WorldWideScience

Sample records for seismically active area

  1. Seismic activity and environment protection in rock burst areas

    International Nuclear Information System (INIS)

    Travnicek, L.; Holecko, J.; Knotek, S.

    1993-01-01

    The significance is pointed out of seismic activity caused by mining activities in rock burst areas of the Ostrava-Karvinna district. The need is emphasized of the monitoring of the seismic activity at the Czech-Poland border as needed by the Two-party international committee for exploitation of coal supplies on the common border. The adverse effect of rock burst on the surface is documented by examples provided by the Polish party. The technique is described of investigating the DPB seismic polygon, allowing to evaluate the adverse impact of rock burst on the environment. (author) 1 fig., 8 refs

  2. Robust satellite techniques for remote sensing of seismically active areas

    Energy Technology Data Exchange (ETDEWEB)

    Tramutoli, V; Di Bello, G [Potenza Univ., Potenza (Italy). Dipt. di Ingegneria e Fisica dell' Ambiente; Pergola, N; Piscitelli, S [Consiglio Nazionale delle Ricerche, Istituto di Metodologie Avanzate di Analisi Ambientale, Potenza (Italy)

    2001-04-01

    Several satellite techniques have been recently proposed to remotely map seismically active zones and to monitor geophysical phenomena possibly associated with earthquakes. Even if questionable in terms of their effective applicability, all these techniques highlight as the major problem, still to be overcome, the high number of natural factors (independent of any seismic activity) whose variable contributions to the investigated signal can be so high as to completely mask (or simulate) the space-time anomaly possibly associated to the seismic event under study. A robust approach (RAT) has recently been proposed (and successfully applied in the field of the monitoring of the major environmental risks) which, better than other methods, seems suitable for recognising space-time anomalies in the satellite observation field also in the presence of highly variable contributions from atmospheric (transmittance), surface (emissivity and morphology) and observational (time/season, but also solar and satellite zenithal angles) conditions. This work presents the first preliminary results, based on several years of NOA A/AVHRR observations, regarding its extension to satellite monitoring of thermal anomalies possibly associated to seismically active areas of Southern Italy. The main merits of this approach are its robustness against the possibility of false events detection (specially important for this kind of applications) as well as its intrinsic exportability not only to different geographic areas but also to different satellite instrumental packages.

  3. Robust satellite techniques for remote sensing of seismically active areas

    Directory of Open Access Journals (Sweden)

    S. Piscitelli

    2001-06-01

    Full Text Available Several satellite techniques have been recently proposed to remotely map seismically active zones and to monitor geophysical phenomena possibly associated with earthquakes. Even if questionable in terms of their effective applicability, all these techniques highlight as the major problem, still to be overcome, the high number of natural factors (independent of any seismic activity whose variable contributions to the investigated signal can be so high as to completely mask (or simulate the space-time anomaly possibly associated to the seismic event under study. A robust approach (RAT has recently been proposed (and successfully applied in the field of the monitoring of the major environmental risks which, better than other methods, seems suitable for recognising space-time anomalies in the satellite observational field also in the presence of highly variable contributions from atmospheric (transmittance, surface (emissivity and morphology and observational (time/season, but also solar and satellite zenithal angles conditions.This work presents the first preliminary results, based on several years of NOAA/AVHRR observations, regarding its extension to satellite monitoring of thermal anomalies possibly associated to seismically active areas of Southern Italy. The main merits of this approach are its robustness against the possibility of false events detection (specially important for this kind of applications as well as its intrinsic exportability not only to different geographic areas but also to different satellite instrumental packages.

  4. The Investigation of a Sinkhole Area in Germany by Near-Surface Active Seismic Tomography

    Science.gov (United States)

    Tschache, S.; Becker, D.; Wadas, S. H.; Polom, U.; Krawczyk, C. M.

    2017-12-01

    In November 2010, a 30 m wide and 17 m deep sinkhole occurred in a residential area of Schmalkalden, Germany, which fortunately did not harm humans, but led to damage of buildings and property. Subsequent geoscientific investigations showed that the collapse was naturally caused by the subrosion of sulfates in a depth of about 80 m. In 2012, an early warning system was established including 3C borehole geophones deployed in 50 m depth around the backfilled sinkhole. During the acquisition of two shallow 2D shear wave seismic profiles, the signals generated by a micro-vibrator at the surface were additionally recorded by the four borehole geophones of the early warning system and a VSP probe in a fifth borehole. The travel time analysis of the direct arrivals enhanced the understanding of wave propagation in the area. Seismic velocity anomalies were detected and related to structural seismic images of the 2D profiles. Due to the promising first results, the experiment was further extended by distributing vibration points throughout the whole area around the sinkhole. This time, micro-vibrators for P- and S-wave generation were used. The signals were recorded by the borehole geophones and temporary installed seismometers at surface positions close to the boreholes. The travel times and signal attenuations are evaluated to detect potential instable zones. Furthermore, array analyses are performed. The first results reveal features in the active tomography datasets consistent with structures observed in the 2D seismic images. The advantages of the presented method are the low effort and good repeatability due to the permanently installed borehole geophones. It has the potential to determine P-wave and S-wave velocities in 3D. It supports the interpretation of established investigation methods as 2D surface seismics and VSP. In our further research we propose to evaluate the suitability of the method for the time lapse monitoring of changes in the seismic wave

  5. Estimation of reliability of seismic and electromagnetic monitoring in seismic active areas by diffraction tomography

    Directory of Open Access Journals (Sweden)

    V. N. Troyan

    2001-01-01

    Full Text Available This paper presents the algorithms and results of the numerical simulation of the solution of a 2-D inverse problem on the restoration of seismic parameters and electrical conductivity of local inhomogeneities by the diffraction tomography method based upon the first order Born approximation. The direct problems for the Lame and Maxwell equations are solved by the finite difference method. Restoration of inhomogeneities which are not very weak is implemented with the use of a small number of receivers (source-receiver pairs.

  6. Geomorphic evidence of active faults growth in the Norcia seismic area (central Apennines, Italy)

    Science.gov (United States)

    Materazzi, Marco; Aringoli, Domenico; Farabollini, Piero; Giacopetti, Marco; Pambianchi, Gilberto; Tondi, Emanuele; Troiani, Francesco

    2016-04-01

    Fault-growth by segment linkage is one of the fundamental processes controlling the evolution, in both time and the space, of fault systems. In fact, step-like trajectories shown by length-displacement diagrams for individual fault arrays suggest that the development of evolved structures result by the linkage of single fault segments. The type of interaction between faults and the rate at which faults reactivate not only control the long term tectonic evolution of an area, but also influence the seismic hazard, as earthquake recurrence intervals tend to decrease as fault slip rate increase. The use of Geomorphological investigations represents an important tool to constrain the latest history of active faults. In this case, attention has to be given to recognize morphostructural, historical, environmental features at the surface, since they record the long-term seismic behavior due to the fault growth processes (Tondi and Cello, 2003). The aim of this work is to investigate the long term morphotectonic evolution of a well know seismic area in the central Apennines: the Norcia intramontane basin (Aringoli et al., 2005). The activity of the Norcia seismic area is characterized by moderate events and by strong earthquakes with maximum intensities of X-XI degrees MCS and equivalent magnitudes around 6.5±7.0 (CPTI, 2004). Based on the morphostructural features as well as on the historical seismicity of the area, we may divide the Norcia seismic area into three minor basins roughly NW-SE oriented: the Preci sub-basin in the north; the S. Scolastica and the Castel S. Maria sub-basins in the south. The wider basin (S. Scolastica) is separated from the other two by ridges transversally oriented with respect the basins themselves; they are the geomorphological response to the tectonic deformation which characterizes the whole area. Other geomorphological evidences of tectonic activity are represented by deformation of old summit erosional surfaces, hydrographic network

  7. Assessment of natural radioactivity and heavy metals in water and soil around seismically active area

    International Nuclear Information System (INIS)

    Oktay Baykara; Mahmut Dogru; Firat University, Elazig

    2010-01-01

    The natural radioactivity concentration and some heavy metals in various water and soil samples collected from seismically active area have been determined. Gross-alpha and beta concentrations of different 33 water samples and some heavy metal (Fe, Pb, Cu, K, Mn, Cr and Zn) concentration in 72 soil samples collected from two major fault systems (North and East Anatolian Active Fault Systems) in Turkey have been studied. This survey regarding gross-alpha and beta radioactivity and some heavy metals concentrations was carried out by means of Krieger method using a gross-alpha and beta-counting system and atomic absorption spectrometry (AAS), respectively. Also, gross annual effective dose from the average gross-alpha activity in waters were calculated. (author)

  8. Multi-Parameter Observation and Detection of Pre-Earthquake Signals in Seismically Active Areas

    Science.gov (United States)

    Ouzounov, D.; Pulinets, S.; Parrot, M.; Liu, J. Y.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    The recent large earthquakes (M9.0 Tohoku, 03/2011; M7.0 Haiti, 01/2010; M6.7 L Aquila, 04/2008; and M7.9 Wenchuan 05/2008) have renewed interest in pre-anomalous seismic signals associated with them. Recent workshops (DEMETER 2006, 2011 and VESTO 2009 ) have shown that there were precursory atmospheric /ionospheric signals observed in space prior to these events. Our initial results indicate that no single pre-earthquake observation (seismic, magnetic field, electric field, thermal infrared [TIR], or GPS/TEC) can provide a consistent and successful global scale early warning. This is most likely due to complexity and chaotic nature of earthquakes and the limitation in existing ground (temporal/spatial) and global satellite observations. In this study we analyze preseismic temporal and spatial variations (gas/radon counting rate, atmospheric temperature and humidity change, long-wave radiation transitions and ionospheric electron density/plasma variations) which we propose occur before the onset of major earthquakes:. We propose an Integrated Space -- Terrestrial Framework (ISTF), as a different approach for revealing pre-earthquake phenomena in seismically active areas. ISTF is a sensor web of a coordinated observation infrastructure employing multiple sensors that are distributed on one or more platforms; data from satellite sensors (Terra, Aqua, POES, DEMETER and others) and ground observations, e.g., Global Positioning System, Total Electron Content (GPS/TEC). As a theoretical guide we use the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model to explain the generation of multiple earthquake precursors. Using our methodology, we evaluated retrospectively the signals preceding the most devastated earthquakes during 2005-2011. We observed a correlation between both atmospheric and ionospheric anomalies preceding most of these earthquakes. The second phase of our validation include systematic retrospective analysis for more than 100 major earthquakes (M>5

  9. High-resolution 3D seismic reflection imaging across active faults and its impact on seismic hazard estimation in the Tokyo metropolitan area

    Science.gov (United States)

    Ishiyama, Tatsuya; Sato, Hiroshi; Abe, Susumu; Kawasaki, Shinji; Kato, Naoko

    2016-10-01

    We collected and interpreted high-resolution 3D seismic reflection data across a hypothesized fault scarp, along the largest active fault that could generate hazardous earthquakes in the Tokyo metropolitan area. The processed and interpreted 3D seismic cube, linked with nearby borehole stratigraphy, suggests that a monocline that deforms lower Pleistocene units is unconformably overlain by middle Pleistocene conglomerates. Judging from structural patterns and vertical separation on the lower-middle Pleistocene units and the ground surface, the hypothesized scarp was interpreted as a terrace riser rather than as a manifestation of late Pleistocene structural growth resulting from repeated fault activity. Devastating earthquake scenarios had been predicted along the fault in question based on its proximity to the metropolitan area, however our new results lead to a significant decrease in estimated fault length and consequently in the estimated magnitude of future earthquakes associated with reactivation. This suggests a greatly reduced seismic hazard in the Tokyo metropolitan area from earthquakes generated by active intraplate crustal faults.

  10. Anomalous fluid emission of a deep borehole in a seismically active area of Northern Apennines (Italy)

    International Nuclear Information System (INIS)

    Heinicke, J.; Italiano, F.; Koch, U.; Martinelli, G.; Telesca, L.

    2010-01-01

    The Miano borehole, 1047 m deep, is located close to the river Parma in the Northern Apennines, Italy. A measuring station has been installed to observe the discharge of fluids continuously since November 2004. The upwelling fluid of this artesian well is a mixture of thermal water and CH 4 as main components. In non-seismogenic areas, a relatively constant fluid emission would be expected, perhaps overlaid with long term variations from that kind of deep reservoir over time. However, the continuous record of the fluid emission, in particular the water discharge, the gas flow rate and the water temperature, show periods of stable values interrupted by anomalous periods of fluctuations in the recorded parameters. The anomalous variations of these parameters are of low amplitude in comparison to the total values but significant in their long-term trend. Meteorological effects due to rain and barometric pressure were not detected in recorded data probably due to reservoir depth and relatively high reservoir overpressure. Influences due to the ambient temperature after the discharge were evaluated by statistical analysis. Our results suggest that recorded changes in fluid emission parameters can be interpreted as a mixing process of different fluid components at depth by variations in pore pressure as a result of seismogenic stress variation. Local seismicity was analyzed in comparison to the fluid physico-chemical data. The analysis supports the idea that an influence on fluid transport conditions due to geodynamic processes exists. Water temperature data show frequent anomalies probably connected with possible precursory phenomena of local seismic events.

  11. Improved techniques in data analysis and interpretation of potential fields: examples of application in volcanic and seismically active areas

    Directory of Open Access Journals (Sweden)

    G. Florio

    2002-06-01

    Full Text Available Geopotential data may be interpreted by many different techniques, depending on the nature of the mathematical equations correlating specific unknown ground parameters to the measured data set. The investigation based on the study of the gravity and magnetic anomaly fields represents one of the most important geophysical approaches in the earth sciences. It has now evolved aimed both at improving of known methods and testing other new and reliable techniques. This paper outlines a general framework for several applications of recent techniques in the study of the potential methods for the earth sciences. Most of them are here described and significant case histories are shown to illustrate their reliability on active seismic and volcanic areas.

  12. The 2016 seismic series in the south Alboran Sea: Seismotectonics, Coulomb Failure Stress changes and implications for the active tectonics in the area.

    Science.gov (United States)

    Alvarez-Gómez, José A.; Martín, Rosa; Pérez-López, Raul; Stich, Daniel; Cantavella, Juan V.; Martínez-Díaz, José J.; Morales, José; Soto, Juan I.; Carreño, Emilio

    2017-04-01

    The Southern Alboran Sea, particularly the area offshore Al Hoceima Bay, presents moderate but continuous seismic activity since the Mw 6.0 1994 Al Hoceima earthquake. The maximum magnitude occurred in the area was a Mw 6.3 earthquake in the 2004 Al Hoceima - Tamasint seismic series. Since then, the seismicity in the Al Hoceima area has been usual, with maximum seismic magnitudes around 4. An increase in the seismic rate was registered during 2015, especially from May, culminating in the seismic series in January 2016. The mainshock occurred on January 25th 2016 with a magnitude Mw 6.3 and it was preceded by a Mw 5.1 foreshock on January 21st. The seismic series took place at the western end of the Alboran Ridge. Towards the northeast the Alboran Ridge bends, and seems to be connected with the NW-SE right-lateral transtensional Yusuf Fault. The recorded seismicity is mainly located in the Alboran Ridge area and along the N-S Al-Idrisi Fault that seems to continue southwards, towards the Al Hoceima Bay. The focal mechanisms calculated previously in the area showed a left-lateral strike-slip faulting with some normal component in the Alboran Ridge; but always within a complex system of diffuse deformation and high rupture type variability. We have used 41 computed focal mechanisms of this seismic series to analyze its seismotectonics and structural characteristics. To group the focal mechanisms we used a clustering algorithm using the spatial distribution of the events and also the type of rupture mechanism. For each cluster we have obtained the composed focal mechanism, associating it to a particular fault or family of structures. We have tested the mechanical compatibility of these structures by Coulomb Failure Stress transfer modeling. The mainshock of the series occurred in the Al Idrisi Fault intersecting the western Alboran Ridge. This event triggered aftershocks and independent series in left-lateral strike-slip faults associated with the Al Idrisi Fault

  13. International contributions of JNES on seismic safety areas

    International Nuclear Information System (INIS)

    Ebisawa, Katsumi; Uchiyama, Yuichi; Yamada, Hiroyuki

    2010-01-01

    JNES actively promotes the international cooperation in seismic safety areas, aiming to play a role as the important international hub for it. To meet this purpose, JNES is now mainly focusing on the increased support of the international organizations including IAEA and the technological improvement in the seismic related assessment of Asian countries. This paper summarizes these efforts made by JNES. (author)

  14. Fishing activity characterization in areas under influence of seismic activity; Caracterizacao da atividade pesqueira em areas sob influencia da atividade sismica

    Energy Technology Data Exchange (ETDEWEB)

    Fuse, Izabel Yukimi; Zanella, Joao Francisco Illa Font; Eliseire Junior, Dirceu; Pereira, Edisio [Hidrosfera Oceanografia e Meio Ambiente, Rio de Janeiro, RJ (Brazil); Souza, Sergio Augusto Coelho de; Ferraz, Alexandre; Costa, Leandro Soares da; Vidal, Leonardo; Duppre, Mauricio [Okeanos Consultoria e Meio Ambiente Ltda. (Brazil); Uller, George [CGG do Brasil, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    Seismic surveys are an important method in prospecting for oil and gas reservoirs in the marine environment. The ELPN/IBAMA has required that companies develop an adequate social programme in parallel with the seismic surveys to establish a better interaction with the communities influenced by these operations and reduce possible negative effects. Between January and October 2003, CGG Brazil studied coastal communities in the following areas. BM-CE-1 e BM -CE-2, Ceara; Fragata, BM-ES-5 e BM-ES-6, Espirito Santo; BM BAR-1 e BM BAR-3, Maranhao and BM-C-25 and BM-C-16 off Campos basin. Communities and groups that could potentially be influenced by the surveys were visited to mitigate direct and indirect impacts. Preliminary results show that fisheries were the main group to be monitored. A standard questionnaire was used to characterize the local fisheries and interviews were held with fishermen, boat owners and members of the fishery industries (n=422). In Ceara the fishery is typically handmade and occurs in water depths up to 200 meters. The main boat propulsion is sail and the 'Cacoeira' is the most popular gear used. Off Espirito Santo, small and medium motored boats are usually used and line is the main gear among the fishermen. At Barreirinhas (Maranhao), boats are usually up to 14 meters long, and operate in water depths of up to 120 metres. Again the 'cacoeira' is the proffered gear. We concluded that Programs carried out by CGG reached their purpose. This is confirmed by low incident rate between seismic ships and the fisheries fleet. (author)

  15. Seismicity preliminary results in a geothermal and volcano activity area: study case Liquiñe-Ofqui fault system in Southern Andes, Chile

    Science.gov (United States)

    Estay, N. P.; Yáñez Morroni, G.; Crempien, J. G. F.; Roquer, T.

    2017-12-01

    Fluid transport through the crust takes place in domains with high permeability. For this reason, fault damage zones are a main feature where fluids may circulate unimpeded, since they have much larger permeability than normal country rocks. With the location of earthquakes, it is possible to infer fault geometry and stress field of the crust, therefore we can determine potential places where fluid circualtion is taking place. With that purpose, we installed a seismic network in an active volcanic-geothermal system, the Liquiñe-Ofqui Fault System (LOFS), located in Puyuhuapi, Southern Andes (44°-45°S). This allowed to link epicentral seismicity, focal mechanisms and surface expression of fluid circulation (hot-springs and volcanos). The LOFS is composed by two NS-striking dextral master faults, and several secondary NE-striking dextral and normal faults. Surface manifestation of fluid circulation in Puyuhuapi area are: 1) six hot-springs, most of them spatially associated with different mapped faults; 2) seven minor eruptive centers aligned over a 10-km-along one of the master NS-striking fault, and; 3) the Melimouyu strato-volcano without any spatial relationship with mapped faults. The network consists of 6 short period seismometers (S31f-2.0a sensor of IESE, with natural frequency of 2Hz), that were installed between July 2016 and August 2017; also 4 permanent broad-band seismometers (Guralp 6TD/ CD 24 sensor) which belong to the Volcano Observatory of Southern Andes (OVDAS). Preliminary results show a correlation between seismicity and surface manifestation of fluid circulation. Seismicity has a heterogeneous distribution: most of the earthquake are concentrated is the master NS-striking fault with fluid circulation manifestations; however along the segments without surface manifestation of fluids do not have seismicity. These results suggest that fluid circulation mostly occur in areas with high seismicity, and thus, the increment in fluid pressure enhances

  16. Seismic reflection data processing in active volcanic areas: an application to Campi Flegrei and Somma Vesuvius offshore (Southern Italy

    Directory of Open Access Journals (Sweden)

    A. Rapolla

    2002-06-01

    Full Text Available The Campanian volcanism develops near the sea. Therefore, the geophysical study of the marine environment is a key to a better understanding of the tectonic evolution and the origin of volcanism in the area. An abundance of high quality seismic data in the marine sector, where little direct information is available, is critical to the study of Campanian volcanism. This paper concerns the reprocessing of a seismic reflection dataset acquired in Naples Bay and processed during 1973. Even though the overall data quality was high for that time, of course their acquisition technological limits have been overcome by the new processing. Our reprocessing aimed at: 1 reduction of random noise in the data; 2 removal of unwanted coherent events; 3 reduction of spatial aliasing by means of trace interpolation on Commod Shot Point (CSP gathering; 4 improvement of resolution of the seismic wavelet with spiking deconvolution algorithms and finally 5 reposition of reflectors in their correct locations in the space-TWT domain by means of dip moveout and post-stack time migration. A comparison between the new and old data shows that the new sections are characterized by a much higher S/N ratio. Diffraction hyperbole has been collapsed. Reverberations, ghosts and multiples have been removed or greatly attenuated, especially between the reflectors of interest, allowing us to follow them with more detail and with greater continuity. Furthermore, data resolution has been boosted by the reprocessing, allowing the interpreter to evaluate reflector position and continuity in greater detail. The reinterpretation phase of such lines, that is already in an advanced stage, will therefore allow us to gain new insights into the structural setting of the bay, with the aim of exploring the connection between tectonics and volcanism.

  17. Global positioning system survey data for active seismic and volcanic areas of eastern Sicily, 1994 to 2013

    Science.gov (United States)

    Bonforte, Alessandro; Fagone, Sonia; Giardina, Carmelo; Genovese, Simone; Aiesi, Gianpiero; Calvagna, Francesco; Cantarero, Massimo; Consoli, Orazio; Consoli, Salvatore; Guglielmino, Francesco; Puglisi, Biagio; Puglisi, Giuseppe; Saraceno, Benedetto

    2016-08-01

    This work presents and describes a 20-year long database of GPS data collected by geodetic surveys over the seismically and volcanically active eastern Sicily, for a total of more than 6300 measurements. Raw data were initially collected from the various archives at the Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania—Osservatorio Etneo and organized in a single repository. Here, quality and completeness checks were performed, while all necessary supplementary information were searched, collected, validated and organized together with the relevant data. Once all data and information collections were completed, raw binary data were converted into the universal ASCII RINEX format; all data are provided in this format with the necessary information for precise processing. In order to make the data archive readily consultable, we developed software allowing the user to easily search and obtain the needed data by simple alphanumeric and geographic queries.

  18. Global positioning system survey data for active seismic and volcanic areas of eastern Sicily, 1994 to 2013.

    Science.gov (United States)

    Bonforte, Alessandro; Fagone, Sonia; Giardina, Carmelo; Genovese, Simone; Aiesi, Gianpiero; Calvagna, Francesco; Cantarero, Massimo; Consoli, Orazio; Consoli, Salvatore; Guglielmino, Francesco; Puglisi, Biagio; Puglisi, Giuseppe; Saraceno, Benedetto

    2016-08-01

    This work presents and describes a 20-year long database of GPS data collected by geodetic surveys over the seismically and volcanically active eastern Sicily, for a total of more than 6300 measurements. Raw data were initially collected from the various archives at the Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania-Osservatorio Etneo and organized in a single repository. Here, quality and completeness checks were performed, while all necessary supplementary information were searched, collected, validated and organized together with the relevant data. Once all data and information collections were completed, raw binary data were converted into the universal ASCII RINEX format; all data are provided in this format with the necessary information for precise processing. In order to make the data archive readily consultable, we developed software allowing the user to easily search and obtain the needed data by simple alphanumeric and geographic queries.

  19. Seismic Holography of Solar Activity

    Science.gov (United States)

    Lindsey, Charles

    2000-01-01

    The basic goal of the project was to extend holographic seismic imaging techniques developed under a previous NASA contract, and to incorporate phase diagnostics. Phase-sensitive imaging gives us a powerful probe of local thermal and Doppler perturbations in active region subphotospheres, allowing us to map thermal structure and flows associated with "acoustic moats" and "acoustic glories". These remarkable features were discovered during our work, by applying simple acoustic power holography to active regions. Included in the original project statement was an effort to obtain the first seismic images of active regions on the Sun's far surface.

  20. Waveform through the subducted plate under the Tokyo region in Japan observed by a ultra-dense seismic network (MeSO-net) and seismic activity around mega-thrust earthquakes area

    Science.gov (United States)

    Sakai, S.; Kasahara, K.; Nanjo, K.; Nakagawa, S.; Tsuruoka, H.; Morita, Y.; Kato, A.; Iidaka, T.; Hirata, N.; Tanada, T.; Obara, K.; Sekine, S.; Kurashimo, E.

    2009-12-01

    In central Japan, the Philippine Sea plate (PSP) subducts beneath the Tokyo Metropolitan area, the Kanto region, where it causes mega-thrust earthquakes, such as the 1703 Genroku earthquake (M8.0) and the 1923 Kanto earthquake (M7.9) which had 105,000 fatalities. A M7 or greater earthquake in this region at present has high potential to produce devastating loss of life and property with even greater global economic repercussions. The Central Disaster Management Council of Japan estimates the next great earthquake will cause 11,000 fatalities and 112 trillion yen (1 trillion US$) economic loss. This great earthquake is evaluated to occur with a probability of 70 % in 30 years by the Earthquake Research Committee of Japan. We had started the Special Project for Earthquake Disaster Mitigation in Tokyo Metropolitan area (2007-2012). Under this project, the construction of the Metropolitan Seismic Observation network (MeSO-net) that consists of about 400 observation sites was started [Kasahara et al., 2008; Nakagawa et al., 2008]. Now, we had 178 observation sites. The correlation of the wave is high because the observation point is deployed at about 2 km intervals, and the identification of the later phase is recognized easily thought artificial noise is very large. We also discuss the relation between a deformation of PSP and intra-plate M7+ earthquakes: the PSP is subducting beneath the Honshu arc and also colliding with the Pacific plate. The subduction and collision both contribute active seismicity in the Kanto region. We are going to present a high resolution tomographic image to show low velocity zone which suggests a possible internal failure of the plate; a source region of the M7+ intra-plate earthquake. Our study will contribute a new assessment of the seismic hazard at the Metropolitan area in Japan. Acknowledgement: This study was supported by the Earthquake Research Institute cooperative research program.

  1. Short time scale laws in self-potentialsignals from two different seismically active Mediterranean areas(the Southern Apennine chainand Crete Island

    Directory of Open Access Journals (Sweden)

    M. Macchiato

    2001-06-01

    Full Text Available Self-potential time series are investigated to characterise self-potential time scales. The data analysed were recorded in stations located in two active seismic areas of the Mediterranean region, the Southern Apennine chain (Giuliano and Crete Island (Heraklion, where in past and recent years many destructive seismic events have taken place. The seismological and geological settings, combined with a low level of cultural noise, allow us to consider these areas ideal outdoor laboratories to study the time dynamics of geophysical parameters of electrical nature. At the same time, the different seismological features of such areas make an inter-comparison between the geoelectrical variability observed at the two sites interesting. Fractal analysis tools, able to detect scale laws and quantify persistence features, are used to better understand the background variability properties of the self-potential signals. As results from our analysis, antipersistence seems to be a ubiquitous feature on short time scales (minutes regardless of environmental conditions. On such scales, the accumulation of random fluctuations is not particularly efficient and significant variations mostly occur as sudden jumps.

  2. Seismic activity maps for the Armenian Highlands

    Energy Technology Data Exchange (ETDEWEB)

    Karapetyan, N.K.; Manukyan, Zh.O.

    1976-01-01

    Seismic activity maps for the periods 1952 to 1967 and 1952 to 1968 were compiled for the Armenian Highlands in order to study the spatial distribution of earthquake recurrence and to construct maps in isolines of seismic activity. Diagrams are presented illustrating such seismic activity maps for the indicated periods. 4 references, 3 figures, 1 table.

  3. Results of gas flux records in the seismically active area of Val d'Agri (Southern Italy

    Directory of Open Access Journals (Sweden)

    V. Lapenna

    2005-06-01

    Full Text Available The Val d Agri area is well-known for oil exploration. An old 500 m deep exploration well in the northern part of this area has been used for long-term hydrogeochemical investigations. The well is characterized by a discharge of about 500 L/min of thermal water (27.8°C and a simultaneous methane gas emission of about 200 L/min. Gas analyses gave evidence that the methane come from a multiple deep reservoir. Continuous records of gas emission showed some anomalous variations occurred during the past three years. The gas flux anomalies were in a distinctive coincidence with self-potential anomalies of one station close to the hydrogeochemical station. The present paper describes the interpretation of these anomalies in relation to the geodynamic activity in the area.

  4. Seismic activity in northeastern Brazill-new perspectives

    Science.gov (United States)

    Ferreira, J. M.; Do Nascimento, A. F.; Vilar, C. S.; Bezerra, F. H.; Assumpcao, M.; Berrocal, J.; Fuck, R. A.

    2007-05-01

    Northeastern Brazil is the most seismic active region in the country. Some earthquakes with magnitude above 5.0 and intensity VII MM associated with swam-like seismic activity lasting for many years are a serious social concern. Since the 1980's macroseismic and instrumental surveys have been carried out in this region and they are an important data archive which allows the composition of a reliable catalogue of seismic activity for this region. Among the many scientific results it was possible to identify the main seismogenic areas, obtain reliable hypocentres and focal mechanisms. As a consequence, it was possible also to analyse the relationship between seismicity and geological features. It was also possible to determined maximum horizontal stress direction for the region. An important induced seismic activity case has also been reported in the area as being a classical example of pore pressure diffusion triggering mechanism. The majority of the results were obtained using analogic data. Recently, a new research project is being conducted and will allow us to provide a regional scale monitoring with 6 broad-band stations and a new portable six station digital seismic network equipped with short- period sensors. Thus, with the continuous seismic activity in the area we trust that the results of this project will increase the present knowledge of seismic activity in northeastern Brazil.

  5. Identification of seismically susceptible areas in western Himalaya ...

    Indian Academy of Sciences (India)

    This study is an attempt to identify seismically susceptible areas in western Himalaya, using pattern recognition ... a combination of both qualitative and quantita- tive features. .... Three distinct types of zones were identified: S1 was identified as ...

  6. 3D Modelling of Seismically Active Parts of Underground Faults via Seismic Data Mining

    Science.gov (United States)

    Frantzeskakis, Theofanis; Konstantaras, Anthony

    2015-04-01

    During the last few years rapid steps have been taken towards drilling for oil in the western Mediterranean sea. Since most of the countries in the region benefit mainly from tourism and considering that the Mediterranean is a closed sea only replenishing its water once every ninety years careful measures are being taken to ensure safe drilling. In that concept this research work attempts to derive a three dimensional model of the seismically active parts of the underlying underground faults in areas of petroleum interest. For that purpose seismic spatio-temporal clustering has been applied to seismic data to identify potential distinct seismic regions in the area of interest. Results have been coalesced with two dimensional maps of underground faults from past surveys and seismic epicentres, having followed careful reallocation processing, have been used to provide information regarding the vertical extent of multiple underground faults in the region of interest. The end product is a three dimensional map of the possible underground location and extent of the seismically active parts of underground faults. Indexing terms: underground faults modelling, seismic data mining, 3D visualisation, active seismic source mapping, seismic hazard evaluation, dangerous phenomena modelling Acknowledgment This research work is supported by the ESPA Operational Programme, Education and Life Long Learning, Students Practical Placement Initiative. References [1] Alves, T.M., Kokinou, E. and Zodiatis, G.: 'A three-step model to assess shoreline and offshore susceptibility to oil spills: The South Aegean (Crete) as an analogue for confined marine basins', Marine Pollution Bulletin, In Press, 2014 [2] Ciappa, A., Costabile, S.: 'Oil spill hazard assessment using a reverse trajectory method for the Egadi marine protected area (Central Mediterranean Sea)', Marine Pollution Bulletin, vol. 84 (1-2), pp. 44-55, 2014 [3] Ganas, A., Karastathis, V., Moshou, A., Valkaniotis, S., Mouzakiotis

  7. Evaluating Seismic Activity in Ethiopia

    African Journals Online (AJOL)

    map is constructed from which seismic risks in a given sector ... troyed (10, 11) and the people of Eritrea remember these years ... terms of damage caused to man-made structures; they refer to .... walls of a well designed modern building were deta- ched from ... Although, at present, no theory is satisfactory, the fact remains.

  8. Nuclear fuel storage apparatus for seismic areas

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1982-01-01

    A structural grid for supporting spent fuel is located underwater in a pool. The grid is spaced from the walls of the pool and supported by cables from above. Horizontal acceleration due to seismic forces results in a movement of the support members and of the pool walls. The cables, being flexible, continue to support the grid but do not contribute to the horizontal movement of the grid. Accordingly, no significant earthquake forces are transmitted from the supporing structure

  9. Patterns of Seismicity Associated with USGS Identified Areas of Potentially Induced Seismicity.

    Science.gov (United States)

    Barnes, Caitlin; Halihan, Todd

    2018-03-13

    A systematic review across U.S. Geological Survey (USGS) identified potentially induced seismic locations was conducted to discover seismic distance patterns and trends over time away from injection disposal wells. Previous research indicates a 10 km (6 miles) average where the majority of induced seismicity is expected to occur within individual locations, with some areas reporting a larger radius of 35 km (22 miles) to over 70 km (43 miles). This research analyzed earthquake occurrences within nine USGS locations where specified wells were identified as contributors to induced seismicity to determine distance patterns from disposal wells or outward seismic migration over time using established principles of hydrogeology. Results indicate a radius of 31.6 km (20 miles) where 90% of felt earthquakes occur among locations, with the closest proximal felt seismic events, on average, occurring 3 km (1.9 miles) away from injection disposal wells. The results of this research found distance trends across multiple locations of potentially induced seismicity. © 2018, National Ground Water Association.

  10. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knox, Hunter Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); James, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Rebekah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cole, Chris [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  11. CONCIDERATION OF FOUNDATION AND SEISMIC CONDITIONS OF AREA IN ANALYSIS OF SEISMIC RESISTANCE OF REACTOR COMPARTMENT

    Directory of Open Access Journals (Sweden)

    SEDIN V. L.

    2015-11-01

    Full Text Available Problem statement. Providing of safe exploitation of nuclear power plants, as well as a safety of staff and environment is a very important problem. A distinct feature of this problem is a necessity to provide not only a strength of structures, but also a safe functioning of all systems that control nuclear process. In particular, the influence of earthquake should be considered on constructions of buildings and structures of nuclear and thermal power plant, taking into account soil-structure interaction. According to IAEA’s SSD-9 recommendations, a risk of vibration of soil should be analyzed for each NPP connected with earthquakes soil that means researches, including general, detailed and microseismic zoning of the area works. One of the distinctive features of the considered problem is an evaluation of the seismicity of area and getting the response spectrum on the free surface. Purpose. Determination of seismic resistance of buildings of high category of safety with the example of the reactor compartment of Zaporoghskaya NPP including the soil structure interaction. Conclusion The seismicity assessment of the area and obtaining of response specters on free surface was made during research and analysis of seismic resistance of buildings of high category of safety including the effects of foundation and structures. The method of modeling of the equivalent dynamic characteristics of the base was considered during the research in seismic impacts.

  12. Methodology of seismotectonic zoning in an intraplate low seismicity domain. Examples of France surrounding areas

    International Nuclear Information System (INIS)

    Philip, H.; Grellet, B.; Combes, P.; Haessler, H.

    1991-01-01

    Until now, the dominant factor in seismic hazard assessments has been historical seismicity. This approach is justified if the data derived from historical seismicity in a region are representative of its seismic activity and if we consider that in areas where damaging earthquakes have happened, they may happen again. This can be seen when seismotectonic relationships are well established in areas such as well localised plate boundaries (subduction zones, transform faults) and/or with a high rate of deformation. In these cases, the areas where future earthquakes might occur are usually well determined and the recurrences short enough on the time scale of historical observations. However, in areas where recent tectonic deformations are diffused and moderate, the historical period of seismicity data (a few centuries) is not long enough to observe a sample of historical seismicity representative of the present-day tectonic activity of the area. The studies on the most recent damaging earthquakes (El Asnam 1980, Spitak 1988, Cherchell Tipasa 1989) show that it would have been extremely difficult to predict the magnitude and the localisation of these events considering historical seismicity alone. It is the same in Provence (south of France) where the risk of occurrence of a damaging earthquake would have been underestimated before the June 1909 event. In all these cases, seismotectonic studies 'a posteriori' show that the geometry and kinematic of the faults responsible for these earthquakes can be identified and that all of them have presented seismic activity in the last thousand years. So it is necessary to emphasis a global approach of the problem through specific studies such as neotectonics, teledetection, geodesy, present-day stress field, strain field, paleoseismology etc. These studies will enlarge the period of observation compared with the data derived only from historical and present-day seismicity. In France seismicity is moderate and recent tectonic

  13. ESAA environment for seismic activity analysis

    International Nuclear Information System (INIS)

    Zhang Shuyu; Hao Bailin.

    1994-09-01

    ESAA is an X-window based, graphical and interactive, software system for analyzing seismic activity, using the earthquake catalogues of a given region as input. Basic design idea and structure of this system, as well as the progress in its implementation are reported. (author). 12 refs

  14. Crustal Deformation around Zhangjiakou-Bohai Seismically Active Belt

    Science.gov (United States)

    Jin, H.; Fu, G.; Kato, T.

    2011-12-01

    Zhangjiakou-Bohai belt is a seismically active belt located in Northern China around Beijing, the capital of China. Near such a belt many great earthquakes occurred in the past centuries (e.g. the 1976 Tanshan Ms7.8 earthquake, the 1998 Zhangbei Ms6.2 earthquake, etc). Chinese Government established dense permanent and regional Global Positioning System (GPS) stations in and near the area. We collected and analyzed all the GPS observation data between 1999 and 2009 around Zhangjiakou-Bohai seismic belt, and obtained velocities at 143 stations. At the same time we investigated Zhangjiakou-Bohai belt slip rate for three profiles from northwest to southeast, and constructed a regional strain field on the Zhangjiakou-Bohai seismic belt region by least-square collocation. Based on the study we found that: 1) Nowadays the Zhangjiakou-Bohai seismic belt is creeping with left-lateral slip rate of 2.0mm~2.4mm/a, with coupling depth of 35~50km; 2) In total, the slip and coupling depth of the northwestern seismic belt is less than the one of southeast side; 3) The maximum shear strain is about 3×10-8 at Beijing-Tianjin-Tangshan area.

  15. Reflection seismic studies in the Forsmark area - stage 1

    Energy Technology Data Exchange (ETDEWEB)

    Juhlin, Christopher; Bergman Bjoern; Palm, Hans [Uppsala Univ. (Sweden). Dept. of Earth Sciences

    2002-10-01

    Reflection seismic data were acquired in the Spring of 2002 in the Forsmark area, located about 70 km northeast of Uppsala, Sweden. The Forsmark area has been targeted by SKB as a possible storage site for high level radioactive waste. About 16 km of high resolution seismic data were acquired along five separate profiles varying in length from 2 to 5 km. Non-final source and receiver spacing was 10 m with 100 active channels when recording data from a dynamite source (15-75 g). The profiles were located within a relatively undeformed lens of bedrock that trends in the NW-SE direction. The lens is surrounded by highly deformed rock on all sides. In conjunction with the reflection component of the study, all shots were also recorded on up to eleven 3-component fixed Orion seismographs. These recordings provided long offset data from which a velocity model of the uppermost 400 m of bedrock could be derived. Results from the study show that the bedrock has been well imaged down to depths of at least 3 km. The upper 1000 m of bedrock is much more reflective in the southeastern portion of the lens compared to the northwestern part close to the Forsmark reactors. This is interpreted as the bedrock being more homogeneous in the northwest. However, a major reflective zone (the A1 reflector) is interpreted to dip to the S-SE below this homogeneous bedrock. In the southeastern portion of the lens the orientation of the reflectors is well determined where the profiles cross one another. The general strike of the major reflectors is NE-SW with dips of 20-35 degrees to the southeast.

  16. Seismic assessment of Technical Area V (TA-V).

    Energy Technology Data Exchange (ETDEWEB)

    Medrano, Carlos S.

    2014-03-01

    The Technical Area V (TA-V) Seismic Assessment Report was commissioned as part of Sandia National Laboratories (SNL) Self Assessment Requirement per DOE O 414.1, Quality Assurance, for seismic impact on existing facilities at Technical Area-V (TA-V). SNL TA-V facilities are located on an existing Uniform Building Code (UBC) Seismic Zone IIB Site within the physical boundary of the Kirtland Air Force Base (KAFB). The document delineates a summary of the existing facilities with their safety-significant structure, system and components, identifies DOE Guidance, conceptual framework, past assessments and the present Geological and Seismic conditions. Building upon the past information and the evolution of the new seismic design criteria, the document discusses the potential impact of the new standards and provides recommendations based upon the current International Building Code (IBC) per DOE O 420.1B, Facility Safety and DOE G 420.1-2, Guide for the Mitigation of Natural Phenomena Hazards for DOE Nuclear Facilities and Non-Nuclear Facilities.

  17. Designing in seismic areas in the third millennium: modern technologies

    International Nuclear Information System (INIS)

    Martelli, Alessandro

    2015-01-01

    The World Conference on Seismic Isolation, Energy Dissipation and Active Vibrations Control of Structures, which took place in Sendai (Japan) on September 24-26, 2013. Other papers presented at this conference deal with the use of the traditional approach. More updated information on the application of the AS systems became available at the ASSISi 14. World Conference, held in San Diego (California, USA) on September 7-11, 2015. Most SI systems rely on the use of rubber bearings (RBs), such as the High Damping natural Rubber Bearings (HDRBs), Neoprene Bearings (NBs), Lead Rubber Bearings (LRBs), or (especially in Japan) Low Damping Rubber Bearings (LDRBs) in parallel with dampers; in buildings, some plane surfaces steel-Teflon (PTFE) Sliding Devices (SDs) are frequently added to the RBs to support their light parts without unnecessarily stiffening the SI system (which would make it less effective) and (if they are significantly asymmetric in the horizontal plane) to minimize the torsion effects (the effects of the vertical asymmetries are drastically reduced by the quasi 'rigid body motion' of the seismically isolated superstructure). Another type of isolators, which has been used in Italy after the 2009 Abruzzo earthquake, is the so-called Curved Surface Slider (CSS), which derived from the US Friction Pendulum (FPS) and the subsequent German Seismic Isolation Pendulum (SIP). Finally, rolling isolators (in particular Ball Bearings, BBs, and Sphere Bearings) are also applied: they are very effective and find numerous applications (more than 200 in 2013) to protect buildings in Japan, but not in Italy, because there they have been judged to be too expensive (however, they have already been used, even in Italy, to protect precious masterpieces and other contents of museums, as well as costly equipment, including that of operating-rooms in hospitals). It shall be stressed that, to the knowledge of the author, all structures protected by RBs that were located

  18. Motorized Activity on Legacy Seismic Lines: A Predictive Modeling Approach to Prioritize Restoration Efforts.

    Science.gov (United States)

    Hornseth, M L; Pigeon, K E; MacNearney, D; Larsen, T A; Stenhouse, G; Cranston, J; Finnegan, L

    2018-05-11

    Natural regeneration of seismic lines, cleared for hydrocarbon exploration, is slow and often hindered by vegetation damage, soil compaction, and motorized human activity. There is an extensive network of seismic lines in western Canada which is known to impact forest ecosystems, and seismic lines have been linked to declines in woodland caribou (Rangifer tarandus caribou). Seismic line restoration is costly, but necessary for caribou conservation to reduce cumulative disturbance. Understanding where motorized activity may be impeding regeneration of seismic lines will aid in prioritizing restoration. Our study area in west-central Alberta, encompassed five caribou ranges where restoration is required under federal species at risk recovery strategies, hence prioritizing seismic lines for restoration is of immediate conservation value. To understand patterns of motorized activity on seismic lines, we evaluated five a priori hypotheses using a predictive modeling framework and Geographic Information System variables across three landscapes in the foothills and northern boreal regions of Alberta. In the northern boreal landscape, motorized activity was most common in dry areas with a large industrial footprint. In highly disturbed areas of the foothills, motorized activity on seismic lines increased with low vegetation heights, relatively dry soils, and further from forest cutblocks, while in less disturbed areas of the foothills, motorized activity on seismic lines decreased proportional to seismic line density, slope steepness, and white-tailed deer abundance, and increased proportional with distance to roads. We generated predictive maps of high motorized activity, identifying 21,777 km of seismic lines where active restoration could expedite forest regeneration.

  19. Evaluation of seismic reflection data in the Davis and Lavender Canyons study area, Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Kitcho, C.A.; Wong, I.G.; Turcotte, F.T.

    1986-08-01

    Seismic reflection data purchased from petroleum industry brokers and acquired through group speculative surveys were interpreted for information on the regional subsurface geologic structure and stratigraphy within and surrounding the Davis and Lavender Canyons study area in the Paradox Basin of southeastern Utah. Structures of interest were faults, folds, joints, and collapse structures related to salt dissolution. The seismic reflection data were used to interpret stratigraphy by identifying continuous and discontinuous reflectors on the seismic profiles. Thickening and thinning of strata and possible areas of salt flowage or dissolution could be identified from the seismic data. Identifiable reflectors included the tops of the Precambrian and Mississippian, a distinctive interbed close to the middle of the Pennsylvanian Paradox salt formation (probably the interval between Salt Cycles 10 and 13), and near the top of the Paradox salt. Of the 56 faults identified from the seismic reflection interpretation, 33 trend northwest, west-northwest, or west, and most affect only the deeper part of the stratigraphic section. These faults are part of the deep structural system found throughout the Paradox Basin, including the fold and fault belt in the northeast part of the basin. The faults bound basement Precambrian blocks that experienced minor activity during Mississippian and early Pennsylvanian deposition, and showed major displacement during early Paradox salt deposition as the Paradox Basin subsided. Based on the seismic data, most of these faults appear to have an upward terminus between the top of the Mississippian and the salt interbed reflector

  20. Seismic safety programme at NPP Paks. Propositions for coordinated international activity in seismic safety of the WWER-440 V-213

    International Nuclear Information System (INIS)

    Katona, T.

    1995-01-01

    This paper presents the Paks NPP seismic safety program, highlighting the specifics of the WWER-440/213 type in operation, and the results of work obtained so far. It covers the following scope: establishment of the seismic safety program (original seismic design, current requirements, principles and structure of the seismic safety program); implementation of the seismic safety program (assessing the seismic hazard of the site, development of the new concept of seismic safety for the NPP, assessing the seismic resistance of the building and the technology); realization of the seismic safety of higher level (technical solutions, drawings, realization); ideas and propositions for coordinated international activity

  1. Slope Stability Analysis In Seismic Areas Of The Northern Apennines (Italy)

    International Nuclear Information System (INIS)

    Lo Presti, D.; Fontana, T.; Marchetti, D.

    2008-01-01

    Several research works have been published on the slope stability in the northern Tuscany (central Italy) and particularly in the seismic areas of Garfagnana and Lunigiana (Lucca and Massa-Carrara districts), aimed at analysing the slope stability under static and dynamic conditions and mapping the landslide hazard. In addition, in situ and laboratory investigations are available for the study area, thanks to the activities undertaken by the Tuscany Seismic Survey. Based on such a huge information the co-seismic stability of few ideal slope profiles have been analysed by means of Limit equilibrium method LEM - (pseudo-static) and Newmark sliding block analysis (pseudo-dynamic). The analysis--results gave indications about the most appropriate seismic coefficient to be used in pseudo-static analysis after establishing allowable permanent displacement. Such indications are commented in the light of the Italian and European prescriptions for seismic stability analysis with pseudo-static approach. The stability conditions, obtained from the previous analyses, could be used to define microzonation criteria for the study area

  2. MASW Seismic Method in Brebu Landslide Area, Romania

    Science.gov (United States)

    Mihai, Marinescu; Paul, Cristea; Cristian, Marunteanu; Matei, Mezincescu

    2017-12-01

    This paper is focused on assessing the possibility of enhancing the geotechnical information in perimeters with landslides, especially through applications of the Multichannel Analysis of Surface Waves (MASW) method. The technology enables the determination of the phase velocities of Rayleigh waves and, recursively, the evaluation of shear wave velocities (Vs) related to depth. Finally, using longitudinal wave velocities (Vp), derived from the seismic refraction measurements, in situ dynamic elastic properties in a shallow section can be obtained. The investigation was carried out in the Brebu landslide (3-5 m depth of bedrock), located on the southern flank of the Slanic Syncline (110 km North of Bucharest) and included a drilling program and geotechnical laboratory observations. The seismic refraction records (seismic sources placed at the centre, ends and outside of the geophone spread) have been undertaken on two lines, 23 m and 46 m long respectively) approximately perpendicular to the downslope direction of the landslide and on different local morpho-structures. A Geode Geometrics seismograph was set for 1 ms sampling rate and pulse summations in real-time for five blows. Twenty-four vertical Geometrics SpaceTech geophones (14 Hz resonance frequency) were disposed at 1 m spacing. The seismic source was represented by the impact of an 8kg weight sledge hammer on a metal plate. Regarding seismic data processing, the distinctive feature is related to performing more detailed analyses of MASW records. The proposed procedure consists of the spread split in groups with fewer receivers and several interval-geophones superposed. 2D Fourier analysis, f-k (frequency-wave number) spectrum, for each of these groups assures the information continuity and, all the more, accuracy to pick out the amplitude maximums of the f-k spectra. Finally, combining both values VS (calculated from 2D spectral analyses of Rayleigh waves) and VP (obtained from seismic refraction records

  3. Revised crustal architecture of the southeastern Carpathian foreland from active and passive seismic data

    Science.gov (United States)

    Enciu, Dana M.; Knapp, Camelia C.; Knapp, James H.

    2009-08-01

    Integration of active and passive source seismic data is employed in order to study the nature of the relationships between crustal seismicity and geologic structures in the southeastern (SE) Carpathian foreland of Romania and the possible connection with the Vrancea Seismogenic Zone (VSZ) of intermediate-depth seismicity, one of the most active earthquake-prone areas in Europe. Crustal epicenters and focal mechanisms are correlated with four deep industry seismic profiles, the reprocessed Danube and Carpathian Integrated Action on Process in the Lithosphere and Neotectonics (DACIA PLAN) profile and the Deep Reflection Acquisition Constraining Unusual Lithospheric Activity II and III (DRACULA) profiles in order to understand the link between neotectonic foreland deformation and Vrancea mantle seismicity. Projection of crustal foreland hypocenters onto deep seismic profiles identifies several active crustal faults in the SE Carpathian foreland and suggests a mechanical coupling between the mantle located VSZ and the overlying foreland crust. The coupled associated deformation appears to take place on the Trotus Fault, the Sinaia Fault, and the newly detected Ialomita Fault. Seismic reflection imaging reveals the absence of west dipping reflectors in the crystalline crust and a slightly east dipping to horizontal Moho in the proximity of the Vrancea area. These findings argue against previously purported mechanisms to generate mantle seismicity in the VSZ including oceanic lithosphere subduction in place and oceanic slab break off, furthermore suggesting that the Vrancea seismogenic body is undetached from the overlying crust in the foreland.

  4. Seismic microzonation on peak ground acceleration for Sapporo area; Sapporo chiiki no seismic microzonation

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, S [Muroran Institute of Technology, Hokkaido (Japan); Vuetibau, L

    1997-10-22

    With an objective for use as fundamental information and data for measures to prevent disasters from regional earthquakes, microzonation was carried out on the Sapporo area. The present study has conducted comparisons and discussions on frequency distributions of maximum surface acceleration in the Sapporo area and the previously analyzed Muroran, Tomakomai and Obihiro areas. In the Muroran area, the frequency is distributed widely from 50 to 220 gal, while it is distributed narrowly from 110 to 170 gal in the Tomakomai area, and 90 to 160 gal in the Obihiro area. Such distributions have been formed possibly because the Muroran area has different kinds of grounds exist with hills and lowlands tangled, while the Tomakomai and Obihiro areas have nearly the same ground conditions with the topography being flat and the areas being located in an alluvial plain with soft Quaternary bed having been grown to a great thickness. The Sapporo area showed distribution close to that in the Muroran area. The maximum surface acceleration may vary even in the same mesh. This indicates that more detailed seismic microzonation is necessary to establish more effective means to prevent disasters from earthquakes. 10 refs., 4 figs., 1 tab.

  5. Passive seismic experiment in the Olduvai Gorge and Laetoli region (Ngorongoro Conservation Area), Northern Tanzania.

    Science.gov (United States)

    Parisi, Laura; Lombardo, Luigi; Tang, Zheng; Mai, P. Martin

    2017-04-01

    The Olduvai Gorge and Laetoli basins, located within the Ngorogoro Conservation Area (NCA), are a cornerstone for understanding the evolution of early humans and are two paleo-antropological excavation sites of global importance. NCA is located at the boundary between the Tanzanian Craton and East African Rift (EAR), in the vicinity of Ngorongoro Crater and other major volcanic edifices. Thus, understanding the geology and tectonics of the NCA may shed light onto the question why early Hominins settled in this region. Environmental and geological conditions in the Olduvai and Laetoli region that promoted human settlement and development are still debated by geologists and paleo-anthropologists. Paleo-geographical reconstructions of the study area of the last 2 million years may take advantage of modern passive seismology. Therefore, we installed a dense seismic network covering a surface of approximately 30 x 40 km within the NCA to map the depth extent of known faults, and to identify seismically active faults that have no surface expression. Our ten seismic stations, equipped with Trillium Compact 120 s sensors, started to operate in June 2016 and will continue for a total of 2 years. At the end of the first year, other 5 stations will densify our network. Here we analyse data quality of the first four months of continuous recordings. Our network provides good quality 3-C waveforms in the frequency range of 0.7-50 Hz. Vertical component seismograms record frequencies reliably down to 8 mHz. Preliminary results of the seismicity obtained with standard location procedures show that NCA is characterised by frequent tectonic seismicity (not volcano-related) with Ml between 0.5 and 2.0. Seismic activity is more frequent in the South (Laetoli region) where major fault systems have not been recognised at the surface yet.

  6. The fine structure of the dynamics of seismicity before earthquakes in the area of Reggio Emilia (Northern Italy

    Directory of Open Access Journals (Sweden)

    Y. Tyupki

    1999-06-01

    Full Text Available We present the results of studies of seismicity in the Reggio Emilia area (Northern Italy. The Istituto Nazionale di Geofisica instrumental earthquake catalogue (1975-1996 reported about three moderate-size earthquakes with M ³ 4.5 that occurred in this area (November 1983, May 1987, October 1996. The RTL prognostic parameter proposed by Sobolev and Tyupkin (1996a was used for analysis. This parameter is designed in such a way that a seismic quiescence produces negative anomaly of the RTL parameter in comparison to its perennial background level and an activation of seismicity initiates the growth of its value. The RTL prognostic parameter indicates that all three earthquakes are preceded by activation of the seismicity. The interval between the commencement of the activation identified by RTL parameter and the event itself was about one year for the 1987 and 1996 earthquakes, and about three months for the 1983 earthquake.

  7. Erosion influences the seismicity of active thrust faults.

    Science.gov (United States)

    Steer, Philippe; Simoes, Martine; Cattin, Rodolphe; Shyu, J Bruce H

    2014-11-21

    Assessing seismic hazards remains one of the most challenging scientific issues in Earth sciences. Deep tectonic processes are classically considered as the only persistent mechanism driving the stress loading of active faults over a seismic cycle. Here we show via a mechanical model that erosion also significantly influences the stress loading of thrust faults at the timescale of a seismic cycle. Indeed, erosion rates of about ~0.1-20 mm yr(-1), as documented in Taiwan and in other active compressional orogens, can raise the Coulomb stress by ~0.1-10 bar on the nearby thrust faults over the inter-seismic phase. Mass transfers induced by surface processes in general, during continuous or short-lived and intense events, represent a prominent mechanism for inter-seismic stress loading of faults near the surface. Such stresses are probably sufficient to trigger shallow seismicity or promote the rupture of deep continental earthquakes up to the surface.

  8. A deterministic seismic hazard map of India and adjacent areas

    International Nuclear Information System (INIS)

    Parvez, Imtiyaz A.; Vaccari, Franco; Panza, Giuliano

    2001-09-01

    A seismic hazard map of the territory of India and adjacent areas has been prepared using a deterministic approach based on the computation of synthetic seismograms complete of all main phases. The input data set consists of structural models, seismogenic zones, focal mechanisms and earthquake catalogue. The synthetic seismograms have been generated by the modal summation technique. The seismic hazard, expressed in terms of maximum displacement (DMAX), maximum velocity (VMAX), and design ground acceleration (DGA), has been extracted from the synthetic signals and mapped on a regular grid of 0.2 deg. x 0.2 deg. over the studied territory. The estimated values of the peak ground acceleration are compared with the observed data available for the Himalayan region and found in good agreement. Many parts of the Himalayan region have the DGA values exceeding 0.6 g. The epicentral areas of the great Assam earthquakes of 1897 and 1950 represent the maximum hazard with DGA values reaching 1.2-1.3 g. (author)

  9. Heterogeneous Structure and Seismicity beneath the Tokyo Metropolitan Area

    Science.gov (United States)

    Nakagawa, S.; Kato, A.; Sakai, S.; Nanjo, K.; Panayotopoulos, Y.; Kurashimo, E.; Obara, K.; Kasahara, K.; Aketagawa, T.; Kimura, H.; Hirata, N.

    2010-12-01

    Beneath the Tokyo metropolitan area, the Philippine Sea Plate (PSP) subducts and causes damaged mega-thrust earthquakes. Sato et al. (2005) revealed the geometry of upper surface of PSP, and Hagiwara et al. (2006) estimated the velocity structure beneath Boso peninsula. However, these results are not sufficient for the assessment of the entire picture of the seismic hazards beneath the Tokyo metropolitan area including those due to an intra-slab M7+ earthquake. So, we launched the Special Project for Earthquake Disaster Mitigation in the Tokyo Metropolitan area (Hirata et al., 2009). Proving the more detailed geometry and physical properties (e.g. velocities, densities, attenuation) and stress field within PSP is very important to attain this issue. The core item of this project is a dense seismic array called Metropolitan Seismic Observation network (MeSO-net) for making observations in the metropolitan area (Sakai and Hirata, 2009; Kasahara et al., 2009). We deployed the 249 seismic stations with a spacing of 5 km. Some parts of stations construct 5 linear arrays at interval of 2 km such as Tsukuba-Fujisawa (TF) array, etc. The TF array runs from northeast to southwest through the center of Tokyo. In this study, we applied the tomography method to image the heterogeneous structure under the Tokyo metropolitan area. We selected events from the Japan Meteorological Agency (JMA) unified earthquake list. All data of MeSO-net were edited into event data by the selected JMA unified earthquake list. We picked the P and S wave arrival times. The total number of stations and events are 421 and 1,256, respectively. Then, we applied the double-difference tomography method (Zhang and Thurber, 2003) to this dataset and estimated the fine-scale velocity structure. The grid nodes locate 10 km interval in parallel with the array, 20 km interval in perpendicular to the array; and on depth direction, 5 km interval to a depth of less than 50 km and 10 km interval at a depth of more

  10. Seismic characteristics of the area around the Philippine Research Reactor (PRR-1)

    International Nuclear Information System (INIS)

    Paz, L.R. de la; Palattao, M.V.B.; Estacio, J.F.; Ragiles, S.O.

    1989-01-01

    The seismic characteristics of the PRR-1 site are discussed. A study was made about seismicity, acceleration values and the recent seismic history of the site. The incidence of seismic events in Manila and Quezon City and their intensities were also recorded and plotted. The liquefaction potential was calculated. No zone of liquefaction was found existing in the site area. (Auth.). 6 tabs., 18 refs., 7 figs

  11. Boundary separating the seismically active reelfoot rift from the sparsely seismic Rough Creek graben, Kentucky and Illinois

    Science.gov (United States)

    Wheeler, R.L.

    1997-01-01

    The Reelfoot rift is the most active of six Iapetan rifts and grabens in central and eastern North America. In contrast, the Rough Creek graben is one of the least active, being seismically indistinguishable from the central craton of North America. Yet the rift and graben adjoin. Hazard assessment in the rift and graben would be aided by identification of a boundary between them. Changes in the strikes of single large faults, the location of a Cambrian transfer zone, and the geographic extent of alkaline igneous rocks provide three independent estimates of the location of a structural boundary between the rift and the graben. The boundary trends north-northwest through the northeastern part of the Fluorspar Area Fault Complex of Kentucky and Illinois, and has no obvious surface expression. The boundary involves the largest faults, which are the most likely to penetrate to hypocentral depths, and the boundary coincides with the geographic change from abundant seismicity in the rift to sparse seismicity in the graben. Because the structural boundary was defined by geologic variables that are expected to be causally associated with seismicity, it may continue to bound the Reelfoot rift seismicity in the future.

  12. Calcium Stabilized And Geogrid Reinforced Soil Structures In Seismic Areas

    International Nuclear Information System (INIS)

    Rimoldi, Pietro; Intra, Edoardo

    2008-01-01

    In many areas of Italy, and particularly in high seismic areas, there is no or very little availability of granular soils: hence embankments and retaining structures are often built using the locally available fine soil. For improving the geotechnical characteristics of such soils and/or for building steep faced structures, there are three possible techniques: calcium stabilization, geogrid reinforcement, and the combination of both ones, that is calcium stabilized and reinforced soil. The present paper aims to evaluate these three techniques in terms of performance, design and construction, by carrying out FEM modeling and stability analyses of the same reference embankments, made up of soil improved with each one of the three techniques, both in static and dynamic conditions. Finally two case histories are illustrated, showing the practical application of the above outlined techniques

  13. Seismic response in archaeological areas: the case-histories of Rome

    Science.gov (United States)

    Donati, Stefano; Funiciello, Renato; Rovelli, Antonio

    1999-03-01

    Rome is affected by earthquakes associated to three different seismogenic districts: the Central Apennines area, the Colli Albani volcanic area and the Roman area. The major effects were exclusively due to Apennine seismicity and reached in some cases felt intensities up to VII-VIII degree (MCS scale). The predominant role in the damage distribution seems to be played by the local geological conditions. The historical centre of the city is characterized by the presence of two geomorphologic domains: the alluvial plain of Tiber river and the topographic relieves of Roman Hills, where tradition indicates the first site of the city foundation. In particular, the right river side is characterized by the outcropping of the regional bedrock along the Monte Mario-Gianicolo ridge, while the eastern relieves are the remnants of the Sabatini and Albani volcanic plateau, deeply eroded by the Tiber river and its tributaries during the last glacial low-stand (Würm). These domains are characterized by a large difference in seismic response, due to the high impedance contrast between Holocene coarse deposits filling the Tiber Valley and sedimentary and volcanic Plio-Pleistocene units. Seismic damage observed in 150 monuments of downtown Rome was indicating a significant concentration on alluvial recent deposits. This result was confirmed by the geographical distribution of conservation and retrofitting activities subsequent to main earthquakes, mostly related to local geological conditions. The cases of Marcus Aurelius' Column and Colosseum confirmed the influence of the Holocene alluvial network in local seismic response. During 2500 years of history, the monuments of Rome have `memorized' the seismic effects of historical earthquakes. In some cases, the integration of historical and geological research and macroseismic observations may provide original and useful indications to seismologists to define the seismic response of the city. Local site effects represent a serious

  14. Searching for Seismically Active Faults in the Gulf of Cadiz

    Science.gov (United States)

    Custodio, S.; Antunes, V.; Arroucau, P.

    2015-12-01

    The repeated occurrence of large magnitude earthquakes in southwest Iberia in historical and instrumental times suggests the presence of active fault segments in the region. However, due to an apparently diffuse seismicity pattern defining a broad region of distributed deformation west of Gibraltar Strait, the question of the location, dimension and geometry of such structures is still open to debate. We recently developed a new algorithm for earthquake location in 3D complex media with laterally varying interface depths, which allowed us to relocate 2363 events having occurred from 2007 to 2013, using P- and S-wave catalog arrival times obtained from the Portuguese Meteorological Institute (IPMA, Instituto Portugues do Mar e da Atmosfera), for a study area lying between 8.5˚W and 5˚W in longitude and 36˚ and 37.5˚ in latitude. The most remarkable change in the seismicity pattern after relocation is an apparent concentration of events, in the North of the Gulf of Cadiz, along a low angle northward-dipping plane rooted at the base of the crust, which could indicate the presence of a major fault. If confirmed, this would be the first structure clearly illuminated by seismicity in a region that has unleashed large magnitude earthquakes. Here, we present results from the joint analysis of focal mechanism solutions and waveform similarity between neighboring events from waveform cross-correlation in order to assess whether those earthquakes occur on the same fault plane.

  15. The Lusi seismic experiment: An initial study to understand the effect of seismic activity to Lusi

    Energy Technology Data Exchange (ETDEWEB)

    Karyono, E-mail: karyonosu@gmail.com [Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta (Indonesia); OSLO University (Norway); Padjadjaran University (UNPAD), Bandung (Indonesia); Mazzini, Adriano; Sugiharto, Anton [OSLO University (Norway); Lupi, Matteo [ETH Zurich (Switzerland); Syafri, Ildrem [Padjadjaran University (UNPAD), Bandung (Indonesia); Masturyono,; Rudiyanto, Ariska; Pranata, Bayu; Muzli,; Widodo, Handi Sulistyo; Sudrajat, Ajat [Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta (Indonesia)

    2015-04-24

    The spectacular Lumpur Sidoarjo (Lusi) eruption started in northeast Java on the 29 of May 2006 following a M6.3 earthquake striking the island [1,2]. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system [3] and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. The Lusi seismic experiment is a project aims to begin a detailed study of seismicity around the Lusi area. In this initial phase we deploy 30 seismometers strategically distributed in the area around Lusi and along the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. The purpose of the initial monitoring is to conduct a preliminary seismic campaign aiming to identify the occurrence and the location of local seismic events in east Java particularly beneath Lusi.This network will locate small event that may not be captured by the existing BMKG network. It will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-AW region and spatial and temporal variations of vp/vs ratios. The goal of this study is to understand how the seismicity occurring along the Sunda subduction zone affects to the behavior of the Lusi eruption. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. In this study, we will extract Green’s functions from ambient seismic noise data in order to image the shallow subsurface structure beneath LUSI area. The waveform cross-correlation technique will be apply to all of recordings of ambient seismic noise at 30 seismographic stations around the LUSI area. We use the dispersive behaviour of the retrieved Rayleigh waves to infer velocity structures in the shallow subsurface.

  16. Seismic activity of northern and central Switzerland

    International Nuclear Information System (INIS)

    Deichmann, N.; Ballarin Dolfin, D.; Kastrup, U.

    2000-12-01

    The present report is part of an ongoing study by the Swiss Seismological Service, that was initiated by Nagra almost 20 years ago. It is devoted to the detailed monitoring of the earthquake activity in northern and central Switzerland. The main objective of this study is to provide information about the locations of active deformation and the state of stress in the Earth's crust and to relate these to the geological features visible at the surface. Originally, this seismotectonic investigation was restricted to the northern part of Switzerland; later it was extended also to the central part. Concerning the seismotectonics of northern Switzerland, this report constitutes a continuation of earlier publications. Here we review the seismic activity and earthquake focal mechanisms of the last 10 years and subsequently derive a comprehensive picture of the deformation and stress in the Earth's crust of northern Switzerland, based on all data available up to the end of 1999. Concerning the seismotectonics of central Switzerland, this publication constitutes the first publicly available report. (author) [de

  17. The availability of hydrogeologic data associated with areas identified by the US Geological Survey as experiencing potentially induced seismicity resulting from subsurface injection

    Science.gov (United States)

    Barnes, Caitlin; Halihan, Todd

    2018-05-01

    A critical need exists for site-specific hydrogeologic data in order to determine potential hazards of induced seismicity and to manage risk. By 2015, the United States Geological Survey (USGS) had identified 17 locations in the USA that are experiencing an increase in seismicity, which may be potentially induced through industrial subsurface injection. These locations span across seven states, which vary in geological setting, industrial exposure and seismic history. Comparing the research across the 17 locations revealed patterns for addressing induced seismicity concerns, despite the differences between geographical locations. Most induced seismicity studies evaluate geologic structure and seismic data from areas experiencing changes in seismic activity levels, but the inherent triggering mechanism is the transmission of hydraulic pressure pulses. This research conducted a systematic review of whether data are available in these locations to generate accurate hydrogeologic predictions, which could aid in managing seismicity. After analyzing peer-reviewed research within the 17 locations, this research confirms a lack of site-specific hydrogeologic data availability for at-risk areas. Commonly, formation geology data are available for these sites, but hydraulic parameters for the seismically active injection and basement zones are not available to researchers conducting peer-reviewed research. Obtaining hydrogeologic data would lead to better risk management for injection areas and provide additional scientific evidential support for determining a potentially induced seismic area.

  18. Self-potential time series analysis in a seismic area of the Southern Apennines: preliminary results

    Directory of Open Access Journals (Sweden)

    V. Tramutoli

    1994-06-01

    Full Text Available The self-potential time series recorded during the period May 1991 - August 1992 by an automatic station, located in a seismic area of Southern Apennines, is analyzed. We deal with the spectral and the statistical features of the electrotellurie precursors: they can play a major role in the approach to seismic prediction. The time-dynamics of the experimental time series is investigated, the cyclic components and the time trends are removed. In particular we consider the influence of external noise, related to anthropic activities and meteoclimatic parameters, and pick out the anomalies from the residual series. Finally we show the preliminary results of the correlation between the anomalies in the time patterns of self-potential data and the earthquakes which occurred in the area.

  19. Study of seismicity around Toba area based on relocation hypocenter result from BMKG catalogue

    Energy Technology Data Exchange (ETDEWEB)

    Ramdhan, Mohamad [Indonesia' s Agency for Meteorology, Climatology and Geophysics (BMKG) Jl. Angkasa 1 No. 2 Kemayoran, Jakarta Pusat, 10720 (Indonesia); Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Indonesia, Jl. Ganesa 10, Bandung, 40132 (Indonesia)

    2013-09-09

    Toba area has complex tectonic setting attracting many earth scientists to study and understand tectonic and geological process or setting. The area is affected by oblique subduction zone, Renun Sumatran fault sub segment and some volcanoes that are near it. The earthquake catalogue provided by BMKG from April, 2009 to December, 2011 must be relocated firstly to get the precise hypocenter. We used catalogue data of P and S phase or P phase only and double-difference method to relocate the earthquakes. The results show hypocenter position enhancement that can be interpreted tectonically. The earthquakes after relocation relating to the Sumatran fault, subduction zone, volcanoes and seismic activities beneath Toba caldera can be mapped clearly. The relocated hypocenters in this study are very important to provide information for seismic hazard assessment and disaster mitigation study.

  20. Pluridisciplinarity vs. interdisciplinarity in civil engineering education in seismic areas

    Directory of Open Access Journals (Sweden)

    Emil-Sever GEORGESCU

    2012-12-01

    Full Text Available Civil engineers are involved in building and maintaining a built environment that meets the sustainable development requirements. This environment is interdisciplinary in its nature, as it results from an interaction between different actors (architects, city planners, authorities, clients, civil engineers. Professional formation and training of engineers is a result of the didactic and technical efforts, which later will be reflected in the way constructions are being designed and built, so that engineers are not considered simple workers. Thus, when discussing professional formation and training of engineers, one should debate the necessary steps they have to take in their relationship with other disciplines. Practicing civil engineering in seismic risk areas in Romania adds specific requirements.

  1. Preliminary seismic hazard assessment, shallow seismic refraction and resistivity sounding studies for future urban planning at the Gebel Umm Baraqa area, Egypt

    International Nuclear Information System (INIS)

    Khalil, Mohamed H; Hanafy, Sherif M; Gamal, Mohamed A

    2008-01-01

    Gebel Umm Baraqa Fan, west Gulf of Aqaba, Sinai, is one of the most important tourism areas in Egypt. However, it is located on the active Dead Sea-Gulf of Aqaba Levant transform fault system. Geophysical studies, including fresh water aquifer delineation, shallow seismic refraction, soil characterization and preliminary seismic hazard assessment, were conducted to help in future city planning. A total of 11 vertical electrical soundings (1000–3000 m maximum AB/2) and three bore-holes were drilled in the site for the analysis of ground water, total dissolved solids (TDS) and fresh water aquifer properties. The interpretation of the one-dimensional (1D) inversion of the resistivity data delineated the fresh water aquifer and determined its hydro-geologic parameters. Eleven shallow seismic refraction profiles (125 m in length) have been collected and interpreted using the generalized reciprocal method, and the resulting depth–velocity models were verified using an advanced finite difference (FD) technique. Shallow seismic refraction effectively delineates two subsurface layers (VP ∼ 450 m s −1 and VP ∼ 1000 m s −1 ). A preliminary seismic hazard assessment in Umm Baraqa has produced an estimate of the probabilistic peak ground acceleration hazard in the study area. A recent and historical earthquake catalog for the time period 2200 BC to 2006 has been compiled for the area. New accurate seismic source zoning is considered because such details affect the degree of hazard in the city. The estimated amount of PGA reveals values ranging from 250 to 260 cm s −2 in the bedrock of the Umm Baraqa area during a 100 year interval (a suitable time window for buildings). Recommendations as to suitable types of buildings, considering the amount of shaking and the aquifer properties given in this study, are expected to be helpful for the Umm Baraqa area

  2. Seismic activity parameters of the Finnish potential repository sites

    International Nuclear Information System (INIS)

    Saari, J.

    2000-10-01

    Posiva Oy has started a project for estimating the possible earthquake induced rock movements on the deposition holes containing canisters of spent nuclear fuel. These estimates will be made for the four investigation sites, Romuvaara, Kivetty, Olkiluoto and Haestholmen. This study deals with the current and future seismicity associated with the above mentioned sites. Seismic belts that participate the seismic behaviour of the studied sites have been identified and the magnitude-frequency distributions of these belts have been estimated. The seismic activity parameters of the sites have been deduced from the characteristics of the seismic belts in order to forecast the seismicity during the next 100,000 years. The report discusses the possible earthquakes induced by future glaciation. The seismic interpretation seems to indicate that the previous postglacial faults in Finnish Lapland have been generated in compressional environment. The orientation of the rather uniform compression has been NW-SE, which coincide with the current stress field. It seems that, although the impact of postglacial crustal rebound must have been significant, the impact of plate tectonics has been dominant. A major assumption of this study has been that future seismicity will generally resemble the current seismicity. However, when the postglacial seismicity is concerned, the magnitude-frequency distribution is likely different and the expected maximum magnitude will be higher. Maximum magnitudes of future postglacial earthquakes have been approximated by strain release examinations. Seismicity has been examined within the framework of the lineament maps, in order to associate the future significant earthquakes with active fault zones in the vicinity of the potential repository sites. (orig.)

  3. Probabilistic seismic hazard assessments of Sabah, east Malaysia: accounting for local earthquake activity near Ranau

    Science.gov (United States)

    Khalil, Amin E.; Abir, Ismail A.; Ginsos, Hanteh; Abdel Hafiez, Hesham E.; Khan, Sohail

    2018-02-01

    Sabah state in eastern Malaysia, unlike most of the other Malaysian states, is characterized by common seismological activity; generally an earthquake of moderate magnitude is experienced at an interval of roughly every 20 years, originating mainly from two major sources, either a local source (e.g. Ranau and Lahad Dato) or a regional source (e.g. Kalimantan and South Philippines subductions). The seismicity map of Sabah shows the presence of two zones of distinctive seismicity, these zones are near Ranau (near Kota Kinabalu) and Lahad Datu in the southeast of Sabah. The seismicity record of Ranau begins in 1991, according to the international seismicity bulletins (e.g. United States Geological Survey and the International Seismological Center), and this short record is not sufficient for seismic source characterization. Fortunately, active Quaternary fault systems are delineated in the area. Henceforth, the seismicity of the area is thus determined as line sources referring to these faults. Two main fault systems are believed to be the source of such activities; namely, the Mensaban fault zone and the Crocker fault zone in addition to some other faults in their vicinity. Seismic hazard assessments became a very important and needed study for the extensive developing projects in Sabah especially with the presence of earthquake activities. Probabilistic seismic hazard assessments are adopted for the present work since it can provide the probability of various ground motion levels during expected from future large earthquakes. The output results are presented in terms of spectral acceleration curves and uniform hazard curves for periods of 500, 1000 and 2500 years. Since this is the first time that a complete hazard study has been done for the area, the output will be a base and standard for any future strategic plans in the area.

  4. Seismotectonics of Vrancea (Romania) zone: the case of crustal seismicity in the foredeep area

    International Nuclear Information System (INIS)

    Tugui, A.; Craiu, M.; Rogozea, M.; Popa, M.; Radulian, M.; http://www.infp.ro

    2009-01-01

    Vrancea seismic zone is located in Romania at the South-Easter Carpathians bend, where at least three major tectonic units are in contact: East European Plate, Intra-Alpine Plate and Moesian Plate. The seismicity of the Vrancea zone consists of both crustal and intermediate-depth earthquakes. The crustal events are moderate (M w ≤ 5.5) and generally occur in clusters in space (the subzones Ramnicu Sarat and Vrancioaia, situated in the Vrancea epicentral area and adjacent to it) and in time (main shocks accompanied by aftershocks and sometimes by foreshocks or swarms). Seismic activity in Ramnicu Sarat zone consists of shallow earthquakes with moderate magnitudes M s ≤ 5.2, which frequently occur in clusters. The hypocenters are generally situated at focal depths between 15 and 30 km within the foredeep region lying in front of the major bending of the Carpathian Arc. The sequence of 29 November - 03 December, 2007 consists of 37 events with 1.8 ≤ M D ≤ 3.9. The earthquakes hypocenters are grouped in a parallel direction with the Carpathian Bend, and the fault plane solution (of the main shock) is reverse. The seismic sequence from Ramnicu Sarat, 2007 was compared with the previous sequences knowing the regional seismotectonics. (authors)

  5. Enhancement and feature extraction of RS images from seismic area and seismic disaster recognition technologies

    Science.gov (United States)

    Zhang, Jingfa; Qin, Qiming

    2003-09-01

    Many types of feature extracting of RS image are analyzed, and the work procedure of pattern recognizing in RS images of seismic disaster is proposed. The aerial RS image of Tangshan Great Earthquake is processed, and the digital features of various typical seismic disaster on the RS image is calculated.

  6. Energy and polarization of the telluric field in correlation with seismic activity in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Vargemezis, G.; Tsokas, G. N. [Geophysical Laboratory of Thessaloniki, Thessaloniki (Greece); Zlotnicki, J. [Observatoire de Physique du Globe de Clermont-Ferrand, Clermont-Ferrand (France)

    2001-04-01

    Many attempts have been made to disclose anomalous changes of the electromagnetic field in relation with tectonic earthquakes. It was tentatively developed a new approach based on the energy and polarity of the electric field, and apply this method to the seismicity in Greece. The study of the parameters of the horizontal electric field is realized in a time interval of five years. The data allows the study of long-term variations of the field. Further, it was examined the possible relation of the geoelectric activity with long distance seismicity (up to 500 km). The energy of the electric signal was estimated and correlated with the logarithm of the seismic moment (M{sub 0}). The values of the seismic moment estimated for each earthquake were summed for daily intervals, and the logarithm of the sum was computed. The same process was applied to the energy of the geoelectric field. Then, a correlation was attempted between the energy of the geoelectric field and the seismic moment referring to daily intervals. In two cases, changes in the energy of the horizontal geoelectric field were observed before the burst of the seismic activity. The energy of the telluric field increased several months before the burst of seismic activity and recovered right after the occurrence of the mainshocks. The hodograms of the horizontal geoelectric field show polarization changes regardless of the magnetic field. This is possibly attributed to the process of generation of electric currents before major earthquakes. Due to high and continuous regional seismicity in Greece, it was impossible to attribute the response of the polarization to the activation of specific seismic areas. It seems that the long-term energy variations of the horizontal geoelectric field as well as the polarization could be used in tandem with other possible precursors in order to contribute to earthquake prediction studies.

  7. Long seismic activity in the Porto dos Gaúchos Seismic Zone(PGSZ) - Amazon Craton Brazil

    Science.gov (United States)

    Barros, L. V.; Bowen, B. M. D.; Schmidt, K.

    2017-12-01

    The largest earthquake ever observed in the stable continental interior of the South American plate occurred in Serra do Tombador (ST), Mato Grosso state - Brazil, on January 31, 1955 with magnitude 6.2 m b . Since then no other earthquake has been located near the 1955 epicenter. However, in Porto dos Gaúchos (PG), 100 km northeast of ST, a recurrent seismicity has been observed since 1959. Both ST and PG are located in the Phanerozoic Parecis basin whose sediments overlies the crystalline basement of Amazon craton. Two magnitude 5 earthquakes occurred in PG, in 1998 and 2005 with intensities up to VI and V, respectively. These two main shocks were followed by aftershock sequences, studied by local seismic networks, last up today, almost 30 years later, period in which it was detected more than seven thousand of seismic events. Both sequences occurred in the same WSW-ENE oriented fault zone with right-lateral strike-slip mechanisms. The epicentral zone is near the northern border of Parecis basin, where there are buried grabens, generally trending WNW-ESE, such as the deep Mesoproterozoic Caiabis graben which lies partly beneath the Parecis basin. The seismogenic fault is located in a basement high, which is probably related with the same seismogenic feature responsible for the earthquakes in PGSZ. The 1955 earthquake, despite the uncertainty in its epicenter, does not seem to be directly related to any buried graben either. The seismicity in the PGSZ, therefore, is not directly related to rifted crust.Not considering the possibility of miss location in the ST earthquake, its isolated occurrence - from the perspective of new studies on intraplate seismicity - lead us to think that the PGSZ was activated by stresses released by the earthquake of 1955 and that the seismogenic fault of ST would have closed a cycle of activity. This would explain its seismic quiescence. However, other studies are necessary to prove this hypothesis, such as the measurement of the

  8. Tomographic analysis of self-potential data in a seismic area of Southern Italy

    Directory of Open Access Journals (Sweden)

    S. Piscitelli

    2000-06-01

    Full Text Available The time and space anomalous behaviour of the Self-Potential (SP field recorded in a seismic area of Southern Apennines, Italy, is discussed. The SP data were collected in the period June 1992-November 1994 along a profile located north of the town of Potenza in the Basilicata region, Italy. The profile is perpendicular to an active fault system, where a W-E directed strike-slip structure has been identified from recent earthquakes. The SP data are modelled using a new tomographic method based on the search for similarities between the observed SP sequence and the surface signature of the electric field due to a scanning point source with unitary positive charge. The point scanner is ideally moved in a vertical cross-section through the profile and a regular 2D matrix of charge occurrence probability values is thus obtained. These values are used to image the state of electric polarization in the subsoil, compatible with the observed SP surface pattern. A selection of 2D tomographies across the profile is then discussed in order to outline the SP source geometry and dynamics within the faulted structure. Finally, the time pattern of the SP polarization state is compared with the local seismicity in the frame of the rock dilatancy-fluid diffusion theory. This comparison allows us to exclude a direct relationship of the SP time behaviour with the seismic sequences which occurred in the area during the SP monitoring period.

  9. Integrated structural design of nuclear power plants for high seismic areas

    International Nuclear Information System (INIS)

    Rieck, P.J.

    1979-01-01

    A design approach which structurally interconnects NPP buildings to be located in high seismic areas is described. The design evolution of a typical 600 MWe steel cylindrical containment PWR is described as the plant is structurally upgraded for higher seismic requirements, while maintaining the original plant layout. The plant design is presented as having separate reactor building and auxiliary structures for a low seismic area (0.20 g) and is structurally combined at the foundation for location in a higher seismic area (0.30 g). The evolution is completed by a fully integrated design which structurally connects the reactor building and auxiliary structures at superstructure elevations as well as foundation levels for location in very severe seismic risk areas (0.50 g). (orig.)

  10. Seismic activity and deep conductivity structure\

    Czech Academy of Sciences Publication Activity Database

    Kováčiková, Světlana; Logvinov, I. M.; Nazarevych, A.; Nazarevych, L.; Pek, Josef; Tarasov, V.; Kalenda, Pavel

    2016-01-01

    Roč. 60, č. 2 (2016), s. 280-296 ISSN 0039-3169 Institutional support: RVO:67985530 ; RVO:67985891 Keywords : seismic ity * conductivity structure * Earth´s crust * Eastern Carpathians Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.764, year: 2016

  11. Investigation of soil structure in Uzungöl settlement area by Shallow Seismic Methods

    Directory of Open Access Journals (Sweden)

    Hakan Karslı

    2017-04-01

    Full Text Available This study was performed to relase the soil structure of Uzungöl district of Trabzon city, a vocational area, where had been formed by a historical landslide and lake deposits and to evaluate its geotechnical characters by using seismic methods which are noninvasive, rapidly applicable and provide substantial information about the structure of investigated ground in a short time. For this purpose, seismic refraction, active-passive surface waves and seismic reflections in 16 profiles were gathered on four sub-areas and and evaluated by current favorable numerical methods. Although it considerably varies between profiles, the depth of basement, depositional base of deposits, was averagely obtained as 13.5-15m at upper elevation and 25-50m at lower elevation of the study area. Dynamic elastic parameters and average shear wave velocity of the upper 30m (VS30 of soil in the area were calculated. The soil classification of study area was interpreted as locally Z1 and Z2 class for TEC, B and C class for EC-8 code, C and D class for NERHP. According to VS30 (394-530m/s, ground amplification and predominant vibration period of the study area are respectively obtained as 1.5-2.1 and 0.23-0.30sec. On the other hand, all deposits are characterized by stiffness-solid soil, excluding arable soil from surface to a few meters depth. In addition, the first meters of bedrock shows weathered character, but deeper parts are very compact and hard. Therefore, a scientific infrastructure has been formed to carry out the engineering projects to be planned for Uzungöl settletment safely and without damaging the environment.

  12. Radon in soil variations for Vrancea seismic area

    International Nuclear Information System (INIS)

    Zoran, M.

    2002-01-01

    Earthquakes occur as a result of a build up of pressure between colliding sections of the Earth's crust. These sections, known as continental plates, meet at 'fault lines'. According to classical earthquake theory, small earthquakes should continue to grow into large earthquakes until they spread all along the fault line. Vrancea region is fitted to such a model. The mechanical processes of earthquake preparation are always accompanied by deformations, afterwards complex short- or long term precursory phenomena can appear. Macro-fracturing processes are preceded by micro-fracturing phenomena with a resulting radon and other gas precursors (He, CH 4 , NO) anomalies in soil-gas and groundwater. Studies of geochemical and hydrological anomalies preceding significant earthquakes have been reported from China, Japan, Uzbekistan, Mexico, Italy, India and Germany. However, studies of these pre-seismic phenomena have been controversial for several reasons. Temporal variations of radon in soil or water, can give evidence that the emanation of this gas can be correlated with tectonic disturbances. I used nuclear track detectors LR-115 and CN-85 for radon concentration monitoring in soil at 50 cm depth exposed for a period of 30 days in Vrancioaia test area. Time series radon data in soil-gas during of two years long observation period have established that more than 50% of radon concentration increases were correlated with microseismic events of 2-4 magnitude on Richter scale. A clear positive correlation for radon concentration prior one month of seismic event was associated with a registered event of magnitude 5. In order to differentiate the changes due to tectonic disturbances and that of meteorological parameters, were measured barometric pressure, precipitation and temperature. Negative correlation between radon concentration in soil and meteorological parameters was found. To predict a future earthquake, all precursory phenomena must be investigated. The

  13. Seismic hazard assessment in intra-plate areas and backfitting

    International Nuclear Information System (INIS)

    Asmis, G.J.K.; Eng, P.

    2001-01-01

    Typically, fuel cycle facilities have been constructed over a 40 year time period incorporating various ages of seismic design provisions ranging from no specific seismic requirements to the life safety provisions normally incorporated in national building codes through to the latest seismic nuclear codes that provide not only for structural robustness but also include operational requirements for continued operation of essential safety functions. The task is to ensure uniform seismic risk in all facilities. Since the majority of the fuel cycle infrastructure has been built the emphasis is on re-evaluation and backfitting. The wide range of facilities included in the fuel cycle and the vastly varying hazard to safety, health and the environment suggest a performance based approach. This paper presents such an approach, placed in an intra-plate setting of a Stable Continental Region (SCR) typical to that found in Eastern Canada. (author)

  14. Numerical activities on seismic isolation in Italy

    International Nuclear Information System (INIS)

    Bettinali, F.; Martelli, A.; Bonacina, G.; Olivieri, M.

    1992-01-01

    The numerical activities which are in progress in Italy in the framework of the seismic isolation studies mainly concern the definition of models for bearings and isolated structures, and their use for test design and the analysis of experimental results. Simple bearing models have been set up, and the development of finite-element (f.e.) three-dimensional (3D) and 2D axisymmetric models is in progress. simple models have been based on the results of single bearing tests: models formed by a spring in parallel to a viscous damper, where both horizontal stiffness and viscous damping vary with displacements, have been developed by ENEA. Models based on hysteretic damping have also been developed by DISP and ISMES. Detailed bearing models include separate elements for the rubber and steel plates. A 3D model has been implemented by ENEA in the ABAQUS code. Linear elastic calculations have been performed with this model. The implementation of an elastic-plastic model for steel is also being completed, together with that of a hyper elastic model of the rubber, based on tests on specimens. Detailed models will be validated based on measured data. They will be used for bearing design and analysis of the effects of defects: some bearings with artificial defects have been fabricated to this purpose. As to the isolated structures, finite-difference programs were set up for the analysis of such structures in the case that they can be represented by sets of one-degree-of-freedom oscillators. The program ISOLA includes the aforementioned simple bearing model of ENEA, where both stiffness and damping depend on displacement and the effects of viscous creep are accounted for. A similar program has been based on the bearing model developed at ISMES. These models have been successfully used to analyse the experimental results concerning both isolated structure mock-ups and actual isolated buildings, based on the single bearing test data for both horizontal stiffness and damping (see a

  15. DEFORMATION WAVES AS A TRIGGER MECHANISM OF SEISMIC ACTIVITY IN SEISMIC ZONES OF THE CONTINENTAL LITHOSPHERE

    Directory of Open Access Journals (Sweden)

    S. I. Sherman

    2013-01-01

    Full Text Available Deformation waves as a trigger mechanism of seismic activity and migration of earthquake foci have been under discussion by researchers in seismology and geodynamics for over 50 years. Four sections of this article present available principal data on impacts of wave processes on seismicity and new data. The first section reviews analytical and experimental studies aimed at identification of relationships between wave processes in the lithosphere and seismic activity manifested as space-and-time migration of individual earthquake foci or clusters of earthquakes. It is concluded that with a systematic approach, instead of using a variety of terms to denote waves that trigger seismic process in the lithosphere, it is reasonable to apply the concise definition of ‘deformation waves’, which is most often used in fact.The second section contains a description of deformation waves considered as the trigger mechanism of seismic activity. It is concluded that a variety of methods are applied to identify deformation waves, and such methods are based on various research methods and concepts that naturally differ in sensitivity concerning detection of waves and/or impact of the waves on seismic process. Epicenters of strong earthquakes are grouped into specific linear or arc-shaped systems, which common criterion is the same time interval of the occurrence of events under analysis. On site the systems compose zones with similar time sequences, which correspond to the physical notion of moving waves (Fig. 9. Periods of manifestation of such waves are estimated as millions of years, and a direct consideration of the presence of waves and wave parameters is highly challenging. In the current state-of-the-art, geodynamics and seismology cannot provide any other solution yet.The third section presents a solution considering record of deformation waves in the lithosphere. With account of the fact that all the earthquakes with М≥3.0 are associated with

  16. Seismogenic zonation and seismic hazard estimates in a Southern Italy area (Northern Apulia characterised by moderate seismicity rates

    Directory of Open Access Journals (Sweden)

    V. Del Gaudio

    2009-02-01

    Full Text Available The northernmost part of Apulia, in Southern Italy, is an emerged portion of the Adriatic plate, which in past centuries was hit by at least three disastrous earthquakes and at present is occasionally affected by seismic events of moderate energy. In the latest seismic hazard assessment carried out in Italy at national scale, the adopted seismogenic zonation (named ZS9 has defined for this area a single zone including parts of different structural units (chain, foredeep, foreland. However significant seismic behaviour differences were revealed among them by our recent studies and, therefore, we re-evaluated local seismic hazard by adopting a zonation, named ZNA, modifying the ZS9 to separate areas of Northern Apulia belonging to different structural domains. To overcome the problem of the limited datasets of historical events available for small zones having a relatively low rate of earthquake recurrence, an approach was adopted that integrates historical and instrumental event data. The latter were declustered with a procedure specifically devised to process datasets of low to moderate magnitude shocks. Seismicity rates were then calculated following alternative procedural choices, according to a "logic tree" approach, to explore the influence of epistemic uncertainties on the final results and to evaluate, among these, the importance of the uncertainty in seismogenic zonation. The comparison between the results obtained using zonations ZNA and ZS9 confirms the well known "spreading effect" that the use of larger seismogenic zones has on hazard estimates. This effect can locally determine underestimates or overestimates by amounts that make necessary a careful reconsideration of seismic classification and building code application.

  17. The influence of regional geological settings on the seismic hazard level in copper mines in the Legnica-Głogów Copper Belt Area (Poland

    Directory of Open Access Journals (Sweden)

    Burtan Zbigniew

    2017-01-01

    Full Text Available The current level of rockburst hazard in copper mines of the (LGOM Legnica- Głogów Copper Belt Area is mostly the consequence of mining-induced seismicity, whilst the majority of rockbursting events registered to date were caused by high-energy tremors. The analysis of seismic readings in recent years reveals that the highest seismic activity among the copper mines in the LGOM is registered in the mine Rudna. This study investigates the seismic activity in the rock strata in the Rudna mine fields over the years 2006-2015. Of particular interest are the key seismicity parameters: the number of registered seismic events, the total energy emissions, the energy index. It appears that varied seismic activity in the area may be the function of several variables: effective mining thickness, the thickness of burst-prone strata and tectonic intensity. The results support and corroborate the view that principal factors influencing the actual seismic hazard level are regional geological conditions in the copper mines within the Legnica-Głogów Copper Belt Area.

  18. The influence of regional geological settings on the seismic hazard level in copper mines in the Legnica-Głogów Copper Belt Area (Poland)

    Science.gov (United States)

    Burtan, Zbigniew

    2017-11-01

    The current level of rockburst hazard in copper mines of the (LGOM) Legnica- Głogów Copper Belt Area is mostly the consequence of mining-induced seismicity, whilst the majority of rockbursting events registered to date were caused by high-energy tremors. The analysis of seismic readings in recent years reveals that the highest seismic activity among the copper mines in the LGOM is registered in the mine Rudna. This study investigates the seismic activity in the rock strata in the Rudna mine fields over the years 2006-2015. Of particular interest are the key seismicity parameters: the number of registered seismic events, the total energy emissions, the energy index. It appears that varied seismic activity in the area may be the function of several variables: effective mining thickness, the thickness of burst-prone strata and tectonic intensity. The results support and corroborate the view that principal factors influencing the actual seismic hazard level are regional geological conditions in the copper mines within the Legnica-Głogów Copper Belt Area.

  19. A multi-disciplinary approach for the structural monitoring of Cultural Heritages in a seismic area

    Science.gov (United States)

    Fabrizia Buongiorno, Maria; Musacchio, Massimo; Guerra, Ignazio; Porco, Giacinto; Stramondo, Salvatore; Casula, Giuseppe; Caserta, Arrigo; Speranza, Fabio; Doumaz, Fawzi; Giovanna Bianchi, Maria; Luzi, Guido; Ilaria Pannaccione Apa, Maria; Montuori, Antonio; Gaudiosi, Iolanda; Vecchio, Antonio; Gervasi, Anna; Bonali, Elena; Romano, Dolores; Falcone, Sergio; La Piana, Carmelo

    2014-05-01

    , synthetic aperture radar, optical, multispectral and panchromatic measurements), static and dynamic structural health monitoring analysis (e.g. screening tests with georadar, sonic instruments, sclerometers and optic fibers). The final purpose of the proposed approach is the development of an investigation methodology for short- and long-term Cultural Heritages preservation in response to seismic stress, which has specific features of scalability, modularity and exportability for every possible monitoring configuration. Moreover, it allows gathering useful information to furnish guidelines for Institution and local Administration to plan consolidation actions and therefore prevention activity. Some preliminary results will be presented for the test site of Calabria Region, where some architectural heritages have been properly selected as case studies for monitoring purposes. *The present work is supported and funded by Ministero dell'Università, dell'Istruzione e della Ricerca (MIUR) under the research project PON01-02710 "MASSIMO" - "Monitoraggio in Area Sismica di Sistemi Monumentali".

  20. The earthquake of January 13, 1915 and the seismic hazard of the area

    International Nuclear Information System (INIS)

    Scarascia Mugnozza, Gabriele; Hailemikael, Salomon; Martini, Guido

    2015-01-01

    The January 13, 1915, magnitude 7.0 Marsica Earthquake devastated the Fucino basin and surroundings, causing about 30,000 casualties and entirely destroying several towns, among which the major municipality of the area, the town of Avezzano. In this paper, we briefly review the main characteristics of the earthquake and its effects on the environment. Furthermore, based on the Italian building code and ongoing seismic microzonation investigations, we describe the seismic hazard of the area struck by the earthquake in terms of both probabilistic seismic hazard assessment and contribution of site effects on the seismic hazard estimate. All the studies confirm the very high level of seismic hazard of the Fucino territory [it

  1. Application of seismic interferometric migration for shallow seismic high precision data processing: A case study in the Shenhu area

    Science.gov (United States)

    Wei, Jia; Liu, Huaishan; Xing, Lei; Du, Dong

    2018-02-01

    The stability of submarine geological structures has a crucial influence on the construction of offshore engineering projects and the exploitation of seabed resources. Marine geologists should possess a detailed understanding of common submarine geological hazards. Current marine seismic exploration methods are based on the most effective detection technologies. Therefore, current research focuses on improving the resolution and precision of shallow stratum structure detection methods. In this article, the feasibility of shallow seismic structure imaging is assessed by building a complex model, and differences between the seismic interferometry imaging method and the traditional imaging method are discussed. The imaging effect of the model is better for shallow layers than for deep layers because coherent noise produced by this method can result in an unsatisfactory imaging effect for deep layers. The seismic interference method has certain advantages for geological structural imaging of shallow submarine strata, which indicates continuous horizontal events, a high resolution, a clear fault, and an obvious structure boundary. The effects of the actual data applied to the Shenhu area can fully illustrate the advantages of the method. Thus, this method has the potential to provide new insights for shallow submarine strata imaging in the area.

  2. Crustal structure in the Kiruna area, northern Sweden, based on seismic reflection profiling

    Science.gov (United States)

    Juhojuntti, Niklas; Bergman, Stefan; Olsson, Sverker

    2013-04-01

    Northernmost Sweden is currently one of the most active mining areas in Europe. In order to better understand the regional three-dimensional crustal structure and to support deep ore exploration, we have acquired a 74 km long seismic reflection profile in the Kiruna area. The upper crust in this area is largely composed of various supracrustal units, which are dominated by metabasalts, acidic metavolcanics and clastic metasedimentary rocks, resting on an Archaean metagranitoid complex. All of these units have been intruded by plutonic rocks, and to variable degrees folded, sheared and metamorphosed, during the Svecokarelian orogeny. The profile crosses several steep ductile shear zones, some of which extend for hundreds of kilometres along strike. Many of the lithological contacts and deformation zones are expected to be seismically reflective. The profile is located only a few kilometres from the world's largest underground iron-ore mine in Kiruna, and closer to the profile there are several known ore bodies, some of which are active exploration targets. For the seismic recording we used approximately 350 geophones in split-spread configuration, at a separation of 25 m. The main seismic source was the Vibsist system (an impact source), which normally was employed at every geophone station. We also fired explosive charges (8-16 kg) at a few locations distributed along the profile to image deeper structures, although at very low resolution. Wireless seismometers were placed along and to the side of the profile, mainly in order to achieve better velocity control and to study out-of-the-plane reflections. Some mining blasts in Kiruna were also recorded. The upper crust in the area is quite reflective, most clearly demonstrated by the dynamite shot records. Some of the reflections appear to originate from steeply dipping structures. The dynamite shot records show a set of reflections at 3-4 s twt, corresponding to a depth of roughly 10 km, the explanation for which is

  3. A preliminary census of engineering activities located in Sicily (Southern Italy) which may "potentially" induce seismicity

    Science.gov (United States)

    Aloisi, Marco; Briffa, Emanuela; Cannata, Andrea; Cannavò, Flavio; Gambino, Salvatore; Maiolino, Vincenza; Maugeri, Roberto; Palano, Mimmo; Privitera, Eugenio; Scaltrito, Antonio; Spampinato, Salvatore; Ursino, Andrea; Velardita, Rosanna

    2015-04-01

    The seismic events caused by human engineering activities are commonly termed as "triggered" and "induced". This class of earthquakes, though characterized by low-to-moderate magnitude, have significant social and economical implications since they occur close to the engineering activity responsible for triggering/inducing them and can be felt by the inhabitants living nearby, and may even produce damage. One of the first well-documented examples of induced seismicity was observed in 1932 in Algeria, when a shallow magnitude 3.0 earthquake occurred close to the Oued Fodda Dam. By the continuous global improvement of seismic monitoring networks, numerous other examples of human-induced earthquakes have been identified. Induced earthquakes occur at shallow depths and are related to a number of human activities, such as fluid injection under high pressure (e.g. waste-water disposal in deep wells, hydrofracturing activities in enhanced geothermal systems and oil recovery, shale-gas fracking, natural and CO2 gas storage), hydrocarbon exploitation, groundwater extraction, deep underground mining, large water impoundments and underground nuclear tests. In Italy, induced/triggered seismicity is suspected to have contributed to the disaster of the Vajont dam in 1963. Despite this suspected case and the presence in the Italian territory of a large amount of engineering activities "capable" of inducing seismicity, no extensive researches on this topic have been conducted to date. Hence, in order to improve knowledge and correctly assess the potential hazard at a specific location in the future, here we started a preliminary study on the entire range of engineering activities currently located in Sicily (Southern Italy) which may "potentially" induce seismicity. To this end, we performed: • a preliminary census of all engineering activities located in the study area by collecting all the useful information coming from available on-line catalogues; • a detailed compilation

  4. Identification of seismically susceptible areas in western Himalaya ...

    Indian Academy of Sciences (India)

    Earthquakes cause tremendous loss of life and to the built environment. The amount of ... and reasonable decisions about categories of pat- terns. The main .... tion data. A classification criterion was formulated and tested. Seismicity data was compiled from var- ious earthquake catalogues, tectonic data was stud- ied and ...

  5. Seismic hazard assessment for the Caucasus test area

    Czech Academy of Sciences Publication Activity Database

    Balassanian, S.; Ashirov, T.; Chelidze, T.; Gassanov, A.; Kondorskaya, N.; Molchan, G.; Pustovitenko, B.; Trifonov, V.; Ulomov, V.; Giardini, D.; Erdik, M.; Ghafory-Ashtiany, M.; Grunthal, G.; Mayer-Rosa, D.; Schenk, Vladimír; Stucchi, M.

    1999-01-01

    Roč. 42, č. 6 (1999), s. 1139-1151 ISSN 0365-2556 R&D Projects: GA AV ČR Global Seismic Hazard Assessment Program (GSHAP) - project of the UN International Decade of Natural Disaster Reduction and International Litosphere Program. Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  6. Groundwater geochemistry of the Mt. Vesuvius area: implications for volcano surveillance and relationship with hydrological and seismic signals

    Directory of Open Access Journals (Sweden)

    Cinzia Federico

    2013-11-01

    Full Text Available Geochemical data obtained between 1998 and 2011 at the Mt. Vesuvius aquifer are discussed, focusing on the effects of both the hydrological regime and the temporal pattern of local seismicity. Water samples were collected in a permanent network of wells and springs located in the areas that are mostly affected by the ascent of magmatic volatiles, and their chemical composition and dissolved gas content were analyzed. As well as the geochemical parameters that describe the behavior of groundwater at Mt. Vesuvius, we discuss the temporal distribution of volcano-tectonic earthquakes. The seismological data set was collected by the stations forming the permanent and mobile network of the Istituto Nazionale di Geofisica e Vulcanologia - Osservatorio Vesuviano (INGV-OV. Our analysis of seismic data collected during 1998-2011 identified statistically significant variations in the seismicity rate, marked by phases of decreasing activity from October 1999 to May 2001 and increasing activity from August 2004 to mid-2006. The water chemistry shows peculiar patterns, characterized by a changeable input of CO2-rich and saline water, which must be related to either a changing stress field or an increased input of CO2-rich vapor. The water chemistry data from 1999 to 2003 account for both higher fluid pressure (which induced the seismic crisis of 1999 that peaked with a 3.6-magnitude earthquake in October 1999 and the increased input of CO2-rich fluids. The highest emission of CO2 from the crater fumaroles and the corresponding increase in dissolved carbon in groundwater characterize the phase of low seismicity. The termination of the phase of intense deep degassing is associated with a change in water chemistry and a peculiar seismic event that was recorded in July 2003. All these seismic and geochemical patterns are interpreted according to temporal variations in the regional and local stress field.

  7. Seismic microzoning in the metropolitan area of Port - au-Prince - complexity of the subsoil

    Science.gov (United States)

    Gilles, R.; Bertil, D.; Belvaux, M.; Roulle, A.; Noury, G.; Prepetit, C.; Jean-Philippe, J.

    2013-12-01

    The magnitude 7.3 earthquake that struck Haiti in January 12, 2010 has caused a lot of damages in surrounding areas epicenter. These damages are due to a lack of knowledge of the Haitian subsoil. To overcome this problem, the LNBTP, the BME and BRGM have agreed to implement a project of seismic microzonation of the metropolitan area of Port-au-Prince which is financed by the Fund for the reconstruction of the country. The seismic microzonation is an important tool for knowledge of seismic risk. It is based on a collection of geological, geotechnical, geophysical and measures and recognition and the campaign of numerous sites. It describes a class of specific soils with associated spectral response. The objective of the microzoning is to identify and map the homogeneous zones of lithology, topography, liquefaction and ground movements. The zoning of lithological sites effect is to identify and map areas with geological and geomechanical consistent and homogeneous seismic response; the objective is to provide, in each area, seismic movements adapted to the ground. This zoning is done in about five steps: 1- Cross-analysis of geological, geotechnical and geophysical information; 2- Such information comprise the existing data collected and the data acquired during the project; 3- Identification of homogeneous areas. 4- Definition of one or more columns of representative soils associated with each zone; 5 - Possible consolidation of area to get the final seismic zoning. 27 zones types were considered for the study of sites effects after the analysis of all geological, geotechnical and geophysical data. For example, for the formation of Delmas, there are 5 areas with soil classes ranging from D to C. Soil columns described in the metropolitan area of Port-au-Prince are processed with the CyberQuake software, which is developed at the BRGM by Modaressi et al. in 1997, to calculate their response to seismic rock solicitation. The seismic motion is determined by 4

  8. Detailed seismic intensity in Morioka area; Moriokashi ni okeru shosai shindo bunpu

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T; Yamamoto, H; Settai, H [Iwate University, Iwate (Japan). Faculty of Engineering; Yamada, T [Obayashi Road Construction Co. Ltd., Tokyo (Japan)

    1996-10-01

    To reveal a seismic intensity distribution in individual areas, a large-scale detailed seismic intensity survey was conducted in Morioka City through questionnaire, as to the Hokkaido Toho-oki (HE) earthquake occurred on October 4, 1994 with a record of seismic intensity 4 at Morioka, and the Sanriku Haruka-oki (SH) earthquake occurred on December 28, 1994 with a record of seismic intensity 5 at Morioka. A relationship was also examined between the seismic intensity distribution and the properties of shallow basement in Morioka City. The range of seismic intensity was from 2.9 to 4.6 and the difference was 1.7 in the case of HE earthquake, and the range was from 3.1 to 5.0 and the difference was 1.9 in the case of SH earthquake. There were large differences in the seismic intensity at individual points. Morioka City has different geological structures in individual areas. There were differences in the S-wave velocity in the surface layer ranging from 150 to 600 m/sec, which were measured using a plate hammering seismic source at 76 areas in Morioka City. These properties of surface layers were in harmony with the seismic intensity distribution obtained from the questionnaire. For the observation of short frequency microtremors at about 490 points in the city, areas with large amplitudes, mean maximum amplitudes of vertical motion components more than 0.1 mkine were distributed in north-western region and a part of southern region. 4 refs., 9 figs., 1 tab.

  9. Deep seismic transect across the Tonankai earthquake area obtained from the onshore- offshore wide-angle seismic study

    Science.gov (United States)

    Nakanishi, A.; Obana, K.; Kodaira, S.; Miura, S.; Fujie, G.; Ito, A.; Sato, T.; Park, J.; Kaneda, Y.; Ito, K.; Iwasaki, T.

    2008-12-01

    In the Nankai Trough subduction seismogenic zone, M8-class great earthquake area can be divided into three segments; they are source regions of the Nankai, Tonankai and presumed Tokai earthquakes. The Nankai and Tonankai earthquakes had often occurred simultaneously, and caused a great event. Hypocenters of these great earthquakes were usually located off the cape Shiono, Kii Peninsula, and the rupture propagated westwards and eastwards, respectively. To obtain the deep structure of the down-dip limit of around the Nankai Trough seismogenic zone, the segment boundary and first break area off the Kii Peninsula, the onshore-offshore wide-angle seismic studies was conducted in the western and eastern part of the Kii Peninsula and their offshore area in 2004 and 2006, respectively. The result of the seismic study in 2004 is mainly shown here. Structural images along the onshore and offshore profiles have already been separately obtained. In this study, an onshore-offshore integrated image of the western part of the Kii Peninsula, ~400km in a total length, is obtained from first arrival tomography and traveltime mapping of reflection phases by combining dataset of 13 land explosions, 2269 land stations, 36 OBSs and 1806 offshore airgun shots. The subduction angle of the Philippine Sea plate (PSP) gradually increases landward up to ~20-25 degree. Beneath the onshore part, the subducting PSP is estimated at ~5km shallower than that previously derived from seismicity. Low frequency earthquakes (identified and picked by Japan Meteorological Agency) are relocated around the plate interface of the subducting PSP by using the deep seismic transect obtained in this study. The offshore research is part of 'Structure research on plate dynamics of the presumed rupture zone of the Tonankai-Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology (MEXT). The onshore research carried by the Kyoto University is part of 'Special Project for

  10. Regional passive seismic monitoring reveals dynamic glacier activity on Spitsbergen, Svalbard

    Directory of Open Access Journals (Sweden)

    Andreas Köhler

    2015-12-01

    Full Text Available Dynamic glacier activity is increasingly observed through passive seismic monitoring. We analysed near-regional-scale seismicity on the Arctic archipelago of Svalbard to identify seismic icequake signals and to study their spatial–temporal distribution within the 14-year period from 2000 until 2013. This is the first study that uses seismic data recorded on permanent broadband stations to detect and locate icequakes in different regions of Spitsbergen, the main island of the archipelago. A temporary local seismic network and direct observations of glacier calving and surging were used to identify icequake sources. We observed a high number of icequakes with clear spectral peaks between 1 and 8 Hz in different parts of Spitsbergen. Spatial clusters of icequakes could be associated with individual grounded tidewater glaciers and exhibited clear seasonal variability each year with more signals observed during the melt season. Locations at the termini of glaciers, and correlation with visual calving observations in situ at Kronebreen, a glacier in the Kongsfjorden region, show that these icequakes were caused dominantly by calving. Indirect evidence for glacier surging through increased calving seismicity was found in 2003 at Tunabreen, a glacier in central Spitsbergen. Another type of icequake was observed in the area of the Nathorstbreen glacier system. Seismic events occurred upstream of the glacier within a short time period between January and May 2009 during the initial phase of a major glacier surge. This study is the first step towards the generation and implementation of an operational seismic monitoring strategy for glacier dynamics in Svalbard.

  11. Time dynamics in the point process modeling of seismicity of Aswan area (Egypt)

    International Nuclear Information System (INIS)

    Telesca, Luciano; Mohamed, Abuo El-Ela Amin; ElGabry, Mohamed; El-hady, Sherif; Abou Elenean, Kamal M.

    2012-01-01

    Highlights: ► Time dynamics of shallow Aswan seismic events are time-clusterized. ► Super-Poissonian behavior characterizes shallow and deep events. ► Shallow seismicity shows a cycle at about 402 days. - Abstract: The seismicity observed in the Aswan area (Egypt) between 1986 and 2003 was deeply investigated by means of time-fractal methods. The time dynamics of the aftershock-depleted seismicity, investigated by means of the Allan Factor, reveals that the time-clustering behavior for events occurred at shallow depths (down to 12.5 km from the ground) as well as for events occurred at larger depths (from 15 km down to 27.5 km) does not depend on the ordering of the interevent times but mainly on the shape of the probability density functions of the interevent intervals. Moreover, deep seismicity is more compatible with a Poissonian dynamics than shallow seismicity that is definitely more super-Poissonian. Additionally, the set of shallow events shows a periodicity at about 402 days, which could be consistent with the cyclic loading/unloading operations of the Lake Naser Dam. Such findings contribute to better characterize the seismicity of the Aswan area, which is one of the most interesting water reservoirs in the world, featured by reservoir-induced earthquakes.

  12. Tracking hydrothermal feature changes in response to seismicity and deformation at Mud Volcano thermal area, Yellowstone

    Science.gov (United States)

    Diefenbach, A. K.; Hurwitz, S.; Murphy, F.; Evans, W.

    2013-12-01

    The Mud Volcano thermal area in Yellowstone National Park comprises many hydrothermal features including fumaroles, mudpots, springs, and thermal pools. Observations of hydrothermal changes have been made for decades in the Mud Volcano thermal area, and include reports of significant changes (the appearance of new features, increased water levels in pools, vigor of activity, and tree mortality) following an earthquake swarm in 1978 that took place beneath the area. However, no quantitative method to map and measure surface feature changes through time has been applied. We present an analysis of aerial photographs from 1954 to present to track temporal changes in the boundaries between vegetated and thermally barren areas, as well as location, extent, color, clarity, and runoff patterns of hydrothermal features within the Mud Volcano thermal area. This study attempts to provide a detailed, long-term (>50 year) inventory of hydrothermal features and change detection at Mud Volcano thermal area that can be used to identify changes in hydrothermal activity in response to seismicity, uplift and subsidence episodes of the adjacent Sour Creek resurgent dome, or other potential causes.

  13. Geotechnical investigation for seismic issues for K-reactor area at Savannah River Site

    International Nuclear Information System (INIS)

    Castro, G.; Reeves, C.Q.

    1991-01-01

    A geotechnical investigation has been completed at Savannah River Site to characterize the foundation conditions in K-Reactor Area and confirm soil design properties for use in seismic qualification of structures. The scope of field work included ten soil borings to a 200-foot depth with split-spoon and undisturbed sampling. Additionally, 42 cone penetrometer tests were performed with seismic down-hole measurements. Three cross-hole shear wave velocity tests were also completed to confirm the assumed dynamic properties which had been used in preliminary seismic analysis

  14. Discrimination and Assessment of Induced Seismicity in Active Tectonic Zones: A Case Study from Southern California

    Science.gov (United States)

    Bachmann, C. E.; Lindsey, N.; Foxall, W.; Robertson, M.

    2014-12-01

    Earthquakes induced by human activity have become a matter of heightened public concern during recent years. Of particular concern is seismicity associated with wastewater injection, which has included events having magnitudes greater than 5. The causes of the induced events are primarily changes in pore-pressure, fluid volume and perhaps temperature due to injection. Recent research in the US has focused on mid-continental regions having low rates of naturally-occurring seismicity, where induced events can be identified by relatively straightforward spatial and temporal correlation of seismicity with high-volume injection activities. Recent examples include events correlated with injection of wastewater in Oklahoma, Arkansas, Texas and Ohio, and long-term brine injection in the Paradox Valley in Colorado. Even in some of the cases where there appears at first sight to be a clear spatial correlation between seismicity and injection, it has been difficult to establish causality definitively. Here, we discuss methods to identify induced seismicity in active tectonic regions. We concentrate our study on Southern California, where large numbers of wastewater injection wells are located in oil-producing basins that experience moderate to high rates of naturally-occurring seismicity. Using the catalog of high-precision CISN relocations produced by Hauksson et al. (BSSA, 2012), we aim to discriminate induced from natural events based on spatio-temporal patterns of seismicity occurrence characteristics and their relationships to injection activities, known active faults and other faults favorably oriented for slip under the tectonic stress field. Since the vast majority of induced earthquakes are very small, it is crucial to include all events above the detection threshold of the CISN in each area studied. In addition to exploring the correlation of seismicity to injection activities in time and space, we analyze variations in frequency-magnitude distributions, which can

  15. Development of urban planning guidelines for improving emergency response capacities in seismic areas of Iran.

    Science.gov (United States)

    Hosseini, Kambod Amini; Jafari, Mohammad Kazem; Hosseini, Maziar; Mansouri, Babak; Hosseinioon, Solmaz

    2009-10-01

    This paper presents the results of research carried out to improve emergency response activities in earthquake-prone areas of Iran. The research concentrated on emergency response operations, emergency medical care, emergency transportation, and evacuation-the most important issues after an earthquake with regard to saving the lives of victims. For each topic, some guidelines and criteria are presented for enhancing emergency response activities, based on evaluations of experience of strong earthquakes that have occurred over the past two decades in Iran, notably Manjil (1990), Bam (2003), Firouz Abad-Kojour (2004), Zarand (2005) and Broujerd (2006). These guidelines and criteria are applicable to other national contexts, especially countries with similar seismic and social conditions as Iran. The results of this study should be incorporated into comprehensive plans to ensure sustainable development or reconstruction of cities as well as to augment the efficiency of emergency response after an earthquake.

  16. Self-potential time series analysis in a seismic area of the Southern Apennines: preliminary results

    OpenAIRE

    Di Bello, G.; Lapenna, V.; Satriano, C.; Tramutoli, V.

    1994-01-01

    The self-potential time series recorded during the period May 1991 - August 1992 by an automatic station, located in a seismic area of Southern Apennines, is analyzed. We deal with the spectral and the statistical features of the electrotellurie precursors: they can play a major role in the approach to seismic prediction. The time-dynamics of the experimental time series is investigated, the cyclic components and the time trends are removed. In particular we consider the influence of external...

  17. Current issues and related activities in seismic hazard analysis in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong-Moon [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of); Lee, Jong-Rim; Chang, Chun-Joong

    1997-03-01

    This paper discusses some technical issues identified from the seismic hazard analyses for probabilistic safety assessment on the operating Korean nuclear power plants and the related activities to resolve the issues. Since there are no strong instrumental earthquake records in Korea, the seismic hazard analysis is mainly dependent on the historical earthquake records. Results of the past seismic hazard analyses show that there are many uncertainties in attenuation function and intensity level and that there is a need to improve statistical method. The identification of the activity of the Yangsan Fault, which is close to nuclear power plant sites, has been an important issue. But the issue has not been resolved yet in spite of much research works done. Recently, some capable faults were found in the offshore area of Gulupdo Island in the Yellow Sea. It is anticipated that the results of research on both the Yangsan Fault and reduction of uncertainty in seismic hazard analysis will have an significant influence on seismic design and safety assessment of nuclear power plants in the future. (author)

  18. Current issues and related activities in seismic hazard analysis in Korea

    International Nuclear Information System (INIS)

    Seo, Jeong-Moon; Lee, Jong-Rim; Chang, Chun-Joong.

    1997-01-01

    This paper discusses some technical issues identified from the seismic hazard analyses for probabilistic safety assessment on the operating Korean nuclear power plants and the related activities to resolve the issues. Since there are no strong instrumental earthquake records in Korea, the seismic hazard analysis is mainly dependent on the historical earthquake records. Results of the past seismic hazard analyses show that there are many uncertainties in attenuation function and intensity level and that there is a need to improve statistical method. The identification of the activity of the Yangsan Fault, which is close to nuclear power plant sites, has been an important issue. But the issue has not been resolved yet in spite of much research works done. Recently, some capable faults were found in the offshore area of Gulupdo Island in the Yellow Sea. It is anticipated that the results of research on both the Yangsan Fault and reduction of uncertainty in seismic hazard analysis will have an significant influence on seismic design and safety assessment of nuclear power plants in the future. (author)

  19. A Dense Small-Scale Seismic Network in the Ngorongoro Conservation Area (Northern Tanzania)

    Science.gov (United States)

    Parisi, L.; Lombardo, L.; Rodriguez-Mustafa, M.; Mai, P. M.

    2017-12-01

    A temporary deployment consisting of sixteen broadband seismic stations is conducted for the first time in the Ngorongoro Conservation Area (NCA, Northern Tanzania), located at the boundary between the Tanzanian Craton and East African Rift. A deep knowledge of the faulting systems and tectonics of the area is needed to better understand the contribution of the synsedimentary faults to the deposition of the Olduvai and surrounding basins affecting the landscapes of the Homo Habilis first settlements. Complex fault systems have been mapped in the field but their connection, especially at depth, is not well known. A first batch of ten instruments was installed in June 2016. In June 2017 two stations were dismissed and a second batch of six stations was installed in new locations. The current network of fourteen stations will record until May 2018. Stations are equipped with Nanometrics Trillium Compact Posthole 120 s sensor and Centaur digitiser recording continuously at 200 Hz. The whole network covers 1400 km2 and station interspace ranges from 8 to 15 km. We analyse probabilistic power spectra densities of the seismic noise to obtain insights of its origin and test the performances of the stations. Although factories do not exist in the area and most of the stations are far from roads, ambient noise in the range 0.01 - 1 s is relatively high (between -120 dB and -100dB at 0.1 s) probably because of the abundance of livestock living in the NCA. Ambient noise in the period range 1 - 10 s (secondary microseisms) decreases from east to west. Although the main source of the microseisms is located in the Indian Ocean (east of the study area), a contribution from the low period tremors coming from the nearby active volcano Ol Doinyo Lengai (north-east of the study area) is expected. Whereas the longer period noise (10 - 100 s) is very low in the vertical component seismograms, it is higher than the high noise model in the horizontal components for most of the stations

  20. Application-driven ground motion prediction equation for seismic hazard assessments in non-cratonic moderate-seismicity areas

    Science.gov (United States)

    Bindi, D.; Cotton, F.; Kotha, S. R.; Bosse, C.; Stromeyer, D.; Grünthal, G.

    2017-09-01

    We present a ground motion prediction equation (GMPE) for probabilistic seismic hazard assessments (PSHA) in low-to-moderate seismicity areas, such as Germany. Starting from the NGA-West2 flat-file (Ancheta et al. in Earthquake Spectra 30:989-1005, 2014), we develop a model tailored to the hazard application in terms of data selection and implemented functional form. In light of such hazard application, the GMPE is derived for hypocentral distance (along with the Joyner-Boore one), selecting recordings at sites with vs30 ≥ 360 m/s, distances within 300 km, and magnitudes in the range 3 to 8 (being 7.4 the maximum magnitude for the PSHA in the target area). Moreover, the complexity of the considered functional form is reflecting the availability of information in the target area. The median predictions are compared with those from the NGA-West2 models and with one recent European model, using the Sammon's map constructed for different scenarios. Despite the simplification in the functional form, the assessed epistemic uncertainty in the GMPE median is of the order of those affecting the NGA-West2 models for the magnitude range of interest of the hazard application. On the other hand, the simplification of the functional form led to an increment of the apparent aleatory variability. In conclusion, the GMPE developed in this study is tailored to the needs for applications in low-to-moderate seismic areas and for short return periods (e.g., 475 years); its application in studies where the hazard is involving magnitudes above 7.4 and for long return periods is not advised.

  1. Interpretation of reflection seismics in the area North of Laegeren - Zurich Weinland

    International Nuclear Information System (INIS)

    Naef, H.; Birkhaeuser, P.; Roth, P.

    1995-05-01

    The investigations of potential siting areas for a repository for high-level radioactive waste which are concentrated in the crystalline basement of Northern Switzerland have been expanded since the late 1980s to include suitable sedimentary units. After extensive desk study evaluation, the approximately 100 m thick Opalinus Clay of the Tabular Jura east of the Aare river was chosen as the most promising sedimentary option. In this area not only the Opalinus Clay but also the over- and underlying units are clay-rich, in contrast to the tabular Jura west of the Aare river. In the area North of Laegeren - Zurich Weinland, where the Opalinus Clay is situated in the optimum depth range of 400 to 1000 m below surface, approximately 220 km of new high-resolution seismic profiles were recorded and interpreted together with existing seismic lines. Due to thorough field work and data processing, a very good quality of seismic lines was obtained. This allowed precise mapping of the marker horizons in general and the Opalinus Clay in detail. The goal of this study was to determine and delineate the most important tectonic units as well as to describe the potential host rocks in these units. By way of interactive interpretation of all available seismic lines, borehole data and surface data from the investigation area, depth maps of the most prominent marker horizons have been calculated and geological cross-sections constructed along the new seismic lines. The regional seismic character of the Middle Mesozoic units was modelled using borehole data from Weiach and Herdern. From this model the thickness of the Opalinus Clay along the new seismic lines was determined. The results indicate a relatively constant thickness of 95 to 120 m in the investigation area. (author) figs., tabs., refs

  2. Sub-crustal seismic activity beneath Klyuchevskoy Volcano

    Science.gov (United States)

    Carr, M. J.; Droznina, S.; Levin, V. L.; Senyukov, S.

    2013-12-01

    Seismic activity is extremely vigorous beneath the Klyuchevskoy Volcanic Group (KVG). The unique aspect is the distribution in depth. In addition to upper-crustal seismicity, earthquakes take place at depths in excess of 20 km. Similar observations are known in other volcanic regions, however the KVG is unique in both the number of earthquakes and that they occur continuously. Most other instances of deep seismicity beneath volcanoes appear to be episodic or transient. Digital recording of seismic signals started at the KVG in early 2000s.The dense local network reliably locates earthquakes as small as ML~1. We selected records of 20 earthquakes located at depths over 20 km. Selection was based on the quality of the routine locations and the visual clarity of the records. Arrivals of P and S waves were re-picked, and hypocentral parameters re-established. Newl locations fell within the ranges outlined by historical seismicity, confirming the existence of two distinct seismically active regions. A shallower zone is at ~20 km depth, and all hypocenters are to the northeast of KVG, in a region between KVG and Shiveluch volcano. A deeper zone is at ~30 km, and all hypocenters cluster directly beneath the edifice of the Kyuchevskoy volcano. Examination of individual records shows that earthquakes in both zones are tectonic, with well-defined P and S waves - another distinction of the deep seismicity beneath KVG. While the upper seismic zone is unquestionably within the crust, the provenance of the deeper earthquakes is enigmatic. The crustal structure beneath KVG is highly complex, with no agreed-upon definition of the crust-mantle boundary. Rather, a range of values, from under 30 to over 40 km, exists in the literature. Similarly, a range of velocity structures has been reported. Teleseismic receiver functions (RFs) provide a way to position the earthquakes with respect to the crust-mantle boundary. We compare the differential travel times of S and P waves from deep

  3. Comparisons of seismic and electromagnetic structures of the MELT area

    Science.gov (United States)

    Evans, R. L.; Hirth, G.; Forsyth, D.; Baba, K.; Chave, A.

    2003-04-01

    Both seismic and electromagnetic (EM) models from the MELT experiment show similar broad scale features in the mantle beneath the Southern EPR. In all EM models, the conductivity in the upper 50-60˜km is considerably higher to the west of the ridge than to the east. Similarly, seismic models of short period Love waves are asymmetric in velocity structure, with slower velocities to the west of the ridge within the upper 60˜km. Body wave data suggest a similar asymmetry, although the depth extent is not as well defined. West of the ridge, both the higher conductivities and lower velocities have been attributed to the presence of a small melt fraction, although the anomalous regions estimated from different techniques do not entirely agree. To the east, there is a rapid increase in resistivity and S-wave velocity, indicating that within 25˜km of the axis the mantle above 70˜km is both dry and melt-free. Further away from the ridge, the boundary between a conductive asthenospheric mantle and a resistive overlying mantle flattens, at a depth around 60-80˜km. Rayleigh wave inversions also show fairly flat velocity contours with a broad minimum centered at 60-80˜km. Both of these features are consistent with a transition from dry to damp mantle. Also away from the ridge, EM data, shear-wave splitting, and Rayleigh waves all require an azimuthally anisotropic mantle consistent with the a-axis of olivine being preferentially oriented horizontally and perpendicular to the ridge. Anisotropy in EM data suggests damp mantle conditions in the 100-200˜km depth range, with enhanced conduction along the a-axis of olivine. Rayleigh waves are most sensitive to shallower structure and require anisotropy in the upper 70˜km. In the uppermost 40˜km, the most conductive and lowest velocity regions are close to the axis but offset 5-10˜km to the west. Some anisotropic inversions recover a vertically conductive feature that could be interpreted as a few percent melt distributed in

  4. Seismic Microzonation of Islamabad-Rawalpindi Metropolitan Area, Pakistan

    Science.gov (United States)

    Khan, Sarfraz; Khan, M. Asif

    2018-01-01

    Microzonation deals with classifying seismic hazards in terms of ground motions resulting from amplification of seismic waves by nature of soil profiles underlying a site, town or city. This paper presents the results of microzonation study for Islamabad metropolitan, the capital of Pakistan. Cumulative SPT- N values from geophysical borehole and microtremor (Tromino Engy Plus) data were used to classify the soils into classes C (very dense soil profile and soft rock) and D (stiff soil profile) as devised by the National Earthquake Hazard Reduction Program (NEHRP). Soil response analyses were carried out based on scaled time histories of Kashmir earthquake (2005, 0.02 g), Mangla earthquake (2006, 0.031 g) and Haripur earthquake (2010, 0.13 g) corresponding to return periods of 150, 475, 975 and 2475 years. Spectral accelerations on the ground surface are calculated by two different approaches (1) soil response analysis performed using one dimensional shear wave propagation method (equivalent linear approach); and (2) NEHRP and Borcherdt amplification factors. Microzonation maps are produced with respect to ground shaking intensity for the return periods of 150, 475, 975 and 2475 years taking into account the variation of the spectral accelerations calculated based on these two procedures. The results show that the accelerations at the ground surface in the Islamabad-Rawalpindi metropolitan are in the range of 0.40-0.48 g (for 150 years), 0.59-0.65 g (for 475 years), 0.71-0.77 g (for 975 years), and 0.92-0.94 g (for 2475 years). The amplification factors for these four hazard levels range from 0.96 to 1.38 (150 years), 0.90-1.14 (475 years), 0.85-1.04 (975 years) and 0.84-1.00 (2475 years).

  5. Statistical analysis of seismicity rate change in the Tokyo Metropolitan area due to the 2011 Tohoku Earthquake

    Science.gov (United States)

    Ishibe, T.; Sakai, S.; Shimazaki, K.; Satake, K.; Tsuruoka, H.; Nakagawa, S.; Hirata, N.

    2012-12-01

    We examined a relationship between the Coulomb Failure Function (ΔCFF) due to the Tohoku earthquake (March 11, 2011; MJMA 9.0) and the seismicity rate change in Tokyo Metropolitan area following March 2011. Because of large variation in focal mechanism in the Kanto region, the receiver faults for the ΔCFF were assumed to be two nodal planes of small (M ≥ 2.0) earthquakes which occurred before and after the Tohoku earthquake. The seismicity rate changes, particularly the rate increase, are well explained by ΔCFF due to the gigantic thrusting, while some other possible factors (e.g., dynamic stress changes, excess of fluid dehydration) may also contribute the rate changes. Among 30,746 previous events provided by the National Research Institute for Earth Science and Disaster Prevention (M ≥ 2.0, July 1979 - July 2003), we used as receiver faults, almost 16,000 events indicate significant increase in ΔCFF, while about 8,000 events show significant decrease. Positive ΔCFF predicts seismicity rate increase in southwestern Ibaraki and northern Chiba prefectures where intermediate-depth earthquakes occur, and in shallow crust of the Izu-Oshima and Hakone regions. In these regions, seismicity rates significantly increased after the Tohoku earthquake. The seismicity has increased since March 2011 with respect to the Epidemic Type of Aftershock Sequence (ETAS) model (Ogata, 1988), indicating that the rate change was due to the stress increase by the Tohoku earthquake. The activated seismicity in the Izu and Hakone regions rapidly decayed following the Omori-Utsu formula, while the increased rate of seismicity in the southwestern Ibaraki and northern Chiba prefectures is still continuing. We also calculated ΔCFF due to the 2011 Tohoku earthquake for the focal mechanism solutions of earthquakes between April 2008 and October 2011 recorded on the Metropolitan Seismic Observation network (MeSO-net). The ΔCFF values for the earthquakes after March 2011 show more

  6. Status report on activities on seismic isolation in Italy

    International Nuclear Information System (INIS)

    Martelli, A.; Bettinali, F.

    1992-01-01

    The development of seismic isolation and its application to structures other than bridges were started in Italy in 1988. Considerable efforts are being devoted to this technique, both because it can already be widely used in civil buildings (where it is particularly attractive for constructions that are critical for emergency and disaster planning), and due to the very promising perspectives for application to the industrial plants. In particular, ENEA is also quite interested in verifying the applicability of seismic isolation to the high risk plants, including the innovative nuclear reactors. The correct development of seismic isolation, for a future wide use in all the domains of interest - including high risk and other industrial plants - requires that a sufficient number of applications to civil buildings is -undertaken, so as to improve the knowledge on the design and behaviour of isolated structures. It also requires seismic monitoring of isolated constructions. This is the reason why all the ongoing studies in Italy - including those of ENEA and ENEL - are based at present on applications to civil buildings. To the aforesaid aims, R and D work is also needed: such a work, together with the experience acquired on actual isolated buildings, is essential to set up adequate design rules. On the other hand, development of design rules must be carried out in parallel, in order to determine the features of the necessary research activities. Until now, our development work has been focussed on the high damping steel-laminated rubber bearings, which have been adopted for most isolated buildings in Italy. It consists of: [a] the set-up of proposals for design rules and guidelines; [b] experiments on bearing materials, individual bearings, isolated structure mock-ups, and actual isolated buildings; [c] development and validation of simplified and detailed numerical models of bearings and structures. Furthermore, support is being provided to the designers of isolated

  7. Reassessment of the historical seismic activity with major impact on S. Miguel Island (Azores

    Directory of Open Access Journals (Sweden)

    D. Silveira

    2003-01-01

    Full Text Available On account of its tectonic setting, both seismic and volcanic events are frequent in the Azores archipelago. During the historical period earthquakes and seismic swarms of tectonic and/or volcanic origin have struck S. Miguel Island causing a significant number of casualties and severe damages. The information present in historical records made possible a new macroseismic analysis of these major events using the European Macroseismic Scale-1998 (EMS-98. Among the strongest earthquakes of tectonic origin that affected S. Miguel Island, six events were selected for this study. The isoseismal maps drawn for these events enabled the identification of areas characterized by anomalous values of seismic intensity, either positive or negative, to constrain epicentre locations and to identify some new seismogenic areas. Regarding seismic activity associated with volcanic phenomena six cases were also selected. For each of the studied cases cumulative intensity values were assessed for each locality. The distribution of local intensity values shows that the effects are not homogeneous within a certain distance from the eruptive centre, the area of major impacts relates with the eruptive style and damages equivalent to high intensities may occur in Furnas and Sete Cidades calderas. Combining all the historical macroseismic data, a maximum intensity map was produced for S. Miguel Island.

  8. Seismic activity in the Sunnyside mining district, Carbon and Emery Counties, Utah, during 1968

    Science.gov (United States)

    Dunrud, C. Richard; Maberry, John O.; Hernandez, Jerome H.

    1970-01-01

    More than 20,000 local earth tremors were recorded by the seismic monitoring network in the Sunnyside mining district during 1968. This is about 40 percent of the number of tremors recorded by the network in 1967. In 1968 a total of 281 tremors were of sufficient magnitude to be located accurately--about 50 percent of the number of tremors in 1967 that were located accurately. As in previous years, nearly all the earth tremors originated near, or within a few thousand feet of, the mine workings. This distribution indicates that mine-induced stress changes caused most of the seismic activity. However, over periods of weeks and months there were significant changes in the distribution of seismic activity caused by tremors that were not directly related to mining but probably were caused by adjustment of natural stresses 6r by a complex combination of both natural and mine-induced stress changes. In 1968 the distribution of tremor hypocenters varied considerably with time, relative to active mining areas and to faults present in the mine workings. During the first 6 months, most tremors originated along or near faults that trend close to or through the active mine workings. However, in the last 6 months, the tremor hypocenters tended to concentrate in the rock mass closer to, or around, the active mining areas. This shift in concentration of seismic activity with time has been noted throughout the district many times since recording began in 1963, and is apparently caused by spontaneous releases of stored strain energy resulting from mine-induced stress changes. These spontaneous releases of strain energy, together with rock creep, apparently are the mechanism of adjustment within the rock mass toward equilibrium conditions, which are continually disrupted by mining. Although potentially hazardous bumps were rare in the Sunnyside mining district during 1968, smaller bumps and rock falls were more common in a given active mining area whenever hypocenters of larger

  9. Seismic recording at the Los Medanos area of Southeastern New Mexico, 1974-1975

    International Nuclear Information System (INIS)

    Sanford, A.R.; Johansen, S.J.; Caravella, F.J.; Ward, R.M.

    1976-01-01

    The objective has been to determine if low-level seismic activity is occurring at or near the proposed nuclear waste repository in southeastern New Mexico. The research involved installation and maintenance of a continuously recording seismograph at the Los Medanos site and interpretation of the seismic events detected by that station. The following topics are discussed: (1) a description of the seismic instrumentation and its performance; (2) statistics on the local and regional earthquakes detected by the seismograph station at the Los Medanos site; (3) special studies on the seismic events associated with rockfalls at the National Potash Co. Eddy County Mine on July 26, 1972 and November 28, 1974; and (4) improved estimates of recurrence intervals for major earthquakes likely to effect the Los Medanos site

  10. Seismic active control by a heuristic-based algorithm

    International Nuclear Information System (INIS)

    Tang, Yu.

    1996-01-01

    A heuristic-based algorithm for seismic active control is generalized to permit consideration of the effects of control-structure interaction and actuator dynamics. Control force is computed at onetime step ahead before being applied to the structure. Therefore, the proposed control algorithm is free from the problem of time delay. A numerical example is presented to show the effectiveness of the proposed control algorithm. Also, two indices are introduced in the paper to assess the effectiveness and efficiency of control laws

  11. Improving the Detectability of the Catalan Seismic Network for Local Seismic Activity Monitoring

    Science.gov (United States)

    Jara, Jose Antonio; Frontera, Tànit; Batlló, Josep; Goula, Xavier

    2016-04-01

    The seismic survey of the territory of Catalonia is mainly performed by the regional seismic network operated by the Cartographic and Geologic Institute of Catalonia (ICGC). After successive deployments and upgrades, the current network consists of 16 permanent stations equipped with 3 component broadband seismometers (STS2, STS2.5, CMG3ESP and CMG3T), 24 bits digitizers (Nanometrics Trident) and VSAT telemetry. Data are continuously sent in real-time via Hispasat 1D satellite to the ICGC datacenter in Barcelona. Additionally, data from other 10 stations of neighboring areas (Spain, France and Andorra) are continuously received since 2011 via Internet or VSAT, contributing both to detect and to locate events affecting the region. More than 300 local events with Ml ≥ 0.7 have been yearly detected and located in the region. Nevertheless, small magnitude earthquakes, especially those located in the south and south-west of Catalonia may still go undetected by the automatic detection system (DAS), based on Earthworm (USGS). Thus, in order to improve the detection and characterization of these missed events, one or two new stations should be installed. Before making the decision about where to install these new stations, the performance of each existing station is evaluated taking into account the fraction of detected events using the station records, compared to the total number of events in the catalogue, occurred during the station operation time from January 1, 2011 to December 31, 2014. These evaluations allow us to build an Event Detection Probability Map (EDPM), a required tool to simulate EDPMs resulting from different network topology scenarios depending on where these new stations are sited, and becoming essential for the decision-making process to increase and optimize the event detection probability of the seismic network.

  12. Bowhead whale aggregation areas and their role in the mitigation of seismic noise

    Energy Technology Data Exchange (ETDEWEB)

    Joynt, A.A.; Harwood, L.A. [Department of Fisheries and Oceans, Ottawa, ON (Canada)

    2007-07-01

    Aerial surveys have been conducted to document the distribution and relative abundance of bowhead whales in the offshore Beaufort Sea. They have shown that bowhead feeding aggregations form in traditional areas where oceanographic conditions favour the concentration of zooplankton. However, not all aggregation areas are attractive to bowheads due to varying oceanographic conditions. Some of the feeding aggregation areas are located in offshore waters which have been subject to seismic exploration activity. There is limited knowledge of the effects of underwater noise or industrial activity on Arctic marine mammals in their critical habitat because of the difficulty of studying in a marine Arctic environment. This has presented a challenge regarding the establishment of proper mitigation specific to critical habitats. Data from emerging science and industry's input from experiences in similar environments like the Chukchi Sea is bringing about new data from which to develop better and realistic mitigation. It was concluded that continuing cooperation between regulators, science, and industry is the key to creating innovative approaches to mitigate the effects of industry on marine mammals. figs.

  13. Neogene seismites and seismic volcanic rocks in the Linqu area, Shandong Province, E China

    Directory of Open Access Journals (Sweden)

    Tian H.S.

    2014-07-01

    Full Text Available The Yishu Fault Zone runs through the centre of Shandong Province (E China; it is a deep-seated large fault system that still is active. Two volcanic faulted basins (the Shanwang and Linqu Basins in the Linqu area, west of the fault zone, are exposed to rifting, which process is accompanied by a series of tectonic and volcanic earthquakes with a magnitude of 5-8. Lacustrine sediments in the basins were affected by these earthquakes so that seismites with a variety of soft-sediment deformation structures originated. The seismites form part of the Shanwang Formation of the Linqu Group. Semi-consolidated fluvial conglomerates became deformed in a brittle way; these seismites are present at the base of the Yaoshan Formation. Intense earthquakes triggered by volcanic activity left their traces in the form of seismic volcanic rocks associated with liquefied-sand veins in the basalt/sand intercalations at the base of the Yaoshan Formation. These palaeo-earthquake records are dated around 14-10 Ma; they are responses to the intense tectonic extension and the basin rifting in this area and even the activity of the Yishu Fault Zone in the Himalayan tectonic cycle.

  14. Seismic cycle and seismic risk of an active faults network: the Corinth rift case (Greece)

    International Nuclear Information System (INIS)

    Boiselet, Aurelien

    2014-01-01

    The Corinth rift (Greece) is one of the regions with the highest strain rates (16 mm/y extension rate) in the Euro-Mediterranean area and as such it has long been identified as a site of major importance for earthquake studies in Europe (20 years of research by the Corinth Rift Laboratory and 4 years of in-depth studies by the ANR-SISCOR project). This enhanced knowledge, acquired in particular, in the western part of the Gulf of Corinth (CRL region), an area about 50 by 40 km 2 , between the city of Patras to the west and the city of Aigion to the east, provides an excellent opportunity to compare fault-based (FB) and classical seismo-tectonic (ST) approaches currently used in seismic hazard assessment studies. An homogeneous earthquake catalogue was thus constructed for the purpose of this study along with a comprehensive database of all relevant geological, geodetic and geophysical information available in the literature and recently collected within the ANR-SISCOR project. The homogenized Mw earthquake catalogue is composed of data from the National Observatory of Athens and from the university of Thessaloniki as well as data acquired through historical and instrumental work performed within the ANR-SISCOR group for the CRL region. A frequency magnitude analysis confirms that seismicity rates are governed by Gutenberg-Richter (GR) statistic for 1.2 =6 earthquakes were computed for the region of study. Time dependent models (Brownian Passage time and Weibull probability distributions) were also explored. The probability (normalized by area) of a M≥6.0 earthquake is found to be greater in the CRL region compared to the eastern part of the Corinth rift. Probability estimates corresponding to the 16. and 84. percentile are also provided, as a means of representing the range of uncertainties in the results. Probability estimates based on the ST-approach are then compared to those based on the FB approach approach. In general ST tends to overestimate probabilities

  15. Seismic ground motion and hazard assessment of the Greater Accra Metropolitan Area, southeastern Ghana

    International Nuclear Information System (INIS)

    Amponsah, P.E.; Banoeng-Yakubo, B.K.; Asiedu, D.; Vaccari, F.; Panza, G.F.

    2008-08-01

    The seismic ground motion of the Greater Accra Metropolitan area has been computed and the hazard zones assessed using a deterministic hybrid approach based on the modal summation and finite difference methods. The seismic ground motion along four profiles located in the Greater Accra Metropolitan Area has been modelled using the 1939 earthquake of magnitude 6.5(M L ) as the scenario earthquake. Synthetic seismic waveforms from which parameters for engineering design such as peak ground acceleration, velocity and spectral amplifications have been produced along the geological cross sections. From the seismograms computed, the seismic hazard of the metropolis, expressed in terms of peak ground acceleration and peak ground velocity have been estimated. The peak ground acceleration estimated in the study ranges from 0.14 - 0.57 g and the peak ground velocity from 9.2 - 37.1cms -1 . The presence of low velocity sediments gave rise to high peak values and amplifications. The maximum peak ground accelerations estimated are located in areas with low velocity formations such as colluvium, continental and marine deposits. Areas in the metropolis underlain by unconsolidated sediments have been classified as the maximum damage potential zone and those underlain by highly consolidated geological materials are classified as low damage potential zone. The results of the numerical simulation have been extended to all areas in the metropolis with similar geological formation. (author)

  16. Geophysical Observatory in Kamchatka region for monitoring of phenomena connected with seismic activity

    Science.gov (United States)

    Uyeda, S.; Nagao, T.; Hattori, K.; Hayakawa, M.; Miyaki, K.; Molchanov, O.; Gladychev, V.; Baransky, L.; Chtchekotov, A.; Fedorov, E.; Pokhotelov, O.; Andreevsky, S.; Rozhnoi, A.; Khabazin, Y.; Gorbatikov, A.; Gordeev, E.; Chebrov, V.; Sinitzin, V.; Lutikov, A.; Yunga, S.; Kosarev, G.; Surkov, V.; Belyaev, G.

    Regular monitoring of some geophysical parameters in association with seismicity has been carried out since last year at the Japan-Russian Complex Geophysical Observatory in the Kamchatka region. This observatory was organized in connection with the ISTC project in Russia and was motivated by the results of the FRONTIER/RIKEN and FRONTIER/NASDA research projects in Japan. The main purpose of the observations is to investigate the electromagnetic and acoustic phenomena induced by the lithosphere processes (especially by seismic activity). The seismicity of the Kamchatka area is analyzed and a description of the observatory equipment is presented. At present, the activity of the observatory includes the seismic (frequency range ∆F = 0.5 - 40 Hz) and meteorological recordings, together with seismo-acoustic (∆F = 30 - 1000 Hz) and electromagnetic observations: three-component magnetic ULF variations ( ∆F = 0.003 - 30 Hz), three-component electric potential variations ( ∆F < 1.0 Hz), and VLF transmitter's signal perturbations ( ∆F ~ 10 - 40 kHz).

  17. Geophysical Observatory in Kamchatka region for monitoring of phenomena connected with seismic activity

    Directory of Open Access Journals (Sweden)

    S. Uyeda

    2001-01-01

    Full Text Available Regular monitoring of some geophysical parameters in association with seismicity has been carried out since last year at the Japan-Russian Complex Geophysical Observatory in the Kamchatka region. This observatory was organized in connection with the ISTC project in Russia and was motivated by the results of the FRONTIER/RIKEN and FRONTIER/NASDA research projects in Japan. The main purpose of the observations is to investigate the electromagnetic and acoustic phenomena induced by the lithosphere processes (especially by seismic activity. The seismicity of the Kamchatka area is analyzed and a description of the observatory equipment is presented. At present, the activity of the observatory includes the seismic (frequency range ∆F = 0.5 – 40 Hz and meteorological recordings, together with seismo-acoustic (∆F = 30 – 1000 Hz and electromagnetic observations: three-component magnetic ULF variations ( ∆F = 0.003 – 30 Hz, three-component electric potential variations ( ∆F 1.0 Hz, and VLF transmitter’s signal perturbations ( ∆F ~ 10 – 40 kHz.

  18. Implications of Seismically Active Fault Structures in Ankay and Alaotra Regions of Northern and Central Madagascar

    Science.gov (United States)

    Malloy, S.; Stamps, D. S.

    2017-12-01

    The purpose of the study is to gain a better understanding of the seismically active fault structures in central and northern Madagascar. We study the Ankay and Lake Alaotra regions of Madagascar, which are segmented by multiple faults that strike N-S. In general, normal seismic events occur on faults bounding the Alaotra-Ankay rift basin where Quaternary alluvium is present. Due to this pattern and moderate amounts of low magnitude seismic activity along these faults, it is hypothesized the region currently undergoes E-W extension. In this work we test how variations in fault strength and net slip changes influence expected crustal movement in the region. Using the Coulomb stress failure point as a test of strength we are able to model the Alaotra-Ankay region using MATLAB Coulomb 3.3.01. This program allows us to define realistic Poisson's ratio and Young's modulus of mapped rock compositions in the region, i.e. paragneiss and orthogneiss, create 3D fault geometries, and calculate static stress changes with coinciding surface displacements. We impose slip along multiple faults and calculate seismic moment that we balance by the 3 observed earthquake magnitudes available in the USGS CMT database. Our calculations of surface displacements indicate 1-3 millimeters could be observed across the Alaotra-Ankay rift. These values are within the observable range of precision GNSS observations, therefore our results will guide future research into the area and direct potential GNSS station installation.

  19. Study of Seismic Activity Using Geophysical and Radio Physical Equipment for Observation

    Science.gov (United States)

    Kvavadze, N.; Tsereteli, N. S.

    2015-12-01

    One of the most dangerous and destructive natural hazards are earthquakes, which is confirmed by recent earthquakes such as Nepal 2015, Japan and Turkey 2011. Because of this, study of seismic activity is important. Studying any process, it is necessary to use different methods of observation, which allows us to increase accuracy of obtained data. Seismic activity is a complex problem and its study needs different types of observation methods. Two main problems of seismic activity study are: reliable instrumental observations and earthquake short-term predictions. In case of seismic risks it is necessary to have reliable accelerometer data. One of the most promising field in earthquake short-term prediction is very low frequency (VLF) electromagnetic wave propagation in ionosphere observation. To study Seismic activity of Caucasus region, was created observation complex using Accelerometer, Velocimeter and VLF electromagnetic waves received from communication stations (located in different area of the world) reflected from low ionosphere. System is created and operates at Tbilisi State University Ionosphere Observatory, near Tbilisi in Tabakhmela 42.41'70 N, 44.80'92 E, Georgia. Data obtained is sent to a local server located at M. Nodia Institute of Geophysics, TSU, for storage and processing. Diagram for complex is presented. Also data analysis methods were created and preliminary processing was done. In this paper we present some of the results: Earthquake data from ionosphere observations as well as local earthquakes recorded with accelerometer and velocimeter. Complex is first in 6 that will be placed around Georgia this year. We plan on widening network every year.

  20. Global earthquake catalogs and long-range correlation of seismic activity (Invited)

    Science.gov (United States)

    Ogata, Y.

    2009-12-01

    In view of the long-term seismic activity in the world, homogeneity of a global catalog is indispensable. Lately, Engdahl and Villaseñor (2002) compiled a global earthquake catalog of magnitude (M)7.0 or larger during the last century (1900-1999). This catalog is based on the various existing catalogs such as Abe catalog (Abe, 1981, 1984; Abe and Noguchi, 1983a, b) for the world seismicity (1894-1980), its modified catalogs by Perez and Scholz (1984) and by Pacheco and Sykes (1992), and also the Harvard University catalog since 1975. However, the original surface wave magnitudes of Abe catalog were systematically changed by Perez and Scholz (1984) and Pacheco and Sykes (1992). They suspected inhomogeneity of the Abe catalog and claimed that the two seeming changes in the occurrence rate around 1922 and 1948 resulted from magnitude shifts for some instrumental-related reasons. They used a statistical test assuming that such a series of large earthquakes in the world should behave as the stationary Poisson process (uniform occurrences). It is obvious that their claim strongly depends on their a priori assumption of an independent or short-range dependence of earthquake occurrence. We question this assumption from the viewpoint of long-range dependence of seismicity. We make some statistical analyses of the spectrum, dispersion-time diagrams and R/S for estimating and testing of the long-range correlations. We also attempt to show the possibility that the apparent rate change in the global seismicity can be simulated by a certain long-range correlated process. Further, if we divide the globe into the two regions of high and low latitudes, for example, we have different shapes of the cumulative curves to each other, and the above mentioned apparent change-points disappear from the both regions. This suggests that the Abe catalog shows the genuine seismic activity rather than the artifact of the suspected magnitude shifts that should appear in any wide enough regions

  1. Tectonic implications of seismic activity recorded by the northern Ontario seismograph network

    International Nuclear Information System (INIS)

    Wetmiller, R.J.; Cajka, M.G.

    1989-01-01

    The northern Ontario seismograph network, which has operated under the Canadian Nuclear Fuel Waste Management Program since 1982, has provided valuable data to supplement those recorded by the Canadian national networks on earthquake activity, rockburst activity, the distribution of regional seismic velocities, and the contemporary stress field in northern Ontario. The combined networks recorded the largest earthquake known in northwestern Ontario, M 3.9 near Sioux Lookout on February 11, 1984, and many smaller earthquakes in northeastern Ontario. Focal mechanism solutions of these and older events showed high horizontal stress and thrust faulting to be dominant features of the contemporary tectonics of northern Ontario. The zone of more intense earthquake activity in western Quebec appeared to extend northwestward into the Kapuskasing area of northeastern Ontario, where an area of persistent microearthquake activity had been identified by a seismograph station near Kapuskasing. Controlled explosions of the 1984 Kapuskasing Uplift seismic profile experiment recorded on the northern Ontario seismograph network showed the presence of anomalously high LG velocities in northeastern Ontario (3.65 km/s) that when properly taken into account reduced the mislocation errors of well-recorded seismic events by 50% on average

  2. Geoprospective study of a nuclear waste repository taking seismic activity into account

    International Nuclear Information System (INIS)

    Godefroy, P.

    1985-01-01

    This report deals with the problem of taking seismic activity into account for a prospective safety analysis applied to the containment of radioactive wastes in deep geological formations. The first part briefly gives some basic notions of seismicity and specifies the problems and available methods existing to perform predictive analysis related to seismic phenomena. The reliability of the different methods is discussed according to time in consideration: short-term (few centuries to 1 000 y.), mean-term (about 10 000 y.) and long-term (100 000 y. and more). The main features of recent tectonics and seismicity of the European area and France are succinctly exposed in the second part. Qualitative and quantitative data proper to the two selected ''test-zones'' (massif armoricain and south of bassin parisien) are collected and interpreted to outline the usable hypothesis for a prospective analysis. The probabilistic assessment of earthquake occurrence is discussed in the third part. The fourth part deals with nature and magnitude of the effects of earthquake on underground facilities and with the weight of several factors as those related to seismic sources and geological properties of the site, from a literature review. The following data are taken into account: - damages to underground facilities after great earthquakes, - comparison of seismic records of earthquakes and nuclear events at different depths and at ground surface, - theoretical models developed to determine strains and displacement fields induced by earthquakes. Literature data about the effects of great earthquakes on regional hydrogeology are summarized in the fifth part of the report

  3. Kinematics of active deformation across the Western Kunlun mountain range (Xinjiang, China), and potential seismic hazards within the southern Tarim Basin

    DEFF Research Database (Denmark)

    Guilbaud, Christelle; Simoes, Martine; Barrier, Laurie

    2017-01-01

    remains seismic. To quantify the rate of active deformation and the potential for major earthquakes in this region, we combine a structural and quantitative morphological analysis of the Yecheng-Pishan fold, along the topographic mountain front in the epicentral area. Using a seismic profile, we derive...

  4. Utilization of Screw Piles in High Seismicity Areas of Cold and Warm Permafrost

    Science.gov (United States)

    2010-07-01

    This work was performed in support of the AUTC project Utilization of Screw Piles in : High Seismicity Areas of Cold and Warm Permafrost under the direction of PI Dr. Kenan : Hazirbaba. Surface wave testing was performed at 30 sites in the City...

  5. Impact of seismicity on surface in mining affected areas: general description

    Czech Academy of Sciences Publication Activity Database

    Kaláb, Zdeněk

    2004-01-01

    Roč. 1, č. 1 (2004), s. 35-39 ISSN 1211-1910. [Mining and Environmental geophysics/29./. Sedmihorky, 00.06.2003] R&D Projects: GA ČR GA105/03/0078 Institutional research plan: CEZ:AV0Z3086906 Keywords : seismicity * mining affected areas Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  6. Probabilistic Seismic Hazard Analysis of Victoria, British Columbia, Canada: Considering an Active Leech River Fault

    Science.gov (United States)

    Kukovica, J.; Molnar, S.; Ghofrani, H.

    2017-12-01

    The Leech River fault is situated on Vancouver Island near the city of Victoria, British Columbia, Canada. The 60km transpressional reverse fault zone runs east to west along the southern tip of Vancouver Island, dividing the lithologic units of Jurassic-Cretaceous Leech River Complex schists to the north and Eocene Metchosin Formation basalts to the south. This fault system poses a considerable hazard due to its proximity to Victoria and 3 major hydroelectric dams. The Canadian seismic hazard model for the 2015 National Building Code of Canada (NBCC) considered the fault system to be inactive. However, recent paleoseismic evidence suggests there to be at least 2 surface-rupturing events to have exceeded a moment magnitude (M) of 6.5 within the last 15,000 years (Morell et al. 2017). We perform a Probabilistic Seismic Hazard Analysis (PSHA) for the city of Victoria with consideration of the Leech River fault as an active source. A PSHA for Victoria which replicates the 2015 NBCC estimates is accomplished to calibrate our PSHA procedure. The same seismic source zones, magnitude recurrence parameters, and Ground Motion Prediction Equations (GMPEs) are used. We replicate the uniform hazard spectrum for a probability of exceedance of 2% in 50 years for a 500 km radial area around Victoria. An active Leech River fault zone is then added; known length and dip. We are determining magnitude recurrence parameters based on a Gutenberg-Richter relationship for the Leech River fault from various catalogues of the recorded seismicity (M 2-3) within the fault's vicinity and the proposed paleoseismic events. We seek to understand whether inclusion of an active Leech River fault source will significantly increase the probabilistic seismic hazard for Victoria. Morell et al. 2017. Quaternary rupture of a crustal fault beneath Victoria, British Columbia, Canada. GSA Today, 27, doi: 10.1130/GSATG291A.1

  7. Seismicity studies at Moluccas area based on the result of hypocenter relocation using HypoDD

    Energy Technology Data Exchange (ETDEWEB)

    Utama, Muhammad Reza July, E-mail: muhammad.reza@bmkg.go.id [Student of Geophysical Engineering Study Program, Institute of Technology Bandung (Indonesia); Indonesian Meteorological, Climatological and Geophysical Agency (MCGA), Jakarta (Indonesia); Nugraha, Andri Dian; Puspito, Nanang T. [Global Geophysical Research Group, Faculty of Mining and Petroleum Engineering, ITB (Indonesia)

    2015-04-24

    The precise hypocenter was determined location using double difference method around subduction zone in Moluccas area eastern part of Indonesia. The initial hypocenter location from MCGA data catalogue of 1,945 earthquake events. Basically the principle of double-difference algorithm assumes if the distance between two earthquake hypocenter distribution is very small compared to the distance between the station to the earthquake source, the ray path can be considered close to both earthquakes. The results show the initial earthquakes with a certain depth (fix depth 10 km) relocated and can be interpreted more reliable in term of seismicity and geological setting. The relocation of the intra slab earthquakes beneath Banda Arc are also clearly observed down to depth of about 400 km. The precise relocated hypocenter will give invaluable seismicity information for other seismological and tectonic studies especially for seismic hazard analysis in this region.

  8. Seismic activity and thermal regime of low temperature fumaroles at Mt. Vesuvius in 2004-2011: distinguishing among seismic, volcanic and hydrological signals

    Directory of Open Access Journals (Sweden)

    Paola Cusano

    2013-11-01

    Full Text Available Seismological, soil temperature and hydrological data from Mt. Vesuvius are collected to characterize the present-day activity of the volcanic/hydrothermal system and to detect possible unrest-related phenomena. We present patterns of seismicity and soil temperature in the crater area during the period February 2004-December 2011. The temporal distribution of number and depth of Volcano-Tectonic earthquakes and the energy release are considered. Hourly data of soil temperature have been acquired since January 2004 in different locations along the rim and within the crater. The observed changes of temperature are studied to establish a temporal-based correlation with the volcanic activity and/or with external forcing, as variations of the regional and local stress field acting on the volcano or meteorological phenomena. The comparison between seismic activity and temperature data highlights significant variations possibly related to changes in fluid circulation in the hydrothermal system of the volcano. The common continuous observations start just before a very shallow earthquake occurred in August 2005, which was preceded by a thermal anomaly. This coincidence has been interpreted as related to fluid-driven rock fracturing, as observed in other volcanoes. For the successive temporal patterns, the seismicity rate and energy release are characterized by slight variations accompanied by changes in temperature. This evidence of reactivity of the fumarole thermal field to seismic strain can be used to discriminate between tectonic and volcanic signals at Mt. Vesuvius.

  9. Seismicity and seismic monitoring in the Asse salt mine

    International Nuclear Information System (INIS)

    Flach, D.; Gommlich, G.; Hente, B.

    1987-01-01

    Seismicity analyses are made in order to assess the safety of candidate sites for ultimate disposal of hazardous wastes. The report in hand reviews the seismicity history of the Asse salt mine and presents recent results of a measuring campaign made in the area. The monitoring network installed at the site supplies data and information on the regional seismicity, on seismic amplitudes under ground and above ground, and on microseismic activities. (DG) [de

  10. Seismic Hazard and Risk Assessments for Beijing-Tianjin-Tangshan, China, Area

    Science.gov (United States)

    Xie, Furen; Wang, Zhenming; Liu, Jingwei

    2011-03-01

    Seismic hazard and risk in the Beijing-Tianjin-Tangshan, China, area were estimated from 500-year intensity observations. First, we digitized the intensity observations (maps) using ArcGIS with a cell size of 0.1 × 0.1°. Second, we performed a statistical analysis on the digitized intensity data, determined an average b value (0.39), and derived the intensity-frequency relationship (hazard curve) for each cell. Finally, based on a Poisson model for earthquake occurrence, we calculated seismic risk in terms of a probability of I ≥ 7, 8, or 9 in 50 years. We also calculated the corresponding 10 percent probability of exceedance of these intensities in 50 years. The advantages of assessing seismic hazard and risk from intensity records are that (1) fewer assumptions (i.e., earthquake source and ground motion attenuation) are made, and (2) site-effect is included. Our study shows that the area has high seismic hazard and risk. Our study also suggests that current design peak ground acceleration or intensity for the area may not be adequate.

  11. Using Simulated Ground Motions to Constrain Near-Source Ground Motion Prediction Equations in Areas Experiencing Induced Seismicity

    Science.gov (United States)

    Bydlon, S. A.; Dunham, E. M.

    2016-12-01

    Recent increases in seismic activity in historically quiescent areas such as Oklahoma, Texas, and Arkansas, including large, potentially induced events such as the 2011 Mw 5.6 Prague, OK, earthquake, have spurred the need for investigation into expected ground motions associated with these seismic sources. The neoteric nature of this seismicity increase corresponds to a scarcity of ground motion recordings within 50 km of earthquakes Mw 3.0 and greater, with increasing scarcity at larger magnitudes. Gathering additional near-source ground motion data will help better constraints on regional ground motion prediction equations (GMPEs) and will happen over time, but this leaves open the possibility of damaging earthquakes occurring before potential ground shaking and seismic hazard in these areas are properly understood. To aid the effort of constraining near-source GMPEs associated with induced seismicity, we integrate synthetic ground motion data from simulated earthquakes into the process. Using the dynamic rupture and seismic wave propagation code waveqlab3d, we perform verification and validation exercises intended to establish confidence in simulated ground motions for use in constraining GMPEs. We verify the accuracy of our ground motion simulator by performing the PEER/SCEC layer-over-halfspace comparison problem LOH.1 Validation exercises to ensure that we are synthesizing realistic ground motion data include comparisons to recorded ground motions for specific earthquakes in target areas of Oklahoma between Mw 3.0 and 4.0. Using a 3D velocity structure that includes a 1D structure with additional small-scale heterogeneity, the properties of which are based on well-log data from Oklahoma, we perform ground motion simulations of small (Mw 3.0 - 4.0) earthquakes using point moment tensor sources. We use the resulting synthetic ground motion data to develop GMPEs for small earthquakes in Oklahoma. Preliminary results indicate that ground motions can be amplified

  12. Local seismic activity monitored at King Sejong Station, Antarctica

    OpenAIRE

    Lee,Duk Kee; Kim,Yea Dong; Nam,Sang Heon; Jin,Young Keun

    1998-01-01

    Source location estimation from single station earthquake data collected at King Sejong Station (62°13'3l"N, 58°47'07"W) from 1995 to 1996 provides seismic activity around King Sejong Station. Analysis of local events, less than 1.5°in angular epicentral distance, finds epicenters located near the Shackleton Fracture Zone, the South Shetland Platform, Deception Island, and North Bransfield Basin. Estimated magnitudes range from 2.2 to 4.5 on the Richter scale, averaging 4.0 in North Bransfiel...

  13. Test to Extract Soil Properties Using the Seismic HammerTM Active Seismic Source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Rebekah F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Abbott, Robert E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    Geologic material properties are necessary parameters for ground motion modeling and are difficult and expensive to obtain via traditional methods. Alternative methods to estimate soil properties require a measurement of the ground's response to a force. A possible method of obtaining these measurements is active-source seismic surveys, but measurements of the ground response at the source must also be available. The potential of seismic sources to obtain soil properties is limited, however, by the repeatability of the source. Explosives, and hammer surveys are not repeatable because of variable ground coupling or swing strength. On the other hand, the Seismic Hammer TM (SH) is consistent in the amount of energy it inputs into the ground. In addition, it leaves large physical depressions as a result of ground compaction. The volume of ground compaction varies by location. Here, we hypothesize that physical depressions left in the earth by the SH correlate to energy recorded by nearby geophones, and therefore are a measurement of soil physical properties. Using measurements of the volume of shot holes, we compare the spatial distribution of the volume of ground compacted between the different shot locations. We then examine energy recorded by the nearest 50 geophones and compare the change in amplitude across hits at the same location. Finally, we use the percent difference between the energy recorded by the first and later hits at a location to test for a correlation to the volume of the shot depressions. We find that: * Ground compaction at the shot-depression does cluster geographically, but does not correlate to known surface features. * Energy recorded by nearby geophones reflects ground refusal after several hits. * There is no correlation to shot volume and changes in energy at particular shot locations. Deeper material properties (i.e. below the depth of surface compaction) may be contributing to the changes in energy propagation. * Without further

  14. French practice in the area of seismic hazard assessment on nuclear facility sites and related research

    International Nuclear Information System (INIS)

    Mohammadioun, B.

    1986-06-01

    The methodology put into practice in the analysis of seismic hazard on the site of a nuclear facility relies upon a deterministic approach and endeavors to account for the particularities of every site considered insofar as available data and techniques allow. The calculation of a seismic reference motion for use in the facilities' design calls upon two basic sets of data. Regional seismicity over the past millennium, from historical sources, revised while preparing the seismotectonic map of France, is fundamental to this analysis. It is completed by instrumental data from the last quarter century. A collection of strong-motion accelerograph data from seismic areas worldwide reflects a variety of source characteristics and site conditions. A critical overview of current practice in France and elsewhere highlights shortcomings and areas of particular need both in experimental data and in methodology, and namely the scarcity of near-field data, the predominance of California records, and inaccurate approaches to integrating soil effects into ground-motion calculations. 16 refs

  15. Application of neural networks to seismic active control

    International Nuclear Information System (INIS)

    Tang, Yu.

    1995-01-01

    An exploratory study on seismic active control using an artificial neural network (ANN) is presented in which a singledegree-of-freedom (SDF) structural system is controlled by a trained neural network. A feed-forward neural network and the backpropagation training method are used in the study. In backpropagation training, the learning rate is determined by ensuring the decrease of the error function at each training cycle. The training patterns for the neural net are generated randomly. Then, the trained ANN is used to compute the control force according to the control algorithm. The control strategy proposed herein is to apply the control force at every time step to destroy the build-up of the system response. The ground motions considered in the simulations are the N21E and N69W components of the Lake Hughes No. 12 record that occurred in the San Fernando Valley in California on February 9, 1971. Significant reduction of the structural response by one order of magnitude is observed. Also, it is shown that the proposed control strategy has the ability to reduce the peak that occurs during the first few cycles of the time history. These promising results assert the potential of applying ANNs to active structural control under seismic loads

  16. Microseismicity in the Seoul Metropolitan Area, Korea, and its implications for the seismic hazards

    Science.gov (United States)

    Kim, K.; Kim, W.; Kang, S.; Ryoo, Y.; Kim, M.; Park, Y.; Kyung, J.

    2012-12-01

    On 9 February 2010, a minor earthquake occurred in the northwest of South Korea. The earthquake was widely felt in the Seoul National Capital Area (SNCA). The earthquake attracted much attention from media, politicians, policy makers and the public, who raised concerns about seismic hazards and risks in the Korea Peninsula, in particular, to the SNCA. SNCA includes the Seoul and Incheon metropolitans and most of the Gyeonggi province. It has a population of 24.5 million (as of 2007) and is ranked as the second largest metropolitan area in the world. The SNCA has been the center of the economics, politics, and culture during the past half millennium since the city has been designated as the capital city in 1394. We applied waveform correlation detector to 2007-2010 continuously recorded seismic data to identify repeating earthquakes. We identify 9 micro-earthquakes during 2007-2010 periods which are not reported in the KNSN bulletin because their magnitudes are too small. Estimated magnitudes using amplitude ratios measured at the station SEO indicate the smallest event detected by the waveform cross correlation technique in the study is as low as 0.19. The number of events for our interpretation becomes 11 including two previously reported events and nine newly identified micro-earthquakes. All of them occur in a very small area. While there are historic documents reporting earthquakes in the SNCA, repeating earthquakes or clustered seismicity from the instrumental earthquake record have not reported before. We have determined the focal mechanism solution for the representative events (9 February 2010, ML 3.0) using the first-motion polarities. The preferred focal mechanism solution for the representative event is the WNW-ESE striking fault, which are consistent with the precisely determined earthquake hypocenter distribution. It is also consistent with the results in the previous studies of stress orientation in and around the Korean peninsula. The new list of

  17. Key seismic exploration technology for the Longwangmiao Fm gas reservoir in Gaoshiti–Moxi area, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Guangrong Zhang

    2016-10-01

    Full Text Available The dolomite reservoirs of the Lower Cambrian Longwangmiao Fm in the Gaoshiti–Moxi area, Sichuan Basin, are deeply buried (generally 4400–4900 m, with high heterogeneity, making reservoir prediction difficult. In this regard, key seismic exploration technologies were developed through researches. Firstly, through in-depth analysis on the existing geologic, drilling, seismic data and available research findings, basic surface and subsurface structures and geologic conditions within the study area were clarified. Secondly, digital seismic data acquisition technologies with wide azimuth, wide frequency band and minor bins were adopted to ensure even distribution of coverage of target formations through optimization of the 3D seismic geometry. In this way, high-accuracy 3D seismic data can be acquired through shallow, middle and deep formations. Thirdly, well-control seismic data processing technologies were applied to enhance the signal-to-noise ratio (SNR of seismic data for deep formations. Fourthly, a seismic response model was established specifically for the Longwangmiao Fm reservoir. Quantitative prediction of the reservoir was performed through pre-stack geo-statistics. In this way, plan distribution of reservoir thicknesses was mapped. Fifthly, core tests and logging data analysis were conducted to determine gas-sensitive elastic parameters, which were then used in pre-stack hydrocarbon detection to eliminate the multiple solutions in seismic data interpretation. It is concluded that application of the above-mentioned key technologies effectively promote the discovery of largescale marine carbonate gas reservoirs of the Longwangmiao Fm.

  18. Forsmark site investigation. Reflection seismic studies in the Forsmark area, 2004: Stage 2

    Energy Technology Data Exchange (ETDEWEB)

    Juhlin, Christopher; Palm, Hans [Uppsala Univ. (Sweden). Dept. of Earth Sciences

    2005-06-15

    Reflection seismic data were acquired in the Fall of 2004 in the Forsmark area, located about 140 km north of Stockholm, Sweden. The Forsmark area has been targeted by SKB as a possible storage site for spent nuclear fuel. About 25 km of high resolution (nominal source and receiver spacing of maximum 10 m and a minimum of 160 active channels) seismic data were acquired along 10 profiles, varying in length from about 1 km to over 4 km. Three of these profiles are extensions of profiles that were acquired in 2002 (Stage 1). While the 2002 Stage 1 profiles were geared towards acquiring data from within the relatively undeformed lens, the current study focused on acquiring data from the boundaries of the lens. Data acquisition was also concentrated towards the western part of the candidate area. Data were acquired using a combination of the same explosive source as in Stage 1 (1575 g of explosives) and the VIBSIST mechanical source consisting of an industrial hammer mounted on a tractor. Earlier tests in Laxemar had shown that the VIBSIST source gives comparable data to the explosive source and is less expensive. It can also be used in areas where explosives are prohibited, such as close to the nuclear power plant. At present, the source cannot be used in the terrain, therefore an explosive component is still required. About 80% of the 2100 source points were activated using the VIBSIST system. Stacked sections from the new profiles are generally consistent with the Stage 1 results. Reflections from the prominent south dipping A1 reflector can be observed on most profiles, however, it is not clear if it can be traced all the way to the surface. Neither is it clearly observed below the power plant, suggesting its lateral extent is limited to the west. Instead, a gently east dipping reflector (B8) is interpreted below the power plant. Reflections consistent with the A2 reflector are also found on two profiles, but cannot be traced very far to the south, suggesting that

  19. Seismic hazard assessment in the Catania and Siracusa urban areas (Italy) through different approaches

    Science.gov (United States)

    Panzera, Francesco; Lombardo, Giuseppe; Rigano, Rosaria

    2010-05-01

    The seismic hazard assessment (SHA) can be performed using either Deterministic or Probabilistic approaches. In present study a probabilistic analysis was carried out for the Catania and Siracusa towns using two different procedures: the 'site' (Albarello and Mucciarelli, 2002) and the 'seismotectonic' (Cornell 1968; Esteva, 1967) methodologies. The SASHA code (D'Amico and Albarello, 2007) was used to calculate seismic hazard through the 'site' approach, whereas the CRISIS2007 code (Ordaz et al., 2007) was adopted in the Esteva-Cornell procedure. According to current international conventions for PSHA (SSHAC, 1997), a logic tree approach was followed to consider and reduce the epistemic uncertainties, for both seismotectonic and site methods. The code SASHA handles the intensity data taking into account the macroseismic information of past earthquakes. CRISIS2007 code needs, as input elements, a seismic catalogue tested for completeness, a seismogenetic zonation and ground motion predicting equations. Data concerning the characterization of regional seismic sources and ground motion attenuation properties were taken from the literature. Special care was devoted to define source zone models, taking into account the most recent studies on regional seismotectonic features and, in particular, the possibility of considering the Malta escarpment as a potential source. The combined use of the above mentioned approaches allowed us to obtain useful elements to define the site seismic hazard in Catania and Siracusa. The results point out that the choice of the probabilistic model plays a fundamental role. It is indeed observed that when the site intensity data are used, the town of Catania shows hazard values higher than the ones found for Siracusa, for each considered return period. On the contrary, when the Esteva-Cornell method is used, Siracusa urban area shows higher hazard than Catania, for return periods greater than one hundred years. The higher hazard observed

  20. Seismic Observations in the Taipei Metropolitan Area Using the Downhole Network

    Directory of Open Access Journals (Sweden)

    Win-Gee Huang

    2010-01-01

    Full Text Available Underlain by soft soils, the Taipei Metropolitan Area (TMA experienced major damage due to ground-motion amplification during the Hualien earthquake of 1986, the Chi-Chi earthquake of 1999, the Hualien earthquake of 2002 and the Taitung earthquake of 2003. To study how a local site can substantially change the characteristics of seismic waves as they pass through soft deposits below the free surface, two complementary downhole seismic arrays have been operated in the TMA, since 1991 and 2008. The accelerometer downhole array is composed of eight boreholes at depths in excess of 300 meters. The downhole array velocity sensor collocated with accelerometer composed of four boreholes at depths up to 90 meters. The integrated seismic network monitors potential earthquakes originating from faults in and around the TMA and provides wide-dynamic range measurement of data ranging in amplitude from seismic background noise levels to damage levels as a result of shaking. The data sets can be used to address on the response of soft-soil deposits to ground motions. One of the major considerations is the nonlinear response of soft soil deposits at different levels of excitation. The collocated acceloerometer and velocity sensors at boreholes give the necessary data for studies of non-linearity to be acquired. Such measurements in anticipation of future large, damaging earthquakes will be of special importance for the mitigation of earthquake losses.

  1. Geodetic, Geologic and Seismic Interdisciplinary Research of Tectonically Caused Movements in the Wider Area of the City of Zagreb

    Science.gov (United States)

    Dapo, A.; Pribicevic, B.; Herak, M.; Prelogovic, E.

    2012-04-01

    Since the last great earthquake in 1880 which shook the Zagreb area with IX° MCS, tectonic movements and models of numerous Zagreb faults have been the focal point of Croatian geologists, seismologists and in the last 15 years also geodetic scientists, who all have been working in the scope of their scientific branches on bringing the light to the tectonic mechanisms in the wider Zagreb area. Since it is tectonically very active area and being the Capitol city of the Croatia with very high population density it is of utmost importance to understand those mechanisms and to according to them find the best possible measures for protecting people and valuables. Best results are certainly going to be achieved through the interdisciplinary approach. That is why this paper presents first interdisciplinary results from geodetic, geologic and seismic researches and their contribution to the collective knowledge about tectonic movements in the wider area of the City of Zagreb.

  2. Probabilistic seismic hazard assessment for the two layer fault system of Antalya (SW Turkey) area

    Science.gov (United States)

    Dipova, Nihat; Cangir, Bülent

    2017-09-01

    Southwest Turkey, along Mediterranean coast, is prone to large earthquakes resulting from subduction of the African plate under the Eurasian plate and shallow crustal faults. Maximum observed magnitude of subduction earthquakes is Mw = 6.5 whereas that of crustal earthquakes is Mw = 6.6. Crustal earthquakes are sourced from faults which are related with Isparta Angle and Cyprus Arc tectonic structures. The primary goal of this study is to assess seismic hazard for Antalya area (SW Turkey) using a probabilistic approach. A new earthquake catalog for Antalya area, with unified moment magnitude scale, was prepared in the scope of the study. Seismicity of the area has been evaluated by the Gutenberg-Richter recurrence relationship. For hazard computation, CRISIS2007 software was used following the standard Cornell-McGuire methodology. Attenuation model developed by Youngs et al. Seismol Res Lett 68(1):58-73, (1997) was used for deep subduction earthquakes and Chiou and Youngs Earthq Spectra 24(1):173-215, (2008) model was used for shallow crustal earthquakes. A seismic hazard map was developed for peak ground acceleration and for rock ground with a hazard level of a 10% probability of exceedance in 50 years. Results of the study show that peak ground acceleration values on bedrock change between 0.215 and 0.23 g in the center of Antalya.

  3. GeoNetGIS: a Geodetic Network Geographical Information System to manage GPS networks in seismic and volcanic areas

    Science.gov (United States)

    Cristofoletti, P.; Esposito, A.; Anzidei, M.

    2003-04-01

    This paper presents the methodologies and issues involved in the use of GIS techniques to manage geodetic information derived from networks in seismic and volcanic areas. Organization and manipulation of different geodetical, geological and seismic database, give us a new challenge in interpretation of information that has several dimensions, including spatial and temporal variations, also the flexibility and brand range of tools available in GeoNetGIS, make it an attractive platform for earthquake risk assessment. During the last decade the use of geodetic networks based on the Global Positioning System, devoted to geophysical applications, especially for crustal deformation monitoring in seismic and volcanic areas, increased dramatically. The large amount of data provided by these networks, combined with different and independent observations, such as epicentre distribution of recent and historical earthquakes, geological and structural data, photo interpretation of aerial and satellite images, can aid for the detection and parameterization of seismogenic sources. In particular we applied our geodetic oriented GIS to a new GPS network recently set up and surveyed in the Central Apennine region: the CA-GeoNet. GeoNetGIS is designed to analyze in three and four dimensions GPS sources and to improve crustal deformation analysis and interpretation related with tectonic structures and seismicity. It manages many database (DBMS) consisting of different classes, such as Geodesy, Topography, Seismicity, Geology, Geography and Raster Images, administrated according to Thematic Layers. GeoNetGIS represents a powerful research tool allowing to join the analysis of all data layers to integrate the different data base which aid for the identification of the activity of known faults or structures and suggesting the new evidences of active tectonics. A new approach to data integration given by GeoNetGIS capabilities, allow us to create and deliver a wide range of maps, digital

  4. Spectrum of the seismic-electromagnetic and acoustic waves caused by seismic and volcano activity

    Directory of Open Access Journals (Sweden)

    S. Koshevaya

    2005-01-01

    Full Text Available Modeling of the spectrum of the seismo-electromagnetic and acoustic waves, caused by seismic and volcanic activity, has been done. This spectrum includes the Electromagnetic Emission (EME, due to fracturing piezoelectrics in rocks and the Acoustic Emission (AE, caused by the excitation and the nonlinear passage of acoustic waves through the Earth's crust, the atmosphere, and the ionosphere. The investigated mechanism of the EME uses the model of fracturing and the crack motion. For its analysis, we consider a piezoelectric crystal under mechanical stresses, which cause the uniform crack motion, and, consequently, in the vicinity of the moving crack also cause non-stationary polarization currents. A possible spectrum of EME has been estimated. The underground fractures produce Very Low (VLF and Extremely Low Frequency (ELF acoustic waves, while the acoustic waves at higher frequencies present high losses and, on the Earth's surface, they are quite small and are not registered. The VLF acoustic wave is subject to nonlinearity under passage through the lithosphere that leads to the generation of higher harmonics and also frequency down-conversion, namely, increasing the ELF acoustic component on the Earth's surface. In turn, a nonlinear propagation of ELF acoustic wave in the atmosphere and the ionosphere leads to emerging the ultra low frequency (ULF acousto-gravity waves in the ionosphere and possible local excitation of plasma waves.

  5. International activities concerning seismic effects on underground structures

    International Nuclear Information System (INIS)

    Hakala, W.W.

    1982-01-01

    At the 5th Annual Meeting of the ITA in Atlanta, Georgia, on June 15-17, 1979, the General Assembly approved the formation of the Working Group Seismic Effects on Underground Structures. The objectives of this Working Group are to: (1) collect data on earthquake damage to underground facilities throughout the world; (2) collect information on aseismic design procedures used within the various countries; and (3) synthesize the information and disseminate the results to the member nations of ITA. William W. Hakala of the US was designated the Animateur of the Working Group. The Working Group decided on the following sequential course of action to achieve the stated objectives: (1) continue to develop a bibliograhy on damages to underground structures by dynamic forces. This will be an ongoing activity of the Working Group; (2) each country is to develop a summary of case histories of earthquake damage to underground structures. These case histories will be discussed at the next meeting of the Working Group in order to identify those parameters that permit or prevent such damage; (3) the state-of-the-art paper on earthquake damage to underground opening being prepared in the US (John A. Blume and Associates, Engineers) is presently being printed and will then be distributed to the membership for comment. This report will form the basis for the activities described below; (4) the above activities should lead to a textbook - like document that provides a design philosophy for underground structures subjected to seismic forces; (5) the work tasks will suggest needed research to solve the identified problems. At each Working Group meeting the member nation delegates will provide a summary of research progress in their countries. These research needs will be documented, reviewed, revised, and disseminated on an annual basis

  6. Active intra-basin faulting in the Northern Basin of Lake Malawi from seismic reflection data

    Science.gov (United States)

    Shillington, D. J.; Chindandali, P. R. N.; Scholz, C. A.; Ebinger, C. J.; Onyango, E. A.; Peterson, K.; Gaherty, J. B.; Nyblade, A.; Accardo, N. J.; McCartney, T.; Oliva, S. J.; Kamihanda, G.; Ferdinand, R.; Salima, J.; Mruma, A. H.

    2016-12-01

    Many questions remain about the development and evolution of fault systems in weakly extended rifts, including the relative roles of border faults and intra-basin faults, and segmentation at various scales. The northern Lake Malawi (Nyasa) rift in the East African Rift System is an early stage rift exhibiting pronounced tectonic segmentation, which is defined by 100-km-long border faults. The basins also contain a series of intrabasinal faults and associated synrift sediments. The occurrence of the 2009 Karonga Earthquake Sequence on one of these intrabasinal faults indicates that some of them are active. Here we present new multichannel seismic reflection data from the Northern Basin of the Malawi Rift collected in 2015 as a part of the SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) project. This rift basin is bound on its east side by the west-dipping Livingstone border fault. Over 650 km of seismic reflection profiles were acquired in the Northern Basin using a 500 to 1540 cu in air gun array and a 1200- to 1500-m seismic streamer. Dip lines image a series of north-south oriented west-dipping intra-basin faults and basement reflections up to 5 s twtt near the border fault. Cumulative offsets on intra-basin faults decrease to the west. The largest intra-basin fault has a vertical displacement of >2 s two-way travel time, indicating that it has accommodated significant total extension. Some of these intra-basin faults offset the lake bottom and the youngest sediments by up to 50 s twtt ( 37 m), demonstrating they are still active. The two largest intra-basin faults exhibit the largest offsets of young sediments and also correspond to the area of highest seismicity based on analysis of seismic data from the 89-station SEGMeNT onshore/offshore network (see Peterson et al, this session). Fault patterns in MCS profiles vary along the basin, suggesting a smaller scale of segmentation of faults within the basin; these variations in fault patterns

  7. Realistic modeling of seismic input for megacities and large urban areas

    International Nuclear Information System (INIS)

    Panza, Giuliano F.; Alvarez, Leonardo; Aoudia, Abdelkrim

    2002-06-01

    The project addressed the problem of pre-disaster orientation: hazard prediction, risk assessment, and hazard mapping, in connection with seismic activity and man-induced vibrations. The definition of realistic seismic input has been obtained from the computation of a wide set of time histories and spectral information, corresponding to possible seismotectonic scenarios for different source and structural models. The innovative modeling technique, that constitutes the common tool to the entire project, takes into account source, propagation and local site effects. This is done using first principles of physics about wave generation and propagation in complex media, and does not require to resort to convolutive approaches, that have been proven to be quite unreliable, mainly when dealing with complex geological structures, the most interesting from the practical point of view. In fact, several techniques that have been proposed to empirically estimate the site effects using observations convolved with theoretically computed signals corresponding to simplified models, supply reliable information about the site response to non-interfering seismic phases. They are not adequate in most of the real cases, when the seismic sequel is formed by several interfering waves. The availability of realistic numerical simulations enables us to reliably estimate the amplification effects even in complex geological structures, exploiting the available geotechnical, lithological, geophysical parameters, topography of the medium, tectonic, historical, palaeoseismological data, and seismotectonic models. The realistic modeling of the ground motion is a very important base of knowledge for the preparation of groundshaking scenarios that represent a valid and economic tool for the seismic microzonation. This knowledge can be very fruitfully used by civil engineers in the design of new seismo-resistant constructions and in the reinforcement of the existing built environment, and, therefore

  8. Tomographic analysis of self-potential data in a seismic area of Southern Italy

    Energy Technology Data Exchange (ETDEWEB)

    Lapenna, V; Piscitelli, S [Consiglio Nazionale delle Ricerche, Tito, PZ (Italy). Ist. di Metodologie Avanzate di Analisi Ambientale; Patella, D [Naples Univ. Federico II, Naples (Italy). Dipt. di Scienze Fisiche

    2000-04-01

    The time and space anomalous behaviour of the self-potential (SP) field recorded in a seismic area of Southern Apennines (Italy) in the period June 1992-November 1994 are discussed. The SP data are modelled using a new tomographic method based on the search for similarities between the observed SP sequence and the surface signature of the electric field due to a scanning point source with unitary positive charge. The point scanner is ideally moved in a vertical cross-section through the profile and a regular 2D matrix of charge occurrence probability values is thus obtained. These values are used to image the state of electric polarization in the subsoil, compatible with the observed SP surface pattern. A selection of 2D tomographies across the profile is then discussed in order to outline the SP source geometry and dynamics within the faulted structure. Finally, the time pattern of the SP polarization state is compared with the local seismicity in the frame of the rock dilatancy-fluid diffusion theory. This comparison allows to exclude a direct relationship of the SP time behaviour with the seismic sequences which occurred in the area during the SP monitoring period.

  9. The tectonics of the area around the Konrad Mine (Salzgitter) based on reflection seismic studies

    International Nuclear Information System (INIS)

    Jaritz, W.

    1986-01-01

    Reflection seismic investigations were carried out to determine the safety of the final disposal of radioactive waste in the Konrad mine. The layer thickness since the Zechstein and the position of the most important geological horizons are described. On the basis of the seismic sections, the Thiede and Vechelde-Broistedt salt structures and the fault systems of the Konrad Graben and Immendorf fault are briefly analysed. The development of the structures in this area is explained by a combination of halokinesis and epirogenic-tectonic processes. The iron-ore deposit is syngenetic with the surrounding salt stocks. This has to be taken into consideration for a reconstruction of the paleogeography and assessment of the deposit. (orig.) [de

  10. Ambient Seismic Imaging of Hydraulically Active Fractures at km Depths

    Science.gov (United States)

    Malin, P. E.; Sicking, C.

    2017-12-01

    Streaming Depth Images of ambient seismic signals using numerous, densely-distributed, receivers have revealed their connection to hydraulically active fractures at 0.5 to 5 km depths. Key for this type of imaging is very high-fold stacking over both multiple receives and periods of a few hours. Also important is suppression of waveforms from fixed, repeating sources such as pumps, generators, and traffic. A typical surface-based ambient SDI survey would use a 3D seismic receiver grid. It would have 1,000 to 4,000 uniformly distributed receivers at a density of 50/km2over the target. If acquired by borehole receivers buried 100 m deep, the density can be dropped by an order of magnitude. We show examples of the acquisition and signal processing scenarios used to produce the ambient images. (Sicking et al., SEG Interpretation, Nov 2017.) While the fracture-fluid source connection of SDI has been verified by drilling and various types of hydraulic tests, the precise nature of the signal's origin is not clear. At the current level of observation, the signals do not have identifiable phases, but can be focused using P wave velocities. Suggested sources are resonances of pressures fluctuations in the fractures, or small, continuous, slips on fractures surfaces. In either case, it appears that the driving mechanism is tectonic strain in an inherently unstable crust. Solid earth tides may enhance these strains. We illustrate the value of the ambient SDI method in its industrial application by showing case histories from energy industry and carbon-capture-sequestration projects. These include ambient images taken before, during, and after hydraulic treatments in un-conventional reservoirs. The results show not only locations of active fractures, but also their time responses to stimulation and production. Time-lapse ambient imaging can forecast and track events such as well interferences and production changes that can result from nearby treatments.

  11. Develop and implement preconditioning techniques to control face ejection rockbursts for safer mining in seismically hazardous areas

    CSIR Research Space (South Africa)

    Toper, AZ

    1998-01-01

    Full Text Available This research report discusses the development of preconditioning techniques to control face bursts, for safer mining in seismically hazardous areas. Preconditioning involves regularly setting off carefully tailored blasts in the fractured rock...

  12. Atlas of Wenchuan-Earthquake Geohazards : Analysis of co-seismic and post-seismic Geohazards in the area affected by the 2008 Wenchuan Earthquake

    NARCIS (Netherlands)

    Tang, Chuan; van Westen, C.J.

    2018-01-01

    This atlas provides basic information and overviews of the occurrence of co-seismic landslides, the subsequent rainstorm-induced debris flows, and the methods used for hazard and risk assessment in the Wenchuan-earthquake affected area. The atlas pages are illustrated with maps, photos and graphs,

  13. Criteria for Seismic Splay Fault Activation During Subduction Earthquakes

    Science.gov (United States)

    Dedontney, N.; Templeton, E.; Bhat, H.; Dmowska, R.; Rice, J. R.

    2008-12-01

    As sediment is added to the accretionary prism or removed from the forearc, the material overlying the plate interface must deform to maintain a wedge structure. One of the ways this internal deformation is achieved is by slip on splay faults branching from the main detachment, which are possibly activated as part of a major seismic event. As a rupture propagates updip along the plate interface, it will reach a series of junctions between the shallowly dipping detachment and more steeply dipping splay faults. The amount and distribution of slip on these splay faults and the detachment determines the seafloor deformation and the tsunami waveform. Numerical studies by Kame et al. [JGR, 2003] of fault branching during dynamic slip-weakening rupture in 2D plane strain showed that branch activation depends on the initial stress state, rupture velocity at the branching junction, and branch angle. They found that for a constant initial stress state, with the maximum principal stress at shallow angles to the main fault, branch activation is favored on the compressional side of the fault for a range of branch angles. By extending the part of their work on modeling the branching behavior in the context of subduction zones, where critical taper wedge concepts suggest the angle that the principal stress makes with the main fault is shallow, but not horizontal, we hope to better understand the conditions for splay fault activation and the criteria for significant moment release on the splay. Our aim is to determine the range of initial stresses and relative frictional strengths of the detachment and splay fault that would result in seismic splay fault activation. In aid of that, we conduct similar dynamic rupture analyses to those of Kame et al., but use explicit finite element methods, and take fuller account of overall structure of the zone (rather than focusing just on the branching junction). Critical taper theory requires that the basal fault be weaker than the overlying

  14. Impacts of seismic activity on long-term repository performance at Yucca Mountain

    International Nuclear Information System (INIS)

    Gauthier, J.H.; Wilson, M.L.; Borns, D.J.; Arnold, B.W.

    1995-01-01

    Several effects of seismic activity on the release of radionuclides from a potential repository at Yucca Mountain are quantified. Future seismic events are predicted using data from the seismic hazard analysis conducted for the Exploratory Studies Facility (ESF). Phenomenological models are developed, including rockfall (thermal-mechanical and seismic) in unbackfilled emplacement drifts, container damage caused by fault displacement within the repository, and flow-path chance caused by changes in strain. Using the composite-porosity flow model (relatively large-scale, regular percolation), seismic events show little effect on total-system releases; using the weeps flow model (episodic pulses of flow in locally saturated fractures), container damage and flow-path changes cause over an order of magnitude increase in releases. In separate calculations using, more realistic representations of faulting, water-table rise caused by seismically induced changes in strain are seen to be higher than previously estimated by others, but not sufficient to reach a potential repository

  15. DIAGNOSTICS OF META-INSTABLE STATE OF SEISMICALLY ACTIVE FAULT

    Directory of Open Access Journals (Sweden)

    S. A. Bornyakov

    2017-01-01

    Full Text Available Based on the results of a laboratory simulation of the seismic fault reactivation by “stick-slip” process, it was shown that the system of two blocks just before an impulse offset goes through the meta-instable dynamic state, with early and late stages of meta-instability [Ma et al., 2012]. In the first stage the offset begins in slow stationary mode with slow stresses relaxation on contact between blocks. In the second stage of the “accelerated synergies” strain rate increases and, subsequently, the deformation process through a process of self-organization came to dynamic impulse offset. The experimental results were used for interpretation of the results of spectral analysis of the deformation monitoring data. The data were held within the southern part ofLakeBaikal, where Kultuk earthquake (27.08.2008, Ms=6.1. took place. Its epicenter was located in the South end zone of the main Sayan fault. Monitoring of deformations of rocks was carried out from April to November2008 in tunnel, located at30 km from the epicenter of the earthquake. The time series data was divided into month periods and then the periods were processed by the method of spectral analysis. The results showed that before the earthquake has ordered view spectrogram, whereas in other time intervals, both before and after the earthquake such orderliness in spectrograms is missing. An ordered view spectrograms for deformation monitoring data can be interpreted as a consequence of the self-organiza­tion of deformation process in the transition of seismically active fault into meta-unstable before the Kultuk earthquake.

  16. Impact of the 2001 Tohoku-oki earthquake to Tokyo Metropolitan area observed by the Metropolitan Seismic Observation network (MeSO-net)

    Science.gov (United States)

    Hirata, N.; Hayashi, H.; Nakagawa, S.; Sakai, S.; Honda, R.; Kasahara, K.; Obara, K.; Aketagawa, T.; Kimura, H.; Sato, H.; Okaya, D. A.

    2011-12-01

    tomography of P- and S- wave structure, seismic interferometry for shallow structure and using the dense MeSO-net data. We observed the 2011 Tohoku-oki event and its aftershocks including M7.7 event off Ibaraki prefecture, which is the largest aftershock so far. We imaged source radiation energy using the MeSO-net data by the back-projection method (Honda et al., 2011). We found seismic activity in the Kanto region has been activated after the event, suggesting increased seismic hazard in Kanto region even for plate boundary events. We use a new image of PSP and Pacific plate. We evaluate potential zones of the M7+ earthquake on the plate boundary and within the PSP slab which will be used for risk mitigation study by a socio-science group. We will also discuss a future plan to continue our effort in seismic risk mitigation in Tokyo Metropolitan area, stress regime of which is seriously changed by the Tohoku-oki event. This is supported by the Special Project for Earthquake Disaster Mitigation in Tokyo Metropolitan Area

  17. Seismic Activity: Public Alert and Warning: Legal Implications

    Science.gov (United States)

    Zocchetti, D.

    2007-12-01

    As science and technology evolve in ways that increase our ability to inform the public of potentially destructive seismic activity, there are significant legal issues for consideration. Even though countries and even states within the United States have differing legal tenets that could either change or at least re-shape the outcome of specific legal questions that this session will be pondering, there are fundamental legal principals that will permeate. It is often said that the law lags behind society and in particular its technological developments. No doubt in the area of warning the public of impending destructive forces of nature or society, the law will need to do some catching up. The law is probably adequately developed for at least some preliminary discussion of the key issues. No matter the legal scheme, if there is a failure or perceived failure in the system to warn people of a pending emergencies, albeit an earthquake, tsunami, or other predictable event, those who are harmed or believe they are harmed will seek relief under the law. Every day there are situations wherein the failure to warn or to adequately warn is key, such as with faulty or defective consumer products, escaped prisoners, and police high-speed vehicle chases. With alert and warning systems for disaster, however, we have a unique set of facts. Generally, the systems and their failures occur during emergencies or at least during situations under apparently exigent circumstances when the disaster's predictability is widely recognized as less than 100 percent. The law, in particular United States tort law, has been particularly lenient when people and organizations are operating during compressed timeframes and their actions are generally considered necessary to address circumstances relative to public safety. The legal system has been forgiving when the actor that failed or appeared to fail was government. The courts have liberally applied the principal of sovereign immunity to

  18. Magnitude and Rupture Area Scaling Relationships of Seismicity at The Northwest Geysers EGS Demonstration Project

    Science.gov (United States)

    Dreger, D. S.; Boyd, O. S.; Taira, T.; Gritto, R.

    2017-12-01

    Enhanced Geothermal System (EGS) resource development requires knowledge of subsurface physical parameters to quantify the evolution of fracture networks. Spatio-temporal source properties, including source dimension, rupture area, slip, rupture speed, and slip velocity of induced seismicity are of interest at The Geysers geothermal field, northern California to map the coseismic facture density of the EGS swarm. In this investigation we extend our previous finite-source analysis of selected M>4 earthquakes to examine source properties of smaller magnitude seismicity located in the Northwest Geysers Enhanced Geothermal System (EGS) demonstration project. Moment rate time histories of the source are found using empirical Green's function (eGf) deconvolution using the method of Mori (1993) as implemented by Dreger et al. (2007). The moment rate functions (MRFs) from data recorded using the Lawrence Berkeley National Laboratory (LBNL) short-period geophone network are inverted for finite-source parameters including the spatial distribution of fault slip, rupture velocity, and the orientation of the causative fault plane. The results show complexity in the MRF for the studied earthquakes. Thus far the estimated rupture area and the magnitude-area trend of the smaller magnitude Geysers seismicity is found to agree with the empirical relationships of Wells and Coppersmith (1994) and Leonard (2010), which were developed for much larger M>5.5 earthquakes worldwide indicating self-similar behavior extending to M2 earthquakes. We will present finite-source inversion results of the micro-earthquakes, attempting to extend the analysis to sub Mw, and demonstrate their magnitude-area scaling. The extension of the scaling laws will then enable the mapping of coseismic fracture density of the EGS swarm in the Northwest Geysers based on catalog moment magnitude estimates.

  19. Refraction seismic surveys in the investigation trench TK3 area in Olkiluoto, Eurajoki 2004

    Energy Technology Data Exchange (ETDEWEB)

    Ihalainen, M. [Suomen Malmi Oy, Espoo (Finland)

    2005-03-15

    Posiva Oy submitted an application for the Decision in Principle to the Finnish Government in May 1999. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the Decision in Principle on the final disposal facility for spent nuclear fuel at Olkiluoto, Eurajoki in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, the ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) conducted refraction seismic surveys at Olkiluoto site in Eurajoki. The work was ordered by Posiva Oy. The field work was carried out during May and June 2004. On five profiles S70-S74 totally 1002.5 m was surveyed. The purpose of the work was to determine the overburden thickness and to study bedrock properties, e.g. eventual fractured zones. The work consisted of staking, levelling, seismic measurements, interpretation and reporting. Fieldwork and interpretation were concluded by May and June 2004. Previously in 2000 and 2002 Smoy has carried out 33.0 km of seismic surveys in the area. (orig.)

  20. TOMO-ETNA MED-SUV.ISES an active seismic and passive seismic experiment at Mt. Etna volcano. An integrated marine and onland geophysical survey.

    Science.gov (United States)

    Ibáñez, Jesus. M.; Patane, Domenico; Puglisi, Guisseppe; Zuccarello, Lucciano; Bianco, Francesca; Luehr, Birger; Diaz-Moreno, Alejandro; Prudencio, Janire; Koulakov, Ivan; Del Pezzo, Edoardo; Cocina, Ornella; Coltelli, Mauro; Scarfi, Lucciano; De Gori, Pascuale; Carrion, Francisco

    2014-05-01

    An active seismic experiment to study the internal structure of Etna Volcano is going to carried out on Sicily and Aeolian islands. The main objective of the TOMO-ETNA MED-SUV.ISES experiment, beginning in summer 2014, is to perform a high resolution seismic tomography, in velocity and attenuation, in Southern Italy, by using active and passive seismic data, in an area encompassing outstanding volcanoes as Mt. Etna, and Aeolian volcanoes. The achievement of this objective is based on the integration and sharing of the in-situ marine and land experiments and observations and on the implementation of new instruments and monitoring systems. For the purpose, onshore and offshore seismic stations and passive and active seismic data generated both in marine and terrestrial environment will be used. Additionally, other geophysical data, mainly magnetic and gravimetric data will be considered to obtain a joint Upper Mantle-Crust structure that could permit to make progress in the understanding of the dynamic of the region. This multinational experiment which involves institutions from Spain, Italy, Germany, United Kingdom, Ireland, France, Malta, Portugal, Russia, USA and Mexico. During the experiment more than 6.600 air gun shots performed by the Spanish Oceanographic vessel "Sarmiento de Gamboa" will be recorder on a dense local seismic network consisting of 100 on land non-permanent stations, 70 on land permanent stations and 20-25 OBSs. Contemporaneously other marine geophysical measures will be performed using a marine Gravimeter LaCoste&Romberg Air-Sea Gravity System II and a Marine Magnetometer SeaSPY. The experiments will provide a unique data set in terms of data quantity and quality, and it will provide a detailed velocity and attenuation structural image of volcano edifice. The results will be essential in the development and interpretation of future volcanic models. It is noteworthy that this project is fully transversal, multidisciplinary and crosses several

  1. Seismic Studies

    Energy Technology Data Exchange (ETDEWEB)

    R. Quittmeyer

    2006-09-25

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground

  2. Seismic Studies

    International Nuclear Information System (INIS)

    R. Quittmeyer

    2006-01-01

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at

  3. Evaluating Seismic Site Effects at Cultural Heritage Sites in the Mediterranean Area

    Science.gov (United States)

    Imposa, S.; D'Amico, S.; Panzera, F.; Lombardo, G.; Grassi, S.; Betti, M.; Muscat, R.

    2017-12-01

    Present study concern integrated geophysical and numerical simulation aiming at evaluate the seismic vulnerability of cultural heritage sites. Non-invasive analysis targeted to characterize local site effects as well as dynamic properties of the structure were performed. Data were collected at several locations in the Maltese Archipelago (central Mediterranean) and in some historical buildings located in Catania (Sicily). In particular, passive seismic techniques and H/V data where used to derive 1D velocity models and amplification functions. The dynamic properties of a building are usually described through its natural frequency and the damping ratio. This latter is important in seismic design since it allows one to evaluate the ability of a structure to dissipate the vibration energy during an earthquake. The fundamental frequency of the investigated structure was obtained using ambient vibrations recorded by two or more sensors monitoring the motion at different locations in the building. Accordingly, the fundamental period of several Maltese Watchtowers and some historical buildings of Catania were obtained by computing the ratio between the amplitudes of the Fourier spectrum of horizontal (longitudinal and transverse) components recorded on the top and on the ground floors. Using ANSYS code, the modal analysis was performed to evaluate the first 50 vibration modes with the aim to check the activation of the modal masses and to assess the seismic vulnerability of the tower. The STRATA code was instead adopted in the Catania heritage buildings using as reference earthquake moderate to strong shocks that struck south-eastern Sicily. In most of the investigated buildings is was not possible to identify a single natural frequency but several oscillation modes. These results appear linked to the structural complexity of the edifices, their irregular plan shape and the presence of adjacent structures. The H/V outside the buildings were used to determine predominant

  4. Seismic reflection survey in Omama fan area, Gunma prefecture; Gunma Omama senjochi ni okeru hanshaho jishin tansa

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, K; Kano, N; Yokokura, T; Kiguchi, T; Yokota, T; Matsushima, J [Geological Survey of Japan, Tsukuba (Japan)

    1996-10-01

    Seismic reflection survey was performed for the Medial Tectonic Line, an important geological tectonic line in the Kanto plains, at Kushibiki district, Saitama prefecture in the north-western part of the Kanto plains. It was estimated that movements of the basement were different in the individual sides of the active fault. In this study, the seismic reflection survey was performed at the Omama fan area, Gunma prefecture, which is located at the north-eastern extension of the Kushibiki plateau, to grasp the structure of basement to the depth of about 1.0 s of return travel time, and the upper sediments. Two traverse lines passing Ota city, Kiryu city, and Nitta town were used. Southern part of the traverse line-1 was in the bottom land in the middle of Tone river, and northern part was in the Omama fan area. The ground surface along the traverse line was flat. Hachioji heights are the heights elongating in the NW-SE direction and having relative height of 100 to 200 m against the surrounding plain. Another traverse line-2 was set on the steep slope having relative height more than 100 m. The Brute stack time section of each traverse line was characterized by the gradient reflection surface AA of the traverse line-1. It was suggested that the AA or intermittent parts of reflection surfaces deeper than AA may relate to the tectonic lines in the more ancient geological ages. 2 figs., 1 tab.

  5. St. Louis area earthquake hazards mapping project; seismic and liquefaction hazard maps

    Science.gov (United States)

    Cramer, Chris H.; Bauer, Robert A.; Chung, Jae-won; Rogers, David; Pierce, Larry; Voigt, Vicki; Mitchell, Brad; Gaunt, David; Williams, Robert; Hoffman, David; Hempen, Gregory L.; Steckel, Phyllis; Boyd, Oliver; Watkins, Connor M.; Tucker, Kathleen; McCallister, Natasha

    2016-01-01

    We present probabilistic and deterministic seismic and liquefaction hazard maps for the densely populated St. Louis metropolitan area that account for the expected effects of surficial geology on earthquake ground shaking. Hazard calculations were based on a map grid of 0.005°, or about every 500 m, and are thus higher in resolution than any earlier studies. To estimate ground motions at the surface of the model (e.g., site amplification), we used a new detailed near‐surface shear‐wave velocity model in a 1D equivalent‐linear response analysis. When compared with the 2014 U.S. Geological Survey (USGS) National Seismic Hazard Model, which uses a uniform firm‐rock‐site condition, the new probabilistic seismic‐hazard estimates document much more variability. Hazard levels for upland sites (consisting of bedrock and weathered bedrock overlain by loess‐covered till and drift deposits), show up to twice the ground‐motion values for peak ground acceleration (PGA), and similar ground‐motion values for 1.0 s spectral acceleration (SA). Probabilistic ground‐motion levels for lowland alluvial floodplain sites (generally the 20–40‐m‐thick modern Mississippi and Missouri River floodplain deposits overlying bedrock) exhibit up to twice the ground‐motion levels for PGA, and up to three times the ground‐motion levels for 1.0 s SA. Liquefaction probability curves were developed from available standard penetration test data assuming typical lowland and upland water table levels. A simplified liquefaction hazard map was created from the 5%‐in‐50‐year probabilistic ground‐shaking model. The liquefaction hazard ranges from low (60% of area expected to liquefy) in the lowlands. Because many transportation routes, power and gas transmission lines, and population centers exist in or on the highly susceptible lowland alluvium, these areas in the St. Louis region are at significant potential risk from seismically induced liquefaction and associated

  6. 75 FR 13498 - Small Takes of Marine Mammals Incidental to Specified Activities; Dumbarton Bridge Seismic...

    Science.gov (United States)

    2010-03-22

    ... wild by causing disruption of behavioral patterns, including, but not limited to, migration, breathing... Dumbarton Bridge Seismic Retrofit Project as ESA-listed fish are present within the action area. NMFS issued...

  7. The forecast of mining-induced seismicity and the consequent risk of damage to the excavation in the area of seismic event

    Directory of Open Access Journals (Sweden)

    Jan Drzewiecki

    2017-01-01

    forecast of the seismic energy of a shock with the defined location of its source: value of the coefficient λ of dispersion/attenuation of seismic energy and the flux of seismic energy at predetermined distances r from the tremor source. The proposed solution for forecasting the seismic energy of tremors and the level of risk of damage to the excavation during the functioning of mining operations is helpful in the development of bump prevention. Changing the intensity of mining operations enables the level of the seismic energy induced by the operations both at the stage of its development and during the excavation of a seam using the longwall method to be “controlled”. The presented solution has been produced for an area disturbed by the mining of coal seam 510 in the hard coal mine, Jas-Mos. An original program developed by CMI was used for the calculations.

  8. Anomalous changes of diffuse CO_{2} emission and seismic activity at Teide volcano, Tenerife, Canary Islands

    Science.gov (United States)

    García-Hernández, Rubén; Melián, Gladys; D'Auria, Luca; Asensio-Ramos, María; Alonso, Mar; Padilla, Germán D.; Rodríguez, Fátima; Padrón, Eleazar; Barrancos, José; García-Merino, Marta; Amonte, Cecilia; Pérez, Aarón; Calvo, David; Hernández, Pedro A.; Pérez, Nemesio M.

    2017-04-01

    Tenerife (2034 km2) is the largest of the Canary Islands and hosts four main active volcanic edifices: three volcanic rifts and a central volcanic complex, Las Cañadas, which is characterized by the eruption of differentiated magmas. Laying inside Las Cañadas a twin stratovolcanoes system, Pico Viejo and Teide, has been developed. Although there are no visible gas emanations along the volcanic rifts of Tenerife, the existence of a volcanic-hydrothermal system beneath Teide volcano is suggested by the occurrence of a weak fumarolic system, steamy ground and high rates of diffuse CO2 degassing all around the summit cone of Teide. Soil CO2 efflux surveys have been performed at the summit crater of Teide volcano since 1999, to determine the diffuse CO2 emission from the summit crater and to evaluate the temporal variations of CO2 efflux and their relationships with seismic-volcanic activity. Soil CO2 efflux and soil temperature have been always measured at the same 38 observation sites homogeneously distributed within an area of about 6,972 m2 inside the summit crater. Soil CO2 diffuse effluxes were estimated according to the accumulation chamber method by means of a non-dispersive infrared (NDIR) LICOR-820 CO2 analyzer. Historical seismic activity in Tenerife has been characterized by low- to moderate-magnitude events (M de Canarias (INVOLCAN) registered an earthquake of M 2.5 located in the vertical of Teide volcano with a depth of 6.6 km. It was the strongest earthquake located inside Cañadas caldera since 2004. Between October 11 and December 13, 2016, a continuous increase on the diffuse CO2 emission was registered, from 21.3 ± 2.0 to 101.7 ± 20.7 t d-1, suggesting the occurrence of future increase in the seismic-volcanic activity. In fact, this precursory signal preceded the occurrence of the 2.5 seismic event and no significant horizontal and vertical displacements were registered by the Canary GPS network belonged to INVOLCAN. This seismic event was

  9. Seismic and geological interpretation on petroleum exploration in the Cuban economic area in the Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Sora Monroy, America; Lopez, Sofia; Dominguez, Rene; Socorro, Rafael; Sanchez, Jorge; Toucet, Sonia [Cupet -Companhia Cubana de Petroleo, Havana (Cuba)

    2004-07-01

    From the decade of the 50'up to now, many seismic survey were acquired in the Cuban Economic area in the Gulf of Mexico, both, deep water and near short along the littoral, which have contribute to prepare the structural model as well the evolutional one. During the period comprise from June to December 2000, 7330 Km. of seismic lines were acquired over 70 lines in an area of 110000 square Km. that covers the Exclusive Economic area of Cuba. In this area the water depth varies from 500 m to 3500 m. The biggest depth is located at the central part of the whole area. The depth decreases toward the shell and the island's littoral (up to less than 1000 m). Seismic data were processed at CGG' processing in France. Geovector Plus was used as seismic processing software. All the information was calibrate by the wells in the area. The principal wells were DP535 and DP540. The general featuring of seismic image let us to get the map from the main geological elements in this area. In the area we were following two principal horizons: the green one associated to the Middle Cretaceous and the blue one associated to the top of Jurassic. We made the structural maps from the Middle Cretaceous and the Top of Jurassic, and did the seism stratigraphic analysis. We found 16 sequences. We did the chronograph table in this area and we made six maps from different seismic sequences. This analysis let us to define the most important area to continue studying in the Cuban economic area in the Gulf of Mexico on the petroleum exploration. (author)

  10. Analysis of the seismic wavefield in the Moesian Platform (Bucharest area)

    Science.gov (United States)

    -Florinela Manea, Elena; Hobiger, Manuel-Thomas; Michel, Clotaire; Fäh, Donat; -Ortanza Cioflan, Carmen

    2016-04-01

    Bucharest is located in the center of the Moesian platform, in a large and deep sedimentary basin (450 km long, 300 km wide and in some places up to 20 km depth). During large earthquakes generated by the Vrancea seismic zone, located approximately 140 km to the North, the ground motion recorded in Bucharest area is characterized by predominant long periods and large amplification. This phenomenon has been explained by the influence of both source mechanism (azimuth and type of incident waves) and mechanical properties of the local structure (geological layering and geometry). The main goal of our study is to better characterize and understand the seismic wave field produced by earthquakes in the area of Bucharest. We want to identify the contribution of different seismic surface waves, such as the ones produced at the edges of the large sedimentary basin or multipath interference waves (Airy phases of Love and Rayleigh waves) to the ground motion. The data from a 35 km diameter array (URS experiment) installed by the National Institute for Earth Physics during 10 months in 2003 and 2004 in the urban area of Bucharest and adjacent zones was used. In order to perform the wave field characterization of the URS array, the MUSIQUE technique was used. This technique consists in a combination of the classical MUSIC and the quaternion-MUSIC algorithms and analyzes the three-component signals of all sensors of a seismic array together in order to analyze the Love and Rayleigh wave dispersion curves as well as the Rayleigh wave ellipticity curve. The analysis includes 20 regional earthquakes with Mw >3 and 5 teleseismic events with Mw> 7 that have enough energy at low frequency (0.1 - 1 Hz), i.e. in the resolution range of the array. For all events, the greatest energy is coming from the backazimuth of the source and the wave field is dominated by Love waves. The results of the array analyses clearly indicate a significant scattering corresponding to 2D or 3D effects in the

  11. Soft computing analysis of the possible correlation between temporal and energy release patterns in seismic activity

    Science.gov (United States)

    Konstantaras, Anthony; Katsifarakis, Emmanouil; Artzouxaltzis, Xristos; Makris, John; Vallianatos, Filippos; Varley, Martin

    2010-05-01

    This paper is a preliminary investigation of the possible correlation of temporal and energy release patterns of seismic activity involving the preparation processes of consecutive sizeable seismic events [1,2]. The background idea is that during periods of low-level seismic activity, stress processes in the crust accumulate energy at the seismogenic area whilst larger seismic events act as a decongesting mechanism releasing considerable energy [3,4]. A dynamic algorithm is being developed aiming to identify and cluster pre- and post- seismic events to the main earthquake following on research carried out by Zubkov [5] and Dobrovolsky [6,7]. This clustering technique along with energy release equations dependent on Richter's scale [8,9] allow for an estimate to be drawn regarding the amount of the energy being released by the seismic sequence. The above approach is being implemented as a monitoring tool to investigate the behaviour of the underlying energy management system by introducing this information to various neural [10,11] and soft computing models [1,12,13,14]. The incorporation of intelligent systems aims towards the detection and simulation of the possible relationship between energy release patterns and time-intervals among consecutive sizeable earthquakes [1,15]. Anticipated successful training of the imported intelligent systems may result in a real-time, on-line processing methodology [1,16] capable to dynamically approximate the time-interval between the latest and the next forthcoming sizeable seismic event by monitoring the energy release process in a specific seismogenic area. Indexing terms: pattern recognition, long-term earthquake precursors, neural networks, soft computing, earthquake occurrence intervals References [1] Konstantaras A., Vallianatos F., Varley M.R. and Makris J. P.: ‘Soft computing modelling of seismicity in the southern Hellenic arc', IEEE Geoscience and Remote Sensing Letters, vol. 5 (3), pp. 323-327, 2008 [2] Eneva M. and

  12. Latest standards on seismic resistance related to research activities

    International Nuclear Information System (INIS)

    Juhasova, Emilia

    2002-01-01

    The paper discus few basic approaches applied in final drafts of prEN 1990 and prEN 1998-1. It is pointed out on design working life, loads combinations and the range of behaviour factors for concrete, steel and masonry buildings. The procedure and main results of large masonry model seismic tests are presented. As far as the masonry walls create the part of many NPP structures obtained results could be utilised also for the increase of their seismic resistance

  13. On the evolution of the regulatory guidance for seismic qualification of electric and active mechanical equipment for nuclear power plants

    International Nuclear Information System (INIS)

    Ng, Ching Hang; Chen, Pei-Ying

    2009-01-01

    Revision 2 of RG 1.100. The focus of the paper is in the area of seismic qualification of electric and active mechanical equipment. The comparisons expound on the additional regulatory positions regarding the major expansion on the provision of using experience-based methods. (author)

  14. Study of structural change in volcanic and geothermal areas using seismic tomography

    Science.gov (United States)

    Mhana, Najwa; Foulger, Gillian; Julian, Bruce; peirce, Christine

    2014-05-01

    Long Valley caldera is a large silicic volcano. It has been in a state of volcanic and seismic unrest since 1978. Farther escalation of this unrest could pose a threat to the 5,000 residents and the tens of thousands of tourists who visit the area. We have studied the crustal structure beneath 28 km X 16 km area using seismic tomography. We performed tomographic inversions for the years 2009 and 2010 with a view to differencing it with the 1997 result to look for structural changes with time and whether repeat tomography is a capable of determining the changes in structure in volcanic and geothermal reservoirs. Thus, it might provide a useful tool to monitoring physical changes in volcanoes and exploited geothermal reservoirs. Up to 600 earthquakes, selected from the best-quality events, were used for the inversion. The inversions were performed using program simulps12 [Thurber, 1983]. Our initial results show that changes in both V p and V s were consistent with the migration of CO2 into the upper 2 km or so. Our ongoing work will also invert pairs of years simultaneously using a new program, tomo4d [Julian and Foulger, 2010]. This program inverts for the differences in structure between two epochs so it can provide a more reliable measure of structural change than simply differencing the results of individual years.

  15. Seismic modifications to the Hot and Suspect Repair area Argone National Laboratory - West

    International Nuclear Information System (INIS)

    Malik, L.E.; Harris, B.G.

    1993-01-01

    The ANL-W WIPP Waste Facility Enhancement Project required substantial remodeling and upgrades to the Hot Fuels Examination Facility (HFEF) building, including the Hot and Suspect Repair Area (HSRA). The HSRA is an enclosed single-storied area inside the HFEF. It is separated into several compartments, some of which are used for handling radioactive materials. The HSRA roof consists of 18 GA steel Robertson Q decking with 1.5 in. concrete topping, and is utilized for storage. Braced steel frames support the HSRA roof, except at the north side, where the steel beams are connected to the HFEF columns. The HSRA has hollow block masonry perimeter and interior walls. Seismic evaluations concluded that the HSRA did not have a competent seismic force resisting system. The structure was upgraded by decoupling it from the HFEF framing for N/S motions, modifying two existing braced frames, adding a new braced frame that can be removed temporarily during maintenance and strengthening the roof diaphragm by a unique modification consisting of special epoxy grout and steel plates installed over the existing concrete roof

  16. Seismic modifications to the hot suspect repair area Argonne National Laboratory, West

    International Nuclear Information System (INIS)

    Malik, L.E.; Harris, B.G.

    1993-01-01

    The ANL-W WIPP Waste Facility Enhancement Project required substantial remodeling and upgrades to the Hot Fuels Examination Facility (HFEF) building, including the Hot and Suspect Repair Area (HSRA). The HSRA is an enclosed single-stoned area inside the HFEF. It is separated into several compartments, some of which are used for handling radioactive materials. The HSRA roof consists of 18 GA steel Robertson Q decking with 1.5 in. concrete topping, and is utilized for storage. Braced steel frames support the HSRA roof, except at the north side, where the steel beams arc connected to the HFEF columns. The HSRA has hollow block masonry perimeter and interior walls. Seismic evaluations concluded that the HSRA did not have a competent seismic force resisting system. The structure was upgraded by decoupling it from the HFEF framing for N/S motions, modifying two existing braced frames, adding a now braced frame that can be removed temporarily during maintenance and strengthening the roof diaphragm by a unique modification consisting of special epoxy grout and steel plates installed over the existing concrete roof

  17. Seismic microzonation and velocity models of El Ejido area (SE Spain) from the diffuse-field H/V method

    Science.gov (United States)

    García-Jerez, Antonio; Seivane, Helena; Navarro, Manuel; Piña-Flores, José; Luzón, Francisco; Vidal, Francisco; Posadas, Antonio M.; Aranda, Carolina

    2016-04-01

    El Ejido town is located in the Campo de Dalías coastal plain (Almería province, SE Spain), emplaced in one of the most seismically active regions of Spain. The municipality has 84000 inhabitants and presented a high growth rate during the last twenty years. The most recent intense seismic activity occurred close to this town was in 1993 and 1994, with events of Mb = 4.9 and Mb = 5.0, respectively. To provide a basis for site-specific hazard analysis, we first carried out a seismic microzonation of this town in terms of predominant periods and geotechnical properties. The predominant periods map was obtained from ambient noise observations on a grid of 250 x 250 m in the main urban area, and sparser measurements on the outskirts. These broad-band records, of about 20 minutes long each, were analyzed by using the horizontal-to-vertical spectral ratio technique (H/V). Dispersion curves obtained from two array measurements of ambient noise and borehole data provided additional geophysical information. All the surveyed points in the town were found to have relatively long predominant periods ranging from 0.8 to 2.3 s and growing towards the SE. Secondary high-frequency (> 2Hz) peaks were found at about the 10% of the points only. On the other hand, Vs30 values of 550 - 650 m/s were estimated from the array records, corresponding to cemented sediments and medium-hard rocks. The local S-wave velocity structure has been inverted from the H/V curves for a subset of the measurement sites. We used an innovative full-wavefield method based on the diffuse-wavefield approximation (Sánchez-Sesma et al., 2011) combined with the simulated annealing algorithm. Shallow seismic velocities and deep boreholes data were used as constraints. The results show that the low-frequency resonances are related with the impedance contrast between several hundred meters of medium-hard sedimentary rocks (marls and calcarenites) with the stiffer basement of the basin, which dips to the SE. These

  18. Syntectonic Mississippi River Channel Response: Integrating River Morphology and Seismic Imaging to Detect Active Faults

    Science.gov (United States)

    Magnani, M. B.

    2017-12-01

    Alluvial rivers, even great rivers such as the Mississippi, respond to hydrologic and geologic controls. Temporal variations of valley gradient can significantly alter channel morphology, as the river responds syntectonically to attain equilibrium. The river will alter its sinuosity, in an attempt to maintain a constant gradient on a surface that changes slope through time. Therefore, changes of river pattern can be the first clue that active tectonics is affecting an area of pattern change. Here I present geomorphological and seismic imaging evidence of a previously unknown fault crossing the Mississippi river south of the New Madrid seismic zone, between Caruthersville, Missouri and Osceola, Arkansas, and show that both datasets support Holocene fault movement, with the latest slip occurring in the last 200 years. High resolution marine seismic reflection data acquired along the Mississippi river imaged a NW-SE striking north-dipping fault displacing the base of the Quaternary alluvium by 15 m with reverse sense of movement. The fault consistently deforms the Tertiary, Cretaceous and Paleozoic formations. Historical river channel planforms dating back to 1765 reveal that the section of the river channel across the fault has been characterized by high sinuosity and steep projected-channel slope compared to adjacent river reaches. In particular, the reach across the fault experienced a cutoff in 1821, resulting in a temporary lowering of sinuosity followed by an increase between the survey of 1880 and 1915. Under the assumption that the change in sinuosity reflects river response to a valley slope change to maintain constant gradient, I use sinuosity through time to calculate the change in valley slope since 1880 and therefore to estimate the vertical displacement of the imaged fault in the past 200 years. Based on calculations so performed, the vertical offset of the fault is estimated to be 0.4 m, accrued since at least 1880. If the base of the river alluvium

  19. Structural interpretation of seismic data of Abu Rudeis-Sidri area, Northern Central Gulf of Suez, Egypt

    Directory of Open Access Journals (Sweden)

    Hesham Shaker Zahra

    2016-12-01

    Full Text Available The 2D and 3D seismic data are interpreted to evaluate the subsurface geologic structures in the Abu Rudeis-Sidri area that occupy the northern central part of the Gulf of Suez. The 2D seismic data are used for determination of the structural configurations and the tectonic features which is analyzed through the study of interpretation with the available geologic data, in which the geo-seismic depth maps for the main interesting tops (Kareem, Nukhul, Matulla, Raha and Nubia Formations are represented. Such maps reflect that, the Miocene structure of Abu Rudeis-Sidri area is an asymmetrical NW-SE trending anticlinal feature dissected by a set of NW-SE fault system (clysmic. Added, the Pre-Miocene structure of the studied area is very complex, where the area is of NE dip and affected by severe faulting through varying stratigraphic levels.

  20. Seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel

    Science.gov (United States)

    Kaláb, Zdeněk; Šílený, Jan; Lednická, Markéta

    2017-07-01

    This paper deals with the seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel in the Czech Republic. The basic source of data for historical earthquakes up to 1990 was the seismic website [1-]. The most intense earthquake described occurred on September 15, 1590 in the Niederroesterreich region (Austria) in the historical period; its reported intensity is Io = 8-9. The source of the contemporary seismic data for the period since 1991 to the end of 2014 was the website [11]. It may be stated based on the databases and literature review that in the period from 1900, no earthquake exceeding magnitude 5.1 originated in the territory of the Czech Republic. In order to evaluate seismicity and to assess the impact of seismic effects at depths of hypothetical deep geological repository for the next time period, the neo-deterministic method was selected as an extension of the probabilistic method. Each one out of the seven survey areas were assessed by the neo-deterministic evaluation of the seismic wave-field excited by selected individual events and determining the maximum loading. Results of seismological databases studies and neo-deterministic analysis of Čihadlo locality are presented.

  1. High resolution, multi-2D seismic imaging of Solfatara crater (Campi Flegrei Caldera, southern Italy) from active seismic data

    Science.gov (United States)

    Gammaldi, S.; Amoroso, O.; D'Auria, L.; Zollo, A.

    2018-05-01

    A multi-2D imaging of the Solfatara Crater inside the Campi Flegrei Caldera, was obtained by the joint interpretation of geophysical evidences and the new active seismic dataset acquired during the RICEN experiment (EU project MEDSUV) in 2014. We used a total of 17,894 first P-wave arrival times manually picked on pre-processed waveforms, recorded along two 1D profiles criss-crossing the inner Solfatara crater, and performed a tomographic inversion based on a multi-scale strategy and a Bayesian estimation of velocity parameters. The resulting tomographic images provide evidence for a low velocity (500-1500 m/s) water saturated deeper layer at West near the outcropping evidence of the Fangaia, contrasted by a high velocity (2000-3200 m/s) layer correlated with a consolidated tephra deposit. The transition velocity range (1500-2000 m/s) layer suggests a possible presence of a gas-rich, accumulation volume. Thanks to the mutual P-wave velocity model, we infer a detailed image for the gas migration path to the Earth surface. The gasses coming from the deep hydrothermal plume accumulate in the central and most depressed area of the Solfatara being trapped by the meteoric water saturated layer. Therefore, the gasses are transmitted through the buried fault toward the east part of the crater, where the ring faults facilitate the release as confirmed by the fumaroles. Starting from the eastern surface evidence of the gas releasing in the Bocca Grande and Bocca Nuova fumaroles, and the presence of the central deeper plume we suggest a fault situated in the central part of the crater which seems to represent the main buried conduit among them plays a key role.

  2. Active-Source Seismic Tomography at Bradys Geothermal Field, Nevada, with Dense Nodal and Fiber-Optic Seismic Arrays

    Science.gov (United States)

    Thurber, C. H.; Parker, L.; Li, P.; Fratta, D.; Zeng, X.; Feigl, K. L.; Ak, E.; Lord, N.

    2017-12-01

    We deployed a dense seismic array to image the shallow structure in the injection area of the Brady Hot Springs geothermal site in Nevada. The array was composed of 238 5 Hz, three-component nodal instruments and 8,700 m of distributed acoustic sensing (DAS) fiber-optic cable installed in surface trenches plus about 400 m installed in a borehole. The geophone array had about 60 m instrument spacing in the target zone, whereas DAS channel separations were about 1 m. The acquisition systems provided 15 days of continuous records including active source and ambient noise signals. A large vibroseis truck (T-Rex) was operated at 196 locations, exciting a swept-frequency signal from 5 to 80 Hz over 20 seconds using three vibration modes. Sweeps were repeated up to four times during different modes of geothermal plant operation: normal operation, shut-down, high and oscillatory injection and production, and normal operation again. The cross-correlation method was utilized to remove the sweep signal from the geophone records. The first P arrivals were automatically picked from the cross-correlation functions using a combination of methods, and the travel times were used to invert for the 3D P-wave velocity structure. Models with 100 m and 50 m horizontal node spacing were obtained, with vertical node spacing of 10 to 50 m. The travel time data were fit to about 30 ms, close to our estimated picking uncertainty. We will present our 3D Vp model and the result of our search for measurable temporal changes, along with preliminary results for a 3D Vs model. The work presented herein was funded in part by the Office of Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy, under Award Number DE-EE0006760.

  3. Redistribution Principle Approach for Evaluation of Seismic Active Earth Pressure Behind Retaining Wall

    Science.gov (United States)

    Maskar, A. D.; Madhekar, S. N.; Phatak, D. R.

    2017-11-01

    The knowledge of seismic active earth pressure behind the rigid retaining wall is very essential in the design of retaining wall in earthquake prone regions. Commonly used Mononobe-Okabe (MO) method considers pseudo-static approach. Recently there are many pseudo-dynamic methods used to evaluate the seismic earth pressure. However, available pseudo-static and pseudo-dynamic methods do not incorporate the effect of wall movement on the earth pressure distribution. Dubrova (Interaction between soils and structures, Rechnoi Transport, Moscow, 1963) was the first, who considered such effect and till date, it is used for cohesionless soil, without considering the effect of seismicity. In this paper, Dubrova's model based on redistribution principle, considering the seismic effect has been developed. It is further used to compute the distribution of seismic active earth pressure, in a more realistic manner, by considering the effect of wall movement on the earth pressure, as it is displacement based method. The effects of a wide range of parameters like soil friction angle (ϕ), wall friction angle (δ), horizontal and vertical seismic acceleration coefficients (kh and kv); on seismic active earth pressure (Kae) have been studied. Results are presented for comparison of pseudo-static and pseudo-dynamic methods, to highlight the realistic, non-linearity of seismic active earth pressure distribution. The current study results in the variation of Kae with kh in the same manner as that of MO method and Choudhury and Nimbalkar (Geotech Geol Eng 24(5):1103-1113, 2006) study. To increase in ϕ, there is a reduction in static as well as seismic earth pressure. Also, by keeping constant ϕ value, as kh increases from 0 to 0.3, earth pressure increases; whereas as δ increases, active earth pressure decreases. The seismic active earth pressure coefficient (Kae) obtained from the present study is approximately same as that obtained by previous researchers. Though seismic earth

  4. Study on the Seismic Active Earth Pressure by Variational Limit Equilibrium Method

    Directory of Open Access Journals (Sweden)

    Jiangong Chen

    2016-01-01

    Full Text Available In the framework of limit equilibrium theory, the isoperimetric model of functional extremum regarding the seismic active earth pressure is deduced according to the variational method. On this basis, Lagrange multipliers are introduced to convert the problem of seismic active earth pressure into the problem on the functional extremum of two undetermined function arguments. Based on the necessary conditions required for the existence of functional extremum, the function of the slip surface and the normal stress distribution on the slip surface is obtained, and the functional extremum problem is further converted into a function optimization problem with two undetermined Lagrange multipliers. The calculated results show that the slip surface is a plane and the seismic active earth pressure is minimal when the action point is at the lower limit position. As the action point moves upward, the slip surface becomes a logarithmic spiral and the corresponding value of seismic active earth pressure increases in a nonlinear manner. And the seismic active earth pressure is maximal at the upper limit position. The interval estimation constructed by the minimum and maximum values of seismic active earth pressure can provide a reference for the aseismic design of gravity retaining walls.

  5. Surface-seismic imaging for nehrp soil profile classifications and earthquake hazards in urban areas

    Science.gov (United States)

    Williams, R.A.; Stephenson, W.J.; Odum, J.K.

    1998-01-01

    We acquired high-resolution seismic-refraction data on the ground surface in selected areas of the San Fernando Valley (SFV) to help explain the earthquake damage patterns and the variation in ground motion caused by the 17 January 1994 magnitude 6.7 Northridge earthquake. We used these data to determine the compressional- and shear-wave velocities (Vp and Vs) at 20 aftershock recording sites to 30-m depth ( V??s30, and V??p30). Two other sites, located next to boreholes with downhole Vp and Vs data, show that we imaged very similar seismic-vefocity structures in the upper 40 m. Overall, high site response appears to be associated with tow Vs in the near surface, but there can be a wide rangepf site amplifications for a given NEHRP soil type. The data suggest that for the SFV, if the V??s30 is known, we can determine whether the earthquake ground motion will be amplified above a factor of 2 relative to a local rock site.

  6. Seismic Activity at Vailulu'u, Samoa's Youngest Volcano

    Science.gov (United States)

    Konter, J.; Staudigel, H.; Hart, S.

    2002-12-01

    Submarine volcanic systems, as a product of the Earth's mantle, play an essential role in the Earth's heat budget and in the interaction between the solid Earth and the hydrosphere and biosphere. Their eruptive and intrusive activity exerts an important control on these hydrothermal systems. In March 2000, we deployed an array of five ocean bottom hydrophones (OBH) on the summit region (625-995 m water depth) of Vailulu'u Volcano (14°12.9'S;169°03.5'W); this volcano represents the active end of the Samoan hotspot chain and is one of only a few well-studied intra-plate submarine volcanoes. We monitored seismic activity for up to 12 months at low sample rate (25 Hz), and for shorter times at a higher sample rate (125 Hz). We have begun to catalogue and locate a variety of acoustic events from this network. Ambient ocean noise was filtered out by a 4th-order Butterworth bandpass filter (2.3 - 10 Hz). We distinguish small local earthquakes from teleseismic activity, mostly identified by T- (acoustic) waves, by comparison with a nearby GSN station (AFI). Most of the detected events are T-phases from teleseismic earthquakes, characterized by their emergent coda and high frequency content (up to 30 Hz); the latter distinguishes them from low frequency emergent signals associated with the volcano (e.g. tremor). A second type of event is characterized by impulsive arrivals, with coda lasting a few seconds. The differences in arrival times between stations on the volcano are too small for these events to be T-waves; they are very likely to be local events, since the GSN station in Western Samoa (AFI) shows no arrivals close in time to these events. Preliminary locations show that these small events occur approximately once per day and are located within the volcano (the 95% confidence ellipse is similar to the size of the volcano, due to the small size of the OBH network). Several events are located relatively close to each other (within a km radius) just NW of the crater.

  7. Seismic activity prediction using computational intelligence techniques in northern Pakistan

    Science.gov (United States)

    Asim, Khawaja M.; Awais, Muhammad; Martínez-Álvarez, F.; Iqbal, Talat

    2017-10-01

    Earthquake prediction study is carried out for the region of northern Pakistan. The prediction methodology includes interdisciplinary interaction of seismology and computational intelligence. Eight seismic parameters are computed based upon the past earthquakes. Predictive ability of these eight seismic parameters is evaluated in terms of information gain, which leads to the selection of six parameters to be used in prediction. Multiple computationally intelligent models have been developed for earthquake prediction using selected seismic parameters. These models include feed-forward neural network, recurrent neural network, random forest, multi layer perceptron, radial basis neural network, and support vector machine. The performance of every prediction model is evaluated and McNemar's statistical test is applied to observe the statistical significance of computational methodologies. Feed-forward neural network shows statistically significant predictions along with accuracy of 75% and positive predictive value of 78% in context of northern Pakistan.

  8. 75 FR 54095 - Takes of Marine Mammals Incidental to Specified Activities; Low-Energy Marine Seismic Survey in...

    Science.gov (United States)

    2010-09-03

    ... Marine Mammals Incidental to Specified Activities; Low- Energy Marine Seismic Survey in the Eastern... low-energy marine seismic survey. Pursuant to the Marine Mammal Protection Act (MMPA), NMFS is... funding provided by the National Science Foundation, a low-energy marine seismic survey. NMFS reviewed SIO...

  9. Earth modeling and estimation of the local seismic ground motion due to site geology in complex volcanoclastic areas

    Directory of Open Access Journals (Sweden)

    V. Di Fiore

    2002-06-01

    Full Text Available Volcanic areas often show complex behaviour as far as seismic waves propagation and seismic motion at surface are concerned. In fact, the finite lateral extent of surface layers such as lava flows, blocks, differential welding and/or zeolitization within pyroclastic deposits, introduces in the propagation of seismic waves effects such as the generation of surface waves at the edge, resonance in lateral direction, diffractions and scattering of energy, which tend to modify the amplitude as well as the duration of the ground motion. The irregular topographic surface, typical of volcanic areas, also strongly influences the seismic site response. Despite this heterogeneity, it is unfortunately a common geophysical and engineering practice to evaluate even in volcanic environments the subsurface velocity field with monodimensional investigation method (i.e. geognostic soundings, refraction survey, down-hole, etc. prior to the seismic site response computation which in a such cases is obviously also made with 1D algorithms. This approach often leads to highly inaccurate results. In this paper we use a different approach, i.e. a fully 2D P-wave Çturning rayÈ tomographic survey followed by 2D seismic site response modeling. We report here the results of this approach in three sites located at short distance from Mt. Vesuvius and Campi Flegrei and characterized by overburdens constituted by volcanoclastic deposits with large lateral and vertical variations of their elastic properties. Comparison between 1D and 2D Dynamic Amplification Factor shows in all reported cases entirely different results, both in terms of peak period and spectral contents, as expected from the clear bidimensionality of the geological section. Therefore, these studies suggest evaluating carefully the subsoil geological structures in areas characterized by possible large lateral and vertical variations of the elastic properties in order to reach correct seismic site response

  10. Seismic prediction of sweet spots in the Da'anzhai shale play, Yuanba area, the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Peng Changzi

    2014-12-01

    Full Text Available Burial depth, thickness, total organic carbon (TOC content, brittleness and fracture development of shale reservoirs are the main geologic indexes in the evaluation of sweet spots in shale gas plays. Taking the 2nd interval of Da'anzhai shale of the Lower Jurassic as the study object, a set of techniques in seismic prediction of sweet spots were developed based on special processing of seismic data and comprehensive analysis of various data based on these geologic indexes. First, logging and seismic responses of high quality shales were found out through fine calibration of shale reservoir location with seismogram, which was combined with seismic facies analysis to define the macroscopic distribution of the shale. Then, seismic impedance inversion and GR inversion were used to identify shale from limestone and sandstone. Based on statistical analysis of sensitive parameters such as TOC, the uranium log inversion technique was used to quantitatively predict TOC of a shale reservoir and the thickness of a high quality shale reservoir. After that, fracture prediction technique was employed to predict play fairways. Finally, the pre-stack joint P-wave and S-wave impedance inversion technique was adopted to identify shales with high brittleness suitable for hydraulic fracturing. These seismic prediction techniques have been applied in sorting out sweet spots in the 2nd interval of the Da'anzhai shale play of the Yuanba area, and the results provided a sound basis for the optimization of horizontal well placement and hydraulic fracturing.

  11. Numerical modeling of the 2017 active seismic infrasound balloon experiment

    Science.gov (United States)

    Brissaud, Q.; Komjathy, A.; Garcia, R.; Cutts, J. A.; Pauken, M.; Krishnamoorthy, S.; Mimoun, D.; Jackson, J. M.; Lai, V. H.; Kedar, S.; Levillain, E.

    2017-12-01

    We have developed a numerical tool to propagate acoustic and gravity waves in a coupled solid-fluid medium with topography. It is a hybrid method between a continuous Galerkin and a discontinuous Galerkin method that accounts for non-linear atmospheric waves, visco-elastic waves and topography. We apply this method to a recent experiment that took place in the Nevada desert to study acoustic waves from seismic events. This experiment, developed by JPL and its partners, wants to demonstrate the viability of a new approach to probe seismic-induced acoustic waves from a balloon platform. To the best of our knowledge, this could be the only way, for planetary missions, to perform tomography when one faces challenging surface conditions, with high pressure and temperature (e.g. Venus), and thus when it is impossible to use conventional electronics routinely employed on Earth. To fully demonstrate the effectiveness of such a technique one should also be able to reconstruct the observed signals from numerical modeling. To model the seismic hammer experiment and the subsequent acoustic wave propagation, we rely on a subsurface seismic model constructed from the seismometers measurements during the 2017 Nevada experiment and an atmospheric model built from meteorological data. The source is considered as a Gaussian point source located at the surface. Comparison between the numerical modeling and the experimental data could help future mission designs and provide great insights into the planet's interior structure.

  12. Seismic evidence of the lithosphere-asthenosphere boundary beneath Izu-Bonin area

    Science.gov (United States)

    Cui, H.; Gao, Y.; Zhou, Y.

    2016-12-01

    The lithosphere-asthenosphere boundary (LAB), separating the rigid lithosphere and the ductile asthenosphere layers, is the seismic discontinuity with the negative velocity contrast of the Earth's interior [Fischer et al., 2010]. The LAB has been also termed the Gutenberg (G) discontinuity that defines the top of the low velocity zone in the upper mantle [Gutenberg, 1959; Revenaugh and Jordan, 1991]. The seismic velocity, viscosity, resistivity and other physical parameters change rapidly with the depths across the boundary [Eaton et al., 2009]. Seismic detections on the LAB in subduction zone regions are of great help to understand the interactions between the lithosphere and asthenosphere layers and the geodynamic processes related with the slab subductions. In this study, the vertical broadband waveforms are collected from three deep earthquake events occurring from 2000 to 2014 with the focal depths of 400 600 km beneath the Izu-Bonin area. The waveform data is processed with the linear slant stack method [Zang and Zhou, 2002] to obtain the vespagrams in the relative travel-time to slowness domain and the stacked waveforms. The sP precursors reflected on the LAB (sLABP), which have the negative polarities with the amplitude ratios of 0.17 0.21 relative to the sP phases, are successfully extracted. Based on the one-dimensional modified velocity model (IASP91-IB), we obtain the distributions for six reflected points of the sLABP phases near the source region. Our results reveal that the LAB depths range between 58 and 65 km beneath the Izu-Bonin Arc, with the average depth of 62 km and the small topography of 7 km. Compared with the results of the tectonic stable areas in Philippine Sea [Kawakatsu et al., 2009; Kumar and Kawakatsu, 2011], the oceanic lithosphere beneath the Izu-Bonin Arc shows the obvious thinning phenomena. We infer that the lithospheric thinning is closely related with the partial melting, which is caused by the volatiles continuously released

  13. Shear-wave velocity models and seismic sources in Campanian volcanic areas: Vesuvius and Phlegraean fields

    Energy Technology Data Exchange (ETDEWEB)

    Guidarelli, M; Zille, A; Sarao, A [Dipartimento di Scienze della Terra, Universita degli Studi di Trieste, Trieste (Italy); Natale, M; Nunziata, C [Dipartimento di Geofisica e Vulcanologia, Universita di Napoli ' Federico II' , Napoli (Italy); Panza, G F [Dipartimento di Scienze della Terra, Universita degli Studi di Trieste, Trieste (Italy); Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)

    2006-12-15

    This chapter summarizes a comparative study of shear-wave velocity models and seismic sources in the Campanian volcanic areas of Vesuvius and Phlegraean Fields. These velocity models were obtained through the nonlinear inversion of surface-wave tomography data, using as a priori constraints the relevant information available in the literature. Local group velocity data were obtained by means of the frequency-time analysis for the time period between 0.3 and 2 s and were combined with the group velocity data for the time period between 10 and 35 s from the regional events located in the Italian peninsula and bordering areas and two station phase velocity data corresponding to the time period between 25 and 100 s. In order to invert Rayleigh wave dispersion curves, we applied the nonlinear inversion method called hedgehog and retrieved average models for the first 30-35 km of the lithosphere, with the lower part of the upper mantle being kept fixed on the basis of existing regional models. A feature that is common to the two volcanic areas is a low shear velocity layer which is centered at the depth of about 10 km, while on the outside of the cone and along a path in the northeastern part of the Vesuvius area this layer is absent. This low velocity can be associated with the presence of partial melting and, therefore, may represent a quite diffused crustal magma reservoir which is fed by a deeper one that is regional in character and located in the uppermost mantle. The study of seismic source in terms of the moment tensor is suitable for an investigation of physical processes within a volcano; indeed, its components, double couple, compensated linear vector dipole, and volumetric, can be related to the movements of magma and fluids within the volcanic system. Although for many recent earthquake events the percentage of double couple component is high, our results also show the presence of significant non-double couple components in both volcanic areas. (author)

  14. Crustal Models Assessment in Western Part of Romania Employing Active Seismic and Seismologic Methods

    Science.gov (United States)

    Bala, Andrei; Toma-Danila, Dragos; Tataru, Dragos; Grecu, Bogdan

    2017-12-01

    In the years 1999 - 2000 two regional seismic refraction lines were performed within a close cooperation with German partners from University of Karlsruhe. One of these lines is Vrancea 2001, with 420 km in length, almost half of them recorded in Transylvanian Basin. The structure of the crust along the seismic line revealed a very complicated crustal structure beginning with Eastern Carpathians and continuing in the Transylvanian Basin until Medias. As a result of the development of the National Seismic Network in the last ten years, more than 100 permanent broadband stations are now continuously operating in Romania. Complementary to this national dataset, maintained and developed in the National Institute for Earth Physics, new data emerged from the temporary seismologic networks established during the joint projects with European partners in the last decades. The data gathered so far is valuable both for seismology purposes and crustal structure studies, especially for the western part of the country, where this kind of data were sparse until now. Between 2009 and 2011, a new reference model for the Earth’s crust and mantle of the European Plate was defined through the NERIES project from existing data and models. The database gathered from different kind of measurements in Transylvanian Basin and eastern Pannonian Basin were included in this NERIES model and an improved and upgraded model of the Earth crust emerged for western part of Romania. Although the dataset has its origins in several periods over the last 50 years, the results are homogeneous and they improve and strengthen our image about the depth of the principal boundaries in the crust. In the last chapter two maps regarding these boundaries are constructed, one for mid-crustal boundary and one for Moho. They were build considering all the punctual information available from different sources in active seismic and seismology which are introduced in the general maps from the NERIES project for

  15. 3D seismic experiment in difficult area in Japan; Kokunai nanchiiki ni okeru sanjigen jishin tansa jikken

    Energy Technology Data Exchange (ETDEWEB)

    Minegishi, M; Nakagami, K; Tanaka, H [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1997-05-27

    Difficult area in this context means an exploration-difficult area supposed to store oil/gas but retarded in exploration for the lack of knowledge about the geological structure due to poor quality of available seismic survey records. Discussed in this paper is a survey conducted into an area covering the southern part of Noshiro-shi, Akita-ken, and Yamamoto-cho, Yamamoto-gun, Akita-ken. An area size suitable for data collection at a target depth of 2500m is determined using an interpretation structure compiled on the basis of available well data and 2D seismic survey data. The plan for siting shock points and receiving points is modified case by case as restrictive factors come to the surface (resulting from the complicated hilly terrain, presence of pipes for agricultural water, etc.). The peculiarities of seismic waves in the terrain are studied through the interpretation of the available well data and 2D seismic survey data for the construction of a 3D velocity model for the confirmation of the appropriateness of the plan for siting shock points and receiving points. Efforts are exerted through enhanced coordination with the contractor to acquire data so that a technologically best design may be won within the limits of the budget. The quality of the data obtained from this experiment is in general better than those obtained from previous experiments, yet many problems remain to be settled in future studies about exploration-difficult areas. 4 refs., 4 figs., 1 tab.

  16. Seismic functional qualification of active mechanical and electrical components based on shaking table testing

    International Nuclear Information System (INIS)

    Jurukovski, D.

    1999-01-01

    The seismic testing for qualification of one sample of the NPP Kozloduy Control Panel type YKTC was carried out under Research Contract no: 8008/Rl, entitled: 'Seismic Functional Qualification of Active Mechanical and Electrical Components Based on Shaking Table Testing'. The tested specimen was selected by the Kozloduy NPP staff, Section 'TIA-2' (Technical Instrumentation and Automatics), however the seismic input parameters were selected by the NPP Kozloduy staff, Section HTS and SC (Hydro-Technical Systems and Engineering Structures). The applied methodology was developed by the Institute of Earthquake Engineering and Engineering Seismology staff. This report presents all relevant items related to the selected specimen seismic testing for seismic qualification such as: description of the tested specimen, mounting conditions on the shaking table, selection of seismic input parameters and creation of seismic excitations, description of the testing equipment, explanation of the applied methodology, 'on line' and 'off line' monitoring of the tested specimen, functioning capabilities, discussion of the results and their presentation and finally conclusions and recommendations. In this partial project report, two items are presented. The first item presents a review of the existing and used regulations for performing of the seismic and vibratory withstand testing of electro-mechanical equipment. The selection is made based on MEA, IEEE, IEC and former Soviet Union regulations. The second item presents the abstracts of all the tests performed at the Institute of Earthquake Engineering and Engineering Seismology in Skopje. The selected regulations, the experience of the Institute that has been gathered for the last seventeen years and some theoretical and experimental research will be the basis for further investigations for development of a synthesised methodology for seismic qualification of differently categorized equipment for nuclear power plants

  17. Active seismic response control systems for nuclear power plant equipment facilities

    International Nuclear Information System (INIS)

    Kobori, Takuji; Kanayama, Hiroo; Kamagata, Shuichi

    1989-01-01

    To sustain severe earthquake ground motion, a new type of anti-seismic structure is proposed, called a Dynamic Intelligent Building (DIB) system, which is positioned as an active seismic response controlled the structure. The structural concept starts from a new recognition of earthquake ground motion, and the structural natural frequency is actively adjusted to avoid resonant vibration, and similarly the external counter-force cancels the resonant force which comes from the dynamic structural motion energy. These concepts are verified using an analytical simulator program. The advanced application of the DIB system, is the Active Supporting system and the Active Stabilizer system for nuclear power plant equipment facilities. (orig.)

  18. Construction of the seismic wave-speed model by adjoint tomography beneath the Japanese metropolitan area

    Science.gov (United States)

    Miyoshi, Takayuki

    2017-04-01

    The Japanese metropolitan area has high risks of earthquakes and volcanoes associated with convergent tectonic plates. It is important to clarify detail three-dimensional structure for understanding tectonics and predicting strong motion. Classical tomographic studies based on ray theory have revealed seismotectonics and volcanic tectonics in the region, however it is unknown whether their models reproduce observed seismograms. In the present study, we construct new seismic wave-speed model by using waveform inversion. Adjoint tomography and the spectral element method (SEM) were used in the inversion (e.g. Tape et al. 2009; Peter et al. 2011). We used broadband seismograms obtained at NIED F-net stations for 140 earthquakes occurred beneath the Kanto district. We selected four frequency bands between 5 and 30 sec and used from the seismograms of longer period bands for the inversion. Tomographic iteration was conducted until obtaining the minimized misfit between data and synthetics. Our SEM model has 16 million grid points that covers the metropolitan area of the Kanto district. The model parameters were the Vp and Vs of the grid points, and density and attenuation were updated to new values depending on new Vs in each iteration. The initial model was assumed the tomographic model (Matsubara and Obara 2011) based on ray theory. The source parameters were basically used from F-net catalog, while the centroid times were inferred from comparison between data and synthetics. We simulated the forward and adjoint wavefields of each event and obtained Vp and Vs misfit kernels from their interaction. Large computation was conducted on K computer, RIKEN. We obtained final model (m16) after 16 iterations in the present study. For the waveform improvement, it is clearly shown that m16 is better than the initial model, and the seismograms especially improved in the frequency bands of longer than 8 sec and changed better for seismograms of the events occurred at deeper than a

  19. Shallow Seismic Reflection Study of Recently Active Fault Scarps, Mina Deflection, Western Nevada

    Science.gov (United States)

    Black, R. A.; Christie, M.; Tsoflias, G. P.; Stockli, D. F.

    2006-12-01

    During the spring and summer of 2006 University of Kansas geophysics students and faculty acquired shallow, high resolution seismic reflection data over actively deforming alluvial fans developing across the Emmigrant Peak (in Fish Lake Valley) and Queen Valley Faults in western Nevada. These normal faults represent a portion of the transition from the right-lateral deformation associated with the Walker Lane/Eastern California Shear Zone to the normal and left-lateral faulting of the Mina Deflection. Data were gathered over areas of recent high resolution geological mapping and limited trenching by KU students. An extensive GPR data grid was also acquired. The GPR results are reported in Christie, et al., 2006. The seismic data gathered in the spring included both walkaway tests and a short CMP test line. These data indicated that a very near-surface P-wave to S-wave conversion was taking place and that very high quality S-wave reflections were probably dominating shot records to over one second in time. CMP lines acquired during the summer utilized a 144 channel networked Geode system, single 28 hz geophones, and a 30.06 downhole rifle source. Receiver spacing was 0.5 m, source spacing 1.0m and CMP bin spacings were 0.25m for all lines. Surveying was performed using an RTK system which was also used to develop a concurrent high resolution DEM. A dip line of over 400m and a strike line over 100m in length were shot across the active fan scarp in Fish Lake Valley. Data processing is still underway. However, preliminary interpretation of common-offset gathers and brute stacks indicates very complex faulting and detailed stratigraphic information to depths of over 125m. Depth of information was actually limited by the 1024ms recording time. Several west-dipping normal faults downstep towards the basin. East-dipping antithetic normal faulting is extensive. Several distinctive stratigraphic packages are bound by the faults and apparent unconformitites. A CMP dip line

  20. Potential Settlement Due to Seismic Effects in the Residential Area of Ilgin (Konya, Turkey

    Directory of Open Access Journals (Sweden)

    Adnan Ozdemir

    2016-04-01

    Full Text Available Ilgin lies on newly formed, loose, granular deposits, and there is a substantial risk for surface liquefaction and foundation settlements due to the seismic effects resulting from groundwater close to the surface. This study evaluates potential settlement due to seismic effects in the residential areas of Ilgin using the Standard Penetration Test (SPT performed on 45 geotechnical bores. In Turkey, where earthquakes occur frequently, the selection of residential areas is of great importance. In this research, the number of settlements was calculated considering an earthquake having a Local Magnitude of 6 (i.e., ML ≥ 6.0 and a ≥ 0.4 g under a 0.4 g seismic force, and a potential settlement map of the residential area was prepared. The amount of settlement exceeds 20 cm at locations near Ilgin Lake and in the northern section of Ilgin residential areas; downtown, the settlement ranges from 10-20 cm. The settlements presented here exceed the allowable threshold limits for structures constructed using adobe and brick in this district. Thus, improvements to minimize earthquake-induced damages are required for structures in Ilgin. Moreover, the selection of new residential areas, along with the proper design of the structures before construction, should be examined further to avoid ground liquefaction and structure damage due to settlement.    Resumen La localidad de Ilgin está ubicada sobre depósitos recién formados, granulares y no compactos, por lo que existe un riesgo sustancial de licuefacción de la superficie y la creación de asentamientos o deslizamientos debido a los efectos sísmicos resultantes del agua subterránea poco profunda. Este artículo evalúa el potencial de asentamiento debido a los efectos sísmicos en las áreas residenciales de Ilgin a través del Ensayo de Penetración Estándar (SPT, en inglés realizado en 45 perforaciones geotécnicas. En Turquía, donde los terremotos ocurren frecuentemente, la selección de

  1. Anthropenic seismic activities induced by drilling in deep underground strata; Anthropen induzierte seismische Aktivitaeten bei Nutzung des tiefen Untergrundes

    Energy Technology Data Exchange (ETDEWEB)

    Janczik, Sebastian; Kaltschmitt, Martin [Technische Univ. Hamburg-Harburg (Germany). Inst. fuer Umwelttechnik und Energiewirtschaft; Rueter, Horst [HarbourDom GmbH, Koeln (Germany)

    2010-08-15

    Although anthropogenic seismic activities so far have not caused damage to persons and property, they have been the cause of highly emotional discussions in the media, and some are even demanding a ban on geothermal heat recovery. This has caused great concern among the public. A fact-based analysis of the fundamentals of these seismic events in the context of other anthropogenic seismic events shows that the potential seismic effects are far less important than other anthropogenic seismic events. Further, it will in all probability be possible to keep them under control even on a long-term basis. (orig.)

  2. Three decades of seismic activity at Mt. Vesuvius: 1972-1999

    International Nuclear Information System (INIS)

    De Natale, Giuseppe; Troise, Claudia; Kuznetzov, Igor; Kronrod, Tanya; Peresan, Antonella; Sarao, Angela; Panza, Gluliano F.

    2002-06-01

    We analyse the seismic catalogue of the local earthquakes which occurred at Somma- Vesuvius volcano in the past three decades (1972-2000). The seismicity in this period can be described as composed by a background level, characterised by a low and rather uniform rate of energy release and by sporadic periods of increased seismic activity. Such relatively intense seismicity periods are characterised by energy rates and magnitudes progressively increasing in the critical periods. The analyses of the b value in the whole period evidences a well defined pattern, with values of b progressively decreasing, from about 1.8, at the beginning of the considered period, to about 1.0 at present. This steady variation indicates an increasing dynamics in the volcanic system. Within this general trend it is possible to identity a sub-structure in the time sequence of the seismic events, formed by the alternating episodes of quiescence and activity. The analysis of the source moment tensor of the largest earthquakes shows that the processes at the seismic source are generally not consistent with simple double-couples, but that they are compatible with large isotropic components, mostly indicating volumetric expansion. These components are shown to be statistically significant for almost all the analysed events. Such focal mechanisms can be interpreted as the effect of explosion phenomena, possibly related to volatile exsolution from the crystallising magma. The availability of a reduced amount of high quality data necessary for the inversion of the source moment tensor, the still limited period of systematic observation of Vesuvius micro- earthquakes and, above all, the absence of eruptive events during such interval of time, cannot obviously permit to outline any formal premonitory signal. Nevertheless, the analysis reported in this paper indicates a progressively evolving dynamics, characterised by a general increasing trend in the seismic activity in the volcanic system and by a

  3. Seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel

    Directory of Open Access Journals (Sweden)

    Kaláb Zdeněk

    2017-07-01

    Full Text Available This paper deals with the seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel in the Czech Republic. The basic source of data for historical earthquakes up to 1990 was the seismic website [10]. The most intense earthquake described occurred on September 15, 1590 in the Niederroesterreich region (Austria in the historical period; its reported intensity is Io = 8-9. The source of the contemporary seismic data for the period since 1991 to the end of 2014 was the website [11]. It may be stated based on the databases and literature review that in the period from 1900, no earthquake exceeding magnitude 5.1 originated in the territory of the Czech Republic.

  4. Correlation between Earthquakes and AE Monitoring of Historical Buildings in Seismic Areas

    Directory of Open Access Journals (Sweden)

    Giuseppe Lacidogna

    2015-12-01

    Full Text Available In this contribution a new method for evaluating seismic risk in regional areas based on the acoustic emission (AE technique is proposed. Most earthquakes have precursors, i.e., phenomena of changes in the Earth’s physical-chemical properties that take place prior to an earthquake. Acoustic emissions in materials and earthquakes in the Earth’s crust, despite the fact that they take place on very different scales, are very similar phenomena; both are caused by a release of elastic energy from a source located in a medium. For the AE monitoring, two important constructions of Italian cultural heritage are considered: the chapel of the “Sacred Mountain of Varallo” and the “Asinelli Tower” of Bologna. They were monitored during earthquake sequences in their relative areas. By using the Grassberger-Procaccia algorithm, a statistical method of analysis was developed that detects AEs as earthquake precursors or aftershocks. Under certain conditions it was observed that AEs precede earthquakes. These considerations reinforce the idea that the AE monitoring can be considered an effective tool for earthquake risk evaluation.

  5. Study of local seismic events in Lithuania and adjacent areas using data from the PASSEQ experiment

    Czech Academy of Sciences Publication Activity Database

    Janutyte, I.; Kozlovskaya, E.; Motuza, G.; Plomerová, Jaroslava; Babuška, Vladislav; Gaždová, Renata; Jedlička, Petr; Kolínský, Petr; Málek, Jiří; Novotný, Oldřich; Růžek, Bohuslav

    2013-01-01

    Roč. 170, č. 5 (2013), s. 797-814 ISSN 0033-4553 Institutional support: RVO:67985530 ; RVO:67985891 Keywords : location of local seismic events * East European Craton * PASSEQ passive seismic experiment Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.854, year: 2013

  6. Multi-scale investigation into the mechanisms of fault mirror formation in seismically active carbonate rocks

    Science.gov (United States)

    Ohl, Markus; Chatzaras, Vasileios; Niemeijer, Andre; King, Helen; Drury, Martyn; Plümper, Oliver

    2017-04-01

    Mirror surfaces along principal slip zones in carbonate rocks have recently received considerable attention as they are thought to form during fault slip at seismic velocities and thus may be a marker for paleo-seismicity (Siman-Tov et al., 2013). Therefore, these structures represent an opportunity to improve our understanding of earthquake mechanics in carbonate faults. Recent investigations reported the formation of fault mirrors in natural rocks as well as in laboratory experiments and connected their occurrence to the development of nano-sized granular material (Spagnuolo et al., 2015). However, the underlying formation and deformation mechanisms of these fault mirrors are still poorly constrained and warrant further research. In order to understand the influence and significance of these fault products on the overall fault behavior, we analysed the micro-, and nanostructural inventory of natural fault samples containing mirror slip surfaces. Here we present first results on the possible formation mechanisms of fault mirrors and associated deformation mechanisms operating in the carbonate fault gouge from two seismically active fault zones in central Greece. Our study specifically focuses on mirror slip surfaces obtained from the Arkitsa fault in the Gulf of Evia and the Schinos fault in the Gulf of Corinth. The Schinos fault was reactivated by a magnitude 6.7 earthquake in 1981 while the Arkitsa fault is thought to have been reactivated by a magnitude 6.9 earthquake in 1894. Our investigations encompass a combination of state-of-the-art analytical techniques including X-ray computed tomography, focused ion beam scanning electron microscopy (FIB-SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Using this multiscale analytical approach, we report decarbonation-reaction structures, considerable calcite twinning and grain welding immediately below the mirror slip surface. Grains or areas indicating decarbonation reactions show a foam

  7. Estimating the economic impact of seismic activity in Kyrgyzstan

    Science.gov (United States)

    Pittore, Massimiliano; Sousa, Luis; Grant, Damian; Fleming, Kevin; Parolai, Stefano; Free, Matthew; Moldobekov, Bolot; Takeuchi, Ko

    2017-04-01

    Estimating the short and long-term economical impact of large-scale damaging events such as earthquakes, tsunamis or tropical storms is an important component of risk assessment, whose outcomes are routinely used to improve risk awareness, optimize investments in prevention and mitigation actions, as well as to customize insurance and reinsurance rates to specific geographical regions or single countries. Such estimations can be carried out by modeling the whole causal process, from hazard assessment to the estimation of loss for specific categories of assets. This approach allows a precise description of the various physical mechanisms contributing to direct seismic losses. However, it should reflect the underlying epistemic and random uncertainties in all involved components in a meaningful way. Within a project sponsored by the World Bank, a seismic risk study for the Kyrgyz Republic has been conducted, focusing on the assessment of social and economical impacts assessed in terms of direct losses of the residential and public building stocks. Probabilistic estimates based on stochastic event catalogs have been computed and integrated with the simulation of specific earthquake scenarios. Although very few relevant data are available in the region on the economic consequences of past damaging events, the proposed approach sets a benchmark for decision makers and policy holders to better understand the short and long term consequences of earthquakes in the region. The presented results confirm the high level of seismic risk of the Kyrgyz Republic territory, outlining the most affected regions; thus advocating for significant Disaster Risk Reduction (DRR) measures to be implemented by local decision- and policy-makers.

  8. Predicting earthquakes by analyzing accelerating precursory seismic activity

    Science.gov (United States)

    Varnes, D.J.

    1989-01-01

    During 11 sequences of earthquakes that in retrospect can be classed as foreshocks, the accelerating rate at which seismic moment is released follows, at least in part, a simple equation. This equation (1) is {Mathematical expression},where {Mathematical expression} is the cumulative sum until time, t, of the square roots of seismic moments of individual foreshocks computed from reported magnitudes;C and n are constants; and tfis a limiting time at which the rate of seismic moment accumulation becomes infinite. The possible time of a major foreshock or main shock, tf,is found by the best fit of equation (1), or its integral, to step-like plots of {Mathematical expression} versus time using successive estimates of tfin linearized regressions until the maximum coefficient of determination, r2,is obtained. Analyzed examples include sequences preceding earthquakes at Cremasta, Greece, 2/5/66; Haicheng, China 2/4/75; Oaxaca, Mexico, 11/29/78; Petatlan, Mexico, 3/14/79; and Central Chile, 3/3/85. In 29 estimates of main-shock time, made as the sequences developed, the errors in 20 were less than one-half and in 9 less than one tenth the time remaining between the time of the last data used and the main shock. Some precursory sequences, or parts of them, yield no solution. Two sequences appear to include in their first parts the aftershocks of a previous event; plots using the integral of equation (1) show that the sequences are easily separable into aftershock and foreshock segments. Synthetic seismic sequences of shocks at equal time intervals were constructed to follow equation (1), using four values of n. In each series the resulting distributions of magnitudes closely follow the linear Gutenberg-Richter relation log N=a-bM, and the product n times b for each series is the same constant. In various forms and for decades, equation (1) has been used successfully to predict failure times of stressed metals and ceramics, landslides in soil and rock slopes, and volcanic

  9. Regional Characteristics of Stress State of Main Seismic Active Faults in Mid-Northern Part of Sichuan-Yunnan Block

    Science.gov (United States)

    Weiwei, W.; Yaling, W.

    2017-12-01

    We restore the seismic source spectrums of 1012 earthquakes(2.0 ≤ ML ≤ 5.0) in the mid-northern part of Sichuan-Yunnan seismic block(26 ° N-33 ° N, 99 ° E-104 ° E),then calculate the source parameters.Based on the regional seismic tectonic background, the distribution of active faults and seismicity, the study area is divided into four statistical units (Z1 Jinshajiang and Litang fault zone, Z2 Xianshuihe fault zone, Z3 Anninghe-Zemuhe fault zone, Z4 Lijiang-Xiaojinhe fault zone). Seismic source stress drop results show the following, (1)The stress at the end of the Jinshajiang fault is low, strong earthquake activity rare.Stress-strain loading deceases gradually from northwest to southeast along Litang fault, the northwest section which is relatively locked is more likely to accumulate strain than southeast section. (2)Stress drop of Z2 is divided by Kangding, the southern section is low and northern section is high. Southern section (Kangding-Shimian) is difficult to accumulate higher strain in the short term, but in northern section (Garzê-Kangding), moderate and strong earthquakes have not filled the gaps of seismic moment release, there is still a high stress accumulation in partial section. (3)High stress-drop events were concentrated on Z3, strain accumulation of this unit is strong, and stress level is the highest, earthquake risk is high. (4)On Z4, stress drop characteristics of different magnitude earthquakes are not the same, which is related to complex tectonic setting, the specific reasons still need to be discussed deeply.The study also show that, (1)Stress drops display a systematic change with different faults and locations, high stress-drop events occurs mostly on the fault intersection area. Faults without locking condition and mainly creep, are mainly characterized by low stress drop. (2)Contrasting to what is commonly thought that "strike-slip faults are not easy to accumulate stress ", Z2 and Z3 all exhibit high stress levels, which

  10. Realistic modeling of seismic input for megacities and large urban areas

    Science.gov (United States)

    Panza, G. F.; Unesco/Iugs/Igcp Project 414 Team

    2003-04-01

    The project addressed the problem of pre-disaster orientation: hazard prediction, risk assessment, and hazard mapping, in connection with seismic activity and man-induced vibrations. The definition of realistic seismic input has been obtained from the computation of a wide set of time histories and spectral information, corresponding to possible seismotectonic scenarios for different source and structural models. The innovative modeling technique, that constitutes the common tool to the entire project, takes into account source, propagation and local site effects. This is done using first principles of physics about wave generation and propagation in complex media, and does not require to resort to convolutive approaches, that have been proven to be quite unreliable, mainly when dealing with complex geological structures, the most interesting from the practical point of view. In fact, several techniques that have been proposed to empirically estimate the site effects using observations convolved with theoretically computed signals corresponding to simplified models, supply reliable information about the site response to non-interfering seismic phases. They are not adequate in most of the real cases, when the seismic sequel is formed by several interfering waves. The availability of realistic numerical simulations enables us to reliably estimate the amplification effects even in complex geological structures, exploiting the available geotechnical, lithological, geophysical parameters, topography of the medium, tectonic, historical, palaeoseismological data, and seismotectonic models. The realistic modeling of the ground motion is a very important base of knowledge for the preparation of groundshaking scenarios that represent a valid and economic tool for the seismic microzonation. This knowledge can be very fruitfully used by civil engineers in the design of new seismo-resistant constructions and in the reinforcement of the existing built environment, and, therefore

  11. Risk and Geodynamically active areas of Carpathian lithosphere

    Directory of Open Access Journals (Sweden)

    Lubomil Pospíšil

    2007-01-01

    Full Text Available This paper illustrates an application of multidisciplinary data analysis to the Carpathian–Pannonian region and presents a verification of a Complex model of the Carpathian - Pannonian lithosphere by recent data sets and geophysical data analyses and its utilization for the determination of risk and active geodynamic and tectonic zones of Ist order . This model can be used for the analysing any Carpathian area from the point of view of the seismic risk, hazards and geodynamic activity, which is important to know for the building of a repository for the radioactive wasted material. Besides the traditionally used geological (sedimentological and volcanological data and geomorphological data (Remote Sensing, an emphasis was laid on geodetic, grav/mag data, seismic, seismological and other geophysical data (magnetotelluric, heat flow, paleomagnetic etc.. All available geonomic (geologic, geodetic, geophysical, geomorphological data were verified and unified on the basis of the same scale and in the Western Carpathians on the Remote Sensing data. The paper concentrates on two problematic areas – the so call “rebounding area” in the Eastern Carpathians and the Raba – Muran - Malcov tectonic systems.

  12. Numerical Modeling on Co-seismic Influence of Wenchuan 8.0 Earthquake in Sichuan-Yunnan Area, China

    Science.gov (United States)

    Chen, L.; Li, H.; Lu, Y.; Li, Y.; Ye, J.

    2009-12-01

    In this paper, a three dimensional finite element model for active faults which are handled by contact friction elements in Sichuan-Yunnan area is built. Applying the boundary conditions determined through GPS data, a numerical simulations on spatial patterns of stress-strain changes induced by Wenchuan Ms8.0 earthquake are performed. Some primary results are: a) the co-seismic displacements in Longmen shan fault zone by the initial cracking event benefit not only the NE-direction expanding of subsequent fracture process but also the focal mechanism conversions from thrust to right lateral strike for the most of following sub-cracking events. b) tectonic movements induced by the Wenchuan earthquake are stronger in the upper wall of Longmen shan fault belt than in the lower wall and are influenced remarkably by the northeast boundary faults of the rhombic block. c) the extrema of stress changes induced by the main shock are 106Pa and its spatial size is about 400km long and 100km wide. The total stress level is reduced in the most regions in Longmen shan fault zone, whereas stress change is rather weak in its southwest segment and possibly result in fewer aftershocks in there. d) effects induced by the Wenchuan earthquake to the major active faults are obviously different from each other. e) triggering effect of the Wenchuan earthquake to the following Huili 6.1 earthquake is very weak.

  13. High-resolution gravity and seismic-refraction surveys of the Smoke Tree Wash area, Joshua Tree National Park, California

    Science.gov (United States)

    Langenheim, Victoria E.; Rymer, Michael J.; Catchings, Rufus D.; Goldman, Mark R.; Watt, Janet T.; Powell, Robert E.; Matti, Jonathan C.

    2016-03-02

    We describe high-resolution gravity and seismic refraction surveys acquired to determine the thickness of valley-fill deposits and to delineate geologic structures that might influence groundwater flow beneath the Smoke Tree Wash area in Joshua Tree National Park. These surveys identified a sedimentary basin that is fault-controlled. A profile across the Smoke Tree Wash fault zone reveals low gravity values and seismic velocities that coincide with a mapped strand of the Smoke Tree Wash fault. Modeling of the gravity data reveals a basin about 2–2.5 km long and 1 km wide that is roughly centered on this mapped strand, and bounded by inferred faults. According to the gravity model the deepest part of the basin is about 270 m, but this area coincides with low velocities that are not characteristic of typical basement complex rocks. Most likely, the density contrast assumed in the inversion is too high or the uncharacteristically low velocities represent highly fractured or weathered basement rocks, or both. A longer seismic profile extending onto basement outcrops would help differentiate which scenario is more accurate. The seismic velocities also determine the depth to water table along the profile to be about 40–60 m, consistent with water levels measured in water wells near the northern end of the profile.

  14. Integration of potential field and seismic data for hydrocarbon exploration in the Miguasha area, Appalachian Gaspe belt, Quebec

    Energy Technology Data Exchange (ETDEWEB)

    St-Laurent, C.; Adam, E. [Hydro-Quebec, Ste-Foy, PQ (Canada). Petrole et Gaz

    2005-07-01

    In 2003, Hydro-Quebec acquired about 100 km of seismic data and 2,300 km{sup 2} of aeromagnetic data to begin exploration for oil and gas in the Miguasha area of the southwestern part of the Gaspe Peninsula. A discrepancy exists within the prospective area between the observed orientation of formational contacts in outcrop and moderately-dipping reflectors observed on seismic surveys. According to magnetic data, there is only 1 weakly-magnetic zone that is composed of felsic to intermediate volcanic rocks. A 3-D inversion of the total magnetic field was undertaken to obtain the subsurface distribution of magnetic rocks before drilling 2 exploratory wells in 2004. The inversion results were validated by performing 2.5-D modelling along selected traverses and through correlation with depth-converted seismic sections. The 3-D magnetic inversion is a cost-effective method of obtaining a 3-D subsurface image of this weakly-magnetic volcanic zone. Valuable information regarding the depth of the magnetic zone was obtained by combining magnetic inversion results with the seismic data. This study revealed the effectiveness of this approach in discriminating sediments with potential hydrocarbon reservoirs from non-prospective, magnetic volcanic rocks.

  15. Ring-Shaped Seismicity Structures in the Areas of Sarez and Nurek Water Reservoirs (Tajikistan): Lithosphere Adaptation to Additional Loading

    Science.gov (United States)

    Kopnichev, Yu. F.; Sokolova, I. N.

    2017-12-01

    Seismicity characteristics in the areas of Sarez Lake and the Nurek water reservoir are studied. Ring-shaped seismicity structures in two depth ranges (0-33 and 34-70 km) formed prior to the Pamir earthquake of December 7, 2015 ( M w = 7.2). Seismicity rings cross each other near the Usoi Dam, which formed after the strong earthquake in 1911 and led to the formation of Sarez Lake, and near the epicenter of the Pamir earthquake. In addition, three out of the four strongest events ( M ≥ 6.0) recorded in the Pamir region at depths of more than 70 km since 1950 have occurred near Sarez Lake. An aggregate of the data allows us to conclude that the Pamir earthquake, despite its very large energy, refers to events related to induced seismicity. Ring-shaped seismicity structures in two depth ranges also formed in the Nurek water reservoir area. It is supposed that the formation of ring-shaped structures is related to the self-organization processes of a geological system, which result in the ascent of deep-seated fluids. In this respect, the lithosphere is gradually adapting to the additional load related to the filling of the water reservoir. The difference between Nurek Dam (and many other hydroelectric power stations as well) and Usoi Dam is the permanent vibration in the former case due to water falling from a height of more than 200 m. Such an effect can lead to gradual stress dissipation, resulting in the occurrence of much weaker events when compared to the Pamir earthquake of December 7, 2015, in the areas of artificial water reservoirs.

  16. Analysis of the seismic wavefield in the Moesian Platform (Bucharest area) for hazard assessment purposes

    Science.gov (United States)

    Manea, Elena Florinela; Michel, Clotaire; Hobiger, Manuel; Fäh, Donat; Cioflan, Carmen Ortanza; Radulian, Mircea

    2017-09-01

    During large earthquakes generated at intermediate depth in the Vrancea seismic zone, the ground motion recorded in Bucharest (Romania) is characterized by predominant long periods with strong amplification. Time-frequency analysis highlights the generation of low frequency surface waves (edges of this large sedimentary basin or multipath interference waves (Airy phases of Love and Rayleigh waves), on ground motion. The data from a 35 km diameter array (URS experiment) were used. The array was installed by the National Institute for Earth Physics in cooperation with the Karlsruhe Institute for Technology and operated during 10 months in 2003 and 2004 in the urban area of Bucharest and adjacent zones. The earthquake wavefield recorded by the URS array was analysed using the MUSIQUE technique. This technique analyses the three-component signals of all sensors of a seismic array together. The analysis includes 19 earthquakes with epicentral distances from 100 to 1560 km and with various backazimuths with enough energy at low frequencies (0.1-1 Hz), within the resolution range of the array. For all events, the largest portion of energy is arriving from the source direction and the wavefield is dominated by Love waves. The results of the array analyses clearly indicate a significant scattering corresponding to 2-D or 3-D effects of the Moesian Platform. The azimuthal distribution shows that the scattering comes primarily from the southern and northern edges of the basin. The Airy phase of Love waves was clearly identified as the main contributor in the range of the fundamental frequency of resonance of the basin (0.15-0.25 Hz), with directionality along the backazimuth and its opposite direction. Moreover, two further distinct frequency bands around 0.4 and 0.7 Hz with higher amplitudes were identified. Their complex nature is a combination of the higher modes of Rayleigh waves, Airy phases of Love waves and SH waves. Love and Rayleigh wave dispersion curves were

  17. Application of the principal component analysis (PCA) to HVSR data aimed at the seismic characterization of earthquake prone areas

    Science.gov (United States)

    Paolucci, Enrico; Lunedei, Enrico; Albarello, Dario

    2017-10-01

    In this work, we propose a procedure based on principal component analysis on data sets consisting of many horizontal to vertical spectral ratio (HVSR or H/V) curves obtained by single-station ambient vibration acquisitions. This kind of analysis aimed at the seismic characterization of the investigated area by identifying sites characterized by similar HVSR curves. It also allows to extract the typical HVSR patterns of the explored area and to establish their relative importance, providing an estimate of the level of heterogeneity under the seismic point of view. In this way, an automatic explorative seismic characterization of the area becomes possible by only considering ambient vibration data. This also implies that the relevant outcomes can be safely compared with other available information (geological data, borehole measurements, etc.) without any conceptual trade-off. The whole algorithm is remarkably fast: on a common personal computer, the processing time takes few seconds for a data set including 100-200 HVSR measurements. The procedure has been tested in three study areas in the Central-Northern Italy characterized by different geological settings. Outcomes demonstrate that this technique is effective and well correlates with most significant seismostratigraphical heterogeneities present in each of the study areas.

  18. Seismic hydraulic fracture migration originated by successive deep magma pulses: The 2011-2013 seismic series associated to the volcanic activity of El Hierro Island

    Science.gov (United States)

    Díaz-Moreno, A.; Ibáñez, J. M.; De Angelis, S.; García-Yeguas, A.; Prudencio, J.; Morales, J.; Tuvè, T.; García, L.

    2015-11-01

    In this manuscript we present a new interpretation of the seismic series that accompanied eruptive activity off the coast of El Hierro, Canary Islands, during 2011-2013. We estimated temporal variations of the Gutenberg-Richter b value throughout the period of analysis, and performed high-precision relocations of the preeruptive and syneruptive seismicity using a realistic 3-D velocity model. Our results suggest that eruptive activity and the accompanying seismicity were caused by repeated injections of magma from the mantle into the lower crust. These magma pulses occurred within a small and well-defined volume resulting in the emplacement of fresh magma along the crust-mantle boundary underneath El Hierro. We analyzed the distribution of earthquake hypocenters in time and space in order to assess seismic diffusivity in the lower crust. Our results suggest that very high earthquake rates underneath El Hierro represent the response of a stable lower crust to stress perturbations with pulsatory character, linked to the injection of magma from the mantle. Magma input from depth caused large stress perturbations to propagate into the lower crust generating energetic seismic swarms. The absence of any preferential alignment in the spatial pattern of seismicity reinforces our hypothesis that stress perturbation and related seismicity, had diffusive character. We conclude that the temporal and spatial evolution of seismicity was neither tracking the path of magma migration nor it defines the boundaries of magma storage volumes such as a midcrustal sill. Our conceptual model considers pulsatory magma injection from the upper mantle and its propagation along the Moho. We suggest, within this framework, that the spatial and temporal distributions of earthquake hypocenters reflect hydraulic fracturing processes associated with stress propagation due to magma movement.

  19. Contemporary stress field in the area of the 2016 Amatrice seismic sequence (central Italy

    Directory of Open Access Journals (Sweden)

    Maria Teresa Mariucci

    2016-11-01

    Full Text Available We update the last present-day stress map for Italy relatively to the area of 2016 Amatrice seismic sequence (central Italy taking into account a large number of earthquakes occurred from August 24 to October 3, 2016. In particular in this paper, we discuss the new stress data from crustal earthquake focal mechanisms selecting those with Magnitude ≥ 4.0; at the same time, we revise the borehole data, analyze the stratigraphic profiles and the relative sonic logs in 4 deep wells located close to the Amatrice sequence along the Apennine belt and toward east along the Adriatic foredeep. From these data we consider the P-wave velocity trend with depth and estimate rock density following an empirical relationship. Then we calculate the overburden stress magnitude for each well. The new present-day stress indicators confirm the presence of prevalent normal faulting regime and better define the local stress field in the area, highlighting a slight rotation from NE-SW to ENE-WSW of extension. The analysis evidences that the lithostatic gradient gradually changes from ~26 MPa/km in the belt to less than 23 MPa/km along the Adriatic foredeep. Finally, at a depth of 5 km we estimate the vertical stress magnitude varying from 130 MPa to 114 moving from the Apennine belt to the Adriatic foredeep. Although the wells are very close each other they show different P wave velocities from the belt to the foredeep with values ~7km/s and ~4 km/s at 5 km depth, respectively.

  20. Seismic ground motion characteristics in the Bucharest area: source and site effects contribution

    International Nuclear Information System (INIS)

    Grecu, B.; Popa, M.; Radulian, M.

    2003-01-01

    The contribution of source vs. site effects on the seismic ground motion in Bucharest is controversial as the previous studies showed. The fundamental period of resonance for the sedimentary cover is emphasized by ambient noise and earthquake measurements, if the spectral ratio method (Nakamura, 1989) is applied (Bonjer et al., 1989). On the other hand, the numerical simulations (Moldoveanu et al., 2000.) and acceleration spectra analysis (Sandi et al., 2001) brought into the light the determinant role of the source effects. We considered all the available instrumental data related to Vrancea earthquakes recorded in Bucharest area to find how the source and site properties control the peak ground motion peculiarities. Our main results are summarized as follows: 1. The resonant period of oscillation, related to the shallow sediment layer, is practically present in all the H/V spectral ratios, no matter we consider ambient noise or earthquakes of any size. This argues in favor of the crucial role played by the sedimentary cover and proves that the ratio method is reasonably removing the source effects. However, the absolute spectra are completely different for earthquakes below and above magnitude 7, namely amplitudes in the range of 1-2 s periods are negligible in the first case, and predominant in the second one. It looks like the resonant amplification by the sedimentary cover becomes effective only for the largest earthquakes (M > 7), when the source radiation coincides with the fundamental resonance range. We conclude that the damage in Bucharest is dramatically amplified when the earthquake size is above a critical value (M ≅ 7); 2. Our analysis shows a rather weak variability of the peak motion values and spectral amplitudes over the study area, in agreement with the relatively small variability of the shallow structure topography. (authors)

  1. Response of a Panel Building to Mining Induced Seismicity in Karvina Area (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Hradil, P.; Kaláb, Zdeněk; Knejzlík, Jaromír; Kořínek, R.; Kanický, V.

    2009-01-01

    Roč. 14, č. 2 (2009), s. 143-151 ISSN 1335-1788 R&D Projects: GA ČR GA105/07/0878 Institutional research plan: CEZ:AV0Z30860518 Keywords : mining seismic ity * mathematical modeling * seismic response Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.097, year: 2009 http://actamont.tuke.sk/pdf/2009/n2/2hradil.pdf

  2. The Investigation of Active Tectonism Offshore Cide-Sinop, Southern Black Sea by Seismic Reflection and Bathymetric Data

    Science.gov (United States)

    Alp, Y. I.; Ocakoglu, N.; Kılıc, F.; Ozel, A. O.

    2017-12-01

    The active tectonism offshore Cide-Sinop at the Southern Black Sea shelf area was first time investigated by multi-beam bathymetric and multi-channel seismic reflection data under the Research Project of The Scientific and Technological Research Council of Turkey (TUBİTAK-ÇAYDAG-114Y057). The multi-channel seismic reflection data of about 700 km length were acquired in 1991 by Turkish Petroleum Company (TP). Multibeam bathymetric data were collected between 2002-2008 by the Turkish Navy, Department of Navigation, Hydrography and Oceanography (TN-DNHO). Conventional data processing steps were applied as follows: in-line geometry definition, shot-receiver static correction, editing, shot muting, gain correction, CDP sorting, velocity analysis, NMO correction, muting, stacking, predictive deconvolution, band-pass filtering, finite-difference time migration, and automatic gain correction. Offshore area is represented by a quite smooth and large shelf plain with an approx. 25 km wide and the water depth of about -100 m. The shelf gently deepens and it is limited by the shelf break with average of -120 m contour. The seafloor morphology is charasterised by an erosional surface. Structurally, E-W trending strike-slip faults with generally compression components and reverse/thrust faults have been regionally mapped for the first time. Most of these faults deform all seismic units and reach the seafloor delimiting the morphological highs and submarine plains. Thus, these faults are intepreted as active faults. These results support the idea that the area is under the active compressional tectonic regime

  3. Multiple Seismic Array Observations for Tracing Deep Tremor Activity in Western Shikoku, Japan

    Science.gov (United States)

    Takeda, T.; Matsuzawa, T.; Shiomi, K.; Obara, K.

    2011-12-01

    Deep non-volcanic tremors become very active during episodic slow-slip events in western Japan and Cascadia. The episodic tremor and slow-slip events in western Shikoku, Japan, occur at a typical interval of 6 months. Recently, it has been reported that tremor migration activity is complex and shows different migrating directions depending on time scales (Ghosh et al., 2010). Such characteristics of tremor are important to understand the mechanism of tremor and the relationship between tremor and SSEs. However it is difficult to determine the location of tremors with high accuracy because tremors show faint signals and make the identification of P/S-wave arrivals difficult. Seismic array analysis is useful to evaluate tremor activity, especially to estimate the arrival direction of seismic energy (e.g. Ueno et al., 2010, Ghosh et al., 2010), as it can distinguish multiple tremor sources occurring simultaneously. Here, we have conducted seismic array observation and analyzed seismic data during tremor activity by applying the MUSIC method to trace tremor location and its migration in western Shikoku. We have installed five seismic arrays in western Shikoku since January 2011. One of the arrays contains 30 stations with 3-component seismometers with a natural frequency of 2 Hz (Type-L array). The array aperture size is 2 km and the mean interval between stations is approximately 200 m. Each of the other arrays (Type-S array) contains 9 seismic stations with the same type of seismometers of the Type-L array, and is deployed surrounding the Type-L array. The small array aperture size is 800 m and its mean station interval is approximately 150 m. All array stations have recorded continuous waveform data at a sampling of 200Hz. In May 2011, an episodic tremor and a short-term slip event occurred for the first time during the observation period. We could retrieve the array seismic data during the whole tremor episode. The analysis of data from the type-L array confirms

  4. Seismic investigation of the Kunlun Fault: Analysis of the INDEPTH IV 2-D active-source seismic dataset

    Science.gov (United States)

    Seelig, William George

    The Tibetan Plateau has experienced significant crustal thickening and deformation since the continental subduction and collision of the Asian and Indian plates in the Eocene. Deformation of the northern Tibetan Plateau is largely accommodated by strike-slip faulting. The Kunlun Fault is a 1000-km long strike-slip fault near the northern boundary of the Plateau that has experienced five magnitude 7.0 or greater earthquakes in the past 100 years and represents a major rheological boundary. Active-source, 2-D seismic reflection/refraction data, collected as part of project INDEPTH IV (International Deep Profiling of Tibet and the Himalaya, phase IV) in 2007, was used to examine the structure and the dip of the Kunlun fault. The INDEPTH IV data was acquired to better understand the tectonic evolution of the northeastern Tibetan Plateau, such as the far-field deformation associated with the continent-continent collision and the potential subduction of the Asian continent beneath northern Tibet. Seismic reflection common depth point (CDP) stacks were examined to look for reflectivity patterns that may be associated with faulting. A possible reflection from the buried North Kunlun Thrust (NKT) is identified at 18-21 km underneath the East Kunlun Mountains, with an estimated apparent dip of 15°S and thrusting to the north. Minimally-processed shot gathers were also inspected for reflections off near-vertical structures such as faults and information on first-order velocity structure. Shot offset and nearest receiver number to reflection was catalogued to increase confidence of picks. Reflections off the North Kunlun (NKF) and South Kunlun Faults (SKF) were identified and analyzed for apparent dip and subsurface geometry. Fault reflection analysis found that the North Kunlun Fault had an apparent dip of approximately 68ºS to an estimated depth of 5 km, while the South Kunlun Fault dipped at approximately 78ºN to an estimated 3.5 km depth. Constraints on apparent dip and

  5. Hydraulic Fracture Induced Seismicity During A Multi-Stage Pad Completion in Western Canada: Evidence of Activation of Multiple, Parallel Faults

    Science.gov (United States)

    Maxwell, S.; Garrett, D.; Huang, J.; Usher, P.; Mamer, P.

    2017-12-01

    Following reports of injection induced seismicity in the Western Canadian Sedimentary Basin, regulators have imposed seismic monitoring and traffic light protocols for fracturing operations in specific areas. Here we describe a case study in one of these reservoirs, the Montney Shale in NE British Columbia, where induced seismicity was monitored with a local array during multi-stage hydraulic fracture stimulations on several wells from a single drilling pad. Seismicity primarily occurred during the injection time periods, and correlated with periods of high injection rates and wellhead pressures above fracturing pressures. Sequential hydraulic fracture stages were found to progressively activate several parallel, critically-stressed faults, as illuminated by multiple linear hypocenter patterns in the range between Mw 1 and 3. Moment tensor inversion of larger events indicated a double-couple mechanism consistent with the regional strike-slip stress state and the hypocenter lineations. The critically-stressed faults obliquely cross the well paths which were purposely drilled parallel to the minimum principal stress direction. Seismicity on specific faults started and stopped when fracture initiation points of individual injection stages were proximal to the intersection of the fault and well. The distance ranges when the seismicity occurs is consistent with expected hydraulic fracture dimensions, suggesting that the induced fault slip only occurs when a hydraulic fracture grows directly into the fault and the faults are temporarily exposed to significantly elevated fracture pressures during the injection. Some faults crossed multiple wells and the seismicity was found to restart during injection of proximal stages on adjacent wells, progressively expanding the seismogenic zone of the fault. Progressive fault slip is therefore inferred from the seismicity migrating further along the faults during successive injection stages. An accelerometer was also deployed close

  6. Seismicity and volcanic activity in Japan based on crustal thermal activity. 1; Chikaku no netsukatsudo ni motozuku Nippon no jishin kazan katsudo. 1

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, M [Tokai Univ., Tokyo (Japan). School of Marine Science and Technology

    1996-05-01

    This paper describes the following matters about correlation between seismic and volcanic activities and thermal energy. Investigations on the status of seismic and volcanic activities in the Japanese archipelago during about 400 years in the past reveals the following matters: noticing earthquakes with magnitudes of upper M6 to about M7, flows of energy going outward from deep crust of the earth repeat ups and downs, whereas several prominent rising periods having certain time widths can be seen; volcanic activities are included in the rising period at the same rank as seismic activities; with regard to years 1900 and on, the similar fact can be seen if the Japanese archipelago is divided into a north portion, a south portion, and an extremely south portion southern than the Hiuga area; and the present time is going toward a period of rise in energy flows. In other words, it is thought that the crust and the uppermost portion of the mantle form one body like an organic body, making an action like a geyser releasing the energy outward. 3 refs., 2 figs., 1 tab.

  7. Tank Focus Area pretreatment activities

    International Nuclear Information System (INIS)

    McGinnis, C.P.; Welch, T.D.; Manke, K.L.

    1997-01-01

    Plans call for the high-level wastes to be retrieved from the tanks and immobilized in a stable waste form suitable for long-term isolation. Chemistry and chemical engineering operations are required to retrieve the wastes, to condition the wastes for subsequent steps, and to reduce the costs of the waste management enterprise. Pretreatment includes those processes between retrieval and immobilization, and includes preparation of suitable feed material for immobilization and separations to partition the waste into streams that yield lower life-cycle costs. Some of the technologies being developed by the Tank Focus Area (TFA) to process these wastes are described. These technologies fall roughly into three areas: (1) solid/liquid separation (SLS), (2) sludge pretreatment, and (3) supernate pretreatment

  8. Time dynamics of background noise in geoelectrical and geochemical signals: An application in a seismic area of Southern Italy

    International Nuclear Information System (INIS)

    Di Bello, G.; Ragosta, M.; Heinicke, J.

    1998-01-01

    The paper analyses geoelectrical and geochemical time series jointly measured by means of a multi parametric automatic station close to an anomalous fluid emission in Val d'Agri (Basilicata, Italy). The investigated area is located on Southern Apennine chain that in past and recent years was interested by destructive earthquakes. After a complete pre-processing of time series, it analyses the fluctuations triggered by the seasonal cycles and focus the attention on the possible link between geo electrical and geochemical signals. In order to extract quantitative dynamical information from experimental time series, are detected scaling laws in power spectra that are typical fingerprints of fractional Brownian processes. After this analysis, the problem of the identification of extreme events in the time series has been approached. The paper considers significant anomalous patterns only when more consecutive values are above/below a fixed threshold in almost two of the time series jointly measured. The authors give the first preliminary results about the comparison between anomalous patterns detected in geo electrical and geochemical parameters and the local seismic activity and, finally, analyse the implications with the earthquake prediction problem

  9. Investigation of sinkhole areas in Germany using 2D shear wave reflection seismics and zero-offset VSP

    Science.gov (United States)

    Tschache, Saskia; Wadas, Sonja; Polom, Ulrich; Krawczyk, Charlotte M.

    2017-04-01

    Sinkholes pose a serious geohazard for humans and infrastructure in populated areas. The Junior Research Group Subrosion within the Leibniz Institute for Applied Geophysics and the joint project SIMULTAN work on the multi-scale investigation of subrosion processes in the subsurface, which cause natural sinkholes. In two case studies in sinkhole areas of Thuringia in Germany, we applied 2D shear wave reflection seismics using SH-waves with the aim to detect suitable parameters for the characterisation of critical zones. This method has the potential to image near-surface collapse and faulting structures in improved resolution compared to P-wave surveys resulting from the shorter wavelength of shear waves. Additionally, the shear wave velocity field derived by NMO velocity analysis is a basis to calculate further physical parameters, as e.g. the dynamic shear modulus. In both investigation areas, vertical seismic profiles (VSP) were acquired by generating P- and SH-waves (6 component VSP) directly next to a borehole equipped with a 3C downhole sensor. They provide shear and compressional wave velocity profiles, which are used to improve the 2D shear wave velocity field from surface seismics, to perform a depth calibration of the seismic image and to calculate the Vp/Vs ratio. The signals in the VSP data are analysed with respect to changes in polarisation and attenuation with depth and/or azimuth. The VSP data reveal low shear wave velocities of 200-300 m/s in rock layers known to be heavily affected by subrosion and confirm the low velocities calculated from the surface seismic data. A discrepancy of the shear wave velocities is observed in other intervals probably due to unsymmetrical travel paths in the surface seismics. In some VSP data dominant conversion of the direct SH-wave to P-wave is observed that is assumed to be caused by an increased presence of cavities. A potential fault distorting the vertical travel paths was detected by abnormal P-wave first

  10. Crustal seismicity and active fault system in the SE of Romania

    International Nuclear Information System (INIS)

    Raileanu, V; Bala, A.; Radulian, M.; Popescu, E.; Mateciuc, D.; Popa, M.; Dinu, C.; Diaconescu, V.

    2007-01-01

    Romania is known as a country with a high seismicity located in the Vrancea region where 2-3 strong intermediate depth earthquakes/century generate great damages and casualties. A moderate crustal seismicity is also observed in other zones of the country, with events having a moderate magnitude but sometimes with important economic and social effects on the locale scale. The crustal seismogenic zones are located in front of the Eastern Carpathian Bend, South Carpathians, Dobrogea, Banat, Crisana and Maramures regions. The SE part of Romania comprises some of the most active crustal seismic sources that generated earthquakes up to Mw=6.5 concentrated in more zones, namely: Vrancea crustal domain, E Vrancea zone that is overlapped on the Focsani basin, Barlad and Predobrogean depressions along with the North Dobrogea Orogen, Intramoesian and Shabla (Bulgaria) zones and Fagaras-Campulung-Sinaia zone. (authors)

  11. A dense microseismic monitoring network in Korea for uncovering relationship between seismic activity and neotectonic features

    Science.gov (United States)

    Kang, T.; Lee, J. M.; Kim, W.; Jo, B. G.; Chung, T.; Choi, S.

    2012-12-01

    A few tens of surface traces indicating movements in Quaternary were found in the southeastern part of the Korean Peninsula. Following both the geological and engineering definitions, those features are classified into "active", in geology, or "capable", in engineering, faults. On the other hand, the present-day seismicity of the region over a couple of thousand years is indistinguishable on the whole with the rest of the Korean Peninsula. It is therefore of great interest whether the present seismic activity is related to the neotectonic features or not. Either of conclusions is not intuitive in terms of the present state of seismic monitoring network in the region. Thus much interest in monitoring seismicity to provide an improved observation resolution and to lower the event-detection threshold has increased with many observations of the Quaternary faults. We installed a remote, wireless seismograph network which is composed of 20 stations with an average spacing of 10 km. Each station is equipped with a three-component Trillium Compact seismometer and Taurus digitizer. Instrumentation and analysis advancements are now offering better tools for this monitoring. This network is scheduled to be in operation over about one and a half year. In spite of the relatively short observation period, we expect that the high density of the network enables us to monitor seismic events with much lower magnitude threshold compared to the preexisting seismic network in the region. Following the Gutenberg-Richter relationship, the number of events with low magnitude is logarithmically larger than that with high magnitude. Following this rule, we can expect that many of microseismic events may reveal behavior of their causative faults, if any. We report the results of observation which has been performed over a year up to now.

  12. Using block pulse functions for seismic vibration semi-active control of structures with MR dampers

    Science.gov (United States)

    Rahimi Gendeshmin, Saeed; Davarnia, Daniel

    2018-03-01

    This article applied the idea of block pulse functions in the semi-active control of structures. The BP functions give effective tools to approximate complex problems. The applied control algorithm has a major effect on the performance of the controlled system and the requirements of the control devices. In control problems, it is important to devise an accurate analytical technique with less computational cost. It is proved that the BP functions are fundamental tools in approximation problems which have been applied in disparate areas in last decades. This study focuses on the employment of BP functions in control algorithm concerning reduction the computational cost. Magneto-rheological (MR) dampers are one of the well-known semi-active tools that can be used to control the response of civil Structures during earthquake. For validation purposes, numerical simulations of a 5-story shear building frame with MR dampers are presented. The results of suggested method were compared with results obtained by controlling the frame by the optimal control method based on linear quadratic regulator theory. It can be seen from simulation results that the suggested method can be helpful in reducing seismic structural responses. Besides, this method has acceptable accuracy and is in agreement with optimal control method with less computational costs.

  13. Emergency preparedness activities during an ongoing seismic swarm: the experience of the 2011-2012 Pollino (Southern Italy) sequence

    Science.gov (United States)

    Masi, A.; Mucciarelli, M.; Chiauzzi, L.; De Costanzo, G.; Loperte, G.

    2012-04-01

    Facing natural disasters effects can be a very difficult task lacking suitable activities and tools to preventively prepare the involved community (people, authorities, professionals, …) to the expected events. Therefore, a suite of preventive actions should be carried out to mitigate natural risks, in particular working to reduce the territorial vulnerability with respect to the specific natural hazard at hand, and to increase people response capacity. In fact, building social capacity helps to increase the risk perception and the people capacity to adapt to and cope with natural hazards. Since October 2011 a seismic swarm is affecting the Pollino mountain range, Southern Italy. At present the sequence is still ongoing, with more than 500 events with M>1, at least 40 well perceived by the population and a maximum magnitude at 3.6. The area mainly affected by the seismic sequence includes 12 villages, with a total population of about 50.000 inhabitants and, according to the current seismic hazard map it has high seismicity level. Such area was hit by a magnitude Ml=5.7 event in 1998 that produced macroseismic intensity not higher that VII-VIII degree of MCS scale and caused one dead, some injured and widespread damage in at least six municipalities. During the sequence, the National Department of Civil Protection (DPC) and the Civil Protection of Basilicata Region decided to put in action some measures aimed at verifying and enhancing emergency preparedness. These actions have been carried out with a constant and fruitful collaboration among the main stakeholders involved (scientific community, local and national governmental agencies, civil protection volunteers, etc) trough the following main activities: 1. collaboration between scientific community and the local and national offices of Civil Protection especially in the relationship with local authorities (e.g. mayors, which are civil protection authorities in their municipality); 2. interaction between DPC

  14. Active fault and other geological studies for seismic assessment: present state and problems

    International Nuclear Information System (INIS)

    Kakimi, Toshihiro

    1997-01-01

    Evaluation system of earthquakes from an active fault is, in Japan, based on the characteristic earthquake model of a wide sense that postulates essentially the same (nearly the maximum) magnitude and recurrence interval during the recent geological times. Earthquake magnitude M is estimated by empirical relations among M, surface rupture length L, and surface fault displacement D per event of the earthquake faults on land in Japan. Recurrence interval R of faulting/earthquake is calculated from D and the long-term slip rate S of a fault as R=D/S. Grouping or segmentation of complicatedly distributed faults is an important, but difficult problem in order to distinguish a seismogenic fault unit corresponding to an individual characteristic earthquake. If the time t of the latest event is obtained, the 'cautiousness' of a fault can be judged from R-t or t/R. According to this idea, several faults whose t/R exceed 0.5 have been designated as the 'precaution faults' having higher probability of earthquake occurrence than the others. A part of above evaluation has been introduced at first into the seismic-safety examination system of NPPs in 1978. According to the progress of research on active faults, the weight of interest in respect to the seismic hazard assessment shifted gradually from the historic data to the fault data. Most of recent seismic hazard maps have been prepared in consideration with active faults on land in Japan. Since the occurrence of the 1995 Hyogoken-Nanbu earthquake, social attention has been concentrated upon the seismic hazard due to active faults, because this event was generated from a well-known active fault zone that had been warned as a 'precaution fault'. In this paper, a few recent topics on other geological and geotechnical researches aiming at improving the seismic safety of NPPs in Japan were also introduced. (J.P.N.)

  15. Active fault and other geological studies for seismic assessment: present state and problems

    Energy Technology Data Exchange (ETDEWEB)

    Kakimi, Toshihiro [Nuclear Power Engineering Corp., Tokyo (Japan)

    1997-03-01

    Evaluation system of earthquakes from an active fault is, in Japan, based on the characteristic earthquake model of a wide sense that postulates essentially the same (nearly the maximum) magnitude and recurrence interval during the recent geological times. Earthquake magnitude M is estimated by empirical relations among M, surface rupture length L, and surface fault displacement D per event of the earthquake faults on land in Japan. Recurrence interval R of faulting/earthquake is calculated from D and the long-term slip rate S of a fault as R=D/S. Grouping or segmentation of complicatedly distributed faults is an important, but difficult problem in order to distinguish a seismogenic fault unit corresponding to an individual characteristic earthquake. If the time t of the latest event is obtained, the `cautiousness` of a fault can be judged from R-t or t/R. According to this idea, several faults whose t/R exceed 0.5 have been designated as the `precaution faults` having higher probability of earthquake occurrence than the others. A part of above evaluation has been introduced at first into the seismic-safety examination system of NPPs in 1978. According to the progress of research on active faults, the weight of interest in respect to the seismic hazard assessment shifted gradually from the historic data to the fault data. Most of recent seismic hazard maps have been prepared in consideration with active faults on land in Japan. Since the occurrence of the 1995 Hyogoken-Nanbu earthquake, social attention has been concentrated upon the seismic hazard due to active faults, because this event was generated from a well-known active fault zone that had been warned as a `precaution fault`. In this paper, a few recent topics on other geological and geotechnical researches aiming at improving the seismic safety of NPPs in Japan were also introduced. (J.P.N.)

  16. Multi-2D seismic imaging of the Solfatara crater (Campi Flegrei Caldera, southern Italy) from active seismic data

    Science.gov (United States)

    Gammaldi, S.; Amoroso, O.; D'Auria, L.; Zollo, A.

    2017-12-01

    Campi Flegrei is an active caldera characterized by secular, periodic episodes of spatially extended, low-rate ground deformation (bradyseism) accompanied by an intense seismic and geothermal activity. Its inner crater Solfatara is characterized by diffuse surface degassing and continuous fumarole activity. This points out the relevance of fluid and heat transport from depth and prompts for further research to improve the understanding of the hydrothermal system feeding processes and fluid migration to the surface. The experiment Repeated Induced Earthquake and Noise (RICEN) (EU Project MEDSUV), was carried out between September 2013 and November 2014 to investigate the space and time varying properties of the subsoil beneath the crater. The processed dataset consists of records from two 1D orthogonal seismic arrays deployed along WNW-ESE and NNE-SSW directions crossing the 400 m crater surface. To highlight the first P-wave arrivals a bandpass filter and an AGC were applied which allowed the detection of 17894 manually picked arrival times. Starting from a 1D velocity model, we performed a 2D non-linear Bayesian estimation. The method consists in retrieving the velocity model searching for the maximum of the "a posteriori" probability density function. The optimization is performed by the sequential use of the Genetic Algorithm and the Simplex methods. The retrieved images provide evidence for a very low P-velocity layer (Vp<500 m/s) associated with quaternary deposits, a low velocity (Vp=500-1500 m/s) water saturated deep layer at West, contrasted by a high velocity (Vp=2000-3200 m/s) layer correlated with a consolidated tephra deposit. The transition velocity range (from 1500 to 2000 m/s) suggests the possible presence of a gas-rich, accumulation volume. Based on the surface evidence of the gas released by the Bocca Grande and Bocca Nuova fumaroles at the Eastern border of Solfatara and the presence of the central deeper plume, we infer a detailed image for the

  17. High resolution seismic survey (of the) Rawlins, Wyoming underground coal gasification area. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Youngberg, A.D.; Berkman, E.; Orange, A.S.

    1983-01-01

    In October 1982, a high resolution seismic survey was conducted at the Gulf Research and Development Company's underground coal gasification test site near Rawlins, Wyoming. The objectives of the survey were to utilize high resolution seismic technology to locate and characterize two underground coal burn zones. Seismic data acquisition and processing parameters were specifically designed to emphasize reflections at the shallow depths of interest. A three-dimensional grid of data was obtained over the Rawlins burn zones. Processing included time varying filters, trace composition, and two-dimensional areal stacking of the data in order to identify burn zone anomalies. An anomaly was discernable resulting from the rubble-collapse cavity associated with the burn zone which was studied in detail at the Rawlins 1 and 2 test sites. 21 refs., 20 figs.

  18. Model of the seismic velocity distribution in the upper lithosphere of the Vrancea seismogenic zone and within the adjacent areas

    International Nuclear Information System (INIS)

    Raileanu, Victor; Bala, Andrei

    2002-01-01

    The task of this project is to perform a detailed seismic velocity model of the P waves in the crust and upper mantle crossed by the VRANCEA 2001 seismic line and to interpret it in structural terms. The velocity model aims to contribute to a new geodynamical model of the Eastern Carpathians evolution and to a better understanding of the causes of the Vrancea earthquakes. It is performed in cooperation with the University of Karlsruhe, Germany, and University of Bucharest. The Project will be completed in 5 working stages. Vrancea 2001 is the name of the seismic line recorded with about 780 seismic instruments deployed over more then 600 km length from eastern part of Romania (east Tulcea) through Vrancea area to Aiud and south Oradea. 10 big shots with charges from 300 kg to 1500 kg dynamite were detonated along seismic line. Field data quality is from good to very good and it provides information down to the upper mantle levels. Processing of data has been performed in the first stage of present project and it consisted in merging of all individual field records in seismograms for each shotpoint. Almost 800 individual records for each out of the 10 shots were merged in 10 seismograms with about 800 channels. A seismogram of shot point S (25 km NE of Ramnicu Sarat) is given. It is visible a high energy generated by shotpoint S. Pn wave can be traced until the western end of seismic line, about 25 km from source. In the second stage of project an interpretation of seismic data is achieved for the first 5 seismograms from the eastern half of seismic line, from Tulcea to Ramnicu Sarat. It is used a forward modeling procedure. 5 unidimensional (1D) velocity-depth function models are obtained. P wave velocity-depth function models for shotpoints from O to T are presented. Velocity-depth information is extended down to 40 km for shot R and 80 km for shot S. It should noticed the unusually high velocities at the shallow levels for Dobrogea area (O and P shots) and the

  19. Site response assessment using borehole seismic records

    Energy Technology Data Exchange (ETDEWEB)

    Park, Donghee; Chang, Chunjoong; Choi, Weonhack [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. The Korea Meteorological Administration (KMA) and the Korea Institute of Geology and Mining (KIGAM) have installed and are operating borehole seismometers at a depth of 70∼100 meters for the precise determination of epicenters. Also, Korea Hydro and Nuclear Power Co., Ltd. (KHNP) has installed and is operating 2 borehole seismic stations near Weolseong area to observe at a depth of 140 meters seismic activities connected to fault activity. KHNP plans to operate in the second half of 2014 a borehole seismic station for depths less than 300 and 600 meters in order to study the seismic response characteristics in deep strata. As a basic study for analyzing ground motion response characteristics at depths of about 300 to 600 meters in connection with the deep geological disposal of spent nuclear fuel, the present study examined the background noise response characteristics of the borehole seismic station operated by KHNP. In order to analyze the depth-dependent impact of seismic waves at deeper depths than in Korea, seismic data collected by Japan's KIK-net seismic stations were used and the seismic wave characteristics analyzed by size and depth. In order to analyze the borehole seismic observation data from the seismic station operated by KHNP, this study analyzed the background noise characteristics by using a probability density function.

  20. Site response assessment using borehole seismic records

    International Nuclear Information System (INIS)

    Park, Donghee; Chang, Chunjoong; Choi, Weonhack

    2014-01-01

    In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. The Korea Meteorological Administration (KMA) and the Korea Institute of Geology and Mining (KIGAM) have installed and are operating borehole seismometers at a depth of 70∼100 meters for the precise determination of epicenters. Also, Korea Hydro and Nuclear Power Co., Ltd. (KHNP) has installed and is operating 2 borehole seismic stations near Weolseong area to observe at a depth of 140 meters seismic activities connected to fault activity. KHNP plans to operate in the second half of 2014 a borehole seismic station for depths less than 300 and 600 meters in order to study the seismic response characteristics in deep strata. As a basic study for analyzing ground motion response characteristics at depths of about 300 to 600 meters in connection with the deep geological disposal of spent nuclear fuel, the present study examined the background noise response characteristics of the borehole seismic station operated by KHNP. In order to analyze the depth-dependent impact of seismic waves at deeper depths than in Korea, seismic data collected by Japan's KIK-net seismic stations were used and the seismic wave characteristics analyzed by size and depth. In order to analyze the borehole seismic observation data from the seismic station operated by KHNP, this study analyzed the background noise characteristics by using a probability density function

  1. Seismic prediction on the favorable efficient development areas of the Longwangmiao Fm gas reservoir in the Gaoshiti–Moxi area, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Guangrong Zhang

    2017-05-01

    Full Text Available The Lower Cambrian Longwangmiao Fm gas reservoir in the Gaoshiti–Moxi area, the Sichuan Basin, is a super giant monoblock marine carbonate gas reservoir with its single size being the largest in China. The key to the realization of high and stable production gas wells in this gas reservoir is to identify accurately high-permeability zones where there are dissolved pores or dissolved pores are superimposed with fractures. However, high quality dolomite reservoirs are characterized by large burial depth and strong heterogeneity, so reservoir prediction is of difficult. In this paper, related seismic researches were carried out and supporting technologies were developed as follows. First, a geologic model was built after an analysis of the existing data and forward modeling was carried out to establish a reservoir seismic response model. Second, by virtue of well-oriented amplitude processing technology, spherical diffusion compensation factor was obtained based on VSP well logging data and the true amplitude of seismic data was recovered. Third, the resolution of deep seismic data was improved by using the well-oriented high-resolution frequency-expanding technology and prestack time migration data of high quality was acquired. And fourth, multiple shoal facies reservoirs were traced by using the global automatic seismic interpretation technology which is based on stratigraphic model, multiple reservoirs which are laterally continuous and vertically superimposed could be predicted, and the areal distribution of high quality reservoirs could be described accurately and efficiently. By virtue of the supporting technologies, drilling trajectory is positioned accurately, and the deployed development wells all have high yield. These technologies also promote the construction of a modern supergiant gas field of tens of billions of cubic meters.

  2. Recent Vs. Historical Seismicity Analysis For Banat Seismic Region (Western Part Of Romania

    Directory of Open Access Journals (Sweden)

    Oros Eugen

    2015-03-01

    Full Text Available The present day seismic activity from a region reflects the active tectonics and can confirm the seismic potential of the seismogenic sources as they are modelled using the historical seismicity. This paper makes a comparative analysis of the last decade seismicity recorded in the Banat Seismic Region (western part of Romania and the historical seismicity of the region (Mw≥4.0. Four significant earthquake sequences have been recently localized in the region, three of them nearby the city of Timisoara (January 2012 and March 2013 and the fourth within Hateg Basin, South Carpathians (October 2013. These sequences occurred within the epicentral areas of some strong historical earthquakes (Mw≥5.0. The main events had some macroseismic effects on people up to some few kilometers from the epicenters. Our results update the Romanian earthquakes catalogue and bring new information along the local seismic hazard sources models and seismotectonics.

  3. Seismic Constraints on the Lithosphere-Asthenosphere Boundary Beneath the Izu-Bonin Area: Implications for the Oceanic Lithospheric Thinning

    Science.gov (United States)

    Cui, Qinghui; Wei, Rongqiang; Zhou, Yuanze; Gao, Yajian; Li, Wenlan

    2018-01-01

    The lithosphere-asthenosphere boundary (LAB) is the seismic discontinuity with negative velocity contrasts in the upper mantle. Seismic detections on the LAB are of great significance in understanding the plate tectonics, mantle convection and lithospheric evolution. In this paper, we study the LAB in the Izu-Bonin subduction zone using four deep earthquakes recorded by the permanent and temporary seismic networks of the USArray. The LAB is clearly revealed with sP precursors (sdP) through the linear slant stacking. As illustrated by reflected points of the identified sdP phases, the depth of LAB beneath the Izu-Bonin Arc (IBA) is about 65 km with a range of 60-68 km. The identified sdP phases with opposite polarities relative to sP phases have the average relative amplitude of 0.21, which means a 3.7% velocity drop and implies partial melting in the asthenosphere. On the basis of the crustal age data, the lithosphere beneath the IBA is located at the 1100 °C isotherm calculated with the GDH1 model. Compared to tectonically stable areas, such as the West Philippine Basin (WPB) and Parece Vela Basin (PVB) in the Philippine Sea, the lithosphere beneath the Izu-Bonin area shows the obvious lithospheric thinning. According to the geodynamic and petrological studies, the oceanic lithospheric thinning phenomenon can be attributed to the strong erosion of the small-scale convection in the mantle wedge enriched in volatiles and melts.

  4. Retrospective application of the "guidelines for monitoring mining subsurface activities for hydrocarbons exploitation, re-injection and storage activities (ILG)": insights from the analysis of 2012-2013 Emilia seismic sequence at the Cavone oilfield pilot site (Italy)

    Science.gov (United States)

    Buttinelli, M.; Chiarabba, C.; Anselmi, M.; Pezzo, G.; Improta, L.; Antoncecchi, I.

    2017-12-01

    In recent years, the debate on the interactions between wastewater disposal and induced seismicity is increasingly drawing the attention of the scientific community, since injections by high-rate wells have been directly associated to occurrence of even large seismic events. In February 2014, the Italian Ministry of Economic Development (MiSE), within the Commission on Hydrocarbon and Mining Resources (CIRM), issued the "guidelines for monitoring mining subsurface activities for hydrocarbons exploitation, re-injection and storage activities (ILG)". The ILG represent the first action in italy aimed at keeping the safety standards mostly in areas where the underground resources exploitation can induce seismicity, ground deformations and pore pressure changes of the reservoirs. Such guidelines also launched a "traffic light" operating system, for the first time defining threshold values and activation levels for such monitored parameters. To test the ILG implications (in particular of the traffic light system) we select the Cavone oilfield (Northern Italy) as test case, since this area was interested during the 2012-2013 by the Emilia Seismic sequence. Moreover, the potential influence of the Cavone oilfield activities in the 2012 earthquake trigger was debated for a long time within the scientific and not contexts, highlighting the importance of seismic monitoring in hydrocarbons exploitation, re-injection and storage areas. In this work we apply the ILG retrospectively to the Cavone oilfield and surrounding areas, just for the seismicity parameter (pore pressure and ground deformation were not taken into account because out of the traffic light system). Since each seismicity catalogue available for the 2012 sequence represents a different setting of monitoring system, we carefully analyzed how the use of such catalogues impact on the overcoming of the threshold imposed by the ILG. In particular, we focus on the use of 1D and 3D velocity models developed ad hoc or

  5. Kinematics of active deformation across the Western Kunlun mountain range (Xinjiang, China), and potential seismic hazards within the southern Tarim Basin

    DEFF Research Database (Denmark)

    Guilbaud, Christelle; Simoes, Martine; Barrier, Laurie

    2017-01-01

    remains seismic. To quantify the rate of active deformation and the potential for major earthquakes in this region, we combine a structural and quantitative morphological analysis of the Yecheng-Pishan fold, along the topographic mountain front in the epicentral area. Using a seismic profile, we derive......The Western Kunlun mountain range is a slowly converging intra-continental orogen where deformation rates are too low to be properly quantified from geodetic techniques. This region has recorded little seismicity, but the recent July 2015 (Mw 6.4) Pishan earthquake shows that this mountain range...... a structural cross-section in which we identify the fault that broke during the Pishan earthquake, an 8-12 km deep blind ramp beneath the Yecheng-Pishan fold. Combining satellite images and DEMs, we achieve a detailed morphological analysis of the Yecheng-Pishan fold, where we find nine levels of incised...

  6. Analysis of aeromagnetic data for interpretation of seismicity at Fayoum-Cairo area, Egypt

    Directory of Open Access Journals (Sweden)

    Ahmed Bakr Khalil

    2014-01-01

    Full Text Available An aeromagnetic reconnaissance study is presented to delineate the subsurface structure and tectonic setting at the Fayoum-Cairo district, which experienced a damaging earthquake on October 12, 1992 of magnitude (M = 5.7. Analysis of aeromagnetic and seismicity data demonstrate three significant tectonic faults with trending to the NE-SW, NW-SE and E-W. The basement is uplifted in the northern and central parts with a depth of 1.3 km, and deepening in the southern part with a depth of 2.5 km. This is a seismically active zone and historically has experienced damaging earthquakes. In 1847, a damaging earthquake with maximum epicentral intensity (Modified Mercalli Intensity (MMI = VII was located there. On the eastern side, earthquake sources are well recognized at different locations. These sources created events of moderate size magnitude M < 5. The focal mechanisms of the major events from these sources are generally strike-slip with normal component. The focal mechanism of the earthquake on October 12, 1992 is normal fault type with strike trends in the NW-SE direction. These fault plane solutions are consistent with the tectonic trends derived from the aeromagnetic data mentioned above and suggest that the new tectonics of northeast Africa is predominant.     Resumen   Este estudio presenta una exploración aeromagnética para delimitar la estructura subsuperficial y el marco tectónico del distrito de Fayoum-Cairo, que sufrió un terremoto el 12 de octubre de 1992 de magnitud M=5.7. Los análisis de datos sismicidad y aeromagnéticos señalan tres fallas tectónicas significativas con tendencias NE-SO, NO-SE y E-O. El subsuelo se elevó en el norte y en el centro a una profundidad de 1,3 kilómetros, y se hundió en el sur con una profundidad de 2,5 kilómetros. Esta es una zona sísmicamente activa que en su historia ha tenido terremotos dañinos. En 1847 tuvo lugar un terremoto con intensidad epicentral máxima (escala sismológica de

  7. Outcrop - core correlation and seismic modeling of the Athabasca Oil Sands Deposit, Fort McMurray area, northeast Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Hein, F.J. [Alberta Geological Survey, Calgary, AB (Canada); Langenberg, C.W.; Cotterill, D.C.; Berhane, H. [Alberta Geological Survey, Edmonton, AB (Canada); Lawton, D.; Cunningham, J. [Calgary Univ., AB (Canada)

    1999-11-01

    A joint study between the Alberta Geological Survey and the University of Calgary was conducted which involved a detailed facies analysis of cores and outcrops from the Athabasca Oil Sands Deposit in Alberta`s Steepbank area. A unified facies classification for the deposit was developed. Larger scale facies associations were also determined, as well as proxy sonic logs for outcrops used in seismic modeling. The cores which were displayed exhibited detailed sedimentological and stratigraphic analysis of 10 outcrops in the area. 7 refs.

  8. Marysville, Montana, Geothermal Project: Geological and Geophysical Exploration at Marysville Geothermal Area: 1973 Results (With a Section on ''Contemporary Seismicity in the Helena, Montana Region'')

    Energy Technology Data Exchange (ETDEWEB)

    Blackwell, D.D.; Brott, C.A.; Goforth, T.T.; Holdaway, M.J.; Morgan, P.; Friedline, R.; Smith, R.L.

    1974-04-01

    This report describes field geological and geophysical investigations of the Marysville geothermal area, including geological mapping, sample collection, a ground total field magnetic survey, gravity survey, seismic ground noise survey, microearthquake survey, and heat flow study. Although sufficient data are not available, it is likely that a magma chamber is the heat source. A second section, ''Contemporary Seismicity in the Helena, Montana, Region'' examines the coincidence of high heat flow and earthquake swarm activity in this region. (GRA)

  9. SH-wave reflection seismic and VSP as tools for the investigation of sinkhole areas in Germany

    Science.gov (United States)

    Wadas, Sonja; Tschache, Saskia; Polom, Ulrich; Buness, Hermann; Krawczyk, Charlotte M.

    2017-04-01

    Sinkholes can lead to damage of buildings and infrastructure and they can cause life-threatening situations, if they occur in urban areas. The process behind this phenomenon is called subrosion. Subrosion is the underground leaching of soluble rocks, e.g. anhydrite and gypsum, due to the contact with ground- and meteoric water. Depending on the leached material, and especially the dissolution rate, different kinds of subrosion structures evolve in the subsurface. The two end members are collapse and depression structures. For a better understanding of the subrosion processes a detailed characterization of the resulting structures is necessary. In Germany sinkholes are a problem in many areas. In northern Germany salt and in central and southern Germany sulfate and carbonate deposits are affected by subrosion. The study areas described here are located in Thuringia in central Germany and the underground is characterized by soluble Permian deposits. The occurrence of 20 to 50 sinkholes is reported per year. Two regions, Bad Frankenhausen and Schmalkalden, are investigated, showing a leaning church tower and a sinkhole of 30 m diameter and 20 m depth, respectively. In Bad Frankenhausen four P-wave and 16 SH-wave reflection seismic profiles were carried out, supplemented by three zero-offset VSPs. In Schmalkalden five SH-wave reflection seismic profiles and one zero-offset VSP were acquired. The 2-D seismic sections, in particular the SH-wave profiles, showed known and unknown near-surface faults in the vicinity of sinkholes and depressions. For imaging the near-surface ( 2,5, probably indicating unstable areas due to subrosion. We conclude, that SH-wave reflection seismic offer an important tool for the imaging and characterization of near-surface subrosion structures and the identification of unstable zones, especially in combination with P-wave reflection seismic and zero-offset VSP with P- and S-waves. Presumably there is a connection between the presence of large

  10. Seismic analysis of safety class 1 incinerator glovebox in building 232-Z 200 W Area

    International Nuclear Information System (INIS)

    Ocoma, E.C.

    1994-09-01

    This report documents the seismic evaluation for the existing safety class 1 incinerator glovebox in 232Z Building. The glovebox is no longer in use and most of the internal mechanical equipment have been removed. However, the insulation firebricks are still in the glovebox for proper disposal

  11. Postglacial seismic activity along the Isovaara-Riikonkumpu fault complex

    Science.gov (United States)

    Ojala, Antti E. K.; Mattila, Jussi; Ruskeeniemi, Timo; Palmu, Jukka-Pekka; Lindberg, Antero; Hänninen, Pekka; Sutinen, Raimo

    2017-10-01

    Analysis of airborne LiDAR-based digital elevation models (DEMs), trenching of Quaternary deposits, and diamond drilling through faulted bedrock was conducted to characterize the geological structure and full slip profiles of the Isovaara-Riikonkumpu postglacial fault (PGF) complex in northern Finland. The PGF systems are recognized from LiDAR DEMs as a complex of surface ruptures striking SW-NE, cutting through late-Weichselian till, and associated with several postglacial landslides within 10 km. Evidence from the terrain rupture characteristics, the deformed and folded structure of late-Weichselian till, and the 14C age of 11,300 cal BP from buried organic matter underneath the Sotka landslide indicates a postglacial origin of the Riikonkumpu fault (PGF). The fracture frequency and lithology of drill cores and fault geometry in the trench log indicate that the Riikonkumpu PGF dips to WNW with a dip angle of 40-45° at the Riikonkumpu site and close to 60° at the Riikonvaara site. A fault length of 19 km and the mean and maximum cumulative vertical displacement of 1.3 m and 4.1 m, respectively, of the Riikonkumpu PGF system indicate that the fault potentially hosted an earthquake with a moment magnitude MW ≈ 6.7-7.3 assuming that slip was accumulated in one seismic event. Our interpretation further suggests that the Riikonkumpu PGF system is linked to the Isovaara PGF system and that, together, they form a larger Isovaara-Riikonkumpu fault complex. Relationships between the 38-km-long rupture of the Isovaara-Riikonkumpu complex and the fault offset parameters, with cumulative displacement of 1.5 and 8.3 m, respectively, indicate that the earthquake(s) contributing to the PGF complex potentially had a moment magnitude of MW ≈ 6.9-7.5. In order to adequately sample the uncertainty space, the moment magnitude was also estimated for each major segment within the Isovaara-Riikonkumpu PGF complex. These estimates vary roughly between MW ≈ 5-8 for the individual

  12. Disturbances in groundwater chemical parameters related to seismic and volcanic activity in Kamchatka (Russia

    Directory of Open Access Journals (Sweden)

    P. F. Biagi

    2004-01-01

    Full Text Available Starting from 1992 geochemical data are being collected with a mean sampling frequency of three days in the form of the pH value and of the most common ions and gases in the groundwater in one deep well located in Petropavlovsk, the capital city of Kamchatka (Russia. On 1 January 1996 a strong eruption started from the Karymsky volcano, that is located about 100km far from the well, in the north-northeastern direction. At the same time, a large earthquake (M=6.9 occurred in the Karymsky area. On 5 December 1997 a very large earthquake (M=7.7 occurred offshore, at a distance of 350km from the well and towards the same direction. The analysis of the geochemical data shows clear variations in the raw temporal trends on both cases. For the first event, a clear premonitory phase appeared; for the second one, some pre-seismic variations could be revealed but permanent modifications of the chemistry of the water subsequent to the earthquake are very clear. In both cases the feature of the geochemical variations is consistent with an afflux of new water in the aquifer connected with the well and with an escape of the Carbon dioxide gas from the ground in different directions. A schematic model able to justify such a phenomenology and the connections of the geochemical variations with the previous tectonic activities is proposed.

  13. A dynamical analysis of the seismic activity of Villarrica volcano (Chile) during September-October 2000

    Energy Technology Data Exchange (ETDEWEB)

    Tarraga, Marta [Departamento de Volcanologia. Museo Nacional de Ciencias Naturales, CSIC, Madrid (Spain)], E-mail: martat@mncn.csic.es; Carniel, Roberto [Dipartimento di Georisorse e Territorio, Universita di Udine, Via Cotonificio 114, 33100 Udine (Italy)], E-mail: roberto.carniel@uniud.it; Ortiz, Ramon; Garcia, Alicia [Departamento de Volcanologia. Museo Nacional de Ciencias Naturales, CSIC, Madrid (Spain); Moreno, Hugo [Observatorio Volcanologico de los Andes del Sur (OVDAS), Servicio Nacional de Geologia y Mineria de Chile (SERNAGEOMIN), Temuco, IX Region (Chile)

    2008-09-15

    Although Villarrica volcano in Chile is one of the most active in the southern Andes, the literature studying its seismic activity is relatively scarce. An interesting problem recently tackled is the possibility for a regional tectonic event to trigger a change in the volcanic activity of this basaltic to basaltic-andesitic volcano, which is in turn reflected in the time evolution of the properly volcanic seismicity, especially in the form of a continuous volcanic tremor. In this work, we conduct a spectral, dynamical and statistical analysis of the tremor recorded during September and October 2000, in order to characterize the anomalous behaviour of the volcano following a tectonic event recorded on 20th September 2000. The observed dynamical transitions are compared with remote sensing and visual observations describing the changes in the eruptive style of the volcano.

  14. A dynamical analysis of the seismic activity of Villarrica volcano (Chile) during September-October 2000

    International Nuclear Information System (INIS)

    Tarraga, Marta; Carniel, Roberto; Ortiz, Ramon; Garcia, Alicia; Moreno, Hugo

    2008-01-01

    Although Villarrica volcano in Chile is one of the most active in the southern Andes, the literature studying its seismic activity is relatively scarce. An interesting problem recently tackled is the possibility for a regional tectonic event to trigger a change in the volcanic activity of this basaltic to basaltic-andesitic volcano, which is in turn reflected in the time evolution of the properly volcanic seismicity, especially in the form of a continuous volcanic tremor. In this work, we conduct a spectral, dynamical and statistical analysis of the tremor recorded during September and October 2000, in order to characterize the anomalous behaviour of the volcano following a tectonic event recorded on 20th September 2000. The observed dynamical transitions are compared with remote sensing and visual observations describing the changes in the eruptive style of the volcano

  15. Activation of the SIGRIS monitoring system for ground deformation mapping during the Emilia 2012 seismic sequence, using COSMO-SkyMed InSAR data

    Directory of Open Access Journals (Sweden)

    Stefano Salvi

    2012-10-01

    Full Text Available On May 20, 2012, at 02:03 UTC, a moderate earthquake of local magnitude, Ml 5.9 started a seismic sequence in the central Po Plain of northern Italy The mainshock occurred in an area where seismicity of comparable magnitude has neither been recorded nor reported in the historical record over the last 1,000 years. The aftershock sequence evolved rapidly near the epicenter, with diminishing magnitudes until May 29, 2012, when at 07:00 UTC a large earthquake of Ml 5.8 occurred 12 km WSW of the mainshock, starting a new seismic sequence in the western area; a total of seven earthquakes with Ml >5 occurred in the area between May 20 and June 3, 2012. Immediately after the mainshock, the Italian Department of Civil Protection requested the Italian Space Agency to activate the Constellation of Small Satellites for Mediterranean Basin Observation (COSMO-SkyMed to provide Interferometric Synthetic Aperture Radar (InSAR coverage of the area. COSMO-SkyMed consists of four satellites in a 16-day repeat-pass cycle, with each carrying the same SAR payload. In the current orbital configuration, within each 16-day cycle, image pairs with temporal baselines of 1, 3, 4 and 8 days can be formed from the images acquired by the four different sensors. Combined with the availability of a wide range of electronically steered antenna beams with incidence angles ranging from about 16˚ to 50˚ at near-range, this capability allows trade-offs between temporal and spatial coverage to be exploited during acquisition planning. A joint team involving the Istituto Nazionale di Geofisica e Vulcanologia (INGV and the Istituto per il Rilevamento Elettromagnetico dell'Ambiente (IREA-CNR was activated to generate InSAR-based scientific products to support the emergency management. In this framework, the ASI and DPC requested that INGV activated the Space-based Monitoring System for Seismic Risk Management (SIGRIS. SIGRIS consists of a hardware/software infrastructure that is

  16. ACTIVITY AND Vp/Vs RATIO OF VOLCANO-TECTONIC SEISMIC SWARM ZONES AT NEVADO DEL RUIZ VOLCANO, COLOMBIA

    Directory of Open Access Journals (Sweden)

    Londoño B. John Makario

    2010-06-01

    Full Text Available An analysis of the seismic activity for volcano-tectonic earthquake (VT swarms zones at Nevado del Ruiz Volcano (NRV was carried out for the interval 1985- 2002, which is the most seismic active period at NRV until now (2010. The swarm-like seismicity of NRV was frequently concentrated in very well defined clusters around the volcano. The seismic swarm zone located at the active crater was the most active during the entire time. The seismic swarm zone located to the west of the volcano suggested some relationship with the volcanic crises. It was active before and after the two eruptions occurred in November 1985 and September 1989. It is believed that this seismic activity may be used as a monitoring tool of volcanic activity. For each seismic swarm zone the Vp/Vs ratio was also calculated by grouping of earthquakes and stations. It was found that each seismic swarm zone had a distinct Vp/Vs ratio with respect to the others, except for the crater and west swarm zones, which had the same value. The average Vp/Vs ratios for the seismic swarm zones located at the active crater and to the west of the volcano are about 6-7% lower than that for the north swarm zone, and about 3% lower than that for the south swarm zone. We suggest that the reduction of the Vp/Vs ratio is due to degassing phenomena inside the central and western earthquake swarm zones, or due to the presence of microcracks inside the volcano. This supposition is in agreement with other studies of geophysics, geochemistry and drilling surveys carried out at NRV.

  17. ENEA activities on seismic isolation of nuclear and non-nuclear structures

    International Nuclear Information System (INIS)

    Martelli, A.; Masoni, P.; Forni, M.; Indirli, M.; Spadoni, B.; Di Pasquale, G.; Lucarelli, V.; Sano, T.; Bonacina, G.; Castoldi, A.

    1989-01-01

    Work on seismic isolation of nuclear and non-nuclear structures was started by ENEA in cooperation with ISMES in 1988. The first activity consisted of a proposal for guidelines for seismically isolated nuclear plants using high-damping, steel-laminated elastomer bearings. This is being performed in the framework of an agreement with General Electric Company. Furthermore, research and development work has been defined and recently initiated to support development of the seismic isolation guidelines as well as that of qualification procedures for seismic isolation systems in general. The present R and D work includes static and dynamic experiments on single bearings, shake table tests with multi-axial simultaneous excitations on reduced-scale mockups of isolated structures supported by multiple bearings, and dynamic tests on large-scale isolated structures with on-site test techniques. It also includes the development and validation of finite-element nonlinear models of the single bearings, as well as those of simplified design tools for the analysis of the isolated structures dynamic behavior. Extension of this work is foreseen in a wider national frame

  18. Active crustal deformation of the El Salvador Fault Zone (ESFZ) using GPS data: Implications in seismic hazard assessment

    Science.gov (United States)

    Staller, Alejandra; Benito, Belen; Jesús Martínez-Díaz, José; Hernández, Douglas; Hernández-Rey, Román; Alonso-Henar, Jorge

    2014-05-01

    El Salvador, Central America, is part of the Chortis block in the northwestern boundary of the Caribbean plate. This block is interacting with a diffuse triple junction point with the Cocos and North American plates. Among the structures that cut the Miocene to Pleistocene volcanic deposits stands out the El Salvador Fault Zone (ESFZ): It is oriented in N90º-100ºE direction, and it is composed of several structural segments that deform Quaternary deposits with right-lateral and oblique slip motions. The ESFZ is seismically active and capable of producing earthquakes such as the February 13, 2001 with Mw 6.6 (Martínez-Díaz et al., 2004), that seriously affected the population, leaving many casualties. This structure plays an important role in the tectonics of the Chortis block, since its motion is directly related to the drift of the Caribbean plate to the east and not with the partitioning of the deformation of the Cocos subduction (here not coupled) (Álvarez-Gómez et al., 2008). Together with the volcanic arc of El Salvador, this zone constitutes a weakness area that allows the motion of forearc block toward the NW. The geometry and the degree of activity of the ESFZ are not studied enough. However their knowledge is essential to understand the seismic hazard associated to this important seismogenic structure. For this reason, since 2007 a GPS dense network was established along the ESFZ (ZFESNet) in order to obtain GPS velocity measurements which are later used to explain the nature of strain accumulation on major faults along the ESFZ. The current work aims at understanding active crustal deformation of the ESFZ through kinematic model. The results provide significant information to be included in a new estimation of seismic hazard taking into account the major structures in ESFZ.

  19. Seismic evaluation of Tank 241C106 in support of retrieval activities

    International Nuclear Information System (INIS)

    Wallace, D.A.

    1994-01-01

    Tank 241C106 (C106) is a domed, single-shell high-level waste storage tank that has been in service in the 200 East Area of the Hanford Site since 1947. Tank C106 is one of twelve tanks in a 4 x 3 array with a 100-ft center-to-center spacing. Each of the tanks is approximately 75 ft in diameter, 24-ft high at the haunch, and 33-ft high at the dome apex. The level of waste in C106 and the associated thermal environment have varied throughout the life of the tanks with the peak temperature in the concrete reaching approximately 300 F at the base of the tank in the mid-1970's (Bander 1992). The calculated peak temperature in the concrete has decreased since that time to approximately 200 F. The peak temperature occurs at the inside bottom of the tank; concrete temperatures in the wall and dome are less than 130 F. The waste inside the tank is primarily solid matter approximately 7- to 8-ft deep. The tank is completely buried in dry, sandy soil to a depth of approximately 6 ft at the dome apex. The in situ evaluation of C106 documented in July 1994 includes only the effects of gravity and thermal loads. A preliminary seismic evaluation of C106 considering only horizontal excitation demonstrated the finite-element program SASSI (A System for Analysis of Soil-Structure Interaction) and provided an estimate of seismic effects including soil-to-structure interaction. This final seismic evaluation expands on the preliminary seismic evaluation to include further verification and refinement of analysis parameters, quantification to tank-to-tank and waste-to-tank interaction, and examination of the effects of vertical seismic excitation. The concrete structure of tank C106 is classified as a Safety Class 1 non-reactor structure

  20. Studies of the Correlation Between Ionospheric Anomalies and Seismic Activities in the Indian Subcontinent

    International Nuclear Information System (INIS)

    Sasmal, S.; Chakrabarti, S. K.; Chakrabarti, S.

    2010-01-01

    The VLF (Very Low Frequency) signals are long thought to give away important information about the Lithosphere-Ionosphere coupling. It is recently established that the ionosphere may be perturbed due to seismic activities. The effects of this perturbation can be detected through the VLF wave amplitude. There are several methods to find this correlations and these methods can be used for the prediction of these seismic events. In this paper, first we present a brief history of the use of VLF propagation method for the study of seismo-ionospheric correlations. Then we present different methods proposed by us to find out the seismo-ionospheric correlations. At the Indian Centre for Space Physics, Kolkata we have been monitoring the VTX station at Vijayanarayanam from 2002. In the initial stage, we received 17 kHz signal and latter we received 18.2 kHz signal. In this paper, first we present the results for the 17 kHz signal during Sumatra earthquake in 2004 obtained from the terminator time analysis method. Then we present much detailed and statistical analysis using some new methods and present the results for 18.2 kHz signal. In order to establish the correlation between the ionospheric activities and the earthquakes, we need to understand what are the reference signals throughout the year. We present the result of the sunrise and sunset terminators for the 18.2 kHz signal as a function of the day of the year for a period of four years, viz, 2005 to 2008 when the solar activity was very low. In this case, the signal would primarily be affected by the Sun due to normal sunrise and sunset effects. Any deviation from this standardized calibration curve would point to influences by terrestrial (such as earthquakes) and extra-terrestrial (such as solar activities and other high energy phenomena). We present examples of deviations which occur in a period of sixteen months and show that the correlations with seismic events is significant and typically the highest deviation

  1. LASR-Guided Variability Subtraction: The Linear Algorithm for Significance Reduction of Stellar Seismic Activity

    Science.gov (United States)

    Horvath, Sarah; Myers, Sam; Ahlers, Johnathon; Barnes, Jason W.

    2017-10-01

    Stellar seismic activity produces variations in brightness that introduce oscillations into transit light curves, which can create challenges for traditional fitting models. These oscillations disrupt baseline stellar flux values and potentially mask transits. We develop a model that removes these oscillations from transit light curves by minimizing the significance of each oscillation in frequency space. By removing stellar variability, we prepare each light curve for traditional fitting techniques. We apply our model to $\\delta$-Scuti KOI-976 and demonstrate that our variability subtraction routine successfully allows for measuring bulk system characteristics using traditional light curve fitting. These results open a new window for characterizing bulk system parameters of planets orbiting seismically active stars.

  2. Radon variations in active volcanoes and in regions with high seismicity: internal and external factors

    International Nuclear Information System (INIS)

    Segovia, N.; Cruz-Reyna, S. De la; Mena, M.

    1986-01-01

    The results of 4 years of observations of radon concentrations in soils of active volcanoes of Costa Rica and a highly seismic region in Mexico are discussed. A distinction is made between the influences of external (mostly meteorological) and internal (magmatic or tectonic) factors on the variation in radon levels. The geological meaning of the radon data can be thus enhanced if the external factors are excluded. (author)

  3. Three-Dimensional Seismic Structure of the Mid-Atlantic Ridge: An Investigation of Tectonic, Magmatic, and Hydrothermal Processes in the Rainbow Area

    Science.gov (United States)

    Dunn, Robert A.; Arai, Ryuta; Eason, Deborah E.; Canales, J. Pablo; Sohn, Robert A.

    2017-12-01

    To test models of tectonic, magmatic, and hydrothermal processes along slow-spreading mid-ocean ridges, we analyzed seismic refraction data from the Mid-Atlantic Ridge INtegrated Experiments at Rainbow (MARINER) seismic and geophysical mapping experiment. Centered at the Rainbow area of the Mid-Atlantic Ridge (36°14'N), this study examines a section of ridge with volcanically active segments and a relatively amagmatic ridge offset that hosts the ultramafic Rainbow massif and its high-temperature hydrothermal vent field. Tomographic images of the crust and upper mantle show segment-scale variations in crustal structure, thickness, and the crust-mantle transition, which forms a vertical gradient rather than a sharp boundary. There is little definitive evidence for large regions of sustained high temperatures and melt in the lower crust or upper mantle along the ridge axes, suggesting that melts rising from the mantle intrude as small intermittent magma bodies at crustal and subcrustal levels. The images reveal large rotated crustal blocks, which extend to mantle depths in some places, corresponding to off-axis normal fault locations. Low velocities cap the Rainbow massif, suggesting an extensive near-surface alteration zone due to low-temperature fluid-rock reactions. Within the interior of the massif, seismic images suggest a mixture of peridotite and gabbroic intrusions, with little serpentinization. Here diffuse microearthquake activity indicates a brittle deformation regime supporting a broad network of cracks. Beneath the Rainbow hydrothermal vent field, fluid circulation is largely driven by the heat of small cooling melt bodies intruded into the base of the massif and channeled by the crack network and shallow faults.

  4. Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: A European perspective

    Science.gov (United States)

    Grigoli, Francesco; Cesca, Simone; Priolo, Enrico; Rinaldi, Antonio Pio; Clinton, John F.; Stabile, Tony A.; Dost, Bernard; Fernandez, Mariano Garcia; Wiemer, Stefan; Dahm, Torsten

    2017-06-01

    Due to the deep socioeconomic implications, induced seismicity is a timely and increasingly relevant topic of interest for the general public. Cases of induced seismicity have a global distribution and involve a large number of industrial operations, with many documented cases from as far back to the beginning of the twentieth century. However, the sparse and fragmented documentation available makes it difficult to have a clear picture on our understanding of the physical phenomenon and consequently in our ability to mitigate the risk associated with induced seismicity. This review presents a unified and concise summary of the still open questions related to monitoring, discrimination, and management of induced seismicity in the European context and, when possible, provides potential answers. We further discuss selected critical European cases of induced seismicity, which led to the suspension or reduction of the related industrial activities.

  5. Goals and activities of the JICA technical cooperation project on reduction of seismic risk in Romania

    International Nuclear Information System (INIS)

    Vacareanu, R.; Kato, H.

    2007-01-01

    Japan International Cooperation Agency (JICA) Technical Cooperation Project on Reduction of Seismic Risk for Buildings and Structures started in Romania on October 1, 2002. The aim of the Project is to strengthen the capacity of earthquake disaster related activities in Romania. The Project approval is the result of four years of intensive efforts made by professionals from Technical University of Civil Engineering Bucharest (UTCB), Ministry of Transport, Constructions and Tourism (MTCT), Romania, National Building Research Institute (INCERC) Bucharest, JICA, Building Research Institute (BRI), Tsukuba, and National Institute for Land, Infrastructure and Management (NILIM), Tsukuba, Japan. The duration of the Project is five years. The implementing agency is the National Center for Seismic Risk Reduction (NCSRR) as a public institution of national interest under MTCT. The activities are carried out by NCSRR in partnership with UTCB and INCERC. During the Project period, 29 young Romanian engineers were trained in Japan, 7 Japanese experts and 37 Japanese experts worked for long-term and short-term, respectively in Romania. Equipment for seismic instrumentation, dynamic characterization of soil and structural testing rising up approximately to 260 million yens (i.e. 2.17 million USD) were donated by JICA to Romania, through NCSRR. The total cost of the Project is roughly 7 million USD. The paper describes the main activities and results of the Project until the JICA Final Evaluation Mission (March 2007). (authors)

  6. Seismic monitoring leveraging existing telecom infrastructure at the SDASA: Active, passive, and ambient-noise analysis

    KAUST Repository

    Martin, Eileen R.

    2017-11-28

    We analyze active and passive seismic data recorded by the Stanford distributed acoustic sensing array (SDASA) located in conduits under the Stanford University campus. For the active data we used low-energy sources (betsy gun and sledge hammer) and recorded data using both the DAS array and 98 three-component nodes deployed along a 2D line. The joint analysis of shot profiles extracted from the two data sets shows that some surface waves and refracted events are consistently recorded by the DAS array. In areas where geophone coupling was suboptimal because of surface obstructions, DAS recordings are more coherent. In contrast, surface waves are more reliably recorded by the geophones than the DAS array. Because of the noisy environment and weak sources, neither data set shows clear reflections. We demonstrate the repeatability of DAS recordings of local earthquakes by comparing two weak events (magnitude 0.95 and 1.34) with epicenters 100 m apart that occurred only one minute from each other. Analyzing another local, and slightly stronger, earthquake (magnitude 2.0) we show how the kinematics of both the P-arrival and S-arrival can be measured from the DAS data. Interferometric analysis of passive data shows that reliable virtual-source responses can be extracted from the DAS data. We observe Rayleigh waves when correlating aligned receivers, and Love waves when correlating receivers belonging to segments of the array parallel to each other. Dispersion analysis of the virtual sources shows the expected decrease in surface-wave velocity with increasing frequency.

  7. Seismic monitoring leveraging existing telecom infrastructure at the SDASA: Active, passive, and ambient-noise analysis

    KAUST Repository

    Martin, Eileen R.; Castillo, Chris M.; Cole, Steve; Sawasdee, Paphop Stock; Yuan, Siyuan; Clapp, Robert; Karrenbach, Martin; Biondi, Biondo L.

    2017-01-01

    We analyze active and passive seismic data recorded by the Stanford distributed acoustic sensing array (SDASA) located in conduits under the Stanford University campus. For the active data we used low-energy sources (betsy gun and sledge hammer) and recorded data using both the DAS array and 98 three-component nodes deployed along a 2D line. The joint analysis of shot profiles extracted from the two data sets shows that some surface waves and refracted events are consistently recorded by the DAS array. In areas where geophone coupling was suboptimal because of surface obstructions, DAS recordings are more coherent. In contrast, surface waves are more reliably recorded by the geophones than the DAS array. Because of the noisy environment and weak sources, neither data set shows clear reflections. We demonstrate the repeatability of DAS recordings of local earthquakes by comparing two weak events (magnitude 0.95 and 1.34) with epicenters 100 m apart that occurred only one minute from each other. Analyzing another local, and slightly stronger, earthquake (magnitude 2.0) we show how the kinematics of both the P-arrival and S-arrival can be measured from the DAS data. Interferometric analysis of passive data shows that reliable virtual-source responses can be extracted from the DAS data. We observe Rayleigh waves when correlating aligned receivers, and Love waves when correlating receivers belonging to segments of the array parallel to each other. Dispersion analysis of the virtual sources shows the expected decrease in surface-wave velocity with increasing frequency.

  8. Adaptive semi-active control of buildings under seismic solicitations

    International Nuclear Information System (INIS)

    Roberti, V.; Jezequel, L.

    1993-01-01

    This paper describes an adaptive semi-active control method whereby nonlinear distributed systems are identified by their dynamical response. Approximate procedures are proposed which take into account the nonlinear behavior of the dynamic system considered. It is shown that only slight knowledge of nonlinearities is needed to apply feedback and feedforward control laws. The method is implemented to a simple example of a building with three degrees of freedom and the numerical results are analyzed

  9. High-resolution seismic monitoring of rockslide activity in the Illgraben, Switzerland

    Science.gov (United States)

    Burtin, Arnaud; Hovius, Niels; Dietze, Michael; McArdell, Brian

    2014-05-01

    Rockfalls and rockslides are important geomorphic processes in landscape dynamics. They contribute to the evolution of slopes and supply rock materials to channels, enabling fluvial incision. Hillslope processes are also a natural hazard that we need to quantify and, if possible, predict. For these reasons, it is necessary to determine the triggering conditions and mechanisms involved in rockfalls. Rainfall is a well-known contributor since water, through soil moisture or pore pressure, may lead to the inception and propagation of cracks and can induce slope failure. Water can also affect slope stability through effects of climatic conditions such as the fluctuations of temperature around the freezing point. During the winter of 2012, we have recorded with a seismic array of 8 instruments substantial rockslide activity that affected a gully in the Illgraben catchment in the Swiss Alps. Three stations were positioned directly around the gully with a nearest distance of 400 m. The period of intense activity did not start during a rainstorm as it is common in summer but during a period of oscillation of temperatures around the freezing point. The activity did not occur in a single event but lasted about a week with a decay in time of the event frequency. Many individual events had two distinct seismic signals, with first, a short duration phase of about 10 s at frequencies below 5 Hz that we interpret as a slope failure signature, followed by a second long duration signal of > 60 s at frequencies above 10 Hz that we attribute to the propagation of rock debris down the slope. Thanks to the array of seismic sensors, we can study the fine details of this rockslide sequence by locating the different events, determining their distribution in time, and systematic quantification of seismic metrics (energy, duration, intensity...). These observations are compared to independent meteorological constrains and laser scan data to obtain an estimate of the volume mobilized by the

  10. MIGRATION OF SEISMIC AND VOLCANIC ACTIVITY AS DISPLAY OF WAVE GEODYNAMIC PROCESS

    Directory of Open Access Journals (Sweden)

    Alexander V. Vikulin

    2012-01-01

    Full Text Available Publications about the earthquake foci migration have been reviewed. An important result of such studies is establishment of wave nature of seismic activity migration that is manifested by two types of rotational waves; such waves are responsible for interaction between earthquakes foci and propagate with different velocities. Waves determining long-range interaction of earthquake foci are classified as Type 1; their limiting velocities range from 1 to 10 cm/s. Waves determining short-range interaction of foreshocks and aftershocks of individual earthquakes are classified as Type 2; their velocities range from 1 to 10 km/s. According to the classification described in [Bykov, 2005], these two types of migration waves correspond to slow and fast tectonic waves. The most complete data on earthquakes (for a period over 4.1 million of years and volcanic eruptions (for 12 thousand years of the planet are consolidated in a unified systematic format and analyzed by methods developed by the authors. For the Pacific margin, Alpine-Himalayan belt and the Mid-Atlantic Ridge, which are the three most active zones of the Earth, new patterns of spatial and temporal distribution of seismic and volcanic activity are revealed; they correspond to Type 1 of rotational waves. The wave nature of the migration of seismic and volcanic activity is confirmed. A new approach to solving problems of geodynamics is proposed with application of the data on migration of seismic and volcanic activity, which are consolidated in this study, in combination with data on velocities of movement of tectonic plate boundaries. This approach is based on the concept of integration of seismic, volcanic and tectonic processes that develop in the block geomedium and interact with each other through rotating waves with a symmetric stress tensor. The data obtained in this study give grounds to suggest that a geodynamic value, that is mechanically analogous to an impulse

  11. Seismic properties of fluid bearing formations in magmatic geothermal systems: can we directly detect geothermal activity with seismic methods?

    Science.gov (United States)

    Grab, Melchior; Scott, Samuel; Quintal, Beatriz; Caspari, Eva; Maurer, Hansruedi; Greenhalgh, Stewart

    2016-04-01

    Seismic methods are amongst the most common techniques to explore the earth's subsurface. Seismic properties such as velocities, impedance contrasts and attenuation enable the characterization of the rocks in a geothermal system. The most important goal of geothermal exploration, however, is to describe the enthalpy state of the pore fluids, which act as the main transport medium for the geothermal heat, and to detect permeable structures such as fracture networks, which control the movement of these pore fluids in the subsurface. Since the quantities measured with seismic methods are only indirectly related with the fluid state and the rock permeability, the interpretation of seismic datasets is difficult and usually delivers ambiguous results. To help overcome this problem, we use a numerical modeling tool that quantifies the seismic properties of fractured rock formations that are typically found in magmatic geothermal systems. We incorporate the physics of the pore fluids, ranging from the liquid to the boiling and ultimately vapor state. Furthermore, we consider the hydromechanics of permeable structures at different scales from small cooling joints to large caldera faults as are known to be present in volcanic systems. Our modeling techniques simulate oscillatory compressibility and shear tests and yield the P- and S-wave velocities and attenuation factors of fluid saturated fractured rock volumes. To apply this modeling technique to realistic scenarios, numerous input parameters need to be indentified. The properties of the rock matrix and individual fractures were derived from extensive literature research including a large number of laboratory-based studies. The geometries of fracture networks were provided by structural geologists from their published studies of outcrops. Finally, the physical properties of the pore fluid, ranging from those at ambient pressures and temperatures up to the supercritical conditions, were taken from the fluid physics

  12. Seismic intrusion detector system

    Science.gov (United States)

    Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.

    1976-01-01

    A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.

  13. Analysis of the ULF electromagnetic emission related to seismic activity, Teoloyucan geomagnetic station, 1998-2001

    Directory of Open Access Journals (Sweden)

    A. Kotsarenko

    2004-01-01

    Full Text Available Results of ULF geomagnetic measurements at station Teoloyucan (Central Mexico, 99.11'35.735''W, 19.44'45.100''N, 2280m height in relation to seismic activity in the period 1998-2001 and their analysis are presented. Variations of spectral densities for horizontal and vertical components, polarization densities and spectrograms of magnetic field, their derivatives are analyzed as a part of traditional analysis in this study. Values of spectral density were calculated for 6 fixed frequencies f=1, 3, 10, 30, 100 and 300mHz. Fractal characteristics of spectra were analyzed in the conception of SOC (Self-Organized Criticality. 2 nighttime intervals, 0-3 and 3-6h by local time have been used to decrease the noise interference in row data. In order to exclude the intervals with a high geomagnetic activity from analysis we referred to Ap indices, calculated for corresponding time intervals. The contribution of seismic events to geomagnetic emission was estimated by seismic index ks=100.75Ms/10D, where Ms is the amplitude of the earthquake and D is the distance from its epicenter to the station.

  14. Anomalous Radon Levels in Thermal Water as an Indicator of Seismic Activity

    International Nuclear Information System (INIS)

    Zmazek, B.; Gregoric, A.; Vaupotic, J.; Kobal, I.

    2008-01-01

    Radon can be transported effectively from deep layers of the Earth to the surface by carrier gases and by water. This transport is affected by phenomena accompanying seismic events. If radon is therefore monitored shortly before or during an earthquake, at a thermal water spring, an anomaly, i. e. a sudden increase or decrease in radon level, may be observed. Thermal springs and ground waters in Slovenia have therefore been systematically surveyed for radon. The work presented here is a continuation of our previous radon monitoring related to seismic activity carried out on weekly analyses during 1981-82 in thermal waters of the Ljubljana basin. In this paper, we focus on radon anomalies in thermal springs at Hotavlje and Bled in the period from October 2005 to September 2007

  15. Why is North China seismically active while South China largely aseismic?

    Science.gov (United States)

    Yang, Y.; Liu, M.

    2002-12-01

    The North China block (also known as the Sino-Korean craton) is a region of strong intraplate seismicity and active crustal deformation. Many large earthquakes, including the most devastating earthquake in modern history at Tangshan in 1976 (M=7.5), occurred in this heavily populated region. The South China block (i.e., the Yangtz craton), in contrast, is largely aseismic, although its basement rocks are younger and much of the region is closer to the present plate boundaries than the North China block. We have investigated the contrasting active tectonics between the North and South China blocks using a three-dimensional finite element model. The model approximates the geometry of the two blocks and the surrounding tectonic units. The first-order variations of lithospheric rheology, both laterally and vertically, of these blocks are considered. The kinematic boundary conditions based on the GPS data are applied to the model, and the distribution of gravitational buoyancy force within the Asian continent is calculated using digital topography. Our results suggest that the particular boundary conditions surrounding the North and South China blocks may provide the basic explanation for the contrasting seismicity between these two regions. Aligned with the axis of compression from the indenting Indian plate and supported by the stable eastern Siberia, the North China block is predicted to experience strong deviatoric stresses. A weaker crust, as indicated by the widespread Late Cenozoic volcanism and rifts and high heat flow today, further explain the abundance of seismicity in the North China block. The South China block, on the other hand, sits in the "pressure shadow" of the Indo-Asian collision with little tectonic stresses transmitted from the collision zone. The east-southeastward extrusion of the Asian continent following the Indo-Asian collision allowed the South China block to move as a coherent block as shown by the GPS data, resulting in little internal

  16. Seismic sequences and swarms in the Latium-Abruzzo-Molise Apennines (central Italy): New observations and analysis from a dense monitoring of the recent activity

    Science.gov (United States)

    Frepoli, A.; Cimini, G. B.; De Gori, P.; De Luca, G.; Marchetti, A.; Monna, S.; Montuori, C.; Pagliuca, N. M.

    2017-08-01

    We present a detailed analysis of the seismic activity in the central Apennines based on a high quality seismogram data set collected from two temporary and three permanent networks. This integrated network recorded, between January 2009 and December 2013, a total of 7011 local earthquakes (6270 selected for this study), with local magnitudes ML ranging from 0.4 to 4.7. Hypocentres were located by using a reference 1D crustal velocity model determined with a genetic algorithm. The majority of the hypocenters are located beneath the axis of the Apenninic belt, while the rest are found along the peri-Tyrrhenian margin. Hypocentral depth distribution extends to a depth of 31 km with a pronounced peak between 8 and 12 km. Both low-to-moderate magnitude seismic sequences and diffuse swarm-like seismicity was observed. There were two major seismic swarms and a seismic sequence, which included the Marsica-Sora ML 4.7 main shock. A total of 468 fault plane solutions were derived from P-wave polarities. This new data set more than quadruples the number of focal mechanisms that was previously available for regional stress field analysis in the study region. The majority of the fault plane solutions in the central Apennines show predominantly normal fault movements, with T-axis trends oriented NE-SW. Focal mechanisms calculated in this study confirm that this area is in extension. For the seismic swarms-sequence in the Marsica-Sora area we also derived the azimuth and plunge of the principal stress axes by inverting fault plane solutions. We find a few right-lateral strike-slip focal mechanisms that possibly identify the prolongation of the strike-slip kinematics in the Gargano-Apulia foreland to the west, and mark the passage to the NW-SE striking normal faults of the inner Apenninic belt. The seismicity and stress distribution we observe might be consistent with a fragmented tectonic scenario in which faults with small dimensions release seismic energy in a diffused way.

  17. Assessing ionospheric activity by long time series of GNSS signals: the search of possible connection with seismicity

    Science.gov (United States)

    Galeandro, Angelo; Mancini, Francesco; De Giglio, Michaela; Barbarella, Maurizio

    2014-05-01

    The modifications of some atmospheric physical properties prior to a high magnitude earthquake were recently debated in the frame of the Lithosphere-Atmosphere-Ionosphere (LAI) Coupling model. Among this variety of phenomena, the ionization of air at the ionospheric levels due to leaking of gases from earth crust through the analysis of long time series of GNSS (Global Navigation Satellite System) signals was investigated in this work. Several authors used the dispersive properties of the ionospheric strata towards the GNSS signals to detect possible ionospheric anomalies over areas affected by earthquakes and some evidences were encountered. However, the spatial scale and temporal domains over which such disturbances come into evidence is still a controversial item. Furthermore, the correspondence by chance between ionospheric disturbances and relevant seismic activity is even more difficult to model whenever the reference time period and spatial extent of investigation are confined. Problems could also arise from phenomena due to solar activity (now at culmination within the 11 years-long solar cycle) because such global effects could reduce the ability to detect disturbances at regional or local spatial scale. In this work, two case studies were investigated. The first one focuses on the M = 6.3 earthquake occurred on April 6, 2009, close to the city of L'Aquila (Abruzzo, Italy). The second concerns the M = 5.9 earthquake occurred on May 20, 2012, between the cities of Ferrara and Modena (Emilia Romagna, Italy). To investigate possible connections between the ionospheric activity and seismicity for such events, a five-year (2008-2012) long series of high resolution ionospheric maps was used. These maps were produced by authors from GNSS data collected by permanent stations uniformly distributed around the epicenters and allowed to assess the ionospheric activity through the analysis of the TEC (Total Electron Content). To avoid the influence of solar activity

  18. Forearc oceanic crust in the Izu-Bonin arc - new insights from active-source seismic survey -

    Science.gov (United States)

    Kodaira, S.; Noguchi, N.; Takahashi, N.; Ishizuka, O.; Kaneda, Y.

    2009-12-01

    Petrological studies have suggested that oceanic crust is formed in forearc areas during the initial stage of subduction. However, there is little geophysical evidence for the formation of oceanic crust in those regions. In order to examine crustal formation process associated with a subduction initiation process, we conducted an active-source seismic survey at a forearc region in the Izu-Bonin intra-oceanic arc. The resultant seismic image shows a remarkably thin crust (less than 10 km) at the northern half of the Bonin ridge (at the north of the Chichi-jima) and abrupt thickening the crust (~ 20 km thick) toward the south (at the Haha-jima). Comparison of velocity-depth profiles of the thin forearc crust of the Bonin ridge with those of typical oceanic crusts showed them to be seismologically identical. The observed structural variation also well corresponds to magmatic activities along the forearc. Boninitic magmatism is evident in the area of thin crust and tholeiitic-calcalkaline andesitic volcanism in the area of thick crust. Based on high precision dating studies of those volcanic rocks, we interpreted that the oceanic-type thin crust associated with boninitic volcanism has been created soon after the initiation of subduction (45-48 Ma) and and that the nonoceanic thick crust was created by tholeiitic-calcalkaline andesitic magmatism after the boninitic magmatism was ceased. The above seismological evidences strongly support the idea of forearc oceanic crust (or phiolite) created by forearc spreading in the initial stage of subduction along the intra-oceanic arc.

  19. PARAMETERS OF KAMCHATKA SEISMICITY IN 2008

    Directory of Open Access Journals (Sweden)

    Vadim A. Saltykov

    2010-01-01

    Full Text Available The paper describes seismicity of Kamchatka for the period of 2008 and presents 2D distribution of background seismicity parameters calculated from data published in the Regional Catalogue of Kamchatka Earthquakes. Parameters under study are total released seismic energy, seismic activity A10, slope of recurrence graph γ, parameters of RTL, ΔS and Z-function methods, and clustering of earthquakes. Estimations of seismicity are obtained for a region bordered by latitude 50.5–56.5N, longitude 156E–167E, with depths to 300 km. Earthquakes of energy classes not less than 8.5 as per the Fedotov’s classification are considered. The total seismic energy released in 2008 is estimated. According to a function of annual seismic energy distribution, an amount of seismic energy released in 2008 was close to the median level (Fig. 1. Over 2/3 of the total amount of seismic energy released in 2008 resulted from three largest earthquakes (МW ≥ 5.9. About 5 percent of the total number of seismic events are comprised of grouped earthquakes, i.e. aftershocks and swarms. A schematic map of the largest earthquakes (МW ≥ 5.9 and grouped seismic events which occurred in 2008 is given in Fig. 2; their parameters are listed in Table 1. Grouped earthquakes are excluded from the catalogue. A map showing epicenters of independent earthquakes is given in Fig. 3. The slope of recurrence graph γ and seismic activity A10 is based on the Gutenberg-Richter law stating the fundamental property of seismic process. The recurrence graph slope is calculated from continuous exponential distribution of earthquakes by energy classes. Using γ is conditioned by observations that in some cases the slope of the recurrence graph decreases prior to a large earthquake. Activity A10 is calculated from the number of earthquakes N and recurrence graph slope γ. Average slopes of recurrence graph γ and seismic activity A10 for the area under study in 2008 are calculated; our

  20. Dominant seismic sources for the cities in South Sumatra

    Science.gov (United States)

    Sunardi, Bambang; Sakya, Andi Eka; Masturyono, Murjaya, Jaya; Rohadi, Supriyanto; Sulastri, Putra, Ade Surya

    2017-07-01

    Subduction zone along west of Sumatra and Sumatran fault zone are active seismic sources. Seismotectonically, South Sumatra could be affected by earthquakes triggered by these seismic sources. This paper discussed contribution of each seismic source to earthquake hazards for cities of Palembang, Prabumulih, Banyuasin, OganIlir, Ogan Komering Ilir, South Oku, Musi Rawas and Empat Lawang. These hazards are presented in form of seismic hazard curves. The study was conducted by using Probabilistic Seismic Hazard Analysis (PSHA) of 2% probability of exceedance in 50 years. Seismic sources used in analysis included megathrust zone M2 of Sumatra and South Sumatra, background seismic sources and shallow crustal seismic sources consist of Ketaun, Musi, Manna and Kumering faults. The results of the study showed that for cities relatively far from the seismic sources, subduction / megathrust seismic source with a depth ≤ 50 km greatly contributed to the seismic hazard and the other areas showed deep background seismic sources with a depth of more than 100 km dominate to seismic hazard respectively.

  1. Solar-terrestrial effect controls seismic activity to a large extent (Invited)

    Science.gov (United States)

    Duma, G.

    2010-12-01

    Several observational results and corresponding publications in the 20 century indicate that earthquakes in many regions happen systematically in dependence on the time of day and on the season as well. In the recent decade, studies on this topic have also been intensively performed at the Central Institute for Meteorology and Geodynamics (ZAMG), Vienna. Any natural effect on Earth which systematically appears at certain hours of the day or at a special season can solely be caused by a solar or lunar influence. And actually, statistic results on seismic activity reveal a correlation with the solar cycles. Examples of this seismic performance are shown. To gain more clarity about these effects, the three-hour magnetic index Kp, which characterizes the magnetic field disturbances, mainly caused by the solar particle radiation, the solar wind, was correlated with the seismic energy released by earthquakes over decades. Kp is determined from magnetic records of 13 observatories worldwide and continuously published by ISGI, France. It is demonstrated that a highly significant correlation between the geomagnetic index Kp and the annual seismic energy release in regions at latitudes between 35 and 60° N exists. Three regions of continental size were investigated, using the USGS (PDE) earthquake catalogue data. In the period 1974-2009 the Kp cycle periods range between 9 and 12 years, somewhat different to the sunspot number cycles of 11 years. Seismicity follows the Kp cycles with high coincidence. A detailed analysis of this correlation for N-America reveals, that the sum of released energy by earthquakes per year changes by a factor up to 100 with Kp. It is shown that during years of high Kp there happen e.g. 1 event M7, 4 events M6 and 30 events M5 per year, instead of only 10 events M5 in years with lowest Kp. Almost the same relation appears in other regions of continental size, with the same significance. The seismicity in S-America clearly follows the Kp cycles

  2. Theoretical and experimental investigation of position-controlled semi-active friction damper for seismic structures

    Science.gov (United States)

    Lu, Lyan-Ywan; Lin, Tzu-Kang; Jheng, Rong-Jie; Wu, Hsin-Hsien

    2018-01-01

    A semi-active friction damper (SAFD) can be employed for the seismic protection of structural systems. The effectiveness of an SAFD in absorbing seismic energy is usually superior to that of its passive counterpart, since its slip force can be altered in real time according to structural response and excitation. Most existing SAFDs are controlled by adjusting the clamping force applied on the friction interface. Thus, the implementation of SAFDs in practice requires precision control of the clamping force, which is usually substantially larger than the slip force. This may increase the implementation complexity and cost of SAFDs. To avoid this problem, this study proposes a novel position-controlled SAFD, named the leverage-type controllable friction damper (LCFD). The LCFD system combines a traditional passive friction damper and a leverage mechanism with a movable central pivot. By simply controlling the pivot position, the damping force generated by the LCFD system can be adjusted in real time. In order to verify the feasibility of the proposed SAFD, a prototype LCFD was tested by using a shaking table. The test results demonstrate that the equivalent friction force and hysteresis loop of the LCFD can be regulated by controlling the pivot position. By considering 16 ground motions with two different intensities, the adaptive feature of the LCFD for seismic structural control is further demonstrated numerically.

  3. Investigating the time-correlation properties in self-potential signals recorded in a seismic area of Irpinia, southern Italy

    International Nuclear Information System (INIS)

    Telesca, Luciano; Balasco, Marianna; Lapenna, Vincenzo

    2007-01-01

    Recent studies have shown that many natural phenomena are characterized by temporal fluctuations with long-range power-law correlations, suggesting a fractal geometry of the underlying dynamical system. The presence of power-law correlations are detected in four time series of self-potential signals, measured in a seismic area of southern Italy, by means of the Detrended Fluctuation Analysis (DFA), a method that permits the detection of long-range correlations in nonstationary time series. Results show scaling behaviour for all the signals recorded, indicating the presence of fractal features expressing a long-term correlation quantified by the numerical value of the scaling exponents. Our findings suggest a possible correlation between the earthquakes occurred in the area investigated and the relative maxima/minima of the mean and the standard deviation of the scaling exponents. Furthermore, the normalized average and standard deviation curves for all the signals tend to converge in correspondence with an earthquake

  4. Mine-induced seismicity at East-Rand proprietary mines

    CSIR Research Space (South Africa)

    Milev, AM

    1995-09-01

    Full Text Available Mining results in seismic activity of varying intensity, from small micro seismic events to larger seismic events, often associated with significant seismic induced damages. This work deals with the understanding of the present seismicity...

  5. Study of fault configuration related mysteries through multi seismic attribute analysis technique in Zamzama gas field area, southern Indus Basin, Pakistan

    Directory of Open Access Journals (Sweden)

    Shabeer Ahmed Abbasi

    2016-03-01

    Full Text Available Seismic attribute analysis approach has been applied for the interpretation and identification of fault geometry of Zamzama Gas Field. Zamzama gas field area, which lies in the vicinity of Kirthar fold and thrust belt, Southern Indus Basin of Pakistan. The Zamzama fault and its related structure have been predicted by applying the Average Energy Attribute, Instantaneous Frequency Attribute, relative Acoustic Impedance Attribute and Chaotic Reflection Attribute on the seismic line GHPK98A.34. The results have been confirmed by applying the spectral decomposition attribute on the same seismic line that reveal the geometric configuration of Zamzama structure. The fault is reverse and started from 0 s and ended at the depth of 2.5 s on the vertical seismic section. Hanging wall moves up along the fault plane under the action of eastward oriented stress, which formed a large north–south oriented and eastward verging thrusted anticline.

  6. Investigations On Historic Centers In Seismic Areas: Guidelines For The Diagnosis

    International Nuclear Information System (INIS)

    Binda, Luigia; Cardani, Giuliana; Modena, Claudio; Valluzzi, Maria Rosa; Saisi, Antonella

    2008-01-01

    After the earthquake that hit central Italy in 1979, many small historic centers were restored. A subsequent seismic event occurred in 1997 in Umbria-Marche regions revealed that some techniques used in the previous interventions were not successful due to low durability of new materials and/or incompatibility between the new and the existing materials and structures. An extensive investigation on four small typical historic centers in Umbria was carried out. The objectives of the research were: (i) to define a methodology for the vulnerability analysis of historic buildings at the level of the historic centre, (ii) to collect information on the effectiveness of the repair techniques both traditional and new, (iii) to set up Databases storing the information useful to prepare rescue plans, (iv) to use the collected knowledge for the implementation of reliable models for the vulnerability analysis, (v) to prepare guidelines for investigation and vulnerability analysis

  7. Seismic crustal structure of the North China Craton and surrounding area: Synthesis and analysis

    Science.gov (United States)

    Xia, B.; Thybo, H.; Artemieva, I. M.

    2017-07-01

    We present a new digital model (NCcrust) of the seismic crustal structure of the Neoarchean North China Craton (NCC) and its surrounding Paleozoic-Mesozoic orogenic belts (30°-45°N, 100°-130°E). All available seismic profiles, complemented by receiver function interpretations of crustal thickness, are used to constrain a new comprehensive crustal model NCcrust. The model, presented on a 0.25° × 0.25°grid, includes the Moho depth and the internal structure (thickness and velocity) of the crust specified for four layers (the sedimentary cover, upper, middle, and lower crust) and the Pn velocity in the uppermost mantle. The crust is thin (30-32 km) in the east, while the Moho depth in the western part of the NCC is 38-44 km. The Moho depth of the Sulu-Dabie-Qinling-Qilian orogenic belt ranges from 31 km to 51 km, with a general westward increase in crustal thickness. The sedimentary cover is 2-5 km thick in most of the region, and typical thicknesses of the upper crust, middle crust, and lower crust are 16-24 km, 6-24 km, and 0-6 km, respectively. We document a general trend of westward increase in the thickness of all crustal layers of the crystalline basement and as a consequence, the depth of the Moho. There is no systematic regional pattern in the average crustal Vp velocity and the Pn velocity. We examine correlation between the Moho depth and topography for seven tectonic provinces in the North China Craton and speculate on mechanisms of isostatic compensation.

  8. Preliminary review and summary of the potential for tectonic, seismic, and volcanic activity at the Nevada Test Site defense waste disposal site

    International Nuclear Information System (INIS)

    Metcalf, L.A.

    1983-03-01

    A change from compressional to extensional tectonics, which occurred about 17 m.y. ago, marks the emergence of the present tectonic regime in the southern Great Basin. Crustal extension is continuing at the present time, oriented in a NW-SE direction in the NTS region. Concurrently with the onset of crustal extension a system of NW- and NE-trending shear zones developed, along which mutual offset has occurred. Present seismic and tectonic activity in the NTS region is concentrated along the intersections of the shear zones and in areas of deep basin formation. Natural historic seismicity of the NTS region has been low to moderate. Seismic hazard assessments suggest a maximum magnitude 6-7 earthquake, associated with a maximum peak acceleration of 0.7 to 0.9 g, is probable for the NTS. A return period of 12,700 to 15,000 y for the maximum peak acceleration indicates a relatively low seismic hazard. Silicic volcanism in the NTS region was active from 16 to 6 m.y. ago, followed by a transition to basaltic volcanism. The tectonic settings most favorable for Quaternary basaltic activity are areas of young basin-range extension, caldera ring fracture zones, and intersections of conjugate shear zones. Probability calculations for the Yucca Mountain waste repository result in a volcanic disruption hazard of 10 - 8 to 10 - 9 /y. This value is extremely low and is probably representative of the hazard at Frenchman Flat. However, due to its tectonic setting, Frenchman Flat may be an area conducive to future basaltic volcanism; further investigation is needed to properly assess volcanic hazard

  9. Seismicity and tectonics of Bangladesh

    International Nuclear Information System (INIS)

    Hossain, K.M.

    1989-05-01

    Northern and eastern Bangladesh and surrounding areas belong to a seismically active zone and are associated with the subduction of the Indian plate. The seismicity and tectonics have been studied in detail and the observations have been correlated to understand the earthquake phenomenon in the region. The morphotectonic behaviour of northern Bangladesh shows that it is deeply related to the movement of the Dauki fault system and relative upliftment of the Shillong plateau. Contemporary seismicity in the Dauki fault system is relatively quiet comparing to that in the Naga-Disang-Haflong thrust belt giving rise to the probability of sudden release of energy being accumulated in the vicinity of the Dauki fault system. This observation corresponds with the predicted average return period of a large earthquake (1897 type) and the possibility of M > 8 earthquake in the vicinity of the Dauki fault within this century should not be ruled out. The seismicity in the folded belt in the east follows the general trend of Arakan-Yoma anticlinorium and represents shallow and low-angled thrust movements in conformity with the field observation. Seismotectonic behaviour in the deep basin part of Bangladesh demonstrates that an intraplate movement in the basement rock has been taking place along the deep-seated faults causing relative upliftment and subsidence in the basin. Bangladesh has been divided into three seismic zones on the basis of morphotectonic and seismic behaviour. Zone-I has been identified as the zone of high seismic risk. (author). 43 refs, 5 figs, 3 tabs

  10. Satellite Monitoring of Accumulation of Strain in the Earth's Crust Related to Seismic and Volcanic Activity

    Science.gov (United States)

    Arellano-Baeza, A. A.

    2009-12-01

    Our studies have shown that the strain energy accumulation deep in the Earth’s crust that precedes seismic and volcanic activity can be detected by applying a lineament extraction technique to the high-resolution multispectral satellite images. A lineament is a straight or a somewhat curved feature in a satellite image, which it is possible to detect by a special processing of images based on directional filtering and or Hough transform. We analyzed tens of earthquakes occurred in the Pacific coast of the South America with the magnitude > 4 Mw, using ASTER/TERRA multispectral satellite images for detection and analysis of changes in the system of lineaments previous to a strong earthquake. All events were located in the regions with small seasonal variations and limited vegetation to facilitate the tracking of features associated with the seismic activity only. It was found that the number and orientation of lineaments changed significantly about one month before an earthquake approximately, and a few months later the system returns to its initial state. This effect increases with the earthquake magnitude. It also was shown that the behavior of lineaments associated to the volcano seismic activity is opposite to that obtained previously for earthquakes. This discrepancy can be explained assuming that in the last case the main reason of earthquakes is compression and accumulation of strength in the Earth’s crust due to subduction of tectonic plates, whereas in the first case we deal with the inflation of a volcano edifice due to elevation of pressure and magma intrusion. The results obtained made it possible to include this research as a part of scientific program of Chilean Remote Sensing Satellite mission to be launched in 2010.

  11. Development of a software for monitoring of seismic activity through the analysis of satellite images

    Science.gov (United States)

    Soto-Pinto, C.; Poblete, A.; Arellano-Baeza, A. A.; Sanchez, G.

    2010-12-01

    A software for extraction and analysis of the lineaments has been developed and applied for the tracking of the accumulation/relaxation of stress in the Earth’s crust due to seismic and volcanic activity. A lineament is a straight or a somewhat curved feature in a satellite image, which reflects, at least partially, presence of faults in the crust. The technique of lineament extraction is based on the application of directional filters and Hough transform. The software has been checked for several earthquakes occurred in the Pacific coast of the South America with the magnitude > 4 Mw, analyzing temporal sequences of the ASTER/TERRA multispectral satellite images for the regions around an epicenter. All events were located in the regions with small seasonal variations and limited vegetation to facilitate the tracking of features associated with the seismic activity only. It was found that the number and orientation of lineaments changes significantly about one month before an earthquake approximately, and a few months later the system returns to its initial state. This effect increases with the earthquake magnitude. It also was shown that the behavior of lineaments associated to the volcano seismic activity is opposite to that obtained previously for earthquakes. This discrepancy can be explained assuming that in the last case the main reason of earthquakes is compression and accumulation of strength in the Earth’s crust due to subduction of tectonic plates, whereas in the first case we deal with the inflation of a volcano edifice due to elevation of pressure and magma intrusion.

  12. Ionospheric quasi-static electric field anomalies during seismic activity in August–September 1981

    Directory of Open Access Journals (Sweden)

    M. Gousheva

    2009-01-01

    Full Text Available The paper proposes new results, analyses and information for the plate tectonic situation in the processing of INTERCOSMOS-BULGARIA-1300 satellite data about anomalies of the quasi-static electric field in the upper ionosphere over activated earthquake source regions at different latitudes. The earthquake catalogue is made on the basis of information from the United State Geological Survey (USGS website. The disturbances in ionospheric quasi-static electric fields are recorded by IESP-1 instrument aboard the INTERCOSMOS-BULGARIA-1300 satellite and they are compared with significant seismic events from the period 14 August–20 September 1981 in magnetically very quiet, quiet and medium quiet days. The main tectonic characteristics of the seismically activated territories are also taken in account. The main goal of the above research work is to enlarge the research of possible connections between anomalous vertical electric field penetrations into the ionosphere and the earthquake manifestations, also to propose tectonic arguments for the observed phenomena. The studies are represented in four main blocks: (i previous studies of similar problems, (ii selection of satellite, seismic and plate tectonic data, (iii data processing with new specialized software and observations of the quasi-static electric field and (iiii summary, comparison of new with previous results in our studies and conclusion. We establish the high informativity of the vertical component Ez of the quasi-static electric field in the upper ionosphere according observations by INTERCOSMOS-BULGARIA-1300 that are placed above considerably activated earthquake sources. This component shows an increase of about 2–10 mV/m above sources, situated on mobile structures of the plates. The paper discusses the observed effects. It is represented also a statistical study of ionospheric effects 5–15 days before and 5–15 days after the earthquakes with magnitude M 4.8–7.9.

  13. Study of radon emanation variations in Morocco soil, correlations with seismic activities and atmospheric parameters

    International Nuclear Information System (INIS)

    Boukhal, H.; Cherkaoui, T.E.; Lferde, M.

    1994-01-01

    In order to verify the possibility of radon signal use in earthquake prediction, a study of radon emanation variation in soil was undertaken. Regular measurements have been carried out in five cities of Morocco ( Rabat, Tetouan, Ifrane, Khouribga, Berchid). The measuring method is based on the solid state nuclear track detectors technique. The good correlation between the different seismic activities and the variations of radon emanation rate in the five stations, have shown the interest of radon use in the earthquake prediction. 1 tab., 2 figs., 2 refs. (author)

  14. Some possible correlations between electro-magnetic emission and seismic activity during West Bohemia 2008 earthquake swarm

    Directory of Open Access Journals (Sweden)

    P. Kolář

    2010-10-01

    Full Text Available A potential link between electromagnetic emission (EME and seismic activity (SA has been the subject of scientific speculations for a long time. EME versus SA relations obtained during the 2008 earthquake swarm which occurred in West Bohemia are presented. First, a brief characterisation of the seismic region and then the EME recording method and data analysis will be described. No simple direct link between EME and SA intensity was observed, nevertheless a deeper statistical analysis indicates: (i slight increase of EME activity in the time interval 60 to 30 min before a seismic event with prevalent periods about 10 min, (ii some gap in EME activity approximately 2 h after the event, and (iii again a flat maximum about 4 h after the seismic events. These results qualitatively correspond with the observations from other seismically active regions (Fraser-Smith et al., 1990. The global decrease of EME activity correlating with the swarm activity decay was also observed. Due to the incomplete EME data and short observation time, these results are limited in reliability and are indicative only.

  15. The Seismic Broad Band Western Mediterranean (wm) Network and the Obs Fomar Pool: Current state and Obs activities.

    Science.gov (United States)

    Pazos, Antonio; Davila, Jose Martin; Buforn, Elisa; Bezzeghoud, Mourad; Harnafi, Mimoun; Mattesini, Mauricio; Caldeira, Bento; Hanka, Winfried; El Moudnib, Lahcen; Strollo, Angelo; Roca, Antoni; Lopez de Mesa, Mireya; Dahm, Torsten; Cabieces, Roberto

    2016-04-01

    The Western Mediterranean (WM) seismic network started in 1996 as an initiative of the Royal Spanish Navy Observatory (ROA) and the Universidad Complutense de Madrid (UCM), with the collaboration of the GeoForschungsZentrum (GFZ) of Potsdam. A first broad band seismic station (SFUC) was installed close to Cádiz (South Spain). Since then, additional stations have been installed in the Ibero-Moghrebian region. In 2005, the "WM" code was assigned by the FDSN and new partners were jointed: Evora University (UEVO, Portugal), the Scientifique Institute of Rabat (ISRABAT, Morocco), and GFZ. Now days, the WM network is composed by 15 BB stations, all of them with Streckaisen STS-2 or STS-2.5 sensors, Quanterra or Earthdata digitizers and SeiscomP. Most them have co-installed a permanent geodetic GPS stations, and some them also have an accelerometer. There are 10 stations deployed in Spanish territory (5 in the Iberian peninsula, 1 in Balearic islands and 4 in North Africa Spanish places) with VSAT or Internet communications, 2 in Portugal (one of them without real time), and 3 in Morocco (2 VSAT and 1 ADSL). Additionally, 2 more stations (one in South Spain and one in Morocco) will be installed along this year. Additionally ROA has deployed a permanent real time VBB (CMG-3T: 360s) station at the Alboran Island. Due to the fact that part of the seismic activity is located at marine areas, and also because of the poor geographic azimuthal coverage at some zones provided by the land stations (specially in the SW of the San Vicente Cape area), ROA and UCM have acquired six broad band "LOBSTERN" OBS, manufactured by KUM (Kiel, Germany), conforming the OBS FOMAR pool. Three of them with CMG-40T sensor and the other with Trillium 120. These OBS were deployed along the Gibraltar strait since January to November 2014 to study the microseismicity in the Gibraltar strait area. In September 2015 FOMAR network has been deployed in SW of the San Vicente Cape for 8 months as a part of

  16. Response of piping system with semi-active variable stiffness damper under tri-directional seismic excitation

    International Nuclear Information System (INIS)

    Praveen Kumar; Jangid, R.S.; Reddy, G.R.

    2013-01-01

    Highlights: ► Piping system with semi-active variable stiffness damper is investigated under different seismic excitations. ► Switching control law and modified switching control law are adopted. ► There exist an optimum parameters of the SAVSD. ► Substantial reduction of the seismic response of piping system with SAVSD is observed. ► Good amount of energy dissipation is observed. -- Abstract: Seismic loads on piping system due to earthquakes can cause excessive vibrations, which can lead to serious instability resulting in damage or complete failure. In this paper, semi-active variable stiffness dampers (SAVSDs) have been studied to mitigate seismic response and vibration control of piping system used in the process industries, fossil and fissile fuel power plant. The SAVSD changes its stiffness depending upon the piping response and accordingly adds the control forces in the piping system. A study is conducted on the performance of SAVSD due to variation in device stiffness ratios in the switching control law and modified switching control law, which plays an important role in the present control algorithm of the damper. The effectiveness of the SAVSD in terms of reduction in the responses, namely, displacements, accelerations and base shear of the piping system is investigated by comparing uncontrolled responses under four different artificial earthquake motions with increasing amplitudes. The analytical results demonstrate that the SAVSDs under particular optimum parameters are very effective and practically implementable for the seismic response mitigation, vibration control and seismic requalification of piping systems

  17. Response of piping system with semi-active variable stiffness damper under tri-directional seismic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Praveen Kumar, E-mail: praveen@barc.gov.in [Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Jangid, R.S. [Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Reddy, G.R. [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2013-05-15

    Highlights: ► Piping system with semi-active variable stiffness damper is investigated under different seismic excitations. ► Switching control law and modified switching control law are adopted. ► There exist an optimum parameters of the SAVSD. ► Substantial reduction of the seismic response of piping system with SAVSD is observed. ► Good amount of energy dissipation is observed. -- Abstract: Seismic loads on piping system due to earthquakes can cause excessive vibrations, which can lead to serious instability resulting in damage or complete failure. In this paper, semi-active variable stiffness dampers (SAVSDs) have been studied to mitigate seismic response and vibration control of piping system used in the process industries, fossil and fissile fuel power plant. The SAVSD changes its stiffness depending upon the piping response and accordingly adds the control forces in the piping system. A study is conducted on the performance of SAVSD due to variation in device stiffness ratios in the switching control law and modified switching control law, which plays an important role in the present control algorithm of the damper. The effectiveness of the SAVSD in terms of reduction in the responses, namely, displacements, accelerations and base shear of the piping system is investigated by comparing uncontrolled responses under four different artificial earthquake motions with increasing amplitudes. The analytical results demonstrate that the SAVSDs under particular optimum parameters are very effective and practically implementable for the seismic response mitigation, vibration control and seismic requalification of piping systems.

  18. History, observation and mathematical models in the seismic analysis of the Valadier abutment area in the Colosseum

    Directory of Open Access Journals (Sweden)

    D. D'Ayala

    1995-06-01

    Full Text Available The present work aimed to outline the need to investigate different fields of research to interpret the structural behaviour of a monument as complex as the Colosseum. It is shown how defining the numerical models first. then refining them, followed by interpretation of results. is strictly linked with the inforination gathered from historical records and observation of the ~nonumenta s it is today. The study is confined to the area of the Valadier abutment. analysing its state and its seismic behaviour before and after the XIX century restoration using different ilumerical tools, from the elastic modal analysis to the non linear step by step time history direct integration. The procedure comparatiely evaluates the reliability in the interpretation of the results and identifies future lines or research.

  19. Selecting ground-motion models developed for induced seismicity in geothermal areas

    Science.gov (United States)

    Edwards, Benjamin; Douglas, John

    2013-11-01

    We present a case study of the ranking and weighting of ground-motion prediction equations (GMPEs) for seismic hazard assessment of enhanced geothermal systems (EGSs). The study region is Cooper Basin (Australia), where a hot-fractured-rock project was established in 2002. We test the applicability of 36 GMPEs based on stochastic simulations previously proposed for use at EGSs. Each GMPE has a set of corresponding model parameters describing stress drop, regional and local (near-surface) attenuation. To select suitable GMPEs for Cooper Basin from the full set, we applied two methods. In the first, seismograms recorded on the local monitoring network were spectrally analysed to determine characteristic stress and attenuation parameters. In a second approach, residual analysis using the log-likelihood (LLH) method was used to directly compare recorded and predicted short-period response spectral accelerations. The resulting ranking was consistent with the models selected based on spectral analysis, with the advantage that a transparent weighting approach was available using the LLH method. Region-specific estimates of variability were computed, with significantly lower values observed compared to previous studies of small earthquakes. This was consistent with the limited range of stress drops and attenuation observed from the spectral analysis.

  20. Marked point process for modelling seismic activity (case study in Sumatra and Java)

    Science.gov (United States)

    Pratiwi, Hasih; Sulistya Rini, Lia; Wayan Mangku, I.

    2018-05-01

    Earthquake is a natural phenomenon that is random, irregular in space and time. Until now the forecast of earthquake occurrence at a location is still difficult to be estimated so that the development of earthquake forecast methodology is still carried out both from seismology aspect and stochastic aspect. To explain the random nature phenomena, both in space and time, a point process approach can be used. There are two types of point processes: temporal point process and spatial point process. The temporal point process relates to events observed over time as a sequence of time, whereas the spatial point process describes the location of objects in two or three dimensional spaces. The points on the point process can be labelled with additional information called marks. A marked point process can be considered as a pair (x, m) where x is the point of location and m is the mark attached to the point of that location. This study aims to model marked point process indexed by time on earthquake data in Sumatra Island and Java Island. This model can be used to analyse seismic activity through its intensity function by considering the history process up to time before t. Based on data obtained from U.S. Geological Survey from 1973 to 2017 with magnitude threshold 5, we obtained maximum likelihood estimate for parameters of the intensity function. The estimation of model parameters shows that the seismic activity in Sumatra Island is greater than Java Island.

  1. Probing dynamic hydrologic system of slowly-creeping landslides with passive seismic imaging: A comprehensive landslide monitoring site at Lantai, Ilan area in Taiwan

    Science.gov (United States)

    Huang, H. H.; Hsu, Y. J.; Kuo, C. Y.; Chen, C. C.; Kuo, L. W.; Chen, R. F.; Lin, C. R.; Lin, P. P.; Lin, C. W.; Lin, M. L.; Wang, K. L.

    2017-12-01

    A unique landslide monitoring project integrating multidisciplinary geophysics experiments such as GPS, inclinometer, piezometer, and spontaneous potential log has been established at Lantai, Ilan area to investigating the possible detachment depth range and the physical mechanism of a slowly creeping landslide. In parallel with this, a lately deployed local seismic network also lends an opportunity to employ the passive seismic imaging technique to detect the time-lapse changes of seismic velocity in and around the landslide area. Such technique that retrieves Green's functions by cross-correlation of continuous ambient noise has opened new opportunities to seismologically monitoring the environmental and tectonic events such as ground water variation, magma intrusion under volcanos, and co-seismic medium damage in recent years. Integrating these geophysical observations, we explore the primary controls of derived seismic velocity changes and especially the hydrological response of the landslide to the passage of Megi typhoon in the last September 2016, which could potentially further our understanding of the dynamic system of landslides and in turn help the hazard mitigation.

  2. Radon emanation in tectonically active areas

    International Nuclear Information System (INIS)

    King, C.Y.

    1980-01-01

    Subsurface radon emanation has been continuously monitored for up to three years by the Track Etch method in shallow dry holes at more than 60 sites along several tectonic faults in central California and at 9 sites near the Kilauea volcano in Hawaii. The measured emanation in these tectonically active areas shows large long-term variations that may be related mainly to crustal strain changes

  3. Linking the Lusi mud eruption dynamics with regional and global seismic activity: a statistical analysis.

    Science.gov (United States)

    Collignon, Marine; Hammer, Øyvind; Fallahi, Mohammad J.; Lupi, Matteo; Schmid, Daniel W.; Alwi, Husein; Hadi, Soffian; Mazzini, Adriano

    2017-04-01

    The 29th May 2006, gas water and mud breccia started to erupt at several localities along the Watukosek fault system in the Sidoarjo Regency in East Java Indonesia. The most prominent eruption site, named Lusi, is still active and the emitted material now covers a surface of nearly 7 km2, resulting in the displacement of 60.000 people (up to date). Due to its social and economic impacts, as well as its spectacular dimensions, the Lusi eruption still attracts the attention of international media and scientists. In the framework of the Lusi Lab project (ERC grant n° 308126), many efforts were made to develop a quasi-constant monitoring of the site and the regional areas. Several studies attempted to predict the flow rate evolution or ground deformation, resulting in either overestimating or underestimating the longevity of the eruption. Models have failed because Lusi is not a mud volcano but a sedimentary hosted hydrothermal system that became apparent after the M6.3 Yogyakarta earthquake. Another reason is because such models usually assume that the flow will decrease pacing the overpressure reduction during the deflation of the chamber. These models typically consider a closed system with a unique chamber that is not being recharged. Overall the flow rate has decreased over the past ten years, although it has been largely fluctuating with monthly periods of higher mud breccia discharge. Monitoring of the eruption has revealed that numerous anomalous events are temporally linked to punctual events such as earthquakes or volcanic eruptions. Nevertheless, the quantification of these events has never been investigated in details. In this study, we present a compilation of anomalous events observed at the Lusi site during the last 10 years. Using Monte Carlo simulations, we then statistically compare the displacement, recorded at different seismic stations around Lusi, with the regional and global earthquakes catalogue to test the probability that an earthquake

  4. Frictional behavior and BET surface-area changes of SAFOD gouge at intermediate to seismic slip rates

    Science.gov (United States)

    Sawai, Michiyo; Shimamoto, Toshihiko; Mitchell, Thomas; Kitajima, Hiroko; Hirose, Takehiro

    2013-04-01

    The San Andreas Fault Observatory at Depth (SAFOD) Drilling site is located near the southern end of the creeping section of the San Andreas fault. Experimental studies on the frictional properties of fault gouge from SAFOD drill cores may provide valuable information on the cause of diverse fault motion. We conducted friction experiments on gouge from the southwest deformation zone (SDZ, Phase III core; Hole G-Run 2-Section 8) where creep is confirmed by ongoing borehole casing deformation, at intermediate to high slip rates (10-5 to 1.3 m/s), at a normal stress of about 1 MPa, and under both dry (room humidity) and wet (25 wt% of H2O added, drained tests) conditions. Experiments were performed with two rotary-shear friction apparatuses. One gram of gouge was placed between specimens of Belfast gabbro 25 mm in diameter surrounded by a Teflon sleeve to confine the gouge. Slip rate was first decreased and then increased in a step-wise manner to obtain the steady-state friction at intermediate slip rates. The friction coefficient increases from about 0.13 to 0.37 as the slip rate increases from 0.8 x 10-5 to 9.7 x 10-3 m/s. Our results agree with frictional strength measured at higher effective normal stress (100 MPa) by the Brown University group in the same material. Data shows pronounced velocity strengthening at intermediate slip rates, which is unfavorable for rupture nucleation and may be a reason for having creep behavior. On the other hand, the steady-state friction markedly decreases at high velocity, and such weakening may allow earthquake rupture to propagate into the creeping section, once the intermediate strength barrier is overcome. Gouge temperature, measured at the edge of the stationary sample during seismic fault motion, increased to around 175oC under dry conditions, but increased up to 100oC under wet conditions. We measured BET surface area of gouge before and after deformation to determine the energy used for grain crushing. The initial

  5. Seismic evidence for arc segmentation, active magmatic intrusions and syn-rift fault system in the northern Ryukyu volcanic arc

    Science.gov (United States)

    Arai, Ryuta; Kodaira, Shuichi; Takahashi, Tsutomu; Miura, Seiichi; Kaneda, Yoshiyuki

    2018-04-01

    Tectonic and volcanic structures of the northern Ryukyu arc are investigated on the basis of multichannel seismic (MCS) reflection data. The study area forms an active volcanic front in parallel to the non-volcanic island chain in the eastern margin of the Eurasian plate and has been undergoing regional extension on its back-arc side. We carried out a MCS reflection experiment along two across-arc lines, and one of the profiles was laid out across the Tokara Channel, a linear bathymetric depression which demarcates the northern and central Ryukyu arcs. The reflection image reveals that beneath this topographic valley there exists a 3-km-deep sedimentary basin atop the arc crust, suggesting that the arc segment boundary was formed by rapid and focused subsidence of the arc crust driven by the arc-parallel extension. Around the volcanic front, magmatic conduits represented by tubular transparent bodies in the reflection images are well developed within the shallow sediments and some of them are accompanied by small fragments of dipping seismic reflectors indicating intruded sills at their bottoms. The spatial distribution of the conduits may suggest that the arc volcanism has multiple active outlets on the seafloor which bifurcate at crustal depths and/or that the location of the volcanic front has been migrating trenchward over time. Further distant from the volcanic front toward the back-arc (> 30 km away), these volcanic features vanish, and alternatively wide rift basins become predominant where rapid transitions from normal-fault-dominant regions to strike-slip-fault-dominant regions occur. This spatial variation in faulting patterns indicates complex stress regimes associated with arc/back-arc rifting in the northern Okinawa Trough.[Figure not available: see fulltext.

  6. Tapping polyrhythms in music activates language areas.

    Science.gov (United States)

    Vuust, Peter; Wallentin, Mikkel; Mouridsen, Kim; Ostergaard, Leif; Roepstorff, Andreas

    2011-05-02

    Music is experienced and understood on the basis of foreground/background relationships and tension created between actual music and the underlying meter. Polyrhythms create tension between a counter meter and the main meter. Previously, we have shown that Brodmann area 47 (BA47), a brain area associated with processing of language, is activated bilaterally when musicians tap the main meter in a polymetric context emphasizing a counter meter, suggesting that processing of metric elements in music relies on brain areas also involved in language processing. In that study, the tension was created entirely by changes in the stimulus while participants were tapping the main meter. Here we find left-hemispheric BA47 activation in response to a self-produced counter meter on top of a main meter provided by an ecological music excerpt. This data indicates that the activation is linked to polyrhythmic tension, regardless of whether it arises from the stimulus or the task. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Seismic testing

    International Nuclear Information System (INIS)

    Sollogoub, Pierre

    2001-01-01

    This lecture deals with: qualification methods for seismic testing; objectives of seismic testing; seismic testing standards including examples; main content of standard; testing means; and some important elements of seismic testing

  8. Seismic Hazard of the Uttarakhand Himalaya, India, from Deterministic Modeling of Possible Rupture Planes in the Area

    Directory of Open Access Journals (Sweden)

    Anand Joshi

    2013-01-01

    Full Text Available This paper presents use of semiempirical method for seismic hazard zonation. The seismotectonically important region of Uttarakhand Himalaya has been considered in this work. Ruptures along the lineaments in the area identified from tectonic map are modeled deterministically using semi empirical approach given by Midorikawa (1993. This approach makes use of attenuation relation of peak ground acceleration for simulating strong ground motion at any site. Strong motion data collected over a span of three years in this region have been used to develop attenuation relation of peak ground acceleration of limited magnitude and distance applicability. The developed attenuation relation is used in the semi empirical method to predict peak ground acceleration from the modeled rupture planes in the area. A set of values of peak ground acceleration from possible ruptures in the area at the point of investigation is further used to compute probability of exceedance of peak ground acceleration of values 100 and 200 gals. The prepared map shows that regions like Tehri, Chamoli, Almora, Srinagar, Devprayag, Bageshwar, and Pauri fall in a zone of 10% probability of exceedence of peak ground acceleration of value 200 gals.

  9. Proposed Activities to Address Regulatory Gaps and Challenges for Licensing Advanced Reactors Using Seismic Isolation

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kammerer, Annie M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Whittaker, Andrew S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    Over the last decade, particularly since implementation of the certified design regulatory approaches outlined in 10 CFR 52, “Licenses, Certifications, and Approvals for Nuclear Power Plants,” interest has been increasing in the use of seismic isolation (SI) technology to support seismic safety in nuclear facilities. In 2009, the United States (U.S.) Nuclear Regulatory Commission (NRC) initiated research activities to develop new guidance targeted at isolated facilities because SI is being considered for nuclear power plants in the U.S. One product of that research, which was developed around a risk-informed regulatory approach, is a draft NRC NUREG series (NUREG/CR) report that investigates and discusses considerations for use of SI in otherwise traditionally founded large light water reactors (LWRs). A coordinated effort led to new provisions for SI of LWRs in the American Society of Civil Engineers standard ASCE/SEI 4-16, “Seismic Analysis of Safety Related Nuclear Structures.” The risk-informed design philosophy that underpinned development of the technical basis for these documents led to a set of proposed performance objectives and acceptance criteria intended to serve as the foundation for future NRC guidance on the use of SI and related technology. Although the guidance provided in the draft SI NUREG/CR report and ASCE/SEI 4 16 provides a sound basis for further development of nuclear power plant designs incorporating SI, these initial documents were focused on surface-founded or near-surface-founded LWRs and were, necessarily, limited in scope. For example, there is limited information in both the draft NUREG/CR report and ASCE/SEI 4-16 related to nonlinear analysis of soil-structure systems for deeply-embedded reactors, the isolation of components, and the use of vertical isolation systems. Also not included in the draft SI NUREG/CR report are special considerations for licensing of isolated facilities using the certified design approach in 10 CFR

  10. Seismic velocity structure of the crust in NW Namibia: Impact of rifting and mantle plume activity

    Science.gov (United States)

    Bauer, K.; Heit, B.; Muksin, U.; Yuan, X.

    2017-12-01

    spot-shaped and isolated than representing a more elongated feature in landward extension of the Walvis Ridge. Similar observations werereported from previous active seismic studies in the same region.

  11. Proposed Activities to Address Regulatory Gaps and Challenges for Licensing Advanced Reactors Using Seismic Isolation

    International Nuclear Information System (INIS)

    Coleman, Justin Leigh; Kammerer, Annie M.; Whittaker, Andrew S.

    2016-01-01

    Over the last decade, particularly since implementation of the certified design regulatory approaches outlined in 10 CFR 52, 'Licenses, Certifications, and Approvals for Nuclear Power Plants,' interest has been increasing in the use of seismic isolation (SI) technology to support seismic safety in nuclear facilities. In 2009, the United States (U.S.) Nuclear Regulatory Commission (NRC) initiated research activities to develop new guidance targeted at isolated facilities because SI is being considered for nuclear power plants in the U.S. One product of that research, which was developed around a risk-informed regulatory approach, is a draft NRC NUREG series (NUREG/CR) report that investigates and discusses considerations for use of SI in otherwise traditionally founded large light water reactors (LWRs). A coordinated effort led to new provisions for SI of LWRs in the American Society of Civil Engineers standard ASCE/SEI 4-16, 'Seismic Analysis of Safety Related Nuclear Structures.' The risk-informed design philosophy that underpinned development of the technical basis for these documents led to a set of proposed performance objectives and acceptance criteria intended to serve as the foundation for future NRC guidance on the use of SI and related technology. Although the guidance provided in the draft SI NUREG/CR report and ASCE/SEI 4 16 provides a sound basis for further development of nuclear power plant designs incorporating SI, these initial documents were focused on surface-founded or near-surface-founded LWRs and were, necessarily, limited in scope. For example, there is limited information in both the draft NUREG/CR report and ASCE/SEI 4-16 related to nonlinear analysis of soil-structure systems for deeply-embedded reactors, the isolation of components, and the use of vertical isolation systems. Also not included in the draft SI NUREG/CR report are special considerations for licensing of isolated facilities using the certified design

  12. Seismic Tomography of the Arabian-Eurasian Collision Zone and Surrounding Areas

    National Research Council Canada - National Science Library

    Toksoz, M. N; Van der Hilst, Robert D; Sun, Youshun; Gulen, Levent; Kalafat, Dogan; Kuleli, Huseyin S; Li, Chang; Zhang, Haijiang

    2008-01-01

    ... and surrounding areas, including Iran, Arabia, Eastern Turkey, and the Caucasus. The Arabian-Eurasian plate boundary is a complex tectonic zone shaped by continent-continent collision processes...

  13. Semi-Active Control of Precast RC Columns under Seismic Action

    Science.gov (United States)

    Caterino, Nicola; Spizzuoco, Mariacristina

    2017-10-01

    This work is inspired by the idea of dissipating seismic energy at the base of prefabricated RC columns via semi-active (SA) variable dampers exploiting the base rocking. It was performed a wide numerical campaign to investigate the seismic behaviour of a pre-cast RC column with a variable base restraint. The latter is based on the combined use of a hinge, elastic springs, and magnetorheological (MR) dampers remotely controlled according to the instantaneous response of the structural component. The MR devices are driven by a SA control algorithm purposely written to modulate the dissipative capability so as to reduce base bending moment without causing excessive displacement at the top. The proposed strategy results to be really promising, since the base restraint relaxation, that favours the base moment demand reduction, is accompanied by a high enhancement of the dissipated energy due to rocking that can be even able to reduce top displacement in respect to the “fixed base rotation” conditions.

  14. Seismic changes industry

    International Nuclear Information System (INIS)

    Taylor, G.

    1992-01-01

    This paper discusses the growth in the seismic industry as a result of the recent increases in the foreign market. With the decline of communism and the opening of Latin America to exploration, seismic teams have moved out into these areas in support of the oil and gas industry. The paper goes on to discuss the improved technology available for seismic resolution and the subsequent use of computers to field-proof the data while the seismic team is still on-site. It also discusses the effects of new computer technology on reducing the amount of support staff that is required to both conduct and interpret seismic information

  15. High-surface-area active carbon

    International Nuclear Information System (INIS)

    O'Grady, T.M.; Wennerberg, A.N.

    1986-01-01

    This paper describes the preparation and properties of a unique active carbon having exceptionally high surface areas, over 2500 m 2 /gm, and extraordinary adsorptive capacities. The carbon is made by a direct chemical activation route in which petroleum coke or other carbonaceous sources are reacted with excess potassium hydroxide at 400 0 to 500 0 C to an intermediate product that is subsequently pyrolyzed at 800 0 to 900 0 C to active carbon containing potassium salts. These are removed by water washing and the carbon is dried to produce a powdered product. A granular carbon can also be made by further processing the powdered carbon by using specialized granulation techniques. Typical properties of the carbon include Iodine Numbers of 3000 to 3600, methylene blue adsorption of 650 to 750 mg/gm, pore volumes of 2.0 to 2.6 cc/gm and less than 3.0% ash. This carbon's high adsorption capacities make it uniquely suited for numerous demanding applications in the medical area, purifications, removal of toxic substances, as catalyst carriers, etc

  16. Localization of cortical areas activated by thinking

    DEFF Research Database (Denmark)

    Roland, P E; Friberg, L

    1985-01-01

    midtemporal cortex exclusively during jingle thinking. The intermediate and remote visual association areas, the superior occipital, posterior inferior temporal, and posterior superior parietal cortex, increased their rCBF exclusively during route-finding thinking. We observed no decreases in rCBF. All r......These experiments were undertaken to demonstrate that pure mental activity, thinking, increases the cerebral blood flow and that different types of thinking increase the regional cerebral blood flow (rCBF) in different cortical areas. As a first approach, thinking was defined as brain work...... communication with the outside world. In 50-3 thinking, the subjects started with 50 and then, in their minds only, continuously subtracted 3 from the result. In jingle thinking the subjects internally jumped every second word in a nine-word circular jingle. In route-finding thinking the subjects imagined...

  17. Planning, architecture, seismic, construction and energy-related criteria for sustainable spatial development in the Danube Delta Biosphere Reserve area

    Directory of Open Access Journals (Sweden)

    Vasile Meiţă

    2014-09-01

    Full Text Available The Danube Delta Biosphere Reserve represents a complex of ecosystems embedding a biome that had been included on UNESCO World Heritage list due to its global environmental importance. The outstanding natural diversity, including ecosystems, habitats and species situated at the top of European and International conservation lists, is mixed with an equally rich and important cultural (ethnic and religious diversity of the human communities inhabiting the area. According to the guidelines of the Man and the Biosphere Programme of UNESCO, the biosphere reserves including human settlements should be managed such that they could constitute an example for what sustainable development means. Starting from the spatial dimension added to the traditional socioeconomic, ecological and cultural pillars of sustainable development, the paper examines planning, architecture, seismic, construction and energy-related criteria that could substantiate a sustainable development model applicable to the Danube Delta, and counter the effects of clime change in the area. The results suggest that the traditional practices of the inhabitants could offer sustainable solutions and help preserving the natural and cultural diversity of the region.

  18. Design of a large remote seismic exploration data acquisition system, with the architecture of a distributed storage area network

    International Nuclear Information System (INIS)

    Cao, Ping; Song, Ke-zhu; Yang, Jun-feng; Ruan, Fu-ming

    2011-01-01

    Nowadays, seismic exploration data acquisition (DAQ) systems have been developed into remote forms with a large-scale coverage area. In this kind of application, some features must be mentioned. Firstly, there are many sensors which are placed remotely. Secondly, the total data throughput is high. Thirdly, optical fibres are not suitable everywhere because of cost control, harsh running environments, etc. Fourthly, the ability of expansibility and upgrading is a must for this kind of application. It is a challenge to design this kind of remote DAQ (rDAQ). Data transmission, clock synchronization, data storage, etc must be considered carefully. A fourth-hierarchy model of rDAQ is proposed. In this model, rDAQ is divided into four different function levels. From this model, a simple and clear architecture based on a distributed storage area network is proposed. rDAQs with this architecture have advantages of flexible configuration, expansibility and stability. This architecture can be applied to design and realize from simple single cable systems to large-scale exploration DAQs

  19. Anti-seismic air condition's cooling capability increase of the second control area

    International Nuclear Information System (INIS)

    Pan Qiang

    2008-01-01

    Secondary area (SCA) air-conditioning system is an important ventilation system in plant. It should achieve the indoor temperature controllable. To resolve the problem of cooling capacity insufficiency, on the basis of ventilation and refrigeration theory, the thesis analyzes the design modification plan. (author)

  20. Localization of cortical areas activated by thinking.

    Science.gov (United States)

    Roland, P E; Friberg, L

    1985-05-01

    These experiments were undertaken to demonstrate that pure mental activity, thinking, increases the cerebral blood flow and that different types of thinking increase the regional cerebral blood flow (rCBF) in different cortical areas. As a first approach, thinking was defined as brain work in the form of operations on internal information, done by an awake subject. The rCBF was measured in 254 cortical regions in 11 subjects with the intracarotid 133Xe injection technique. In normal man, changes in the regional cortical metabolic rate of O2 leads to proportional changes in rCBF. One control study was taken with the subjects at rest. Then the rCBF was measured during three different simple algorithm tasks, each consisting of retrieval of a specific memory followed by a simple operation on the retrieved information. Once started, the information processing went on in the brain without any communication with the outside world. In 50-3 thinking, the subjects started with 50 and then, in their minds only, continuously subtracted 3 from the result. In jingle thinking the subjects internally jumped every second word in a nine-word circular jingle. In route-finding thinking the subjects imagined that they started at their front door and then walked alternatively to the left or the right each time they reached a corner. The rCBF increased only in homotypical cortical areas during thinking. The areas in the superior prefrontal cortex increased their rCBF equivalently during the three types of thinking. In the remaining parts of the prefrontal cortex there were multifocal increases of rCBF. The localizations and intensities of these rCBF increases depended on the type of internal operation occurring. The rCBF increased bilaterally in the angular cortex during 50-3 thinking. The rCBF increased in the right midtemporal cortex exclusively during jingle thinking. The intermediate and remote visual association areas, the superior occipital, posterior inferior temporal, and

  1. Seismic texture classification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vinther, R.

    1997-12-31

    The seismic texture classification method, is a seismic attribute that can both recognize the general reflectivity styles and locate variations from these. The seismic texture classification performs a statistic analysis for the seismic section (or volume) aiming at describing the reflectivity. Based on a set of reference reflectivities the seismic textures are classified. The result of the seismic texture classification is a display of seismic texture categories showing both the styles of reflectivity from the reference set and interpolations and extrapolations from these. The display is interpreted as statistical variations in the seismic data. The seismic texture classification is applied to seismic sections and volumes from the Danish North Sea representing both horizontal stratifications and salt diapers. The attribute succeeded in recognizing both general structure of successions and variations from these. Also, the seismic texture classification is not only able to display variations in prospective areas (1-7 sec. TWT) but can also be applied to deep seismic sections. The seismic texture classification is tested on a deep reflection seismic section (13-18 sec. TWT) from the Baltic Sea. Applied to this section the seismic texture classification succeeded in locating the Moho, which could not be located using conventional interpretation tools. The seismic texture classification is a seismic attribute which can display general reflectivity styles and deviations from these and enhance variations not found by conventional interpretation tools. (LN)

  2. Multicomponent Seismic Analysis and Calibration to Improve Recovery from Algal Mounds: Application to the Roadrunner/Towaoc area of the Paradox Basin, UTE Mountain UTE Reservation, Colorado

    International Nuclear Information System (INIS)

    Joe Hachey

    2007-01-01

    The goals of this project were: (1) To enhance recovery of oil contained within algal mounds on the Ute Mountain Ute tribal lands. (2) To promote the use of advanced technology and expand the technical capability of the Native American Oil production corporations by direct assistance in the current project and dissemination of technology to other Tribes. (3) To develop an understanding of multicomponent seismic data as it relates to the variations in permeability and porosity of algal mounds, as well as lateral facies variations, for use in both reservoir development and exploration. (4) To identify any undiscovered algal mounds for field-extension within the area of seismic coverage. (5) To evaluate the potential for applying CO 2 floods, steam floods, water floods or other secondary or tertiary recovery processes to increase production. The technical work scope was carried out by: (1) Acquiring multicomponent seismic data over the project area; (2) Processing and reprocessing the multicomponent data to extract as much geological and engineering data as possible within the budget and time-frame of the project; (3) Preparing maps and data volumes of geological and engineering data based on the multicomponent seismic and well data; (4) Selecting drilling targets if warranted by the seismic interpretation; (5) Constructing a static reservoir model of the project area; and (6) Constructing a dynamic history-matched simulation model from the static model. The original project scope covered a 6 mi 2 (15.6 km 2 ) area encompassing two algal mound fields (Towaoc and Roadrunner). 3D3C seismic data was to acquired over this area to delineate mound complexes and image internal reservoir properties such as porosity and fluid saturations. After the project began, the Red Willow Production Company, a project partner and fully-owned company of the Southern Ute Tribe, contributed additional money to upgrade the survey to a nine-component (3D9C) survey. The purpose of this upgrade

  3. Multicomponent Seismic Analysis and Calibration to Improve Recovery from Algal Mounds: Application to the Roadrunner/Towaoc area of the Paradox Basin, UTE Mountain UTE Reservation, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Joe Hachey

    2007-09-30

    The goals of this project were: (1) To enhance recovery of oil contained within algal mounds on the Ute Mountain Ute tribal lands. (2) To promote the use of advanced technology and expand the technical capability of the Native American Oil production corporations by direct assistance in the current project and dissemination of technology to other Tribes. (3) To develop an understanding of multicomponent seismic data as it relates to the variations in permeability and porosity of algal mounds, as well as lateral facies variations, for use in both reservoir development and exploration. (4) To identify any undiscovered algal mounds for field-extension within the area of seismic coverage. (5) To evaluate the potential for applying CO{sub 2} floods, steam floods, water floods or other secondary or tertiary recovery processes to increase production. The technical work scope was carried out by: (1) Acquiring multicomponent seismic data over the project area; (2) Processing and reprocessing the multicomponent data to extract as much geological and engineering data as possible within the budget and time-frame of the project; (3) Preparing maps and data volumes of geological and engineering data based on the multicomponent seismic and well data; (4) Selecting drilling targets if warranted by the seismic interpretation; (5) Constructing a static reservoir model of the project area; and (6) Constructing a dynamic history-matched simulation model from the static model. The original project scope covered a 6 mi{sup 2} (15.6 km{sup 2}) area encompassing two algal mound fields (Towaoc and Roadrunner). 3D3C seismic data was to acquired over this area to delineate mound complexes and image internal reservoir properties such as porosity and fluid saturations. After the project began, the Red Willow Production Company, a project partner and fully-owned company of the Southern Ute Tribe, contributed additional money to upgrade the survey to a nine-component (3D9C) survey. The purpose

  4. Transposing an active fault database into a seismic hazard fault model for nuclear facilities. Pt. 1. Building a database of potentially active faults (BDFA) for metropolitan France

    Energy Technology Data Exchange (ETDEWEB)

    Jomard, Herve; Cushing, Edward Marc; Baize, Stephane; Chartier, Thomas [IRSN - Institute of Radiological Protection and Nuclear Safety, Fontenay-aux-Roses (France); Palumbo, Luigi; David, Claire [Neodyme, Joue les Tours (France)

    2017-07-01

    The French Institute for Radiation Protection and Nuclear Safety (IRSN), with the support of the Ministry of Environment, compiled a database (BDFA) to define and characterize known potentially active faults of metropolitan France. The general structure of BDFA is presented in this paper. BDFA reports to date 136 faults and represents a first step toward the implementation of seismic source models that would be used for both deterministic and probabilistic seismic hazard calculations. A robustness index was introduced, highlighting that less than 15% of the database is controlled by reasonably complete data sets. An example of transposing BDFA into a fault source model for PSHA (probabilistic seismic hazard analysis) calculation is presented for the Upper Rhine Graben (eastern France) and exploited in the companion paper (Chartier et al., 2017, hereafter Part 2) in order to illustrate ongoing challenges for probabilistic fault-based seismic hazard calculations.

  5. Relationship between ERR and seismic energy release for different geotechnical areas.

    CSIR Research Space (South Africa)

    Spottiswoode, S

    2000-04-01

    Full Text Available ..............................................................................5-20 5.2 Multi-step ERR.......................................................................5-21 5.2.1 Testing Multi-step ERR ........................................................................ 5-22 5.2.2 Meaning of high ERR areas... (Sellers, 1997) .................................................................................. 3-15 Figure 5.1. Sketch of work done by a force over a distance. ........................................ 5-22 Figure 5.2 Comparison between theoretical...

  6. The influence of backfill on seismicity

    CSIR Research Space (South Africa)

    Hemp, DA

    1990-09-01

    Full Text Available , that the seismicity has been reduced in areas where backfill had been placed. A factor complicating the evaluation of backfill on seismicity is the effect of geological structures on seismicity....

  7. Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey, PSInSAR and Kinematic Structural Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Teplow, William J. [US Geothermal, Inc., Boise, ID (United States); Warren, Ian [US Geothermal, Inc., Boise, ID (United States)

    2015-08-12

    The DOE cost-share program applied innovative and cutting edge seismic surveying and processing, permanent scatter interferometry-synthetic aperture radar (PSInSAR) and structural kinematics to the exploration problem of locating and mapping largeaperture fractures (LAFs) for the purpose of targeting geothermal production wells. The San Emidio geothermal resource area, which is under lease to USG, contains production wells that have encountered and currently produce from LAFs in the southern half of the resource area (Figure 2). The USG lease block, incorporating the northern extension of the San Emidio geothermal resource, extends 3 miles north of the operating wellfield. The northern lease block was known to contain shallow thermal waters but was previously unexplored by deep drilling. Results of the Phase 1 exploration program are described in detail in the Phase 1 Final Report (Teplow et al., 2011). The DOE cost shared program was completed as planned on September 30, 2014. This report summarizes results from all of Phase 1 and 2 activities.

  8. Crustal structure across the Three Gorges area of the Yangtze platform, central China, from seismic refraction/wide-angle reflection data

    Science.gov (United States)

    Zhang, Z.; Bai, Z.; Mooney, W.; Wang, C.; Chen, X.; Wang, E.; Teng, J.; Okaya, N.

    2009-01-01

    We present active-source seismic data recorded along a 300??km-long profile across the Three Gorges area of the western Yangtze platform, central China. From west to east, the profile crosses the Zigui basin, Huangling dome and Jianghan basin. The derived crustal P-wave velocity structure changes significantly across the Tongchenghe fault that lies at the transition from the Huangling dome to the Jianghan basin. West of the Tongchenghe fault, beneath the Zigui basin and the Huangling dome, we observe a ~ 42??km thick crust of relatively low average velocity (6.3-6.4??km/s). In contrast, east of the Tongchenghe fault, beneath the Jianghan basin, the crust is only 30??km thick and has a high average velocity (6.6-6.7??km/s). A west-east variation in crustal composition along the Tongchenghe fault is also inferred. West of the fault, P-wave velocities suggest a felsic composition with an intermediate layer at the base of the crust, whilst, east of the fault, felsic, intermediate, and mafic crustal layers are apparent. Our results suggest that the crust beneath the Jianghan basin has been thinned by rifting, accompanied by intrusion of the lower crust by mafic dikes and sills. The west-to-east division of the crust in the Three Gorges area coincides with first-order geophysical contrasts in gravity, topography, crustal and lithospheric thickness. ?? 2009 Elsevier B.V.

  9. Induced seismicity in Carbon and Emery counties, Utah

    Science.gov (United States)

    Brown, Megan R. M.

    Utah is one of the top producers of oil and natural gas in the United States. Over the past 18 years, more than 4.2 billion gallons of wastewater from the petroleum industry have been injected into the Navajo Sandstone, Kayenta Formation, and Wingate Sandstone in two areas in Carbon and Emery County, Utah, where seismicity has increased during the same period. In this study, I investigated whether or not wastewater injection is related to the increased seismicity. Previous studies have attributed all of the seismicity in central Utah to coal mining activity. I found that water injection might be a more important cause. In the coal mining area, seismicity rate increased significantly 1-5 years following the commencement of wastewater injection. The increased seismicity consists almost entirely of earthquakes with magnitudes of less than 3, and is localized in areas seismically active prior to the injection. I have established the spatiotemporal correlations between the coal mining activities, the wastewater injection, and the increased seismicity. I used simple groundwater models to estimate the change in pore pressure and evaluate the observed time gap between the start of injection and the onset of the increased seismicity in the areas surrounding the injection wells. To ascertain that the increased seismicity is not fluctuation of background seismicity, I analyzed the magnitude-frequency relation of these earthquakes and found a clear increase in the b-value following the wastewater injection. I conclude that the marked increase of seismicity rate in central Utah is induced by both mining activity and wastewater injection, which raised pore pressure along pre-existing faults.

  10. Some possible correlation between electro-magnetic emission and seismic activity during West Bohemia 2008 earthquake swarm

    Czech Academy of Sciences Publication Activity Database

    Kolář, Petr

    2010-01-01

    Roč. 1, č. 1 (2010), s. 93-98 ISSN 1869-9510 R&D Projects: GA AV ČR(CZ) IAA300120805 Institutional research plan: CEZ:AV0Z30120515 Keywords : electromagnetic emission * seismic activity * West Bohemia 2008 earthquake swarm Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  11. Marine and land active-source seismic investigation of geothermal potential, tectonic structure, and earthquake hazards in Pyramid Lake, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Eisses, A.; Kell, A.; Kent, G. [UNR; Driscoll, N. [UCSD; Karlin, R.; Baskin, R. [USGS; Louie, J. [UNR; Pullammanappallil, S. [Optim

    2016-08-01

    Amy Eisses, Annie M. Kell, Graham Kent, Neal W. Driscoll, Robert E. Karlin, Robert L. Baskin, John N. Louie, Kenneth D. Smith, Sathish Pullammanappallil, 2011, Marine and land active-source seismic investigation of geothermal potential, tectonic structure, and earthquake hazards in Pyramid Lake, Nevada: presented at American Geophysical Union Fall Meeting, San Francisco, Dec. 5-9, abstract NS14A-08.

  12. Accurate relocation of seismicity along the North Aegean Trough and its relation to active tectonics

    Science.gov (United States)

    Konstantinou, K. I.

    2017-10-01

    The tectonics of northern Aegean are affected by the westward push of Anatolia and the gravitational spreading of the Aegean lithosphere that promote transtensional deformation in the area. This regime is also responsible for the creation of a series of pull-apart basins, collectively known as the North Aegean Trough. This work accurately relocates a total of 2300 earthquakes that were recorded along the North Aegean Trough during 2011-2016 by stations of the Hellenic Unified Seismic Network (HUSN) and strong-motion sensors. Absolute locations for these events were obtained using a nonlinear probabilistic algorithm and utilizing a minimum 1D velocity model with station corrections. The hypocentral depth distribution of these events shows a peak at 8 km diminishing gradually down to 20 km. A systematic overestimation of hypocentral depths is observed in the routine locations provided by the National Observatory of Athens where the majority of events appear to be deeper than 15 km. In order to obtain more accurate relative locations these events were relocated using the double-difference method. A total of 1693 events were finally relocated with horizontal and vertical uncertainties that do not exceed 0.11 km and 0.22 km respectively. Well-defined clusters of seismicity can be observed along the Saros and Sporades basins as well as the Kassandra and Sithonia peninsulas. These clusters either occur along the well-known NE-SW strike-slip faults bounding the basins, or along normal faults whose strike is perpendicular to the regional minimum stress axis. Locking depth along the North Aegean Trough is found to be remarkably stable between 13 and 17 km. This is likely a consequence of simultaneous reduction along the SW direction of heat flow (from 89 to 51 mW/m2) and strain rate (from 600 to 50 nstrain/yr) whose opposite effects are canceled out, precluding any sharp changes in locking depth.

  13. Installation of a digital, wireless, strong-motion network for monitoring seismic activity in a western Colorado coal mining region

    Energy Technology Data Exchange (ETDEWEB)

    Peter Swanson; Collin Stewart; Wendell Koontz [NIOSH, Spokane, WA (USA). Spokane Research Laboratory

    2007-01-15

    A seismic monitoring network has recently been installed in the North Fork Valley coal mining region of western Colorado as part of a NIOSH mine safety technology transfer project with two longwall coal mine operators. Data recorded with this network will be used to characterize mining related and natural seismic activity in the vicinity of the mines and examine potential hazards due to ground shaking near critical structures such as impoundment dams, reservoirs, and steep slopes. Ten triaxial strong-motion accelerometers have been installed on the surface to form the core of a network that covers approximately 250 square kilometers (100 sq. miles) of rugged canyon-mesa terrain. Spread-spectrum radio networks are used to telemeter continuous streams of seismic waveform data to a central location where they are converted to IP data streams and ported to the Internet for processing, archiving, and analysis. 4 refs.

  14. Geophysical methods for identification of active faults between the Sannio-Matese and Irpinia areas of the Southern Apennines.

    Science.gov (United States)

    Gaudiosi, Germana; Nappi, Rosa; Alessio, Giuliana; Cella, Federico; Fedi, Maurizio; Florio, Giovanni

    2014-05-01

    The Southern Apennines is one of the Italian most active areas from a geodynamic point of view since it is characterized by occurrence of intense and widely spread seismic activity. Most seismicity of the area is concentrated along the chain, affecting mainly the Irpinia and Sannio-Matese areas. The seismogenetic sources responsible for the destructive events of 1456, 1688, 1694, 1702, 1732, 1805, 1930, 1962 and 1980 (Io = X-XI MCS) occurred mostly on NW-SE faults, and the relative hypocenters are concentrated within the upper 20 km of the crust. Structural observations on the Pleistocene faults suggest normal to sinistral movements for the NW-SE trending faults and normal to dextral for the NE-SW trending structures. The available focal mechanisms of the largest events show normal solutions consistent with NE-SW extension of the chain. After the 1980 Irpinia large earthquake, the release of seismic energy in the Southern Apennines has been characterized by occurrence of moderate energy sequences of main shock-aftershocks type and swarm-type activity with low magnitude sequences. Low-magnitude (Md<5) historical and recent earthquakes, generally clustered in swarms, have commonly occurred along the NE-SW faults. This paper deals with integrated analysis of geological and geophysical data in GIS environment to identify surface, buried and hidden active faults and to characterize their geometry. In particular we have analyzed structural data, earthquake space distribution and gravimetric data. The main results of the combined analysis indicate good correlation between seismicity and Multiscale Derivative Analysis (MDA) lineaments from gravity data. Furthermore 2D seismic hypocentral locations together with high-resolution analysis of gravity anomalies have been correlated to estimate the fault systems parameters (strike, dip direction and dip angle) through the application of the DEXP method (Depth from Extreme Points).

  15. Evidence for sub-lacustrine volcanic activity in Lake Bolsena (central Italy) revealed by high resolution seismic data sets

    Science.gov (United States)

    Lindhorst, Katja; Krastel, Sebastian; Wagner, Bernd; Schuerer, Anke

    2017-06-01

    The Bolsena caldera that formed between 0.6 and 0.2 Ma has a well preserved structural rim, which makes it an ideal site to study the tectonic and volcanic evolution of calderas. However, the main area is covered by a 150 m deep lake which makes it rather difficult to investigate the subsurface structure directly. To overcome this problem new high resolution hydro-acoustic surveys using a multichannel reflection seismic system and a sediment echo-sounder system were conducted in September 2012. As space was limited we used a rowing boat towed by a rubber boat to handle a 36 m long and 24 channel streamer to receive seismic reflections produced using a Mini GI-Gun (0.25 l). The subsurface structure of Lake Bolsena was imaged up to a sediment depth of 190 m, which is estimated to have filled over a period of 333 kyrs. However, massive pyroclastic flow deposits found in the deeper parts of the basin indicate an initial infill of volcanic deposits from two adjacent younger calderas, the Latera (W) and Montefiascone (SE) calderas. Our data suggest that the caldera has a long history of active volcanism, because the lacustrine sediments show post-sedimentary influences of geothermal fluids. We mapped several mound structures at various stratigraphic depths. Two volcanic structures outcrop at the modern lake surface implying recent activity. One of these structures is hardly covered by sediments and has a crater-like feature in its summit. The other structure shows a pockmark-like depression on top. Another observable feature is a partially sediment filled crater located in the western part of the lake which further implies the existence of a magma chamber located beneath the Bolsena caldera. Since the late Pleistocene and Holocene, the sedimentation was mainly hemipelagic evidenced by a sediment drape of up to 10 m thick sediment drape on the uppermost sediments. Beneath the drape we found evidence for a distal tephra layer likely related to an explosive eruption from

  16. Georgia-Armenia Transboarder seismicity studies

    Science.gov (United States)

    Godoladze, T.; Tvaradze, N.; Javakishvili, Z.; Elashvili, M.; Durgaryan, R.; Arakelyan, A.; Gevorgyan, M.

    2012-12-01

    In the presented study we performed Comprehensive seismic analyses for the Armenian-Georgian transboarder active seismic fault starting on Armenian territory, cutting the state boarder and having possibly northern termination on Adjara-Triealeti frontal structure in Georgia. In the scope of International projects: ISTC A-1418 "Open network of scientific Centers for mitigation risk of natural hazards in the Southern Caucasus and Central Asia" and NATO SfP- 983284 Project "Caucasus Seismic Emergency Response" in Akhalkalaki (Georgia) seismic center, Regional Summer school trainings and intensive filed investigations were conducted. Main goal was multidisciplinary study of the Javakheti fault structure and better understanding seismicity of the area. Young scientists from Turkey, Armenia, Azerbaijan and Georgia were participated in the deployment of temporal seismic network in order to monitor seisimity on the Javakheti highland and particularly delineate fault scarf and identify active seismic structures. In the scope of international collaboration the common seismic database has been created in the southern Caucasus and collected data from the field works is available now online. Javakheti highland, which is located in the central part of the Caucasus, belongs to the structure of the lesser Caucasus and represents a history of neotectonic volcanism existed in the area. Jasvakheti highland is seismicalu active region devastating from several severe earthquakes(1088, 1283, 1899…). Hypocenters located during analogue network were highly scattered and did not describe real pattern of seismicity of the highland. We relocated hypocenters of the region and improved local velocity model. The hypocenters derived from recently deployed local seismic network in the Javakheti highland, clearly identified seismically active structures. Fault plane solutions of analogue data of the Soviet times have been carefully analyzed and examined. Moment tensor inversion were preformed

  17. Discrimination between pre-seismic electromagnetic anomalies and solar activity effects

    Science.gov (United States)

    Koulouras, G.; Balasis, G.; Kiourktsidis, I.; Nannos, E.; Kontakos, K.; Stonham, J.; Ruzhin, Y.; Eftaxias, K.; Cavouras, D.; Nomicos, C.

    2009-04-01

    Laboratory studies suggest that electromagnetic emissions in a wide frequency spectrum ranging from kilohertz (kHz) to very high megahertz (MHz) frequencies are produced by the opening of microcracks, with the MHz radiation appearing earlier than the kHz radiation. Earthquakes are large-scale fracture phenomena in the Earth's heterogeneous crust. Thus, the radiated kHz-MHz electromagnetic emissions are detectable not only in the laboratory but also at a geological scale. Clear MHz-to-kHz electromagnetic anomalies have been systematically detected over periods ranging from a few days to a few hours prior to recent destructive earthquakes in Greece. We should bear in mind that whether electromagnetic precursors to earthquakes exist is an important question not only for earthquake prediction but mainly for understanding the physical processes of earthquake generation. An open question in this field of research is the classification of a detected electromagnetic anomaly as a pre-seismic signal associated with earthquake occurrence. Indeed, electromagnetic fluctuations in the frequency range of MHz are known to be related to a few sources, including atmospheric noise (due to lightning), man-made composite noise, solar-terrestrial noise (resulting from the Sun-solar wind-magnetosphere-ionosphere-Earth's surface chain) or cosmic noise, and finally, the lithospheric effect, namely pre-seismic activity. We focus on this point in this paper. We suggest that if a combination of detected kHz and MHz electromagnetic anomalies satisfies the set of criteria presented herein, these anomalies could be considered as candidate precursory phenomena of an impending earthquake.

  18. Discrimination between pre-seismic electromagnetic anomalies and solar activity effects

    International Nuclear Information System (INIS)

    Koulouras, G; Kiourktsidis, I; Stonham, J; Balasis, G; Nannos, E; Kontakos, K; Nomicos, C; Ruzhin, Y; Eftaxias, K; Cavouras, D

    2009-01-01

    Laboratory studies suggest that electromagnetic emissions in a wide frequency spectrum ranging from kilohertz (kHz) to very high megahertz (MHz) frequencies are produced by the opening of microcracks, with the MHz radiation appearing earlier than the kHz radiation. Earthquakes are large-scale fracture phenomena in the Earth's heterogeneous crust. Thus, the radiated kHz-MHz electromagnetic emissions are detectable not only in the laboratory but also at a geological scale. Clear MHz-to-kHz electromagnetic anomalies have been systematically detected over periods ranging from a few days to a few hours prior to recent destructive earthquakes in Greece. We should bear in mind that whether electromagnetic precursors to earthquakes exist is an important question not only for earthquake prediction but mainly for understanding the physical processes of earthquake generation. An open question in this field of research is the classification of a detected electromagnetic anomaly as a pre-seismic signal associated with earthquake occurrence. Indeed, electromagnetic fluctuations in the frequency range of MHz are known to be related to a few sources, including atmospheric noise (due to lightning), man-made composite noise, solar-terrestrial noise (resulting from the Sun-solar wind-magnetosphere-ionosphere-Earth's surface chain) or cosmic noise, and finally, the lithospheric effect, namely pre-seismic activity. We focus on this point in this paper. We suggest that if a combination of detected kHz and MHz electromagnetic anomalies satisfies the set of criteria presented herein, these anomalies could be considered as candidate precursory phenomena of an impending earthquake.

  19. Monitoring and Characterizing the Geysering and Seismic Activity at the Lusi Mud Eruption Site, East Java, Indonesia

    Science.gov (United States)

    Karyono, Karyono; Obermann, Anne; Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Abdurrokhim, Abdurrokhim; Masturyono, Masturyono; Hadi, Soffian

    2016-04-01

    The Lusi eruption began on May 29, 2006 in the northeast of Java Island, Indonesia, and to date is still active. Lusi is a newborn sedimentary-hosted hydrothermal system characterized by continuous expulsion of liquefied mud and breccias and geysering activity. Lusi is located upon the Watukosek fault system, a left lateral wrench system connecting the volcanic arc and the bakarc basin. This fault system is still periodically reactivated as shown by field data. In the framework of the Lusi Lab project (ERC grant n° 308126) we conducted several types of monitoring. Based on camera observations, we characterized the Lusi erupting activity by four main behaviors occurring cyclically: (1) Regular activity, which consists in the constant emission of water and mud breccias (i.e. viscous mud containing clay, silt, sand and clasts) associated with the constant expulsion of gas (mainly aqueous vapor with minor amounts of CO2 and CH4) (2) Geysering phase with intense bubbling, consisting in reduced vapor emission and more powerful bursting events that do not seem to have a regular pattern. (3) Geysering phase with intense vapor and degassing discharge and a typically dense plume that propagates up to 100 m height. (4) Quiescent phase marking the end of the geysering activity (and the observed cycle) with no gas emissions or bursts observed. To investigate the possible seismic activity beneath Lusi and the mechanisms controlling the Lusi pulsating behaviour, we deployed a network of 5 seismic stations and a HD camera around the Lusi crater. We characterize the observed types of seismic activity as tremor and volcano-tectonic events. Lusi tremor events occur in 5-10 Hz frequency band, while volcano tectonic events are abundant in the high frequencies range from 5 Hz until 25 Hz. We coupled the seismic monitoring with the images collected with the HD camera to study the correlation between the seismic tremor and the different phases of the geysering activity. Key words: Lusi

  20. Neotectonics of Graciosa island (Azores: a contribution to seismic hazard assessment of a volcanic area in a complex geodynamic setting

    Directory of Open Access Journals (Sweden)

    Ana Hipólito

    2014-02-01

    Full Text Available Graciosa is a mid-Pleistocene to Holocene volcanic island that lies in a complex plate boundary between the North American, Eurasian, and Nubian plates. Large fault scarps displace the oldest (Middle Pleistocene volcanic units, but in the younger areas recent volcanism (Holocene to Upper Pleistocene conceals the surface expression of faulting, limiting neotectonic observations. The large displacement accumulated by the older volcanic units when compared with the younger formations suggests a variability of deformation rates and the possibility of alternating periods of higher and lower tectonic deformation rates; this would increase the recurrence interval of surface rupturing earthquakes. Nevertheless, in historical times a few destructive earthquakes affected the island attesting for its seismic hazard. Regarding the structural data, two main fault systems, incompatible with a single stress field, were identified at Graciosa Island. Thus, it is proposed that the region is affected by two alternating stress fields. The stress field #1 corresponds to the regional stress regime proposed by several authors for the interplate shear zone that constitutes the Azorean segment of the Eurasia-Nubia plate boundary. It is suggested that the stress field #2 will act when the area under the influence of the regional stress field #1 narrows as a result of variations in the differential spreading rates north and south of Azores. The islands closer to the edge of the sheared region will temporarily come under the influence of a different (external stress field (stress field #2. Such data support the concept that, in the Azores, the Eurasia-Nubia boundary corresponds to a complex and wide deformation zone, variable in time.

  1. Site Specific Probabilistic Seismic Hazard and Risk Analysis for Surrounding Communities of The Geysers Geothermal Development Area

    Science.gov (United States)

    Miah, M.; Hutchings, L. J.; Savy, J. B.

    2014-12-01

    We conduct a probabilistic seismic hazard and risk analysis from induced and tectonic earthquakes for a 50 km radius area centered on The Geysers, California and for the next ten years. We calculate hazard with both a conventional and physics-based approach. We estimate site specific hazard. We convert hazard to risk of nuisance and damage to structures per year and map the risk. For the conventional PSHA we assume the past ten years is indicative of hazard for the next ten years from Mnoise. Then, we interpolate within each geologic unit in finely gridded points. All grid points within a unit are weighted by distance from each data collection point. The entire process is repeated for all of the other types of geologic units until the entire area is gridded and assigned a hazard value for every grid points. We found that nuisance and damage risks calculated by both conventional and physics-based approaches provided almost identical results. This is very surprising since they were calculated by completely independent means. The conventional approach used the actual catalog of the past ten years of earthquakes to estimate the hazard for the next ten year. While the physics-based approach used geotechnical modeling to calculate the catalog for the next ten years. Similarly, for the conventional PSHA, we utilized attenuation relations from past earthquakes recorded at the Geysers to translate the ground motion from the source to the site. While for the physics-based approach we calculated ground motion from simulation of actual earthquake rupture. Finally, the source of the earthquakes was the actual source for the conventional PSHA. While, we assumed random fractures for the physics-based approach. From all this, we consider the calculation of the conventional approach, based on actual data, to validate the physics-based approach used.

  2. Seismic Symphonies

    Science.gov (United States)

    Strinna, Elisa; Ferrari, Graziano

    2015-04-01

    symbolize cosmic harmony. But here it is the earth, "nature", the ground beneath our feet that is moving. It speaks to us not of harmony, but of our fragility. For the oldest earthquakes considered, Seismic Symphonies drew on SISMOS archives, the INGV project for recovery, high resolution digital reproduction and distribution of the seismograms of earthquakes of the Euro-Mediterranean area from 1895 to 1984. After the first exposure to the Fondazione Bevilacqua La Masa in Venice, the organ was later exhibited in Taiwan, the Taipei Biennial, with seismograms provided from the Taiwanese Central Weather Bureau, and at the EACC Castello in Spain, with seismograms of Spanish earthquakes provided by the Instituto Geográfico Nacional.

  3. Romanian Educational Seismic Network Project

    Science.gov (United States)

    Tataru, Dragos; Ionescu, Constantin; Zaharia, Bogdan; Grecu, Bogdan; Tibu, Speranta; Popa, Mihaela; Borleanu, Felix; Toma, Dragos; Brisan, Nicoleta; Georgescu, Emil-Sever; Dobre, Daniela; Dragomir, Claudiu-Sorin

    2013-04-01

    Romania is one of the most active seismic countries in Europe, with more than 500 earthquakes occurring every year. The seismic hazard of Romania is relatively high and thus understanding the earthquake phenomena and their effects at the earth surface represents an important step toward the education of population in earthquake affected regions of the country and aims to raise the awareness about the earthquake risk and possible mitigation actions. In this direction, the first national educational project in the field of seismology has recently started in Romania: the ROmanian EDUcational SEISmic NETwork (ROEDUSEIS-NET) project. It involves four partners: the National Institute for Earth Physics as coordinator, the National Institute for Research and Development in Construction, Urban Planning and Sustainable Spatial Development " URBAN - INCERC" Bucharest, the Babeş-Bolyai University (Faculty of Environmental Sciences and Engineering) and the software firm "BETA Software". The project has many educational, scientific and social goals. The main educational objectives are: training students and teachers in the analysis and interpretation of seismological data, preparing of several comprehensive educational materials, designing and testing didactic activities using informatics and web-oriented tools. The scientific objective is to introduce into schools the use of advanced instruments and experimental methods that are usually restricted to research laboratories, with the main product being the creation of an earthquake waveform archive. Thus a large amount of such data will be used by students and teachers for educational purposes. For the social objectives, the project represents an effective instrument for informing and creating an awareness of the seismic risk, for experimentation into the efficacy of scientific communication, and for an increase in the direct involvement of schools and the general public. A network of nine seismic stations with SEP seismometers

  4. Seismicity and volcanic activity in Japan based on crustal thermal activity . 2; Chikaku no netsukatsudo ni motozuku Nippon no Jishin kazan katsudo. 2

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, M [Tokai Univ., Tokyo (Japan). School of Marine Science and Technology

    1996-05-01

    This paper describes the following matters about seismic and volcanic activities in Japan. The previous paper has reported a view that energy is transported from deep portions of the earth`s crust toward outer portions, and the stored energy thrusts up collectively in a certain time period (a rising period). A fact may be accounted for as one of the endorsements thereof that earthquakes and volcanic eruptions take place successively over a wide area from Okinawa to Hokkaido in a short period of time (included in the rising period). When viewed by limiting the time period and areas, a great earthquake would not occur suddenly, but stored energy is released wholly at a certain time while it has been released little by little. Referring to the Kanto Great Earthquake (1923) and the Tokai and Nankai Earthquakes (1944 and 1946), it is found that earthquakes had been occurring successively in the surrounding areas since about 20 years before the occurrence of these great earthquakes. Similar phenomena may be seen in the great earthquakes of Ansei (1854) and An-ei (1707). 5 figs.

  5. Man-caused seismicity of Kuzbass

    Science.gov (United States)

    Emanov, Alexandr; Emanov, Alexey; Leskova, Ekaterina; Fateyev, Alexandr

    2010-05-01

    A natural seismicity of Kuznetsk Basin is confined in the main to mountain frame of Kuznetsk hollow. In this paper materials of experimental work with local station networks within sediment basin are presented. Two types of seismicity display within Kuznetsk hollow have been understood: first, man-caused seismic processes, confined to mine working and concentrated on depths up to one and a half of km; secondly, seismic activations on depths of 2-56 km, not coordinated in plan with coal mines. Every of studied seismic activations consists of large quantity of earthquakes of small powers (Ms=1-3). From one to first tens of earthquakes were recorded in a day. The earthquakes near mine working shift in space along with mine working, and seismic process become stronger at the instant a coal-plough machine is operated, and slacken at the instant the preventive works are executed. The seismic processes near three lavas in Kuznetsk Basin have been studied in detail. Uplift is the most typical focal mechanism. Activated zone near mine working reach in diameter 1-1,5 km. Seismic activations not linked with mine working testify that the subsoil of Kuznetsk hollow remain in stress state in whole. The most probable causes of man-caused action on hollow are processes, coupled with change of physical state of rocks at loss of methane from large volume or change by mine working of rock watering in large volume. In this case condensed rocks, lost gas and water, can press out upwards, realizing the reverse fault mechanism of earthquakes. A combination of stress state of hollow with man-caused action at deep mining may account for incipient activations in Kuznetsk Basin. Today earthquakes happen mainly under mine workings, though damages of workings themselves do not happen, but intensive shaking on surface calls for intent study of so dangerous phenomena. In 2009 replicates of the experiment on research of seismic activations in area of before investigated lavas have been conducted

  6. Multi scenario seismic hazard assessment for Egypt

    Science.gov (United States)

    Mostafa, Shaimaa Ismail; Abd el-aal, Abd el-aziz Khairy; El-Eraki, Mohamed Ahmed

    2018-05-01

    Egypt is located in the northeastern corner of Africa within a sensitive seismotectonic location. Earthquakes are concentrated along the active tectonic boundaries of African, Eurasian, and Arabian plates. The study area is characterized by northward increasing sediment thickness leading to more damage to structures in the north due to multiple reflections of seismic waves. Unfortunately, man-made constructions in Egypt were not designed to resist earthquake ground motions. So, it is important to evaluate the seismic hazard to reduce social and economic losses and preserve lives. The probabilistic seismic hazard assessment is used to evaluate the hazard using alternative seismotectonic models within a logic tree framework. Alternate seismotectonic models, magnitude-frequency relations, and various indigenous attenuation relationships were amended within a logic tree formulation to compute and develop the regional exposure on a set of hazard maps. Hazard contour maps are constructed for peak ground acceleration as well as 0.1-, 0.2-, 0.5-, 1-, and 2-s spectral periods for 100 and 475 years return periods for ground motion on rock. The results illustrate that Egypt is characterized by very low to high seismic activity grading from the west to the eastern part of the country. The uniform hazard spectra are estimated at some important cities distributed allover Egypt. The deaggregation of seismic hazard is estimated at some cities to identify the scenario events that contribute to a selected seismic hazard level. The results of this study can be used in seismic microzonation, risk mitigation, and earthquake engineering purposes.

  7. Seismic modeling of fluvial-estuarine deposits in the Athabasca oil sands using ray-tracing techniques, Steepbank River area, northeastern Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Langenberg, C. W.; Hein, F. J. [Alberta Energy and Utilities Board, Edmonton, AB (Canada); Lawton, D.; Cunningham, J. [Calgary Univ., Dept. of Geology and Geophysics, Calgary, AB (Canada)

    2002-03-01

    Seismic reflection characteristics of contrasting channel geometries in a five-section portion of the Steepbank River are modeled using ray-tracing techniques. Outcrop lithofacies associations are used to create a seismic model that can be used as a subsurface analog of other similar oil-sands successions. At least four channel complexes based on stratal bounding surfaces, arrangement of lithofacies, and consistent paleoflow patterns have been identified. The lower part of each channel complex contains trough crossbedded sandstone, exhibiting high porosity and permeability. These sandstones were deposited in channel axes and are the highest grade bitumen deposits in the area. The upper parts of the channels contain significantly lower bitumen saturation values due to common interbedded mudstone. Nearby wells contain cored and logged intervals that are similar to exposed outcrops in the riverbank. Overall modeling results indicate that channel complexes can be imaged seismically, given data of sufficient quality and frequency. Bitumen grade may be predicted in these seismic lines, which has important consequences for bitumen exploration and extraction in the Steepbank River region. 64 refs., 26 figs.

  8. Signals in water - the deep originated CO2 in the Peschiera-Capone acqueduct in relation to monitoring of seismic activity in central Italy

    Directory of Open Access Journals (Sweden)

    Claudio Martini

    2017-01-01

    Full Text Available Valuation of the analysis performed on groundwater of Central Lazio by ACEA ATO2 SpA from 2001 to 2016, according to the model proposed by Chiodini et al. in 2004 that identifies in the Tyrrhenian coast of central and southern Italy, two notable releasing areas of the CO2 produced by the sub-crustal magma activity, or two areas of natural degassing of the planet: the TRDS area (Tuscan Roman degassing structure and the CDS area (Campanian degassing structure. Reconstruction of the CO2 produced by degassing through the analysis of the components of inorganic carbon measured in groundwater of Central Lazio (Rome and Rieti districts between 2001 and 2016. Causal relationship of the activity of mantle degassing in the TRDS area with the disastrous earthquake occurred at L’Aquila in April 6, 2009. Current use of the dissolved inorganic carbon measurement in the Peschiera and Capore spring waters to monitor the activity of mantle degassing in the TRDS area, in order to have an early warning signal of possible seismic activity in the Central Apennines. Revision and data updating after the earthquake in August 24, 2016 at Amatrice.

  9. The efficiency of seismic attributes to differentiate between massive and non-massive carbonate successions for hydrocarbon exploration activity

    Science.gov (United States)

    Sarhan, Mohammad Abdelfattah

    2017-12-01

    The present work investigates the efficiency of applying volume seismic attributes to differentiate between massive and non-massive carbonate sedimentary successions on using seismic data. The main objective of this work is to provide a pre-drilling technique to recognize the porous carbonate section (probable hydrocarbon reservoirs) based on seismic data. A case study from the Upper Cretaceous - Eocene carbonate successions of Abu Gharadig Basin, northern Western Desert of Egypt has been tested in this work. The qualitative interpretations of the well-log data of four available wells distributed in the study area, namely; AG-2, AG-5, AG-6 and AG-15 wells, has confirmed that the Upper Cretaceous Khoman A Member represents the massive carbonate section whereas the Eocene Apollonia Formation represents the non-massive carbonate unit. The present work have proved that the most promising seismic attributes capable of differentiating between massive and non-massive carbonate sequences are; Root Mean Square (RMS) Amplitude, Envelope (Reflection Strength), Instantaneous Frequency, Chaos, Local Flatness and Relative Acoustic Impedance.

  10. Investigating potential seismic hazard in the Gulf of Gökova (South Eastern Aegean Sea) deduced from recent shallow earthquake activity

    Science.gov (United States)

    Rontogianni, S.; Konstantinou, K. I.; Evangelidis, C.; Melis, N. S.

    2011-12-01

    The Gulf of Gökova is located in the southeast Aegean along the coast of the southwest Anatolia. It is surrounded by the Bodrum Peninsula to the north, Datça Peninsula to the south and the island of Kos to the west. The Gulf is under a N-S regional extensional tectonic regime related to the westerly escape of the Anatolian plate, as a result of the collision of the Arab-African and Eurasian plates. Multi-channel seismic reflection studies that took place in the area revealed a E-W trending buried listric normal fault to the south of the Gulf, the Datça Fault, the associated antithetic faults in the north of the Gulf and a younger NE active fault, named Gökova Tranfer Fault (GTF), in the central part of the Gulf. According to these studies, the activity of the Datça Fault has been decelerated, possibly since Pleistocene, while the continuing extension has been taken up by the faults in the northeast margin of the Gulf. For our analysis we selected all the shallow earthquake activity that took place in the Gulf, within the time window from 2002 to 2011 as provided by the two seismological centers NOA-IG (HL) and KOERI-NEMC (KO). We used data from 15 three component seismic stations surrounding the Gulf. This seismic activity is observed within three periods: (a) November 2002 - May 2003, (b) May 2004 - end of 2007 and (c) December 2008 - May 2011. The strongest events recorded took place in January 2005 and May 2011, with local magnitudes ML 5.1 and 4.9 respectively. After a thorough quality control, a dataset of 192 seismic events was selected, with criteria that at least 4P and 3S phases were available. Manually picked arrival times for these selected events were inverted in order to obtain a 1D velocity model with station corrections. Probabilistic nonlinear earthquake locations were calculated using this newly derived velocity model. The earthquake locations showed that the seismic activity extends from the island of Kos to the center of the Gulf, mainly

  11. REVIEW ARTICLE: A comparison of site response techniques using earthquake data and ambient seismic noise analysis in the large urban areas of Santiago de Chile

    Science.gov (United States)

    Pilz, Marco; Parolai, Stefano; Leyton, Felipe; Campos, Jaime; Zschau, Jochen

    2009-08-01

    Situated in an active tectonic region, Santiago de Chile, the country's capital with more than six million inhabitants, faces tremendous earthquake risk. Macroseismic data for the 1985 Valparaiso event show large variations in the distribution of damage to buildings within short distances, indicating strong effects of local sediments on ground motion. Therefore, a temporary seismic network was installed in the urban area for recording earthquake activity and a study was carried out aiming to estimate site amplification derived from horizontal-to-vertical (H/V) spectral ratios from earthquake data (EHV) and ambient noise (NHV), as well as using the standard spectral ratio (SSR) technique with a nearby reference station located on igneous rock. The results lead to the following conclusions: (1) The analysis of earthquake data shows significant dependence on the local geological structure with respect to amplitude and duration. (2) An amplification of ground motion at frequencies higher than the fundamental one can be found. This amplification would not be found when looking at NHV ratios alone. (3) The analysis of NHV spectral ratios shows that they can only provide a lower bound in amplitude for site amplification. (4) P-wave site responses always show lower amplitudes than those derived by S waves, and sometimes even fail to provide some frequencies of amplification. (5) No variability in terms of time and amplitude is observed in the analysis of the H/V ratio of noise. (6) Due to the geological conditions in some parts of the investigated area, the fundamental resonance frequency of a site is difficult to estimate following standard criteria proposed by the SESAME consortium, suggesting that these are too restrictive under certain circumstances.

  12. Angola Seismicity MAP

    Science.gov (United States)

    Neto, F. A. P.; Franca, G.

    2014-12-01

    The purpose of this job was to study and document the Angola natural seismicity, establishment of the first database seismic data to facilitate consultation and search for information on seismic activity in the country. The study was conducted based on query reports produced by National Institute of Meteorology and Geophysics (INAMET) 1968 to 2014 with emphasis to the work presented by Moreira (1968), that defined six seismogenic zones from macro seismic data, with highlighting is Zone of Sá da Bandeira (Lubango)-Chibemba-Oncócua-Iona. This is the most important of Angola seismic zone, covering the epicentral Quihita and Iona regions, geologically characterized by transcontinental structure tectono-magmatic activation of the Mesozoic with the installation of a wide variety of intrusive rocks of ultrabasic-alkaline composition, basic and alkaline, kimberlites and carbonatites, strongly marked by intense tectonism, presenting with several faults and fractures (locally called corredor de Lucapa). The earthquake of May 9, 1948 reached intensity VI on the Mercalli-Sieberg scale (MCS) in the locality of Quihita, and seismic active of Iona January 15, 1964, the main shock hit the grade VI-VII. Although not having significant seismicity rate can not be neglected, the other five zone are: Cassongue-Ganda-Massano de Amorim; Lola-Quilengues-Caluquembe; Gago Coutinho-zone; Cuima-Cachingues-Cambândua; The Upper Zambezi zone. We also analyzed technical reports on the seismicity of the middle Kwanza produced by Hidroproekt (GAMEK) region as well as international seismic bulletins of the International Seismological Centre (ISC), United States Geological Survey (USGS), and these data served for instrumental location of the epicenters. All compiled information made possible the creation of the First datbase of seismic data for Angola, preparing the map of seismicity with the reconfirmation of the main seismic zones defined by Moreira (1968) and the identification of a new seismic

  13. A GIS approach to seismic risk assessment with an application to mining-related seismicity in Johannesburg, South Africa

    Science.gov (United States)

    Liebenberg, Keagen; Smit, Ansie; Coetzee, Serena; Kijko, Andrzej

    2017-08-01

    The majority of seismic activity in South Africa is related to extensive mining operations, usually in close proximity to densely populated areas where a relatively weak seismic event could cause damage. Despite a significant decrease in mining operations in the Witwatersrand area, the number of seismic events appears to be increasing and is attributed to the acid mine drainage problem. The increased seismicity is raising concern amongst disaster management centres and in the insurance industry. A better understanding is required of the vulnerability and the size of the potential loss of people and infrastructure in densely populated Johannesburg and its surrounding areas. Results of a deterministic seismic risk, vulnerability, and loss assessment are presented by making use of a geographic information system (GIS). The results illustrate the benefits of using GIS and contribute to a better understanding of the risk, which can assist in improving disaster preparedness.

  14. JNES's Activities in the Extra-budgetary Programme of the International Seismic Safety Centre: WA1 Seismic Hazard

    International Nuclear Information System (INIS)

    Wu, Changjiang

    2014-01-01

    Issues in design basis ground motion development, the study items of Work Area 1 of IAEA/ISSC/EBP, and JNES's contributions were explained. It was also noted that the discussions and resolutions of this WS would be summarized in a technical document as task 1.4 of WA1. (author)

  15. Comparative study of codes for the seismic design of structures

    Directory of Open Access Journals (Sweden)

    S. H. C. Santos

    Full Text Available A general evaluation of some points of the South American seismic codes is presented herein, comparing them among themselves and with the American Standard ASCE/SEI 7/10 and with the European Standard Eurocode 8. The study is focused in design criteria for buildings. The Western border of South America is one of the most seismically active regions of the World. It corresponds to the confluence of the South American and Nazca plates. This region corresponds roughly to the vicinity of the Andes Mountains. This seismicity diminishes in the direction of the comparatively seismically quieter Eastern South American areas. The South American countries located in its Western Border possess standards for seismic design since some decades ago, being the Brazilian Standard for seismic design only recently published. This study is focused in some critical topics: definition of the recurrence periods for establishing the seismic input; definition of the seismic zonation and design ground motion values; definition of the shape of the design response spectra; consideration of soil amplification, soil liquefaction and soil-structure interaction; classification of the structures in different importance levels; definition of the seismic force-resisting systems and respective response modification coefficients; consideration of structural irregularities and definition of the allowable procedures for the seismic analyses. A simple building structure is analyzed considering the criteria of the several standards and obtained results are compared.

  16. 3D seismic experiment in the Minaminoshiro area, Akita. Data processing; Akitaken Minaminoshiro chiiki ni okeru sanjigen jishin tansa jikken. Data shori

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H; Minegishi, M [Japan National Oil Corp., Tokyo (Japan). Technology Research Center; Nakagami, K [Japan Petroleum Exploration Co. Ltd., Tokyo (Japan)

    1997-10-22

    A 3D seismic experiment was carried out in the Minaminoshiro area in Akita Prefecture, an area difficult of performing seismic exploration. This paper reports progresses during data processing and future problems. The data processing has executed static correction of 3D refraction, 3D DMO correction, and an F-X prediction filter processing on the data in time domain in the 3D seismic exploration as acquired in a spread of 4 km times 5 km in the subject area. The result of the data processing verified existence of a folding structure and the Noshiro thrust fault groups in the east to west direction, and locations of the Sakagawa fault associated therewith. Seen particularly noticeably was a structure having a slope falling north-ward at 15 to 35 degrees in shallow and deep portions on the east side of the Sakagawa fault in the south to north direction. In addition, the Dogiri fault was identified, which has been though to exist in a direction crossing perpendicularly the Noshiro thrust fault groups. It is scheduled that spatial velocity will be analyzed, and data processing will be conducted for deep regions. 7 figs.

  17. New Approach for Monitoring Seismic and Volcanic Activities Using Microwave Radiometer Data

    Science.gov (United States)

    Maeda, Takashi; Takano, Tadashi

    Interferograms formed from the data of satellite-borne synthetic aperture radar (SAR) enable us to detect slight land-surface deformations related to volcanic eruptions and earthquakes. Currently, however, we cannot determine when land-surface deformations occurred with high time resolution since the time lag between two scenes of SAR used to form interferograms is longer than the recurrent period of the satellite carrying it (several tens of days). In order to solve this problem, we are investigating new approach to monitor seismic and vol-canic activities with higher time resolution from satellite-borne sensor data, and now focusing on a satellite-borne microwave radiometer. It is less subject to clouds and rainfalls over the ground than an infrared spectrometer, so more suitable to observe an emission from land sur-faces. With this advantage, we can expect that thermal microwave energy by increasing land surface temperatures is detected before a volcanic eruption. Additionally, laboratory experi-ments recently confirmed that rocks emit microwave energy when fractured. This microwave energy may result from micro discharges in the destruction of materials, or fragment motions with charged surfaces of materials. We first extrapolated the microwave signal power gener-ated by rock failures in an earthquake from the experimental results and concluded that the microwave signals generated by rock failures near the land surface are strong enough to be detected by a satellite-borne radiometer. Accordingly, microwave energy generated by rock failures associated with a seismic activity is likely to be detected as well. However, a satellite-borne microwave radiometer has a serious problem that its spatial res-olution is too coarse compared to SAR or an infrared spectrometer. In order to raise the possibility of detection, a new methodology to compensate the coarse spatial resolution is es-sential. Therefore, we investigated and developed an analysis method to detect local

  18. Geomorphology and seismic risk

    Science.gov (United States)

    Panizza, Mario

    1991-07-01

    The author analyses the contributions provided by geomorphology in studies suited to the assessment of seismic risk: this is defined as function of the seismic hazard, of the seismic susceptibility, and of the vulnerability. The geomorphological studies applicable to seismic risk assessment can be divided into two sectors: (a) morpho-neotectonic investigations conducted to identify active tectonic structures; (b) geomorphological and morphometric analyses aimed at identifying the particular situations that amplify or reduce seismic susceptibility. The morpho-neotectonic studies lead to the identification, selection and classification of the lineaments that can be linked with active tectonic structures. The most important geomorphological situations that can condition seismic susceptibility are: slope angle, debris, morphology, degradational slopes, paleo-landslides and underground cavities.

  19. Acceleration Feedback-Based Active and Semi-Active Seismic Response Control of Rail-Counterweight Systems of Elevators

    Directory of Open Access Journals (Sweden)

    Rildova

    2005-01-01

    Full Text Available Based on the observations in the past earthquake events, the traction elevators in buildings are known to be vulnerable to earthquake induced ground motions. Among several components of an elevator, the counterweight being heaviest is also known to be more susceptible than others. The inertial effects of the counterweight can overstress the guide rails on which it moves. Here we investigate to use the well-known acceleration feedback-based active and semi-active control methods to reduce stresses in the rails. The only way a control action can be applied to a moving counterweight-rail system is through a mass damper placed in the plane of the counterweight. For this, a part of the counterweight mass can be configured as a mass damper attached to a small actuator for an active scheme or to a magneto-rheological damper for a semi-active scheme. A comprehensive numerical study is conducted to evaluate the effectiveness of the proposed configuration of control system. It is observed that the two control schemes are effective in reducing the stress response by about 20 to 25% and improve the system fragility over a good range of seismic intensities.

  20. Modelling Active Faults in Probabilistic Seismic Hazard Analysis (PSHA) with OpenQuake: Definition, Design and Experience

    Science.gov (United States)

    Weatherill, Graeme; Garcia, Julio; Poggi, Valerio; Chen, Yen-Shin; Pagani, Marco

    2016-04-01

    The Global Earthquake Model (GEM) has, since its inception in 2009, made many contributions to the practice of seismic hazard modeling in different regions of the globe. The OpenQuake-engine (hereafter referred to simply as OpenQuake), GEM's open-source software for calculation of earthquake hazard and risk, has found application in many countries, spanning a diversity of tectonic environments. GEM itself has produced a database of national and regional seismic hazard models, harmonizing into OpenQuake's own definition the varied seismogenic sources found therein. The characterization of active faults in probabilistic seismic hazard analysis (PSHA) is at the centre of this process, motivating many of the developments in OpenQuake and presenting hazard modellers with the challenge of reconciling seismological, geological and geodetic information for the different regions of the world. Faced with these challenges, and from the experience gained in the process of harmonizing existing models of seismic hazard, four critical issues are addressed. The challenge GEM has faced in the development of software is how to define a representation of an active fault (both in terms of geometry and earthquake behaviour) that is sufficiently flexible to adapt to different tectonic conditions and levels of data completeness. By exploring the different fault typologies supported by OpenQuake we illustrate how seismic hazard calculations can, and do, take into account complexities such as geometrical irregularity of faults in the prediction of ground motion, highlighting some of the potential pitfalls and inconsistencies that can arise. This exploration leads to the second main challenge in active fault modeling, what elements of the fault source model impact most upon the hazard at a site, and when does this matter? Through a series of sensitivity studies we show how different configurations of fault geometry, and the corresponding characterisation of near-fault phenomena (including

  1. The Role of Long-Term Tectonic Deformation on the Distribution of Present-Day Seismic Activity in the Caribbean and Central America

    Science.gov (United States)

    Schobelock, J.; Stamps, D. S.; Pagani, M.; Garcia, J.; Styron, R. H.

    2017-12-01

    The Caribbean and Central America region (CCAR) undergoes the entire spectrum of earthquake types due to its complex tectonic setting comprised of transform zones, young oceanic spreading ridges, and subductions along its eastern and western boundaries. CCAR is, therefore, an ideal setting in which to study the impacts of long-term tectonic deformation on the distribution of present-day seismic activity. In this work, we develop a continuous tectonic strain rate model based on inter-seismic geodetic data and compare it with known active faults and earthquake focal mechanism data. We first create a 0.25o x 0.25o finite element mesh that is comprised of block geometries defined in previously studies. Second, we isolate and remove transient signals from the latest open access community velocity solution from UNAVCO, which includes 339 velocities from COCONet and TLALOCNet GNSS data for the Caribbean and Central America, respectively. In a third step we define zones of deformation and rigidity by creating a buffer around the boundary of each block that varies depending on the size of the block and the expected deformation zone based on locations of GNSS data that are consistent with rigid block motion. We then assign each node within the buffer a 0 for the deforming areas and a plate index outside the buffer for the rigid. Finally, we calculate a tectonic strain rate model for CCAR using the Haines and Holt finite element approach to fit bi-cubic Bessel splines to the the GNSS/GPS data assuming block rotation for zones of rigidity. Our model of the CCAR is consistent with compression along subduction zones, extension across the mid-Pacific Rise, and a combination of compression and extension across the North America - Caribbean plate boundary. The majority of CCAR strain rate magnitudes range from -60 to 60 nanostrains/yr. Modeling results are then used to calculate expected faulting behaviors that we compare with mapped geologic faults and seismic activity.

  2. Active crustal deformation of the El Salvador Fault Zone by integrating geodetic, seismological and geological data: application in seismic hazard assessment

    Science.gov (United States)

    Staller, A.; Benito, B.; Martínez-Díaz, J.; Hernández, D.; Hernández-Rey, R.

    2013-05-01

    El Salvador, Central America, is part of the Chortis block in the northwestern boundary of the Caribbean plate. This block is interacting with a diffuse triple junction point with the Cocos and North American plates. Among the structures that cut the Miocene to Pleistocene volcanic deposits stands out the El Salvador Fault Zone (ESFZ): It is oriented in N90-100E direction, and it is composed of several structural segments that deform Quaternary deposits with right-lateral and oblique slip motions. The ESFZ is seismically active and capable of producing earthquakes such as the February 13, 2001 with Mw 6.6 (Martínez-Díaz et al., 2004), that seriously affected the population, leaving many casualties. This structure plays an important role in the tectonics of the Chortis block, since its motion is directly related to the drift of the Caribbean plate to the east and not with the partitioning of the deformation of the Cocos subduction (here not coupled) (Álvarez-Gómez et al., 2008). Together with the volcanic arc of El Salvador, this zone constitutes a weakness area that allows the motion of forearc block toward the NW. The geometry and the degree of activity of the ESFZ are not studied enough. However their knowledge is essential to understand the seismic hazard associated to this important seismogenic structure. For this reason, since 2007 a GPS dense network was established along the ESFZ (ZFESNet) in order to obtain GPS velocity measurements which are later used to explain the nature of strain accumulation on major faults along the ESFZ. The current work aims at understanding active crustal deformation of the ESFZ through kinematic model. The results provide significant information to be included in a new estimation of seismic hazard taking into account the major structures in ESFZ.

  3. Geophysical surveys and velocimetric measures in the Cerreto di Spoleto (Perugia) area, aiming at a seismic microzoning; Indagini geofisiche e misure velocimetriche finalizzate alla microzonazione sismica dell'area di Cerreto di Spoleto (Perugia)

    Energy Technology Data Exchange (ETDEWEB)

    Bongiovanni, G.; Martino, S.; Paciello, A.; Verrubbi, V. [ENEA, Div. Caratterizzazione dell' Ambiente e del Territorio, Centro Ricerche Csaccia, S. Maria di Galeria, Rome (Italy)

    2001-07-01

    Geophysical prospectings and velocimetric measures, aiming at the seismic microzoning of Cerreto di Spoleto area, are presented. Starting from the data obtained by previous geological-geomechanical surveys, seismic-refraction prospectings were carried on in order to obtain a dynamic characterisation and a geometrical description both of soil and rock materials. The velocimetric measures were performed by temporary free-field arrays, recording both environmental noise and small-magnitude seismic events. The analysis of the obtained records is still in progress, in order to evaluate the local seismic wave amplification. [Italian] Vengono illustrate le indagini geofisiche e le misure velocimetriche condotte nell'area di Cerreto di Spoleto (PG) per la microzonazione sismica. In particolare, sulla base dei dati geologici e geomeccanici precedentemente acquisiti, sono state effettuate indagini di sismica a rifrazione che hanno portato alla caratterizzazione dinamica dei litotipi ed alla definizione delle loro geometrie. Le misure velometriche sono state condotte installando array temporanei in free-field per la registrazione di rumore ambientale ed eventi sismici di piccola magnitudo. E' in corso l'elaborazione delle registrazioni ottenute, finalizzata all'analisi degli effetti di amplificazione sismica locale.

  4. Delineation of seismic source zones based on seismicity parameters ...

    Indian Academy of Sciences (India)

    In the present study, an attempt has been made to delineate seismic source zones in the study area (south India) based on the seismicity parameters. Seismicity parameters and the maximum probable earthquake for these source zones were evaluated and were used in the hazard evaluation. The probabilistic evaluation of ...

  5. Sentinel-1 automatic processing chain for volcanic and seismic areas monitoring within the Geohazards Exploitation Platform (GEP)

    Science.gov (United States)

    De Luca, Claudio; Zinno, Ivana; Manunta, Michele; Lanari, Riccardo; Casu, Francesco

    2016-04-01

    The microwave remote sensing scenario is rapidly evolving through development of new sensor technology for Earth Observation (EO). In particular, Sentinel-1A (S1A) is the first of a sensors' constellation designed to provide a satellite data stream for the Copernicus European program. Sentinel-1A has been specifically designed to provide, over land, Differential Interferometric Synthetic Aperture Radar (DInSAR) products to analyze and investigate Earth's surface displacements. S1A peculiarities include wide ground coverage (250 km of swath), C-band operational frequency and short revisit time (that will reduce from 12 to 6 days when the twin system Sentinel-1B will be placed in orbit during 2016). Such characteristics, together with the global coverage acquisition policy, make the Sentinel-1 constellation to be extremely suitable for volcanic and seismic areas studying and monitoring worldwide, thus allowing the generation of both ground displacement information with increasing rapidity and new geological understanding. The main acquisition mode over land is the so called Interferometric Wide Swath (IWS) that is based on the Terrain Observation by Progressive Scans (TOPS) technique and that guarantees the mentioned S1A large coverage characteristics at expense of a not trivial interferometric processing. Moreover, the satellite spatial coverage and the reduced revisit time will lead to an exponential increase of the data archives that, after the launch of Sentine-1B, will reach about 3TB per day. Therefore, the EO scientific community needs from the one hand automated and effective DInSAR tools able to address the S1A processing complexity, and from the other hand the computing and storage capacities to face out the expected large amount of data. Then, it is becoming more crucial to move processors and tools close to the satellite archives, being not efficient anymore the approach of downloading and processing data with in-house computing facilities. To address

  6. Cansiglio Karst Plateau: 10 Years of Geodetic-Hydrological Observations in Seismically Active Northeast Italy

    Science.gov (United States)

    Grillo, Barbara; Braitenberg, Carla; Nagy, Ildikó; Devoti, Roberto; Zuliani, David; Fabris, Paolo

    2018-04-01

    Ten years' geodetic observations (2006-2016) in a natural cave of the Cansiglio Plateau (Bus de la Genziana), a limestone karstic area in northeastern Italy, are discussed. The area is of medium-high seismic risk: a strong earthquake in 1936 below the plateau (M m = 6.2) and the 1976 disastrous Friuli earthquake (M m = 6.5) are recent events. At the foothills of the karstic massif, three springs emerge, with average flow from 5 to 10 m3/s, and which are the sources of a river. The tiltmeter station is set in a natural cavity that is part of a karstic system. From March 2013, a multiparametric logger (temperature, stage, electrical conductivity) was installed in the siphon at the bottom of the cave to discover the underground hydrodynamics. The tilt records include signals induced by hydrologic and tectonic effects. The tiltmeter signals have a clear correlation to the rainfall, the discharge series of the river and the data recorded by multiparametric loggers. Additionally, the data of a permanent GPS station located on the southern slopes of the Cansiglio Massif (CANV) show also a clear correspondence with the river level. The fast water infiltration into the epikarst, closely related to daily rainfall, is distinguished in the tilt records from the characteristic time evolution of the karstic springs, which have an impulsive level increase with successive exponential decay. It demonstrates the usefulness of geodetic measurements to reveal the hydrological response of the karst. One outcome of the work is that the tiltmeters can be used as proxies for the presence of flow channels and the pressure that builds up due to the water flow. With 10 years of data, a new multidisciplinary frontier was opened between the geodetic studies and the karstic hydrogeology to obtain a more complete geologic description of the karst plateau.

  7. Seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel

    Czech Academy of Sciences Publication Activity Database

    Kaláb, Zdeněk; Šílený, Jan; Lednická, Markéta

    2017-01-01

    Roč. 15, č. 1 (2017), s. 486-493 E-ISSN 2391-5471 R&D Projects: GA MŠk LM2010008; GA MŠk(CZ) LM2015079 Institutional support: RVO:68145535 ; RVO:67985530 Keywords : deep geological repository * earthquake * seismicity * neo-deterministic analysis * probabilistic seismic hazard assessment Subject RIV: DC - Siesmology, Volcanology, Earth Structure; DC - Siesmology, Volcanology, Earth Structure (GFU-E) OBOR OECD: Environmental and geological engineering, geotechnics; Environmental and geological engineering, geotechnics (GFU-E) Impact factor: 0.745, year: 2016 https://www.degruyter.com/downloadpdf/j/phys.2017.15.issue-1/phys-2017-0055/phys-2017-0055.pdf

  8. Trial to active seismic while drilling; Jinko shingen wo mochiita SWD eno kokoromi

    Energy Technology Data Exchange (ETDEWEB)

    Tsuru, T; Kozawa, T [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1996-10-01

    This paper describes the development of a more stable SWD system with larger energy by adding an artificial seismic source near the bit. SWD is a technique by which the seismic wave generated while drilling of rocks by bit can be observed on the ground surface and the records equivalent to the reverse VSP can be obtained. For this system, a shell with a vibrator was fixed immediately on the bit as a sub-generator, and total energy of usual impact by the bit and vibration by the vibrator was used as a seismic source for SWD. For the seismic wave generation mechanism of this vibrator, the shell was resonated by the magnetostrictive element, and vibration was given to the bit and drilling pipe. When this seismic source is used, only single frequency is obtained for each vibration due to the utilization of resonance of shell. Therefore, the generation patterns should be made, by which wide band energy can be obtained after the interaction. Since the survey was conducted using this bottom hole seismic source at the drilling depth more than 3,000 m, it was necessary to enhance the vibration energy. 2 refs., 2 figs.

  9. Evolution of magnetotelluric, total magnetic field, and VLF field parameters in Central Italy. Relations to local seismic activity

    Energy Technology Data Exchange (ETDEWEB)

    Meloni, A.; Di Mauro, D.; Mele, G.; Palangio, P. [Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy); Ernst, T.; Teisseyre, R. [Institute of Geophysics, Warszawa (Poland)

    2001-04-01

    Magnetotelluric data were collected at Collemeluccio (41.72{sup 0}N, 14.37{sup 0}E) in Central Italy from summer 1991 to spring 1998. Analyzed by means of tensor decomposition on the geoelectric potential and robust estimation on the geomagnetic field, this set of data allowed the investigation of the electromagnetic induction, is presented here in its time evolution and compared to local and regional seismic activity. Tecto magnetic field observations from absolute magnetic field level in Central Italy were also made on data simultaneously recorded at four magnetometer stations, using L'Aquila Geomagnetic Observatory as a reference for differentiation. Recent results gathered from a system of two VLF search coil wide-band antennas, installed in the L'Aquila Observatory, are also discussed in relation to local seismic activity.

  10. Seismic microzonation of Bangalore, India

    Indian Academy of Sciences (India)

    Evaluation of seismic hazards and microzonation of cities enable us to characterize the potential seismic areas which have similar exposures to haz- ards of earthquakes, and these results can be used for designing new structures or retrofitting the existing ones. Study of seismic hazard and preparation of microzonation ...

  11. Seismic imaging of the metamorphism of young sediment into new crystalline crust in the actively rifting Imperial Valley, California

    Science.gov (United States)

    Han, Liang; Hole, John; Stock, Joann; Fuis, Gary S.; Williams, Colin F.; Delph, Jonathan; Davenport, Kathy; Livers, Amanda

    2016-01-01

    Plate-boundary rifting between transform faults is opening the Imperial Valley of southern California and the rift is rapidly filling with sediment from the Colorado River. Three 65–90 km long seismic refraction profiles across and along the valley, acquired as part of the 2011 Salton Seismic Imaging Project, were analyzed to constrain upper crustal structure and the transition from sediment to underlying crystalline rock. Both first arrival travel-time tomography and frequency-domain full-waveform inversion were applied to provide P-wave velocity models down to ∼7 km depth. The valley margins are fault-bounded, beyond which thinner sediment has been deposited on preexisting crystalline rocks. Within the central basin, seismic velocity increases continuously from ∼1.8 km/s sediment at the surface to >6 km/s crystalline rock with no sharp discontinuity. Borehole data show young sediment is progressively metamorphosed into crystalline rock. The seismic velocity gradient with depth decreases approximately at the 4 km/s contour, which coincides with changes in the porosity and density gradient in borehole core samples. This change occurs at ∼3 km depth in most of the valley, but at only ∼1.5 km depth in the Salton Sea geothermal field. We interpret progressive metamorphism caused by high heat flow to be creating new crystalline crust throughout the valley at a rate comparable to the ≥2 km/Myr sedimentation rate. The newly formed crystalline crust extends to at least 7–8 km depth, and it is shallower and faster where heat flow is higher. Most of the active seismicity occurs within this new crust.

  12. Seismic imaging of the metamorphism of young sediment into new crystalline crust in the actively rifting Imperial Valley, California

    Science.gov (United States)

    Han, Liang; Hole, John A.; Stock, Joann M.; Fuis, Gary S.; Williams, Colin F.; Delph, Jonathan R.; Davenport, Kathy K.; Livers, Amanda J.

    2016-11-01

    Plate-boundary rifting between transform faults is opening the Imperial Valley of southern California and the rift is rapidly filling with sediment from the Colorado River. Three 65-90 km long seismic refraction profiles across and along the valley, acquired as part of the 2011 Salton Seismic Imaging Project, were analyzed to constrain upper crustal structure and the transition from sediment to underlying crystalline rock. Both first arrival travel-time tomography and frequency-domain full-waveform inversion were applied to provide P-wave velocity models down to ˜7 km depth. The valley margins are fault-bounded, beyond which thinner sediment has been deposited on preexisting crystalline rocks. Within the central basin, seismic velocity increases continuously from ˜1.8 km/s sediment at the surface to >6 km/s crystalline rock with no sharp discontinuity. Borehole data show young sediment is progressively metamorphosed into crystalline rock. The seismic velocity gradient with depth decreases approximately at the 4 km/s contour, which coincides with changes in the porosity and density gradient in borehole core samples. This change occurs at ˜3 km depth in most of the valley, but at only ˜1.5 km depth in the Salton Sea geothermal field. We interpret progressive metamorphism caused by high heat flow to be creating new crystalline crust throughout the valley at a rate comparable to the ≥2 km/Myr sedimentation rate. The newly formed crystalline crust extends to at least 7-8 km depth, and it is shallower and faster where heat flow is higher. Most of the active seismicity occurs within this new crust.

  13. Time-lapse imaging of fault properties at seismogenic depth using repeating earthquakes, active sources and seismic ambient noise

    Science.gov (United States)

    Cheng, Xin

    2009-12-01

    The time-varying stress field of fault systems at seismogenic depths plays the mort important role in controlling the sequencing and nucleation of seismic events. Using seismic observations from repeating earthquakes, controlled active sources and seismic ambient noise, five studies at four different fault systems across North America, Central Japan, North and mid-West China are presented to describe our efforts to measure such time dependent structural properties. Repeating and similar earthquakes are hunted and analyzed to study the post-seismic fault relaxation at the aftershock zone of the 1984 M 6.8 western Nagano and the 1976 M 7.8 Tangshan earthquakes. The lack of observed repeating earthquakes at western Nagano is attributed to the absence of a well developed weak fault zone, suggesting that the fault damage zone has been almost completely healed. In contrast, the high percentage of similar and repeating events found at Tangshan suggest the existence of mature fault zones characterized by stable creep under steady tectonic loading. At the Parkfield region of the San Andreas Fault, repeating earthquake clusters and chemical explosions are used to construct a scatterer migration image based on the observation of systematic temporal variations in the seismic waveforms across the occurrence time of the 2004 M 6 Parkfield earthquake. Coseismic fluid charge or discharge in fractures caused by the Parkfield earthquake is used to explain the observed seismic scattering properties change at depth. In the same region, a controlled source cross-well experiment conducted at SAFOD pilot and main holes documents two large excursions in the travel time required for a shear wave to travel through the rock along a fixed pathway shortly before two rupture events, suggesting that they may be related to pre-rupture stress induced changes in crack properties. At central China, a tomographic inversion based on the theory of seismic ambient noise and coda wave interferometry

  14. MULTICOMPONENT SEISMIC ANALYSIS AND CALIBRATION TO IMPROVE RECOVERY FROM ALGAL MOUNDS: APPLICATION TO THE ROADRUNNER/TOWAOC AREA OF THE PARADOX BASIN, UTE MOUNTAIN UTE RESERVATION, COLORADO

    International Nuclear Information System (INIS)

    Paul La Pointe; Claudia Rebne; Steve Dobbs

    2004-01-01

    This report describes the results made in fulfillment of contract DE-FG26-02NT15451, ''Multicomponent Seismic Analysis and Calibration to Improve Recovery from Algal Mounds: Application to the Roadrunner/Towaoc Area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado'', for the Second Biennial Report covering the time period May 1, 2003 through October 31, 2003. During this period, the project achieved two significant objectives: completion of the acquisition and processing design and specifications 3D9C seismic acquisition and the 3D VSP log; and completion of the permitting process involving State, Tribal and Federal authorities. Successful completion of these two major milestones pave the way for field acquisition as soon as weather permits in the Spring of 2004. This report primarily describes the design and specifications for the VSP and 3D9C surveys

  15. Seismically active fracture zones in the continental wedge above the Andean subduction zone in the Arica Elbow region

    Czech Academy of Sciences Publication Activity Database

    Vaněk, Jiří; Hanuš, Václav; Slancová, Alice; Špičák, Aleš

    2007-01-01

    Roč. 9, č. 1-4 (2007), s. 39-57 ISSN 0163-3171 R&D Projects: GA ČR GA205/95/0264; GA AV ČR IAA3012805 Grant - others:UNESCO(FR) IGCP project No. 345 Institutional research plan: CEZ:AV0Z30120515 Source of funding: V - iné verejné zdroje Keywords : continental lithosphere * Wadati-Benioff zone * seismically active zones Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  16. Integrated seismic interpretation of the Carlsberg Fault zone, Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Nielsen, Lars; Thybo, Hans; Jørgensen, Mette Iwanouw

    2005-01-01

    the fault zone. The fault zone is a shadow zone to shots detonated outside the fault zone. Finite-difference wavefield modelling supports the interpretations of the fan recordings. Our fan recording approach facilitates cost-efficient mapping of fault zones in densely urbanized areas where seismic normal......We locate the concealed Carlsberg Fault zone along a 12-km-long trace in the Copenhagen city centre by seismic refraction, reflection and fan profiling. The Carlsberg Fault is located in a NNW-SSE striking fault system in the border zone between the Danish Basin and the Baltic Shield. Recent...... earthquakes indicate that this area is tectonically active. A seismic refraction study across the Carlsberg Fault shows that the fault zone is a low-velocity zone and marks a change in seismic velocity structure. A normal incidence reflection seismic section shows a coincident flower-like structure. We have...

  17. Comparing gravity-based to seismic-derived lithosphere densities : A case study of the British Isles and surrounding areas

    NARCIS (Netherlands)

    Root, B.C.; Ebbing, J; van der Wal, W.; England, R.W.; Vermeersen, L.L.A.

    2017-01-01

    Lithospheric density structure can be constructed from seismic tomography, gravity modelling, or using both data sets. The different approaches have their own uncertainties and limitations. This study aims to characterize and quantify some of the uncertainties in gravity modelling of lithosphere

  18. The detection of weak earthquakes in the western Bohemian swarm area through the deployment of seismic arrays

    Czech Academy of Sciences Publication Activity Database

    Štrunc, Jaroslav; Brož, Milan

    2011-01-01

    Roč. 8, č. 4 (2011), s. 469-477 ISSN 1214-9705 Institutional research plan: CEZ:AV0Z30460519 Keywords : weak earthquakes * seismic array * small aperture Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.530, year: 2011 http://www.irsm.cas.cz/abstracts/AGG/04_11/8_Strunc.pdf

  19. Seismic VSP and HSP surveys on preliminary investigation areas in Finland for final disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Keskinen, J.; Cosma, C.; Heikkinen, P.

    1992-10-01

    Seismic reflection surveys in boreholes were carried out for Teollisuuden Voima Oy at five sites in Finland (Eurajoki Olkiluoto, Hyrynsalmi Veitsivaara, Konginkangas Kivetty, Kuhmo Romuvaara and Sievi Syyry). The vertical Seismic Profiling (VSP) surveys were a part of the investigation programme for the final disposal of spent nuclear fuel. The purpose was to detect fractured zones, lithological contacts and other anomalies in the structure of the rockmass and to determine their position and orientation. Horizontal Seismic Profiling (HSP) was used at the Olkiluoto site, additionally to VSP. The data has been organized in profiles containing seismograms recorded from the same shotpoint (shot gathers). One of the most powerful processing methods used with this project has been the Image Space Filtering, a new technique, which has been developed (in the project) for seismic reflection studies in crystalline rock. The method can be applied with other rock types where steeply inclined or vertical anomalies are of interest. It acts like a multichannel filter, enhancing the reflected events and also as an interpretation tool, to estimate the strength and position of the reflectors. This approach has been of great help in emphasizing the weak reflections from uneven and sometimes vanishing interfaces encountered in crystalline

  20. Martian seismicity

    International Nuclear Information System (INIS)

    Goins, N.R.; Lazarewicz, A.R.

    1979-01-01

    During the Viking mission to Mars, the seismometer on Lander II collected approximately 0.24 Earth years of observations data, excluding periods of time dominated by wind-induced Lander vibration. The ''quiet-time'' data set contains no confirmed seismic events. A proper assessment of the significance of this fact requires quantitative estimates of the expected detection rate of the Viking seismometer. The first step is to calculate the minimum magnitude event detectable at a given distance, including the effects of geometric spreading, anelastic attenuation, seismic signal duration, seismometer frequency response, and possible poor ground coupling. Assuming various numerical quantities and a Martian seismic activity comparable to that of intraplate earthquakes, the appropriate integral gives an expected annual detection rate of 10 events, nearly all of which are local. Thus only two to three events would be expected in the observational period presently on hand and the lack of observed events is not in gross contradiction to reasonable expectations. Given the same assumptions, a seismometer 20 times more sensitive than the present instrument would be expected to detect about 120 events annually

  1. Shallow Lunar Seismic Activity and the Current Stress State of the Moon

    Science.gov (United States)

    Watters, Thomas R.; Weber, Renee C.; Collins, Geoffrey C.; Johnson, Catherine L.

    2017-01-01

    A vast, global network of more than 3200 lobate thrust fault scarps has been revealed in high resolution Lunar Reconnaissance Orbiter Camera (LROC) images. The fault scarps are very young, less than 50 Ma, based on their small scale and crisp appearance, crosscutting relations with small-diameter impact craters, and rates of infilling of associated small, shallow graben and may be actively forming today. The population of young thrust fault scarps provides a window into the recent stress state of the Moon and offers insight into the origin of global lunar stresses. The distribution of orientations of the fault scarps is non-random, inconsistent with isotropic stresses from late-stage global contraction as the sole source of stress. Modeling shows that tidal stresses contribute significantly to the current stress state of the lunar crust. Tidal stresses (orbital recession and diurnal tides) superimposed on stresses from global contraction result in non-isotropic compressional stress and may produce thrust faults consistent with lobate scarp orientations. At any particular point on the lunar surface, peak compressive stress will be reached at a certain time in the diurnal cycle. Coseismic slip events on currently active thrust faults are expected to be triggered when peak stresses are reached. Analysis of the timing of the 28 the shallow moonquakes recorded by the Apollo seismic network shows that 19 indeed occur when the Moon is closer to apogee, while only 9 shallow events occur when the Moon is closer to perigee. Here we report efforts to refine the model for the current stress state of the Moon by investigating the contribution of polar wander. Progress on relocating the epicentral locations of the shallow moonquakes using an algorithm designed for sparse networks is also reported.

  2. Physical Activity of Children from Town Areas

    OpenAIRE

    Marija Joksimović; Vukosav Joksimović

    2007-01-01

    Introduction: Physical activity is indispensable for normal physical, mental and social development of children. Insuffi cient physical activity is connected to increased frequency of a range of chronic non-contagious diseases occurring in the adult age (hypertension, diabetes and some form of carcinoma). Aim of Paper: It is to establish to what extent physical activity is represented as to school children. Material and Method: By using the method of conducting a poll among 200 children (100 ...

  3. Third Quarter Hanford Seismic Report for Fiscal Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Reidel, Steve P.; Rohay, Alan C.; Hartshorn, Donald C.; Clayton, Ray E.; Sweeney, Mark D.

    2005-09-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the Hanford Seismic Network, there were 337 triggers during the third quarter of fiscal year 2005. Of these triggers, 20 were earthquakes within the Hanford Seismic Network. The largest earthquake within the Hanford Seismic Network was a magnitude 1.3 event May 25 near Vantage, Washington. During the third quarter, stratigraphically 17 (85%) events occurred in the Columbia River basalt (approximately 0-5 km), no events in the pre-basalt sediments (approximately 5-10 km), and three (15%) in the crystalline basement (approximately 10-25 km). During the first quarter, geographically five (20%) earthquakes occurred in swarm areas, 10 (50%) earthquakes were associated with a major geologic structure, and 5 (25%) were classified as random events.

  4. Microzonation of Seismic Hazard Potential in Taipei, Taiwan

    Science.gov (United States)

    Liu, K. S.; Lin, Y. P.

    2017-12-01

    The island of Taiwan lies at the boundary between the Philippine Sea plate and the Eurasia plate. Accordingly, the majority of seismic energy release near Taiwan originates from the two subduction zones. It is therefore not surprising that Taiwan has repeatedly been struck by large earthquakes such as 1986 Hualien earthquake, 1999 Chi Chi and 2002 Hualien earthquake. Microzonation of seismic hazard potential becomes necessary in Taipei City for the Central Geological Survey announced the Sanchiao active fault as Category II. In this study, a catalog of more than 2000 shallow earthquakes occurred from 1900 to 2015 with Mw magnitudes ranging from 5.0 to 8.2, and 11 disastrous earthquakes occurred from 1683-1899, as well as Sanchiao active fault in the vicinity are used to estimate the seismic hazard potential in Taipei City for seismic microzonation. Furthermore, the probabilities of seismic intensity exceeding CWB intensity 5, 6, 7 and MMI VI, VII, VIII in 10, 30, and 50-year periods in the above areas are also analyzed for the seismic microzonation. Finally, by comparing with the seismic zoning map of Taiwan in current building code that was revised after 921 earthquakes, Results of this study will show which areas with higher earthquake hazard potential in Taipei City. They provide a valuable database for the seismic design of critical facilities. It will help mitigate Taipei City earthquake disaster loss in the future, as well as provide critical information for emergency response plans.

  5. First Quarter Hanford Seismic Report for Fiscal Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Clayton, Ray E.; Devary, Joseph L.

    2011-03-31

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 16 local earthquakes during the first quarter of FY 2011. Six earthquakes were located at shallow depths (less than 4 km), seven earthquakes at intermediate depths (between 4 and 9 km), most likely in the pre-basalt sediments, and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, thirteen earthquakes were located in known swarm areas and three earthquakes were classified as random events. The highest magnitude event (1.8 Mc) was recorded on October 19, 2010 at depth 17.5 km with epicenter located near the Yakima River between the Rattlesnake Mountain and Horse Heaven Hills swarm areas.

  6. Task force activity to take the effect of elastic-plastic behaviour into account on the seismic safety evaluation of nuclear piping systems

    International Nuclear Information System (INIS)

    Nakamura, Izumi; Shiratori, Masaki; Morishita, Masaki; Otani, Akihito; Shibutani, Tadahito

    2015-01-01

    According to investigations of several nuclear power plants (NPPs) hit by actual seismic events and a number of experimental researches on the failure behavior of piping systems under seismic loads, it is recognized that piping systems used in NPPs include a large seismic safety margin until boundary failure. Since the stress assessment based on the elastic analysis does not reflect actual seismic capability of piping systems including plastic region, it is necessary to develop a rational procedures to estimate the elastic-plastic behavior of piping systems under a large seismic load. With the aim of establishing a procedure that takes into account the elastic-plastic behavior effect in the seismic safety estimation of nuclear piping systems, a task force activity has been planned. Through the activity, the authors intend to establish guidelines to estimate the elastic-plastic behavior of piping systems rationally and conservatively, and to provide new rational seismic safety criteria taking the effect of elastic-plastic behavior into account. As the first step of making out the analysis guideline, benchmark analyses are conducted for a pipe element test and a piping system test. In this paper, the outline of the research activity and the preliminary results of benchmark analyses are described. (author)

  7. Active and passive electrical and seismic time-lapse monitoring of earthen embankments

    Science.gov (United States)

    Rittgers, Justin Bradley

    In this dissertation, I present research involving the application of active and passive geophysical data collection, data assimilation, and inverse modeling for the purpose of earthen embankment infrastructure assessment. Throughout the dissertation, I identify several data characteristics, and several challenges intrinsic to characterization and imaging of earthen embankments and anomalous seepage phenomena, from both a static and time-lapse geophysical monitoring perspective. I begin with the presentation of a field study conducted on a seeping earthen dam, involving static and independent inversions of active tomography data sets, and self-potential modeling of fluid flow within a confined aquifer. Additionally, I present results of active and passive time-lapse geophysical monitoring conducted during two meso-scale laboratory experiments involving the failure and self-healing of embankment filter materials via induced vertical cracking. Identified data signatures and trends, as well as 4D inversion results, are discussed as an underlying motivation for conducting subsequent research. Next, I present a new 4D acoustic emissions source localization algorithm that is applied to passive seismic monitoring data collected during a full-scale embankment failure test. Acoustic emissions localization results are then used to help spatially constrain 4D inversion of collocated self-potential monitoring data. I then turn to time-lapse joint inversion of active tomographic data sets applied to the characterization and monitoring of earthen embankments. Here, I develop a new technique for applying spatiotemporally varying structural joint inversion constraints. The new technique, referred to as Automatic Joint Constraints (AJC), is first demonstrated on a synthetic 2D joint model space, and is then applied to real geophysical monitoring data sets collected during a full-scale earthen embankment piping-failure test. Finally, I discuss some non-technical issues related to

  8. Single-station seismic noise measures, microgravity, and 3D electrical tomographies to assess the sinkhole susceptibility: the "Il Piano" area (Elba Island - Italy) case study

    Science.gov (United States)

    Pazzi, Veronica; Di Filippo, Michele; Di Nezza, Maria; Carlà, Tommaso; Bardi, Federica; Marini, Federico; Fontanelli, Katia; Intrieri, Emanuele; Fanti, Riccardo

    2017-04-01

    Sudden subsurface collapse, cavities, and surface depressions, regardless of shape and origin, as well as doline are currently indicate by means of the term "sinkhole". This phenomenon can be classified according to a large variety of different schemes, depending on the dominant formation processes (soluble rocks karstic processes, acidic groundwater circulation, anthropogenic caves, bedrock poor geomechanical properties), and on the geological scenario behind the development of the phenomenon. Considering that generally sinkholes are densely clustered in "sinkhole prone areas", detection, forecasting, early warning, and effective monitoring are key aspects in sinkhole susceptibility assessment and risk mitigation. Nevertheless, techniques developed specifically for sinkhole detection, forecasting and monitoring are missing, probably because of a general lack of sinkhole risk awareness, and an intrinsic difficulties involved in detecting precursory sinkhole deformations before collapse. In this framework, integration of different indirect/non-invasive geophysical methods is the best practice approach. In this paper we present the results of an integrated geophysical survey at "Il Piano" (Elba Island - Italy), where at least nine sinkholes occurred between 2008 and 2014. 120 single-station seismic noise measures, 17 3D electrical tomographies (min area 140.3 m2, max area 10,188.9 m2; min electrode spacing 2 m, max electrode spacing 5 m), 964 measurement of microgravity spaced in a grid of 6 m to 8 m were carried out at the study area. The most likely origin for these sinkholes was considered related to sediment net erosion from the alluvium, caused by downward water circulation between aquifers. Therefore, the goals of the study were: i) obtaining a suitable geological and hydrogeological model of the area; ii) detecting possible cavities which could evolve in sinkholes, and finally iii) assess the sinkhole susceptibility of the area. Among the results of the

  9. Seismic Activity Related to the 2002-2003 Mt. Etna Volcano Eruption (Italy): Fault Plane Solutions and Stress Tensor Computation

    Science.gov (United States)

    Barberi, G.; Cammarata, L.; Cocina, O.; Maiolino, V.; Musumeci, C.; Privitera, E.

    2003-04-01

    Late on the night of October 26, 2002, a bi-lateral eruption started on both the eastern and the southeastern flanks of Mt. Etna. The opening of the eruptive fracture system on the NE sector and the reactivation of the 2001 fracture system, on the S sector, were accompanied by a strong seismic swarm recorded between October 26 and 28 and by sharp increase of volcanic tremor amplitude. After this initial phase, on October 29 another seismogenetic zone became active in the SE sector of the volcano. At present (January 2003) the eruption is still in evolution. During the whole period a total of 862 earthquakes (Md≫1) was recorded by the local permanent seismic network run by INGV - Sezione di Catania. The maximum magnitude observed was Md=4.4. We focus our attention on 55 earthquakes with magnitude Md≫ 3.0. The dataset consists of accurate digital pickings of P- and S-phases including first-motion polarities. Firstly earthquakes were located using a 1D velocity model (Hirn et alii, 1991), then events were relocated by using two different 3D velocity models (Aloisi et alii, 2002; Patane et alii, 2002). Results indicate that most of earthquakes are located to the east of the Summit Craters and to northeast of them. Fault plane solutions (FPS) obtained show prevalent strike-slip rupture mechanisms. The suitable FPSs were considered for the application of Gephart and Forsyth`s algorithm in order to evaluate seismic stress field characteristics. Taking into account the preliminary results we propose a kinematic model of the eastern flank eastward movement in response of the intrusion processes in the central part of the volcano. References Aloisi M., Cocina O., Neri G., Orecchio B., Privitera E. (2002). Seismic tomography of the crust underneath the Etna volcano, Sicily. Physics of the Earth and Planetary Interiors 4154, pp. 1-17 Hirn A., Nercessian A., Sapin M., Ferrucci F., Wittlinger G. (1991). Seismic heterogeneity of Mt. Etna: structure and activity. Geophys. J

  10. Assessment of the geodynamical setting around the main active faults at Aswan area, Egypt

    Science.gov (United States)

    Ali, Radwan; Hosny, Ahmed; Kotb, Ahmed; Khalil, Ahmed; Azza, Abed; Rayan, Ali

    2013-04-01

    The proper evaluation of crustal deformations in the Aswan region especially around the main active faults is crucial due to the existence of one major artificial structure: the Aswan High Dam. This construction created one of the major artificial lakes: Lake Nasser. The Aswan area is considered as an active seismic area in Egypt since many recent and historical felted earthquakes occurred such as the impressive earthquake occurred on November 14, 1981 at Kalabsha fault with a local magnitude ML=5.7. Lately, on 26 December 2011, a moderate earthquake with a local magnitude Ml=4.1 occurred at Kalabsha area too. The main target of this study is to evaluate the active geological structures that can potentially affect the Aswan High Dam and that are being monitored in detail. For implementing this objective, two different geophysical tools (magnetic, seismic) in addition to the Global Positioning System (GPS) have been utilized. Detailed land magnetic survey was carried out for the total component of geomagnetic field using two proton magnetometers. The obtained magnetic results reveal that there are three major faults parallel {F1 (Kalabsha), F2 (Seiyal) and F3} affecting the area. The most dominant magnetic trend strikes those faults in the WNW-ESE direction. The seismicity and fault plain solutions of the 26 December 2011 earthquake and its two aftershocks have been investigated. The source mechanisms of those events delineate two nodal plains. The trending ENE-WSW to E-W is consistent with the direction of Kalabsha fault and its extension towards east for the events located over it. The trending NNW-SSE to N-S is consistent with the N-S fault trending. The movement along the ENE-WSW plain is right lateral, but it is left lateral along the NNW-SSE plain. Based on the estimated relative motions using GPS, dextral strike-slip motion at the Kalabsha and Seiyal fault systems is clearly identified by changing in the velocity gradient between south and north stations

  11. Safe-Taipei a Program Project for Strong Motions, Active Faults, and Earthquakes in the Taipei Metropolitan Area

    Science.gov (United States)

    Wang, Jeen-Hwa

    Strong collision between the Eurasian and Philippine Sea Plates causes high seismicity in the Taiwan region, which is often attacked by large earthquakes. Several cities, including three mega-cities, i.e., Taipei, Taichung, and Kaoshung, have been constructed on western Taiwan, where is lying on thick sediments. These cities, with a high-population density, are usually a regional center of culture, economics, and politics. Historically, larger-sized earthquakes, e.g. the 1935 Hsingchu—Taichung earthquake and the 1999 Chi—Chi earthquake, often caused serious damage on the cities. Hence, urban seismology must be one of the main subjects of Taiwan's seismological community. Since 2005, a program project, sponsored by Academia Sinica, has been launched to investigate seismological problems in the Taipei Metropolitan Area. This program project is performed during the 2005—2007 period. The core research subjects are: (1) the deployment of the Taipei Down-hole Seismic Array; (2) the properties of earthquakes and active faults in the area; (3) the seismogenic-zone structures, including the 3-D velocity and Q structures, of the area; (4) the characteristics of strong-motions and sites affects; and (5) strong-motion prediction. In addition to academic goals, the results obtained from the program project will be useful for seismic hazard mitigation not only for the area but also for others.

  12. Seismic hazard map of the western hemisphere

    Science.gov (United States)

    Shedlock, K.M.; Tanner, J.G.

    1999-01-01

    Vulnerability to natural disasters increases with urbanization and development of associated support systems (reservoirs, power plants, etc.). Catastrophic earthquakes account for 60% of worldwide casualties associated with natural disasters. Economic damage from earthquakes is increasing, even in technologically advanced countries with some level of seismic zonation, as shown by the 1989 Loma Prieta, CA ($6 billion), 1994 Northridge, CA ($ 25 billion), and 1995 Kobe, Japan (> $ 100 billion) earthquakes. The growth of megacities in seismically active regions around the world often includes the construction of seismically unsafe buildings and infrastructures, due to an insufficient knowledge of existing seismic hazard. Minimization of the loss of life, property damage, and social and economic disruption due to earthquakes depends on reliable estimates of seismic hazard. National, state, and local governments, decision makers, engineers, planners, emergency response organizations, builders, universities, and the general public require seismic hazard estimates for land use planning, improved building design and construction (including adoption of building construction codes), emergency response preparedness plans, economic forecasts, housing and employment decisions, and many more types of risk mitigation. The seismic hazard map of the Americas is the concatenation of various national and regional maps, involving a suite of approaches. The combined maps and documentation provide a useful global seismic hazard framework and serve as a resource for any national or regional agency for further detailed studies applicable to their needs. This seismic hazard map depicts Peak Ground Acceleration (PGA) with a 10% chance of exceedance in 50 years for the western hemisphere. PGA, a short-period ground motion parameter that is proportional to force, is the most commonly mapped ground motion parameter because current building codes that include seismic provisions specify the

  13. Seismic hazard map of the western hemisphere

    Directory of Open Access Journals (Sweden)

    J. G. Tanner

    1999-06-01

    Full Text Available Vulnerability to natural disasters increases with urbanization and development of associated support systems (reservoirs, power plants, etc.. Catastrophic earthquakes account for 60% of worldwide casualties associated with natural disasters. Economic damage from earthquakes is increasing, even in technologically advanced countries with some level of seismic zonation, as shown by the 1989 Loma Prieta, CA ($ 6 billion, 1994 Northridge, CA ($ 25 billion, and 1995 Kobe, Japan (> $ 100 billion earthquakes. The growth of megacities in seismically active regions around the world often includes the construction of seismically unsafe buildings and infrastructures, due to an insufficient knowledge of existing seismic hazard. Minimization of the loss of life, property damage, and social and economic disruption due to earthquakes depends on reliable estimates of seismic hazard. National, state, and local governments, decision makers, engineers, planners, emergency response organizations, builders, universities, and the general public require seismic hazard estimates for land use planning, improved building design and construction (including adoption of building construction codes, emergency response preparedness plans, economic forecasts, housing and employment decisions, and many more types of risk mitigation. The seismic hazard map of the Americas is the concatenation of various national and regional maps, involving a suite of approaches. The combined maps and documentation provide a useful global seismic hazard framework and serve as a resource for any national or regional agency for further detailed studies applicable to their needs. This seismic hazard map depicts Peak Ground Acceleration (PGA with a 10% chance of exceedance in 50 years for the western hemisphere. PGA, a short-period ground motion parameter that is proportional to force, is the most commonly mapped ground motion parameter because current building codes that include seismic provisions

  14. Patterned basal seismicity shows sub-ice stream bedforms

    Science.gov (United States)

    Barcheck, C. G.; Tulaczyk, S. M.; Schwartz, S. Y.

    2017-12-01

    Patterns in seismicity emanating from the bottom of fast-moving ice streams and glaciers may indicate localized patches of higher basal resistance— sometimes called 'sticky spots', or otherwise varying basal properties. These seismogenic basal areas resist an unknown portion of the total driving stress of the Whillans Ice Plain (WIP), in West Antarctica, but may play an important role in the WIP stick-slip cycle and ice stream slowdown. To better understand the mechanism and importance of basal seismicity beneath the WIP, we analyze seismic data collected by a small aperture (micro-earthquakes in Dec 2014, and we compare the resulting map of seismicity to ice bottom depth measured by airborne radar. The number of basal earthquakes per area within the network is spatially heterogeneous, but a pattern of two 400m wide streaks of high seismicity rates is evident, with >50-500 earthquakes detected per 50x50m grid cell in 2 weeks. These seismically active streaks are elongated approximately in the ice flow direction with a spacing of 750m. Independent airborne radar measurements of ice bottom depth from Jan 2013 show a low-amplitude ( 5m) undulation in the basal topography superposed on a regional gradient in ice bottom depth. The flow-perpendicular wavelength of these low-amplitude undulations is comparable to the spacing of the high seismicity bands, and the streaks of high seismicity intersect local lows in the undulating basal topography. We interpret these seismic and radar observations as showing seismically active sub-ice stream bedforms that are low amplitude and elongated in the direction of ice flow, comparable to the morphology of mega scale glacial lineations (MSGLs), with high basal seismicity rates observed in the MSGL troughs. These results have implications for understanding the formation mechanism of MSGLS and well as understanding the interplay between basal topographic roughness, spatially varying basal till and hydrologic properties, basal

  15. A tentative correlation between seismic activity and changes in the composition of thermal waters on Vulcano Island, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Bolognesi, Luca [CNR-International Institute for Geothermal Research, Pisa (Italy)

    1997-06-01

    On Vulcano Island, Italy, the thermal water in the shallow water well W2 is a mixture of reservoir water and shallow steam-heated groundwater of meteoric origin. In the period 1986-1988, the composition of the W2 water changed just before two sequences of tectonic earthquakes, from the almost pure reservoir component to the almost pure steam-heated meteoric component. After the seismic activity, the W2 water returned to is pre-earthquake reservoir composition. These changes in composition could be explained by the dilatancy-fluid diffusion model. According to this model, the observed variations in W2 water composition could be in the consequence of stress build-up prior to the seismic events, and stress reduction afterwards. (Author)

  16. Geological controls on the occurrence of gas hydrate from core, downhole log, and seismic data in the Shenhu area, South China Sea

    Science.gov (United States)

    Xiujuan Wang,; ,; Collett, Timothy S.; Lee, Myung W.; Yang, Shengxiong; Guo, Yiqun; Wu, Shiguo

    2014-01-01

    Multi-channel seismic reflection data, well logs, and recovered sediment cores have been used in this study to characterize the geologic controls on the occurrence of gas hydrate in the Shenhu area of the South China Sea. The concept of the "gas hydrate petroleum system" has allowed for the systematic analysis of the impact of gas source, geologic controls on gas migration, and the role of the host sediment in the formation and stability of gas hydrates as encountered during the 2007 Guangzhou Marine Geological Survey Gas Hydrate Expedition (GMGS-1) in the Shenhu area. Analysis of seismic and bathymetric data identified seventeen sub-linear, near-parallel submarine canyons in this area. These canyons, formed in the Miocene, migrated in a northeasterly direction, and resulted in the burial and abandonment of canyons partially filled by coarse-grained sediments. Downhole wireline log (DWL) data were acquired from eight drill sites and sediment coring was conducted at five of these sites, which revealed the presence of suitable reservoirs for the occurrence of concentrated gas hydrate accumulations. Gas hydrate-bearing sediment layers were identified from well log and core data at three sites mainly within silt and silt clay sediments. Gas hydrate was also discovered in a sand reservoir at one site as inferred from the analysis of the DWL data. Seismic anomalies attributed to the presence of gas below the base of gas hydrate stability zone, provided direct evidence for the migration of gas into the overlying gas hydrate-bearing sedimentary sections. Geochemical analyses of gas samples collected from cores confirmed that the occurrence of gas hydrate in the Shenhu area is controlled by the presence thermogenic methane gas that has migrated into the gas hydrate stability zone from a more deeply buried source.

  17. Holocene Activity of the Enriquillo-Plantain Garden Fault in Lake Enriquillo Derived from Seismic Stratigraphy

    Science.gov (United States)

    Rios, J. K.; McHugh, C. M.; Hornbach, M. J.; Mann, P.; Wright, V. D.; Gurung, D.

    2013-12-01

    The Enriquillo-Plantain-Garden fault zone (EPGF) crosses Lake Enriquillo (LE) in the Dominican Republic and extends E-W across the southern peninsula of Haiti, south of the Baie de Port au Prince (BPP). Seismic stratigraphic studies of CHIRP high-resolution subbottom profiles calibrated to ages obtained from sediment cores and previous coral reef studies provide a Holocene record of relative sea level rise into the BPB and LE and a time frame for understanding tectonics of the EPGF. The BPP is 20 km wide, 20 km long, 150 m deep, and surrounded by coral reefs at water depths of 30 m. Three seismic units were identified: Unit 1: stepped terraces 5-10 m high. Laminated strata onlaps the terraces. This unit possibly represents Marine Isotope Stages 6 and 5, but has not been dated. Unit 2: laminated strata, thicker than 10 m and dated near its top at 22 ka BP. The microfossil assemblages reveal that during the latest Pleistocene sea level lowstand the BPP had a restricted connection with the global ocean. Few well-preserved marine microfossils are present and mostly are reworked. Geochemical analyses reveal that the laminated sediments were deposited during wet periods (>Si, Al wt %, Cu ppm) and dry periods (>Ca wt %). Unit 3: acoustically transparent, ~10 m thick, dated near its base and top at 14 ka BP and 2 ka BP, respectively. This unit represents the Holocene initiation of sea level rise and high stand containing well-preserved marine fossils. At ~9.5 ka BP planktonic foraminifers become abundant implying deepening of marine waters. Lake Enriquillo is 127 km east of the BPP. It is 15 km wide, 40 km long and 45 m deep. CHIRP subbottom profiles penetrated ~30 m below the lake floor. Four main acoustic units were identified: Unit 1: deformed basement with steeply dipping and folded beds. Based on land studies this unit is likely Plio-Pleistocene in age. Unit 2: laminated strata. Ages from coral reefs and deformed strata on land indicate this unit is likely pre-20 ka

  18. Statistical analysis of laser-interferometric detector Dylkin-1 data and data on seismic activity

    International Nuclear Information System (INIS)

    Kirillov, R S; Bochkarev, V V; Dulkyn, Academy of Sciences of the Republic of Tatarstan (Russian Federation))" data-affiliation=" (Scientific Center of Gravitational-Wave Research Dulkyn, Academy of Sciences of the Republic of Tatarstan (Russian Federation))" >Skochilov, A F

    2014-01-01

    This work presents statistical analysis of data collected from laser interferometric detector ''Dylkin-1'' and nearby seismic stations. The final goal of Dylkin project consists in creating detector of theoretically predicted gravitational waves produced by binary relativistic astrophysical objects. Currently, works are underway to improve sensitivity of detector by 2-3 orders. The goals of this research were to test isolation of detector from noise caused by seismic waves and to find out whether it is sensitive to variations in the gradient of gravitational potential (acceleration of free fall) caused by free Earth oscillations. Noise isolation has been tested by comparing energy of signals during significant seismic events. Sensitivity to variations in acceleration of free fall has been tested by means of cross-spectral analysis

  19. Recent Vs. Historical Seismicity Analysis For Banat Seismic Region (Western Part Of Romania)

    OpenAIRE

    Oros Eugen; Diaconescu Mihai

    2015-01-01

    The present day seismic activity from a region reflects the active tectonics and can confirm the seismic potential of the seismogenic sources as they are modelled using the historical seismicity. This paper makes a comparative analysis of the last decade seismicity recorded in the Banat Seismic Region (western part of Romania) and the historical seismicity of the region (Mw≥4.0). Four significant earthquake sequences have been recently localized in the region, three of them nearby the city of...

  20. Southern Appalachian Regional Seismic Network

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, S.C.C.; Johnston, A.C.; Chiu, J.M. [Memphis State Univ., TN (United States). Center for Earthquake Research and Information

    1994-08-01

    The seismic activity in the southern Appalachian area was monitored by the Southern Appalachian Regional Seismic Network (SARSN) since late 1979 by the Center for Earthquake Research and Information (CERI) at Memphis State University. This network provides good spatial coverage for earthquake locations especially in east Tennessee. The level of activity concentrates more heavily in the Valley and Ridge province of eastern Tennessee, as opposed to the Blue Ridge or Inner Piedmont. The large majority of these events lie between New York - Alabama lineament and the Clingman/Ocoee lineament, magnetic anomalies produced by deep-seated basement structures. Therefore SARSN, even with its wide station spacing, has been able to define the essential first-order seismological characteristics of the Southern Appalachian seismic zone. The focal depths of the southeastern U.S. earthquakes concentrate between 8 and 16 km, occurring principally beneath the Appalachian overthrust. In cross-sectional views, the average seismicity is shallower to the east beneath the Blue Ridge and Piedmont provinces and deeper to the west beneath the Valley and Ridge and the North American craton. Results of recent focal mechanism studies by using the CERI digital earthquake catalog between October, 1986 and December, 1991, indicate that the basement of the Valley and Ridge province is under a horizontal, NE-SW compressive stress. Right-lateral strike-slip faulting on nearly north-south fault planes is preferred because it agrees with the trend of the regional magnetic anomaly pattern.

  1. Southern Appalachian Regional Seismic Network

    International Nuclear Information System (INIS)

    Chiu, S.C.C.; Johnston, A.C.; Chiu, J.M.

    1994-08-01

    The seismic activity in the southern Appalachian area was monitored by the Southern Appalachian Regional Seismic Network (SARSN) since late 1979 by the Center for Earthquake Research and Information (CERI) at Memphis State University. This network provides good spatial coverage for earthquake locations especially in east Tennessee. The level of activity concentrates more heavily in the Valley and Ridge province of eastern Tennessee, as opposed to the Blue Ridge or Inner Piedmont. The large majority of these events lie between New York - Alabama lineament and the Clingman/Ocoee lineament, magnetic anomalies produced by deep-seated basement structures. Therefore SARSN, even with its wide station spacing, has been able to define the essential first-order seismological characteristics of the Southern Appalachian seismic zone. The focal depths of the southeastern U.S. earthquakes concentrate between 8 and 16 km, occurring principally beneath the Appalachian overthrust. In cross-sectional views, the average seismicity is shallower to the east beneath the Blue Ridge and Piedmont provinces and deeper to the west beneath the Valley and Ridge and the North American craton. Results of recent focal mechanism studies by using the CERI digital earthquake catalog between October, 1986 and December, 1991, indicate that the basement of the Valley and Ridge province is under a horizontal, NE-SW compressive stress. Right-lateral strike-slip faulting on nearly north-south fault planes is preferred because it agrees with the trend of the regional magnetic anomaly pattern

  2. Strain, Stress and Seismicity pattern in Switzerland

    Science.gov (United States)

    Houlié, Nicolas; Woessner, Jochen; Villiger, Arturo; Deichmann, Nicholas; Rothacher, Markus; Giardini, Domenico; Geiger, Alain

    2013-04-01

    Switzerland lies across one of the most complex plate boundary in the world. With a 100 Ma of deformation history, and a wide diversity of deformation mechanism, it is an ideal place to study the link(s) between small strain rates measured at the surface and stress dissipated at depth. The link is of genuine interest for seismic hazard assessment as it provides an independent estimate for moment release within the seismogenic volume. We use geodetic (GPS velocities, shortening axes, strain maps) and seismic (anisotropy, P-axes, focal mechanisms) datasets in order to assess whether the stress accumulated at depth due to the continental collision reflects the deformation rates measured at the surface and correlates with the seismic activity as well as the stress directions deduced from earthquake focal mechanisms throughout the area - or not. While the deformation amplitudes of the area are small (less than 10-7 yr-1) in some areas of Switzerland, we can relate long- and short-term features of the tectonic processes occurring over the last 10+ Ma. Preliminary results suggest that while deformation rates measured by GPS are large in the Ticino compared to the Valais region - its seismic activity rate is lower. This implies other processes might play important roles in the generation of seismicity.

  3. Increasing seismic activity at 9deg50'N on the East Pacific Rise RIDGE 2000 Integrated Studies Site from October 2003 through April 2004

    Science.gov (United States)

    Weekly, R. T.; Tolstoy, M.; Waldhauser, F.; Bohnenstiehl, D. R.; Kim, W.

    2005-12-01

    Monitoring of micro-seismicity within the bull's-eye region of the R2K ISS at 9deg49'N - 9deg51'N on the East Pacific Rise has been ongoing since October 2003. Results from the first deployment (October 2003 - April 2004) will be presented with hypocenters determined using relative-relocation techniques. Analysis shows that there is a gradual and ongoing increase in the rate of activity over the 7 months of the deployment. Mean event rates increase from 31 events/day for the first quarter of the deployment period, to 55, 105, and 131 events per day for the 2nd, 3rd and 4th quarters, respectively. This gradual increase in activity suggests long-term changes in the magma body or changes in the hydrothermal cracking front. Preliminary analysis and event counts for the 2004-2005 deployment will be presented to assess whether or not the build up in activity seen in 2003-2004 continued. Numerous brief swarms are observed throughout the deployment and their locations will be studied relative to temporal changes in the vent temperature monitoring as well as variations in the fluid chemistry (see Von Damm et al., same session). Early analysis suggests two dominant areas of recurrent activity, between M-vent and Bio-9 and between Bio-9 and Tube-worm pillar. The exceptionally well-characterized and monitored seafloor at this site allows for unprecedented correlation of observed seismic activity with local biology, geology, geochemical and hydrothermal monitoring. As results from different monitoring activities continue to come in, a detailed understanding of the linkages should emerge.

  4. On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23

    Energy Technology Data Exchange (ETDEWEB)

    Herdiwijaya, Dhani, E-mail: dhani@as.itb.ac.id [Astronomy Research Division and Bosscha Observatory, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Ganesha 10, Bandung, Indonesia 40132 (Indonesia); Arif, Johan [Geology Research Division, Faculty of Earth Sciences and Technology, Bandung Institute of Technology, Ganesha 10, Bandung, Indonesia 40132 (Indonesia); Nurzaman, Muhamad Zamzam; Astuti, Isna Kusuma Dewi [Astronomy Study Program, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Ganesha 10, Bandung, Indonesia 40132 (Indonesia)

    2015-09-30

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth’s climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth’s global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.

  5. On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23

    Science.gov (United States)

    Herdiwijaya, Dhani; Arif, Johan; Nurzaman, Muhamad Zamzam; Astuti, Isna Kusuma Dewi

    2015-09-01

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth's climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth's global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.

  6. Study of Site Effect at Seismic Station Located in Undermined Area of Karviná Region (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Lednická, Markéta; Kaláb, Zdeněk

    2016-01-01

    Roč. 64, č. 5 (2016), s. 1715-1730 ISSN 1895-7455 R&D Projects: GA ČR GP13-07027P Institutional support: RVO:68145535 Keywords : Karviná region * site effect * SSR * HVSR * mining induced seismicity Subject RIV: JM - Building Engineering Impact factor: 0.968, year: 2016 http://agp.igf.edu.pl/files/64/5/Lednicka-Kalab.pdf

  7. Active and fossil mantle flows in the western Alpine region unravelled by seismic anisotropy analysis and high-resolution P wave tomography

    Science.gov (United States)

    Salimbeni, Simone; Malusà, Marco G.; Zhao, Liang; Guillot, Stéphane; Pondrelli, Silvia; Margheriti, Lucia; Paul, Anne; Solarino, Stefano; Aubert, Coralie; Dumont, Thierry; Schwartz, Stéphane; Wang, Qingchen; Xu, Xiaobing; Zheng, Tianyu; Zhu, Rixiang

    2018-04-01

    The anisotropy of seismic velocities in the mantle, when integrated with high-resolution tomographic models and geologic information, can be used to detect active mantle flows in complex plate boundary areas, providing new insights on the impact of mantle processes on the topography of mountain belts. Here we use a densely spaced array of temporary broadband seismic stations to analyze the seismic anisotropy pattern of the western Alpine region, at the boundary between the Alpine and Apenninic slabs. Our results are supportive of a polyphase development of anisotropic mantle fabrics, possibly starting from the Jurassic to present. Geophysical data presented in this work, and geologic evidence taken from the literature, indicate that: (i) fossil fabrics formed during Tethyan rifting may be still preserved within the Alpine and Apenninic slabs; (ii) mantle deformation during Apenninic slab rollback is not compensated by a complete toroidal flow around the northern tip of the retreating slab; (iii) the previously observed continuous trend of anisotropy fast axes near-parallel to the western Alpine arc is confirmed. We observe that this arc-parallel trend of fast axes is located in correspondence to a low velocity anomaly in the European upper mantle, beneath regions of the Western and Ligurian Alps showing the highest uplift rates. We propose that the progressive rollback of the Apenninic slab, in the absence of a counterclockwise toroidal flow at its northern tip, induced a suction effect at the scale of the supraslab mantle. The resulting mantle flow pattern was characterized by an asthenospheric counterflow at the rear of the unbroken Western Alps slab and around its southern tip, and by an asthenospheric upwelling, mirrored by low P wave velocities, that would have favored the topographic uplift of the Alpine belt from the Mont Blanc to the Mediterranean sea.

  8. Mapping the productive sands of Lower Goru Formation by using seismic stratigraphy and rock physical studies in Sawan area, southern Pakistan: A case study

    KAUST Repository

    Munir, K.

    2011-02-24

    This study has been conducted in the Sawan gas field located in southern Pakistan. The aim of the study is to map the productive sands of the Lower Goru Formation of the study area. Rock physics parameters (bulk modulus, Poisson\\'s ratio) are analysed after a detailed sequence stratigraphic study. Sequence stratigraphy helps to comprehend the depositional model of sand and shale. Conformity has been established between seismic stratigraphy and the pattern achieved from rock physics investigations, which further helped in the identification of gas saturation zones for the reservoir. Rheological studies have been done to map the shear strain occurring in the area. This involves the contouring of shear strain values throughout the area under consideration. Contour maps give a picture of shear strain over the Lower Goru Formation. The identified and the productive zones are described by sands, high reflection strengths, rock physical anomalous areas and low shear strain.

  9. First Quarter Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-03-21

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, forty-four local earthquakes were recorded during the first quarter of fiscal year 2008. A total of thirty-one micro earthquakes were recorded within the Rattlesnake Mountain swarm area at depths in the 5-8 km range, most likely within the pre-basalt sediments. The largest event recorded by the network during the first quarter (November 25, 2007 - magnitude 1.5 Mc) was located within this swarm area at a depth of 4.3 km. With regard to the depth distribution, three earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), thirty-six earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and five earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, thirty-eight earthquakes occurred in swarm areas and six earth¬quakes were classified as random events.

  10. Seismic data interpretation for hydrocarbon potential, for Safwa/Sabbar field, East Ghazalat onshore area, Abu Gharadig basin, Western Desert, Egypt

    Directory of Open Access Journals (Sweden)

    Naser A. Hameed El Redini

    2017-12-01

    Full Text Available Safwa/Sabbar oil field located in the East Ghazalat Concession in the proven and prolific Abu Gharadig basin, Western Desert, Egypt, and about 250 km to the southwest of Cairo, it’s located in the vicinity of several producing oil fields ranging from small to large size hydrocarbon accumulation, adjacent to the NW-SE trending major Abu Gharadig fault which is throwing to the Southwest.All the geological, “structure and stratigraphic” elements, have been identified after interpreting the recent high quality 3D seismic survey for prospect generation, evaluation and their relation to the hydrocarbon exploration.Synthetic seismograms have been carried out for all available wells to tie horizons to seismic data and to define the lateral variation characters of the beds.The analysis has been done using the suitable seismic attributes to understand the characteristics of different types of the reservoir formations, type of trap system, identify channels and faults, and delineating the stratigraphic plays of good reservoirs such as Eocene Apollonia Limestone, AR “F”, AR “G” members, Upper Bahariya, Jurassic Khatatba Sandstone, upper Safa and Lower Safa Sandstone.The top Cenomanian Bahariya level is the main oil reservoir in the Study area, which consist of Sandstone, Siltstone and Shale, the thickness is varying from 1 to 50 ft along the study area.In addition to Upper-Bahariya there are a good accessibility of hydrocarbon potential within the Jurassic Khatatba Sandstone and the Eocene Apollonia Limestone. More exploring of these reservoirs are important to increase productivity of Oil and/or Gas in the study area.

  11. MULTICOMPONENT SEISMIC ANALYSIS AND CALIBRATION TO IMPROVE RECOVERY FROM ALGAL MOUNDS: APPLICATION TO THE ROADRUNNER/TOWAOC AREA OF THE PARADOX BASIN, UTE MOUNTAIN UTE RESERVATION, COLORADO

    International Nuclear Information System (INIS)

    Paul La Pointe; Claudia Rebne; Steve Dobbs

    2003-01-01

    This report describes the results made in fulfillment of contract DE-FG26-02NT15451, ''Multicomponent Seismic Analysis and Calibration to Improve Recovery from Algal Mounds: Application to the Roadrunner/Towaoc Area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado''. Optimizing development of highly heterogeneous reservoirs where porosity and permeability vary in unpredictable ways due to facies variations can be challenging. An important example of this is in the algal mounds of the Lower and Upper Ismay reservoirs of the Paradox Basin in Utah and Colorado. It is nearly impossible to develop a forward predictive model to delineate regions of better reservoir development, and so enhanced recovery processes must be selected and designed based upon data that can quantitatively or qualitatively distinguish regions of good or bad reservoir permeability and porosity between existing well control. Recent advances in seismic acquisition and processing offer new ways to see smaller features with more confidence, and to characterize the internal structure of reservoirs such as algal mounds. However, these methods have not been tested. This project will acquire cutting edge, three-dimensional, nine-component (3D9C) seismic data and utilize recently-developed processing algorithms, including the mapping of azimuthal velocity changes in amplitude variation with offset, to extract attributes that relate to variations in reservoir permeability and porosity. In order to apply advanced seismic methods a detailed reservoir study is needed to calibrate the seismic data to reservoir permeability, porosity and lithofacies. This will be done by developing a petrological and geological characterization of the mounds from well data; acquiring and processing the 3D9C data; and comparing the two using advanced pattern recognition tools such as neural nets. In addition, should the correlation prove successful, the resulting data will be evaluated from the perspective of

  12. The PROTEUS Experiment: Active Source Seismic Imaging of the Crustal Magma Plumbing Structure of the Santorini Arc Volcano

    Science.gov (United States)

    Hooft, E. E. E.; Morgan, J. V.; Nomikou, P.; Toomey, D. R.; Papazachos, C. V.; Warner, M.; Heath, B.; Christopoulou, M. E.; Lampridou, D.; Kementzetzidou, D.

    2016-12-01

    The goal of the PROTEUS seismic experiment (Plumbing Reservoirs Of The Earth Under Santorini) is to examine the entire crustal magma plumbing system beneath a continental arc volcano and determine the magma geometry and connections throughout the crust. These physical parameters control magma migration, storage, and eruption and inform the question of how physical and chemical processing of magma at arc volcanoes forms the andesitic rock compositions that dominate the lower continental crust. These physical parameters are also important to understand volcanic-tectonic interactions and geohazards. Santorini is ideal for these goals because the continental crust has been thinned by extension and so the deep magmatic system is more accessible, also it is geologically well studied. Since the volcano is a semi-submerged, it was possible to collect a unique 3D marine-land active source seismic dataset. During the PROTEUS experiment in November-December of 2015, we recorded 14,300 marine sound sources from the US R/V Langseth on 89 OBSIP short period ocean bottom seismometers and 60 German and 5 Greek land seismometers. The experiment was designed for high-density spatial sampling of the seismic wavefield to allow us to apply two state-of-the-art 3D inversion methods: travel time tomography and full waveform inversion. A preliminary travel time tomography model of the upper crustal seismic velocity structure of the volcano and surrounding region is presented in an accompanying poster. We also made marine geophysical maps of the seafloor using multi-beam bathymetry and of the gravity and magnetic fields. The new seafloor map reveals the detailed structure of the major fault system between Santorini and Amorgos, of associated landslides, and of newly discovered volcanic features. The PROTEUS project will provide new insights into the structure of the whole crustal magmatic system of a continental arc volcano and its evolution within the surrounding tectonic setting.

  13. Insights gained from relating cumulative seismic moments to fluid injection activities

    Science.gov (United States)

    McGarr, A.; Barbour, A. J.

    2017-12-01

    The three earthquakes with magnitudes of 5 or greater that were induced in Oklahoma during 2016 motivated efforts to improve our understanding of how fluid injection operations are related to earthquake activity. In this study, we have addressed the question of whether the volume of fluid injected down wells within 10 km of the mainshock of an induced earthquake sequence can account for its total moment release. Specifically, is the total moment release equal to, or less than, twice the product of the shear modulus and the total volume injected (McGarr, JGR, 2014, equation 7)? In contrast to McGarr's (2014, equation 13) relationship for the maximum moment, M0(max), the relationship for the total moment release has the advantage of being independent of the magnitude distribution. We find that the three sequences in Oklahoma in 2016, M5.1 Fairview, M5.8 Pawnee, M5.0 Cushing, and the 2011 M5.7 Prague sequence all adhere to this relationship. We also found that eight additional sequences of earthquakes induced by various fluid injection activities, widely distributed worldwide, show the same relationship between total moment-release and injected volume. Thus, for injected volumes ranging from 103 up to 107 cubic m, the moment release of an induced earthquake sequence appears to be similarly limited. These results imply that M0(max) for a sequence induced by fluid injection could be as high as twice the product of the shear modulus and the injected volume if the mainshock in the sequence accounts for nearly all of the total moment, as was the case for the 2016 Pawnee M5.8 mainshock. This new upper bound for maximum moment is twice what was proposed by McGarr (2014, equation 13). Our new results also support the assumption in our analysis that the induced earthquake rupture is localized to the seismogenic region that is weakened owing to a pore pressure increase of the order of a seismic stress drop.

  14. Remedial activities effectiveness verification in tailing areas.

    Science.gov (United States)

    Kluson, J; Thinova, L; Neznal, M; Svoboda, T

    2015-06-01

    The complex radiological study of the basin of sludge from the uranium ore mining and preprocessing was done. Air kerma rates (including its spectral analysis) at the reference height of 1 m above ground over the whole area were measured and radiation fields mapped during two measuring campaigns (years 2009 and 2014). K, U and Th concentrations in sludge and concentrations in depth profiles (including radon concentration and radon exhalation rates) in selected points were determined using gamma spectrometry for in situ as well as laboratory samples measurement. Results were used for the analysis, design evaluation and verification of the efficiency of the remediation measures. Efficiency of the sludge basin covering by the inert material was modelled using MicroShield code. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Remedial activities effectiveness verification in tailing areas

    International Nuclear Information System (INIS)

    Kluson, J.; Thinova, L.; Svoboda, T.; Neznal, M.

    2015-01-01

    The complex radiological study of the basin of sludge from the uranium ore mining and preprocessing was done. Air kerma rates (including its spectral analysis) at the reference height of 1 m above ground over the whole area were measured and radiation fields mapped during two measuring campaigns (years 2009 and 2014). K, U and Th concentrations in sludge and concentrations in depth profiles (including radon concentration and radon exhalation rates) in selected points were determined using gamma spectrometry for in situ as well as laboratory samples measurement. Results were used for the analysis, design evaluation and verification of the efficiency of the remediation measures. Efficiency of the sludge basin covering by the inert material was modelled using MicroShield code. (authors)

  16. Use of Remote Sensing Data and GIS Tools for Seismic Hazard Assessment for Shallow Oilfields and its Impact on the Settlements at Masjed-i-Soleiman Area, Zagros Mountains, Iran

    Directory of Open Access Journals (Sweden)

    Hojjat Ollah Safari

    2010-05-01

    Full Text Available Masjed-i-Soleiman (MIS is situated in the northern part of the Dezful embayment, which is in the Zagros fold–thrust belt with high seismic activities. MIS faces a shallow buried anticline, formed by the shallowest oilfield with a thick gas cap. The cap rocks of this oilfield are highly fractured, which has resulted in leakages from the gas cap. In this paper, we have used remote sensing techniques and image interpretation for the identification of the Niayesh, Lahbari, Andika and MIS fault zones in the studied area. Further, the study exploited seismic potential mapping using the remote sensing techniques. The relationships between the structural controls and localized gas leakage are assessed within the GIS environment. Additionally, field observation data corroborated that the leakages (and seepages are smashed within the intersection of Niayesh and MIS fault zone, which belongs to the high fractured hinge zone of the MIS anticline. As a result, the reactivation of these active faults may cause large earthquakes with a maximum magnitude of between 6.23 < Ms < 7.05 (Richter scale and maximum horizontal acceleration 0.26 < a < 0.55 g. Finally, the authors concluded that this anticipated earthquake may cause large scale fracturing of cap rocks, releasing a large volume of H2S gas from the uppermost layer of the reservoir.

  17. Sensitivity of seismic design parameters to input variables

    International Nuclear Information System (INIS)

    Wium, D.J.W.

    1987-01-01

    The probabilistic method introduced by Cornell (1968) has been used to a large extent for this purpose. Due to its probabilistic approach, this technique provides a sound basis for studying the influence of the dominant parameters in such a model. Although the Southern African region is not well known for its seismicity, a number of events in the recent past has focussed the attention on some seismically active areas where special attention may be needed in defining the correct design parameters. The relatively sparse historical seismic data has been used to develop a mathematical model which represents this region. This paper briefly discusses this model, and uses it as a basis for evaluating the influence of the uncertainty in each of the principal parameters, being the seismicity of the region, the attenuation of seismic waves after an event, and models that can be used to arrive at engineering design values. (orig./HP)

  18. Source modelling in seismic risk analysis for nuclear power plants

    International Nuclear Information System (INIS)

    Yucemen, M.S.

    1978-12-01

    The proposed probabilistic procedure provides a consistent method for the modelling, analysis and updating of uncertainties that are involved in the seismic risk analysis for nuclear power plants. The potential earthquake activity zones are idealized as point, line or area sources. For these seismic source types, expressions to evaluate their contribution to seismic risk are derived, considering all the possible site-source configurations. The seismic risk at a site is found to depend not only on the inherent randomness of the earthquake occurrences with respect to magnitude, time and space, but also on the uncertainties associated with the predicted values of the seismic and geometric parameters, as well as the uncertainty in the attenuation model. The uncertainty due to the attenuation equation is incorporated into the analysis through the use of random correction factors. The influence of the uncertainty resulting from the insufficient information on the seismic parameters and source geometry is introduced into the analysis by computing a mean risk curve averaged over the various alternative assumptions on the parameters and source geometry. Seismic risk analysis is carried for the city of Denizli, which is located in the seismically most active zone of Turkey. The second analysis is for Akkuyu

  19. Seismic Imager Space Telescope

    Science.gov (United States)

    Sidick, Erkin; Coste, Keith; Cunningham, J.; Sievers,Michael W.; Agnes, Gregory S.; Polanco, Otto R.; Green, Joseph J.; Cameron, Bruce A.; Redding, David C.; Avouac, Jean Philippe; hide

    2012-01-01

    A concept has been developed for a geostationary seismic imager (GSI), a space telescope in geostationary orbit above the Pacific coast of the Americas that would provide movies of many large earthquakes occurring in the area from Southern Chile to Southern Alaska. The GSI movies would cover a field of view as long as 300 km, at a spatial resolution of 3 to 15 m and a temporal resolution of 1 to 2 Hz, which is sufficient for accurate measurement of surface displacements and photometric changes induced by seismic waves. Computer processing of the movie images would exploit these dynamic changes to accurately measure the rapidly evolving surface waves and surface ruptures as they happen. These measurements would provide key information to advance the understanding of the mechanisms governing earthquake ruptures, and the propagation and arrest of damaging seismic waves. GSI operational strategy is to react to earthquakes detected by ground seismometers, slewing the satellite to point at the epicenters of earthquakes above a certain magnitude. Some of these earthquakes will be foreshocks of larger earthquakes; these will be observed, as the spacecraft would have been pointed in the right direction. This strategy was tested against the historical record for the Pacific coast of the Americas, from 1973 until the present. Based on the seismicity recorded during this time period, a GSI mission with a lifetime of 10 years could have been in position to observe at least 13 (22 on average) earthquakes of magnitude larger than 6, and at least one (2 on average) earthquake of magnitude larger than 7. A GSI would provide data unprecedented in its extent and temporal and spatial resolution. It would provide this data for some of the world's most seismically active regions, and do so better and at a lower cost than could be done with ground-based instrumentation. A GSI would revolutionize the understanding of earthquake dynamics, perhaps leading ultimately to effective warning

  20. Seismic data collection from water gun and industrial background sources in the Chicago Sanitary and Ship Canal area, Illinois, 2011

    Science.gov (United States)

    Morrow, William S.; Carpenter, Phillip J.; Adams, Ryan F.

    2015-01-01

    The water gun is a tool adapted from deep marine geophysical surveys that is being evaluated for use as an acoustic fish deterrent to control the movement of invasive marine species. The water gun creates a seismic signal by using a compressed air discharge to move a piston rapidly within the water, resulting in an implosion. This energy pulse may be able to modify fish behavior or destroy marine life, such as the Asian carp, at some distance. The effects of this energy pulse on structures in the Chicago Sanitary and Ship Canal (CSSC), such as canal walls, shore lines, and lock structures, are not known. The potential effects of the use of a water gun on structures was identified as a concern in the CSSC and was assessed relative to existing background sources during this study. During September 2011, two water guns with piston sizes of 80 and 343 cubic inches, respectively, were tested in the CSSC at varying pressures and distances from a canal wall consisting of dolomite and dolomite setblock. Seismic data were collected during these water gun firings using geophones on land, in boreholes, and at the canal wall interface. Data were collected at varying depths in the canal water using hydrophones. Seismic data were also collected during the occurrences of barge traffic, railroad traffic located near the electric fish barrier in Lemont, and coal-loading operations at a coal power plant near the electric fish barrier. In general, energy produced by barge and railroad sources was less than energy created by the water gun. Energy levels produced by coal-loading operations at least 200 feet from geophones were approximately four times lower than energy levels measured during water gun operations.

  1. The 1946 Unimak Tsunami Earthquake Area: revised tectonic structure in reprocessed seismic images and a suspect near field tsunami source

    Science.gov (United States)

    Miller, John J.; von Huene, Roland E.; Ryan, Holly F.

    2014-01-01

    In 1946 at Unimak Pass, Alaska, a tsunami destroyed the lighthouse at Scotch Cap, Unimak Island, took 159 lives on the Hawaiian Islands, damaged island coastal facilities across the south Pacific, and destroyed a hut in Antarctica. The tsunami magnitude of 9.3 is comparable to the magnitude 9.1 tsunami that devastated the Tohoku coast of Japan in 2011. Both causative earthquake epicenters occurred in shallow reaches of the subduction zone. Contractile tectonism along the Alaska margin presumably generated the far-field tsunami by producing a seafloor elevation change. However, the Scotch Cap lighthouse was destroyed by a near-field tsunami that was probably generated by a coeval large undersea landslide, yet bathymetric surveys showed no fresh large landslide scar. We investigated this problem by reprocessing five seismic lines, presented here as high-resolution graphic images, both uninterpreted and interpreted, and available for the reader to download. In addition, the processed seismic data for each line are available for download as seismic industry-standard SEG-Y files. One line, processed through prestack depth migration, crosses a 10 × 15 kilometer and 800-meter-high hill presumed previously to be basement, but that instead is composed of stratified rock superimposed on the slope sediment. This image and multibeam bathymetry illustrate a slide block that could have sourced the 1946 near-field tsunami because it is positioned within a distance determined by the time between earthquake shaking and the tsunami arrival at Scotch Cap and is consistent with the local extent of high runup of 42 meters along the adjacent Alaskan coast. The Unimak/Scotch Cap margin is structurally similar to the 2011 Tohoku tsunamigenic margin where a large landslide at the trench, coeval with the Tohoku earthquake, has been documented. Further study can improve our understanding of tsunami sources along Alaska’s erosional margins.

  2. Aftershock Activity Triggered By the 2014 Earthquake (Mw=6.5), and Its Implications for the Future Seismic Risk in the Marmara Sea, Turkey

    Science.gov (United States)

    Polat, O.; Kilic, T.; Turkoglu, M.; Kaplan, M.; Kilicarslan, O.; Özer, Ç.; Gok, E.

    2014-12-01

    We have performed aftershocks analysis triggered by 24.05.2014 (Mw=6.5) Gokceada Island (GI) earthquake where occurred at the W of North Anatolian Fault zone. Mainshock was widely felt in Aegean and Marmara regions of Turkey. Major damage in 228 homes was reported. Other 49 residences suffered moderate or light damage. We have well located 699 events over 1041 by at least 5 stations for one month period after the mainshock. Double difference relocation algorithm allowed us to minimize rms values less than 0.39. Initial results show clear unilateral rupture towards Gallipoli Peninsula at the W of Marmara Sea region. Aftershocks show linearity with an extension of ~110 km length, ~25 km width. Largest aftershock (Mw=5.3) was at the NE end of activation zone. Depths are mainly confined from 5 to 25 km ranges. Two locking depths are detected beneath 8 km in Lemnos Basin and Saros Trough. We also constructed focal mechanisms from regional moment tensor solutions. Digital waveform data obtained from AFAD (Turkey) and HT-AUTH (Greece). Focal mechanisms reflect complex tectonic settings. Nevertheless numerous mechanisms show dominant dextral strike-slip motions aligned NE-SW direction with minor reverse component. State of stress before the mainshock was pure shear regime. But two principal stress axes are observed as oblique for the aftershocks showing ambiguity between compression and shear. It is likely that the mean stress regime has changed after the GI earthquake. If this is so, we may expect that the strike-slip component would slowly increase later in order to recover the conditions existing before. Coulomb stress values rise at the edges of the fault segment due to accumulation of slip. We observed strong spatial correlation between the static stress change after 2014 GI earthquake and the segment that ruptured during the 1912 Murefte-Ganos (Mw=7.4) earthquake. The analysis showed that the areas of positive static stress changes reach to seismic gap in the Marmara

  3. Seismic monitoring of the Yucca Mountain facility

    International Nuclear Information System (INIS)

    Garbin, H.D.; Herrington, P.B.; Kromer, R.P.

    1997-01-01

    Questions have arisen regarding the applicability of seismic sensors to detect mining (re-entry) with a tunnel boring machine (TBM). Unlike cut and blast techniques of mining which produce impulsive seismic signals, the TBM produces seismic signals which are of long duration. (There are well established techniques available for detecting and locating the sources of the impulsive signals.) The Yucca Mountain repository offered an opportunity to perform field evaluations of the capabilities of seismic sensors because during much of 1996, mining there was progressing with the use of a TBM. During the mining of the repository's southern branch, an effort was designed to evaluate whether the TBM could be detected, identified and located using seismic sensors. Three data acquisition stations were established in the Yucca Mountain area to monitor the TBM activity. A ratio of short term average to long term average algorithm was developed for use in signal detection based on the characteristics shown in the time series. For location of the source of detected signals, FK analysis was used on the array data to estimate back azimuths. The back azimuth from the 3 component system was estimated from the horizontal components. Unique features in the timing of the seismic signal were used to identify the source as the TBM

  4. The seismic monitoring network of Mt. Vesuvius

    Directory of Open Access Journals (Sweden)

    Massimo Orazi

    2013-11-01

    Full Text Available Mt. Vesuvius (southern Italy is one of the most hazardous volcanoes in the world. Its activity is currently characterized by moderate seismicity, with hypocenters located beneath the crater zone with depth rarely exceeding 5 km and magnitudes generally less than 3. The current configuration of the seismic monitoring network of Mt. Vesuvius consists of 18 seismic stations and 7 infrasound microphones. During the period 2006-2010 a seismic array with 48 channels was also operative. The station distribution provides appropriate coverage of the area around the volcanic edifice. The current development of the network and its geometry, under conditions of low seismic noise, allows locating seismic events with M<1. Remote instruments continuously transmit data to the main acquisition center in Naples. Data transmission is realized using different technological solutions based on UHF, Wi-Fi radio links, and TCP/IP client-server applications. Data are collected in the monitoring center of the Osservatorio Vesuviano (Italian National Institute of Geophysics and Volcanology, Naples section, which is equipped with systems for displaying and analyzing signals, using both real-time automatic and manual procedures. 24-hour surveillance allows to immediately communicate any significant anomaly to the Civil Protection authorities.

  5. Monofractal or multifractal: a case study of spatial distribution of mining-induced seismic activity

    Directory of Open Access Journals (Sweden)

    M. Eneva

    1994-01-01

    Full Text Available Using finite data sets and limited size of study volumes may result in significant spurious effects when estimating the scaling properties of various physical processes. These effects are examined with an example featuring the spatial distribution of induced seismic activity in Creighton Mine (northern Ontario, Canada. The events studied in the present work occurred during a three-month period, March-May 1992, within a volume of approximate size 400 x 400 x 180 m3. Two sets of microearthquake locations are studied: Data Set 1 (14,338 events and Data Set 2 (1654 events. Data Set 1 includes the more accurately located events and amounts to about 30 per cent of all recorded data. Data Set 2 represents a portion of the first data set that is formed by the most accurately located and the strongest microearthquakes. The spatial distribution of events in the two data sets is examined for scaling behaviour using the method of generalized correlation integrals featuring various moments q. From these, generalized correlation dimensions are estimated using the slope method. Similar estimates are made for randomly generated point sets using the same numbers of events and the same study volumes as for the real data. Uniform and monofractal random distributions are used for these simulations. In addition, samples from the real data are randomly extracted and the dimension spectra for these are examined as well. The spectra for the uniform and monofractal random generations show spurious multifractality due only to the use of finite numbers of data points and limited size of study volume. Comparing these with the spectra of dimensions for Data Set 1 and Data Set 2 allows us to estimate the bias likely to be present in the estimates for the real data. The strong multifractality suggested by the spectrum for Data Set 2 appears to be largely spurious; the spatial distribution, while different from uniform, could originate from a monofractal process. The spatial

  6. Methodology for the Seismic risk assessment in segments of fault

    International Nuclear Information System (INIS)

    1997-02-01

    The present study establishes the most adequate methods of Seismic Hazard Assessment for the Iberian Peninsula, in particular for low seismicity areas, through a review of methods used in other countries and its application to a certain area in Spain. In this area the geological context and recent activity of a specific tectonic structure is studied in detail, in order to asses its slip rate, and therefore, its capability of generating earthquakes. In the first stage of this project a review of Seismic Hazard Assessment methods used outside Spain was carried out, as well as, a study of several spanish cases. This stage also comprises a review of the spanish seismic record and a study of the general peninsular neotectonic context, this latter to select a particular fault for the next stage. (Author) 117 refs

  7. Precursory groundwater level changes in the period of activation of the weak intraplate seismic activity on the NE margin of the Bohemian Massif (central Europe) in 2005

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Vladimír; Kašpárek, L.; Kopylova, Galina N.; Lyubushin, Alexei A.; Skalský, Lumír

    2009-01-01

    Roč. 53, č. 2 (2009), s. 215-238 ISSN 0039-3169 R&D Projects: GA ČR GA205/09/1244; GA ČR(CZ) GD205/05/H020 Institutional research plan: CEZ:AV0Z30460519; CEZ:AV0Z30120515 Keywords : seismic activity * earthquake precursors * groundwater Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.000, year: 2009

  8. On the Seismic Response of Protected and Unprotected Middle-Rise Steel Frames in Far-Field and Near-Field Areas

    Directory of Open Access Journals (Sweden)

    Dora Foti

    2014-01-01

    Full Text Available Several steel moment-resisting framed buildings were seriously damaged during Northridge (1994; Kobe (1995; Kocaeli, Turkey (1999, earthquakes. Indeed, for all these cases, the earthquake source was located under the urban area and most victims were in near-field areas. In fact near-field ground motions show velocity and displacement peaks higher than far-field ones. Therefore, the importance of considering near-field ground motion effects in the seismic design of structures is clear. This study analyzes the seismic response of five-story steel moment-resisting frames subjected to Loma Prieta (1989 earthquake—Gilroy (far-field register and Santa Cruz (near-field register. The design of the frames verifies all the resistance and stability Eurocodes’ requirements and the first mode has been determined from previous shaking-table tests. In the frames two diagonal braces are installed in different positions. Therefore, ten cases with different periods are considered. Also, friction dampers are installed in substitution of the braces. The behaviour of the braced models under the far-field and the near-field records is analysed. The responses of the aforementioned frames equipped with friction dampers and subjected to the same ground motions are discussed. The maximum response of the examined model structures with and without passive dampers is analysed in terms of damage indices, acceleration amplification, base shear, and interstory drifts.

  9. The need for review of environmental licensing rules taking into accounts innovations in the area of onshore seismic data acquisition; A necessidade de revisao das regras de licenciamento ambiental considerando inovacoes na area de aquisicao de dados sismicos terrestres

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Victor M. [Faculdade de Tecnologia e Ciencias - FTC, Salvador, BA (Brazil); Stilgoe, George [GeoDynamics Brasil Ltda., Rio de Janeiro, RJ (Brazil); Ferreira, Doneivan F. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Dept. de Geologia e Geofisica Aplicada

    2008-07-01

    Activities involving seismic data acquisition aimed at the exploration, characterization, and monitoring of onshore oil and gas fields are expected to cause environmental impacts. Therefore, all seismic-related activities which require the use of traditional technologies must be licensed beforehand. The environmental licensing process is complex and subjected to interruptions and delays which will affect project schedule and cash flow. Some innovations in this field and other alternative techniques will allow data acquisition with reduced or insignificant environmental impacts. Within this context, the present paper proposes a description of the current onshore seismic acquisition techniques commonly used and their potential environmental impacts; presents and describes the innovative technique known as Infrasonic Passive Differential Spectroscopy (IPDS); and proposes a regulatory model which will allow a simplified licensing process. Additionally, this paper considers some positive impacts of regulatory flexibility, including: the possibility of using innovative techniques to fulfill obligations under the ANP Initial Work Program (PTI); time and cost reduction within the environmental licensing process; potential impacts on the recently-created market of oil production in fields with marginal accumulations. (author)

  10. Seismically active column and volcanic plumbing system beneath the island arc of the Izu-Bonin subduction zone

    Science.gov (United States)

    Špičák, Aleš; Vaněk, Jiří; Hanuš, Václav

    2009-12-01

    A detailed spatio-temporal analysis of teleseismic earthquake occurrence (mb > 4.0) along the convergent margin of the Izu-Bonin-Mariana arc system reveals an anomalously high concentration of events between 27° and 30.5°N, beneath a chain of seamounts between Tori-shima and Nishino-shima volcanoes. This seismicity is dominated by the 1985/1986 earthquake swarm represented in the Engdahl-van der Hilst-Buland database by 146 earthquakes in the body wave magnitude range 4.3-5.8 and focal depth range 1-100 km. The epicentral cluster of the swarm is elongated parallel to the volcanic chain. Available focal mechanisms are consistent with an extensional tectonic regime and reveal nodal planes with azimuths close to that of the epicentral cluster. Earthquakes of the 1985/1986 swarm occurred in seven time phases. Seismic activity migrated in space from one phase to the other. Earthquake foci belonging to individual phases of the swarm aligned in vertically disposed seismically active columns. The epicentral zones of the columns are located in the immediate vicinity of seamounts Suiyo and Mokuyo, recently reported by the Japanese Meteorological Agency as volcanically active. The three observations-episodic character of earthquake occurrence, column-like vertically arranged seismicity pattern, and existence of volcanic seamounts at the seafloor above the earthquake foci-led us to interpret the 1985/1986 swarm as a consequence of subduction-related magmatic and/or fluid activity. A modification of the shallow earthquake swarm magmatic model of D. Hill fits earthquake foci distribution, tectonic stress orientation and fault plane solutions. The 1985/1986 deep-rooted earthquake swarm in the Izu-Bonin region represents an uncommon phenomenon of plate tectonics. The portion of the lithospheric wedge that was affected by the swarm should be composed of fractured rigid, brittle material so that the source of magma and/or fluids which might induce the swarm should be situated at a

  11. Seismic functional qualification of active mechanical and electrical component based on shaking table testing

    International Nuclear Information System (INIS)

    Jurukovski, D.; Mamucevski, D.

    1996-01-01

    This report involves the description of the experimental seismic and vibration tests of electrical, mechanical and processing equipment that were carried out by using laboratory equipment with high performances. This equipment should generate programmable dynamic excitations, measure and analyze parameters defining dynamic behaviour of the structural and functional capabilities of the tested specimen. Development of testing methodology and criteria is described together with the method for processing the results. Application of the methodology and criteria to selected specimen is included

  12. Seismic Activity in Medieval Jeroným Mine, West Bohemia, During Period 2006-2009

    Czech Academy of Sciences Publication Activity Database

    Kaláb, Zdeněk; Lednická, Markéta; Knejzlík, Jaromír; Hrubešová, E.

    2010-01-01

    Roč. 5, č. 2 (2010), s. 67-77 ISSN 1896-3145. [Ochrona środowiska w górnictwie podziemnym, odkrywkowym i otworowym. Zawiercie, 19.05.2010-21.05.2010] R&D Projects: GA ČR GA105/09/0089 Institutional research plan: CEZ:AV0Z30860518 Keywords : medieval Jeroným mine * seismic load * numerical modelling of underground spaces Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  13. Geothermic analysis of high temperature hydrothermal activities area in Western plateau of Sichuan province, China

    Science.gov (United States)

    Zhang, J.

    2016-12-01

    There is a high temperature hydrothermal activity area in the western plateau of Sichuan. More than 200 hot springs points have been found in the region, including 11 hot spring water temperature above local boiling point. Most of these distribute along Jinshajjiang fracture, Dege-Xiangcheng fracture, Ganzi-Litang fracture as well as Xianshuihe fracture, and form three high-temperature hydrothermal activity strips in the NW-SE direction. Using gravity, magnetic, seismic and helium isotope data, this paper analyzed the crust-mantle heat flow structure, crustal heat source distribution and water heating system. The results show that the geothermal activity mainly controlled by the "hot" crust. The ratio of crustal heat flow and surface heat flow is higher than 60%. In the high temperature hydrothermal activities area, there is lower S wave velocity zone with VsGeothermal water mainly reserve in the Triassic strata of the containing water good carbonate rocks, and in the intrusive granite which is along the fault zone. The thermal energy of Surface heat thermal activities mainly comes from the high-temperature hot source which is located in the middle and lower crust. Being in the deep crustal fracture, the groundwater infiltrated to the deep crust and absorbed heat, then, quickly got back to the surface and formed high hot springs.

  14. Compilation of historical information of 300 Area facilities and activities

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1992-12-01

    This document is a compilation of historical information of the 300 Area activities and facilities since the beginning. The 300 Area is shown as it looked in 1945, and also a more recent (1985) look at the 300 Area is provided

  15. Compilation of historical information of 300 Area facilities and activities

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S.

    1992-12-01

    This document is a compilation of historical information of the 300 Area activities and facilities since the beginning. The 300 Area is shown as it looked in 1945, and also a more recent (1985) look at the 300 Area is provided.

  16. Interferometric seismic imaging around the active Lalor mine in the Flin Flon greenstone belt, Canada

    Science.gov (United States)

    Roots, Eric; Calvert, Andrew J.; Craven, Jim

    2017-10-01

    Seismic interferometry, which recovers the impulse response of the Earth by cross-correlation of ambient noise recorded at sets of two receivers, has found several applications, including the generation of virtual shot gathers for use in seismic reflection processing. To evaluate the effectiveness of this passive recording technique in mineral exploration in a hard-rock environment, 336 receivers recorded 300 h of ambient noise over the volcanogenic massive sulphide deposit of the recently discovered Lalor mine in the Canadian Flin Flon greenstone belt. A novel time-domain beamforming algorithm was developed to search for individual source locations, demonstrating that the vast majority of noise originated from the mine and ventilation shafts of the Lalor mine. The results of the beamforming were utilized in conjunction with frequency-wavenumber filtering to remove undesirable, mostly monochromatic surface wave noise originating from nearby sources. Virtual shot gathers were generated along three receiver lines, each of which was processed as a separate 2-D reflection line. Two of the resulting unmigrated reflection profiles are compared against coincident dipmoveout-stacked data from a larger, coincident 3-D dynamite seismic survey that was also acquired over the Lalor mine in 2013. Using knowledge of the local geology derived from numerous boreholes, coherent events recovered in the passive reflection profiles are inferred to be either spurious arrivals or real reflections, some of which can be interpreted in terms of geological contacts, indicating the future potential of passive recording surveys in hard rock settings.

  17. Does seismic activity control carbon exchanges between transform-faults in old ocean crust and the deep sea? A hypothesis examined by the EU COST network FLOWS

    Science.gov (United States)

    Lever, M. A.

    2014-12-01

    The European Cooperation in Science and Technology (COST)-Action FLOWS (http://www.cost.eu/domains_actions/essem/Actions/ES1301) was initiated on the 25th of October 2013. It is a consortium formed by members of currently 14 COST countries and external partners striving to better understand the interplay between earthquakes and fluid flow at transform-faults in old oceanic crust. The recent occurrence of large earthquakes and discovery of deep fluid seepage calls for a revision of the postulated hydrogeological inactivity and low seismic activity of old oceanic transform-type plate boundaries, and indicates that earthquakes and fluid flow are intrinsically associated. This Action merges the expertise of a large number of research groups and supports the development of multidisciplinary knowledge on how seep fluid (bio)chemistry relates to seismicity. It aims to identify (bio)geochemical proxies for the detection of precursory seismic signals and to develop innovative physico-chemical sensors for deep-ocean seismogenic faults. National efforts are coordinated through Working Groups (WGs) focused on 1) geophysical and (bio)geochemical data acquisition; 2) modelling of structure and seismicity of faults; 3) engineering of deep-ocean physico-chemical seismic sensors; and 4) integration and dissemination. This poster will illustrate the overarching goals of the FLOWS Group, with special focus to research goals concerning the role of seismic activity in controlling the release of carbon from the old ocean crust into the deep ocean.

  18. Active Structures as Deduced from Geomorphic Features: A case in Hsinchu Area, northwestern Taiwan

    Science.gov (United States)

    Chen, Y.; Shyu, J.; Ota, Y.; Chen, W.; Hu, J.; Tsai, B.; Wang, Y.

    2002-12-01

    Hsinchu area is located in the northwestern Taiwan, the fold-and thrust belt created by arc-continent collision between Eurasian and Philippine. Since the collision event is still ongoing, the island is tectonically active and full of active faults. According to the historical records, some of the faults are seismically acting. In Hsinchuarea two active faults, the Hsinchu and Hsincheng, have been previously mapped. To evaluate the recent activities, we studied the related geomorphic features by using newly developed Digital Elevation Model (DEM), the aerial photos and field investigation. Geologically, both of the faults are coupled with a hanging wall anticline. The anticlines are recently active due to the deformation of the geomorphic surfaces. The Hsinchu fault system shows complicate corresponding scarps, distributed sub-parallel to the fault trace previously suggested by projection of subsurface geology. This is probably caused by its strike-slip component tearing the surrounding area along the main trace. The scarps associated with the Hsincheng fault system are rather simple and unique. It offsets a flight of terraces all the way down to recent flood plain, indicating its long lasting activity. One to two kilometers to east of main trace a back-thrust is found, showing coupled vertical surface offsets with the main fault. The striking discovery in this study is that the surface deformation is only distributed in the southern bank of Touchien river, also suddenly decreasing when crossing another tear fault system, which is originated from Hsincheng fault in the west and extending southeastward parallel to the Touchien river. The strike-slip fault system mentioned above not only bi