoring temporal variations in crustal properties appear statistically significant velocity perturbation larger than the standard deviation. The results indicate that monitoring seismic instrument performance helps eliminate data pollution before analysis begins.

  3. Evidence for cross rift structural controls on deformation and seismicity at a continental rift caldera

    Science.gov (United States)

    Lloyd, Ryan; Biggs, Juliet; Wilks, Matthew; Nowacki, Andy; Kendall, J.-Michael; Ayele, Atalay; Lewi, Elias; Eysteinsson, Hjálmar

    2018-04-01

    In continental rifts structural heterogeneities, such as pre-existing faults and foliations, are thought to influence shallow crustal processes, particularly the formation of rift faults, magma reservoirs and surface volcanism. We focus on the Corbetti caldera, in the southern central Main Ethiopian Rift. We measure the surface deformation between 22nd June 2007 and 25th March 2009 using ALOS and ENVISAT SAR interferograms and observe a semi-circular pattern of deformation bounded by a sharp linear feature cross-cutting the caldera, coincident with the caldera long axis. The signal reverses in sign but is not seasonal: from June to December 2007 the region south of this structure moves upwards 3 cm relative to the north, while from December 2007 until November 2008 it subsides by 2 cm. Comparison of data taken from two different satellite look directions show that the displacement is primarily vertical. We discuss potential mechanisms and conclude that this deformation is associated with pressure changes within a shallow (statistically consistent with this fault structure, indicating that the fault has also controlled the migration of magma from a reservoir to the surface over tens of thousands of years. Spatial patterns of seismicity are consistent with a cross-rift structure that extents outside the caldera and to a depth of ∼30 km, and patterns of seismic anisotropy suggests stress partitioning occurs across the structure. We discuss the possible nature of this structure, and conclude that it is most likely associated with the Goba-Bonga lineament, which cross-cuts and pre-dates the current rift. Our observations show that pre-rift structures play an important role in magma transport and shallow hydrothermal processes, and therefore they should not be neglected when discussing these processes.

  4. Signal-to-noise ratio application to seismic marker analysis and fracture detection

    Science.gov (United States)

    Xu, Hui-Qun; Gui, Zhi-Xian

    2014-03-01

    Seismic data with high signal-to-noise ratios (SNRs) are useful in reservoir exploration. To obtain high SNR seismic data, significant effort is required to achieve noise attenuation in seismic data processing, which is costly in materials, and human and financial resources. We introduce a method for improving the SNR of seismic data. The SNR is calculated by using the frequency domain method. Furthermore, we optimize and discuss the critical parameters and calculation procedure. We applied the proposed method on real data and found that the SNR is high in the seismic marker and low in the fracture zone. Consequently, this can be used to extract detailed information about fracture zones that are inferred by structural analysis but not observed in conventional seismic data.

  5. Annual Hanford Seismic Report for Fiscal Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Clayton, Ray E.; Sweeney, Mark D.; Devary, Joseph L.; Hartshorn, Donald C.

    2010-12-27

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. During FY 2010, the Hanford Seismic Network recorded 873 triggers on the seismometer system, which included 259 seismic events in the southeast Washington area and an additional 324 regional and teleseismic events. There were 210 events determined to be local earthquakes relevant to the Hanford Site. One hundred and fifty-five earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this fiscal year were a continuation of the swarm events observed during fiscal year 2009 and reported in previous quarterly and annual reports (Rohay et al. 2009a, 2009b, 2009c, 2010a, 2010b, and 2010c). Most events were considered minor (coda-length magnitude [Mc] less than 1.0) with the largest event recorded on February 4, 2010 (3.0Mc). The estimated depths of the Wooded Island events are shallow (averaging approximately 1.5 km deep) placing the swarm within the Columbia River Basalt Group. Based upon the last two quarters (Q3 and Q4) data, activity at the Wooded Island

  6. Third Quarter Hanford Seismic Report for Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-09-30

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 771 local earthquakes during the third quarter of FY 2009. Nearly all of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this quarter is a continuation of the swarm events observed during the January – March 2009 time period and reported in the previous quarterly report (Rohay et al, 2009). The frequency of Wooded Island events has subsided with 16 events recorded during June 2009. Most of the events were considered minor (magnitude (Mc) less than 1.0) with 25 events in the 2.0-3.0 range. The estimated depths of the Wooded Island events are shallow (averaging less than 1.0 km deep) with a maximum depth estimated at 2.2 km. This places the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude of the Wooded Island events has made them undetectable to all but local area residents. However, some Hanford employees working within a few miles of the area of highest activity

  7. Injection Induced Seismicity in Carbon and Emery Counties, Utah

    Science.gov (United States)

    Brown, M. R. M.; Liu, M.

    2014-12-01

    Utah is one of the top producers of oil and natural gas in the country. Over the past 18 years, more than 4.2 billion gallons of wastewater from the petroleum industry has been injected into the Navajo Sandstone, Kayenta Formation, and Wingate Sandstone in two areas in Carbon and Emery County, Utah. We found that the seismicity rate increased significantly 3 to 5 years following the commencement of wastewater injection. The increased seismicity consists almost entirely of earthquakes with magnitudes of less than 3 and is localized in areas seismically active prior to the injection. We suggest that the marked increase in the seismicity rate was induced by pore pressure increase along pre-existing faults in these areas. We have used simple groundwater models to estimate the change in pore pressure, calculate the pore pressure diffusion rate, and evaluate the observed time gap between the start of injection and the onset of the increased seismicity in the areas surrounding the injection wells.

  8. Seismic characteristics of central Brazil crust and upper mantle: A deep seismic refraction study

    Science.gov (United States)

    Soares, J.E.; Berrocal, J.; Fuck, R.A.; Mooney, W.D.; Ventura, D.B.R.

    2006-01-01

    A two-dimensional model of the Brazilian central crust and upper mantle was obtained from the traveltime interpretation of deep seismic refraction data from the Porangatu and Cavalcante lines, each approximately 300 km long. When the lines were deployed, they overlapped by 50 km, forming an E-W transect approximately 530 km long across the Tocantins Province and western Sa??o Francisco Craton. The Tocantins Province formed during the Neoproterozoic when the Sa??o Francisco, the Paranapanema, and the Amazon cratons collided, following the subduction of the former Goia??s ocean basin. Average crustal VP and VP/VS ratios, Moho topography, and lateral discontinuities within crustal layers suggest that the crust beneath central Brazil can be associated with major geological domains recognized at the surface. The Moho is an irregular interface, between 36 and 44 km deep, that shows evidences of first-order tectonic structures. The 8.05 and 8.23 km s-1 P wave velocities identify the upper mantle beneath the Porangatu and Cavalcante lines, respectively. The observed seismic features allow for the identification of (1) the crust has largely felsic composition in the studied region, (2) the absence of the mafic-ultramafic root beneath the Goia??s magmatic arc, and (3) block tectonics in the foreland fold-and-thrust belt of the northern Brasi??lia Belt during the Neoproterozoic. Seismic data also suggested that the Bouguer gravimetric discontinuities are mainly compensated by differences in mass distribution within the lithospheric mantle. Finally, the Goia??s-Tocantins seismic belt can be interpreted as a natural seismic alignment related to the Neoproterozoic mantle domain. Copyright 2006 by the American Geophysical Union.

  9. A physical model of the Mexico City seismic response after the damaging M7.1 earthquake of September 19, 2017

    Science.gov (United States)

    Cruz-Atienza, V. M.; Tago, J.; Villafuerte, C. D.; Chaljub, E.; Sanabria-Gómez, J. D.

    2017-12-01

    Built-up on top of ancient lake deposits, Mexico City experiences some of the largest seismic site effects in the world. The M7.1 intermediate-depth earthquake of September 19, 2017 (S19) collapsed 43 one-to-ten story buildings in the city close to the western edge of the lake-bed sediments, on top of the geotechnically-known transition zone. In this work we explore the physical reasons explaining such a damaging pattern and the long-lasting strong motion records well-documented from past events by means of new observations and high performance computational modeling. Besides the extreme amplification of seismic waves, duration of intense ground motion in the lake-bed lasts more than three times those recorded in hard-rock a few kilometers away. Different mechanisms contribute to the long lasting motions, such as the regional dispersion and multiple-scattering of the incoming wavefield all the way from the source. However, recent beamforming observations at hard-rock suggest that duration of the incoming field is significantly shorter than the strong shaking in the lake-bed. We show that despite the highly dissipative shallow deposits, seismic energy can propagate long distances in the deep structure of the valley, promoting also a large elongation of motion. Our simulations reveal that the seismic response of the basin is dominated by surface-waves overtones, and that this mechanism increases the duration of ground motion up to 280% and 500% of the incoming wavefield duration at 0.5 and 0.3 Hz, respectively. Furthermore, our results indicate that the damage pattern of the S19 earthquake is most likely due to the propagation of the fundamental mode in the transition zone of the basin. These conclusions contradicts what has been previously stated from observational and modeling investigations, where the basin itself has been discarded as a preponderant factor promoting long and devastating shaking in Mexico City. Reference: Cruz-Atienza, V. M., J. Tago, J. D

  10. Seismic monitoring of soft-rock landslides: the Super-Sauze and Valoria case studies

    Science.gov (United States)

    Tonnellier, Alice; Helmstetter, Agnès; Malet, Jean-Philippe; Schmittbuhl, Jean; Corsini, Alessandro; Joswig, Manfred

    2013-06-01

    This work focuses on the characterization of seismic sources observed in clay-shale landslides. Two landslides are considered: Super-Sauze (France) and Valoria (Italy). The two landslides are developed in reworked clay-shales but differ in terms of dimensions and displacement rates. Thousands of seismic signals have been identified by a small seismic array in spite of the high-seismic attenuation of the material. Several detection methods are tested. A semi-automatic detection method is validated by the comparison with a manual detection. Seismic signals are classified in three groups based on the frequency content, the apparent velocity and the differentiation of P and S waves. It is supposed that the first group of seismic signals is associated to shearing or fracture events within the landslide bodies, while the second group may correspond to rockfalls or debris flows. A last group corresponds to external earthquakes. Seismic sources are located with an automatic beam-forming location method. Sources are clustered in several parts of the landslide in agreement with geomorphological observations. We found that the rate of rockfall and fracture events increases after periods of heavy rainfall or snowmelt. The rate of microseismicity and rockfall activity is also positively correlated with landslide displacement rates. External earthquakes did not influence the microseismic activity or the landslide movement, probably because the earthquake ground motion was too weak to trigger landslide events during the observation periods.

  11. Design approach of seismic interface for cryoline with Tokamak building for ITER

    International Nuclear Information System (INIS)

    Badgujar, S.; Sarkar, B.; Vaghela, H.; Shah, N.; Naik, H.B.

    2012-01-01

    ITER Tokamak building is designed with seismic isolation pads to protect the Tokamak components from seismic events. Two main cryolines, designated as cryolines between buildings (Mg and CP), runs from interconnection box in cryoplant building to the Tokamak building. The lines outside Tokamak building are supported by seismically non-isolated supports. The cryoline design at the interface between seismically isolated and non-isolated support systems needs to be studied to fulfill the functional requirements. One of the options for interface, universal expansion joint has been modeled in CATIA with actual thickness of each ply and inter-ply distance, analyzed in ANSYS using contact definition, as a part of the preliminary study. The bellows have been checked by design calculation as per EJMA standard for the specified movements. The paper will present approach for conceptual design of interface, problem definition and boundary conditions, methodology for analysis and preliminary results of stress pattern for expansion joints. (author)

  12. Characterization of the seismic environment at the Sanford Underground Laboratory, South Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Harms, J; Dorsher, S; Kandhasamy, S; Mandic, V [University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Acernese, F; Barone, F [Universita degli Studi di Salerno, Fisciano (Saudi Arabia) (Italy); Bartos, I; Marka, S [Columbia University, New York, NY 10027 (United States); Beker, M; Van den Brand, J F J; Rabeling, D S [Nikhef, National Institute for Subatomic Physics, Science Park 105, 1098 XG Amsterdam (Netherlands); Christensen, N; Coughlin, M [Carleton College, Northfield, MN 55057 (United States); DeSalvo, R [California Institute of Technology, Pasadena, CA 91125 (United States); Heise, J; Trancynger, T [Sanford Underground Laboratory, 630 East Summit Street, Lead, SD 57754 (United States); Mueller, G [University of Florida, Gainesville, FL 32611 (United States); Naticchioni, L [Department of Physics, University of Rome ' Sapienza' , P.le Aldo Moro 2, 00185 Rome (Italy); O' Keefe, T [Saint Louis University, 3450 Lindell Blvd., St. Louis, MO 63103 (United States); Sajeva, A, E-mail: janosch@caltech.ed [Dipartimento di Fisica ' Enrico Fermi' , Universita di Pisa, Largo Bruno Pontecorvo, Pisa (Italy)

    2010-11-21

    An array of seismometers is being developed at the Sanford Underground Laboratory, the former Homestake mine, in South Dakota to study the properties of underground seismic fields and Newtonian noise, and to investigate the possible advantages of constructing a third-generation gravitational-wave detector underground. Seismic data were analyzed to characterize seismic noise and disturbances. External databases were used to identify sources of seismic waves: ocean-wave data to identify sources of oceanic microseisms and surface wind-speed data to investigate correlations with seismic motion as a function of depth. In addition, sources of events contributing to the spectrum at higher frequencies are characterized by studying the variation of event rates over the course of a day. Long-term observations of spectral variations provide further insight into the nature of seismic sources. Seismic spectra at three different depths are compared, establishing the 4100 ft level as a world-class low seismic-noise environment.

  13. Motorized Activity on Legacy Seismic Lines: A Predictive Modeling Approach to Prioritize Restoration Efforts.

    Science.gov (United States)

    Hornseth, M L; Pigeon, K E; MacNearney, D; Larsen, T A; Stenhouse, G; Cranston, J; Finnegan, L

    2018-05-11

    Natural regeneration of seismic lines, cleared for hydrocarbon exploration, is slow and often hindered by vegetation damage, soil compaction, and motorized human activity. There is an extensive network of seismic lines in western Canada which is known to impact forest ecosystems, and seismic lines have been linked to declines in woodland caribou (Rangifer tarandus caribou). Seismic line restoration is costly, but necessary for caribou conservation to reduce cumulative disturbance. Understanding where motorized activity may be impeding regeneration of seismic lines will aid in prioritizing restoration. Our study area in west-central Alberta, encompassed five caribou ranges where restoration is required under federal species at risk recovery strategies, hence prioritizing seismic lines for restoration is of immediate conservation value. To understand patterns of motorized activity on seismic lines, we evaluated five a priori hypotheses using a predictive modeling framework and Geographic Information System variables across three landscapes in the foothills and northern boreal regions of Alberta. In the northern boreal landscape, motorized activity was most common in dry areas with a large industrial footprint. In highly disturbed areas of the foothills, motorized activity on seismic lines increased with low vegetation heights, relatively dry soils, and further from forest cutblocks, while in less disturbed areas of the foothills, motorized activity on seismic lines decreased proportional to seismic line density, slope steepness, and white-tailed deer abundance, and increased proportional with distance to roads. We generated predictive maps of high motorized activity, identifying 21,777 km of seismic lines where active restoration could expedite forest regeneration.

  14. AECB workshop on seismic hazard assessment in southern Ontario

    International Nuclear Information System (INIS)

    Stepp, J.C.; Price, R.A.; Coppersmith, K.J.; Klimkiewicz, G.C.; McGuire, R.K.

    1995-10-01

    The purpose of the workshop was to review available geological and seismological data which could affect earthquake occurrence in southern Ontario and to develop a consensus on approaches that should be adopted for characterization of seismic hazard. The workshop was structured in technical sessions to focus presentations and discussions on four technical issues relevant to seismic hazard in southern Ontario, as follows: (1) The importance of geological and geophysical observations for the determination of seismic sources, (2) Methods and approaches which may be adopted for determining seismic sources based on integrated interpretations of geological and seismological information, (3) Methods and data which should be used for characterizing the seismicity parameters of seismic sources, and (4) Methods for assessment of vibratory ground motion hazard. The format of each session involved invited presentations of relevant data followed by open presentations by participants, a general discussion focusing on the relevance of the presented information for seismic hazard assessment in southern Ontario, then development of conclusions and recommendations. In the final session, the conclusions and recommendations were summarized and an open discussion was held to develop consensus. This report presents perspective summaries of the workshop technical sessions together with conclusions and recommendations prepared by the session chairs and the general chairman. 2 refs

  15. Early estimation of epicenter seismic intensities according to co-seismic deformation

    OpenAIRE

    Weidong, Li; Chaojun, Zhang; Dahui, Li; Jiayong, He; Huizhong, Chen; Lomnitz, Cinna

    2010-01-01

    The absolute fault displacement in co-seismic deformation is derived assuming that location, depth, faulting mechanism and magnitude of the earthquake are known. The 2008 Wenchuan earthquake (M8.0) is used as an example to determine the distribution of seismic intensities using absolute displacement and a crustal model. We fnd that an early prediction of the distribution of seismic intensities after a large earthquake may be performed from the estimated absolute co-seismic displacements using...

  16. Seismic Imager Space Telescope

    Science.gov (United States)

    Sidick, Erkin; Coste, Keith; Cunningham, J.; Sievers,Michael W.; Agnes, Gregory S.; Polanco, Otto R.; Green, Joseph J.; Cameron, Bruce A.; Redding, David C.; Avouac, Jean Philippe; hide

    2012-01-01

    A concept has been developed for a geostationary seismic imager (GSI), a space telescope in geostationary orbit above the Pacific coast of the Americas that would provide movies of many large earthquakes occurring in the area from Southern Chile to Southern Alaska. The GSI movies would cover a field of view as long as 300 km, at a spatial resolution of 3 to 15 m and a temporal resolution of 1 to 2 Hz, which is sufficient for accurate measurement of surface displacements and photometric changes induced by seismic waves. Computer processing of the movie images would exploit these dynamic changes to accurately measure the rapidly evolving surface waves and surface ruptures as they happen. These measurements would provide key information to advance the understanding of the mechanisms governing earthquake ruptures, and the propagation and arrest of damaging seismic waves. GSI operational strategy is to react to earthquakes detected by ground seismometers, slewing the satellite to point at the epicenters of earthquakes above a certain magnitude. Some of these earthquakes will be foreshocks of larger earthquakes; these will be observed, as the spacecraft would have been pointed in the right direction. This strategy was tested against the historical record for the Pacific coast of the Americas, from 1973 until the present. Based on the seismicity recorded during this time period, a GSI mission with a lifetime of 10 years could have been in position to observe at least 13 (22 on average) earthquakes of magnitude larger than 6, and at least one (2 on average) earthquake of magnitude larger than 7. A GSI would provide data unprecedented in its extent and temporal and spatial resolution. It would provide this data for some of the world's most seismically active regions, and do so better and at a lower cost than could be done with ground-based instrumentation. A GSI would revolutionize the understanding of earthquake dynamics, perhaps leading ultimately to effective warning

  17. Peer review for USI A-46 and the seismic IPE

    International Nuclear Information System (INIS)

    Smith, P.; Johnson, H.

    1993-01-01

    Two major seismic re-evaluation programs are underway at many US nuclear power plants. Over 60 units are being examined as part of the Nuclear Regulatory Commission's (NRC's) Unresolved Safety Issue A46 (Seismic Qualification of Equipment in Operating Plants). In addition, almost all plants are being examined as part of the seismic portion of NRC's Individual Plant Examination of External Events for Severe Accident Vulnerabilities. Both programs require an independent peer review of the evaluation performed by the utility. This paper presents observations on peer reviews, based on the authors's experience with them. Suggestions are presented on the scope of peer review, as well as some of the unique peer review issues inherent to these seismic programs

  18. Seismic attenuation in fractured porous media: insights from a hybrid numerical and analytical model

    International Nuclear Information System (INIS)

    Ekanem, A M; Li, X Y; Chapman, M; Main, I G

    2015-01-01

    Seismic attenuation in fluid-saturated porous rocks can occur by geometric spreading, wave scattering or the internal dissipation of energy, most likely due to the squirt-flow mechanism. In principle, the pattern of seismic attenuation recorded on an array of sensors contains information about the medium, in terms of material heterogeneity and anisotropy, as well as material properties such as porosity, crack density, and pore-fluid composition and mobility. In practice, this inverse problem is challenging. Here we provide some insights into the effects of internal dissipation by analysing synthetic data produced by a hybrid numerical and analytical model for seismic wave propagation in a fractured medium embedded within a layered geological structure. The model is made up of one anisotropic and three isotropic horizontal layers. The anisotropic layer consists of a porous, fluid-saturated material containing vertically aligned inclusions representing a set of fractures. This combination allows squirt-flow to occur between the pores in the matrix and the model fractures. Our results show that the fluid mobility and the associated relaxation time of the fluid-pressure gradient control the frequency range over which attenuation occurs. This induced attenuation increases with incidence angle and azimuth away from the fracture strike-direction. Azimuthal variations in the induced attenuation are elliptical allowing the fracture orientations to be obtained from the axes of the ellipse. These observations hold out the potential of using seismic attenuation as an additional diagnostic in the characterisation of rock formations for a variety of applications including hydrocarbon exploration and production, subsurface storage of CO 2 , and geothermal energy extraction. (paper)

  19. Multicomponent seismic loss estimation on the North Anatolian Fault Zone (Turkey)

    Science.gov (United States)

    karimzadeh Naghshineh, S.; Askan, A.; Erberik, M. A.; Yakut, A.

    2015-12-01

    Seismic loss estimation is essential to incorporate seismic risk of structures into an efficient decision-making framework. Evaluation of seismic damage of structures requires a multidisciplinary approach including earthquake source characterization, seismological prediction of earthquake-induced ground motions, prediction of structural responses exposed to ground shaking, and finally estimation of induced damage to structures. As the study region, Erzincan, a city on the eastern part of Turkey is selected which is located in the conjunction of three active strike-slip faults as North Anatolian Fault, North East Anatolian Fault and Ovacik fault. Erzincan city center is in a pull-apart basin underlain by soft sediments that has experienced devastating earthquakes such as the 27 December 1939 (Ms=8.0) and the 13 March 1992 (Mw=6.6) events, resulting in extensive amount of physical as well as economical losses. These losses are attributed to not only the high seismicity of the area but also as a result of the seismic vulnerability of the constructed environment. This study focuses on the seismic damage estimation of Erzincan using both regional seismicity and local building information. For this purpose, first, ground motion records are selected from a set of scenario events simulated with the stochastic finite fault methodology using regional seismicity parameters. Then, existing building stock are classified into specified groups represented with equivalent single-degree-of-freedom systems. Through these models, the inelastic dynamic structural responses are investigated with non-linear time history analysis. To assess the potential seismic damage in the study area, fragility curves for the classified structural types are derived. Finally, the estimated damage is compared with the observed damage during the 1992 Erzincan earthquake. The results are observed to have a reasonable match indicating the efficiency of the ground motion simulations and building analyses.

  20. Comparative performance of passive devices for piping system under seismic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen, E-mail: pra_veen74@rediffmail.com [Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 (India); Jangid, R.S. [Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 (India); Reddy, G.R. [Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 (India)

    2016-03-15

    Highlights: • Correlated the analytical results obtained from the proposed analytical procedures with experimental results in the case of XPD. • Substantial reduction of the seismic response of piping system with passive devices is observed. • Significant increase in the modal damping of the piping system is noted. • There exist an optimum parameters of the passive devices. • Good amount of energy dissipation is observed by using passive devices. - Abstract: Among several passive control devices, X-plate damper, viscous damper, visco-elastic damper, tuned mass damper and multiple tuned mass dampers are popular and used to mitigate the seismic response in the 3-D piping system. In the present paper detailed studies are made to see the effectiveness of the dampers when used in 3-D piping system subjected to artificial earthquake with increasing amplitudes. The analytical results obtained using Wen's model are compared with the corresponding experimental results available which indicated a good match with the proposed analytical procedure for the X-plate dampers. It is observed that there is significant reduction in the seismic response of interest like relative displacement, acceleration and the support reaction of the piping system with passive devices. In general, the passive devices under particular optimum parameters such as stiffness and damping are very effective and practically implementable for the seismic response mitigation, vibration control and seismic requalification of piping system.

  1. Rotational motions from the 2016, Central Italy seismic sequence, as observed by an underground ring laser gyroscope

    Science.gov (United States)

    Simonelli, Andreino; Belfi, Jacopo; Beverini, Nicolò; Di Virgilio, Angela; Maccioni, Enrico; De Luca, Gaetano; Saccorotti, Gilberto; Wassermann, Joachim; Igel, Heiner

    2017-04-01

    We present analyses of rotational and translational ground motions from earthquakes recorded during October-November, 2016, in association with the Central Italy seismic-sequence. We use co-located measurements of the vertical ground rotation rate from a large ring laser gyroscope (RLG), and the three components of ground velocity from a broadband seismometer. Both instruments are positioned in a deep underground environment, within the Gran Sasso National Laboratories (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN). We collected dozen of events spanning the 3.5-5.9 Magnitude range, and epicentral distances between 40 km and 80 km. This data set constitutes an unprecedented observation of the vertical rotational motions associated with an intense seismic sequence at local distance. In theory - assuming plane wave propagation - the ratio between the vertical rotation rate and the transverse acceleration permits, in a single station approach, the estimation of apparent phase velocity in the case of SH arrivals or real phase velocity in the case of Love surface waves. This is a standard approach for the analysis of earthquakes at teleseismic distances, and the results reported by the literature are compatible with the expected phase velocities from the PREM model. Here we extend the application of the same approach to local events, thus exploring higher frequency ranges and larger rotation rate amplitudes. We use a novel approach to joint rotation/acceleration analysis based on the continuous wavelet transform (CWT). Wavelet coherence (WTC) is used as a filter for identifying those regions of the time-period plane where the rotation rate and transverse acceleration signals exhibit significant coherence. This allows retrieving estimates of phase velocities over the period range spanned by correlated arrivals. Coherency among ground rotation and translation is also observed throughout the coda of the P-wave arrival, an observation which is interpreted in

  2. Anatomy of the western Java plate interface from depth-migrated seismic images

    Science.gov (United States)

    Kopp, H.; Hindle, D.; Klaeschen, D.; Oncken, O.; Reichert, C.; Scholl, D.

    2009-01-01

    Newly pre-stack depth-migrated seismic images resolve the structural details of the western Java forearc and plate interface. The structural segmentation of the forearc into discrete mechanical domains correlates with distinct deformation styles. Approximately 2/3 of the trench sediment fill is detached and incorporated into frontal prism imbricates, while the floor sequence is underthrust beneath the d??collement. Western Java, however, differs markedly from margins such as Nankai or Barbados, where a uniform, continuous d??collement reflector has been imaged. In our study area, the plate interface reveals a spatially irregular, nonlinear pattern characterized by the morphological relief of subducted seamounts and thicker than average patches of underthrust sediment. The underthrust sediment is associated with a low velocity zone as determined from wide-angle data. Active underplating is not resolved, but likely contributes to the uplift of the large bivergent wedge that constitutes the forearc high. Our profile is located 100 km west of the 2006 Java tsunami earthquake. The heterogeneous d??collement zone regulates the friction behavior of the shallow subduction environment where the earthquake occurred. The alternating pattern of enhanced frictional contact zones associated with oceanic basement relief and weak material patches of underthrust sediment influences seismic coupling and possibly contributed to the heterogeneous slip distribution. Our seismic images resolve a steeply dipping splay fault, which originates at the d??collement and terminates at the sea floor and which potentially contributes to tsunami generation during co-seismic activity. ?? 2009 Elsevier B.V.

  3. Anatomy of the western Java plate interface from depth-migrated seismic images

    Science.gov (United States)

    Kopp, H.; Hindle, D.; Klaeschen, D.; Oncken, O.; Reichert, C.; Scholl, D.

    2009-11-01

    Newly pre-stack depth-migrated seismic images resolve the structural details of the western Java forearc and plate interface. The structural segmentation of the forearc into discrete mechanical domains correlates with distinct deformation styles. Approximately 2/3 of the trench sediment fill is detached and incorporated into frontal prism imbricates, while the floor sequence is underthrust beneath the décollement. Western Java, however, differs markedly from margins such as Nankai or Barbados, where a uniform, continuous décollement reflector has been imaged. In our study area, the plate interface reveals a spatially irregular, nonlinear pattern characterized by the morphological relief of subducted seamounts and thicker than average patches of underthrust sediment. The underthrust sediment is associated with a low velocity zone as determined from wide-angle data. Active underplating is not resolved, but likely contributes to the uplift of the large bivergent wedge that constitutes the forearc high. Our profile is located 100 km west of the 2006 Java tsunami earthquake. The heterogeneous décollement zone regulates the friction behavior of the shallow subduction environment where the earthquake occurred. The alternating pattern of enhanced frictional contact zones associated with oceanic basement relief and weak material patches of underthrust sediment influences seismic coupling and possibly contributed to the heterogeneous slip distribution. Our seismic images resolve a steeply dipping splay fault, which originates at the décollement and terminates at the sea floor and which potentially contributes to tsunami generation during co-seismic activity.

  4. Seismic monitoring experiment of raise boring in 2014

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2015-01-01

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of ONKALO. The possibility to excavate an illegal access to ONKALO has been concerned when the safeguards are discussed. Therefore all recorded explosions in the Olkiluoto area and in ONKALO are located. If a concentration of explosions is observed, the origin of that is found out. Also a concept of hidden illegal explosions, detonated at the same time as the real excavation blasts, has been examined. According to the experience gained in Olkiluoto, it can be concluded that, as long the seismic network is in operation and the results are analysed by a skilled person, it is practically impossible to do illegal undetected excavation by blasting within the Olkiluoto seismic network area. In this report a possibility of seismic monitoring of undeclared excavation done by tunnel boring machine (TBM) has been investigated. In the earlier investigations the instruments were at the ground surface and the sensors were triaxial short period (1 Hz) geophones or broadband geophones. The characteristics (frequency content, polarity and amplitude) of the continuous seismic vibration generated by TMB were studied. The onset time of the seismic signal were not distinguished. Altogether 16 new 10 kHz accelerometers were installed in boreholes inside ONKALO March 2012. The sensors comprised a new subnetwork that monitored the raise boring of two shafts done 2014, from the level -455 m to the level -290 m. The aim was to record the seismic signal generated when the drill bit hits the rock at the moment the tunnel boring begins. Altogether 113 seismic signals generated by the drill bit were located during the

  5. Seismic monitoring experiment of raise boring in 2014

    Energy Technology Data Exchange (ETDEWEB)

    Saari, J.; Malm, M. [AaF-Consult Oy, Espoo (Finland)

    2015-01-15

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of ONKALO. The possibility to excavate an illegal access to ONKALO has been concerned when the safeguards are discussed. Therefore all recorded explosions in the Olkiluoto area and in ONKALO are located. If a concentration of explosions is observed, the origin of that is found out. Also a concept of hidden illegal explosions, detonated at the same time as the real excavation blasts, has been examined. According to the experience gained in Olkiluoto, it can be concluded that, as long the seismic network is in operation and the results are analysed by a skilled person, it is practically impossible to do illegal undetected excavation by blasting within the Olkiluoto seismic network area. In this report a possibility of seismic monitoring of undeclared excavation done by tunnel boring machine (TBM) has been investigated. In the earlier investigations the instruments were at the ground surface and the sensors were triaxial short period (1 Hz) geophones or broadband geophones. The characteristics (frequency content, polarity and amplitude) of the continuous seismic vibration generated by TMB were studied. The onset time of the seismic signal were not distinguished. Altogether 16 new 10 kHz accelerometers were installed in boreholes inside ONKALO March 2012. The sensors comprised a new subnetwork that monitored the raise boring of two shafts done 2014, from the level -455 m to the level -290 m. The aim was to record the seismic signal generated when the drill bit hits the rock at the moment the tunnel boring begins. Altogether 113 seismic signals generated by the drill bit were located during the

  6. Analysis of the seismicity of Southeastern Sicily: a proposed tectonic interpretation

    Directory of Open Access Journals (Sweden)

    M. S. Barbano

    2000-06-01

    Full Text Available Southeastern Sicily is one of the Italian regions with high seismic risk and is characterised by the occurrence in the past of large destructive events (MS = 6.4-7.3 over a territory which is densely urbanised today. The main earthquakes were analysed and some minor damaging shocks reviewed to investigate the main seismogenic features of the region. The comparison between the pattern of seismicity and evidence of Quaternary tectonics allowed us to propose a first tentative, tectonic interpretation of the earthquakes. On the whole, the seismicity of SE Sicily seems distributed along regional fault systems which have had a role in the recent geodynamic evolution of the area. The Malta escarpment, the only structure whose late Quaternary-recent activity is currently known, appears the most probable source for earthquakes with about 7 magnitude. Although no evidence of tectonics subsequent to the middle Pleistocene is available for them, the Scicli line and the NE-SW fault system delimiting the northern sector of the Hyblean plateau seem seismically active with events with maximum magnitude of 5.2 and 6.4, respectively.

  7. Seismic rotation waves: basic elements of theory and recording

    Directory of Open Access Journals (Sweden)

    P. Palangio

    2003-06-01

    Full Text Available Returning to the old problem of observed rotation effects, we present the recording system and basic elements of the theory related to the rotation fi eld and its association with seismic waves. There can be many different causes leading to observed/recorded rotation effects; we can group them as follows: generation of micro-displacement motion due to asymmetry of source processes and/or due to interaction between seismic body/surface waves and medium structure; interaction between incident seismic waves and objects situated on the ground surface. New recording techniques and advanced theory of deformation in media with defects and internal (e.g., granular structure make it possible to focus our attention on the fi rst group, related to microdisplacement motion recording, which includes both rotation and twist motions. Surface rotations and twists caused directly by the action of emerging seismic waves on some objects situated on the ground surface are considered here only in the historical aspects of the problem. We present some examples of experimental results related to recording of rotation and twist components at the Ojcow Observatory, Poland, and L'Aquila Observatory, Italy, and we discuss some prospects for further research.

  8. Seismic source zone characterization for the seismic hazard assessment project PEGASOS by the Expert Group 2 (EG1b)

    International Nuclear Information System (INIS)

    Burkhard, M.; Gruenthal, G.

    2009-01-01

    A comprehensive study of the seismic hazard related to the four NNP sites in NW Switzerland was performed within the project PEGASOS. To account for the epistemic uncertainties involved in the process of the characterization of seismic source zones in the frame of probabilistic seismic hazard assessments, four different expert teams have developed and defended their models in the frame of an intensive elicitation process. Here, the results of one out of four expert groups are presented. The model of this team is based first of all on considerations regarding the large scale tectonics in the context of the Alpine collision, and neotectonic constraints for defining seismic source zones. This leads to a large scale subdivision based on the structural 'architectural' considerations with little input from the present seismicity. Each of the eight large zones was characterized by the style of present-day faulting, fault orientation, and hypo central depth distribution. A further subdivision of the larger zones is performed based on information provided by the seismicity patterns. 58 small source zones have been defined in this way, each of them characterized by the available tectonic constrains, as well as the pros and cons of different existing geologic views connected to them. Of special concern in this respect were the discussion regarding thin skinned vs. thick skinned tectonics, the tectonic origin of the 1356 Basel earthquake, the role of the Permo-Carboniferous graben structures, and finally the seismogenic orientation of faults with respect to the recent crustal stress field. The uncertainties connected to the delimitations of the small source zones have been handled in form of their regrouping, formalized by the logic tree technique. The maximum magnitudes were estimated as discretized probability distribution functions. After de-clustering the used ECOS earthquake catalogue and an analysis of data completeness as a function of time the parameters of the

  9. Forecasting Induced Seismicity Using Saltwater Disposal Data and a Hydromechanical Earthquake Nucleation Model

    Science.gov (United States)

    Norbeck, J. H.; Rubinstein, J. L.

    2017-12-01

    The earthquake activity in Oklahoma and Kansas that began in 2008 reflects the most widespread instance of induced seismicity observed to date. In this work, we demonstrate that the basement fault stressing conditions that drive seismicity rate evolution are related directly to the operational history of 958 saltwater disposal wells completed in the Arbuckle aquifer. We developed a fluid pressurization model based on the assumption that pressure changes are dominated by reservoir compressibility effects. Using injection well data, we established a detailed description of the temporal and spatial variability in stressing conditions over the 21.5-year period from January 1995 through June 2017. With this stressing history, we applied a numerical model based on rate-and-state friction theory to generate seismicity rate forecasts across a broad range of spatial scales. The model replicated the onset of seismicity, the timing of the peak seismicity rate, and the reduction in seismicity following decreased disposal activity. The behavior of the induced earthquake sequence was consistent with the prediction from rate-and-state theory that the system evolves toward a steady seismicity rate depending on the ratio between the current and background stressing rates. Seismicity rate transients occurred over characteristic timescales inversely proportional to stressing rate. We found that our hydromechanical earthquake rate model outperformed observational and empirical forecast models for one-year forecast durations over the period 2008 through 2016.

  10. Seismic studies in the southern Puna plateau and the Peruvian Andes

    Science.gov (United States)

    Calixto Mory, Frank Jimmy

    I present three studies in two regions, both within the Central Andes. In both regions it is clear that there are significant variations in the subduction geometry. I have used surface wave tomography to investigate the shear wave velocity structure beneath the southern Puna plateau and found evidence of widespread melting of the crust beneath the high elevations which correlates with a gap in intermediate depth seismicity and the recent eruptions of ignimbrite complexes. All of these observations can be explained by the delamination of the lithospheric mantle beneath it. I measured Rayleigh wave phase velocities as a function of frequency and inverted then to obtain shear wave velocities as a function of depth. The results show a high velocity body sitting above the subducting Nazca plate beneath the northern edge of the Cerro Galan ignimbrite. This high velocity body is interpreted to be the delaminated piece of lithosphere that detached and sank leading to a localized upwelling of asthenosphere that, in turn, caused widespread crustal melting leading to the eruption of the most recent ignimbrite complexes. Furthermore it is possible that this upwelling also thermally eroded the slab in this region. It is apparent that there is a significant slab gap or hole where there are very few intermediate depth earthquakes. In addition, I have used shear wave splitting analysis and shear wave splitting tomography in the southern Puna plateau to investigate the patterns of seismic anisotropy and mantle flow. The results show very complex shear wave splitting and seismic anisotropy patterns throughout the southern Puna plateau. The observations suggest that different mechanisms are driving the mantle flow from region to region. The subslab mantle outside the region where delamination took place is mostly driven by slab roll back and small degree of coupling between the subducting slab and the mantle below it. In the region apparently dominated by delamination, the subslab

  11. Construction of System for Seismic Observation in Deep Borehole (SODB) - Development of Multi-depth, High-temperature/pressure resistance seismometer

    International Nuclear Information System (INIS)

    Mamada, Yutaka

    2014-01-01

    The development of a high quality system for seismic observation in deep boreholes, the installation process at the NIIT site, and the data sharing plan for this observation were explained. The key points of the development were high temperature resistance (150 degrees Celsius), high pressure resistance (30 MPa), and a high dynamic/wide frequency range seismometer which allows for observation of micro-tremor to strong motions as well as a cascade-connection-type borehole seismometer, which allows multiple probes to be set at several depths in a single borehole. The developed system consists of broadband (0.1-50 Hz) and high dynamic range (up to 1000 gal) seismometer with electronic parts on the ground and only the pendulum part in the borehole (it became a servo-type seismometer). Durability and maintenance may be issues in the future. (author)

  12. INSPIRE Project (IoNospheric Sounding for Pre-seismic anomalies Identification REsearch): Main Results and Future Prospects

    Science.gov (United States)

    Pulinets, S. A.; Andrzej, K.; Hernandez-Pajares, M.; Cherniak, I.; Zakharenkova, I.; Rothkaehl, H.; Davidenko, D.

    2017-12-01

    The INSPIRE project is dedicated to the study of physical processes and their effects in ionosphere which could be determined as earthquake precursors together with detailed description of the methodology of ionospheric pre-seismic anomalies definition. It was initiated by ESA and carried out by international consortium. The physical mechanisms of the ionospheric pre-seismic anomalies generation from ground to the ionosphere altitudes were formulated within framework of the Lithosphere-Atmosphere-Ionosphere-Magnetosphere Coupling (LAIMC) model (Pulinets et al., 2015). The general algorithm for the identification of the ionospheric precursors was formalized which also takes into account the external Space Weather factors able to generate the false alarms. Importance of the special stable pattern called the "precursor mask" was highlighted which is based on self-similarity of pre-seismic ionospheric variations. The role of expert decision in pre-seismic anomalies interpretation for generation of seismic warning is important as well. The algorithm performance of the LAIMC seismo-ionospheric effect detection module has been demonstrated using the L'Aquila 2009 earthquake as a case study. The results of INSPIRE project have demonstrated that the ionospheric anomalies registered before the strong earthquakes could be used as reliable precursors. The detailed classification of the pre-seismic anomalies was presented in different regions of the ionosphere and signatures of the pre-seismic anomalies as detected by ground and satellite based instruments were described what clarified methodology of the precursor's identification from ionospheric multi-instrumental measurements. Configuration for the dedicated multi-observation experiment and satellite payload was proposed for the future implementation of the INSPIRE project results. In this regard the multi-instrument set can be divided by two groups: space equipment and ground-based support, which could be used for real

  13. Seismic Studies

    Energy Technology Data Exchange (ETDEWEB)

    R. Quittmeyer

    2006-09-25

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground

  14. Seismic Studies

    International Nuclear Information System (INIS)

    R. Quittmeyer

    2006-01-01

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at

  15. Test of a new method for seismic indices and granulation parameters extraction

    Directory of Open Access Journals (Sweden)

    Peralta R. A.

    2015-01-01

    Full Text Available In the framework of the data base project SSI (Stellar Seismic Indicesb, we have developed and tested a new method aiming at optimizing the simultaneous measurement of both the seismic indices characterizing the oscillations (Δν, νmax and the indices characterizing the granulation signature. Here, we describe this method which is intended to take advantage of the MLE (maximum likelihood estimate algorithm combined with the parametrized representation of the red giants pulsation spectrum following the Universal Pattern [6]. We report its performances tested on Monte Carlo simulations.

  16. Annual Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-12-29

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. During fiscal year 2008, the Hanford Seismic Network recorded 1431 triggers on the seismometer system, which included 112 seismic events in the southeast Washington area and an additional 422 regional and teleseismic events. There were 74 events determined to be local earthquakes relevant to the Hanford Site. The highest-magnitude event (3.7 Mc) occurred on May 18, 2008, and was located approximately 17 km east of Prosser at a depth of 20.5 km. With regard to the depth distribution, 13 earthquakes were located at shallow depths (less than 4 km, most likely in the Columbia River basalts), 45 earthquakes were located at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and 16 earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, 54 earthquakes were located in swarm areas and 20 earthquakes were classified as random events. The May 18 earthquake was the highest magnitude event recorded since 1975 in the vicinity of the Hanford Site (between 46 degrees and 47 degrees north latitude and

  17. Application of high-precision 3D seismic technology to shale gas exploration: A case study of the large Jiaoshiba shale gas field in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Zuqing Chen

    2016-03-01

    Full Text Available The accumulation pattern of the marine shale gas in South China is different from that in North America. The former has generally thin reservoirs and complex preservation conditions, so it is difficult to make a fine description of the structural features of shale formations and to reflect accurately the distribution pattern of high-quality shale by using the conventional 2D and 3D seismic exploration technology, which has an adverse effect on the successful deployment of horizontal wells. In view of this, high-precision 3D seismic prospecting focusing on lithological survey was implemented to make an accurate description of the distribution of shale gas sweet spots so that commercial shale gas production can be obtained. Therefore, due to the complex seismic geological condition of Jiaoshiba area in Fuling, SE Sichuan Basin, the observation system of high-precision 3D seismic acquisition should have such features as wide-azimuth angles, small trace intervals, high folds, uniform vertical and horizontal coverage and long spread to meet the needs of the shale gas exploration in terms of structural interpretation, lithological interpretation and fracture prediction. Based on this idea, the first implemented high-precision 3D seismic exploration project in Jiaoshiba area played an important role in the discovery of the large Jiaoshiba shale gas field. Considering that the high-quality marine shale in the Sichuan Basin shows the characteristics of multi-layer development from the Silurian system to the Cambrian system, the strategy of shale gas stereoscopic exploration should be implemented to fully obtain the oil and gas information of the shallow, medium and deep strata from the high-precision 3D seismic data, and ultimately to expand the prospecting achievements in an all-round way to balance the high upstream exploration cost, and to continue to push the efficient shale gas exploration and development process in China.

  18. Seismic qualification of equipment

    International Nuclear Information System (INIS)

    Heidebrecht, A.C.; Tso, W.K.

    1983-03-01

    This report describes the results of an investigation into the seismic qualification of equipment located in CANDU nuclear power plants. It is particularly concerned with the evaluation of current seismic qualification requirements, the development of a suitable methodology for the seismic qualification of safety systems, and the evaluation of seismic qualification analysis and testing procedures

  19. Geomorphology and seismic risk

    Science.gov (United States)

    Panizza, Mario

    1991-07-01

    The author analyses the contributions provided by geomorphology in studies suited to the assessment of seismic risk: this is defined as function of the seismic hazard, of the seismic susceptibility, and of the vulnerability. The geomorphological studies applicable to seismic risk assessment can be divided into two sectors: (a) morpho-neotectonic investigations conducted to identify active tectonic structures; (b) geomorphological and morphometric analyses aimed at identifying the particular situations that amplify or reduce seismic susceptibility. The morpho-neotectonic studies lead to the identification, selection and classification of the lineaments that can be linked with active tectonic structures. The most important geomorphological situations that can condition seismic susceptibility are: slope angle, debris, morphology, degradational slopes, paleo-landslides and underground cavities.

  20. Rotational motions from the 2016, Central Italy seismic sequence, as observed by an underground ring laser gyroscope

    Science.gov (United States)

    Simonelli, A.; Igel, H.; Wassermann, J.; Belfi, J.; Di Virgilio, A.; Beverini, N.; De Luca, G.; Saccorotti, G.

    2018-05-01

    We present the analysis of rotational and translational ground motions from earthquakes recorded during October/November, 2016, in association with the Central Italy seismic-sequence. We use co-located measurements of the vertical ground rotation rate from a large ring laser gyroscope (RLG), and the three components of ground velocity from a broadband seismometer. Both instruments are positioned in a deep underground environment, within the Gran Sasso National Laboratories (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN). We collected dozens of events spanning the 3.5-5.9 Magnitude range, and epicentral distances between 30 km and 70 km. This data set constitutes an unprecedented observation of the vertical rotational motions associated with an intense seismic sequence at local distance. Under the plane wave approximation we process the data set in order to get an experimental estimation of the events back azimuth. Peak values of rotation rate (PRR) and horizontal acceleration (PGA) are markedly correlated, according to a scaling constant which is consistent with previous measurements from different earthquake sequences. We used a prediction model in use for Italy to calculate the expected PGA at the recording site, obtaining consequently predictions for PRR. Within the modeling uncertainties, predicted rotations are consistent with the observed ones, suggesting the possibility of establishing specific attenuation models for ground rotations, like the scaling of peak velocity and peak acceleration in empirical ground-motion prediction relationships. In a second step, after identifying the direction of the incoming wave-field, we extract phase velocity data using the spectral ratio of the translational and rotational components.. This analysis is performed over time windows associated with the P-coda, S-coda and Lg phase. Results are consistent with independent estimates of shear-wave velocities in the shallow crust of the Central Apennines.

  1. High Resolution Vertical Seismic Profile from the Chicxulub IODP/ICDP Expedition 364 Borehole: Wave Speeds and Seismic Reflectivity.

    Science.gov (United States)

    Nixon, C.; Kofman, R.; Schmitt, D. R.; Lofi, J.; Gulick, S. P. S.; Christeson, G. L.; Saustrup, S., Sr.; Morgan, J. V.

    2017-12-01

    We acquired a closely-spaced vertical seismic profile (VSP) in the Chicxulub K-Pg Impact Crater drilling program borehole to calibrate the existing surface seismic profiles and provide complementary measurements of in situ seismic wave speeds. Downhole seismic records were obtained at spacings ranging from 1.25 m to 5 m along the borehole from 47.5 m to 1325 mwsf (meters wireline below sea floor) (Fig 1a) using a Sercel SlimwaveTM geophone chain (University of Alberta). The seismic source was a 30/30ci Sercel Mini GI airgun (University of Texas), fired a minimum of 5 times per station. Seismic data processing used a combination of a commercial processing package (Schlumberger's VISTA) and MatlabTM codes. The VSP displays detailed reflectivity (Fig. 1a) with the strongest reflection seen at 600 mwsf (280 ms one-way time), geologically corresponding to the sharp contact between the post-impact sediments and the target peak ring rock, thus confirming the pre-drilling interpretations of the seismic profiles. A two-way time trace extracted from the separated up-going wavefield matches the major reflection both in travel time and character. In the granitic rocks that form the peak ring of the Chicxulub impact crater, we observe P-wave velocities of 4000-4500 m/s which are significantly less than the expected values of granitoids ( 6000 m/s) (Fig. 1b). The VSP measured wave speeds are confirmed against downhole sonic logging and in laboratory velocimetry measurements; these data provide additional evidence that the crustal material displaced by the impact experienced a significant amount of damage. Samples and data provided by IODP. Samples can be requested at http://web.iodp.tamu.edu/sdrm after 19 October 2017. Expedition 364 was jointly funded by ECORD, ICDP, and IODP with contributions and logistical support from the Yucatan State Government and UNAM. The downhole seismic chain and wireline system is funded by grants to DRS from the Canada Foundation for Innovation and

  2. Studies Of Infrasonic Propagation Using Dense Seismic Networks

    Science.gov (United States)

    Hedlin, M. A.; deGroot-Hedlin, C. D.; Drob, D. P.

    2011-12-01

    Although there are approximately 100 infrasonic arrays worldwide, more than ever before, the station density is still insufficient to provide validation for detailed propagation modeling. Relatively large infrasonic signals can be observed on seismic channels due to coupling at the Earth's surface. Recent research, using data from the 70-km spaced 400-station USArray and other seismic network deployments, has shown the value of dense seismic network data for filling in the gaps between infrasonic arrays. The dense sampling of the infrasonic wavefield has allowed us to observe complete travel-time branches of infrasound and address important research problems in infrasonic propagation. We present our analysis of infrasound created by a series of rocket motor detonations that occurred at the UTTR facility in Utah in 2007. These data were well recorded by the USArray seismometers. We use the precisely located blasts to assess the utility of G2S mesoscale models and methods to synthesize infrasonic propagation. We model the travel times of the branches using a ray-based approach and the complete wavefield using a FDTD algorithm. Although results from both rays and FDTD approaches predict the travel times to within several seconds, only about 40% of signals are predicted using rays largely due to penetration of sound into shadow zones. FDTD predicts some sound penetration into the shadow zone, but the observed shadow zones, as defined by the seismic data, have considerably narrower spatial extent than either method predicts, perhaps due to un-modeled small-scale structure in the atmosphere.

  3. Seismic b-values and its correlation with seismic moment and Bouguer gravity anomaly over Indo-Burma ranges of northeast India: Tectonic implications

    Science.gov (United States)

    Bora, Dipok K.; Borah, Kajaljyoti; Mahanta, Rinku; Borgohain, Jayanta Madhab

    2018-03-01

    b-value is one of the most significant seismic parameters for describing the seismicity of a given region at a definite time window. In this study, high-resolution map of the Gutenberg-Richter b-value, seismic moment-release, Bouguer gravity anomaly and fault-plane solutions containing faulting styles are analyzed in the Indo-Burma ranges of northeast India using the unified and homogeneous part of the seismicity record in the region (January 1964-December 2016). The study region is subdivided into few square grids of geographical window size 1° × 1° and b-values are calculated in each square grid. Our goal is to explore the spatial correlations and anomalous patterns between the b-value and parameters like seismic moment release, Bouguer gravity anomaly and faulting styles that can help us to better understand the seismotectonics and the state of present-day crustal stress within the Indo-Burma region. Most of the areas show an inverse correlation between b-value and seismic moment release as well as convergence rates. While estimating the b-value as a function of depth, a sudden increase of b-value at a depth of 50-60 km was found out and the receiver function modeling confirms that this depth corresponds to the crust-mantle transition beneath the study region. The region is also associated with negative Bouguer gravity anomalies and an inverse relation is found between Gravity anomaly and b-value. Comparing b-values with different faulting styles, reveal that the areas containing low b-values show thrust mechanism, while the areas associated with intermediate b-values show strike-slip mechanism. Those areas, where the events show thrust mechanism but containing a strike-slip component has the highest b-value.

  4. Crustal Deformation around Zhangjiakou-Bohai Seismically Active Belt

    Science.gov (United States)

    Jin, H.; Fu, G.; Kato, T.

    2011-12-01

    Zhangjiakou-Bohai belt is a seismically active belt located in Northern China around Beijing, the capital of China. Near such a belt many great earthquakes occurred in the past centuries (e.g. the 1976 Tanshan Ms7.8 earthquake, the 1998 Zhangbei Ms6.2 earthquake, etc). Chinese Government established dense permanent and regional Global Positioning System (GPS) stations in and near the area. We collected and analyzed all the GPS observation data between 1999 and 2009 around Zhangjiakou-Bohai seismic belt, and obtained velocities at 143 stations. At the same time we investigated Zhangjiakou-Bohai belt slip rate for three profiles from northwest to southeast, and constructed a regional strain field on the Zhangjiakou-Bohai seismic belt region by least-square collocation. Based on the study we found that: 1) Nowadays the Zhangjiakou-Bohai seismic belt is creeping with left-lateral slip rate of 2.0mm~2.4mm/a, with coupling depth of 35~50km; 2) In total, the slip and coupling depth of the northwestern seismic belt is less than the one of southeast side; 3) The maximum shear strain is about 3×10-8 at Beijing-Tianjin-Tangshan area.

  5. Seismic ground motion modelling and damage earthquake scenarios: A bridge between seismologists and seismic engineers

    International Nuclear Information System (INIS)

    Panza, G.F.; Romanelli, F.; Vaccari. F.; . E-mails: Luis.Decanini@uniroma1.it; Fabrizio.Mollaioli@uniroma1.it)

    2002-07-01

    The input for the seismic risk analysis can be expressed with a description of 'roundshaking scenarios', or with probabilistic maps of perhaps relevant parameters. The probabilistic approach, unavoidably based upon rough assumptions and models (e.g. recurrence and attenuation laws), can be misleading, as it cannot take into account, with satisfactory accuracy, some of the most important aspects like rupture process, directivity and site effects. This is evidenced by the comparison of recent recordings with the values predicted by the probabilistic methods. We prefer a scenario-based, deterministic approach in view of the limited seismological data, of the local irregularity of the occurrence of strong earthquakes, and of the multiscale seismicity model, that is capable to reconcile two apparently conflicting ideas: the Characteristic Earthquake concept and the Self Organized Criticality paradigm. Where the numerical modeling is successfully compared with records, the synthetic seismograms permit the microzoning, based upon a set of possible scenario earthquakes. Where no recordings are available the synthetic signals can be used to estimate the ground motion without having to wait for a strong earthquake to occur (pre-disaster microzonation). In both cases the use of modeling is necessary since the so-called local site effects can be strongly dependent upon the properties of the seismic source and can be properly defined only by means of envelopes. The joint use of reliable synthetic signals and observations permits the computation of advanced hazard indicators (e.g. damaging potential) that take into account local soil properties. The envelope of synthetic elastic energy spectra reproduces the distribution of the energy demand in the most relevant frequency range for seismic engineering. The synthetic accelerograms can be fruitfully used for design and strengthening of structures, also when innovative techniques, like seismic isolation, are employed. For these

  6. Seismic Investigations of the Crust and Upper Mantle Structure in Antarctica and Madagascar

    Science.gov (United States)

    Ramirez, Cristo

    In the three studies that form this dissertation, seismic data from Antarctica and Madagascar have been analyzed to obtain new insights into crustal structure and mantle flow. Until recently, there have been little seismic data available from these areas for interrogating Earth structure and processes. In Antarctica, I analyzed datasets from temporary deployments of broadband seismic stations in both East and West Antarctica. In Madagascar, I analyzed data from a temporary network of broadband stations, along with data from three permanent stations. The seismic data have been processed and modeled using a wide range of techniques to characterize crust and mantle structure. Crustal structure in the East Antarctic Craton resembles Precambrian terrains around the world in its thickness and shear wave velocities. The West Antarctic Rift System has thinner crust, consistent with crustal thickness beneath other Cretaceous rifts. The Transantarctic Mountains show thickening of the crust from the costal regions towards the interior of the mountain range, and high velocities in the lower crust at several locations, possibly resulting from the Ferrar magmatic event. Ross Island and Marie Byrd Land Dome have elevated crustal Vp/Vs ratios, suggesting the presence of partial melt and/or volcaniclastic material within the crust. The pattern of seismic anisotropy in Madagascar is complex and cannot arise solely due to mantle flow from the African superplume, as previously proposed. To explain the complex pattern of anisotropy, a combination of mechanisms needs to be invoked, including mantle flow from the African superplume, mantle flow from the Comoros hotspot, small scale upwelling in the mantle induced by lithospheric delamination, and fossil anisotropy in the lithospheric mantle along Precambrian shear zones.

  7. Investigating circular patterns in linear polarization observations of Venus

    NARCIS (Netherlands)

    Mahapatra, G.; Stam, D.M.; Rossi, L.C.G.; Rodenhuis, M.; Snik, Frans; Keller, C.U.

    2017-01-01

    In this work, we analyse linear polarization data of the planet at a distance, obtained with the Extreme Polarimeter (ExPo) on the William Herschel Telescope
    on La Palma. These spatially resolved, high-accuracy polarization observations of Venus show faint circular patterns centered on the

  8. Seismic proving test of process computer systems with a seismic floor isolation system

    International Nuclear Information System (INIS)

    Fujimoto, S.; Niwa, H.; Kondo, H.

    1995-01-01

    The authors have carried out seismic proving tests for process computer systems as a Nuclear Power Engineering Corporation (NUPEC) project sponsored by the Ministry of International Trade and Industry (MITI). This paper presents the seismic test results for evaluating functional capabilities of process computer systems with a seismic floor isolation system. The seismic floor isolation system to isolate the horizontal motion was composed of a floor frame (13 m x 13 m), ball bearing units, and spring-damper units. A series of seismic excitation tests was carried out using a large-scale shaking table of NUPEC. From the test results, the functional capabilities during large earthquakes of computer systems with a seismic floor isolation system were verified

  9. Magnetic enhancement and softening of fault gouges during seismic slip: Laboratory observation and implications

    Science.gov (United States)

    Yang, T.; Chen, J.; Dekkers, M. J.

    2017-12-01

    Anomalous rock magnetic properties have been reported in slip zones of many previous earthquakes (e.g., the 1995 Kobe earthquake, Japan; the 1999 Chi-Chi earthquake, Taiwan, and the 2008 Wenchuan earthquake, China). However, it is unclear whether short-duration frictional heating can actually induce such rock magnetic anomalies in fault zones; identification of this process in natural fault zones is not that straightforward. A promising approach to solve this problem is to conduct high-velocity friction (HVF) experiments that reproduce seismic fault movements and frictional heating in a simulated fault zone. Afterwards natural fault zones can be analyzed with renewed insight. Our HVF experiments on fault gouges that are simulating large amounts of earthquake slip, show significant magnetic enhancement and softening of sheared gouges. Mineral magnetic measurements reveal that magnetite was formed due to thermal decomposition of smectite during the HVF experiment on the paramagnetic fault gouge. Also, goethite was transformed to intermediate magnetite during the HVF experiment on the goethite-bearing fault gouge. Magnetic susceptibility, saturation remanence and saturation magnetization of sheared samples are linearly increasing with and strongly depend on the temperature rise induced by frictional heating; in contrast, coecivities are decreasing with increasing temperature. Thus, frictional heating can induce thermal decomposition/transformation during short-duration, high-velocity seismic slip, leading to magnetic enhancement and softening of a slip zone. Mineral magnetic methods are suited for diagnosing earthquake slip and estimating the temperature rise of co-seismic frictional heating.

  10. Multi-hole seismic modeling in 3-D space and cross-hole seismic tomography analysis for boulder detection

    Science.gov (United States)

    Cheng, Fei; Liu, Jiangping; Wang, Jing; Zong, Yuquan; Yu, Mingyu

    2016-11-01

    A boulder stone, a common geological feature in south China, is referred to the remnant of a granite body which has been unevenly weathered. Undetected boulders could adversely impact the schedule and safety of subway construction when using tunnel boring machine (TBM) method. Therefore, boulder detection has always been a key issue demanded to be solved before the construction. Nowadays, cross-hole seismic tomography is a high resolution technique capable of boulder detection, however, the method can only solve for velocity in a 2-D slice between two wells, and the size and central position of the boulder are generally difficult to be accurately obtained. In this paper, the authors conduct a multi-hole wave field simulation and characteristic analysis of a boulder model based on the 3-D elastic wave staggered-grid finite difference theory, and also a 2-D imaging analysis based on first arrival travel time. The results indicate that (1) full wave field records could be obtained from multi-hole seismic wave simulations. Simulation results describe that the seismic wave propagation pattern in cross-hole high-velocity spherical geological bodies is more detailed and can serve as a basis for the wave field analysis. (2) When a cross-hole seismic section cuts through the boulder, the proposed method provides satisfactory cross-hole tomography results; however, when the section is closely positioned to the boulder, such high-velocity object in the 3-D space would impact on the surrounding wave field. The received diffracted wave interferes with the primary wave and in consequence the picked first arrival travel time is not derived from the profile, which results in a false appearance of high-velocity geology features. Finally, the results of 2-D analysis in 3-D modeling space are comparatively analyzed with the physical model test vis-a-vis the effect of high velocity body on the seismic tomographic measurements.

  11. Seismic gaps and plate tectonics: seismic potential for major boundaries

    Energy Technology Data Exchange (ETDEWEB)

    McCann, W R; Nishenko, S P; Sykes, L R; Krause, J

    1979-01-01

    The theory of plate tectonics provides a basic framework for evaluating the potential for future great earthquakes to occur along major plate boundaries. Along most of the transform and convergent plate boundaries considered in this paper, the majority of seismic slip occurs during large earthquakes, i.e., those of magnitude 7 or greater. The concepts that rupture zones, as delineated by aftershocks, tend to abut rather than overlap, and large events occur in regions with histories of both long-and short-term seismic quiescence are used in this paper to delineate major seismic gaps. The term seismic gap is taken to refer to any region along an active plate boundary that has not experienced a large thrust or strike-slip earthquake for more than 30 years. A region of high seismic potential is a seismic gap that, for historic or tectonic reasons, is considered likely to produce a large shock during the next few decades. The seismic gap technique provides estimates of the location, size of future events and origin time to within a few tens of years at best. The accompanying map summarizes six categories of seismic potential for major plate boundaries in and around the margins of the Pacific Ocean and the Caribbean, South Sandwich and Sunda (Indonesia) regions for the next few decades. These six categories are meant to be interpreted as forecasts of the location and size of future large shocks and should not be considered to be predictions in which a precise estimate of the time of occurrence is specified. The categories of potential assigned here provide a rationale for assigning priorities for instrumentation, for future studies aimed at predicting large earthquakes and for making estimates of tsunami potential.

  12. Recent Vs. Historical Seismicity Analysis For Banat Seismic Region (Western Part Of Romania

    Directory of Open Access Journals (Sweden)

    Oros Eugen

    2015-03-01

    Full Text Available The present day seismic activity from a region reflects the active tectonics and can confirm the seismic potential of the seismogenic sources as they are modelled using the historical seismicity. This paper makes a comparative analysis of the last decade seismicity recorded in the Banat Seismic Region (western part of Romania and the historical seismicity of the region (Mw≥4.0. Four significant earthquake sequences have been recently localized in the region, three of them nearby the city of Timisoara (January 2012 and March 2013 and the fourth within Hateg Basin, South Carpathians (October 2013. These sequences occurred within the epicentral areas of some strong historical earthquakes (Mw≥5.0. The main events had some macroseismic effects on people up to some few kilometers from the epicenters. Our results update the Romanian earthquakes catalogue and bring new information along the local seismic hazard sources models and seismotectonics.

  13. Some possible correlations between electro-magnetic emission and seismic activity during West Bohemia 2008 earthquake swarm

    Directory of Open Access Journals (Sweden)

    P. Kolář

    2010-10-01

    Full Text Available A potential link between electromagnetic emission (EME and seismic activity (SA has been the subject of scientific speculations for a long time. EME versus SA relations obtained during the 2008 earthquake swarm which occurred in West Bohemia are presented. First, a brief characterisation of the seismic region and then the EME recording method and data analysis will be described. No simple direct link between EME and SA intensity was observed, nevertheless a deeper statistical analysis indicates: (i slight increase of EME activity in the time interval 60 to 30 min before a seismic event with prevalent periods about 10 min, (ii some gap in EME activity approximately 2 h after the event, and (iii again a flat maximum about 4 h after the seismic events. These results qualitatively correspond with the observations from other seismically active regions (Fraser-Smith et al., 1990. The global decrease of EME activity correlating with the swarm activity decay was also observed. Due to the incomplete EME data and short observation time, these results are limited in reliability and are indicative only.

  14. Investigation of error estimation method of observational data and comparison method between numerical and observational results toward V and V of seismic simulation

    International Nuclear Information System (INIS)

    Suzuki, Yoshio; Kawakami, Yoshiaki; Nakajima, Norihiro

    2017-01-01

    The method to estimate errors included in observational data and the method to compare numerical results with observational results are investigated toward the verification and validation (V and V) of a seismic simulation. For the method to estimate errors, 144 literatures for the past 5 years (from the year 2010 to 2014) in the structure engineering field and earthquake engineering field where the description about acceleration data is frequent are surveyed. As a result, it is found that some processes to remove components regarded as errors from observational data are used in about 30% of those literatures. Errors are caused by the resolution, the linearity, the temperature coefficient for sensitivity, the temperature coefficient for zero shift, the transverse sensitivity, the seismometer property, the aliasing, and so on. Those processes can be exploited to estimate errors individually. For the method to compare numerical results with observational results, public materials of ASME V and V Symposium 2012-2015, their references, and above 144 literatures are surveyed. As a result, it is found that six methods have been mainly proposed in existing researches. Evaluating those methods using nine items, advantages and disadvantages for those methods are arranged. The method is not well established so that it is necessary to employ those methods by compensating disadvantages and/or to search for a solution to a novel method. (author)

  15. Delineation of seismic source zones based on seismicity parameters ...

    Indian Academy of Sciences (India)

    these source zones were evaluated and were used in the hazard evaluation. ... seismic sources, linear and areal, were considered in the present study to model the seismic sources in the ..... taken as an authentic reference manual for iden-.

  16. Micro-seismicity and seismic moment release within the Coso Geothermal Field, California

    Science.gov (United States)

    Kaven, Joern; Hickman, Stephen H.; Davatzes, Nicholas C.

    2014-01-01

    We relocate 16 years of seismicity in the Coso Geothermal Field (CGF) using differential travel times and simultaneously invert for seismic velocities to improve our knowledge of the subsurface geologic and hydrologic structure. We expand on our previous results by doubling the number of relocated events from April 1996 through May 2012 using a new field-wide 3-D velocity model. Relocated micro-seismicity sharpens in many portions of the active geothermal reservoir, likely defining large-scale fault zones and fluid pressure compartment boundaries. However, a significant fraction of seismicity remains diffuse and does not cluster into sharply defined structures, suggesting that permeability is maintained within the reservoir through distributed brittle failure. The seismic velocity structure reveals heterogeneous distributions of compressional (Vp) and shear (Vs) wave speed, with Vs generally higher in the Main Field and East Flank and Vp remaining relatively uniform across the CGF, but with significant local variations. The Vp/Vs ratio appears to outline the two main producing compartments of the reservoir at depths below mean ground level of approximately 1 to 2.5 km, with a ridge of relatively high Vp/Vs separating the Main Field from the East Flank. Detailed analyses of spatial and temporal variations in earthquake relocations and cumulative seismic moment release in the East Flank reveal three regions with persistently high rates of seismic activity. Two of these regions exhibit sharp, stationary boundaries at the margins of the East Flank that likely represent barriers to fluid flow and advective heat transport. However, seismicity and moment release in a third region at the northern end of the East Flank spread over time to form an elongated NE to SW structure, roughly parallel both to an elongated cluster of seismicity at the southern end of the East Flank and to regional fault traces mapped at the surface. Our results indicate that high

  17. Seismic velocity and attenuation structures at the top 400 km of the inner core

    Science.gov (United States)

    Yu, W.; Wen, L.; Niu, F.

    2002-12-01

    Recent seismic studies reveal an ``east-west" hemispherical difference in seismic velocity and attenuation in the top of the inner core [Niu and Wen, 2001, Wen and Niu, 2002]. The PKiKP-PKIKP observations they used only allowed them to constrain the seismic structure in the top 80 km of the inner core. The question now arises as such to what depth this hemispherical difference persists. To answer this question, we combine the PKiKP-PKIKP dataset and the PKPbc-PKIKP observations at the distance range of 147o-160o to study seismic velocity and attenuation structures in the top 400 km of the inner core along the ``equatorial paths" (the paths whose ray angles > 35o from the polar direction). We select PKPbc-PKIKP waveforms from recordings in the Global Seismic Network (GSN) and several dense regional seismic arrays. We choose recordings for events from 1990 to 2000 with simple source time functions, so only those of intermediate and deep earthquakes are used. The observed PKPbc-PKIKP differential travel times and PKIKP/PKPbc amplitude ratios exhibit an ``east-west" hemispherical difference. The PKPbc-PKIKP travel time residuals are about 0.7 second larger for those sampling the ``eastern" hemisphere than those sampling the ``western" hemisphere. The PKIKP/PKPbc amplitude ratios are generally smaller for those sampling the ``eastern" hemisphere. We construct two seismic velocity and attenuation models, with one for each ``hemisphere", by iteratively modeling the observed PKiKP-PKIKP waveforms, the PKPbc-PKIKP differential travel times and the PKIKP/PKPbc amplitude ratios. For the ``eastern" hemisphere, the observations indicate that the E1 velocity gradient and Q structure, inferred from the PKiKP-PKIKP observations sampling the top 80 km of the inner core, extend at least to 230 km inside the inner core. A change of velocity gradient and Q value is required in the deeper portion of the inner core. For the ``western" hemisphere, on the other hand, W2 velocity gradient

  18. A comparative study of two statistical approaches for the analysis of real seismicity sequences and synthetic seismicity generated by a stick-slip experimental model

    Science.gov (United States)

    Flores-Marquez, Leticia Elsa; Ramirez Rojaz, Alejandro; Telesca, Luciano

    2015-04-01

    The study of two statistical approaches is analyzed for two different types of data sets, one is the seismicity generated by the subduction processes occurred at south Pacific coast of Mexico between 2005 and 2012, and the other corresponds to the synthetic seismic data generated by a stick-slip experimental model. The statistical methods used for the present study are the visibility graph in order to investigate the time dynamics of the series and the scaled probability density function in the natural time domain to investigate the critical order of the system. This comparison has the purpose to show the similarities between the dynamical behaviors of both types of data sets, from the point of view of critical systems. The observed behaviors allow us to conclude that the experimental set up globally reproduces the behavior observed in the statistical approaches used to analyses the seismicity of the subduction zone. The present study was supported by the Bilateral Project Italy-Mexico Experimental Stick-slip models of tectonic faults: innovative statistical approaches applied to synthetic seismic sequences, jointly funded by MAECI (Italy) and AMEXCID (Mexico) in the framework of the Bilateral Agreement for Scientific and Technological Cooperation PE 2014-2016.

  19. Probabilistic seismic history matching using binary images

    Science.gov (United States)

    Davolio, Alessandra; Schiozer, Denis Jose

    2018-02-01

    Currently, the goal of history-matching procedures is not only to provide a model matching any observed data but also to generate multiple matched models to properly handle uncertainties. One such approach is a probabilistic history-matching methodology based on the discrete Latin Hypercube sampling algorithm, proposed in previous works, which was particularly efficient for matching well data (production rates and pressure). 4D seismic (4DS) data have been increasingly included into history-matching procedures. A key issue in seismic history matching (SHM) is to transfer data into a common domain: impedance, amplitude or pressure, and saturation. In any case, seismic inversions and/or modeling are required, which can be time consuming. An alternative to avoid these procedures is using binary images in SHM as they allow the shape, rather than the physical values, of observed anomalies to be matched. This work presents the incorporation of binary images in SHM within the aforementioned probabilistic history matching. The application was performed with real data from a segment of the Norne benchmark case that presents strong 4D anomalies, including softening signals due to pressure build up. The binary images are used to match the pressurized zones observed in time-lapse data. Three history matchings were conducted using: only well data, well and 4DS data, and only 4DS. The methodology is very flexible and successfully utilized the addition of binary images for seismic objective functions. Results proved the good convergence of the method in few iterations for all three cases. The matched models of the first two cases provided the best results, with similar well matching quality. The second case provided models presenting pore pressure changes according to the expected dynamic behavior (pressurized zones) observed on 4DS data. The use of binary images in SHM is relatively new with few examples in the literature. This work enriches this discussion by presenting a new

  20. Short-Period Surface Wave Based Seismic Event Relocation

    Science.gov (United States)

    White-Gaynor, A.; Cleveland, M.; Nyblade, A.; Kintner, J. A.; Homman, K.; Ammon, C. J.

    2017-12-01

    Accurate and precise seismic event locations are essential for a broad range of geophysical investigations. Superior location accuracy generally requires calibration with ground truth information, but superb relative location precision is often achievable independently. In explosion seismology, low-yield explosion monitoring relies on near-source observations, which results in a limited number of observations that challenges our ability to estimate any locations. Incorporating more distant observations means relying on data with lower signal-to-noise ratios. For small, shallow events, the short-period (roughly 1/2 to 8 s period) fundamental-mode and higher-mode Rayleigh waves (including Rg) are often the most stable and visible portion of the waveform at local distances. Cleveland and Ammon [2013] have shown that teleseismic surface waves are valuable observations for constructing precise, relative event relocations. We extend the teleseismic surface wave relocation method, and apply them to near-source distances using Rg observations from the Bighorn Arche Seismic Experiment (BASE) and the Earth Scope USArray Transportable Array (TA) seismic stations. Specifically, we present relocation results using short-period fundamental- and higher-mode Rayleigh waves (Rg) in a double-difference relative event relocation for 45 delay-fired mine blasts and 21 borehole chemical explosions. Our preliminary efforts are to explore the sensitivity of the short-period surface waves to local geologic structure, source depth, explosion magnitude (yield), and explosion characteristics (single-shot vs. distributed source, etc.). Our results show that Rg and the first few higher-mode Rayleigh wave observations can be used to constrain the relative locations of shallow low-yield events.

  1. Scientific Exploration of Induced SeisMicity and Stress (SEISMS

    Directory of Open Access Journals (Sweden)

    H. M. Savage

    2017-11-01

    Full Text Available Several major fault-drilling projects have captured the interseismic and postseismic periods of earthquakes. However, near-field observations of faults immediately before and during an earthquake remain elusive due to the unpredictable nature of seismicity. The Scientific Exploration of Induced SeisMicity and Stress (SEISMS workshop met in March 2017 to discuss the value of a drilling experiment where a fault is instrumented in advance of an earthquake induced through controlled fluid injection. The workshop participants articulated three key issues that could most effectively be addressed by such an experiment: (1 predictive understanding of the propensity for seismicity in reaction to human forcing, (2 identification of earthquake nucleation processes, and (3 constraints on the factors controlling earthquake size. A systematic review of previous injection experiments exposed important observational gaps in all of these areas. The participants discussed the instrumentation and technological needs as well as faults and tectonic areas that are feasible from both a societal and scientific standpoint.

  2. Development of Canadian seismic design approach and overview of seismic standards

    Energy Technology Data Exchange (ETDEWEB)

    Usmani, A. [Amec Foster Wheeler, Toronto, ON (Canada); Aziz, T. [TSAziz Consulting Inc., Mississauga, ON (Canada)

    2015-07-01

    Historically the Canadian seismic design approaches have evolved for CANDU® nuclear power plants to ensure that they are designed to withstand a design basis earthquake (DBE) and have margins to meet the safety requirements of beyond DBE (BDBE). While the Canadian approach differs from others, it is comparable and in some cases more conservative. The seismic requirements are captured in five CSA nuclear standards which are kept up to date and incorporate lessons learnt from recent seismic events. This paper describes the evolution of Canadian approach, comparison with others and provides an overview and salient features of CSA seismic standards. (author)

  3. Synchrosqueezing-based Transform and its Application in Seismic Data Analysis

    Directory of Open Access Journals (Sweden)

    Saman Gholtashi

    2015-10-01

    Full Text Available Seismic waves are non-stationary due to its propagation through the earth. Time-frequency transforms are suitable tools for analyzing non-stationary seismic signals. Spectral decomposition can reveal the non-stationary characteristics which cannot be easily observed in the time or frequency representation alone. Various types of spectral decomposition methods have been introduced by some researchers. Conventional spectral decompositions have some restrictions such as Heisenberg uncertainty principle and cross-terms which limit their applications in signal analysis. In this paper, synchrosqueezingbased transforms were used to overcome the mentioned restrictions; also, as an application of this new high resolution time-frequency analysis method, it was applied to random noise removal and the detection of low-frequency shadows in seismic data. The efficiency of this method is evaluated by applying it to both synthetic and real seismic data. The results show that the mentioned transform is a proper tool for seismic data processing and interpretation.

  4. Automatic Classification of volcano-seismic events based on Deep Neural Networks.

    Science.gov (United States)

    Titos Luzón, M.; Bueno Rodriguez, A.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.

    2017-12-01

    Seismic monitoring of active volcanoes is a popular remote sensing technique to detect seismic activity, often associated to energy exchanges between the volcano and the environment. As a result, seismographs register a wide range of volcano-seismic signals that reflect the nature and underlying physics of volcanic processes. Machine learning and signal processing techniques provide an appropriate framework to analyze such data. In this research, we propose a new classification framework for seismic events based on deep neural networks. Deep neural networks are composed by multiple processing layers, and can discover intrinsic patterns from the data itself. Internal parameters can be initialized using a greedy unsupervised pre-training stage, leading to an efficient training of fully connected architectures. We aim to determine the robustness of these architectures as classifiers of seven different types of seismic events recorded at "Volcán de Fuego" (Colima, Mexico). Two deep neural networks with different pre-training strategies are studied: stacked denoising autoencoder and deep belief networks. Results are compared to existing machine learning algorithms (SVM, Random Forest, Multilayer Perceptron). We used 5 LPC coefficients over three non-overlapping segments as training features in order to characterize temporal evolution, avoid redundancy and encode the signal, regardless of its duration. Experimental results show that deep architectures can classify seismic events with higher accuracy than classical algorithms, attaining up to 92% recognition accuracy. Pre-training initialization helps these models to detect events that occur simultaneously in time (such explosions and rockfalls), increase robustness against noisy inputs, and provide better generalization. These results demonstrate deep neural networks are robust classifiers, and can be deployed in real-environments to monitor the seismicity of restless volcanoes.

  5. Seismic monitoring of in situ combustion process in a heavy oil field

    International Nuclear Information System (INIS)

    Zadeh, Hossein Mehdi; Srivastava, Ravi P; Vedanti, Nimisha; Landrø, Martin

    2010-01-01

    Three time-lapse 3D seismic surveys are analysed to monitor the effect of in situ combustion, a thermal-enhanced oil recovery process in the Balol heavy oil reservoir in India. The baseline data were acquired prior to the start of the in situ combustion process in four injection wells, while the two monitor surveys were acquired 1 and 2 years after injection start, respectively. We present the results of baseline and second monitor surveys. Fluid substitution studies based on acoustic well logs predict a seismic amplitude decrease at the top reservoir and an increase at the base reservoir. Both the amplitude dimming at the top reservoir and the brightening at the base reservoir are observed in the field data. The extent of the most pronounced 4D anomaly is estimated from the seismic amplitude and time shift analysis. The interesting result of seismic analysis is that the anomalies are laterally shifted towards the northwest, rather than the expected east, from the injector location suggesting a northwest movement of the in situ combustion front. No clear evidence of air leakage into other sand layers, neither above nor below the reservoir sand, is observed. This does not necessarily mean that all the injected air is following the reservoir sand, especially if the thief sand layers are thin. These layers might be difficult to observe on seismic data

  6. Seismicity and seismogenic structures of Central Apennines (Italy): constraints on the present-day stress field from focal mechanisms - The SLAM (Seismicity of Lazio-Abruzzo and Molise) project

    Science.gov (United States)

    Frepoli, Alberto; Battista Cimini, Giovanni; De Gori, Pasquale; De Luca, Gaetano; Marchetti, Alessandro; Montuori, Caterina; Pagliuca, Nicola

    2016-04-01

    We present new results for the microseismic activity in the Central Apennines recorded from a total of 81seismic stations. The large number of recording sites derives from the combination of temporary and permanent seismic networks operating in the study region. Between January 2009 and October 2013 we recorded 6923 earthquakes with local magnitudes ML ranging from 0.1 to 4.8. We located hypocentres by using a refined 1D crustal velocity model. The majority of the hypocenters are located beneath the axes of the Apenninic chain, while the seismic activity observed along the peri-Tyrrhenian margin is lower. The seismicity extends to a depth of 32 km; the hypocentral depth distribution exhibits a pronounced peak of seismic energy release in the depth range between 8 and 20 km. During the observation period we recorded two major seismic swarms and one seismic sequence in the Marsica-Sorano area in which we have had the largest detected magnitude (ML = 4.8). Fault plane solutions for a total of 600 earthquakes were derived from P-polarities. This new data set consists of a number of focal plane solutions that is about four times the data so far available for regional stress field study. The majority of the focal mechanisms show predominantly normal fault solutions. T-axis trends are oriented NE-SW confirming that the area is in extension. We also derived the azimuths of the principal stress axes by inverting the fault plane solutions and calculated the direction of the maximum horizontal stress, which is mainly sub-vertical oriented. The study region has been historically affected by many strong earthquakes, some of them very destructive. This work can give an important contribution to the seismic hazard assessment in an area densely populated as the city of Rome which is distant around 60 km from the main seismogenic structures of Central Apennine.

  7. Constitutive law for seismicity rate based on rate and state friction: Dieterich 1994 revisited.

    Science.gov (United States)

    Heimisson, E. R.; Segall, P.

    2017-12-01

    Dieterich [1994] derived a constitutive law for seismicity rate based on rate and state friction, which has been applied widely to aftershocks, earthquake triggering, and induced seismicity in various geological settings. Here, this influential work is revisited, and re-derived in a more straightforward manner. By virtue of this new derivation the model is generalized to include changes in effective normal stress associated with background seismicity. Furthermore, the general case when seismicity rate is not constant under constant stressing rate is formulated. The new derivation provides directly practical integral expressions for the cumulative number of events and rate of seismicity for arbitrary stressing history. Arguably, the most prominent limitation of Dieterich's 1994 theory is the assumption that seismic sources do not interact. Here we derive a constitutive relationship that considers source interactions between sub-volumes of the crust, where the stress in each sub-volume is assumed constant. Interactions are considered both under constant stressing rate conditions and for arbitrary stressing history. This theory can be used to model seismicity rate due to stress changes or to estimate stress changes using observed seismicity from triggered earthquake swarms where earthquake interactions and magnitudes are take into account. We identify special conditions under which influence of interactions cancel and the predictions reduces to those of Dieterich 1994. This remarkable result may explain the apparent success of the model when applied to observations of triggered seismicity. This approach has application to understanding and modeling induced and triggered seismicity, and the quantitative interpretation of geodetic and seismic data. It enables simultaneous modeling of geodetic and seismic data in a self-consistent framework. To date physics-based modeling of seismicity with or without geodetic data has been found to give insight into various processes

  8. Shaking table test study on seismic performance of dehydrogenation fan for nuclear power plants

    International Nuclear Information System (INIS)

    Liu Kaiyan; Shi Weixing; Cao Jialiang; Wang Yang

    2011-01-01

    Seismic performance of the dehydrogenation fan for nuclear power plants was evaluated based on the shaking table test of earthquake simulation. Dynamic characteristics including the orthogonal tri-axial fundamental frequencies and equivalent damping ratios were measured by the white noise scanning method. Artificial seismic waves were generated corresponding to the floor acceleration response spectra for nuclear power plants. Furthermore, five OBE and one SSE shaking table tests for dehydrogenation fan were performed by using the artificial seismic waves as the seismic inputs along the orthogonal axis simultaneity. Operating function of dehydrogenation fan was monitored and observed during all seismic tests, and performance indexes of dehydrogenation fan were compared before and after seismic tests. The results show that the structural integrity and operating function of the dehydrogenation fan are perfect during all seismic tests; and the performance indexes of the dehydrogenation fan can remain consistent before and after seismic tests; the seismic performance of the dehydrogenation fan can satisfy relevant technical requirements. (authors)

  9. Robust satellite techniques for remote sensing of seismically active areas

    Energy Technology Data Exchange (ETDEWEB)

    Tramutoli, V; Di Bello, G [Potenza Univ., Potenza (Italy). Dipt. di Ingegneria e Fisica dell' Ambiente; Pergola, N; Piscitelli, S [Consiglio Nazionale delle Ricerche, Istituto di Metodologie Avanzate di Analisi Ambientale, Potenza (Italy)

    2001-04-01

    Several satellite techniques have been recently proposed to remotely map seismically active zones and to monitor geophysical phenomena possibly associated with earthquakes. Even if questionable in terms of their effective applicability, all these techniques highlight as the major problem, still to be overcome, the high number of natural factors (independent of any seismic activity) whose variable contributions to the investigated signal can be so high as to completely mask (or simulate) the space-time anomaly possibly associated to the seismic event under study. A robust approach (RAT) has recently been proposed (and successfully applied in the field of the monitoring of the major environmental risks) which, better than other methods, seems suitable for recognising space-time anomalies in the satellite observation field also in the presence of highly variable contributions from atmospheric (transmittance), surface (emissivity and morphology) and observational (time/season, but also solar and satellite zenithal angles) conditions. This work presents the first preliminary results, based on several years of NOA A/AVHRR observations, regarding its extension to satellite monitoring of thermal anomalies possibly associated to seismically active areas of Southern Italy. The main merits of this approach are its robustness against the possibility of false events detection (specially important for this kind of applications) as well as its intrinsic exportability not only to different geographic areas but also to different satellite instrumental packages.

  10. Robust satellite techniques for remote sensing of seismically active areas

    Directory of Open Access Journals (Sweden)

    S. Piscitelli

    2001-06-01

    Full Text Available Several satellite techniques have been recently proposed to remotely map seismically active zones and to monitor geophysical phenomena possibly associated with earthquakes. Even if questionable in terms of their effective applicability, all these techniques highlight as the major problem, still to be overcome, the high number of natural factors (independent of any seismic activity whose variable contributions to the investigated signal can be so high as to completely mask (or simulate the space-time anomaly possibly associated to the seismic event under study. A robust approach (RAT has recently been proposed (and successfully applied in the field of the monitoring of the major environmental risks which, better than other methods, seems suitable for recognising space-time anomalies in the satellite observational field also in the presence of highly variable contributions from atmospheric (transmittance, surface (emissivity and morphology and observational (time/season, but also solar and satellite zenithal angles conditions.This work presents the first preliminary results, based on several years of NOAA/AVHRR observations, regarding its extension to satellite monitoring of thermal anomalies possibly associated to seismically active areas of Southern Italy. The main merits of this approach are its robustness against the possibility of false events detection (specially important for this kind of applications as well as its intrinsic exportability not only to different geographic areas but also to different satellite instrumental packages.

  11. Time lapse seismic observations and effects of reservoir compressibility at Teal South oil field

    Science.gov (United States)

    Islam, Nayyer

    One of the original ocean-bottom time-lapse seismic studies was performed at the Teal South oil field in the Gulf of Mexico during the late 1990's. This work reexamines some aspects of previous work using modern analysis techniques to provide improved quantitative interpretations. Using three-dimensional volume visualization of legacy data and the two phases of post-production time-lapse data, I provide additional insight into the fluid migration pathways and the pressure communication between different reservoirs, separated by faults. This work supports a conclusion from previous studies that production from one reservoir caused regional pressure decline that in turn resulted in liberation of gas from multiple surrounding unproduced reservoirs. I also provide an explanation for unusual time-lapse changes in amplitude-versus-offset (AVO) data related to the compaction of the producing reservoir which, in turn, changed an isotropic medium to an anisotropic medium. In the first part of this work, I examine regional changes in seismic response due to the production of oil and gas from one reservoir. The previous studies primarily used two post-production ocean-bottom surveys (Phase I and Phase II), and not the legacy streamer data, due to the unavailability of legacy prestack data and very different acquisition parameters. In order to incorporate the legacy data in the present study, all three post-stack data sets were cross-equalized and examined using instantaneous amplitude and energy volumes. This approach appears quite effective and helps to suppress changes unrelated to production while emphasizing those large-amplitude changes that are related to production in this noisy (by current standards) suite of data. I examine the multiple data sets first by using the instantaneous amplitude and energy attributes, and then also examine specific apparent time-lapse changes through direct comparisons of seismic traces. In so doing, I identify time-delays that, when

  12. New strong motion network in Georgia: basis for specifying seismic hazard

    Science.gov (United States)

    Kvavadze, N.; Tsereteli, N. S.

    2017-12-01

    Risk created by hazardous natural events is closely related to sustainable development of the society. Global observations have confirmed tendency of growing losses resulting from natural disasters, one of the most dangerous and destructive if which are earthquakes. Georgia is located in seismically active region. So, it is imperative to evaluate probabilistic seismic hazard and seismic risk with proper accuracy. National network of Georgia includes 35 station all of which are seismometers. There are significant gaps in strong motion recordings, which essential for seismic hazard assessment. To gather more accelerometer recordings, we have built a strong motion network distributed on the territory of Georgia. The network includes 6 stations for now, with Basalt 4x datalogger and strong motion sensor Episensor ES-T. For each site, Vs30 and soil resonance frequencies have been measured. Since all but one station (Tabakhmelam near Tbilisi), are located far from power and internet lines special system was created for instrument operation. Solar power is used to supply the system with electricity and GSM/LTE modems for internet access. VPN tunnel was set up using Raspberry pi, for two-way communication with stations. Tabakhmela station is located on grounds of Ionosphere Observatory, TSU and is used as a hub for the network. This location also includes a broadband seismometer and VLF electromagnetic waves observation antenna, for possible earthquake precursor studies. On server, located in Tabakhmela, the continues data is collected from all the stations, for later use. The recordings later will be used in different seismological and engineering problems, namely selecting and creating GMPE model for Caucasus, for probabilistic seismic hazard and seismic risk evaluation. These stations are a start and in the future expansion of strong motion network is planned. Along with this, electromagnetic wave observations will continue and additional antennas will be implemented

  13. Automatic Processing and Interpretation of Long Records of Endogenous Micro-Seismicity: the Case of the Super-Sauze Soft-Rock Landslide.

    Science.gov (United States)

    Provost, F.; Malet, J. P.; Hibert, C.; Doubre, C.

    2017-12-01

    The Super-Sauze landslide is a clay-rich landslide located the Southern French Alps. The landslide exhibits a complex pattern of deformation: a large number of rockfalls are observed in the 100 m height main scarp while the deformation of the upper part of the accumulated material is mainly affected by material shearing along stable in-situ crests. Several fissures are locally observed. The shallowest layer of the accumulated material tends to behave in a brittle manner but may undergo fluidization and/or rapid acceleration. Previous studies have demonstrated the presence of a rich endogenous micro-seismicity associated to the deformation of the landslide. However, the lack of long-term seismic records and suitable processing chains prevented a full interpretation of the links between the external forcings, the deformation and the recorded seismic signals. Since 2013, two permanent seismic arrays are installed in the upper part of the landslide. We here present the methodology adopted to process this dataset. The processing chain consists of a set of automated methods for automatic and robust detection, classification and location of the recorded seismicity. Thousands of events are detected and further automatically classified. The classification method is based on the description of the signal through attributes (e.g. waveform, spectral content properties). These attributes are used as inputs to classify the signal using a Random Forest machine-learning algorithm in four classes: endogenous micro-quakes, rockfalls, regional earthquakes and natural/anthropogenic noises. The endogenous landslide sources (i.e. micro-quake and rockfall) are further located. The location method is adapted to the type of event. The micro-quakes are located with a 3D velocity model derived from a seismic tomography campaign and an optimization of the first arrival picking with the inter-trace correlation of the P-wave arrivals. The rockfalls are located by optimizing the inter

  14. Syntectonic Mississippi River Channel Response: Integrating River Morphology and Seismic Imaging to Detect Active Faults

    Science.gov (United States)

    Magnani, M. B.

    2017-12-01

    Alluvial rivers, even great rivers such as the Mississippi, respond to hydrologic and geologic controls. Temporal variations of valley gradient can significantly alter channel morphology, as the river responds syntectonically to attain equilibrium. The river will alter its sinuosity, in an attempt to maintain a constant gradient on a surface that changes slope through time. Therefore, changes of river pattern can be the first clue that active tectonics is affecting an area of pattern change. Here I present geomorphological and seismic imaging evidence of a previously unknown fault crossing the Mississippi river south of the New Madrid seismic zone, between Caruthersville, Missouri and Osceola, Arkansas, and show that both datasets support Holocene fault movement, with the latest slip occurring in the last 200 years. High resolution marine seismic reflection data acquired along the Mississippi river imaged a NW-SE striking north-dipping fault displacing the base of the Quaternary alluvium by 15 m with reverse sense of movement. The fault consistently deforms the Tertiary, Cretaceous and Paleozoic formations. Historical river channel planforms dating back to 1765 reveal that the section of the river channel across the fault has been characterized by high sinuosity and steep projected-channel slope compared to adjacent river reaches. In particular, the reach across the fault experienced a cutoff in 1821, resulting in a temporary lowering of sinuosity followed by an increase between the survey of 1880 and 1915. Under the assumption that the change in sinuosity reflects river response to a valley slope change to maintain constant gradient, I use sinuosity through time to calculate the change in valley slope since 1880 and therefore to estimate the vertical displacement of the imaged fault in the past 200 years. Based on calculations so performed, the vertical offset of the fault is estimated to be 0.4 m, accrued since at least 1880. If the base of the river alluvium

  15. Tectonic evolution of the Salton Sea inferred from seismic reflection data

    Science.gov (United States)

    Brothers, D.S.; Driscoll, N.W.; Kent, G.M.; Harding, A.J.; Babcock, J.M.; Baskin, R.L.

    2009-01-01

    Oblique extension across strike-slip faults causes subsidence and leads to the formation of pull-apart basins such as the Salton Sea in southern California. The formation of these basins has generally been studied using laboratory experiments or numerical models. Here we combine seismic reflection data and geological observations from the Salton Sea to understand the evolution of this nascent pull-apart basin. Our data reveal the presence of a northeast-trending hinge zone that separates the sea into northern and southern sub-basins. Differential subsidence (10 mm yr 1) in the southern sub-basin suggests the existence of northwest-dipping basin-bounding faults near the southern shoreline, which may control the spatial distribution of young volcanism. Rotated and truncated strata north of the hinge zone suggest that the onset of extension associated with this pull-apart basin began after 0.5 million years ago. We suggest that slip is partitioned spatially and temporally into vertical and horizontal domains in the Salton Sea. In contrast to previous models based on historical seismicity patterns, the rapid subsidence and fault architecture that we document in the southern part of the sea are consistent with experimental models for pull-apart basins. ?? 2009 Macmillan Publishers Limited.

  16. Searching for Seismically Active Faults in the Gulf of Cadiz

    Science.gov (United States)

    Custodio, S.; Antunes, V.; Arroucau, P.

    2015-12-01

    The repeated occurrence of large magnitude earthquakes in southwest Iberia in historical and instrumental times suggests the presence of active fault segments in the region. However, due to an apparently diffuse seismicity pattern defining a broad region of distributed deformation west of Gibraltar Strait, the question of the location, dimension and geometry of such structures is still open to debate. We recently developed a new algorithm for earthquake location in 3D complex media with laterally varying interface depths, which allowed us to relocate 2363 events having occurred from 2007 to 2013, using P- and S-wave catalog arrival times obtained from the Portuguese Meteorological Institute (IPMA, Instituto Portugues do Mar e da Atmosfera), for a study area lying between 8.5˚W and 5˚W in longitude and 36˚ and 37.5˚ in latitude. The most remarkable change in the seismicity pattern after relocation is an apparent concentration of events, in the North of the Gulf of Cadiz, along a low angle northward-dipping plane rooted at the base of the crust, which could indicate the presence of a major fault. If confirmed, this would be the first structure clearly illuminated by seismicity in a region that has unleashed large magnitude earthquakes. Here, we present results from the joint analysis of focal mechanism solutions and waveform similarity between neighboring events from waveform cross-correlation in order to assess whether those earthquakes occur on the same fault plane.

  17. Seismic intrusion detector system

    Science.gov (United States)

    Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.

    1976-01-01

    A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.

  18. Are seismic hazard assessment errors and earthquake surprises unavoidable?

    Science.gov (United States)

    Kossobokov, Vladimir

    2013-04-01

    demonstrated and sufficient justification of hazard assessment protocols; (b) a more complete learning of the actual range of earthquake hazards to local communities and populations, and (c) a more ethically responsible control over how seismic hazard and seismic risk is implemented to protect public safety. It follows that the international project GEM is on the wrong track, if it continues to base seismic risk estimates on the standard method to assess seismic hazard. The situation is not hopeless and could be improved dramatically due to available geological, geomorphologic, seismic, and tectonic evidences and data combined with deterministic pattern recognition methodologies, specifically, when intending to PREDICT PREDICTABLE, but not the exact size, site, date, and probability of a target event. Understanding the complexity of non-linear dynamics of hierarchically organized systems of blocks-and-faults has led already to methodologies of neo-deterministic seismic hazard analysis and intermediate-term middle- to narrow-range earthquake prediction algorithms tested in real-time applications over the last decades. It proves that Contemporary Science can do a better job in disclosing Natural Hazards, assessing Risks, and delivering such info in advance extreme catastrophes, which are LOW PROBABILITY EVENTS THAT HAPPEN WITH CERTAINTY. Geoscientists must initiate shifting the minds of community from pessimistic disbelieve to optimistic challenging issues of neo-deterministic Hazard Predictability.

  19. Seismic evidence for hydration of the Central American slab: Guatemala through Costa Rica

    Science.gov (United States)

    Syracuse, E. M.; Thurber, C. H.

    2011-12-01

    The Central American subduction zone exhibits a wide variability in along-arc slab hydration as indicated by geochemical studies. These studies generally show maximum slab contributions to magma beneath Nicaragua and minimum contributions beneath Costa Rica, while intermediate slab fluid contributions are found beneath El Salvador and Guatemala. Geophysical studies suggest strong slab serpentinization and fluid release beneath Nicaragua, and little serpentinization beneath Costa Rica, but the remainder of the subduction zone is poorly characterized seismically. To obtain an integrated seismic model for the Central American subduction zone, we combine 250,000 local seismic arrivals and 1,000,000 differential arrivals for 6,500 shallow and intermediate-depth earthquakes from the International Seismic Centre, the Central American Seismic Center, and the temporary PASSCAL TUCAN array. Using this dataset, we invert for Vp, Vs, and hypocenters using a variable-mesh double-difference tomography algorithm. By observing low-Vp areas within the normally high-Vp slab, we identify portions of the slab that are likely to contain serpentinized mantle, and thus contribute to higher degrees of melting and higher volatile components observable in arc lavas.

  20. Missing Magmas: A Multidisciplinary Effort to Understand a Seismic Anomaly in the Chilean Flat Slab (28°-33°S)

    Science.gov (United States)

    Domino, J.; Bourke, J. R.; Naslund, H. R.; Nikulin, A.

    2017-12-01

    A gap in the volcanic arc across the Pampean section of the Chilean subduction zone (28-33°S) breaks up the otherwise predictable pattern of South American volcanism. This gap in the volcanic front, accompanied by diminished interplate seismic activity, correlates to the onset of flat slab subduction of the segmented Nazca Plate. We present results of a multidisciplinary study combining geophysical and petrologic observations, focused on the processes influencing subduction zone geometry in Central Chile and their impact on regional seismic and volcanic activity. Through a broad-scale receiver function survey obtained from existing permanent stations in Central Chile, we imaged the position of the subducting Nazca Plate beneath South America and created corresponding depth-converted images to further interpret the underlying structure. This survey reveals evidence of a highly anisotropic layer above the subducting slab beneath station GO03 of the Chilean National Seismic Network, possibly indicating an area of extensive hydration triggered by fluid release from the subducting plate. By imaging the interplate region to the north of the flat slab, we constrained the lateral extent of the anisotropic layer and made an attempt to correlate the character of the identified geophysical anomaly to geochemical patterns exhibited by active volcanoes in the region. A detailed compilation of available geochemical data was done to understand any existing cross-arc or along-arc variations that could be attributed to the geometry of the subducting slab over time, focused on trace element trends that are indicative of interactions with hydrated mantle. Our results indicate a correlation between the observed anisotropic layer and changes in the geochemistry of the closest spatial volcanism through time as the geometry of flat slab subduction evolved. By combining the receiver function results with initial petrologic observations, it is our goal to further constrain the inherent

  1. Seismic facies analysis from pre-stack data using self-organizing maps

    International Nuclear Information System (INIS)

    Kourki, Meysam; Ali Riahi, Mohammad

    2014-01-01

    In facies analysis, seismic data are clustered in different groups. Each group represents subsurface points with similar physical properties. Different groups can be related to differences in lithology, physical properties of rocks and fluid changes in the rocks. The supervised and unsupervised data clustering are known as two types of clustering architecture. In supervised clustering, the number of clusters is predefined, while in unsupervised clustering, a collection of patterns partitions into groups without predefined clusters. In this study, the pre-stack data clustering is used for seismic facies analysis. In this way, a horizon was selected from pre-stack data, followed by sorting of data using offset. A trace associated with each CDP is constructed, for which the first and second samples are related to the first and second offsets, respectively. The created trace is called consolidated trace which is characteristic of subsurface points. These consolidated traces are clustered by using self-organizing maps (SOM). In proposed pre-stack seismic data clustering, points with similar physical properties are placed in one cluster. Seismic data associated with hydrocarbon reservoirs have very different characteristics that are easily recognized. The efficiency of the proposed method was tested on both synthetic and real seismic data. The results showed that the algorithm improves the data classification and the points of different properties are noticeable in final maps. (paper)

  2. Quantitative Seismic Amplitude Analysis

    NARCIS (Netherlands)

    Dey, A.K.

    2011-01-01

    The Seismic Value Chain quantifies the cyclic interaction between seismic acquisition, imaging and reservoir characterization. Modern seismic innovation to address the global imbalance in hydrocarbon supply and demand requires such cyclic interaction of both feed-forward and feed-back processes.

  3. Seismic Hazard and Risk Assessments for Beijing-Tianjin-Tangshan, China, Area

    Science.gov (United States)

    Xie, Furen; Wang, Zhenming; Liu, Jingwei

    2011-03-01

    Seismic hazard and risk in the Beijing-Tianjin-Tangshan, China, area were estimated from 500-year intensity observations. First, we digitized the intensity observations (maps) using ArcGIS with a cell size of 0.1 × 0.1°. Second, we performed a statistical analysis on the digitized intensity data, determined an average b value (0.39), and derived the intensity-frequency relationship (hazard curve) for each cell. Finally, based on a Poisson model for earthquake occurrence, we calculated seismic risk in terms of a probability of I ≥ 7, 8, or 9 in 50 years. We also calculated the corresponding 10 percent probability of exceedance of these intensities in 50 years. The advantages of assessing seismic hazard and risk from intensity records are that (1) fewer assumptions (i.e., earthquake source and ground motion attenuation) are made, and (2) site-effect is included. Our study shows that the area has high seismic hazard and risk. Our study also suggests that current design peak ground acceleration or intensity for the area may not be adequate.

  4. Integration of onshore and offshore seismological data to study the seismicity of the Calabrian Region

    Science.gov (United States)

    D'Alessandro, Antonino; Guerra, Ignazio; D'Anna, Giuseppe; Gervasi, Anna; Harabaglia, Paolo; Luzio, Dario; Stellato, Gilda

    2014-05-01

    The Pollino Massif marks the transition from the Southern Appenninic to the Calabrian Arc. On the western side it is characterized by a moderately sized seismicity (about 9 M > 4 events in the last 50 years), well documented in the last 400 years. The moment tensor solutions available in this area yields, mainly, normal faults with coherent Southern Appeninic trend. This remains true also for the events that are localized on the calabrian side of Pollino, South of the massif. In most of the Sibari plane, seismic activity is very scarce, while it is again rather marked on its southeastern corner, both onshore and offshore. The above observations point to the perspective that the stress field of a vast portion of Northern Calabria still resembles that of the Southern Appenines. In this frame, it becomes important to investigate the offshore seismicity of the Sibari Gulf and the deformation pattern within the Sibari Plane. The latter might function as a hinge to transfer the deformation of the extensional fault system in the Pollino area to a different offshore fault system. Since return times of larger events might be very long, we need to investigate the true seismic potential of the offshore faults and to verify whether they are truly strike slip or if they could involve relevant thrust or normal components, that would add to the risk that of potentially associated tsunamis. Despite their importance in the understanding of the seismotectonic processes taking place in the Southern Appenninic - Calabrian Arc border and surrounding areas, the seismicity and the seismogenic volumes of the Sibari Gulf until now has not been well characterized due to the lack of offshore seismic stations. The seismicity of the Calabrian is monitored by the Italian National Seismic Network (INSN) managed by Istituto Nazionale di Geofisica e Vulcanologia and by the Calabrian Regional Seismic Network (CRSN) managed by the University of Calabria. Both the network comprise only on

  5. AECB workshop on seismic hazard assessment in Southern Ontario. Recorded proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    A workshop on seismic hazard assessment in southern Ontario was conducted on June 19-21, 1995. The purpose of the workshop was to review available geological and seismological data which could affect earthquake occurrence in southern Ontario and to develop a consensus on approaches that should be adopted for characterization of seismic hazard. The workshop was structured in technical sessions to focus presentations and discussions on four technical issues relevant to seismic hazard in southern Ontario, as follows: The importance of geological and geophysical observations for the determination of seismic sources; Methods and approaches which may be adopted for determining seismic sources based on integrated interpretations of geological and seismological information. Methods and data which should be used for characterizing the seismicity parameters of seismic sources. Methods for assessment of vibratory ground motion hazard. This document presents transcripts from recordings made of the presentations and discussion from the workshop. It will be noted, in some sections of the document, that the record is incomplete. This is due in part to recording equipment malfunction and in part due to the poor quality of recording obtained for certain periods.

  6. AECB workshop on seismic hazard assessment in Southern Ontario. Recorded proceedings

    International Nuclear Information System (INIS)

    1995-01-01

    A workshop on seismic hazard assessment in southern Ontario was conducted on June 19-21, 1995. The purpose of the workshop was to review available geological and seismological data which could affect earthquake occurrence in southern Ontario and to develop a consensus on approaches that should be adopted for characterization of seismic hazard. The workshop was structured in technical sessions to focus presentations and discussions on four technical issues relevant to seismic hazard in southern Ontario, as follows: The importance of geological and geophysical observations for the determination of seismic sources; Methods and approaches which may be adopted for determining seismic sources based on integrated interpretations of geological and seismological information. Methods and data which should be used for characterizing the seismicity parameters of seismic sources. Methods for assessment of vibratory ground motion hazard. This document presents transcripts from recordings made of the presentations and discussion from the workshop. It will be noted, in some sections of the document, that the record is incomplete. This is due in part to recording equipment malfunction and in part due to the poor quality of recording obtained for certain periods

  7. Seismic Design of a Single Bored Tunnel: Longitudinal Deformations and Seismic Joints

    Science.gov (United States)

    Oh, J.; Moon, T.

    2018-03-01

    The large diameter bored tunnel passing through rock and alluvial deposits subjected to seismic loading is analyzed for estimating longitudinal deformations and member forces on the segmental tunnel liners. The project site has challenges including high hydrostatic pressure, variable ground profile and high seismic loading. To ensure the safety of segmental tunnel liner from the seismic demands, the performance-based two-level design earthquake approach, Functional Evaluation Earthquake and Safety Evaluation Earthquake, has been adopted. The longitudinal tunnel and ground response seismic analyses are performed using a three-dimensional quasi-static linear elastic and nonlinear elastic discrete beam-spring elements to represent segmental liner and ground spring, respectively. Three components (longitudinal, transverse and vertical) of free-field ground displacement-time histories evaluated from site response analyses considering wave passage effects have been applied at the end support of the strain-compatible ground springs. The result of the longitudinal seismic analyses suggests that seismic joint for the mitigation measure requiring the design deflection capacity of 5-7.5 cm is to be furnished at the transition zone between hard and soft ground condition where the maximum member forces on the segmental liner (i.e., axial, shear forces and bending moments) are induced. The paper illustrates how detailed numerical analyses can be practically applied to evaluate the axial and curvature deformations along the tunnel alignment under difficult ground conditions and to provide the seismic joints at proper locations to effectively reduce the seismic demands below the allowable levels.

  8. Global significance of a sub-Moho boundary layer (SMBL) deduced from high-resolution seismic observations

    Science.gov (United States)

    Fuchs, K.; Tittgemeyer, M.; Ryberg, T.; Wenzel, F.; Mooney, W.

    2002-01-01

    We infer the fine structure of a sub-Moho boundary layer (SMBL) at the top of the lithospheric mantle from high-resolution seismic observations of Peaceful Nuclear Explosions (PNE) on superlong-range profiles in Russia. Densely recorded seismograms permit recognition of previously unknown features of teleseismic propagation of the well known Pn and Sn phases, such as a band of incoherent, scattered, high-frequency seismic energy, developing consistently from station to station, apparent velocities of sub-Moho material, and high-frequency energy to distances of more than 3000 km with a coda band, incoherent at 10 km spacing and yet consistently observed to the end of the profiles. Estimates of the other key elements of the SMBL were obtained by finite difference calculations of wave propagation in elastic 2D models from a systematic grid search through parameter space. The SMBL consists of randomly distributed, mild velocity fluctuations of 2% or schlieren of high aspect ratios (???40) with long horizontal extent (???20 km) and therefore as thin as 0.5 km only; SMBL thickness is 60-100 km. It is suggested that the SMBL is of global significance as the physical base of the platewide observed high-frequency phases Pn and Sn. It is shown that wave propagation in the SMBL waveguide is insensitive to the background velocity distribution on which its schlieren are superimposed. This explains why the Pn and Sn phases traverse geological provinces of various age, heat flow, crustal thickness, and tectonic regimes. Their propagation appears to be independent of age. temperature, pressure, and stress. Dynamic stretching of mantle material during subduction or flow, possibly combined with chemical differentiation have to be considered as scale-forming processes in the upper mantle. However, it is difficult to distinguish with the present sets of Pn/Sn array data whether (and also where) the boundary layer is a frozen-in feature of paleo-processes or whether it is a response to

  9. Seismic explosion sources on an ice cap

    DEFF Research Database (Denmark)

    Shulgin, Alexey; Thybo, Hans

    2015-01-01

    crustal model can be modelled. A crucial challenge for applying the technique is to control the sources. Here, we present data that describe the efficiency of explosive sources in the ice cover. Analysis of the data shows, that the ice cap traps a significant amount of energy, which is observed......Controlled source seismic investigation of crustal structure below ice covers is an emerging technique. We have recently conducted an explosive refraction/wide-angle reflection seismic experiment on the ice cap in east-central Greenland. The data-quality is high for all shot points and a full...

  10. Seismic capacity of switchgear

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Hofmayer, C.; Kassir, M.; Pepper, S.

    1989-01-01

    As part of a component fragility program sponsored by the USNRC, BNL has collected existing information on the seismic capacity of switchgear assemblies from major manufacturers. Existing seismic test data for both low and medium voltage switchgear assemblies have been evaluated and the generic results are presented in this paper. The failure modes are identified and the corresponding generic lower bound capacity levels are established. The test response spectra have been used as a measure of the test vibration input. The results indicate that relays chatter at a very low input level at the base of the switchgear cabinet. This change of state of devices including relays have been observed. Breaker tripping occurs at a higher vibration level. Although the structural failure of internal elements have been noticed, the overall switchgear cabinet structure withstands a high vibration level. 5 refs., 2 figs., 2 tabs

  11. Seismic study of soil dynamics at Garner Valley, California

    International Nuclear Information System (INIS)

    Archuleta, R.J.; Seale, S.H.

    1990-01-01

    The Garner Valley downhole array (GVDA) of force-balanced accelerometers was designed to determine the effect that near-surface soil layers have on surface ground motion by measuring in situ seismic waves at various depths. Although there are many laboratory, theoretical and numerical studies that are used to predict the effects that local site geology might have on seismic waves, there are very few direct measurements that can be used to confirm the predictions made by these methods. The effects of local site geology on seismic ground motions are critical for estimating the base motion of structures. The variations in site amplifications at particular periods can range over a factor of 20 or more in comparing amplitude spectra from rock and soil sites, e.g., Mexico City (1985) or San Francisco (1989). The basic phenomenon of nonlinear soil response, and by inference severe attenuation of seismic waves, has rarely been measured although it is commonly observed in laboratory experiments. The basic question is whether or not the local site geology amplifies are attenuates the seismic ground motion. Because the answer depends on the interaction between the local site geology and the amplitude as well as the frequency content of the incoming seismic waves, the in situ measurements must sample the depth variations of the local structure as well as record seismic waves over as wide a range as possible in amplitude and frequency

  12. Dynamic Parameters of the 2015 Nepal Gorkha Mw7.8 Earthquake Constrained by Multi-observations

    Science.gov (United States)

    Weng, H.; Yang, H.

    2017-12-01

    Dynamic rupture model can provide much detailed insights into rupture physics that is capable of assessing future seismic risk. Many studies have attempted to constrain the slip-weakening distance, an important parameter controlling friction behavior of rock, for several earthquakes based on dynamic models, kinematic models, and direct estimations from near-field ground motion. However, large uncertainties of the values of the slip-weakening distance still remain, mostly because of the intrinsic trade-offs between the slip-weakening distance and fault strength. Here we use a spontaneously dynamic rupture model to constrain the frictional parameters of the 25 April 2015 Mw7.8 Nepal earthquake, by combining with multiple seismic observations such as high-rate cGPS data, strong motion data, and kinematic source models. With numerous tests we find the trade-off patterns of final slip, rupture speed, static GPS ground displacements, and dynamic ground waveforms are quite different. Combining all the seismic constraints we can conclude a robust solution without a substantial trade-off of average slip-weakening distance, 0.6 m, in contrast to previous kinematical estimation of 5 m. To our best knowledge, this is the first time to robustly determine the slip-weakening distance on seismogenic fault from seismic observations. The well-constrained frictional parameters may be used for future dynamic models to assess seismic hazard, such as estimating the peak ground acceleration (PGA) etc. Similar approach could also be conducted for other great earthquakes, enabling broad estimations of the dynamic parameters in global perspectives that can better reveal the intrinsic physics of earthquakes.

  13. Development and seismic evaluation of the seismic monitoring analysis system for HANARO

    International Nuclear Information System (INIS)

    Ryu, J. S.; Youn, D. B.; Kim, H. G.; Woo, J. S.

    2003-01-01

    Since the start of operation, the seismic monitoring system has been utilized for monitoring an earthquake at the HANARO site. The existing seismic monitoring system consists of field sensors and monitoring panel. The analog-type monitoring system with magnetic tape recorder is out-of-date model. In addition, the disadvantage of the existing system is that it does not include signal-analyzing equipment. Therefore, we have improved the analog seismic monitoring system except the field sensors into a new digital Seismic Monitoring Analysis System(SMAS) that can monitor and analyze earthquake signals. To achieve this objective for HANARO, the digital type hardware of the SMAS has been developed. The seismic monitoring and analysis programs that can provide rapid and precise information for an earthquake were developed. After the installation of the SMAS, we carried out the Site Acceptance Test (SAT) to confirm the functional capability of the newly developed system. The results of the SAT satisfy the requirements of the fabrication technical specifications. In addition, the seismic characteristics and structural integrity of the SMAS were evaluated. The results show that the cabinet of SMAS can withstand the effects of seismic loads and remain functional. This new SMAS is operating in the HANARO instrument room to acquire and analyze the signal of an earthquake

  14. The Iquique 2014 sequence: understanding its nucleation and propagation from the seismicity evolution

    Science.gov (United States)

    Fuenzalida, A.; Rietbrock, A.; Woollam, J.; Tavera, H.; Ruiz, S.

    2017-12-01

    The Northern Chile and Southern Peru region is well known for its high seismic hazard due to the lack of recent major ruptures along long segments of the subduction interface. For this reason the 2014 Iquique Mw 8.1 earthquake that occurred in the Northern Chile seismic gap was expected and high quality seismic and geodetic networks were operating at the time of the event recording the precursory phase of a mega-thrust event with unprecedented detail. In this study we used seismic data collected during the 2014 Iquique sequence to generate a detailed earthquake catalogue. This catalogue consists of more than 15,000 events identified in Northern Chile during the period between 1/3/14 and 31/5/14 and provides full coverage of the immediate foreshock sequence, the main-shock and early after-shock series. The initial catalogue was obtained by automatic data processing and only selecting events with at least two associate S phases to improve the reliability of initial locations. Subsequently, this subset of events was automatically processed again using an optimized STA/LTA triggering algorithm for both P and S-waves and constraining the detection times by estimated arrival times at each station calculated for the preliminary locations. Finally, all events were relocated using a recently developed 1D velocity model and associated station corrections. For events Mw 4 or larger that occurred between the 15/3/14 and 10/04/14, we estimated it regional moment tensor by full-waveform inversion. Our results confirm the seismic activation of the upper plate during the foreshock sequence, as well highlight a crustal activity on the fore-arc during the aftershock series. The seismicity distribution was compared to the previous inter-seismic coupling studies obtained in the region, in which we observe interplay between high and low coupling areas, which are correlated to the seismicity rate. The spatial distribution of the seismicity and the complexities on the mechanisms observed

  15. Widespread seismicity excitation following the 2011 M=9.0 Tohoku, Japan, earthquake and its implications for seismic hazard

    Science.gov (United States)

    Toda, S.; Stein, R. S.; Lin, J.

    2011-12-01

    The 11 March 2011 Tohoku-chiho Taiheiyo-oki earthquake (Tohoku earthquake) was followed by massive offshore aftershocks including 6 M≧7 and 94 M≧6 shocks during the 4.5 months (until July 26). It is also unprecedented that a broad increase in seismicity was observed over inland Japan at distances of up to 425 km from the locus of high seismic slip on the megathrust. Such an increase was not seen for the 2004 M=9.1 Sumatra or 2010 M=8.8 Chile earthquakes, but they lacked the seismic networks necessary to detect such small events. Here we explore the possibility that the rate changes are the product of static Coulomb stress transfer to small faults. We use the nodal planes of M≧3.5 earthquakes as proxies for such small active faults, and find that of fifteen regions averaging ˜80 by 80 km in size, 11 show a positive association between calculated stress changes and the observed seismicity rate change, 3 show a negative correlation, and for one the changes are too small to assess. This work demonstrates that seismicity can turn on in the nominal stress shadow of a mainshock as long as small geometrically diverse active faults exist there, which is likely quite common in areas having complex geologic background like Tohoku. In Central Japan, however, there are several regions where the usual tectonic stress has been enhanced by the Tohoku earthquake, and the moderate and large faults have been brought closer to failure, producing M˜5 to 6 shocks, including Nagano, near Mt. Fuji, Tokyo metropolitan area and its offshore. We confirmed that at least 5 of the seven large, exotic, or remote aftershocks were brought ≧0.3 bars closer to failure. Validated by such correlations, we evaluate the effects of the Tohoku event on the other subduction zones nearby and major active faults inland. The majorities of thrust faults inland Tohoku are brought farther from failure by the M9 event. However, we found that the large sections of the Japan trench megathrust, the outer

  16. A seismic design of nuclear reactor building structures applying seismic isolation system in a seismicity region-a feasibility case study in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Tetsuo [The University of Tokyo, Tokyo (Japan); Yamamoto, Tomofumi; Sato, Kunihiko [Mitsubishi Heavy Industries, Ltd., Kobe (Japan); Jimbo, Masakazu [Toshiba Corporation, Yokohama (Japan); Imaoka, Tetsuo [Hitachi-GE Nuclear Energy, Ltd., Hitachi (Japan); Umeki, Yoshito [Chubu Electric Power Co. Inc., Nagoya (Japan)

    2014-10-15

    A feasibility study on the seismic design of nuclear reactor buildings with application of a seismic isolation system is introduced. After the Hyogo-ken Nanbu earthquake in Japan of 1995, seismic isolation technologies have been widely employed for commercial buildings. Having become a mature technology, seismic isolation systems can be applied to NPP facilities in areas of high seismicity. Two reactor buildings are discussed, representing the PWR and BWR buildings in Japan, and the application of seismic isolation systems is discussed. The isolation system employing rubber bearings with a lead plug positioned (LRB) is examined. Through a series of seismic response analyses using the so-named standard design earthquake motions covering the design basis earthquake motions obtained for NPP sites in Japan, the responses of the seismic isolated reactor buildings are evaluated. It is revealed that for the building structures examined herein: (1) the responses of both isolated buildings and isolating LRBs fulfill the specified design criteria; (2) the responses obtained for the isolating LRBs first reach the ultimate condition when intensity of motion is 2.0 to 2.5 times as large as that of the design-basis; and (3) the responses of isolated reactor building fall below the range of the prescribed criteria.

  17. Seismic hazard assessment: Issues and alternatives

    Science.gov (United States)

    Wang, Z.

    2011-01-01

    Seismic hazard and risk are two very important concepts in engineering design and other policy considerations. Although seismic hazard and risk have often been used inter-changeably, they are fundamentally different. Furthermore, seismic risk is more important in engineering design and other policy considerations. Seismic hazard assessment is an effort by earth scientists to quantify seismic hazard and its associated uncertainty in time and space and to provide seismic hazard estimates for seismic risk assessment and other applications. Although seismic hazard assessment is more a scientific issue, it deserves special attention because of its significant implication to society. Two approaches, probabilistic seismic hazard analysis (PSHA) and deterministic seismic hazard analysis (DSHA), are commonly used for seismic hazard assessment. Although PSHA has been pro-claimed as the best approach for seismic hazard assessment, it is scientifically flawed (i.e., the physics and mathematics that PSHA is based on are not valid). Use of PSHA could lead to either unsafe or overly conservative engineering design or public policy, each of which has dire consequences to society. On the other hand, DSHA is a viable approach for seismic hazard assessment even though it has been labeled as unreliable. The biggest drawback of DSHA is that the temporal characteristics (i.e., earthquake frequency of occurrence and the associated uncertainty) are often neglected. An alternative, seismic hazard analysis (SHA), utilizes earthquake science and statistics directly and provides a seismic hazard estimate that can be readily used for seismic risk assessment and other applications. ?? 2010 Springer Basel AG.

  18. Patterns of volcanotectonic seismicity and stress during the ongoing eruption of the Soufrière Hills Volcano, Montserrat (1995-2007)

    Science.gov (United States)

    Roman, D.C.; De Angelis, S.; Latchman, J.L.; White, Rickie

    2008-01-01

    The ongoing eruption of the Soufrière Hills Volcano, Montserrat, has been accompanied throughout by varying levels of high-frequency, ‘volcanotectonic’ (VT), seismicity. These earthquakes reflect the brittle response of the host rock to stresses generated within the magmatic system and thus reveal interesting and useful information about the structure of the volcanic conduit system and processes occurring within it. In general, systematic changes in the rate, location, and fault-plane solutions of VT earthquakes correspond to changes in the volcano's behavior, and indicate that the main conduit for the eruption is a dike or system of dikes trending NE–SW and centered beneath the eruptive vent. To date, the eruption has comprised three extrusive phases, separated by two ~ 1–2 year-long periods of residual activity. Prior to the start of each extrusive phase, VT earthquakes with fault-plane solution p-axes oriented perpendicular to inferred regional maximum compression dominate the data set, consistent with stresses induced by the inflation of the mid-level conduit system. ~ 90°-rotated VT fault-plane solutions are also observed preceding a change in eruption style from effusive to explosive in 1997. While increases in the rate of VT earthquakes precede eruption phase onsets, high rates of VT seismicity are also observed during the first period of residual activity and in this case appear to reflect the relaxation of host rock following withdrawal of magma from the mid-crustal system. Most VT earthquakes are located directly beneath the eruptive vent, although two ‘distal VT clusters’ were observed during the first six months of the eruption (late 1995–early 1996). Both of these distal clusters likely resulted from stresses generated during the establishment of the main conduit system.

  19. Annual report on the KSRS seismic array operation

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Myung-Soon; Jeon, Jeong-Soo; Kang, Ik-Bum [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    Wonju KSRS (PS31) is one of the primary seismic stations under the IMS of CTBT. Korean NDC has been transmitting real time seismic data to IDC successfully during 1999. We have installed four elements seismo-acoustic array KISS(Korea Infrasound and Seismic Station) to detect and identify the seismic events in and around the Korean peninsula as a joint cooperation between KIGAM and SMU(Southern Methodist University). Continuous data from KSRS, KISS and other stations were automatically detected and analyzed using KEMS(Korea Earthquake Monitoring System) at KIGAM. KEMS has automatically detected and analyzed 1943 events between 1998.12.10 and 1999.12.22 and 876 events were reviewed by analyst and listed. Some electric poles used for data transmission inside the KSRS were eliminated and replaced to radio transmission. To increase the accuracy of earthquake observation velocity structure under the Korean peninsula was studied. To develop the Magnitude scale in Korea, the same approach which Richter applied in USA, 1935, was studied using Korean data. (author). 23 refs., 13 tabs., 89 figs.

  20. 75 FR 13498 - Small Takes of Marine Mammals Incidental to Specified Activities; Dumbarton Bridge Seismic...

    Science.gov (United States)

    2010-03-22

    ... wild by causing disruption of behavioral patterns, including, but not limited to, migration, breathing... Dumbarton Bridge Seismic Retrofit Project as ESA-listed fish are present within the action area. NMFS issued...

  1. Seismic Structure of Perth Basin (Australia) and surroundings from Passive Seismic Deployments

    Science.gov (United States)

    Issa, N.; Saygin, E.; Lumley, D. E.; Hoskin, T. E.

    2016-12-01

    We image the subsurface structure of Perth Basin, Western Australia and surroundings by using ambient seismic noise data from 14 seismic stations recently deployed by University of Western Australia (UWA) and other available permanent stations from Geoscience Australia seismic network and the Australian Seismometers in Schools program. Each of these 14 UWA seismic stations comprises a broadband sensor and a high fidelity 3-component 10 Hz geophone, recording in tandem at 250 Hz and 1000 Hz. The other stations used in this study are equipped with short period and broadband sensors. In addition, one shallow borehole station is operated with eight 3 component geophones at depths of between 2 and 44 m. The network is deployed to characterize natural seismicity in the basin and to try and identify any microseismic activity across Darling Fault Zone (DFZ), bounding the basin to the east. The DFZ stretches to approximately 1000 km north-south in Western Australia, and is one of the longest fault zones on the earth with a limited number of detected earthquakes. We use seismic noise cross- and auto-correlation methods to map seismic velocity perturbations across the basin and the transition from DFZ to the basin. Retrieved Green's functions are stable and show clear dispersed waveforms. Travel times of the surface wave Green's functions from noise cross-correlations are inverted with a two-step probabilistic framework to map the absolute shear wave velocities as a function of depth. The single station auto-correlations from the seismic noise yields P wave reflectivity under each station, marking the major discontinuities. Resulting images show the shear velocity perturbations across the region. We also quantify the variation of ambient seismic noise at different depths in the near surface using the geophones in the shallow borehole array.

  2. Coseismic deformation pattern of the Emilia 2012 seismic sequence imaged by Radarsat-1 interferometry

    Directory of Open Access Journals (Sweden)

    Christian Bignami

    2012-10-01

    Full Text Available On May 20 and 29, 2012, two earthquakes of magnitudes 5.9 and 5.8 (Mw, respectively, and their aftershock sequences hit the central Po Plain (Italy, about 40 km north of Bologna. More than 2,000 sizable aftershocks were recorded by the Isti-tuto Nazionale di Geofisica e Vulcanologia (INGV; National Institute of Geophysics and Volcanology National Seismic Network (http://iside.rm.ingv.it/. The sequence was generated by pure compressional faulting over blind thrusts of the western Ferrara Arc, and it involved a 50-km-long stretch of this buried outer front of the northern Apennines. The focal mechanisms of the larger shocks agree with available structural data and with present-day tectonic stress indicators, which show locally a maximum horizontal stress oriented ca. N-S; i.e. oriented perpendicular to the main structural trends. Most of the sequence occurred between 1 km and 12 km in depth, above the local basal detachment of the outer thrust fronts of the northern Apennines. We measured the surface displacement patterns associated with the mainshocks and some of the larger aftershocks (some of which had Mw >5.0 by applying the Interferometric Synthetic Aperture Radar (InSAR technique to a pair of C-Band Radarsat-1 images. We then used the coseismic motions detected over the epicentral region as input information, to obtain the best-fit model fault for the two largest shocks. […

  3. High-Quality Seismic Observations of Sonic Booms

    Science.gov (United States)

    Wurman, Gilead; Haering, Edward A., Jr.; Price, Michael J.

    2011-01-01

    The SonicBREWS project (Sonic Boom Resistant Earthquake Warning Systems) is a collaborative effort between Seismic Warning Systems, Inc. and NASA Dryden Flight Research Center. This project aims to evaluate the effects of sonic booms on Earthquake Warning Systems in order to prevent such systems from experiencing false alarms due to sonic booms. The airspace above the Antelope Valley, California includes the High Altitude Supersonic Corridor and the Black Mountain Supersonic Corridor. These corridors are among the few places in the US where supersonic flight is permitted, and sonic booms are commonplace in the Antelope Valley. One result of this project is a rich dataset of high-quality accelerometer records of sonic booms which can shed light on the interaction between these atmospheric phenomena and the solid earth. Nearly 100 sonic booms were recorded with low-noise triaxial MEMS accelerometers recording 1000 samples per second. The sonic booms had peak overpressures ranging up to approximately 10 psf and were recorded in three flight series in 2010 and 2011. Each boom was recorded with up to four accelerometers in various array configurations up to 100 meter baseline lengths, both in the built environment and the free field. All sonic booms were also recorded by nearby microphones. We present the results of the project in terms of the potential for sonic-boom-induced false alarms in Earthquake Warning Systems, and highlight some of the interesting features of the dataset.

  4. Non-Andersonian conjugate strike-slip faults: Observations, theory, and tectonic implications

    International Nuclear Information System (INIS)

    Yin, A; Taylor, M H

    2008-01-01

    Formation of conjugate strike-slip faults is commonly explained by the Anderson fault theory, which predicts a X-shaped conjugate fault pattern with an intersection angle of ∼30 degrees between the maximum compressive stress and the faults. However, major conjugate faults in Cenozoic collisional orogens, such as the eastern Alps, western Mongolia, eastern Turkey, northern Iran, northeastern Afghanistan, and central Tibet, contradict the theory in that the conjugate faults exhibit a V-shaped geometry with intersection angles of 60-75 degrees, which is 30-45 degrees greater than that predicted by the Anderson fault theory. In Tibet and Mongolia, geologic observations can rule out bookshelf faulting, distributed deformation, and temporal changes in stress state as explanations for the abnormal fault patterns. Instead, the GPS-determined velocity field across the conjugate fault zones indicate that the fault formation may have been related to Hagen-Poiseuille flow in map view involving the upper crust and possibly the whole lithosphere based on upper mantle seismicity in southern Tibet and basaltic volcanism in Mongolia. Such flow is associated with two coeval and parallel shear zones having opposite shear sense; each shear zone produce a set of Riedel shears, respectively, and together the Riedel shears exhibit the observed non-Andersonian conjugate strike-slip fault pattern. We speculate that the Hagen-Poiseuille flow across the lithosphere that hosts the conjugate strike-slip zones was produced by basal shear traction related to asthenospheric flow, which moves parallel and away from the indented segment of the collisional fronts. The inferred asthenospheric flow pattern below the conjugate strike-slip fault zones is consistent with the magnitude and orientations of seismic anisotropy observed across the Tibetan and Mongolian conjugate fault zones, suggesting a strong coupling between lithospheric deformation and asthenospheric flow. The laterally moving

  5. Non-Andersonian conjugate strike-slip faults: Observations, theory, and tectonic implications

    Energy Technology Data Exchange (ETDEWEB)

    Yin, A [Department of Earth and Space Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, CA 90025-1567 (United States); Taylor, M H [Department of Geology, University of Kansas, 1475 Jayhawk Blvd., Lawrence, KS 66044 (United States)], E-mail: yin@ess.ucla.edu

    2008-07-01

    Formation of conjugate strike-slip faults is commonly explained by the Anderson fault theory, which predicts a X-shaped conjugate fault pattern with an intersection angle of {approx}30 degrees between the maximum compressive stress and the faults. However, major conjugate faults in Cenozoic collisional orogens, such as the eastern Alps, western Mongolia, eastern Turkey, northern Iran, northeastern Afghanistan, and central Tibet, contradict the theory in that the conjugate faults exhibit a V-shaped geometry with intersection angles of 60-75 degrees, which is 30-45 degrees greater than that predicted by the Anderson fault theory. In Tibet and Mongolia, geologic observations can rule out bookshelf faulting, distributed deformation, and temporal changes in stress state as explanations for the abnormal fault patterns. Instead, the GPS-determined velocity field across the conjugate fault zones indicate that the fault formation may have been related to Hagen-Poiseuille flow in map view involving the upper crust and possibly the whole lithosphere based on upper mantle seismicity in southern Tibet and basaltic volcanism in Mongolia. Such flow is associated with two coeval and parallel shear zones having opposite shear sense; each shear zone produce a set of Riedel shears, respectively, and together the Riedel shears exhibit the observed non-Andersonian conjugate strike-slip fault pattern. We speculate that the Hagen-Poiseuille flow across the lithosphere that hosts the conjugate strike-slip zones was produced by basal shear traction related to asthenospheric flow, which moves parallel and away from the indented segment of the collisional fronts. The inferred asthenospheric flow pattern below the conjugate strike-slip fault zones is consistent with the magnitude and orientations of seismic anisotropy observed across the Tibetan and Mongolian conjugate fault zones, suggesting a strong coupling between lithospheric deformation and asthenospheric flow. The laterally moving

  6. Active and fossil mantle flows in the western Alpine region unravelled by seismic anisotropy analysis and high-resolution P wave tomography

    Science.gov (United States)

    Salimbeni, Simone; Malusà, Marco G.; Zhao, Liang; Guillot, Stéphane; Pondrelli, Silvia; Margheriti, Lucia; Paul, Anne; Solarino, Stefano; Aubert, Coralie; Dumont, Thierry; Schwartz, Stéphane; Wang, Qingchen; Xu, Xiaobing; Zheng, Tianyu; Zhu, Rixiang

    2018-04-01

    The anisotropy of seismic velocities in the mantle, when integrated with high-resolution tomographic models and geologic information, can be used to detect active mantle flows in complex plate boundary areas, providing new insights on the impact of mantle processes on the topography of mountain belts. Here we use a densely spaced array of temporary broadband seismic stations to analyze the seismic anisotropy pattern of the western Alpine region, at the boundary between the Alpine and Apenninic slabs. Our results are supportive of a polyphase development of anisotropic mantle fabrics, possibly starting from the Jurassic to present. Geophysical data presented in this work, and geologic evidence taken from the literature, indicate that: (i) fossil fabrics formed during Tethyan rifting may be still preserved within the Alpine and Apenninic slabs; (ii) mantle deformation during Apenninic slab rollback is not compensated by a complete toroidal flow around the northern tip of the retreating slab; (iii) the previously observed continuous trend of anisotropy fast axes near-parallel to the western Alpine arc is confirmed. We observe that this arc-parallel trend of fast axes is located in correspondence to a low velocity anomaly in the European upper mantle, beneath regions of the Western and Ligurian Alps showing the highest uplift rates. We propose that the progressive rollback of the Apenninic slab, in the absence of a counterclockwise toroidal flow at its northern tip, induced a suction effect at the scale of the supraslab mantle. The resulting mantle flow pattern was characterized by an asthenospheric counterflow at the rear of the unbroken Western Alps slab and around its southern tip, and by an asthenospheric upwelling, mirrored by low P wave velocities, that would have favored the topographic uplift of the Alpine belt from the Mont Blanc to the Mediterranean sea.

  7. Probabilistic Seismic Hazard Assessment for Northeast India Region

    Science.gov (United States)

    Das, Ranjit; Sharma, M. L.; Wason, H. R.

    2016-08-01

    Northeast India bounded by latitudes 20°-30°N and longitudes 87°-98°E is one of the most seismically active areas in the world. This region has experienced several moderate-to-large-sized earthquakes, including the 12 June, 1897 Shillong earthquake ( M w 8.1) and the 15 August, 1950 Assam earthquake ( M w 8.7) which caused loss of human lives and significant damages to buildings highlighting the importance of seismic hazard assessment for the region. Probabilistic seismic hazard assessment of the region has been carried out using a unified moment magnitude catalog prepared by an improved General Orthogonal Regression methodology (Geophys J Int, 190:1091-1096, 2012; Probabilistic seismic hazard assessment of Northeast India region, Ph.D. Thesis, Department of Earthquake Engineering, IIT Roorkee, Roorkee, 2013) with events compiled from various databases (ISC, NEIC,GCMT, IMD) and other available catalogs. The study area has been subdivided into nine seismogenic source zones to account for local variation in tectonics and seismicity characteristics. The seismicity parameters are estimated for each of these source zones, which are input variables into seismic hazard estimation of a region. The seismic hazard analysis of the study region has been performed by dividing the area into grids of size 0.1° × 0.1°. Peak ground acceleration (PGA) and spectral acceleration ( S a) values (for periods of 0.2 and 1 s) have been evaluated at bedrock level corresponding to probability of exceedance (PE) of 50, 20, 10, 2 and 0.5 % in 50 years. These exceedance values correspond to return periods of 100, 225, 475, 2475, and 10,000 years, respectively. The seismic hazard maps have been prepared at the bedrock level, and it is observed that the seismic hazard estimates show a significant local variation in contrast to the uniform hazard value suggested by the Indian standard seismic code [Indian standard, criteria for earthquake-resistant design of structures, fifth edition, Part

  8. Propagation of Exploration Seismic Sources in Shallow Water

    Science.gov (United States)

    Diebold, J. B.; Tolstoy, M.; Barton, P. J.; Gulick, S. P.

    2006-05-01

    The choice of safety radii to mitigation the impact of exploration seismic sources upon marine mammals is typically based on measurement or modeling in deep water. In shallow water environments, rule-of-thumb spreading laws are often used to predict the falloff of amplitude with offset from the source, but actual measurements (or ideally, near-perfect modeling) are still needed to account for the effects of bathymetric changes and subseafloor characteristics. In addition, the question: "how shallow is 'shallow?'" needs an answer. In a cooperative effort by NSF, MMS, NRL, IAGC and L-DEO, a series of seismic source calibration studies was carried out in the Northern Gulf of Mexico during 2003. The sources used were the two-, six-, ten-, twelve-, and twenty-airgun arrays of R/V Ewing, and a 31-element, 3-string "G" gun array, deployed by M/V Kondor, an exploration industry source ship. The results of the Ewing calibrations have been published, documenting results in deep (3200m) and shallow (60m) water. Lengthy analysis of the Kondor results, presented here, suggests an approach to answering the "how shallow is shallow" question. After initially falling off steadily with source-receiver offset, the Kondor levels suddenly increased at a 4km offset. Ray-based modeling with a complex, realistic source, but with a simple homogeneous water column-over-elastic halfspace ocean shows that the observed pattern is chiefly due to geophysical effects, and not focusing within the water column. The same kind of modeling can be used to predict how the amplitudes will change with decreasing water depth, and when deep-water safety radii may need to be increased. Another set of data (see Barton, et al., this session) recorded in 20 meters of water during early 2005, however, shows that simple modeling may be insufficient when the geophysics becomes more complex. In this particular case, the fact that the seafloor was within the near field of the R/V Ewing source array seems to have

  9. Development of Vertical Cable Seismic System

    Science.gov (United States)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Ishikawa, K.; Tsukahara, H.; Shimura, T.

    2011-12-01

    In 2009, Ministry of Education, Culture, Sports, Science and Technology(MEXT) started the survey system development for Hydrothermal deposit. We proposed the Vertical Cable Seismic (VCS), the reflection seismic survey with vertical cable above seabottom. VCS has the following advantages for hydrothermal deposit survey. (1) VCS is an efficient high-resolution 3D seismic survey in limited area. (2) It achieves high-resolution image because the sensors are closely located to the target. (3) It avoids the coupling problems between sensor and seabottom that cause serious damage of seismic data quality. (4) Because of autonomous recording system on sea floor, various types of marine source are applicable with VCS such as sea-surface source (GI gun etc.) , deep-towed or ocean bottom source. Our first experiment of 2D/3D VCS surveys has been carried out in Lake Biwa, JAPAN, in November 2009. The 2D VCS data processing follows the walk-away VSP, including wave field separation and depth migration. Seismic Interferometry technique is also applied. The results give much clearer image than the conventional surface seismic. Prestack depth migration is applied to 3D data to obtain good quality 3D depth volume. Seismic Interferometry technique is applied to obtain the high resolution image in the very shallow zone. Based on the feasibility study, we have developed the autonomous recording VCS system and carried out the trial experiment in actual ocean at the water depth of about 400m to establish the procedures of deployment/recovery and to examine the VC position or fluctuation at seabottom. The result shows that the VC position is estimated with sufficient accuracy and very little fluctuation is observed. Institute of Industrial Science, the University of Tokyo took the research cruise NT11-02 on JAMSTEC R/V Natsushima in February, 2011. In the cruise NT11-02, JGI carried out the second VCS survey using the autonomous VCS recording system with the deep towed source provided by

  10. New seismic source `BLASTER` for seismic survey; Hasaiyaku wo shingen to shite mochiita danseiha tansa

    Energy Technology Data Exchange (ETDEWEB)

    Koike, G; Yoshikuni, Y [OYO Corp., Tokyo (Japan)

    1996-10-01

    Built-up weight and vacuole have been conceived as seismic sources without using explosive. There have been problems that they have smaller energy to generate elastic wave than explosive, and that they have inferior working performance. Concrete crushing explosive is tried to use as a new seismic source. It is considered to possess rather large seismic generating energy, and it is easy to handle from the viewpoint of safety. Performance as seismic source and applicability to exploration works of this crushing explosive were compared with four kinds of seismic sources using dynamite, dropping weight, shot-pipe utilizing shot vacuole, and impact by wooden maul. When considered by the velocity amplitude, the seismic generating energy of the crushing explosive of 120 g is about one-fifth of dynamite of 100 g. Elastic wave generated includes less high frequency component than that by dynamite, and similar to that using seismic source without explosive, such as the weight dropping. The maximum seismic receiving distance obtained by the seismic generation was about 100 m. This was effective for the slope survey with the exploration depth between 20 m and 30 m. 1 ref., 9 figs., 2 tabs.

  11. Seismic rupture modelling, strong motion prediction and seismic hazard assessment: fundamental and applied approaches

    International Nuclear Information System (INIS)

    Berge-Thierry, C.

    2007-05-01

    The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)

  12. Seismic and tsunami safety margin assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Nuclear Regulation Authority is going to establish new seismic and tsunami safety guidelines to increase the safety of NPPs. The main purpose of this research is testing structures/components important to safety and tsunami resistant structures/components, and evaluating the capacity of them against earthquake and tsunami. Those capacity data will be utilized for the seismic and tsunami back-fit review based on the new seismic and tsunami safety guidelines. The summary of the program in 2012 is as follows. 1. Component seismic capacity test and quantitative seismic capacity evaluation. PWR emergency diesel generator partial-model seismic capacity tests have been conducted and quantitative seismic capacities have been evaluated. 2. Seismic capacity evaluation of switching-station electric equipment. Existing seismic test data investigation, specification survey and seismic response analyses have been conducted. 3. Tsunami capacity evaluation of anti-inundation measure facilities. Tsunami pressure test have been conducted utilizing a small breakwater model and evaluated basic characteristics of tsunami pressure against seawall structure. (author)

  13. Seismic and tsunami safety margin assessment

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear Regulation Authority is going to establish new seismic and tsunami safety guidelines to increase the safety of NPPs. The main purpose of this research is testing structures/components important to safety and tsunami resistant structures/components, and evaluating the capacity of them against earthquake and tsunami. Those capacity data will be utilized for the seismic and tsunami back-fit review based on the new seismic and tsunami safety guidelines. The summary of the program in 2012 is as follows. 1. Component seismic capacity test and quantitative seismic capacity evaluation. PWR emergency diesel generator partial-model seismic capacity tests have been conducted and quantitative seismic capacities have been evaluated. 2. Seismic capacity evaluation of switching-station electric equipment. Existing seismic test data investigation, specification survey and seismic response analyses have been conducted. 3. Tsunami capacity evaluation of anti-inundation measure facilities. Tsunami pressure test have been conducted utilizing a small breakwater model and evaluated basic characteristics of tsunami pressure against seawall structure. (author)

  14. Time-domain study of tectonic strain-release effects on seismic waves from underground nuclear explosions

    International Nuclear Information System (INIS)

    Nakanishi, K.K.; Sherman, N.W.

    1982-09-01

    Tectonic strain release affects both the amplitude and phase of seismic waves from underground nuclear explosions. Surface wave magnitudes are strongly affected by the component of tectonic strain release in the explosion. Amplitudes and radiation patterns of surface waves from explosions with even small tectonic components change magnitudes significantly and show a strong dependence on receiver locations. A thrust-slip source superimposed on an isotropic explosion can explain observed reversals in waveform at different azimuths and phase delays between normal and reversed Rayleigh waves. The mechanism of this reversal is due to the phase relationship between reasonable explosion and tectonic release sources. Spallation or an unusual source time function are not required. The observations of Shagan River events imply thrust-slip motion along faults in a northwest-southeast direction, which is consistent with regional tectonics

  15. Seismic Consequence Abstraction

    International Nuclear Information System (INIS)

    Gross, M.

    2004-01-01

    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section 2.2.1.3.2.3 of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274])

  16. Seismic Consequence Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    M. Gross

    2004-10-25

    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section 2.2.1.3.2.3 of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]).

  17. GRACE gravity data help constraining seismic models of the 2004 Sumatran earthquake

    Science.gov (United States)

    Cambiotti, G.; Bordoni, A.; Sabadini, R.; Colli, L.

    2011-10-01

    The analysis of Gravity Recovery and Climate Experiment (GRACE) Level 2 data time series from the Center for Space Research (CSR) and GeoForschungsZentrum (GFZ) allows us to extract a new estimate of the co-seismic gravity signal due to the 2004 Sumatran earthquake. Owing to compressible self-gravitating Earth models, including sea level feedback in a new self-consistent way and designed to compute gravitational perturbations due to volume changes separately, we are able to prove that the asymmetry in the co-seismic gravity pattern, in which the north-eastern negative anomaly is twice as large as the south-western positive anomaly, is not due to the previously overestimated dilatation in the crust. The overestimate was due to a large dilatation localized at the fault discontinuity, the gravitational effect of which is compensated by an opposite contribution from topography due to the uplifted crust. After this localized dilatation is removed, we instead predict compression in the footwall and dilatation in the hanging wall. The overall anomaly is then mainly due to the additional gravitational effects of the ocean after water is displaced away from the uplifted crust, as first indicated by de Linage et al. (2009). We also detail the differences between compressible and incompressible material properties. By focusing on the most robust estimates from GRACE data, consisting of the peak-to-peak gravity anomaly and an asymmetry coefficient, that is given by the ratio of the negative gravity anomaly over the positive anomaly, we show that they are quite sensitive to seismic source depths and dip angles. This allows us to exploit space gravity data for the first time to help constraining centroid-momentum-tensor (CMT) source analyses of the 2004 Sumatran earthquake and to conclude that the seismic moment has been released mainly in the lower crust rather than the lithospheric mantle. Thus, GRACE data and CMT source analyses, as well as geodetic slip distributions aided

  18. Co-seismic slip, post-seismic slip, and largest aftershock associated with the 1994 Sanriku-haruka-oki, Japan, earthquake

    Science.gov (United States)

    Yagi, Yuji; Kikuchi, Masayuki; Nishimura, Takuya

    2003-11-01

    We analyzed continuous GPS data to investigate the spatio-temporal distribution of co-seismic slip, post-seismic slip, and largest aftershock associated with the 1994 Sanriku-haruka-oki, Japan, earthquake (Mw = 7.7). To get better resolution for co-seismic and post-seismic slip distribution, we imposed a weak constraint as a priori information of the co-seismic slip determined by seismic wave analyses. We found that the post-seismic slip during 100 days following the main-shock amount to as much moment release as the main-shock, and that the sites of co-seismic slip and post-seismic slip are partitioning on a plate boundary region in complimentary fashion. The major post-seismic slip was triggered by the mainshock in western side of the co-seismic slip, and the extent of the post-seismic slip is almost unchanged with time. It rapidly developed a shear stress concentration ahead of the slip area, and triggered the largest aftershock.

  19. Optimized suppression of coherent noise from seismic data using the Karhunen-Loeve transform

    International Nuclear Information System (INIS)

    Montagne, Raul; Vasconcelos, Giovani L.

    2006-01-01

    Signals obtained in land seismic surveys are usually contaminated with coherent noise, among which the ground roll (Rayleigh surface waves) is of major concern for it can severely degrade the quality of the information obtained from the seismic record. This paper presents an optimized filter based on the Karhunen-Loeve transform for processing seismic images contaminated with ground roll. In this method, the contaminated region of the seismic record, to be processed by the filter, is selected in such way as to correspond to the maximum of a properly defined coherence index. The main advantages of the method are that the ground roll is suppressed with negligible distortion of the remnant reflection signals and that the filtering procedure can be automated. The image processing technique described in this study should also be relevant for other applications where coherent structures embedded in a complex spatiotemporal pattern need to be identified in a more refined way. In particular, it is argued that the method is appropriate for processing optical coherence tomography images whose quality is often degraded by coherent noise (speckle)

  20. Risk based seismic design criteria

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1999-01-01

    In order to develop a risk based seismic design criteria the following four issues must be addressed: (1) What target annual probability of seismic induced unacceptable performance is acceptable? (2) What minimum seismic margin is acceptable? (3) Given the decisions made under Issues 1 and 2, at what annual frequency of exceedance should the safe-shutdown-earthquake (SSE) ground motion be defined? (4) What seismic design criteria should be established to reasonably achieve the seismic margin defined under Issue 2? The first issue is purely a policy decision and is not addressed in this paper. Each of the other three issues are addressed. Issues 2 and 3 are integrally tied together so that a very large number of possible combinations of responses to these two issues can be used to achieve the target goal defined under Issue 1. Section 2 lays out a combined approach to these two issues and presents three potentially attractive combined resolutions of these two issues which reasonably achieves the target goal. The remainder of the paper discusses an approach which can be used to develop seismic design criteria aimed at achieving the desired seismic margin defined in resolution of Issue 2. Suggestions for revising existing seismic design criteria to more consistently achieve the desired seismic margin are presented. (orig.)