WorldWideScience

Sample records for seismic rupture modelling

  1. Seismic rupture modelling, strong motion prediction and seismic hazard assessment: fundamental and applied approaches

    International Nuclear Information System (INIS)

    Berge-Thierry, C.

    2007-05-01

    The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)

  2. The 2016-2017 Central Italy Seismic Sequence: Source Complexity Inferred from Rupture Models.

    Science.gov (United States)

    Scognamiglio, L.; Tinti, E.; Casarotti, E.; Pucci, S.; Villani, F.; Cocco, M.; Magnoni, F.; Michelini, A.

    2017-12-01

    The Apennines have been struck by several seismic sequences in recent years, showing evidence of the activation of multiple segments of normal fault systems in a variable and, relatively short, time span, as in the case of the 1980 Irpinia earthquake (three shocks in 40 s), the 1997 Umbria-Marche sequence (four main shocks in 18 days) and the 2009 L'Aquila earthquake having three segments activated within a few weeks. The 2016-2017 central Apennines seismic sequence begin on August 24th with a MW 6.0 earthquake, which strike the region between Amatrice and Accumoli causing 299 fatalities. This earthquake ruptures a nearly 20 km long normal fault and shows a quite heterogeneous slip distribution. On October 26th, another main shock (MW 5.9) occurs near Visso extending the activated seismogenic area toward the NW. It is a double event rupturing contiguous patches on the fault segment of the normal fault system. Four days after the second main shock, on October 30th, a third earthquake (MW 6.5) occurs near Norcia, roughly midway between Accumoli and Visso. In this work we have inverted strong motion waveforms and GPS data to retrieve the source model of the MW 6.5 event with the aim of interpreting the rupture process in the framework of this complex sequence of moderate magnitude earthquakes. We noted that some preliminary attempts to model the slip distribution of the October 30th main shock using a single fault plane oriented along the Apennines did not provide convincing fits to the observed waveforms. In addition, the deformation pattern inferred from satellite observations suggested the activation of a multi-fault structure, that is coherent to the complexity and the extension of the geological surface deformation. We investigated the role of multi-fault ruptures and we found that this event revealed an extraordinary complexity of the rupture geometry and evolution: the coseismic rupture propagated almost simultaneously on a normal fault and on a blind fault

  3. Irregularities in Early Seismic Rupture Propagation for Large Events in a Crustal Earthquake Model

    Science.gov (United States)

    Lapusta, N.; Rice, J. R.; Rice, J. R.

    2001-12-01

    We study early seismic propagation of model earthquakes in a 2-D model of a vertical strike-slip fault with depth-variable rate and state friction properties. Our model earthquakes are obtained in fully dynamic simulations of sequences of instabilities on a fault subjected to realistically slow tectonic loading (Lapusta et al., JGR, 2000). This work is motivated by results of Ellsworth and Beroza (Science, 1995), who observe that for many earthquakes, far-field velocity seismograms during initial stages of dynamic rupture propagation have irregular fluctuations which constitute a "seismic nucleation phase". In our simulations, we find that such irregularities in velocity seismograms can be caused by two factors: (1) rupture propagation over regions of stress concentrations and (2) partial arrest of rupture in neighboring creeping regions. As rupture approaches a region of stress concentration, it sees increasing background stress and its moment acceleration (to which velocity seismographs in the far field are proportional) increases. After the peak in stress concentration, the rupture sees decreasing background stress and moment acceleration decreases. Hence a fluctuation in moment acceleration is created. If rupture starts sufficiently far from a creeping region, then partial arrest of rupture in the creeping region causes a decrease in moment acceleration. As the other parts of rupture continue to develop, moment acceleration then starts to grow again, and a fluctuation again results. Other factors may cause the irregularities in moment acceleration, e.g., phenomena such as branching and/or intermittent rupture propagation (Poliakov et al., submitted to JGR, 2001) which we have not studied here. Regions of stress concentration are created in our model by arrest of previous smaller events as well as by interactions with creeping regions. One such region is deep in the fault zone, and is caused by the temperature-induced transition from seismogenic to creeping

  4. Evaluation of Seismic Rupture Models for the 2011 Tohoku-Oki Earthquake Using Tsunami Simulation

    Directory of Open Access Journals (Sweden)

    Ming-Da Chiou

    2013-01-01

    Full Text Available Developing a realistic, three-dimensional rupture model of the large offshore earthquake is difficult to accomplish directly through band-limited ground-motion observations. A potential indirect method is using a tsunami simulation to verify the rupture model in reverse because the initial conditions of the associated tsunamis are caused by a coseismic seafloor displacement correlating to the rupture pattern along the main faulting. In this study, five well-developed rupture models for the 2011 Tohoku-Oki earthquake were adopted to evaluate differences in simulated tsunamis and various rupture asperities. The leading wave of the simulated tsunamis triggered by the seafloor displacement in Yamazaki et al. (2011 model resulted in the smallest root-mean-squared difference (~0.082 m on average from the records of the eight DART (Deep-ocean Assessment and Reporting of Tsunamis stations. This indicates that the main seismic rupture during the 2011 Tohoku earthquake should occur in a large shallow slip in a narrow range adjacent to the Japan trench. This study also quantified the influences of ocean stratification and tides which are normally overlooked in tsunami simulations. The discrepancy between the simulations with and without stratification was less than 5% of the first peak wave height at the eight DART stations. The simulations, run with and without the presence of tides, resulted in a ~1% discrepancy in the height of the leading wave. Because simulations accounting for tides and stratification are time-consuming and their influences are negligible, particularly in the first tsunami wave, the two factors can be ignored in a tsunami prediction for practical purposes.

  5. Seismic Hazard of the Uttarakhand Himalaya, India, from Deterministic Modeling of Possible Rupture Planes in the Area

    Directory of Open Access Journals (Sweden)

    Anand Joshi

    2013-01-01

    Full Text Available This paper presents use of semiempirical method for seismic hazard zonation. The seismotectonically important region of Uttarakhand Himalaya has been considered in this work. Ruptures along the lineaments in the area identified from tectonic map are modeled deterministically using semi empirical approach given by Midorikawa (1993. This approach makes use of attenuation relation of peak ground acceleration for simulating strong ground motion at any site. Strong motion data collected over a span of three years in this region have been used to develop attenuation relation of peak ground acceleration of limited magnitude and distance applicability. The developed attenuation relation is used in the semi empirical method to predict peak ground acceleration from the modeled rupture planes in the area. A set of values of peak ground acceleration from possible ruptures in the area at the point of investigation is further used to compute probability of exceedance of peak ground acceleration of values 100 and 200 gals. The prepared map shows that regions like Tehri, Chamoli, Almora, Srinagar, Devprayag, Bageshwar, and Pauri fall in a zone of 10% probability of exceedence of peak ground acceleration of value 200 gals.

  6. Induced seismicity provides insight into why earthquake ruptures stop

    KAUST Repository

    Galis, Martin

    2017-12-21

    Injection-induced earthquakes pose a serious seismic hazard but also offer an opportunity to gain insight into earthquake physics. Currently used models relating the maximum magnitude of injection-induced earthquakes to injection parameters do not incorporate rupture physics. We develop theoretical estimates, validated by simulations, of the size of ruptures induced by localized pore-pressure perturbations and propagating on prestressed faults. Our model accounts for ruptures growing beyond the perturbed area and distinguishes self-arrested from runaway ruptures. We develop a theoretical scaling relation between the largest magnitude of self-arrested earthquakes and the injected volume and find it consistent with observed maximum magnitudes of injection-induced earthquakes over a broad range of injected volumes, suggesting that, although runaway ruptures are possible, most injection-induced events so far have been self-arrested ruptures.

  7. Using finite-difference waveform modeling to better understand rupture kinematics and path effects in ground motion modeling: an induced seismicity case study at the Groningen Gas field

    Science.gov (United States)

    Zurek, B.; Burnett, W. A.; deMartin, B.

    2017-12-01

    Ground motion models (GMMs) have historically been used as input in the development of probabilistic seismic hazard analysis (PSHA) and as an engineering tool to assess risk in building design. Generally these equations are developed from empirical analysis of observations that come from fairly complete catalogs of seismic events. One of the challenges when doing a PSHA analysis in a region where earthquakes are anthropogenically induced is that the catalog of observations is not complete enough to come up with a set of equations to cover all expected outcomes. For example, PSHA analysis at the Groningen gas field, an area of known induced seismicity, requires estimates of ground motions from tremors up to a maximum magnitude of 6.5 ML. Of the roughly 1300 recordable earthquakes the maximum observed magnitude to date has been 3.6ML. This paper is part of a broader study where we use a deterministic finite-difference wave-form modeling tool to compliment the traditional development of GMMs. Of particular interest is the sensitivity of the GMM's to uncertainty in the rupture process and how this scales to larger magnitude events that have not been observed. A kinematic fault rupture model is introduced to our waveform simulations to test the sensitivity of the GMMs to variability in the fault rupture process that is physically consistent with observations. These tests will aid in constraining the degree of variability in modeled ground motions due to a realistic range of fault parameters and properties. From this study it is our conclusion that in order to properly capture the uncertainty of the GMMs with magnitude up-scaling one needs to address the impact of uncertainty in the near field (risk. Further, by investigating and constraining the range of fault rupture scenarios and earthquake magnitudes on ground motion models, hazard and risk analysis in regions with incomplete earthquake catalogs, such as the Groningen gas field, can be better understood.

  8. Multi-Fault Rupture Scenarios in the Brawley Seismic Zone

    Science.gov (United States)

    Kyriakopoulos, C.; Oglesby, D. D.; Rockwell, T. K.; Meltzner, A. J.; Barall, M.

    2017-12-01

    Dynamic rupture complexity is strongly affected by both the geometric configuration of a network of faults and pre-stress conditions. Between those two, the geometric configuration is more likely to be anticipated prior to an event. An important factor in the unpredictability of the final rupture pattern of a group of faults is the time-dependent interaction between them. Dynamic rupture models provide a means to investigate this otherwise inscrutable processes. The Brawley Seismic Zone in Southern California is an area in which this approach might be important for inferring potential earthquake sizes and rupture patterns. Dynamic modeling can illuminate how the main faults in this area, the Southern San Andreas (SSAF) and Imperial faults, might interact with the intersecting cross faults, and how the cross faults may modulate rupture on the main faults. We perform 3D finite element modeling of potential earthquakes in this zone assuming an extended array of faults (Figure). Our results include a wide range of ruptures and fault behaviors depending on assumptions about nucleation location, geometric setup, pre-stress conditions, and locking depth. For example, in the majority of our models the cross faults do not strongly participate in the rupture process, giving the impression that they are not typically an aid or an obstacle to the rupture propagation. However, in some cases, particularly when rupture proceeds slowly on the main faults, the cross faults indeed can participate with significant slip, and can even cause rupture termination on one of the main faults. Furthermore, in a complex network of faults we should not preclude the possibility of a large event nucleating on a smaller fault (e.g. a cross fault) and eventually promoting rupture on the main structure. Recent examples include the 2010 Mw 7.1 Darfield (New Zealand) and Mw 7.2 El Mayor-Cucapah (Mexico) earthquakes, where rupture started on a smaller adjacent segment and later cascaded into a larger

  9. Seismic rupture modelling, strong motion prediction and seismic hazard assessment: fundamental and applied approaches; Modelisation de la rupture sismique, prediction du mouvement fort, et evaluation de l'alea sismique: approches fondamentale et appliquee

    Energy Technology Data Exchange (ETDEWEB)

    Berge-Thierry, C

    2007-05-15

    The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)

  10. Seismic rupture modelling, strong motion prediction and seismic hazard assessment: fundamental and applied approaches; Modelisation de la rupture sismique, prediction du mouvement fort, et evaluation de l'alea sismique: approches fondamentale et appliquee

    Energy Technology Data Exchange (ETDEWEB)

    Berge-Thierry, C

    2007-05-15

    The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)

  11. Rupture Dynamics and Seismic Radiation on Rough Faults for Simulation-Based PSHA

    Science.gov (United States)

    Mai, P. M.; Galis, M.; Thingbaijam, K. K. S.; Vyas, J. C.; Dunham, E. M.

    2017-12-01

    Simulation-based ground-motion predictions may augment PSHA studies in data-poor regions or provide additional shaking estimations, incl. seismic waveforms, for critical facilities. Validation and calibration of such simulation approaches, based on observations and GMPE's, is important for engineering applications, while seismologists push to include the precise physics of the earthquake rupture process and seismic wave propagation in 3D heterogeneous Earth. Geological faults comprise both large-scale segmentation and small-scale roughness that determine the dynamics of the earthquake rupture process and its radiated seismic wavefield. We investigate how different parameterizations of fractal fault roughness affect the rupture evolution and resulting near-fault ground motions. Rupture incoherence induced by fault roughness generates realistic ω-2 decay for high-frequency displacement amplitude spectra. Waveform characteristics and GMPE-based comparisons corroborate that these rough-fault rupture simulations generate realistic synthetic seismogram for subsequent engineering application. Since dynamic rupture simulations are computationally expensive, we develop kinematic approximations that emulate the observed dynamics. Simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. The dynamic rake angle variations are anti-correlated with local dip angles. Based on a dynamically consistent Yoffe source-time function, we show that the seismic wavefield of the approximated kinematic rupture well reproduces the seismic radiation of the full dynamic source process. Our findings provide an innovative pseudo-dynamic source characterization that captures fault roughness effects on rupture dynamics. Including the correlations between kinematic source parameters, we present a new

  12. Seismic rupture study using near-source data: application to seismic hazard assessment

    International Nuclear Information System (INIS)

    Hernandez, Bruno

    2000-01-01

    This work presents seismic source studies using near-field data. In accordance with the quality and the quantity of available data we developed and applied various methods to characterize the seismic source. Macro-seismic data are used to verify if simple and robust methods used on recent instrumental earthquakes may provide a good tool to calibrate historical events in France. These data are often used to characterize earthquakes to be taken into account for seismic hazard assessment in moderate seismicity regions. Geodetic data (SAR, GPS) are used to estimate the slip distribution on the fault during the 1992, Landers, California earthquake. These data are also used to precise the location and the geometry of the main events of the 1997, Colfiorito, central Italy, earthquake sequence. Finally, the strong motions contain the most complete information about rupture process. These data are used to discriminate between two possible fault planes of the 1999, north India, Chamoli earthquake. The strong motions recorded close to the 1999, Mexico, Oaxaca earthquake are used to constrain the rupture history. Strong motions a.re also used in combination with geodetic data to access the rupture history of the Landers earthquake and the main events of the Colfiorito seismic sequence. For the Landers earthquake, the data quality and complementarity offered the possibility to describe the rupture development with accuracy. The large heterogeneities in both slip amplitude and rupture velocity variations suggest that the rupture propagates by breaking successive asperities rather than by propagating like a pulse at constant velocity. The rupture front slows as it encounters barriers and accelerates within main asperities. (author)

  13. Neck curve polynomials in neck rupture model

    International Nuclear Information System (INIS)

    Kurniadi, Rizal; Perkasa, Yudha S.; Waris, Abdul

    2012-01-01

    The Neck Rupture Model is a model that explains the scission process which has smallest radius in liquid drop at certain position. Old fashion of rupture position is determined randomly so that has been called as Random Neck Rupture Model (RNRM). The neck curve polynomials have been employed in the Neck Rupture Model for calculation the fission yield of neutron induced fission reaction of 280 X 90 with changing of order of polynomials as well as temperature. The neck curve polynomials approximation shows the important effects in shaping of fission yield curve.

  14. Seismic Attenuation Tomography of the Rupture Zone of the 2010 Maule, Chile, Earthquake

    Science.gov (United States)

    Torpey, M. E.; Russo, R. M.; Panning, M. P.

    2014-12-01

    We used measurements of differential S to P seismic attenuation in the rupture zone of the 2010 Mw 8.8 Maule, Chile earthquake (33°S-38°S) to characterize the seismic attenuation structure of the South American crust and upper mantle wedge. We used data obtained from the IRIS CHAMP rapid-response temporary seismic network, filtered between 0.7-20 Hz. For events with large signal to noise ratios, we visually identified the P and S arrivals on the seismograms and used an evolving time window to determine 400 individual Qs and t* values and their uncertainties using a spectral ratio method. Using a phase pair method allows us to neglect the source-time function and instrument response of each P-S phase pair. Assuming a constant Qp/Qs ratio for a given P-S phase pair, we evaluated the 400 spectral ratios and discarded portions of the evolving time window that incorporate multipathed phases. We recalculated the Qs and standard deviation of the retained window and excluded measurements with standard deviations larger than half of the Qs value. We also excluded measurements that span frequency windows longer than 10 Hz as they contain noise that contaminates Qs measurements. We examined ~200 local events yielding a total of 1,076 path-integrated Q­s measurements. Qs values are low (100-400) for the majority of ray paths evaluated, however we observe a spatial distribution of low path-integrated Qs values (100-300) in the northeastern portion of the rupture zone and higher values (300-600) in the southwest. We divided the rupture zone into cubes and implemented a bounded linear inequality least squares inversion (0model regions. We used a constant starting model of Qs=450 and solved for perturbations to the model using our observed δt* values and a radial-earth velocity model (IASPI91). Our ray coverage provides good resolution extending to depths of ~75 km in the mantle wedge.

  15. Induced seismicity provides insight into why earthquake ruptures stop

    KAUST Repository

    Galis, Martin; Ampuero, Jean Paul; Mai, Paul Martin; Cappa, Fré dé ric

    2017-01-01

    the perturbed area and distinguishes self-arrested from runaway ruptures. We develop a theoretical scaling relation between the largest magnitude of self-arrested earthquakes and the injected volume and find it consistent with observed maximum magnitudes

  16. Examining seismicity patterns in the 2010 M 8.8 Maule rupture zone.

    Science.gov (United States)

    Diniakos, R. S.; Bilek, S. L.; Rowe, C. A.; Draganov, D.

    2016-12-01

    The subduction of the Nazca Plate beneath the South American Plate along Chile has produced some of the largest earthquakes recorded on modern seismic instrumentation. These include the 1960 M 9.5 Valdivia, 2010 M 8.8 Maule, 2014 M 8.1 Iquique, and more recently the 2015 M 8.3 Illapel earthquakes. Slip heterogeneity in the 2010 Maule earthquake has been noted in various studies, with bilateral slip and peak slip of 15 m north of the epicenter. For other great subduction zone earthquakes, such as the 2004 M 9.1 Sumatra, 2010 M 8.8 Maule, and 2011 M 9.0 Tohoku, there was an increase in normal-faulting earthquakes in regions of high slip. In order to understand aftershock behavior of the 2010 Maule event, we are expanding the catalog of small magnitude earthquakes using a template-matching algorithm to find other small earthquakes in the rupture area. We use a starting earthquake catalog (magnitudes between 2.5-4.0) developed from regional and local array seismic data; these comprise our template catalog from Jan. - Dec. 2012 that we use to search through seismic waveforms recorded by a 2012 temporary seismic array in Malargüe, Argentina located 300 km east of the Maule rupture area. We use waveform cross correlation techniques in order to detect new events, and then we use HYPOINVERSE2000 (Klein, 2002) and a velocity model designed for the south-central Chilean region (Haberland et al., 2006) to locate new detections. We also determine focal mechanisms to further analyze aftershock behavior for the region. To date, over 2400 unique detections have been found, of which we have located 133 events with an RMS <1. Many of these events are located in the region of greatest coseismic slip, north of the 2010 epicenter, whereas catalog events are located north and south of the epicenter, along the regions of bilateral slip. Focal mechanisms for the new locations will also be presented.

  17. Mathematical modeling and numerical simulation of unilateral dynamic rupture propagation along very-long reverse faults

    Science.gov (United States)

    Hirano, S.

    2017-12-01

    For some great earthquakes, dynamic rupture propagates unilaterally along a horizontal direction of very-long reverse faults (e.g., the Mw9.1 Sumatra earthquake in 2004, the Mw8.0 Wenchuan earthquake in 2008, and the Mw8.8 Maule earthquake in 2010, etc.). It seems that barriers or creeping sections may not lay along the opposite region of the co-seismically ruptured direction. In fact, in the case of Sumatra, the Mw8.6 earthquake occurred in the opposite region only three months after the mainshock. Mechanism of unilateral mode-II rupture along a material interface has been investigated theoretically and numerically. For mode-II rupture propagating along a material interface, an analytical solution implies that co-seismic stress perturbation depends on the rupture direction (Weertman, 1980 JGR; Hirano & Yamashita, 2016 BSSA), and numerical modeling of plastic yielding contributes to simulating the unilateral rupture (DeDonteny et al., 2011 JGR). However, mode-III rupture may dominate for the very-long reverse faults, and it can be shown that stress perturbation due to mode-III rupture does not depend on the rupture direction. Hence, an effect of the material interface is insufficient to understand the mechanism of unilateral rupture along the very-long reverse faults. In this study, I consider a two-dimensional bimaterial system with interfacial dynamic mode-III rupture under an obliquely pre-stressed configuration (i.e., the maximum shear direction of the background stress is inclined from the interfacial fault). First, I derived an analytical solution of regularized elastic stress field around a steady-state interfacial slip pulse using the method of Rice et al. (2005 BSSA). Then I found that the total stress, which is the sum of the background stress and co-seismic stress perturbation, depends on the rupture direction even in the mode-III case. Second, I executed a finite difference numerical simulation with a plastic yielding model of Andrews (1978 JGR; 2005

  18. Computing broadband accelerograms using kinematic rupture modeling

    International Nuclear Information System (INIS)

    Ruiz Paredes, J.A.

    2007-05-01

    In order to make the broadband kinematic rupture modeling more realistic with respect to dynamic modeling, physical constraints are added to the rupture parameters. To improve the slip velocity function (SVF) modeling, an evolution of the k -2 source model is proposed, which consists to decompose the slip as a sum of sub-events by band of k. This model yields to SVF close to the solution proposed by Kostrov for a crack, while preserving the spectral characteristics of the radiated wave field, i.e. a w 2 model with spectral amplitudes at high frequency scaled to the coefficient of directivity C d . To better control the directivity effects, a composite source description is combined with a scaling law defining the extent of the nucleation area for each sub-event. The resulting model allows to reduce the apparent coefficient of directivity to a fraction of C d , as well as to reproduce the standard deviation of the new empirical attenuation relationships proposed for Japan. To make source models more realistic, a variable rupture velocity in agreement with the physics of the rupture must be considered. The followed approach that is based on an analytical relation between the fracture energy, the slip and the rupture velocity, leads to higher values of the peak ground acceleration in the vicinity of the fault. Finally, to better account for the interaction of the wave field with the geological medium, a semi-empirical methodology is developed combining a composite source model with empirical Green functions, and is applied to the Yamaguchi, M w 5.9 earthquake. The modeled synthetics reproduce satisfactorily well the observed main characteristics of ground motions. (author)

  19. The 2014 update to the National Seismic Hazard Model in California

    Science.gov (United States)

    Powers, Peter; Field, Edward H.

    2015-01-01

    The 2014 update to the U. S. Geological Survey National Seismic Hazard Model in California introduces a new earthquake rate model and new ground motion models (GMMs) that give rise to numerous changes to seismic hazard throughout the state. The updated earthquake rate model is the third version of the Uniform California Earthquake Rupture Forecast (UCERF3), wherein the rates of all ruptures are determined via a self-consistent inverse methodology. This approach accommodates multifault ruptures and reduces the overprediction of moderate earthquake rates exhibited by the previous model (UCERF2). UCERF3 introduces new faults, changes to slip or moment rates on existing faults, and adaptively smoothed gridded seismicity source models, all of which contribute to significant changes in hazard. New GMMs increase ground motion near large strike-slip faults and reduce hazard over dip-slip faults. The addition of very large strike-slip ruptures and decreased reverse fault rupture rates in UCERF3 further enhances these effects.

  20. Magnitude and Rupture Area Scaling Relationships of Seismicity at The Northwest Geysers EGS Demonstration Project

    Science.gov (United States)

    Dreger, D. S.; Boyd, O. S.; Taira, T.; Gritto, R.

    2017-12-01

    Enhanced Geothermal System (EGS) resource development requires knowledge of subsurface physical parameters to quantify the evolution of fracture networks. Spatio-temporal source properties, including source dimension, rupture area, slip, rupture speed, and slip velocity of induced seismicity are of interest at The Geysers geothermal field, northern California to map the coseismic facture density of the EGS swarm. In this investigation we extend our previous finite-source analysis of selected M>4 earthquakes to examine source properties of smaller magnitude seismicity located in the Northwest Geysers Enhanced Geothermal System (EGS) demonstration project. Moment rate time histories of the source are found using empirical Green's function (eGf) deconvolution using the method of Mori (1993) as implemented by Dreger et al. (2007). The moment rate functions (MRFs) from data recorded using the Lawrence Berkeley National Laboratory (LBNL) short-period geophone network are inverted for finite-source parameters including the spatial distribution of fault slip, rupture velocity, and the orientation of the causative fault plane. The results show complexity in the MRF for the studied earthquakes. Thus far the estimated rupture area and the magnitude-area trend of the smaller magnitude Geysers seismicity is found to agree with the empirical relationships of Wells and Coppersmith (1994) and Leonard (2010), which were developed for much larger M>5.5 earthquakes worldwide indicating self-similar behavior extending to M2 earthquakes. We will present finite-source inversion results of the micro-earthquakes, attempting to extend the analysis to sub Mw, and demonstrate their magnitude-area scaling. The extension of the scaling laws will then enable the mapping of coseismic fracture density of the EGS swarm in the Northwest Geysers based on catalog moment magnitude estimates.

  1. Seismic modelling of shallow coalfields

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, D.C. (University of Calgary, Calgary, Alberta (Canada). Dept. of Geology and Geophysics.)

    1987-01-01

    This study was undertaken in order to determine whether reflection seismic surveys can be used to map stratigraphic and structural detail of shallow Plains-type coal deposits. Two coalfields in central Alberta were used to examine and determine optimum acquisition parameters for reflection seismic surveys in such settings. The study was based on 1-D and 2-D numerical seismic modelling using sonic and density well logs to formulate a layered earth model. Additional objectives were to interpret the reflection seismic data in terms of geologic features in the study area, and to investigate the relationship between vertical resolution and field acquisition geometry. 27 refs., 41 figs.

  2. Rupture Complexity Promoted by Damaged Fault Zones in Earthquake Cycle Models

    Science.gov (United States)

    Idini, B.; Ampuero, J. P.

    2017-12-01

    Pulse-like ruptures tend to be more sensitive to stress heterogeneity than crack-like ones. For instance, a stress-barrier can more easily stop the propagation of a pulse than that of a crack. While crack-like ruptures tend to homogenize the stress field within their rupture area, pulse-like ruptures develop heterogeneous stress fields. This feature of pulse-like ruptures can potentially lead to complex seismicity with a wide range of magnitudes akin to the Gutenberg-Richter law. Previous models required a friction law with severe velocity-weakening to develop pulses and complex seismicity. Recent dynamic rupture simulations show that the presence of a damaged zone around a fault can induce pulse-like rupture, even under a simple slip-weakening friction law, although the mechanism depends strongly on initial stress conditions. Here we aim at testing if fault zone damage is a sufficient ingredient to generate complex seismicity. In particular, we investigate the effects of damaged fault zones on the emergence and sustainability of pulse-like ruptures throughout multiple earthquake cycles, regardless of initial conditions. We consider a fault bisecting a homogeneous low-rigidity layer (the damaged zone) embedded in an intact medium. We conduct a series of earthquake cycle simulations to investigate the effects of two fault zone properties: damage level D and thickness H. The simulations are based on classical rate-and-state friction, the quasi-dynamic approximation and the software QDYN (https://github.com/ydluo/qdyn). Selected fully-dynamic simulations are also performed with a spectral element method. Our numerical results show the development of complex rupture patterns in some damaged fault configurations, including events of different sizes, as well as pulse-like, multi-pulse and hybrid pulse-crack ruptures. We further apply elasto-static theory to assess how D and H affect ruptures with constant stress drop, in particular the flatness of their slip profile

  3. From Geodetic Imaging of Seismic and Aseismic Fault Slip to Dynamic Modeling of the Seismic Cycle

    Science.gov (United States)

    Avouac, Jean-Philippe

    2015-05-01

    Understanding the partitioning of seismic and aseismic fault slip is central to seismotectonics as it ultimately determines the seismic potential of faults. Thanks to advances in tectonic geodesy, it is now possible to develop kinematic models of the spatiotemporal evolution of slip over the seismic cycle and to determine the budget of seismic and aseismic slip. Studies of subduction zones and continental faults have shown that aseismic creep is common and sometimes prevalent within the seismogenic depth range. Interseismic coupling is generally observed to be spatially heterogeneous, defining locked patches of stress accumulation, to be released in future earthquakes or aseismic transients, surrounded by creeping areas. Clay-rich tectonites, high temperature, and elevated pore-fluid pressure seem to be key factors promoting aseismic creep. The generally logarithmic time evolution of afterslip is a distinctive feature of creeping faults that suggests a logarithmic dependency of fault friction on slip rate, as observed in laboratory friction experiments. Most faults can be considered to be paved with interlaced patches where the friction law is either rate-strengthening, inhibiting seismic rupture propagation, or rate-weakening, allowing for earthquake nucleation. The rate-weakening patches act as asperities on which stress builds up in the interseismic period; they might rupture collectively in a variety of ways. The pattern of interseismic coupling can help constrain the return period of the maximum- magnitude earthquake based on the requirement that seismic and aseismic slip sum to match long-term slip. Dynamic models of the seismic cycle based on this conceptual model can be tuned to reproduce geodetic and seismological observations. The promise and pitfalls of using such models to assess seismic hazard are discussed.

  4. CFD modeling of a boiler's tubes rupture

    International Nuclear Information System (INIS)

    Rahimi, Masoud; Khoshhal, Abbas; Shariati, Seyed Mehdi

    2006-01-01

    This paper reports the results of a study on the reason for tubes damage in the superheater Platen section of the 320 MW Bisotoun power plant, Iran. The boiler has three types of superheater tubes and the damage occurs in a series of elbows belongs to the long tubes. A three-dimensional modeling was performed using an in-house computational fluid dynamics (CFD) code in order to explore the reason. The code has ability of simultaneous solving of the continuity, the Reynolds-Averaged Navier-Stokes (RANS) equations and employing the turbulence, combustion and radiation models. The whole boiler including; walls, burners, air channels, three types of tubes, etc., was modeled in the real scale. The boiler was meshed into almost 2,000,000 tetrahedral control volumes and the standard k-ε turbulence model and the Rosseland radiation model were used in the model. The theoretical results showed that the inlet 18.9 MPa saturated steam becomes superheated inside the tubes and exit at a pressure of 17.8 MPa. The predicted results showed that the temperature of the steam and tube's wall in the long tubes is higher than the short and medium size tubes. In addition, the predicted steam mass flow rate in the long tube was lower than other ones. Therefore, it was concluded that the main reason for the rupture in the long tubes elbow is changing of the tube's metal microstructure due to working in a temperature higher than the design temperature. In addition, the structural fatigue tension makes the last elbow of the long tube more ready for rupture in comparison with the other places. The concluded result was validated by observations from the photomicrograph of the tube's metal samples taken from the damaged and undamaged sections

  5. Seismic Observations Indicating That the 2015 Ogasawara (Bonin) Earthquake Ruptured Beneath the 660 km Discontinuity

    Science.gov (United States)

    Kuge, Keiko

    2017-11-01

    The termination of deep earthquakes at a depth of 700 km is a key feature for understanding the physical mechanism of deep earthquakes. The 680 km deep 30 May 2015, Ogasawara (Bonin) earthquake (Mw 7.9) and its aftershocks were recorded by seismic stations at distances from 7° to 19°. Synthetic seismograms indicate that the P waveforms depend on whether the earthquake is located above or below the 660 km discontinuity. In this study, I show that broadband recordings indicate that the 2015 earthquake may have occurred below the 660 km velocity discontinuity. Recordings of the P wave from the strongest aftershock lack evidence for wave triplication expected when a subhorizontal discontinuity underlies the hypocenter. Theoretical waveforms computed with a 660 km discontinuity above the aftershock and mainshock match the observed waveforms more accurately. These observations may indicate earthquake ruptures due to mantle minerals other than olivine or strong deformation of the 660 km phase transition.

  6. Rupture

    CERN Multimedia

    Association du personnel

    2006-01-01

    Our Director-General is indifferent to the tradition of concertation foreseen in our statutes and is "culturally" unable to associate the Staff Association with problem-solving in staff matters. He drags his heels as long as possible before entering into negotiations, presents "often misleading" solutions at the last minute which he only accepts to change once a power struggle has been established. Faced with this rupture and despite its commitment to concertation between gentlemen. The results of the poll in which the staff is invited to participate this week. We therefore need your support to state our claims to the Governing Bodies. The Staff Association proposes a new medium of communication and thus hopes to show that it is ready for future negotiations. The pages devoted to the Staff Association are presented in a more informative, reactive and factual manner and in line with the evolution of the social situation at CERN. We want to establish strong and continuous ties between the members of CERN and ou...

  7. How geometry and structure control the seismic radiation : spectral element simulation of the dynamic rupture of the Mw 9.0 Tohoku earthquake

    Science.gov (United States)

    Festa, G.; Vilotte, J.; Scala, A.

    2012-12-01

    taking into account rapid and large variations of the impedance properties along the subduction interfaces and dynamic normal stress coupling. Based on a number of tomographic studies of the NE Japan subduction zone at different space, evidencing a high-velocity "toe" mantle wedge, and wide-angle reflection and refraction studies, supporting a non planar geometry of the subduction interface with at least two strong bending or kink features, we constrain the subduction geometry and the structural properties of the subduction zone model along an off-Miyagi profile. Through several simulations, we investigate possible structural control on the broadband rupture process of the Tohoku earthquake, in terms of the rupture velocity, seismic radiation and slip/stress distribution along the subduction interface. We Explored the influence of initial stress and interface behavior to capture the main features of the rupture and its radiation pattern. Implications for the broad band strong motion observation are discussed, together with implications for the seismic cycle and future earthquake nucleation.

  8. Investigating effects of near fault rupture directivity on seismic hazard assessment of the site of Tehran Research Reactor (TRR)

    Energy Technology Data Exchange (ETDEWEB)

    Sepanloo, Kamran; Saberi, Reza [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Alinejad, Majid [Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Bazarchi, Ehsan [Tabriz Univ. (Iran, Islamic Republic of)

    2017-10-15

    It is estimated that the occurrence of a major-earthquake in Tehran, Iran, which is not far-fetched, would face the country with a huge amount of collapsed structures, economical losses and fatalities. The issue becomes more important while the site of interest is attributed to the nuclear facilities and any under-estimation in predicting the design ground motion may cause a real disaster. In this study, using calculations coded in MATLAB, PSHA was conducted for the site of TRR. It was concluded that most of the hazard for considered site in a 10000-year period comes from distances lower than 20 km and considering rupture directivity effects of the North Tehran fault, as the nearest seismicity source to considered site, using narrowband method affected the response spectrum significantly. Therefore, it is necessary to incorporate the near fault rupture directivity effects into the higher levels of seismic hazard assessment attributed to important sites.

  9. Investigating effects of near fault rupture directivity on seismic hazard assessment of the site of Tehran Research Reactor (TRR)

    International Nuclear Information System (INIS)

    Sepanloo, Kamran; Saberi, Reza; Alinejad, Majid; Bazarchi, Ehsan

    2017-01-01

    It is estimated that the occurrence of a major-earthquake in Tehran, Iran, which is not far-fetched, would face the country with a huge amount of collapsed structures, economical losses and fatalities. The issue becomes more important while the site of interest is attributed to the nuclear facilities and any under-estimation in predicting the design ground motion may cause a real disaster. In this study, using calculations coded in MATLAB, PSHA was conducted for the site of TRR. It was concluded that most of the hazard for considered site in a 10000-year period comes from distances lower than 20 km and considering rupture directivity effects of the North Tehran fault, as the nearest seismicity source to considered site, using narrowband method affected the response spectrum significantly. Therefore, it is necessary to incorporate the near fault rupture directivity effects into the higher levels of seismic hazard assessment attributed to important sites.

  10. A New Seismic Hazard Model for Mainland China

    Science.gov (United States)

    Rong, Y.; Xu, X.; Chen, G.; Cheng, J.; Magistrale, H.; Shen, Z. K.

    2017-12-01

    We are developing a new seismic hazard model for Mainland China by integrating historical earthquake catalogs, geological faults, geodetic GPS data, and geology maps. To build the model, we construct an Mw-based homogeneous historical earthquake catalog spanning from 780 B.C. to present, create fault models from active fault data, and derive a strain rate model based on the most complete GPS measurements and a new strain derivation algorithm. We divide China and the surrounding regions into about 20 large seismic source zones. For each zone, a tapered Gutenberg-Richter (TGR) magnitude-frequency distribution is used to model the seismic activity rates. The a- and b-values of the TGR distribution are calculated using observed earthquake data, while the corner magnitude is constrained independently using the seismic moment rate inferred from the geodetically-based strain rate model. Small and medium sized earthquakes are distributed within the source zones following the location and magnitude patterns of historical earthquakes. Some of the larger earthquakes are distributed onto active faults, based on their geological characteristics such as slip rate, fault length, down-dip width, and various paleoseismic data. The remaining larger earthquakes are then placed into the background. A new set of magnitude-rupture scaling relationships is developed based on earthquake data from China and vicinity. We evaluate and select appropriate ground motion prediction equations by comparing them with observed ground motion data and performing residual analysis. To implement the modeling workflow, we develop a tool that builds upon the functionalities of GEM's Hazard Modeler's Toolkit. The GEM OpenQuake software is used to calculate seismic hazard at various ground motion periods and various return periods. To account for site amplification, we construct a site condition map based on geology. The resulting new seismic hazard maps can be used for seismic risk analysis and management.

  11. Dynamic rupture modeling of the M7.2 2010 El Mayor-Cucapah earthquake: Comparison with a geodetic model

    Science.gov (United States)

    Kyriakopoulos, Christos; Oglesby, David D.; Funning, Gareth J.; Ryan, Kenneth

    2017-01-01

    The 2010 Mw 7.2 El Mayor-Cucapah earthquake is the largest event recorded in the broader Southern California-Baja California region in the last 18 years. Here we try to analyze primary features of this type of event by using dynamic rupture simulations based on a multifault interface and later compare our results with space geodetic models. Our results show that starting from homogeneous prestress conditions, slip heterogeneity can be achieved as a result of variable dip angle along strike and the modulation imposed by step over segments. We also considered effects from a topographic free surface and find that although this does not produce significant first-order effects for this earthquake, even a low topographic dome such as the Cucapah range can affect the rupture front pattern and fault slip rate. Finally, we inverted available interferometric synthetic aperture radar data, using the same geometry as the dynamic rupture model, and retrieved the space geodetic slip distribution that serves to constrain the dynamic rupture models. The one to one comparison of the final fault slip pattern generated with dynamic rupture models and the space geodetic inversion show good agreement. Our results lead us to the following conclusion: in a possible multifault rupture scenario, and if we have first-order geometry constraints, dynamic rupture models can be very efficient in predicting large-scale slip heterogeneities that are important for the correct assessment of seismic hazard and the magnitude of future events. Our work contributes to understanding the complex nature of multifault systems.

  12. Validation of statistical models for creep rupture by parametric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J., E-mail: john.bolton@uwclub.net [65, Fisher Ave., Rugby, Warks CV22 5HW (United Kingdom)

    2012-01-15

    Statistical analysis is an efficient method for the optimisation of any candidate mathematical model of creep rupture data, and for the comparative ranking of competing models. However, when a series of candidate models has been examined and the best of the series has been identified, there is no statistical criterion to determine whether a yet more accurate model might be devised. Hence there remains some uncertainty that the best of any series examined is sufficiently accurate to be considered reliable as a basis for extrapolation. This paper proposes that models should be validated primarily by parametric graphical comparison to rupture data and rupture gradient data. It proposes that no mathematical model should be considered reliable for extrapolation unless the visible divergence between model and data is so small as to leave no apparent scope for further reduction. This study is based on the data for a 12% Cr alloy steel used in BS PD6605:1998 to exemplify its recommended statistical analysis procedure. The models considered in this paper include a) a relatively simple model, b) the PD6605 recommended model and c) a more accurate model of somewhat greater complexity. - Highlights: Black-Right-Pointing-Pointer The paper discusses the validation of creep rupture models derived from statistical analysis. Black-Right-Pointing-Pointer It demonstrates that models can be satisfactorily validated by a visual-graphic comparison of models to data. Black-Right-Pointing-Pointer The method proposed utilises test data both as conventional rupture stress and as rupture stress gradient. Black-Right-Pointing-Pointer The approach is shown to be more reliable than a well-established and widely used method (BS PD6605).

  13. Dynamic rupture models of subduction zone earthquakes with off-fault plasticity

    Science.gov (United States)

    Wollherr, S.; van Zelst, I.; Gabriel, A. A.; van Dinther, Y.; Madden, E. H.; Ulrich, T.

    2017-12-01

    Modeling tsunami-genesis based on purely elastic seafloor displacement typically underpredicts tsunami sizes. Dynamic rupture simulations allow to analyse whether plastic energy dissipation is a missing rheological component by capturing the complex interplay of the rupture front, emitted seismic waves and the free surface in the accretionary prism. Strike-slip models with off-fault plasticity suggest decreasing rupture speed and extensive plastic yielding mainly at shallow depths. For simplified subduction geometries inelastic deformation on the verge of Coulomb failure may enhance vertical displacement, which in turn favors the generation of large tsunamis (Ma, 2012). However, constraining appropriate initial conditions in terms of fault geometry, initial fault stress and strength remains challenging. Here, we present dynamic rupture models of subduction zones constrained by long-term seismo-thermo-mechanical modeling (STM) without any a priori assumption of regions of failure. The STM model provides self-consistent slab geometries, as well as stress and strength initial conditions which evolve in response to tectonic stresses, temperature, gravity, plasticity and pressure (van Dinther et al. 2013). Coseismic slip and coupled seismic wave propagation is modelled using the software package SeisSol (www.seissol.org), suited for complex fault zone structures and topography/bathymetry. SeisSol allows for local time-stepping, which drastically reduces the time-to-solution (Uphoff et al., 2017). This is particularly important in large-scale scenarios resolving small-scale features, such as the shallow angle between the megathrust fault and the free surface. Our dynamic rupture model uses a Drucker-Prager plastic yield criterion and accounts for thermal pressurization around the fault mimicking the effect of pore pressure changes due to frictional heating. We first analyze the influence of this rheology on rupture dynamics and tsunamigenic properties, i.e. seafloor

  14. Seismic waves and earthquakes in a global monolithic model

    Science.gov (United States)

    Roubíček, Tomáš

    2018-03-01

    The philosophy that a single "monolithic" model can "asymptotically" replace and couple in a simple elegant way several specialized models relevant on various Earth layers is presented and, in special situations, also rigorously justified. In particular, global seismicity and tectonics is coupled to capture, e.g., (here by a simplified model) ruptures of lithospheric faults generating seismic waves which then propagate through the solid-like mantle and inner core both as shear (S) or pressure (P) waves, while S-waves are suppressed in the fluidic outer core and also in the oceans. The "monolithic-type" models have the capacity to describe all the mentioned features globally in a unified way together with corresponding interfacial conditions implicitly involved, only when scaling its parameters appropriately in different Earth's layers. Coupling of seismic waves with seismic sources due to tectonic events is thus an automatic side effect. The global ansatz is here based, rather for an illustration, only on a relatively simple Jeffreys' viscoelastic damageable material at small strains whose various scaling (limits) can lead to Boger's viscoelastic fluid or even to purely elastic (inviscid) fluid. Self-induced gravity field, Coriolis, centrifugal, and tidal forces are counted in our global model, as well. The rigorous mathematical analysis as far as the existence of solutions, convergence of the mentioned scalings, and energy conservation is briefly presented.

  15. Multicomponent ensemble models to forecast induced seismicity

    Science.gov (United States)

    Király-Proag, E.; Gischig, V.; Zechar, J. D.; Wiemer, S.

    2018-01-01

    In recent years, human-induced seismicity has become a more and more relevant topic due to its economic and social implications. Several models and approaches have been developed to explain underlying physical processes or forecast induced seismicity. They range from simple statistical models to coupled numerical models incorporating complex physics. We advocate the need for forecast testing as currently the best method for ascertaining if models are capable to reasonably accounting for key physical governing processes—or not. Moreover, operational forecast models are of great interest to help on-site decision-making in projects entailing induced earthquakes. We previously introduced a standardized framework following the guidelines of the Collaboratory for the Study of Earthquake Predictability, the Induced Seismicity Test Bench, to test, validate, and rank induced seismicity models. In this study, we describe how to construct multicomponent ensemble models based on Bayesian weightings that deliver more accurate forecasts than individual models in the case of Basel 2006 and Soultz-sous-Forêts 2004 enhanced geothermal stimulation projects. For this, we examine five calibrated variants of two significantly different model groups: (1) Shapiro and Smoothed Seismicity based on the seismogenic index, simple modified Omori-law-type seismicity decay, and temporally weighted smoothed seismicity; (2) Hydraulics and Seismicity based on numerically modelled pore pressure evolution that triggers seismicity using the Mohr-Coulomb failure criterion. We also demonstrate how the individual and ensemble models would perform as part of an operational Adaptive Traffic Light System. Investigating seismicity forecasts based on a range of potential injection scenarios, we use forecast periods of different durations to compute the occurrence probabilities of seismic events M ≥ 3. We show that in the case of the Basel 2006 geothermal stimulation the models forecast hazardous levels

  16. Seismic waveform modeling over cloud

    Science.gov (United States)

    Luo, Cong; Friederich, Wolfgang

    2016-04-01

    With the fast growing computational technologies, numerical simulation of seismic wave propagation achieved huge successes. Obtaining the synthetic waveforms through numerical simulation receives an increasing amount of attention from seismologists. However, computational seismology is a data-intensive research field, and the numerical packages usually come with a steep learning curve. Users are expected to master considerable amount of computer knowledge and data processing skills. Training users to use the numerical packages, correctly access and utilize the computational resources is a troubled task. In addition to that, accessing to HPC is also a common difficulty for many users. To solve these problems, a cloud based solution dedicated on shallow seismic waveform modeling has been developed with the state-of-the-art web technologies. It is a web platform integrating both software and hardware with multilayer architecture: a well designed SQL database serves as the data layer, HPC and dedicated pipeline for it is the business layer. Through this platform, users will no longer need to compile and manipulate various packages on the local machine within local network to perform a simulation. By providing users professional access to the computational code through its interfaces and delivering our computational resources to the users over cloud, users can customize the simulation at expert-level, submit and run the job through it.

  17. Hybrid broadband Ground Motion simulation based on a dynamic rupture model of the 2011 Mw 9.0 Tohoku earthquake.

    Science.gov (United States)

    Galvez, P.; Somerville, P.; Bayless, J.; Dalguer, L. A.

    2015-12-01

    The rupture process of the 2011 Tohoku earthquake exhibits depth-dependent variations in the frequency content of seismic radiation from the plate interface. This depth-varying rupture property has also been observed in other subduction zones (Lay et al, 2012). During the Tohoku earthquake, the shallow region radiated coherent low frequency seismic waves whereas the deeper region radiated high frequency waves. Several kinematic inversions (Suzuki et al, 2011; Lee et al, 2011; Bletery et al, 2014; Minson et al, 2014) detected seismic waves below 0.1 Hz coming from the shallow depths that produced slip larger than 40-50 meters close to the trench. Using empirical green functions, Asano & Iwata (2012), Kurahashi and Irikura (2011) and others detected regions of strong ground motion radiation at frequencies up to 10Hz located mainly at the bottom of the plate interface. A recent dynamic model that embodies this depth-dependent radiation using physical models has been developed by Galvez et al (2014, 2015). In this model the rupture process is modeled using a linear weakening friction law with slip reactivation on the shallow region of the plate interface (Galvez et al, 2015). This model reproduces the multiple seismic wave fronts recorded on the Kik-net seismic network along the Japanese coast up to 0.1 Hz as well as the GPS displacements. In the deep region, the rupture sequence is consistent with the sequence of the strong ground motion generation areas (SMGAs) that radiate high frequency ground motion at the bottom of the plate interface (Kurahashi and Irikura, 2013). It remains challenging to perform ground motions fully coupled with a dynamic rupture up to 10 Hz for a megathrust event. Therefore, to generate high frequency ground motions, we make use of the stochastic approach of Graves and Pitarka (2010) but add to the source spectrum the slip rate function of the dynamic model. In this hybrid-dynamic approach, the slip rate function is windowed with Gaussian

  18. Standards for Documenting Finite‐Fault Earthquake Rupture Models

    KAUST Repository

    Mai, Paul Martin

    2016-04-06

    In this article, we propose standards for documenting and disseminating finite‐fault earthquake rupture models, and related data and metadata. A comprehensive documentation of the rupture models, a detailed description of the data processing steps, and facilitating the access to the actual data that went into the earthquake source inversion are required to promote follow‐up research and to ensure interoperability, transparency, and reproducibility of the published slip‐inversion solutions. We suggest a formatting scheme that describes the kinematic rupture process in an unambiguous way to support subsequent research. We also provide guidelines on how to document the data, metadata, and data processing. The proposed standards and formats represent a first step to establishing best practices for comprehensively documenting input and output of finite‐fault earthquake source studies.

  19. Standards for Documenting Finite‐Fault Earthquake Rupture Models

    KAUST Repository

    Mai, Paul Martin; Shearer, Peter; Ampuero, Jean‐Paul; Lay, Thorne

    2016-01-01

    In this article, we propose standards for documenting and disseminating finite‐fault earthquake rupture models, and related data and metadata. A comprehensive documentation of the rupture models, a detailed description of the data processing steps, and facilitating the access to the actual data that went into the earthquake source inversion are required to promote follow‐up research and to ensure interoperability, transparency, and reproducibility of the published slip‐inversion solutions. We suggest a formatting scheme that describes the kinematic rupture process in an unambiguous way to support subsequent research. We also provide guidelines on how to document the data, metadata, and data processing. The proposed standards and formats represent a first step to establishing best practices for comprehensively documenting input and output of finite‐fault earthquake source studies.

  20. Seismic ground motion modelling and damage earthquake scenarios: A bridge between seismologists and seismic engineers

    International Nuclear Information System (INIS)

    Panza, G.F.; Romanelli, F.; Vaccari. F.; . E-mails: Luis.Decanini@uniroma1.it; Fabrizio.Mollaioli@uniroma1.it)

    2002-07-01

    The input for the seismic risk analysis can be expressed with a description of 'roundshaking scenarios', or with probabilistic maps of perhaps relevant parameters. The probabilistic approach, unavoidably based upon rough assumptions and models (e.g. recurrence and attenuation laws), can be misleading, as it cannot take into account, with satisfactory accuracy, some of the most important aspects like rupture process, directivity and site effects. This is evidenced by the comparison of recent recordings with the values predicted by the probabilistic methods. We prefer a scenario-based, deterministic approach in view of the limited seismological data, of the local irregularity of the occurrence of strong earthquakes, and of the multiscale seismicity model, that is capable to reconcile two apparently conflicting ideas: the Characteristic Earthquake concept and the Self Organized Criticality paradigm. Where the numerical modeling is successfully compared with records, the synthetic seismograms permit the microzoning, based upon a set of possible scenario earthquakes. Where no recordings are available the synthetic signals can be used to estimate the ground motion without having to wait for a strong earthquake to occur (pre-disaster microzonation). In both cases the use of modeling is necessary since the so-called local site effects can be strongly dependent upon the properties of the seismic source and can be properly defined only by means of envelopes. The joint use of reliable synthetic signals and observations permits the computation of advanced hazard indicators (e.g. damaging potential) that take into account local soil properties. The envelope of synthetic elastic energy spectra reproduces the distribution of the energy demand in the most relevant frequency range for seismic engineering. The synthetic accelerograms can be fruitfully used for design and strengthening of structures, also when innovative techniques, like seismic isolation, are employed. For these

  1. CyberShake: A Physics-Based Seismic Hazard Model for Southern California

    Science.gov (United States)

    Graves, R.; Jordan, T.H.; Callaghan, S.; Deelman, E.; Field, E.; Juve, G.; Kesselman, C.; Maechling, P.; Mehta, G.; Milner, K.; Okaya, D.; Small, P.; Vahi, K.

    2011-01-01

    CyberShake, as part of the Southern California Earthquake Center's (SCEC) Community Modeling Environment, is developing a methodology that explicitly incorporates deterministic source and wave propagation effects within seismic hazard calculations through the use of physics-based 3D ground motion simulations. To calculate a waveform-based seismic hazard estimate for a site of interest, we begin with Uniform California Earthquake Rupture Forecast, Version 2.0 (UCERF2.0) and identify all ruptures within 200 km of the site of interest. We convert the UCERF2.0 rupture definition into multiple rupture variations with differing hypocenter locations and slip distributions, resulting in about 415,000 rupture variations per site. Strain Green Tensors are calculated for the site of interest using the SCEC Community Velocity Model, Version 4 (CVM4), and then, using reciprocity, we calculate synthetic seismograms for each rupture variation. Peak intensity measures are then extracted from these synthetics and combined with the original rupture probabilities to produce probabilistic seismic hazard curves for the site. Being explicitly site-based, CyberShake directly samples the ground motion variability at that site over many earthquake cycles (i. e., rupture scenarios) and alleviates the need for the ergodic assumption that is implicitly included in traditional empirically based calculations. Thus far, we have simulated ruptures at over 200 sites in the Los Angeles region for ground shaking periods of 2 s and longer, providing the basis for the first generation CyberShake hazard maps. Our results indicate that the combination of rupture directivity and basin response effects can lead to an increase in the hazard level for some sites, relative to that given by a conventional Ground Motion Prediction Equation (GMPE). Additionally, and perhaps more importantly, we find that the physics-based hazard results are much more sensitive to the assumed magnitude-area relations and

  2. Discrimination of DPRK M5.1 February 12th, 2013 Earthquake as Nuclear Test Using Analysis of Magnitude, Rupture Duration and Ratio of Seismic Energy and Moment

    Science.gov (United States)

    Salomo Sianipar, Dimas; Subakti, Hendri; Pribadi, Sugeng

    2015-04-01

    On February 12th, 2013 morning at 02:57 UTC, there had been an earthquake with its epicenter in the region of North Korea precisely around Sungjibaegam Mountains. Monitoring stations of the Preparatory Commission for the Comprehensive Nuclear Test-Ban Treaty Organization (CTBTO) and some other seismic network detected this shallow seismic event. Analyzing seismograms recorded after this event can discriminate between a natural earthquake or an explosion. Zhao et. al. (2014) have been successfully discriminate this seismic event of North Korea nuclear test 2013 from ordinary earthquakes based on network P/S spectral ratios using broadband regional seismic data recorded in China, South Korea and Japan. The P/S-type spectral ratios were powerful discriminants to separate explosions from earthquake (Zhao et. al., 2014). Pribadi et. al. (2014) have characterized 27 earthquake-generated tsunamis (tsunamigenic earthquake or tsunami earthquake) from 1991 to 2012 in Indonesia using W-phase inversion analysis, the ratio between the seismic energy (E) and the seismic moment (Mo), the moment magnitude (Mw), the rupture duration (To) and the distance of the hypocenter to the trench. Some of this method was also used by us to characterize the nuclear test earthquake. We discriminate this DPRK M5.1 February 12th, 2013 earthquake from a natural earthquake using analysis magnitude mb, ms and mw, ratio of seismic energy and moment and rupture duration. We used the waveform data of the seismicity on the scope region in radius 5 degrees from the DPRK M5.1 February 12th, 2013 epicenter 41.29, 129.07 (Zhang and Wen, 2013) from 2006 to 2014 with magnitude M ≥ 4.0. We conclude that this earthquake was a shallow seismic event with explosion characteristics and can be discriminate from a natural or tectonic earthquake. Keywords: North Korean nuclear test, magnitude mb, ms, mw, ratio between seismic energy and moment, ruptures duration

  3. A minimal rupture cascade model for living cell plasticity

    Science.gov (United States)

    Polizzi, Stefano; Laperrousaz, Bastien; Perez-Reche, Francisco J.; Nicolini, Franck E.; Maguer Satta, Véronique; Arneodo, Alain; Argoul, Françoise

    2018-05-01

    Under physiological and pathological conditions, cells experience large forces and deformations that often exceed the linear viscoelastic regime. Here we drive CD34+ cells isolated from healthy and leukemic bone marrows in the highly nonlinear elasto-plastic regime, by poking their perinuclear region with a sharp AFM cantilever tip. We use the wavelet transform mathematical microscope to identify singular events in the force-indentation curves induced by local rupture events in the cytoskeleton (CSK). We distinguish two types of rupture events, brittle failures likely corresponding to irreversible ruptures in a stiff and highly cross-linked CSK and ductile failures resulting from dynamic cross-linker unbindings during plastic deformation without loss of CSK integrity. We propose a stochastic multiplicative cascade model of mechanical ruptures that reproduces quantitatively the experimental distributions of the energy released during these events, and provides some mathematical and mechanistic understanding of the robustness of the log-normal statistics observed in both brittle and ductile situations. We also show that brittle failures are relatively more prominent in leukemia than in healthy cells suggesting their greater fragility.

  4. The 2014 United States National Seismic Hazard Model

    Science.gov (United States)

    Petersen, Mark D.; Moschetti, Morgan P.; Powers, Peter; Mueller, Charles; Haller, Kathleen; Frankel, Arthur; Zeng, Yuehua; Rezaeian, Sanaz; Harmsen, Stephen; Boyd, Oliver; Field, Edward; Chen, Rui; Rukstales, Kenneth S.; Luco, Nicolas; Wheeler, Russell; Williams, Robert; Olsen, Anna H.

    2015-01-01

    New seismic hazard maps have been developed for the conterminous United States using the latest data, models, and methods available for assessing earthquake hazard. The hazard models incorporate new information on earthquake rupture behavior observed in recent earthquakes; fault studies that use both geologic and geodetic strain rate data; earthquake catalogs through 2012 that include new assessments of locations and magnitudes; earthquake adaptive smoothing models that more fully account for the spatial clustering of earthquakes; and 22 ground motion models, some of which consider more than double the shaking data applied previously. Alternative input models account for larger earthquakes, more complicated ruptures, and more varied ground shaking estimates than assumed in earlier models. The ground motions, for levels applied in building codes, differ from the previous version by less than ±10% over 60% of the country, but can differ by ±50% in localized areas. The models are incorporated in insurance rates, risk assessments, and as input into the U.S. building code provisions for earthquake ground shaking.

  5. The New Italian Seismic Hazard Model

    Science.gov (United States)

    Marzocchi, W.; Meletti, C.; Albarello, D.; D'Amico, V.; Luzi, L.; Martinelli, F.; Pace, B.; Pignone, M.; Rovida, A.; Visini, F.

    2017-12-01

    In 2015 the Seismic Hazard Center (Centro Pericolosità Sismica - CPS) of the National Institute of Geophysics and Volcanology was commissioned of coordinating the national scientific community with the aim to elaborate a new reference seismic hazard model, mainly finalized to the update of seismic code. The CPS designed a roadmap for releasing within three years a significantly renewed PSHA model, with regard both to the updated input elements and to the strategies to be followed. The main requirements of the model were discussed in meetings with the experts on earthquake engineering that then will participate to the revision of the building code. The activities were organized in 6 tasks: program coordination, input data, seismicity models, ground motion predictive equations (GMPEs), computation and rendering, testing. The input data task has been selecting the most updated information about seismicity (historical and instrumental), seismogenic faults, and deformation (both from seismicity and geodetic data). The seismicity models have been elaborating in terms of classic source areas, fault sources and gridded seismicity based on different approaches. The GMPEs task has selected the most recent models accounting for their tectonic suitability and forecasting performance. The testing phase has been planned to design statistical procedures to test with the available data the whole seismic hazard models, and single components such as the seismicity models and the GMPEs. In this talk we show some preliminary results, summarize the overall strategy for building the new Italian PSHA model, and discuss in detail important novelties that we put forward. Specifically, we adopt a new formal probabilistic framework to interpret the outcomes of the model and to test it meaningfully; this requires a proper definition and characterization of both aleatory variability and epistemic uncertainty that we accomplish through an ensemble modeling strategy. We use a weighting scheme

  6. Rupture Propagation through the Big Bend of the San Andreas Fault: A Dynamic Modeling Case Study of the Great Earthquake of 1857

    Science.gov (United States)

    Lozos, J.

    2017-12-01

    The great San Andreas Fault (SAF) earthquake of 9 January 1857, estimated at M7.9, was one of California's largest historic earthquakes. Its 360 km rupture trace follows the Carrizo and Mojave segments of the SAF, including the 30° compressional Big Bend in the fault. If 1857 were a characteristic rupture, the hazard implications for southern California would be dire, especially given the inferred 150 year recurrence interval for this section of the fault. However, recent paleoseismic studies in this region suggest that 1857-type events occur less frequently than single-segment Carrizo or Mojave ruptures, and that the hinge of the Big Bend is a barrier to through-going rupture. Here, I use 3D dynamic rupture modeling to attempt to reproduce the rupture length and surface slip distribution of the 1857 earthquake, to determine which physical conditions allow rupture to negotiate the Big Bend of the SAF. These models incorporate the nonplanar geometry of the SAF, an observation-based heterogeneous regional velocity structure (SCEC CVM), and a regional stress field from seismicity literature. Under regional stress conditions, I am unable to produce model events that both match the observed surface slip on the Carrizo and Mojave segments of the SAF and include rupture through the hinge of the Big Bend. I suggest that accumulated stresses at the bend hinge from multiple smaller Carrizo or Mojave ruptures may be required to allow rupture through the bend — a concept consistent with paleoseismic observations. This study may contribute to understanding the cyclicity of hazard associated with the southern-central SAF.

  7. Structure of pseudotachylyte vein systems as a key to co-seismic rupture dynamics: the case of Gavilgarh-Tan Shear Zone, central India

    Science.gov (United States)

    Chattopadhyay, A.; Bhattacharjee, D.; Mukherjee, S.

    2014-04-01

    The secondary fractures associated with a major pseudotachylyte-bearing fault vein in the sheared aplitic granitoid of the Proterozoic Gavilgarh-Tan Shear Zone in central India are mapped at the outcrop scale. The fracture maps help to identify at least three different types of co-seismic ruptures, e.g., X-X', T1 and T2, which characterize sinistral-sense shearing of rocks, confined between two sinistral strike-slip faults slipping at seismic rate. From the asymmetric distribution of tensile fractures around the sinistral-sense fault vein, the direction of seismic rupture propagation is predicted to have occurred from west-southwest to east-northeast, during an ancient (Ordovician?) earthquake. Calculations of approximate co-seismic displacement on the faults and seismic moment ( M 0) of the earthquake are attempted, following the methods proposed by earlier workers. These estimates broadly agree to the findings from other studied fault zones (e.g., Gole Larghe Fault zone, Italian Alps). This study supports the proposition by some researchers that important seismological information can be extracted from tectonic pseudotachylytes of all ages, provided they are not reworked by subsequent tectonic activity.

  8. Seismic quiescence in a frictional earthquake model

    Science.gov (United States)

    Braun, Oleg M.; Peyrard, Michel

    2018-04-01

    We investigate the origin of seismic quiescence with a generalized version of the Burridge-Knopoff model for earthquakes and show that it can be generated by a multipeaked probability distribution of the thresholds at which contacts break. Such a distribution is not assumed a priori but naturally results from the aging of the contacts. We show that the model can exhibit quiescence as well as enhanced foreshock activity, depending on the value of some parameters. This provides a generic understanding for seismic quiescence, which encompasses earlier specific explanations and could provide a pathway for a classification of faults.

  9. Why the 2002 Denali fault rupture propagated onto the Totschunda fault: implications for fault branching and seismic hazards

    Science.gov (United States)

    Schwartz, David P.; Haeussler, Peter J.; Seitz, Gordon G.; Dawson, Timothy E.

    2012-01-01

    The propagation of the rupture of the Mw7.9 Denali fault earthquake from the central Denali fault onto the Totschunda fault has provided a basis for dynamic models of fault branching in which the angle of the regional or local prestress relative to the orientation of the main fault and branch plays a principal role in determining which fault branch is taken. GeoEarthScope LiDAR and paleoseismic data allow us to map the structure of the Denali-Totschunda fault intersection and evaluate controls of fault branching from a geological perspective. LiDAR data reveal the Denali-Totschunda fault intersection is structurally simple with the two faults directly connected. At the branch point, 227.2 km east of the 2002 epicenter, the 2002 rupture diverges southeast to become the Totschunda fault. We use paleoseismic data to propose that differences in the accumulated strain on each fault segment, which express differences in the elapsed time since the most recent event, was one important control of the branching direction. We suggest that data on event history, slip rate, paleo offsets, fault geometry and structure, and connectivity, especially on high slip rate-short recurrence interval faults, can be used to assess the likelihood of branching and its direction. Analysis of the Denali-Totschunda fault intersection has implications for evaluating the potential for a rupture to propagate across other types of fault intersections and for characterizing sources of future large earthquakes.

  10. Slip reactivation model for the 2011 Mw9 Tohoku earthquake: Dynamic rupture, sea floor displacements and tsunami simulations.

    Science.gov (United States)

    Galvez, P.; Dalguer, L. A.; Rahnema, K.; Bader, M.

    2014-12-01

    The 2011 Mw9 Tohoku earthquake has been recorded with a vast GPS and seismic network given unprecedented chance to seismologists to unveil complex rupture processes in a mega-thrust event. In fact more than one thousand near field strong-motion stations across Japan (K-Net and Kik-Net) revealed complex ground motion patterns attributed to the source effects, allowing to capture detailed information of the rupture process. The seismic stations surrounding the Miyagi regions (MYGH013) show two clear distinct waveforms separated by 40 seconds. This observation is consistent with the kinematic source model obtained from the inversion of strong motion data performed by Lee's et al (2011). In this model two rupture fronts separated by 40 seconds emanate close to the hypocenter and propagate towards the trench. This feature is clearly observed by stacking the slip-rate snapshots on fault points aligned in the EW direction passing through the hypocenter (Gabriel et al, 2012), suggesting slip reactivation during the main event. A repeating slip on large earthquakes may occur due to frictional melting and thermal fluid pressurization effects. Kanamori & Heaton (2002) argued that during faulting of large earthquakes the temperature rises high enough creating melting and further reduction of friction coefficient. We created a 3D dynamic rupture model to reproduce this slip reactivation pattern using SPECFEM3D (Galvez et al, 2014) based on a slip-weakening friction with sudden two sequential stress drops . Our model starts like a M7-8 earthquake breaking dimly the trench, then after 40 seconds a second rupture emerges close to the trench producing additional slip capable to fully break the trench and transforming the earthquake into a megathrust event. The resulting sea floor displacements are in agreement with 1Hz GPS displacements (GEONET). The seismograms agree roughly with seismic records along the coast of Japan.The simulated sea floor displacement reaches 8-10 meters of

  11. Fault Rupture Model of the 2016 Gyeongju, South Korea, Earthquake and Its Implication for the Underground Fault System

    Science.gov (United States)

    Uchide, Takahiko; Song, Seok Goo

    2018-03-01

    The 2016 Gyeongju earthquake (ML 5.8) was the largest instrumentally recorded inland event in South Korea. It occurred in the southeast of the Korean Peninsula and was preceded by a large ML 5.1 foreshock. The aftershock seismicity data indicate that these earthquakes occurred on two closely collocated parallel faults that are oblique to the surface trace of the Yangsan fault. We investigate the rupture properties of these earthquakes using finite-fault slip inversion analyses. The obtained models indicate that the ruptures propagated NNE-ward and SSW-ward for the main shock and the large foreshock, respectively. This indicates that these earthquakes occurred on right-step faults and were initiated around a fault jog. The stress drops were up to 62 and 43 MPa for the main shock and the largest foreshock, respectively. These high stress drops imply high strength excess, which may be overcome by the stress concentration around the fault jog.

  12. Salient Features of the 2015 Gorkha, Nepal Earthquake in Relation to Earthquake Cycle and Dynamic Rupture Models

    Science.gov (United States)

    Ampuero, J. P.; Meng, L.; Hough, S. E.; Martin, S. S.; Asimaki, D.

    2015-12-01

    Two salient features of the 2015 Gorkha, Nepal, earthquake provide new opportunities to evaluate models of earthquake cycle and dynamic rupture. The Gorkha earthquake broke only partially across the seismogenic depth of the Main Himalayan Thrust: its slip was confined in a narrow depth range near the bottom of the locked zone. As indicated by the belt of background seismicity and decades of geodetic monitoring, this is an area of stress concentration induced by deep fault creep. Previous conceptual models attribute such intermediate-size events to rheological segmentation along-dip, including a fault segment with intermediate rheology in between the stable and unstable slip segments. We will present results from earthquake cycle models that, in contrast, highlight the role of stress loading concentration, rather than frictional segmentation. These models produce "super-cycles" comprising recurrent characteristic events interspersed by deep, smaller non-characteristic events of overall increasing magnitude. Because the non-characteristic events are an intrinsic component of the earthquake super-cycle, the notion of Coulomb triggering or time-advance of the "big one" is ill-defined. The high-frequency (HF) ground motions produced in Kathmandu by the Gorkha earthquake were weaker than expected for such a magnitude and such close distance to the rupture, as attested by strong motion recordings and by macroseismic data. Static slip reached close to Kathmandu but had a long rise time, consistent with control by the along-dip extent of the rupture. Moreover, the HF (1 Hz) radiation sources, imaged by teleseismic back-projection of multiple dense arrays calibrated by aftershock data, was deep and far from Kathmandu. We argue that HF rupture imaging provided a better predictor of shaking intensity than finite source inversion. The deep location of HF radiation can be attributed to rupture over heterogeneous initial stresses left by the background seismic activity

  13. A way to synchronize models with seismic faults for earthquake forecasting

    DEFF Research Database (Denmark)

    González, Á.; Gómez, J.B.; Vázquez-Prada, M.

    2006-01-01

    Numerical models are starting to be used for determining the future behaviour of seismic faults and fault networks. Their final goal would be to forecast future large earthquakes. In order to use them for this task, it is necessary to synchronize each model with the current status of the actual....... Earthquakes, though, provide indirect but measurable clues of the stress and strain status in the lithosphere, which should be helpful for the synchronization of the models. The rupture area is one of the measurable parameters of earthquakes. Here we explore how it can be used to at least synchronize fault...... models between themselves and forecast synthetic earthquakes. Our purpose here is to forecast synthetic earthquakes in a simple but stochastic (random) fault model. By imposing the rupture area of the synthetic earthquakes of this model on other models, the latter become partially synchronized...

  14. CFD modeling of a boiler's tubes rupture

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Masoud; Khoshhal, Abbas; Shariati, Seyed Mehdi [Chemical Engineering Department, Faculty of Engineering, Razi University, Kermanshah (Iran)

    2006-12-15

    This paper reports the results of a study on the reason for tubes damage in the superheater Platen section of the 320MW Bisotoun power plant, Iran. The boiler has three types of superheater tubes and the damage occurs in a series of elbows belongs to the long tubes. A three-dimensional modeling was performed using an in-house computational fluid dynamics (CFD) code in order to explore the reason. The code has ability of simultaneous solving of the continuity, the Reynolds-Averaged Navier-Stokes (RANS) equations and employing the turbulence, combustion and radiation models. The whole boiler including; walls, burners, air channels, three types of tubes, etc., was modeled in the real scale. The boiler was meshed into almost 2,000,000 tetrahedral control volumes and the standard k-{epsilon} turbulence model and the Rosseland radiation model were used in the model. The theoretical results showed that the inlet 18.9MPa saturated steam becomes superheated inside the tubes and exit at a pressure of 17.8MPa. The predicted results showed that the temperature of the steam and tube's wall in the long tubes is higher than the short and medium size tubes. In addition, the predicted steam mass flow rate in the long tube was lower than other ones. Therefore, it was concluded that the main reason for the rupture in the long tubes elbow is changing of the tube's metal microstructure due to working in a temperature higher than the design temperature. In addition, the structural fatigue tension makes the last elbow of the long tube more ready for rupture in comparison with the other places. The concluded result was validated by observations from the photomicrograph of the tube's metal samples taken from the damaged and undamaged sections. (author)

  15. One-dimensional modeling of thermal energy produced in a seismic fault

    Science.gov (United States)

    Konga, Guy Pascal; Koumetio, Fidèle; Yemele, David; Olivier Djiogang, Francis

    2017-12-01

    Generally, one observes an anomaly of temperature before a big earthquake. In this paper, we established the expression of thermal energy produced by friction forces between the walls of a seismic fault while considering the dynamic of a one-dimensional spring-block model. It is noted that, before the rupture of a seismic fault, displacements are caused by microseisms. The curves of variation of this thermal energy with time show that, for oscillatory and aperiodic displacement, the thermal energy is accumulated in the same way. The study reveals that thermal energy as well as temperature increases abruptly after a certain amount of time. We suggest that the corresponding time is the start of the anomaly of temperature observed which can be considered as precursory effect of a big seism. We suggest that the thermal energy can heat gases and dilate rocks until they crack. The warm gases can then pass through the cracks towards the surface. The cracks created by thermal energy can also contribute to the rupture of the seismic fault. We also suggest that the theoretical model of thermal energy, produced in seismic fault, associated with a large quantity of experimental data may help in the prediction of earthquakes.

  16. Seismic source characterization for the 2014 update of the U.S. National Seismic Hazard Model

    Science.gov (United States)

    Moschetti, Morgan P.; Powers, Peter; Petersen, Mark D.; Boyd, Oliver; Chen, Rui; Field, Edward H.; Frankel, Arthur; Haller, Kathleen; Harmsen, Stephen; Mueller, Charles S.; Wheeler, Russell; Zeng, Yuehua

    2015-01-01

    We present the updated seismic source characterization (SSC) for the 2014 update of the National Seismic Hazard Model (NSHM) for the conterminous United States. Construction of the seismic source models employs the methodology that was developed for the 1996 NSHM but includes new and updated data, data types, source models, and source parameters that reflect the current state of knowledge of earthquake occurrence and state of practice for seismic hazard analyses. We review the SSC parameterization and describe the methods used to estimate earthquake rates, magnitudes, locations, and geometries for all seismic source models, with an emphasis on new source model components. We highlight the effects that two new model components—incorporation of slip rates from combined geodetic-geologic inversions and the incorporation of adaptively smoothed seismicity models—have on probabilistic ground motions, because these sources span multiple regions of the conterminous United States and provide important additional epistemic uncertainty for the 2014 NSHM.

  17. High-precision geologic mapping to evaluate the potential for seismic surface rupture at TA-55, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Gardner, J.N.; Lavine, A.; Vaniman, D.; WoldeGabriel, G.

    1998-06-01

    In this report the authors document results of high-precision geologic mapping in the vicinity of TA-55 that has been done to identify parts of the southern portion of the Rendija Canyon Fault, or any other faults, with the potential for seismic surface rupture. To assess the potential for surface rupture at TA-55, an area of approximately 3 square miles that includes the Los Alamos County Landfill and Twomile, Mortandad, and Sandia Canyons has been mapped in detail. Map units are mostly cooling or flow units within the Tshirege Member (1.2 Ma) of the Bandelier Tuff. Stratigraphic markers that are useful for determining offsets in the map area include a distinct welding break at or near the cooling Unit 2-Unit 3 contact, and the Unit 3-Unit 4 contact. At the County Landfill the contact between the Tshirege Member of the Bandelier Tuff and overlying Quaternary alluvium has also been mapped. The mapping indicates that there is no faulting in the near-surface directly below TA-55, and that the closest fault is about 1500 feet west of the Plutonium Facility. Faulting is more abundant on the western edge of the map area, west of TA-48 in uppermost Mortandad Canyon, upper Sandia Canyon, and at the County Landfill. Measured vertical offsets on the faults range from 1 to 8 feet on mapped Bandelier Tuff contacts. Faulting exposed at the Los Alamos County Landfill has deformed a zone over 1000 feet wide, and has a net vertical down-to-the-west displacement of at least 15 feet in the Bandelier Tuff. Individual faults at the landfill have from less than 1 foot to greater than 15 feet of vertical offset on the Bandelier Tuff. Most faults in the landfill trend N-S, N20W, or N45E. Results of the mapping indicate that the Rendija Canyon Fault does not continue directly south to TA-55. At present, the authors have insufficient data to connect faulting they have mapped to areas of known faulting to the north or south of the study area

  18. Prognostics for Steam Generator Tube Rupture using Markov Chain model

    International Nuclear Information System (INIS)

    Kim, Gibeom; Heo, Gyunyoung; Kim, Hyeonmin

    2016-01-01

    This paper will describe the prognostics method for evaluating and forecasting the ageing effect and demonstrate the procedure of prognostics for the Steam Generator Tube Rupture (SGTR) accident. Authors will propose the data-driven method so called MCMC (Markov Chain Monte Carlo) which is preferred to the physical-model method in terms of flexibility and availability. Degradation data is represented as growth of burst probability over time. Markov chain model is performed based on transition probability of state. And the state must be discrete variable. Therefore, burst probability that is continuous variable have to be changed into discrete variable to apply Markov chain model to the degradation data. The Markov chain model which is one of prognostics methods was described and the pilot demonstration for a SGTR accident was performed as a case study. The Markov chain model is strong since it is possible to be performed without physical models as long as enough data are available. However, in the case of the discrete Markov chain used in this study, there must be loss of information while the given data is discretized and assigned to the finite number of states. In this process, original information might not be reflected on prediction sufficiently. This should be noted as the limitation of discrete models. Now we will be studying on other prognostics methods such as GPM (General Path Model) which is also data-driven method as well as the particle filer which belongs to physical-model method and conducting comparison analysis

  19. Mineralogical compositions of fault rocks from surface ruptures of Wenchuan earthquake and implication of mineral transformation during the seismic cycle along Yingxiu-Beichuan fault, Sichuan Province, China

    Science.gov (United States)

    Dang, Jiaxiang; Zhou, Yongsheng; He, Changrong; Ma, Shengli

    2018-06-01

    There are two co-seismic bedrock surface ruptures from the Mw 7.9 Wenchuan earthquake in the northern and central parts of the Beichuan-Yingxiu fault, Sichuan Province, southwest China. In this study, we report on the macrostructure of the fault rocks and results from X-ray powder diffraction analysis of minerals from rocks in the fault zone. The most recent fault gouge (the gouge produced by the most recent co-seismic fault movement) in all the studied outcrops is dark or grayish-black, totally unconsolidated and ultrafine-grained. Older fault gouges in the same outcrops are grayish or yellowish and weakly consolidated. X-ray powder diffraction analysis results show that mineral assemblages in both the old fault gouge and the new fault gouge are more complicated than the mineral assemblages in the bedrock as the fault gouge is rich in clay minerals. The fault gouge inherited its major rock-forming minerals from the parent rocks, but the clay minerals in the fault gouge were generated in the fault zone and are therefore authigenic and synkinematic. In profiles across the fault, clay mineral abundances increase as one traverses from the bedrock to the breccia to the old gouge and from the old gouge to the new gouge. Quartz and illite are found in all collected gouge samples. The dominant clay minerals in the new fault gouge are illite and smectite along the northern part of the surface rupture and illite/smectite mixed-layer clay in the middle part of the rupture. Illite/smectite mixed-layer clay found in the middle part of the rupture indicates that fault slip was accompanied by K-rich fluid circulation. The existence of siderite, anhydrite, and barite in the northern part of the rupture suggests that fault slip at this locality was accompanied by acidic fluids containing ions of Fe, Ca, and Ba.

  20. Uniform California earthquake rupture forecast, version 3 (UCERF3): the time-independent model

    Science.gov (United States)

    Field, Edward H.; Biasi, Glenn P.; Bird, Peter; Dawson, Timothy E.; Felzer, Karen R.; Jackson, David D.; Johnson, Kaj M.; Jordan, Thomas H.; Madden, Christopher; Michael, Andrew J.; Milner, Kevin R.; Page, Morgan T.; Parsons, Thomas; Powers, Peter M.; Shaw, Bruce E.; Thatcher, Wayne R.; Weldon, Ray J.; Zeng, Yuehua; ,

    2013-01-01

    In this report we present the time-independent component of the Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3), which provides authoritative estimates of the magnitude, location, and time-averaged frequency of potentially damaging earthquakes in California. The primary achievements have been to relax fault segmentation assumptions and to include multifault ruptures, both limitations of the previous model (UCERF2). The rates of all earthquakes are solved for simultaneously, and from a broader range of data, using a system-level "grand inversion" that is both conceptually simple and extensible. The inverse problem is large and underdetermined, so a range of models is sampled using an efficient simulated annealing algorithm. The approach is more derivative than prescriptive (for example, magnitude-frequency distributions are no longer assumed), so new analysis tools were developed for exploring solutions. Epistemic uncertainties were also accounted for using 1,440 alternative logic tree branches, necessitating access to supercomputers. The most influential uncertainties include alternative deformation models (fault slip rates), a new smoothed seismicity algorithm, alternative values for the total rate of M≥5 events, and different scaling relationships, virtually all of which are new. As a notable first, three deformation models are based on kinematically consistent inversions of geodetic and geologic data, also providing slip-rate constraints on faults previously excluded because of lack of geologic data. The grand inversion constitutes a system-level framework for testing hypotheses and balancing the influence of different experts. For example, we demonstrate serious challenges with the Gutenberg-Richter hypothesis for individual faults. UCERF3 is still an approximation of the system, however, and the range of models is limited (for example, constrained to stay close to UCERF2). Nevertheless, UCERF3 removes the apparent UCERF2 overprediction of

  1. Rupture model based on non-associated plasticity

    Science.gov (United States)

    Pradeau, Adrien; Yoon, Jeong Whan; Thuillier, Sandrine; Lou, Yanshan; Zhang, Shunying

    2018-05-01

    This research work is about modeling the mechanical behavior of metallic sheets of AA6016 up to rupture using non-associated flow rule. Experiments were performed at room temperature in uniaxial tension and simple shear in different directions according to the rolling direction and an additional hydraulic bulge test. The anisotropy of the material is described by a Yld2000-2d yield surface [1], calibrated by stress ratios, and a plastic potential represented by Hill1948 [2], calibrated using Lankford coefficients. That way, the former is able to reproduce the yield stresses in different directions and the latter is able to reproduce the deformations in different directions as well [3], [4]. Indeed, the non-associated flow rule allows for the direction of the plastic flow not to be necessarily normal to the yield surface. Concerning the rupture, the macroscopic ductile fracture criterion DF2014 was used [5]. It indirectly uses the three invariants of the stress tensor by using the three following parameters: the stress triaxiality η, the Lode parameter L and the equivalent plastic strain to fracture ∈f-p . In order to be consistent with the plastic model and to add more flexibility to the p criterion, the equivalent stress σ ¯ and the equivalent strain to fracture ∈f-p have been substituted respectively as Yld2000-2d and Hill1948 in the DF2014 fracture criterion. The parameters for the fracture criterion were obtained by optimization and the fracture locus can be plotted in the (η ,L ,∈-p) space. The damage indicator D is then numerically predicted with respect of average strain values. A good correlation with the experimental results is obtained.

  2. Evaluation of induced seismicity forecast models in the Induced Seismicity Test Bench

    Science.gov (United States)

    Király, Eszter; Gischig, Valentin; Zechar, Jeremy; Doetsch, Joseph; Karvounis, Dimitrios; Wiemer, Stefan

    2016-04-01

    Induced earthquakes often accompany fluid injection, and the seismic hazard they pose threatens various underground engineering projects. Models to monitor and control induced seismic hazard with traffic light systems should be probabilistic, forward-looking, and updated as new data arrive. Here, we propose an Induced Seismicity Test Bench to test and rank such models. We apply the test bench to data from the Basel 2006 and Soultz-sous-Forêts 2004 geothermal stimulation projects, and we assess forecasts from two models that incorporate a different mix of physical understanding and stochastic representation of the induced sequences: Shapiro in Space (SiS) and Hydraulics and Seismics (HySei). SiS is based on three pillars: the seismicity rate is computed with help of the seismogenic index and a simple exponential decay of the seismicity; the magnitude distribution follows the Gutenberg-Richter relation; and seismicity is distributed in space based on smoothing seismicity during the learning period with 3D Gaussian kernels. The HySei model describes seismicity triggered by pressure diffusion with irreversible permeability enhancement. Our results show that neither model is fully superior to the other. HySei forecasts the seismicity rate well, but is only mediocre at forecasting the spatial distribution. On the other hand, SiS forecasts the spatial distribution well but not the seismicity rate. The shut-in phase is a difficult moment for both models in both reservoirs: the models tend to underpredict the seismicity rate around, and shortly after, shut-in. Ensemble models that combine HySei's rate forecast with SiS's spatial forecast outperform each individual model.

  3. Introducing Seismic Tomography with Computational Modeling

    Science.gov (United States)

    Neves, R.; Neves, M. L.; Teodoro, V.

    2011-12-01

    Learning seismic tomography principles and techniques involves advanced physical and computational knowledge. In depth learning of such computational skills is a difficult cognitive process that requires a strong background in physics, mathematics and computer programming. The corresponding learning environments and pedagogic methodologies should then involve sets of computational modelling activities with computer software systems which allow students the possibility to improve their mathematical or programming knowledge and simultaneously focus on the learning of seismic wave propagation and inverse theory. To reduce the level of cognitive opacity associated with mathematical or programming knowledge, several computer modelling systems have already been developed (Neves & Teodoro, 2010). Among such systems, Modellus is particularly well suited to achieve this goal because it is a domain general environment for explorative and expressive modelling with the following main advantages: 1) an easy and intuitive creation of mathematical models using just standard mathematical notation; 2) the simultaneous exploration of images, tables, graphs and object animations; 3) the attribution of mathematical properties expressed in the models to animated objects; and finally 4) the computation and display of mathematical quantities obtained from the analysis of images and graphs. Here we describe virtual simulations and educational exercises which enable students an easy grasp of the fundamental of seismic tomography. The simulations make the lecture more interactive and allow students the possibility to overcome their lack of advanced mathematical or programming knowledge and focus on the learning of seismological concepts and processes taking advantage of basic scientific computation methods and tools.

  4. The seismic cycle at subduction thrusts: 1. Insights from laboratory models

    KAUST Repository

    Corbi, F.; Funiciello, F.; Moroni, M.; van Dinther, Y.; Mai, Paul Martin; Dalguer, L. A.; Faccenna, C.

    2013-01-01

    Subduction megathrust earthquakes occur at the interface between the subducting and overriding plates. These hazardous phenomena are only partially understood because of the absence of direct observations, the restriction of the instrumental seismic record to the past century, and the limited resolution/completeness of historical to geological archives. To overcome these restrictions, modeling has become a key-tool to study megathrust earthquakes. We present a novel model to investigate the seismic cycle at subduction thrusts using complementary analog (paper 1) and numerical (paper 2) approaches. Here we introduce a simple scaled gelatin-on-sandpaper setup including realistic tectonic loading, spontaneous rupture nucleation, and viscoelastic response of the lithosphere. Particle image velocimetry allows to derive model deformation and earthquake source parameters. Analog earthquakes are characterized by “quasi-periodic” recurrence. Consistent with elastic theory, the interseismic stage shows rearward motion, subsidence in the outer wedge and uplift of the “coastal area” as a response of locked plate interface at shallow depth. The coseismic stage exhibits order of magnitude higher velocities and reversal of the interseismic deformation pattern in the seaward direction, subsidence of the coastal area, and uplift in the outer wedge. Like natural earthquakes, analog earthquakes generally nucleate in the deeper portion of the rupture area and preferentially propagate upward in a crack-like fashion. Scaled rupture width-slip proportionality and seismic moment-duration scaling verifies dynamic similarities with earthquakes. Experimental repeatability is statistically verified. Comparing analog results with natural observations, we conclude that this technique is suitable for investigating the parameter space influencing the subduction interplate seismic cycle.

  5. The seismic cycle at subduction thrusts: 1. Insights from laboratory models

    KAUST Repository

    Corbi, F.

    2013-04-01

    Subduction megathrust earthquakes occur at the interface between the subducting and overriding plates. These hazardous phenomena are only partially understood because of the absence of direct observations, the restriction of the instrumental seismic record to the past century, and the limited resolution/completeness of historical to geological archives. To overcome these restrictions, modeling has become a key-tool to study megathrust earthquakes. We present a novel model to investigate the seismic cycle at subduction thrusts using complementary analog (paper 1) and numerical (paper 2) approaches. Here we introduce a simple scaled gelatin-on-sandpaper setup including realistic tectonic loading, spontaneous rupture nucleation, and viscoelastic response of the lithosphere. Particle image velocimetry allows to derive model deformation and earthquake source parameters. Analog earthquakes are characterized by “quasi-periodic” recurrence. Consistent with elastic theory, the interseismic stage shows rearward motion, subsidence in the outer wedge and uplift of the “coastal area” as a response of locked plate interface at shallow depth. The coseismic stage exhibits order of magnitude higher velocities and reversal of the interseismic deformation pattern in the seaward direction, subsidence of the coastal area, and uplift in the outer wedge. Like natural earthquakes, analog earthquakes generally nucleate in the deeper portion of the rupture area and preferentially propagate upward in a crack-like fashion. Scaled rupture width-slip proportionality and seismic moment-duration scaling verifies dynamic similarities with earthquakes. Experimental repeatability is statistically verified. Comparing analog results with natural observations, we conclude that this technique is suitable for investigating the parameter space influencing the subduction interplate seismic cycle.

  6. Towards continuum models of lateral rupture propagation in a segmented megathrust

    Science.gov (United States)

    Pranger, C. C.; van Dinther, Y.; Le Pourhiet, L.; May, D.; Gerya, T.

    2015-12-01

    At subduction megathrusts, propagation of large ruptures may be confined between the up-dip and down-dip limits of the seismogenic zone. This opens a primary role for lateral rupture dimensions to control the magnitude and severity of megathrust earthquakes. The goal of this study is to improve our understanding of the ways in which the inherent variability of the subduction interface may influence the degree of interseismic locking, and the propensity of a rupture to propagate over regions of variable slip potential. We focus in particular on the roughness of the incoming seafloor, which we expect to be of primary importance. The global absence of a historic record sufficiently long to base risk assessment on, makes us rely on numerical modelling as a way to extend our understanding of the spatio-temporal occurrence of earthquakes. However, the complex interaction of the subduction stress environment, the variability of the subduction interface, and the structure and deformation of the crustal wedge has made it very difficult to construct comprehensive numerical models of megathrust segmentation. We intend to develop and exploit the power of a plastic 3D continuum representation of the subduction megathrust, as well as off-megathrust faulting to model the long-term tectonic build-up of stresses, and their sudden seismic release. The sheer size of the 3D problem, and the time scales covering those of tectonics as well as seismology, force us to explore efficient and accurate physical and numerical techniques. So far, we have focused our efforts on developing a staggered grid finite difference code that makes use of the PETSc library for massively parallel computing. The code incorporates a newly developed automatic discretization algorithm, which enables it to handle a wide variety of equations with relative ease. What remains now is combining the physics that act on the different spatial and temporal scales. To this end we explore new constitutive models that

  7. Rupture of the atherosclerotic plaque: does a good animal model exist?

    NARCIS (Netherlands)

    Cullen, Paul; Baetta, Roberta; Bellosta, Stefano; Bernini, Franco; Chinetti, Giulia; Cignarella, Andrea; von Eckardstein, Arnold; Exley, Andrew; Goddard, Martin; Hofker, Marten; Hurt-Camejo, Eva; Kanters, Edwin; Kovanen, Petri; Lorkowski, Stefan; McPheat, William; Pentikäinen, Markku; Rauterberg, Jürgen; Ritchie, Andrew; Staels, Bart; Weitkamp, Benedikt; de Winther, Menno

    2003-01-01

    By its very nature, rupture of the atherosclerotic plaque is difficult to study directly in humans. A good animal model would help us not only to understand how rupture occurs but also to design and test treatments to prevent it from happening. However, several difficulties surround existing models

  8. A global database of seismically and non-seismically triggered landslides for 2D/3D numerical modeling

    Science.gov (United States)

    Domej, Gisela; Bourdeau, Céline; Lenti, Luca; Pluta, Kacper

    2017-04-01

    Landsliding is a worldwide common phenomenon. Every year, and ranging in size from very small to enormous, landslides cause all too often loss of life and disastrous damage to infrastructure, property and the environment. One main reason for more frequent catastrophes is the growth of population on the Earth which entails extending urbanization to areas at risk. Landslides are triggered by a variety and combination of causes, among which the role of water and seismic activity appear to have the most serious consequences. In this regard, seismic shaking is of particular interest since topographic elevation as well as the landslide mass itself can trap waves and hence amplify incoming surface waves - a phenomenon known as "site effects". Research on the topic of landsliding due to seismic and non-seismic activity is extensive and a broad spectrum of methods for modeling slope deformation is available. Those methods range from pseudo-static and rigid-block based models to numerical models. The majority is limited to 2D modeling since more sophisticated approaches in 3D are still under development or calibration. However, the effect of lateral confinement as well as the mechanical properties of the adjacent bedrock might be of great importance because they may enhance the focusing of trapped waves in the landslide mass. A database was created to study 3D landslide geometries. It currently contains 277 distinct seismically and non-seismically triggered landslides spread all around the globe whose rupture bodies were measured in all available details. Therefore a specific methodology was developed to maintain predefined standards, to keep the bias as low as possible and to set up a query tool to explore the database. Besides geometry, additional information such as location, date, triggering factors, material, sliding mechanisms, event chronology, consequences, related literature, among other things are stored for every case. The aim of the database is to enable

  9. Seismo-thermo-mechanical modeling of subduction zone seismicity

    Energy Technology Data Exchange (ETDEWEB)

    Dinther van, Y.

    2013-07-01

    The catastrophic occurrence of the 2004 M9.2 Sumatra and 2011 M9.0 Tohoku earthquakes illustrated the disastrous impact of megathrust earthquakes on society. They also emphasized our limited understanding of where and when these 'big ones' may strike. The necessary improvement of long-term seismic hazard assessment requires a better physical understanding of the seismic cycle at these seismically active subduction zones. Models have the potential to overcome the restricted, direct observations in space and time. Currently, however, no model exists to explore the relation between long-term subduction dynamics and relating deformation and short-term seismogenesis. The development, validation and initial application of such a physically consistent seismo-thermo-mechanical numerical model is the main objective of this thesis. First, I present a novel analog modeling tool that simulates cycling of megathrust earthquakes in a visco-elastic gelatin wedge. A comparison with natural observations shows interseismic and coseismic physics are captured in a robust, albeit simplified, way. This tool is used to validate that a continuum-mechanics based, visco-elasto-plastic numerical approach, typically used for large-scale geodynamic problems, can be extended to study the short-term seismogenesis of megathrust earthquakes. To generate frictional instabilities and match laboratory source parameters, a local invariant implementation of a strongly slip rate-dependent friction formulation is required. The resulting continuum approach captures several interesting dynamic features, including inter-, co- and postseismic deformation that agrees qualitatively with GPS measurements and dynamic rupture features, including cracks, self-healing pulses and fault re-rupturing. To facilitate a comparison to natural settings, I consider a more realistic setup of the Southern Chilean margin in terms of geometry and physical processes. Results agree with seismological, geodetic and

  10. Seismo-thermo-mechanical modeling of subduction zone seismicity

    International Nuclear Information System (INIS)

    Dinther van, Y.

    2013-01-01

    The catastrophic occurrence of the 2004 M9.2 Sumatra and 2011 M9.0 Tohoku earthquakes illustrated the disastrous impact of megathrust earthquakes on society. They also emphasized our limited understanding of where and when these 'big ones' may strike. The necessary improvement of long-term seismic hazard assessment requires a better physical understanding of the seismic cycle at these seismically active subduction zones. Models have the potential to overcome the restricted, direct observations in space and time. Currently, however, no model exists to explore the relation between long-term subduction dynamics and relating deformation and short-term seismogenesis. The development, validation and initial application of such a physically consistent seismo-thermo-mechanical numerical model is the main objective of this thesis. First, I present a novel analog modeling tool that simulates cycling of megathrust earthquakes in a visco-elastic gelatin wedge. A comparison with natural observations shows interseismic and coseismic physics are captured in a robust, albeit simplified, way. This tool is used to validate that a continuum-mechanics based, visco-elasto-plastic numerical approach, typically used for large-scale geodynamic problems, can be extended to study the short-term seismogenesis of megathrust earthquakes. To generate frictional instabilities and match laboratory source parameters, a local invariant implementation of a strongly slip rate-dependent friction formulation is required. The resulting continuum approach captures several interesting dynamic features, including inter-, co- and postseismic deformation that agrees qualitatively with GPS measurements and dynamic rupture features, including cracks, self-healing pulses and fault re-rupturing. To facilitate a comparison to natural settings, I consider a more realistic setup of the Southern Chilean margin in terms of geometry and physical processes. Results agree with seismological, geodetic and geological

  11. Added-value joint source modelling of seismic and geodetic data

    Science.gov (United States)

    Sudhaus, Henriette; Heimann, Sebastian; Walter, Thomas R.; Krueger, Frank

    2013-04-01

    In tectonically active regions earthquake source studies strongly support the analysis of the current faulting processes as they reveal the location and geometry of active faults, the average slip released or more. For source modelling of shallow, moderate to large earthquakes often a combination of geodetic (GPS, InSAR) and seismic data is used. A truly joint use of these data, however, usually takes place only on a higher modelling level, where some of the first-order characteristics (time, centroid location, fault orientation, moment) have been fixed already. These required basis model parameters have to be given, assumed or inferred in a previous, separate and highly non-linear modelling step using one of the these data sets alone. We present a new earthquake rupture model implementation that realizes a fully combined data integration of surface displacement measurements and seismic data in a non-linear optimization of simple but extended planar ruptures. The model implementation allows for fast forward calculations of full seismograms and surface deformation and therefore enables us to use Monte Carlo global search algorithms. Furthermore, we benefit from the complementary character of seismic and geodetic data, e. g. the high definition of the source location from geodetic data and the sensitivity of the resolution of the seismic data on moment releases at larger depth. These increased constraints from the combined dataset make optimizations efficient, even for larger model parameter spaces and with a very limited amount of a priori assumption on the source. A vital part of our approach is rigorous data weighting based on the empirically estimated data errors. We construct full data error variance-covariance matrices for geodetic data to account for correlated data noise and also weight the seismic data based on their signal-to-noise ratio. The estimation of the data errors and the fast forward modelling opens the door for Bayesian inferences of the source

  12. Dynamic Models of Earthquake Rupture along branch faults of the Eastern San Gorgonio Pass Region in CA using Complex Fault Structure

    Science.gov (United States)

    Douilly, R.; Oglesby, D. D.; Cooke, M. L.; Beyer, J. L.

    2017-12-01

    Compilation of geomorphic and paleoseismic data have illustrated that the right-lateral Coachella segment of the southern San Andreas Fault is past its average recurrence time period. On its western edge, this fault segment is split into two branches: the Mission Creek strand, and the Banning fault strand, of the San Andreas. Depending on how rupture propagates through this region, there is the possibility of a through-going rupture that could lead to the channeling of damaging seismic energy into the Los Angeles Basin. The fault structures and rupture scenarios on these two strands are potentially very different, so it is important to determine which strand is a more likely rupture path, and under which circumstances rupture will take either one. In this study, we focus on the effect of different assumptions about fault geometry and stress pattern on the rupture process to test those scenarios and thus investigate the most likely path of a rupture that starts on the Coachella segment. We consider two types of fault geometry based on the SCEC Community Fault Model and create a 3D finite element mesh. These two meshes are then incorporated into the finite element method code FaultMod to compute a physical model for the rupture dynamics. We use the slip-weakening friction law, and we consider different assumptions of background stress such as constant tractions, regional stress regimes of different orientations, heterogeneous off-fault stresses and the results of long-term stressing rates from quasi-static crustal deformation models that consider time since last event on each fault segment. Both the constant and regional stress distribution show that it is more likely for the rupture to branch from the Coachella segment to the Mission Creek compared to the Banning fault segment. For the regional stress distribution, we encounter cases of super-shear rupture for one type of fault geometry and sub-shear rupture for the other one. The fault connectivity at this branch

  13. The seismic cycle at subduction thrusts: 2. Dynamic implications of geodynamic simulations validated with laboratory models

    KAUST Repository

    van Dinther, Y.

    2013-04-01

    The physics governing the seismic cycle at seismically active subduction zones remains poorly understood due to restricted direct observations in time and space. To investigate subduction zone dynamics and associated interplate seismicity, we validate a continuum, visco-elasto-plastic numerical model with a new laboratory approach (Paper 1). The analogous laboratory setup includes a visco-elastic gelatin wedge underthrusted by a rigid plate with defined velocity-weakening and -strengthening regions. Our geodynamic simulation approach includes velocity-weakening friction to spontaneously generate a series of fast frictional instabilities that correspond to analog earthquakes. A match between numerical and laboratory source parameters is obtained when velocity-strengthening is applied in the aseismic regions to stabilize the rupture. Spontaneous evolution of absolute stresses leads to nucleation by coalescence of neighboring patches, mainly occurring at evolving asperities near the seismogenic zone limits. Consequently, a crack-, or occasionally even pulse-like, rupture propagates toward the opposite side of the seismogenic zone by increasing stresses ahead of its rupture front, until it arrests on a barrier. The resulting surface displacements qualitatively agree with geodetic observations and show landward and, from near the downdip limit, upward interseismic motions. These are rebound and reversed coseismically. This slip increases adjacent stresses, which are relaxed postseismically by afterslip and thereby produce persistent seaward motions. The wide range of observed physical phenomena, including back-propagation and repeated slip, and the agreement with laboratory results demonstrate that visco-elasto-plastic geodynamic models with rate-dependent friction form a new tool that can greatly contribute to our understanding of the seismic cycle at subduction zones.

  14. The seismic cycle at subduction thrusts: 2. Dynamic implications of geodynamic simulations validated with laboratory models

    KAUST Repository

    van Dinther, Y.; Gerya, T. V.; Dalguer, L. A.; Corbi, F.; Funiciello, F.; Mai, Paul Martin

    2013-01-01

    The physics governing the seismic cycle at seismically active subduction zones remains poorly understood due to restricted direct observations in time and space. To investigate subduction zone dynamics and associated interplate seismicity, we validate a continuum, visco-elasto-plastic numerical model with a new laboratory approach (Paper 1). The analogous laboratory setup includes a visco-elastic gelatin wedge underthrusted by a rigid plate with defined velocity-weakening and -strengthening regions. Our geodynamic simulation approach includes velocity-weakening friction to spontaneously generate a series of fast frictional instabilities that correspond to analog earthquakes. A match between numerical and laboratory source parameters is obtained when velocity-strengthening is applied in the aseismic regions to stabilize the rupture. Spontaneous evolution of absolute stresses leads to nucleation by coalescence of neighboring patches, mainly occurring at evolving asperities near the seismogenic zone limits. Consequently, a crack-, or occasionally even pulse-like, rupture propagates toward the opposite side of the seismogenic zone by increasing stresses ahead of its rupture front, until it arrests on a barrier. The resulting surface displacements qualitatively agree with geodetic observations and show landward and, from near the downdip limit, upward interseismic motions. These are rebound and reversed coseismically. This slip increases adjacent stresses, which are relaxed postseismically by afterslip and thereby produce persistent seaward motions. The wide range of observed physical phenomena, including back-propagation and repeated slip, and the agreement with laboratory results demonstrate that visco-elasto-plastic geodynamic models with rate-dependent friction form a new tool that can greatly contribute to our understanding of the seismic cycle at subduction zones.

  15. Numerical Modelling of Seismic Slope Stability

    Science.gov (United States)

    Bourdeau, Céline; Havenith, Hans-Balder; Fleurisson, Jean-Alain; Grandjean, Gilles

    Earthquake ground-motions recorded worldwide have shown that many morphological and geological structures (topography, sedimentary basin) are prone to amplify the seismic shaking (San Fernando, 1971 [Davis and West 1973] Irpinia, 1980 [Del Pezzo et al. 1983]). This phenomenon, called site effects, was again recently observed in El Salvador when, on the 13th of January 2001, the country was struck by a M = 7.6 earthquake. Indeed, while horizontal accelerations on a rock site at Berlin, 80 km from the epicentre, did not exceed 0.23 g, they reached 0.6 g at Armenia, 110 km from the epicentre. Armenia is located on a small hill underlaid by a few meters thick pyroclastic deposits. Both the local topography and the presence of surface layers are likely to have caused the observed amplification effects, which are supposed to have contributed to the triggering of some of the hundreds of landslides related to this seismic event (Murphy et al. 2002). In order to better characterize the way site effects may influence the triggering of landslides along slopes, 2D numerical elastic and elasto-plastic models were developed. Various geometrical, geological and seismic conditions were analysed and the dynamic behaviour of the slope under these con- ditions was studied in terms of creation and location of a sliding surface. Preliminary results suggest that the size of modelled slope failures is dependent on site effects.

  16. Empirical Relationships Among Magnitude and Surface Rupture Characteristics of Strike-Slip Faults: Effect of Fault (System) Geometry and Observation Location, Dervided From Numerical Modeling

    Science.gov (United States)

    Zielke, O.; Arrowsmith, J.

    2007-12-01

    In order to determine the magnitude of pre-historic earthquakes, surface rupture length, average and maximum surface displacement are utilized, assuming that an earthquake of a specific size will cause surface features of correlated size. The well known Wells and Coppersmith (1994) paper and other studies defined empirical relationships between these and other parameters, based on historic events with independently known magnitude and rupture characteristics. However, these relationships show relatively large standard deviations and they are based only on a small number of events. To improve these first-order empirical relationships, the observation location relative to the rupture extent within the regional tectonic framework should be accounted for. This however cannot be done based on natural seismicity because of the limited size of datasets on large earthquakes. We have developed the numerical model FIMozFric, based on derivations by Okada (1992) to create synthetic seismic records for a given fault or fault system under the influence of either slip- or stress boundary conditions. Our model features A) the introduction of an upper and lower aseismic zone, B) a simple Coulomb friction law, C) bulk parameters simulating fault heterogeneity, and D) a fault interaction algorithm handling the large number of fault patches (typically 5,000-10,000). The joint implementation of these features produces well behaved synthetic seismic catalogs and realistic relationships among magnitude and surface rupture characteristics which are well within the error of the results by Wells and Coppersmith (1994). Furthermore, we use the synthetic seismic records to show that the relationships between magntiude and rupture characteristics are a function of the observation location within the regional tectonic framework. The model presented here can to provide paleoseismologists with a tool to improve magnitude estimates from surface rupture characteristics, by incorporating the

  17. Rupture tests with reactor pressure vessel head models

    International Nuclear Information System (INIS)

    Talja, H.; Keinaenen, H.; Hosio, E.; Pankakoski, P.H.; Rahka, K.

    2003-01-01

    In the LISSAC project (LImit Strains in Severe ACcidents), partly funded by the EC Nuclear Fission and Safety Programme within the 5th Framework programme, an extensive experimental and computational research programme is conducted to study the stress state and size dependence of ultimate failure strains. The results are aimed especially to make the assessment of severe accident cases more realistic. For the experiments in the LISSAC project a block of material of the German Biblis C reactor pressure vessel was available. As part of the project, eight reactor pressure vessel head models from this material (22 NiMoCr 3 7) were tested up to rupture at VTT. The specimens were provided by Forschungszentrum Karlsruhe (FzK). These tests were performed under quasistatic pressure load at room temperature. Two specimens sizes were tested and in half of the tests the specimens contain holes describing the control rod penetrations of an actual reactor pressure vessel head. These specimens were equipped with an aluminium liner. All six tests with the smaller specimen size were conducted successfully. In the test with the large specimen with holes, the behaviour of the aluminium liner material proved to differ from those of the smaller ones. As a consequence the experiment ended at the failure of the liner. The specimen without holes yielded results that were in very good agreement with those from the small specimens. (author)

  18. Investigating the Physics Behind VLFEs and LFEs: Analysis Based on Dynamic Rupture Models with Ductile-like Friction

    Science.gov (United States)

    Wu, B.; Oglesby, D. D.; Ghosh, A.; LI, B.

    2017-12-01

    Very low frequency earthquakes (VLFE) and low frequency earthquakes (LFE) are two main types of seismic signal that are observed during slow earthquakes. These phenomena differ from standard ("fast") earthquakes in many ways. In contrast to seismic signals generated by standard earthquakes, these two types of signal lack energy at higher frequencies, and have very low stress drops of around 10 kPa. In addition, the Moment-Duration scaling relationship shown by VLFEs and LFEs is linear(M T) instead of M T^3 for regular earthquakes. However, if investigated separately over a small range magnitudes and durations, the scaling relationship for each is somewhat closer to M T^3, not M T. The physical mechanism of VLFEs and LFEs is still not clear, although some models have explored this issue [e.g., Gomberg, 2016b]. Here we investigate the behavior of dynamic rupture models with a ductile-like viscous frictional property [Ando et al., 2010; Nakata et al., 2011; Ando et al., 2012] on a single patch. In the model's framework, VLFE source patches are characterized by a high viscous damping term η and a larger area( 25km^2), while sources that approach LFE properties have a low viscous damping term η and smaller patch area(<0.5km^2). Using both analytical and numerical analyses, we show how and why this model may help to explain current observations. This model supports the idea that VLFEs and LFEs are distinct events, possibly rupturing distinct patches with their own stress dynamics [Hutchison and Ghosh, 2016]. The model also makes predictions that can be tested in future observational experiments.

  19. Observations and modeling of seismic background noise

    Science.gov (United States)

    Peterson, Jon R.

    1993-01-01

    The preparation of this report had two purposes. One was to present a catalog of seismic background noise spectra obtained from a worldwide network of seismograph stations. The other purpose was to refine and document models of seismic background noise that have been in use for several years. The second objective was, in fact, the principal reason that this study was initiated and influenced the procedures used in collecting and processing the data.With a single exception, all of the data used in this study were extracted from the digital data archive at the U.S. Geological Survey's Albuquerque Seismological Laboratory (ASL). This archive dates from 1972 when ASL first began deploying digital seismograph systems and collecting and distributing digital data under the sponsorship of the Defense Advanced Research Projects Agency (DARPA). There have been many changes and additions to the global seismograph networks during the past twenty years, but perhaps none as significant as the current deployment of very broadband seismographs by the U.S. Geological Survey (USGS) and the University of California San Diego (UCSD) under the scientific direction of the IRIS consortium. The new data acquisition systems have extended the bandwidth and resolution of seismic recording, and they utilize high-density recording media that permit the continuous recording of broadband data. The data improvements and continuous recording greatly benefit and simplify surveys of seismic background noise.Although there are many other sources of digital data, the ASL archive data were used almost exclusively because of accessibility and because the data systems and their calibration are well documented for the most part. Fortunately, the ASL archive contains high-quality data from other stations in addition to those deployed by the USGS. Included are data from UCSD IRIS/IDA stations, the Regional Seismic Test Network (RSTN) deployed by Sandia National Laboratories (SNL), and the TERRAscope network

  20. Earthquake cycle modeling of multi-segmented faults: dynamic rupture and ground motion simulation of the 1992 Mw 7.3 Landers earthquake.

    Science.gov (United States)

    Petukhin, A.; Galvez, P.; Somerville, P.; Ampuero, J. P.

    2017-12-01

    We perform earthquake cycle simulations to study the characteristics of source scaling relations and strong ground motions and in multi-segmented fault ruptures. For earthquake cycle modeling, a quasi-dynamic solver (QDYN, Luo et al, 2016) is used to nucleate events and the fully dynamic solver (SPECFEM3D, Galvez et al., 2014, 2016) is used to simulate earthquake ruptures. The Mw 7.3 Landers earthquake has been chosen as a target earthquake to validate our methodology. The SCEC fault geometry for the three-segmented Landers rupture is included and extended at both ends to a total length of 200 km. We followed the 2-D spatial correlated Dc distributions based on Hillers et. al. (2007) that associates Dc distribution with different degrees of fault maturity. The fault maturity is related to the variability of Dc on a microscopic scale. Large variations of Dc represents immature faults and lower variations of Dc represents mature faults. Moreover we impose a taper (a-b) at the fault edges and limit the fault depth to 15 km. Using these settings, earthquake cycle simulations are performed to nucleate seismic events on different sections of the fault, and dynamic rupture modeling is used to propagate the ruptures. The fault segmentation brings complexity into the rupture process. For instance, the change of strike between fault segments enhances strong variations of stress. In fact, Oglesby and Mai (2012) show the normal stress varies from positive (clamping) to negative (unclamping) between fault segments, which leads to favorable or unfavorable conditions for rupture growth. To replicate these complexities and the effect of fault segmentation in the rupture process, we perform earthquake cycles with dynamic rupture modeling and generate events similar to the Mw 7.3 Landers earthquake. We extract the asperities of these events and analyze the scaling relations between rupture area, average slip and combined area of asperities versus moment magnitude. Finally, the

  1. Structural and stratigraphic constraints on tsunamigenic rupture along the frontal Sunda megathrust from MegaTera bathymetric and seismic reflection data

    Science.gov (United States)

    Bradley, K. E.; Qin, Y.; Villanueva-Robles, F.; Hananto, N.; Leclerc, F.; Singh, S. C.; Tapponnier, P.; Sieh, K.; Wei, S.; Carton, H. D.; Permana, H.; Avianto, P.; Nugroho, A. B.

    2017-12-01

    The joint EOS/IPG/LIPI 2015 MegaTera expedition collected high-resolution seismic reflection profiles and bathymetric data across the Sunda trench, updip of the Mw7.7, 2010 Mentawai tsunami-earthquake rupture patch. These data reveal rapid lateral variations in both the stratigraphic level of the frontal Sunda megathrust and the vergence of frontal ramp faults. The stratigraphic depth of the megathrust at the deformation front correlates with ramp-thrust vergence and with changes in the basal friction angle inferred by critical-taper wedge theory. Where ramp thrusts verge uniformly seaward and have an average dip of 30°, the megathrust decollement resides atop a high-amplitude reflector that marks the inferred top of pelagic sediments. Where ramp thrusts are bi-vergent (similar throw on both landward- and seaward-vergent faults) and have an average dip of 42°, the decollement is higher, within the incoming clastic sequence, above a seismically transparent unit inferred to represent distal fan muds. Where ramp thrusts are uniformly landward vergent, the decollement sits directly on top of the oceanic crust that forms the bathymetrically prominent, subducting Investigator Ridge. The two, separate regions of large tsunamigenic ground-surface uplift during the 2010 tsunami earthquake that have been inferred from joint inversions of seismic, GPS, and tsunami data (e.g. Yue et al., 2014; Satake et al., 2013) correspond to the areas of frontal bi-vergence in the MegaTera data. We propose that enhanced surface uplift and tsunamigenesis during this event occurred when rupture propagated onto areas where the decollement sits directly above the basal muds of the incoming clastic sequence. Thus we hypothesize that frontal bi-vergence may mark areas of enhanced tsunami hazard posed by small magnitude, shallow megathrust ruptures that propagate to the trench. [Yue, H. et al., 2014, Rupture process of the…, JGR 119 doi:10.1002/2014JB011082; Satake, K. et al., 2013, Tsunami

  2. Numerical modeling and the physical basis of seismic discriminants

    International Nuclear Information System (INIS)

    Denny, M.D.

    1993-01-01

    Accurate seismic event discrimination is critical to detection of nuclear explosions. Numerical modeling applied to seismic event discrimination can lead to increased reliability of proliferation detection. It is particularly applicable to error budgeting and to understanding explosion and earthquake phenomenologies. There also is a need for minimum requirements to validate the models used in numerical modeling

  3. Distance and Azimuthal Dependence of Ground‐Motion Variability for Unilateral Strike‐Slip Ruptures

    KAUST Repository

    Vyas, Jagdish Chandra; Mai, Paul Martin; Galis, Martin

    2016-01-01

    We investigate near‐field ground‐motion variability by computing the seismic wavefield for five kinematic unilateral‐rupture models of the 1992 Mw 7.3 Landers earthquake, eight simplified unilateral‐rupture models based on the Landers event, and a

  4. Hierarchical Bayesian Modeling of Fluid-Induced Seismicity

    Science.gov (United States)

    Broccardo, M.; Mignan, A.; Wiemer, S.; Stojadinovic, B.; Giardini, D.

    2017-11-01

    In this study, we present a Bayesian hierarchical framework to model fluid-induced seismicity. The framework is based on a nonhomogeneous Poisson process with a fluid-induced seismicity rate proportional to the rate of injected fluid. The fluid-induced seismicity rate model depends upon a set of physically meaningful parameters and has been validated for six fluid-induced case studies. In line with the vision of hierarchical Bayesian modeling, the rate parameters are considered as random variables. We develop both the Bayesian inference and updating rules, which are used to develop a probabilistic forecasting model. We tested the Basel 2006 fluid-induced seismic case study to prove that the hierarchical Bayesian model offers a suitable framework to coherently encode both epistemic uncertainty and aleatory variability. Moreover, it provides a robust and consistent short-term seismic forecasting model suitable for online risk quantification and mitigation.

  5. The Inclusion of Arbitrary Load Histories in the Strength Decay Model for Stress Rupture

    Science.gov (United States)

    Reeder, James R.

    2014-01-01

    Stress rupture is a failure mechanism where failures can occur after a period of time, even though the material has seen no increase in load. Carbon/epoxy composite materials have demonstrated the stress rupture failure mechanism. In a previous work, a model was proposed for stress rupture of composite overwrap pressure vessels (COPVs) and similar composite structures based on strength degradation. However, the original model was limited to constant load periods (holds) at constant load. The model was expanded in this paper to address arbitrary loading histories and specifically the inclusions of ramp loadings up to holds and back down. The broadening of the model allows for failures on loading to be treated as any other failure that may occur during testing instead of having to be treated as a special case. The inclusion of ramps can also influence the length of the "safe period" following proof loading that was previously predicted by the model. No stress rupture failures are predicted in a safe period because time is required for strength to decay from above the proof level to the lower level of loading. Although the model can predict failures during the ramp periods, no closed-form solution for the failure times could be derived. Therefore, two suggested solution techniques were proposed. Finally, the model was used to design an experiment that could detect the difference between the strength decay model and a commonly used model for stress rupture. Although these types of models are necessary to help guide experiments for stress rupture, only experimental evidence will determine how well the model may predict actual material response. If the model can be shown to be accurate, current proof loading requirements may result in predicted safe periods as long as 10(13) years. COPVs design requirements for stress rupture may then be relaxed, allowing more efficient designs, while still maintaining an acceptable level of safety.

  6. Time-predictable model application in probabilistic seismic hazard analysis of faults in Taiwan

    Directory of Open Access Journals (Sweden)

    Yu-Wen Chang

    2017-01-01

    Full Text Available Given the probability distribution function relating to the recurrence interval and the occurrence time of the previous occurrence of a fault, a time-dependent model of a particular fault for seismic hazard assessment was developed that takes into account the active fault rupture cyclic characteristics during a particular lifetime up to the present time. The Gutenberg and Richter (1944 exponential frequency-magnitude relation uses to describe the earthquake recurrence rate for a regional source. It is a reference for developing a composite procedure modelled the occurrence rate for the large earthquake of a fault when the activity information is shortage. The time-dependent model was used to describe the fault characteristic behavior. The seismic hazards contribution from all sources, including both time-dependent and time-independent models, were then added together to obtain the annual total lifetime hazard curves. The effects of time-dependent and time-independent models of fault [e.g., Brownian passage time (BPT and Poisson, respectively] in hazard calculations are also discussed. The proposed fault model result shows that the seismic demands of near fault areas are lower than the current hazard estimation where the time-dependent model was used on those faults, particularly, the elapsed time since the last event of the faults (such as the Chelungpu fault are short.

  7. Use of raster-based data layers to model spatial variation of seismotectonic data in probabilistic seismic hazard assessment

    Science.gov (United States)

    Zolfaghari, Mohammad R.

    2009-07-01

    Recent achievements in computer and information technology have provided the necessary tools to extend the application of probabilistic seismic hazard mapping from its traditional engineering use to many other applications. Examples for such applications are risk mitigation, disaster management, post disaster recovery planning and catastrophe loss estimation and risk management. Due to the lack of proper knowledge with regard to factors controlling seismic hazards, there are always uncertainties associated with all steps involved in developing and using seismic hazard models. While some of these uncertainties can be controlled by more accurate and reliable input data, the majority of the data and assumptions used in seismic hazard studies remain with high uncertainties that contribute to the uncertainty of the final results. In this paper a new methodology for the assessment of seismic hazard is described. The proposed approach provides practical facility for better capture of spatial variations of seismological and tectonic characteristics, which allows better treatment of their uncertainties. In the proposed approach, GIS raster-based data models are used in order to model geographical features in a cell-based system. The cell-based source model proposed in this paper provides a framework for implementing many geographically referenced seismotectonic factors into seismic hazard modelling. Examples for such components are seismic source boundaries, rupture geometry, seismic activity rate, focal depth and the choice of attenuation functions. The proposed methodology provides improvements in several aspects of the standard analytical tools currently being used for assessment and mapping of regional seismic hazard. The proposed methodology makes the best use of the recent advancements in computer technology in both software and hardware. The proposed approach is well structured to be implemented using conventional GIS tools.

  8. Dynamic rupture models of earthquakes on the Bartlett Springs Fault, Northern California

    Science.gov (United States)

    Lozos, Julian C.; Harris, Ruth A.; Murray, Jessica R.; Lienkaemper, James J.

    2015-01-01

    The Bartlett Springs Fault (BSF), the easternmost branch of the northern San Andreas Fault system, creeps along much of its length. Geodetic data for the BSF are sparse, and surface creep rates are generally poorly constrained. The two existing geodetic slip rate inversions resolve at least one locked patch within the creeping zones. We use the 3-D finite element code FaultMod to conduct dynamic rupture models based on both geodetic inversions, in order to determine the ability of rupture to propagate into the creeping regions, as well as to assess possible magnitudes for BSF ruptures. For both sets of models, we find that the distribution of aseismic creep limits the extent of coseismic rupture, due to the contrast in frictional properties between the locked and creeping regions.

  9. Evaluation of potential surface rupture and review of current seismic hazards program at the Los Alamos National Laboratory. Final report

    International Nuclear Information System (INIS)

    1991-01-01

    This report summarizes the authors review and evaluation of the existing seismic hazards program at Los Alamos National Laboratory (LANL). The report recommends that the original program be augmented with a probabilistic analysis of seismic hazards involving assignment of weighted probabilities of occurrence to all potential sources. This approach yields a more realistic evaluation of the likelihood of large earthquake occurrence particularly in regions where seismic sources may have recurrent intervals of several thousand years or more. The report reviews the locations and geomorphic expressions of identified fault lines along with the known displacements of these faults and last know occurrence of seismic activity. Faults are mapped and categorized into by their potential for actual movement. Based on geologic site characterization, recommendations are made for increased seismic monitoring; age-dating studies of faults and geomorphic features; increased use of remote sensing and aerial photography for surface mapping of faults; the development of a landslide susceptibility map; and to develop seismic design standards for all existing and proposed facilities at LANL

  10. Physics of Earthquake Rupture Propagation

    Science.gov (United States)

    Xu, Shiqing; Fukuyama, Eiichi; Sagy, Amir; Doan, Mai-Linh

    2018-05-01

    A comprehensive understanding of earthquake rupture propagation requires the study of not only the sudden release of elastic strain energy during co-seismic slip, but also of other processes that operate at a variety of spatiotemporal scales. For example, the accumulation of the elastic strain energy usually takes decades to hundreds of years, and rupture propagation and termination modify the bulk properties of the surrounding medium that can influence the behavior of future earthquakes. To share recent findings in the multiscale investigation of earthquake rupture propagation, we held a session entitled "Physics of Earthquake Rupture Propagation" during the 2016 American Geophysical Union (AGU) Fall Meeting in San Francisco. The session included 46 poster and 32 oral presentations, reporting observations of natural earthquakes, numerical and experimental simulations of earthquake ruptures, and studies of earthquake fault friction. These presentations and discussions during and after the session suggested a need to document more formally the research findings, particularly new observations and views different from conventional ones, complexities in fault zone properties and loading conditions, the diversity of fault slip modes and their interactions, the evaluation of observational and model uncertainties, and comparison between empirical and physics-based models. Therefore, we organize this Special Issue (SI) of Tectonophysics under the same title as our AGU session, hoping to inspire future investigations. Eighteen articles (marked with "this issue") are included in this SI and grouped into the following six categories.

  11. 3D Modelling of Seismically Active Parts of Underground Faults via Seismic Data Mining

    Science.gov (United States)

    Frantzeskakis, Theofanis; Konstantaras, Anthony

    2015-04-01

    During the last few years rapid steps have been taken towards drilling for oil in the western Mediterranean sea. Since most of the countries in the region benefit mainly from tourism and considering that the Mediterranean is a closed sea only replenishing its water once every ninety years careful measures are being taken to ensure safe drilling. In that concept this research work attempts to derive a three dimensional model of the seismically active parts of the underlying underground faults in areas of petroleum interest. For that purpose seismic spatio-temporal clustering has been applied to seismic data to identify potential distinct seismic regions in the area of interest. Results have been coalesced with two dimensional maps of underground faults from past surveys and seismic epicentres, having followed careful reallocation processing, have been used to provide information regarding the vertical extent of multiple underground faults in the region of interest. The end product is a three dimensional map of the possible underground location and extent of the seismically active parts of underground faults. Indexing terms: underground faults modelling, seismic data mining, 3D visualisation, active seismic source mapping, seismic hazard evaluation, dangerous phenomena modelling Acknowledgment This research work is supported by the ESPA Operational Programme, Education and Life Long Learning, Students Practical Placement Initiative. References [1] Alves, T.M., Kokinou, E. and Zodiatis, G.: 'A three-step model to assess shoreline and offshore susceptibility to oil spills: The South Aegean (Crete) as an analogue for confined marine basins', Marine Pollution Bulletin, In Press, 2014 [2] Ciappa, A., Costabile, S.: 'Oil spill hazard assessment using a reverse trajectory method for the Egadi marine protected area (Central Mediterranean Sea)', Marine Pollution Bulletin, vol. 84 (1-2), pp. 44-55, 2014 [3] Ganas, A., Karastathis, V., Moshou, A., Valkaniotis, S., Mouzakiotis

  12. Diagnosis of Complex Pulley Ruptures Using Ultrasound in Cadaver Models.

    Science.gov (United States)

    Schöffl, Isabelle; Hugel, Arnica; Schöffl, Volker; Rascher, Wolfgang; Jüngert, Jörg

    2017-03-01

    Pulley ruptures are common in climbing athletes. The purposes of this study were to determine the specific positioning of each pulley with regards to the joint, and to evaluate the ultrasound diagnostics of various pulley rupture combinations. For this, 34 cadaver fingers were analyzed via ultrasound, the results of which were compared to anatomic measurements. Different pulley ruptures were then simulated and evaluated using ultrasound in standardized dynamic forced flexion. Visualization of the A2 and A4 pulleys was achieved 100% of the time, while the A3 pulley was visible in 74% of cases. Similarly, injuries to the A2 and A4 pulleys were readily observable, while A3 pulley injuries were more challenging to identify (sensitivity of 0.2 for singular A3 pulley, 0.5 for A2/A4 pulley and 0.33 for A3/A4 pulley ruptures). Receiver operating characteristic analysis was used to evaluate the optimal tendon-bone distance for pulley rupture diagnosis, a threshold which was determined to be 1.9 mm for A2 pulley ruptures and 1.85 for A4 pulley ruptures. This study was the first to carry out a cadaver ultrasound examination of a wide variety of pulley ruptures. Ultrasound is a highly accurate tool for visualizing the A2 and A4 pulleys in a cadaver model. This method of pathology diagnosis was determined to be suitable for injuries to the A2 and A4 pulleys, but inadequate for A3 pulley injuries. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. Source modelling in seismic risk analysis for nuclear power plants

    International Nuclear Information System (INIS)

    Yucemen, M.S.

    1978-12-01

    The proposed probabilistic procedure provides a consistent method for the modelling, analysis and updating of uncertainties that are involved in the seismic risk analysis for nuclear power plants. The potential earthquake activity zones are idealized as point, line or area sources. For these seismic source types, expressions to evaluate their contribution to seismic risk are derived, considering all the possible site-source configurations. The seismic risk at a site is found to depend not only on the inherent randomness of the earthquake occurrences with respect to magnitude, time and space, but also on the uncertainties associated with the predicted values of the seismic and geometric parameters, as well as the uncertainty in the attenuation model. The uncertainty due to the attenuation equation is incorporated into the analysis through the use of random correction factors. The influence of the uncertainty resulting from the insufficient information on the seismic parameters and source geometry is introduced into the analysis by computing a mean risk curve averaged over the various alternative assumptions on the parameters and source geometry. Seismic risk analysis is carried for the city of Denizli, which is located in the seismically most active zone of Turkey. The second analysis is for Akkuyu

  14. Background noise model development for seismic stations of KMA

    Science.gov (United States)

    Jeon, Youngsoo

    2010-05-01

    The background noise recorded at seismometer is exist at any seismic signal due to the natural phenomena of the medium which the signal passed through. Reducing the seismic noise is very important to improve the data quality in seismic studies. But, the most important aspect of reducing seismic noise is to find the appropriate place before installing the seismometer. For this reason, NIMR(National Institution of Meteorological Researches) starts to develop a model of standard background noise for the broadband seismic stations of the KMA(Korea Meteorological Administration) using a continuous data set obtained from 13 broadband stations during the period of 2007 and 2008. We also developed the model using short period seismic data from 10 stations at the year of 2009. The method of Mcmara and Buland(2004) is applied to analyse background noise of Korean Peninsula. The fact that borehole seismometer records show low noise level at frequency range greater than 1 Hz compared with that of records at the surface indicate that the cultural noise of inland Korean Peninsula should be considered to process the seismic data set. Reducing Double Frequency peak also should be regarded because the Korean Peninsula surrounded by the seas from eastern, western and southern part. The development of KMA background model shows that the Peterson model(1993) is not applicable to fit the background noise signal generated from Korean Peninsula.

  15. Homogenization of Electromagnetic and Seismic Wavefields for Joint Inverse Modeling

    Science.gov (United States)

    Newman, G. A.; Commer, M.; Petrov, P.; Um, E. S.

    2011-12-01

    A significant obstacle in developing a robust joint imaging technology exploiting seismic and electromagnetic (EM) wave fields is the resolution at which these different geophysical measurements sense the subsurface. Imaging of seismic reflection data is an order of magnitude finer in resolution and scale compared to images produced with EM data. A consistent joint image of the subsurface geophysical attributes (velocity, electrical conductivity) requires/demands the different geophysical data types be similar in their resolution of the subsurface. The superior resolution of seismic data results from the fact that the energy propagates as a wave, while propagation of EM energy is diffusive and attenuates with distance. On the other hand, the complexity of the seismic wave field can be a significant problem due to high reflectivity of the subsurface and the generation of multiple scattering events. While seismic wave fields have been very useful in mapping the subsurface for energy resources, too much scattering and too many reflections can lead to difficulties in imaging and interpreting seismic data. To overcome these obstacles a formulation for joint imaging of seismic and EM wave fields is introduced, where each data type is matched in resolution. In order to accomplish this, seismic data are first transformed into the Laplace-Fourier Domain, which changes the modeling of the seismic wave field from wave propagation to diffusion. Though high frequency information (reflectivity) is lost with this transformation, several benefits follow: (1) seismic and EM data can be easily matched in resolution, governed by the same physics of diffusion, (2) standard least squares inversion works well with diffusive type problems including both transformed seismic and EM, (3) joint imaging of seismic and EM data may produce better starting velocity models critical for successful reverse time migration or full waveform imaging of seismic data (non transformed) and (4

  16. Seismically integrated geologic modelling: Guntong Field, Malay Basin

    Energy Technology Data Exchange (ETDEWEB)

    Calvert, Craig S.; Bhuyan, K.; Sterling, J. Helwick; Hill, Rob E.; Hubbard, R. Scott; Khare, Vijay; Wahrmund, Leslie A.; Wang, Gann-Shyong

    1998-12-31

    This presentation relates to a research project on offshore seismically reservoir modelling. The goal of the project was to develop and test a process for interpreting reservoir properties from 3-D seismic data and for integrating these data into the building of 3-D geologic models that would be suitable for use in flow simulation studies. The project produced a 3-D geologic model for three reservoir intervals and three predominantly non-reservoir intervals. Each reservoir interval was subdivided into faces that were determined by integrating core, well log, and seismic interpretations. predictions of porosity and lithology used in building the geologic model were made using seismic attributes calculated from acoustic impedance data. 8 figs.

  17. Seismic model of the nuclear boiler SPX2

    International Nuclear Information System (INIS)

    Christodoulou, K.

    1982-01-01

    A model of the nuclear boiler SPX2 is proposed in this paper enabling to carry out comparative calculations on the response to seismic effects. The calculations are made in CISE and SEPTEN departments of Electricite de France [fr

  18. LASSCI2009.2: layered earthquake rupture forecast model for central Italy, submitted to the CSEP project

    Directory of Open Access Journals (Sweden)

    Francesco Visini

    2010-11-01

    Full Text Available The Collaboratory for the Study of Earthquake Predictability (CSEP selected Italy as a testing region for probabilistic earthquake forecast models in October, 2008. The model we have submitted for the two medium-term forecast periods of 5 and 10 years (from 2009 is a time-dependent, geologically based earthquake rupture forecast that is defined for central Italy only (11-15˚ E; 41-45˚ N. The model took into account three separate layers of seismogenic sources: background seismicity; seismotectonic provinces; and individual faults that can produce major earthquakes (seismogenic boxes. For CSEP testing purposes, the background seismicity layer covered a range of magnitudes from 5.0 to 5.3 and the seismicity rates were obtained by truncated Gutenberg-Richter relationships for cells centered on the CSEP grid. Then the seismotectonic provinces layer returned the expected rates of medium-to-large earthquakes following a traditional Cornell-type approach. Finally, for the seismogenic boxes layer, the rates were based on the geometry and kinematics of the faults that different earthquake recurrence models have been assigned to, ranging from pure Gutenberg-Richter behavior to characteristic events, with the intermediate behavior named as the hybrid model. The results for different magnitude ranges highlight the contribution of each of the three layers to the total computation. The expected rates for M >6.0 on April 1, 2009 (thus computed before the L'Aquila, 2009, MW= 6.3 earthquake are of particular interest. They showed local maxima in the two seismogenic-box sources of Paganica and Sulmona, one of which was activated by the L'Aquila earthquake of April 6, 2009. Earthquake rates as of August 1, 2009, (now under test also showed a maximum close to the Sulmona source for MW ~6.5; significant seismicity rates (10-4 to 10-3 in 5 years for destructive events (magnitude up to 7.0 were located in other individual sources identified as being capable of such

  19. Performance of Irikura's Recipe Rupture Model Generator in Earthquake Ground Motion Simulations as Implemented in the Graves and Pitarka Hybrid Approach.

    Energy Technology Data Exchange (ETDEWEB)

    Pitarka, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-22

    We analyzed the performance of the Irikura and Miyake (2011) (IM2011) asperity-­ based kinematic rupture model generator, as implemented in the hybrid broadband ground-­motion simulation methodology of Graves and Pitarka (2010), for simulating ground motion from crustal earthquakes of intermediate size. The primary objective of our study is to investigate the transportability of IM2011 into the framework used by the Southern California Earthquake Center broadband simulation platform. In our analysis, we performed broadband (0 -­ 20Hz) ground motion simulations for a suite of M6.7 crustal scenario earthquakes in a hard rock seismic velocity structure using rupture models produced with both IM2011 and the rupture generation method of Graves and Pitarka (2016) (GP2016). The level of simulated ground motions for the two approaches compare favorably with median estimates obtained from the 2014 Next Generation Attenuation-­West2 Project (NGA-­West2) ground-­motion prediction equations (GMPEs) over the frequency band 0.1–10 Hz and for distances out to 22 km from the fault. We also found that, compared to GP2016, IM2011 generates ground motion with larger variability, particularly at near-­fault distances (<12km) and at long periods (>1s). For this specific scenario, the largest systematic difference in ground motion level for the two approaches occurs in the period band 1 – 3 sec where the IM2011 motions are about 20 – 30% lower than those for GP2016. We found that increasing the rupture speed by 20% on the asperities in IM2011 produced ground motions in the 1 – 3 second bandwidth that are in much closer agreement with the GMPE medians and similar to those obtained with GP2016. The potential implications of this modification for other rupture mechanisms and magnitudes are not yet fully understood, and this topic is the subject of ongoing study.

  20. Does permanent extensional deformation in lower forearc slopes indicate shallow plate-boundary rupture?

    Science.gov (United States)

    Geersen, J.; Ranero, C. R.; Kopp, H.; Behrmann, J. H.; Lange, D.; Klaucke, I.; Barrientos, S.; Diaz-Naveas, J.; Barckhausen, U.; Reichert, C.

    2018-05-01

    Seismic rupture of the shallow plate-boundary can result in large tsunamis with tragic socio-economic consequences, as exemplified by the 2011 Tohoku-Oki earthquake. To better understand the processes involved in shallow earthquake rupture in seismic gaps (where megathrust earthquakes are expected), and investigate the tsunami hazard, it is important to assess whether the region experienced shallow earthquake rupture in the past. However, there are currently no established methods to elucidate whether a margin segment has repeatedly experienced shallow earthquake rupture, with the exception of mechanical studies on subducted fault-rocks. Here we combine new swath bathymetric data, unpublished seismic reflection images, and inter-seismic seismicity to evaluate if the pattern of permanent deformation in the marine forearc of the Northern Chile seismic gap allows inferences on past earthquake behavior. While the tectonic configuration of the middle and upper slope remains similar over hundreds of kilometers along the North Chilean margin, we document permanent extensional deformation of the lower slope localized to the region 20.8°S-22°S. Critical taper analyses, the comparison of permanent deformation to inter-seismic seismicity and plate-coupling models, as well as recent observations from other subduction-zones, including the area that ruptured during the 2011 Tohoku-Oki earthquake, suggest that the normal faults at the lower slope may have resulted from shallow, possibly near-trench breaking earthquake ruptures in the past. In the adjacent margin segments, the 1995 Antofagasta, 2007 Tocopilla, and 2014 Iquique earthquakes were limited to the middle and upper-slope and the terrestrial forearc, and so are upper-plate normal faults. Our findings suggest a seismo-tectonic segmentation of the North Chilean margin that seems to be stable over multiple earthquake cycles. If our interpretations are correct, they indicate a high tsunami hazard posed by the yet un-ruptured

  1. Modeling 3D Dynamic Rupture on Arbitrarily-Shaped faults by Boundary-Conforming Finite Difference Method

    Science.gov (United States)

    Zhu, D.; Zhu, H.; Luo, Y.; Chen, X.

    2008-12-01

    We use a new finite difference method (FDM) and the slip-weakening law to model the rupture dynamics of a non-planar fault embedded in a 3-D elastic media with free surface. The new FDM, based on boundary- conforming grid, sets up the mapping equations between the curvilinear coordinate and the Cartesian coordinate and transforms irregular physical space to regular computational space; it also employs a higher- order non-staggered DRP/opt MacCormack scheme which is of low dispersion and low dissipation so that the high accuracy and stability of our rupture modeling are guaranteed. Compared with the previous methods, not only we can compute the spontaneous rupture of an arbitrarily shaped fault, but also can model the influence of the surface topography on the rupture process of earthquake. In order to verify the feasibility of this method, we compared our results and other previous results, and found out they matched perfectly. Thanks to the boundary-conforming FDM, problems such as dynamic rupture with arbitrary dip, strike and rake over an arbitrary curved plane can be handled; and supershear or subshear rupture can be simulated with different parameters such as the initial stresses and the critical slip displacement Dc. Besides, our rupture modeling is economical to be implemented owing to its high efficiency and does not suffer from displacement leakage. With the help of inversion data of rupture by field observations, this method is convenient to model rupture processes and seismograms of natural earthquakes.

  2. Computing broadband accelerograms using kinematic rupture modeling; Generation d'accelerogrammes synthetiques large-bande par modelisation cinematique de la rupture sismique

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Paredes, J.A

    2007-05-15

    In order to make the broadband kinematic rupture modeling more realistic with respect to dynamic modeling, physical constraints are added to the rupture parameters. To improve the slip velocity function (SVF) modeling, an evolution of the k{sup -2} source model is proposed, which consists to decompose the slip as a sum of sub-events by band of k. This model yields to SVF close to the solution proposed by Kostrov for a crack, while preserving the spectral characteristics of the radiated wave field, i.e. a w{sup 2} model with spectral amplitudes at high frequency scaled to the coefficient of directivity C{sub d}. To better control the directivity effects, a composite source description is combined with a scaling law defining the extent of the nucleation area for each sub-event. The resulting model allows to reduce the apparent coefficient of directivity to a fraction of C{sub d}, as well as to reproduce the standard deviation of the new empirical attenuation relationships proposed for Japan. To make source models more realistic, a variable rupture velocity in agreement with the physics of the rupture must be considered. The followed approach that is based on an analytical relation between the fracture energy, the slip and the rupture velocity, leads to higher values of the peak ground acceleration in the vicinity of the fault. Finally, to better account for the interaction of the wave field with the geological medium, a semi-empirical methodology is developed combining a composite source model with empirical Green functions, and is applied to the Yamaguchi, M{sub w} 5.9 earthquake. The modeled synthetics reproduce satisfactorily well the observed main characteristics of ground motions. (author)

  3. Modeling fault rupture hazard for the proposed repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Coppersmith, K.J.; Youngs, R.R.

    1992-01-01

    In this paper as part of the Electric Power Research Institute's High Level Waste program, the authors have developed a preliminary probabilistic model for assessing the hazard of fault rupture to the proposed high level waste repository at Yucca Mountain. The model is composed of two parts: the earthquake occurrence model that describes the three-dimensional geometry of earthquake sources and the earthquake recurrence characteristics for all sources in the site vicinity; and the rupture model that describes the probability of coseismic fault rupture of various lengths and amounts of displacement within the repository horizon 350 m below the surface. The latter uses empirical data from normal-faulting earthquakes to relate the rupture dimensions and fault displacement amounts to the magnitude of the earthquake. using a simulation procedure, we allow for earthquake occurrence on all of the earthquake sources in the site vicinity, model the location and displacement due to primary faults, and model the occurrence of secondary faulting in conjunction with primary faulting

  4. Seismic modelling of coal bed methane strata, Willow Creek, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, S.E.; Mayer, R.; Lawton, D.C.; Langenberg, W. [Consortium for Research in Elastic Wave Exploration Seismology, Calgary, AB (Canada)

    2001-07-01

    The purpose is to determine the feasibility of applying high- resolution reflection seismic surveying to coalbed methane (CBM) exploration and development. Numerical reflection seismic methods are examined for measuring the mapping continuity and coherence of coal zones. Numerical modelling of a coal zone in Upper Cretaceous sediments near Willow Creek, Alberta indicates that seismic data that is predominantly of 100 Hz is required to map the coal zone and lateral facies variations within the deposit. For resolution of individual coal seams, a central frequency >150 Hz would be needed. 26 refs., 17 figs., 3 tabs.

  5. A spatiotemporal clustering model for the Third Uniform California Earthquake Rupture Forecast (UCERF3‐ETAS): Toward an operational earthquake forecast

    Science.gov (United States)

    Field, Edward; Milner, Kevin R.; Hardebeck, Jeanne L.; Page, Morgan T.; van der Elst, Nicholas; Jordan, Thomas H.; Michael, Andrew J.; Shaw, Bruce E.; Werner, Maximillan J.

    2017-01-01

    We, the ongoing Working Group on California Earthquake Probabilities, present a spatiotemporal clustering model for the Third Uniform California Earthquake Rupture Forecast (UCERF3), with the goal being to represent aftershocks, induced seismicity, and otherwise triggered events as a potential basis for operational earthquake forecasting (OEF). Specifically, we add an epidemic‐type aftershock sequence (ETAS) component to the previously published time‐independent and long‐term time‐dependent forecasts. This combined model, referred to as UCERF3‐ETAS, collectively represents a relaxation of segmentation assumptions, the inclusion of multifault ruptures, an elastic‐rebound model for fault‐based ruptures, and a state‐of‐the‐art spatiotemporal clustering component. It also represents an attempt to merge fault‐based forecasts with statistical seismology models, such that information on fault proximity, activity rate, and time since last event are considered in OEF. We describe several unanticipated challenges that were encountered, including a need for elastic rebound and characteristic magnitude–frequency distributions (MFDs) on faults, both of which are required to get realistic triggering behavior. UCERF3‐ETAS produces synthetic catalogs of M≥2.5 events, conditioned on any prior M≥2.5 events that are input to the model. We evaluate results with respect to both long‐term (1000 year) simulations as well as for 10‐year time periods following a variety of hypothetical scenario mainshocks. Although the results are very plausible, they are not always consistent with the simple notion that triggering probabilities should be greater if a mainshock is located near a fault. Important factors include whether the MFD near faults includes a significant characteristic earthquake component, as well as whether large triggered events can nucleate from within the rupture zone of the mainshock. Because UCERF3‐ETAS has many sources of uncertainty, as

  6. San Onofre/Zion auxiliary feedwater system seismic fault tree modeling

    International Nuclear Information System (INIS)

    Najafi, B.; Eide, S.

    1982-02-01

    As part of the study for the seismic evaluation of the San Onofre Unit 1 Auxiliary Feedwater System (AFWS), a fault tree model was developed capable of handling the effect of structural failure of the plant (in the event of an earthquake) on the availability of the AFWS. A compatible fault tree model was developed for the Zion Unit 1 AFWS in order to compare the results of the two systems. It was concluded that if a single failure of the San Onofre Unit 1 AFWS is to be prevented, some weight existing, locally operated locked open manual valves have to be used for isolation of a rupture in specific parts of the AFWS pipings

  7. Thick deltaic sedimentation and detachment faulting delay the onset of continental rupture in the Northern Gulf of California: Analysis of seismic reflection profiles

    Science.gov (United States)

    Martin, A.; González-Escobar, M.; Fletcher, J. M.; Pacheco, M.; Oskin, M. E.; Dorsey, R. J.

    2013-12-01

    The transition from distributed continental extension to the rupture of continental lithosphere is imaged in the northern Gulf of California across the obliquely conjugate Tiburón-Upper Delfín basin segment. Structural mapping on a 5-20 km grid of seismic reflection lines of Petroleos Mexicanos (PEMEX) demonstrates that ~1000% extension is accommodated on a series of NNE-striking listric-normal faults that merge at depth into a detachment fault. The detachment juxtaposes a late-Neogene marine sequence over thinned continental crust and contains an intrabasinal divide due to footwall uplift. Two northwest striking, dextral-oblique faults bound both ends of the detachment and shear the continental crust parallel to the tectonic transport. A regional unconformity in the upper 0.5 seconds (TWTT) and crest erosion of rollover anticlines above the detachment indicates inversion and footwall uplift during the lithospheric rupture in the Upper Delfin and Lower Delfin basins. The maximum length of new crust in both Delfin basins is less than 40 km based on the lack of an acoustic basement and the absence of a lower sedimentary sequence beneath a wedge shaped upper sequence that reaches >5 km in thickness. A fundamental difference exists between the Tiburón-Delfin segment and the Guaymas segment to the south in terms of presence of low angle normal faults and amount of new oceanic lithosphere, which we attribute to thermal insulation, diffuse upper-plate extension, and slip on low angle normal faults engendered by a thick sedimentary lid.

  8. Mechanical System Simulations for Seismic Signature Modeling

    National Research Council Canada - National Science Library

    Lacombe, J

    2001-01-01

    .... Results for an M1A1 and T72 are discussed. By analyzing the simulated seismic signature data in conjunction with the spectral features associated with the vibrations of specific vehicle sprung and un-sprung components we are able to make...

  9. Rupture model of the 2015 M7.2 Sarez, Central Pamir, earthquake and the importance of strike-slip faulting in the Pamir interior

    Science.gov (United States)

    Metzger, S.; Schurr, B.; Schoene, T.; Zhang, Y.; Sudhaus, H.

    2016-12-01

    The Pamir mountain range, located in the Northwest of the India-Asia collision zone, accommodates approximately one third of the northward advance of the Indian continent at this longitude (i.e. 34 mm/yr) mostly by shortening at its northern thrust system. Geodetic and seismic data sets reveal here a narrow zone of high deformation and M7+ earthquakes of mostly thrust type with some dextral strike-slip faulting observed, too. The Pamir interior shows sinistral strike-slip and normal faulting indicating north-south compression and east-west extension. In this tectonic setting the two largest instrumentally recorded earthquakes, the M7+ 1911 and 2015 earthquake events in the central Pamir occurred with left-lateral shear along a NE-SW rupture plane. We present the co-seismic deformation field of the 2015 earthquake observed by Radar satellite interferometry (InSAR), SAR amplitude offsets and high-rate Global Positioning System (GPS). The InSAR and offset results reveal that the earthquake created a 50 km long surface rupture with maximum left-lateral offsets of more than two meters on a yet unmapped fault trace of the Sarez Karakul Fault System (SKFS). We further derive a distributed slip-model including a thorough model parameter uncertainty study. Using a two-step approach to first find the optimal rupture geometry and then invert for slip on discrete patches, we show that a data-driven patch resolution produces yields a better representation of the near-surface slip and an increased slip precision than a uniform patch approach without increasing the number of parameters and thus calculation time. Our best-fit model yields a sub-vertical fault plane with a strike of N39.5 degrees and a rupture area of 80 x 40 km2 with a maximum slip of 2 meters in the upper 10 km of the crust near the surface rupture. The 1911 and 2015 earthquakes demonstrate the importance of sinistral strike-slip faulting on the SKFS, contributing both to shear between the western and eastern

  10. A synthetic seismicity model for the Middle America Trench

    Science.gov (United States)

    Ward, Steven N.

    1991-01-01

    A novel iterative technique, based on the concept of fault segmentation and computed using 2D static dislocation theory, for building models of seismicity and fault interaction which are physically acceptable and geometrically and kinematically correct, is presented. The technique is applied in two steps to seismicity observed at the Middle America Trench. The first constructs generic models which randomly draw segment strengths and lengths from a 2D probability distribution. The second constructs predictive models in which segment lengths and strengths are adjusted to mimic the actual geography and timing of large historical earthquakes. Both types of models reproduce the statistics of seismicity over five units of magnitude and duplicate other aspects including foreshock and aftershock sequences, migration of foci, and the capacity to produce both characteristic and noncharacteristic earthquakes. Over a period of about 150 yr the complex interaction of fault segments and the nonlinear failure conditions conspire to transform an apparently deterministic model into a chaotic one.

  11. Development of a computer model to predict aortic rupture due to impact loading.

    Science.gov (United States)

    Shah, C S; Yang, K H; Hardy, W; Wang, H K; King, A I

    2001-11-01

    Aortic injuries during blunt thoracic impacts can lead to life threatening hemorrhagic shock and potential exsanguination. Experimental approaches designed to study the mechanism of aortic rupture such as the testing of cadavers is not only expensive and time consuming, but has also been relatively unsuccessful. The objective of this study was to develop a computer model and to use it to predict modes of loading that are most likely to produce aortic ruptures. Previously, a 3D finite element model of the human thorax was developed and validated against data obtained from lateral pendulum tests. The model included a detailed description of the heart, lungs, rib cage, sternum, spine, diaphragm, major blood vessels and intercostal muscles. However, the aorta was modeled as a hollow tube using shell elements with no fluid within, and its material properties were assumed to be linear and isotropic. In this study fluid elements representing blood have been incorporated into the model in order to simulate pressure changes inside the aorta due to impact. The current model was globally validated against experimental data published in the literature for both frontal and lateral pendulum impact tests. Simulations of the validated model for thoracic impacts from a number of directions indicate that the ligamentum arteriosum, subclavian artery, parietal pleura and pressure changes within the aorta are factors that could influence aortic rupture. The model suggests that a right-sided impact to the chest is potentially more hazardous with respect to aortic rupture than any other impact direction simulated in this study. The aortic isthmus was the most likely site of aortic rupture regardless of impact direction. The reader is cautioned that this model could only be validated on a global scale. Validation of the kinematics and dynamics of the aorta at the local level could not be done due to a lack of experimental data. It is hoped that this model will be used to design

  12. Critique of the Ford-Andresen film rupture model for aqueous stress corrosion cracking

    International Nuclear Information System (INIS)

    Hall, M.M.

    2009-01-01

    The Ford-Andresen film rupture model for aqueous stress corrosion cracking has obtained a prominent position in the nuclear reactor industry. The model is said to have superior predictive capabilities because it is derived from a fundamental understanding of the film rupture-repassivation mechanism of crack advance. However, a critical review shows that there are conceptual and mathematical problems with the Ford-Andresen model development; there are inconsistencies among the stated and implied assumptions, the crack tip current density expression lacks the necessary dependence on crack tip strain rate and the fundamental proportionality that exists between crack tip strain rate and crack growth rate is overlooked and omitted from the model development. Consequently, the Ford-Andresen model must be considered neither phenomenologically nor fundamentally supported.

  13. Light Water Reactor Sustainability Program Advanced Seismic Soil Structure Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bolisetti, Chandrakanth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in some instances the current SPRA approach has large uncertainties, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). SPRA’s are performed by convolving the seismic hazard (this is the estimate of all likely damaging earthquakes at the site of interest) with the seismic fragility (the conditional probability of failure of a structure, system, or component given the occurrence of earthquake ground motion). In this calculation, there are three main pieces to seismic risk quantification, 1) seismic hazard and nuclear power plants (NPPs) response to the hazard, 2) fragility or capacity of structures, systems and components (SSC), and 3) systems analysis. Two areas where NLSSI effects may be important in SPRA calculations are, 1) when calculating in-structure response at the area of interest, and 2) calculation of seismic fragilities (current fragility calculations assume a lognormal distribution for probability of failure of components). Some important effects when using NLSSI in the SPRA calculation process include, 1) gapping and sliding, 2) inclined seismic waves coupled with gapping and sliding of foundations atop soil, 3) inclined seismic waves coupled with gapping and sliding of deeply embedded structures, 4) soil dilatancy, 5) soil liquefaction, 6) surface waves, 7) buoyancy, 8) concrete cracking and 9) seismic isolation The focus of the research task presented here-in is on implementation of NLSSI into the SPRA calculation process when calculating in-structure response at the area

  14. Applicability of deterministic methods in seismic site effects modeling

    International Nuclear Information System (INIS)

    Cioflan, C.O.; Radulian, M.; Apostol, B.F.; Ciucu, C.

    2005-01-01

    The up-to-date information related to local geological structure in the Bucharest urban area has been integrated in complex analyses of the seismic ground motion simulation using deterministic procedures. The data recorded for the Vrancea intermediate-depth large earthquakes are supplemented with synthetic computations all over the city area. The hybrid method with a double-couple seismic source approximation and a relatively simple regional and local structure models allows a satisfactory reproduction of the strong motion records in the frequency domain (0.05-1)Hz. The new geological information and a deterministic analytical method which combine the modal summation technique, applied to model the seismic wave propagation between the seismic source and the studied sites, with the mode coupling approach used to model the seismic wave propagation through the local sedimentary structure of the target site, allows to extend the modelling to higher frequencies of earthquake engineering interest. The results of these studies (synthetic time histories of the ground motion parameters, absolute and relative response spectra etc) for the last 3 Vrancea strong events (August 31,1986 M w =7.1; May 30,1990 M w = 6.9 and October 27, 2004 M w = 6.0) can complete the strong motion database used for the microzonation purposes. Implications and integration of the deterministic results into the urban planning and disaster management strategies are also discussed. (authors)

  15. Modeling crustal deformation and rupture processes related to upwelling of deep CO2-rich fluids during the 1965-1967 Matsushiro Earthquake Swarm in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Cappa, F.; Rutqvist, J.; Yamamoto, K.

    2009-05-15

    In Matsushiro, central Japan, a series of more than 700,000 earthquakes occurred over a 2-year period (1965-1967) associated with a strike-slip faulting sequence. This swarm of earthquakes resulted in ground surface deformations, cracking of the topsoil, and enhanced spring-outflows with changes in chemical compositions as well as carbon dioxide (CO{sub 2}) degassing. Previous investigations of the Matsushiro earthquake swarm have suggested that migration of underground water and/or magma may have had a strong influence on the swarm activity. In this study, employing coupled multiphase flow and geomechanical modelling, we show that observed crustal deformations and seismicity can have been driven by upwelling of deep CO{sub 2}-rich fluids around the intersection of two fault zones - the regional East Nagano earthquake fault and the conjugate Matsushiro fault. We show that the observed spatial evolution of seismicity along the two faults and magnitudes surface uplift, are convincingly explained by a few MPa of pressurization from the upwelling fluid within the critically stressed crust - a crust under a strike-slip stress regime near the frictional strength limit. Our analysis indicates that the most important cause for triggering of seismicity during the Matsushiro swarm was the fluid pressurization with the associated reduction in effective stress and strength in fault segments that were initially near critically stressed for shear failure. Moreover, our analysis indicates that a two order of magnitude permeability enhancement in ruptured fault segments may be necessary to match the observed time evolution of surface uplift. We conclude that our hydromechanical modelling study of the Matsushiro earthquake swarm shows a clear connection between earthquake rupture, deformation, stress, and permeability changes, as well as large-scale fluid flow related to degassing of CO{sub 2} in the shallow seismogenic crust. Thus, our study provides further evidence of the

  16. Early Ankle Mobilization Promotes Healing in a Rabbit Model of Achilles Tendon Rupture.

    Science.gov (United States)

    Jielile, Jiasharete; Asilehan, Batiza; Wupuer, Aikeremu; Qianman, Bayixiati; Jialihasi, Ayidaer; Tangkejie, Wulanbai; Maimaitiaili, Abudouheilil; Shawutali, Nuerai; Badelhan, Aynaz; Niyazebieke, Hadelebieke; Aizezi, Adili; Aisaiding, Amuding; Bakyt, Yerzat; Aibek, Rakimbaiev; Wuerliebieke, Jianati

    2016-01-01

    The use of early mobilization of the ankle joint without orthosis in the treatment of Achilles tendon rupture has been advocated as the optimal management. The goal of this study was to compare outcomes in a postoperative rabbit model of Achilles tendon rupture between early mobilization and immobilized animals using a differential proteomics approach. In total, 135 rabbits were randomized into the control group (n=15), the postoperative cast immobilization (PCI) group (n=60), and the early mobilization (EM) group (n=60). A rupture of the Achilles tendon was created in each animal model and repaired microsurgically, and tendon samples were removed at 3, 7, 14, and 21 days postoperatively. Proteins were separated using 2-dimensional polyacrylamide gel electrophoresis and identified using peptide mass fingerprinting, tandem mass spectrometry, NCBI database searches, and bioinformatics analyses. A series of differentially expressed proteins were identified between groups, some of which may play an important role in Achilles tendon healing. Notable candidate proteins that were upregulated in the EM group were identified, such as CRMP-2, galactokinase 1, tropomyosin-4, and transthyretin. The healing of ruptured Achilles tendons appears to be affected at the level of protein expression with the use of early mobilization. The classic postoperative treatment of Achilles tendon rupture with an orthosis ignored the self-protecting instinct of humans. With a novel operative technique, the repaired tendon can persist the load that comes from traction in knee and ankle joint functional movement. In addition, kinesitherapy provided an excellent experimental outcome via a mechanobiological mechanism. Copyright 2016, SLACK Incorporated.

  17. Integrate urban‐scale seismic hazard analyses with the U.S. National Seismic Hazard Model

    Science.gov (United States)

    Moschetti, Morgan P.; Luco, Nicolas; Frankel, Arthur; Petersen, Mark D.; Aagaard, Brad T.; Baltay, Annemarie S.; Blanpied, Michael; Boyd, Oliver; Briggs, Richard; Gold, Ryan D.; Graves, Robert; Hartzell, Stephen; Rezaeian, Sanaz; Stephenson, William J.; Wald, David J.; Williams, Robert A.; Withers, Kyle

    2018-01-01

    For more than 20 yrs, damage patterns and instrumental recordings have highlighted the influence of the local 3D geologic structure on earthquake ground motions (e.g., M">M 6.7 Northridge, California, Gao et al., 1996; M">M 6.9 Kobe, Japan, Kawase, 1996; M">M 6.8 Nisqually, Washington, Frankel, Carver, and Williams, 2002). Although this and other local‐scale features are critical to improving seismic hazard forecasts, historically they have not been explicitly incorporated into the U.S. National Seismic Hazard Model (NSHM, national model and maps), primarily because the necessary basin maps and methodologies were not available at the national scale. Instead,...

  18. First approximations in avalanche model validations using seismic information

    Science.gov (United States)

    Roig Lafon, Pere; Suriñach, Emma; Bartelt, Perry; Pérez-Guillén, Cristina; Tapia, Mar; Sovilla, Betty

    2017-04-01

    Avalanche dynamics modelling is an essential tool for snow hazard management. Scenario based numerical modelling provides quantitative arguments for decision-making. The software tool RAMMS (WSL Institute for Snow and Avalanche Research SLF) is one such tool, often used by government authorities and geotechnical offices. As avalanche models improve, the quality of the numerical results will depend increasingly on user experience on the specification of input (e.g. release and entrainment volumes, secondary releases, snow temperature and quality). New model developments must continue to be validated using real phenomena data, for improving performance and reliability. The avalanches group form University of Barcelona (RISKNAT - UB), has studied the seismic signals generated from avalanches since 1994. Presently, the group manages the seismic installation at SLF's Vallée de la Sionne experimental site (VDLS). At VDLS the recorded seismic signals can be correlated to other avalanche measurement techniques, including both advanced remote sensing methods (radars, videogrammetry) and obstacle based sensors (pressure, capacitance, optical sender-reflector barriers). This comparison between different measurement techniques allows the group to address the question if seismic analysis can be used alone, on more additional avalanche tracks, to gain insight and validate numerical avalanche dynamics models in different terrain conditions. In this study, we aim to add the seismic data as an external record of the phenomena, able to validate RAMMS models. The seismic sensors are considerable easy and cheaper to install than other physical measuring tools, and are able to record data from the phenomena in every atmospheric conditions (e.g. bad weather, low light, freezing make photography, and other kind of sensors not usable). With seismic signals, we record the temporal evolution of the inner and denser parts of the avalanche. We are able to recognize the approximate position

  19. Demonstration of improved seismic source inversion method of tele-seismic body wave

    Science.gov (United States)

    Yagi, Y.; Okuwaki, R.

    2017-12-01

    Seismic rupture inversion of tele-seismic body wave has been widely applied to studies of large earthquakes. In general, tele-seismic body wave contains information of overall rupture process of large earthquake, while the tele-seismic body wave is inappropriate for analyzing a detailed rupture process of M6 7 class earthquake. Recently, the quality and quantity of tele-seismic data and the inversion method has been greatly improved. Improved data and method enable us to study a detailed rupture process of M6 7 class earthquake even if we use only tele-seismic body wave. In this study, we demonstrate the ability of the improved data and method through analyses of the 2016 Rieti, Italy earthquake (Mw 6.2) and the 2016 Kumamoto, Japan earthquake (Mw 7.0) that have been well investigated by using the InSAR data set and the field observations. We assumed the rupture occurring on a single fault plane model inferred from the moment tensor solutions and the aftershock distribution. We constructed spatiotemporal discretized slip-rate functions with patches arranged as closely as possible. We performed inversions using several fault models and found that the spatiotemporal location of large slip-rate area was robust. In the 2016 Kumamoto, Japan earthquake, the slip-rate distribution shows that the rupture propagated to southwest during the first 5 s. At 5 s after the origin time, the main rupture started to propagate toward northeast. First episode and second episode correspond to rupture propagation along the Hinagu fault and the Futagawa fault, respectively. In the 2016 Rieti, Italy earthquake, the slip-rate distribution shows that the rupture propagated to up-dip direction during the first 2 s, and then rupture propagated toward northwest. From both analyses, we propose that the spatiotemporal slip-rate distribution estimated by improved inversion method of tele-seismic body wave has enough information to study a detailed rupture process of M6 7 class earthquake.

  20. A Critique of a Phenomenological Fiber Breakage Model for Stress Rupture of Composite Materials

    Science.gov (United States)

    Reeder, James R.

    2010-01-01

    Stress rupture is not a critical failure mode for most composite structures, but there are a few applications where it can be critical. One application where stress rupture can be a critical design issue is in Composite Overwrapped Pressure Vessels (COPV's), where the composite material is highly and uniformly loaded for long periods of time and where very high reliability is required. COPV's are normally required to be proof loaded before being put into service to insure strength, but it is feared that the proof load may cause damage that reduces the stress rupture reliability. Recently, a fiber breakage model was proposed specifically to estimate a reduced reliability due to proof loading. The fiber breakage model attempts to model physics believed to occur at the microscopic scale, but validation of the model has not occurred. In this paper, the fiber breakage model is re-derived while highlighting assumptions that were made during the derivation. Some of the assumptions are examined to assess their effect on the final predicted reliability.

  1. Seismic behaviour of PWR fuel assemblies model and its validation

    International Nuclear Information System (INIS)

    Queval, J.C.; Gantenbein, F.; Brochard, D.; Benjedidia, A.

    1991-01-01

    The validity of the models simulating the seismic behaviour of PWR cores can only be exactly demonstrated by seismic testing on groups of fuel assemblies. Shake table seismic tests of rows of assembly mock-ups, conducted by the CEA in conjunction with FRAMATOME, are presented in reference /1/. This paper addresses the initial comparisons between model and test results for a row of five assemblies in air. Two models are used: a model with a single beam per assembly, used regularly in accident analyses, and described in reference /2/, and a more refined 2-beam per assembly model, geared mainly towards interpretation of test results. The 2-beam model is discussed first, together with parametric studies used to characterize it, and the study of the assembly row for a period limited to 2 seconds and for different excitation levels. For the 1-beam model assembly used in applications, the row is studied over the total test time, i.e twenty seconds, which covers the average duration of the core seismic behaviour studies, and for a peak exciting acceleration value at 0.4 g, which corresponds to the SSE level of the reference spectrum

  2. How much does geometry of seismic sources matter in tsunami modeling? A sensitivity analysis for the Calabrian subduction interface

    Science.gov (United States)

    Tonini, R.; Maesano, F. E.; Tiberti, M. M.; Romano, F.; Scala, A.; Lorito, S.; Volpe, M.; Basili, R.

    2017-12-01

    The geometry of seismogenic sources could be one of the most important factors concurring to control the generation and the propagation of earthquake-generated tsunamis and their effects on the coasts. Since the majority of potentially tsunamigenic earthquakes occur offshore, the corresponding faults are generally poorly constrained and, consequently, their geometry is often oversimplified as a planar fault. The rupture area of mega-thrust earthquakes in subduction zones, where most of the greatest tsunamis have occurred, extends for tens to hundreds of kilometers both down dip and along strike, and generally deviates from the planar geometry. Therefore, the larger the earthquake size is, the weaker the planar fault assumption become. In this work, we present a sensitivity analysis aimed to explore the effects on modeled tsunamis generated by seismic sources with different degrees of geometric complexities. We focused on the Calabrian subduction zone, located in the Mediterranean Sea, which is characterized by the convergence between the African and European plates, with rates of up to 5 mm/yr. This subduction zone has been considered to have generated some past large earthquakes and tsunamis, despite it shows only in-slab significant seismic activity below 40 km depth and no relevant seismicity in the shallower portion of the interface. Our analysis is performed by defining and modeling an exhaustive set of tsunami scenarios located in the Calabrian subduction and using different models of the subduction interface with increasing geometrical complexity, from a planar surface to a highly detailed 3D surface. The latter was obtained from the interpretation of a dense network of seismic reflection profiles coupled with the analysis of the seismicity distribution. The more relevant effects due to the inclusion of 3D complexities in the seismic source geometry are finally highlighted in terms of the resulting tsunami impact.

  3. Scale modeling of reinforced concrete structures subjected to seismic loading

    International Nuclear Information System (INIS)

    Dove, R.C.

    1983-01-01

    Reinforced concrete, Category I structures are so large that the possibility of seismicly testing the prototype structures under controlled conditions is essentially nonexistent. However, experimental data, from which important structural properties can be determined and existing and new methods of seismic analysis benchmarked, are badly needed. As a result, seismic experiments on scaled models are of considerable interest. In this paper, the scaling laws are developed in some detail so that assumptions and choices based on judgement can be clearly recognized and their effects discussed. The scaling laws developed are then used to design a reinforced concrete model of a Category I structure. Finally, how scaling is effected by various types of damping (viscous, structural, and Coulomb) is discussed

  4. Summary report of seismic PSA of BWR model plant

    International Nuclear Information System (INIS)

    1999-05-01

    This report presents a seismic PSA (Probabilistic Safety Assessment) methodology developed at the Japan Atomic Energy Research Institute (JAERI) for evaluating risks of nuclear power plants (NPPs) and the results from an application of the methodology to a BWR plant in Japan, which is termed Model Plant'. The seismic PSA procedures developed at JAERI are to evaluate core damage frequency (CDF) and have the following four steps: (1) evaluation of seismic hazard, (2) evaluation of realistic response, (3) evaluation of component capacities and failure probabilities, and (4) evaluation of conditional probability of system failure and CDF. Although these procedures are based on the methodologies established and used in the United States, they include several unique features: (1) seismic hazard analysis is performed with use of available knowledge and database on seismological conditions in Japan; (2) response evaluation is performed with a response factor method which is cost effective and associated uncertainties can be reduced with use of modern methods of design calculations; (3) capacity evaluation is performed with use of test results available in Japan in combination with design information and generic capacity data in the U.S.A.; (4) systems reliability analysis, performed with use of the computer code SECOM-2 developed at JAERI, includes identification of dominant accident sequences, importance analysis of components and systems as well as the CDF evaluation with consideration of the effect of correlation of failures by a newly developed method based on the Monte Carlo method. The effect of correlation has been recognized as an important issue in seismic PSAs. The procedures was used to perform a seismic PSA of a 1100 MWe BWR plant. Results are shown as well as the insights derived and future research needs identified in this seismic PSA. (J.P.N.)

  5. Analysis of Fan Waves in a Laboratory Model Simulating the Propagation of Shear Ruptures in Rocks

    Science.gov (United States)

    Tarasov, B. G.; Sadovskii, V. M.; Sadovskaya, O. V.

    2017-12-01

    The fan-shaped mechanism of rotational motion transmission in a system of elastically bonded slabs on flat surface, simulating the propagation of shear ruptures in super brittle rocks, is analyzed. Such ruptures appear in the Earth's crust at seismogenic depths. They propagate due to the nucleation of oblique tensile microcracks, leading to the formation of a fan domino-structure in the rupture head. A laboratory physical model was created which demonstrates the process of fan-structure wave propagation. Equations of the dynamics of rotational motion of slabs as a mechanical system with a finite number of degrees of freedom are obtained. Based on the Merson method of solving the Cauchy problem for systems of ordinary differential equations, the computational algorithm taking into account contact interaction of slabs is developed. Within the framework of a simplified mathematical model of dynamic behavior of a fan-shaped system in the approximation of a continuous medium, the approximate estimates of the length of a fan depending on the velocity of its motion are obtained. It is shown that in the absence of friction a fan can move with any velocity that does not exceed the critical value, which depends on the size, the moment of inertia of slabs, the initial angle and the elasticity coefficient of bonds. In the presence of friction a fan stops. On the basis of discrete and continuous models, the main qualitative features of the behavior of a fan-structure moving under the action of applied tangential forces, whose values in a laboratory physical model are regulated by a change in the inclination angle of the rupture plane, are analyzed. Comparison of computations and laboratory measurements and observations shows good correspondence between the results.

  6. Numerical modeling of the 2017 active seismic infrasound balloon experiment

    Science.gov (United States)

    Brissaud, Q.; Komjathy, A.; Garcia, R.; Cutts, J. A.; Pauken, M.; Krishnamoorthy, S.; Mimoun, D.; Jackson, J. M.; Lai, V. H.; Kedar, S.; Levillain, E.

    2017-12-01

    We have developed a numerical tool to propagate acoustic and gravity waves in a coupled solid-fluid medium with topography. It is a hybrid method between a continuous Galerkin and a discontinuous Galerkin method that accounts for non-linear atmospheric waves, visco-elastic waves and topography. We apply this method to a recent experiment that took place in the Nevada desert to study acoustic waves from seismic events. This experiment, developed by JPL and its partners, wants to demonstrate the viability of a new approach to probe seismic-induced acoustic waves from a balloon platform. To the best of our knowledge, this could be the only way, for planetary missions, to perform tomography when one faces challenging surface conditions, with high pressure and temperature (e.g. Venus), and thus when it is impossible to use conventional electronics routinely employed on Earth. To fully demonstrate the effectiveness of such a technique one should also be able to reconstruct the observed signals from numerical modeling. To model the seismic hammer experiment and the subsequent acoustic wave propagation, we rely on a subsurface seismic model constructed from the seismometers measurements during the 2017 Nevada experiment and an atmospheric model built from meteorological data. The source is considered as a Gaussian point source located at the surface. Comparison between the numerical modeling and the experimental data could help future mission designs and provide great insights into the planet's interior structure.

  7. Estimation of the seismic hazards of the possible rupture of the Pastores and Venta de Bravo faults in the Acambay grabens, state of Mexico, Mexico, using the Empirical Green's Function Method

    Science.gov (United States)

    Ishizawa, O. A.; Lermo, J.; Aguirre, J.

    2003-04-01

    possible rupture of the faults being studied. For that purpose a realistic model on the basis of the source parameters of the above mentioned earthquake will be proposed. The Empirical Green's Function Method allows us to simulate strong seismic movements starting from the records of small earthquakes which have occurred near the site where the simulation is intended. This method takes advantage of the information, of trajectory and site, contained in the record of an earthquake of small magnitude. Through the utilization of the method of superposition proposed by Irikura (1986) and using the spectral scaling law stated by Aki (1967) the larger magnitude earthquake is modeled according to the proposed geometrical model. The reason for choosing the station of University Campus is the richness of seismic information of subduction and normal earthquakes during the past century. Besides, from the University Campus station, the results obtained can be extrapolated to the rest of Mexico City.

  8. Modeling the Excitation of Seismic Waves by the Joplin Tornado

    Science.gov (United States)

    Valovcin, Anne; Tanimoto, Toshiro

    2017-10-01

    Tornadoes generate seismic signals when they contact the ground. Here we examine the signals excited by the Joplin tornado, which passed within 2 km of a station in the Earthscope Transportable Array. We model the tornado-generated vertical seismic signal at low frequencies (0.01-0.03 Hz) and solve for the strength of the seismic source. The resulting source amplitude is largest when the tornado was reported to be strongest (EF 4-5), and the amplitude is smallest when the tornado was weak (EF 0-2). A further understanding of the relationship between source amplitude and tornado intensity could open up new ways to study tornadoes from the ground.

  9. Quantifying variability in earthquake rupture models using multidimensional scaling: application to the 2011 Tohoku earthquake

    KAUST Repository

    Razafindrakoto, Hoby

    2015-04-22

    Finite-fault earthquake source inversion is an ill-posed inverse problem leading to non-unique solutions. In addition, various fault parametrizations and input data may have been used by different researchers for the same earthquake. Such variability leads to large intra-event variability in the inferred rupture models. One way to understand this problem is to develop robust metrics to quantify model variability. We propose a Multi Dimensional Scaling (MDS) approach to compare rupture models quantitatively. We consider normalized squared and grey-scale metrics that reflect the variability in the location, intensity and geometry of the source parameters. We test the approach on two-dimensional random fields generated using a von Kármán autocorrelation function and varying its spectral parameters. The spread of points in the MDS solution indicates different levels of model variability. We observe that the normalized squared metric is insensitive to variability of spectral parameters, whereas the grey-scale metric is sensitive to small-scale changes in geometry. From this benchmark, we formulate a similarity scale to rank the rupture models. As case studies, we examine inverted models from the Source Inversion Validation (SIV) exercise and published models of the 2011 Mw 9.0 Tohoku earthquake, allowing us to test our approach for a case with a known reference model and one with an unknown true solution. The normalized squared and grey-scale metrics are respectively sensitive to the overall intensity and the extension of the three classes of slip (very large, large, and low). Additionally, we observe that a three-dimensional MDS configuration is preferable for models with large variability. We also find that the models for the Tohoku earthquake derived from tsunami data and their corresponding predictions cluster with a systematic deviation from other models. We demonstrate the stability of the MDS point-cloud using a number of realizations and jackknife tests, for

  10. Quantifying variability in earthquake rupture models using multidimensional scaling: application to the 2011 Tohoku earthquake

    KAUST Repository

    Razafindrakoto, Hoby; Mai, Paul Martin; Genton, Marc G.; Zhang, Ling; Thingbaijam, Kiran Kumar

    2015-01-01

    Finite-fault earthquake source inversion is an ill-posed inverse problem leading to non-unique solutions. In addition, various fault parametrizations and input data may have been used by different researchers for the same earthquake. Such variability leads to large intra-event variability in the inferred rupture models. One way to understand this problem is to develop robust metrics to quantify model variability. We propose a Multi Dimensional Scaling (MDS) approach to compare rupture models quantitatively. We consider normalized squared and grey-scale metrics that reflect the variability in the location, intensity and geometry of the source parameters. We test the approach on two-dimensional random fields generated using a von Kármán autocorrelation function and varying its spectral parameters. The spread of points in the MDS solution indicates different levels of model variability. We observe that the normalized squared metric is insensitive to variability of spectral parameters, whereas the grey-scale metric is sensitive to small-scale changes in geometry. From this benchmark, we formulate a similarity scale to rank the rupture models. As case studies, we examine inverted models from the Source Inversion Validation (SIV) exercise and published models of the 2011 Mw 9.0 Tohoku earthquake, allowing us to test our approach for a case with a known reference model and one with an unknown true solution. The normalized squared and grey-scale metrics are respectively sensitive to the overall intensity and the extension of the three classes of slip (very large, large, and low). Additionally, we observe that a three-dimensional MDS configuration is preferable for models with large variability. We also find that the models for the Tohoku earthquake derived from tsunami data and their corresponding predictions cluster with a systematic deviation from other models. We demonstrate the stability of the MDS point-cloud using a number of realizations and jackknife tests, for

  11. Modeling of seismic data in the downward continuation approach

    NARCIS (Netherlands)

    Stolk, C.C.; de Hoop, Maarten V.

    2005-01-01

    Seismic data are commonly modeled by a high-frequency single scattering approximation. This amounts to a linearization in the medium coefficient about a smooth background. The discontinuities are contained in the medium perturbation. The high-frequency part of the wavefield in the background medium

  12. Models for seismic wave propagation in periodically layered porous media

    NARCIS (Netherlands)

    Kudarova, A.; Van Dalen, K.N.; Drijkoningen, G.G.

    2014-01-01

    Several models are discussed for seismic wave propagation in periodically layered poroelastic media where layers represent mesoscopic-scale heterogeneities that are larger than the pore and grain sizes but smaller than the wavelength. The layers behave according to Biot’s theory. Wave propagation

  13. Dynamic mortar finite element method for modeling of shear rupture on frictional rough surfaces

    Science.gov (United States)

    Tal, Yuval; Hager, Bradford H.

    2017-09-01

    This paper presents a mortar-based finite element formulation for modeling the dynamics of shear rupture on rough interfaces governed by slip-weakening and rate and state (RS) friction laws, focusing on the dynamics of earthquakes. The method utilizes the dual Lagrange multipliers and the primal-dual active set strategy concepts, together with a consistent discretization and linearization of the contact forces and constraints, and the friction laws to obtain a semi-smooth Newton method. The discretization of the RS friction law involves a procedure to condense out the state variables, thus eliminating the addition of another set of unknowns into the system. Several numerical examples of shear rupture on frictional rough interfaces demonstrate the efficiency of the method and examine the effects of the different time discretization schemes on the convergence, energy conservation, and the time evolution of shear traction and slip rate.

  14. Modelling ground rupture due to groundwater withdrawal: applications to test cases in China and Mexico

    Science.gov (United States)

    Franceschini, A.; Teatini, P.; Janna, C.; Ferronato, M.; Gambolati, G.; Ye, S.; Carreón-Freyre, D.

    2015-11-01

    The stress variation induced by aquifer overdraft in sedimentary basins with shallow bedrock may cause rupture in the form of pre-existing fault activation or earth fissure generation. The process is causing major detrimental effects on a many areas in China and Mexico. Ruptures yield discontinuity in both displacement and stress field that classic continuous finite element (FE) models cannot address. Interface finite elements (IE), typically used in contact mechanics, may be of great help and are implemented herein to simulate the fault geomechanical behaviour. Two main approaches, i.e. Penalty and Lagrangian, are developed to enforce the contact condition on the element interface. The incorporation of IE incorporation into a three-dimensional (3-D) FE geomechanical simulator shows that the Lagrangian approach is numerically more robust and stable than the Penalty, thus providing more reliable solutions. Furthermore, the use of a Newton-Raphson scheme to deal with the non-linear elasto-plastic fault behaviour allows for quadratic convergence. The FE - IE model is applied to investigate the likely ground rupture in realistic 3-D geologic settings. The case studies are representative of the City of Wuxi in the Jiangsu Province (China), and of the City of Queretaro, Mexico, where significant land subsidence has been accompanied by the generation of several earth fissures jeopardizing the stability and integrity of the overland structures and infrastructure.

  15. Modelling Active Faults in Probabilistic Seismic Hazard Analysis (PSHA) with OpenQuake: Definition, Design and Experience

    Science.gov (United States)

    Weatherill, Graeme; Garcia, Julio; Poggi, Valerio; Chen, Yen-Shin; Pagani, Marco

    2016-04-01

    hanging wall and directivity effects) within modern ground motion prediction equations, can have an influence on the seismic hazard at a site. Yet we also illustrate the conditions under which these effects may be partially tempered when considering the full uncertainty in rupture behaviour within the fault system. The third challenge is the development of efficient means for representing both aleatory and epistemic uncertainties from active fault models in PSHA. In implementing state-of-the-art seismic hazard models into OpenQuake, such as those recently undertaken in California and Japan, new modeling techniques are needed that redefine how we treat interdependence of ruptures within the model (such as mutual exclusivity), and the propagation of uncertainties emerging from geology. Finally, we illustrate how OpenQuake, and GEM's additional toolkits for model preparation, can be applied to address long-standing issues in active fault modeling in PSHA. These include constraining the seismogenic coupling of a fault and the partitioning of seismic moment between the active fault surfaces and the surrounding seismogenic crust. We illustrate some of the possible roles that geodesy can play in the process, but highlight where this may introduce new uncertainties and potential biases into the seismic hazard process, and how these can be addressed.

  16. Toe-of-slope of a Cretaceous carbonate platform in outcrop, seismic model and offshore seismic data (Apulia, Italy)

    Science.gov (United States)

    Bracco Gartner, Guido; Morsilli, Michele; Schlager, Wolfgang; Bosellini, Alfonso

    Synthetic seismic models of outcrops in the Early Cretaceous slope of a carbonate platform on the Gargano Promontory (southern Italy) were compared to an offshore seismic section south of the Promontory. Outcrops of the same age on the promontory have the same sequence stratigraphic characteristics as their offshore equivalent, and are the only areas where the transition from platform to basin of Early Cretaceous is exposed on land. Two adjacent outcrop areas were combined into one seismic-scale lithologic model with the aid of photo mosaics, measured sections, and biostratigraphic data. Velocity, density, and porosity measurements on spot samples were used to construct the impedance model. Seismic models were generated by vertical incidence and finite difference programs. The results indicate that the reflections in the seismic model are controlled by the impedance contrast between low porous intervals rich in debris from the platform and highly porous intervals of pelagic lime mudstone, nearly devoid of debris. Finite difference seismic display showed best resemblance with the real seismic data, especially by mapping a drowning unconformity.

  17. Core seismic behaviour: linear and non-linear models

    International Nuclear Information System (INIS)

    Bernard, M.; Van Dorsselaere, M.; Gauvain, M.; Jenapierre-Gantenbein, M.

    1981-08-01

    The usual methodology for the core seismic behaviour analysis leads to a double complementary approach: to define a core model to be included in the reactor-block seismic response analysis, simple enough but representative of basic movements (diagrid or slab), to define a finer core model, with basic data issued from the first model. This paper presents the history of the different models of both kinds. The inert mass model (IMM) yielded a first rough diagrid movement. The direct linear model (DLM), without shocks and with sodium as an added mass, let to two different ones: DLM 1 with independent movements of the fuel and radial blanket subassemblies, and DLM 2 with a core combined movement. The non-linear (NLM) ''CORALIE'' uses the same basic modelization (Finite Element Beams) but accounts for shocks. It studies the response of a diameter on flats and takes into account the fluid coupling and the wrapper tube flexibility at the pad level. Damping consists of one modal part of 2% and one part due to shocks. Finally, ''CORALIE'' yields the time-history of the displacements and efforts on the supports, but damping (probably greater than 2%) and fluid-structures interaction are still to be precised. The validation experiments were performed on a RAPSODIE core mock-up on scale 1, in similitude of 1/3 as to SPX 1. The equivalent linear model (ELM) was developed for the SPX 1 reactor-block response analysis and a specified seismic level (SB or SM). It is composed of several oscillators fixed to the diagrid and yields the same maximum displacements and efforts than the NLM. The SPX 1 core seismic analysis with a diagrid input spectrum which corresponds to a 0,1 g group acceleration, has been carried out with these models: some aspects of these calculations are presented here

  18. Rupture Dynamics and Scaling Behavior of Hydraulically Stimulated Micro-Earthquakes in a Shale Reservoir

    Science.gov (United States)

    Viegas, G. F.; Urbancic, T.; Baig, A. M.

    2014-12-01

    In hydraulic fracturing completion programs fluids are injected under pressure into fractured rock formations to open escape pathways for trapped hydrocarbons along pre-existing and newly generated fractures. To characterize the failure process, we estimate static and dynamic source and rupture parameters, such as dynamic and static stress drop, radiated energy, seismic efficiency, failure modes, failure plane orientations and dimensions, and rupture velocity to investigate the rupture dynamics and scaling relations of micro-earthquakes induced during a hydraulic fracturing shale completion program in NE British Columbia, Canada. The relationships between the different parameters combined with the in-situ stress field and rock properties provide valuable information on the rupture process giving insights into the generation and development of the fracture network. Approximately 30,000 micro-earthquakes were recorded using three multi-sensor arrays of high frequency geophones temporarily placed close to the treatment area at reservoir depth (~2km). On average the events have low radiated energy, low dynamic stress and low seismic efficiency, consistent with the obtained slow rupture velocities. Events fail in overshoot mode (slip weakening failure model), with fluids lubricating faults and decreasing friction resistance. Events occurring in deeper formations tend to have faster rupture velocities and are more efficient in radiating energy. Variations in rupture velocity tend to correlate with variation in depth, fault azimuth and elapsed time, reflecting a dominance of the local stress field over other factors. Several regions with different characteristic failure modes are identifiable based on coherent stress drop, seismic efficiency, rupture velocities and fracture orientations. Variations of source parameters with rock rheology and hydro-fracture fluids are also observed. Our results suggest that the spatial and temporal distribution of events with similar

  19. Global molecular changes in a tibial compression induced ACL rupture model of post-traumatic osteoarthritis.

    Science.gov (United States)

    Chang, Jiun C; Sebastian, Aimy; Murugesh, Deepa K; Hatsell, Sarah; Economides, Aris N; Christiansen, Blaine A; Loots, Gabriela G

    2017-03-01

    Joint injury causes post-traumatic osteoarthritis (PTOA). About ∼50% of patients rupturing their anterior cruciate ligament (ACL) will develop PTOA within 1-2 decades of the injury, yet the mechanisms responsible for the development of PTOA after joint injury are not well understood. In this study, we examined whole joint gene expression by RNA sequencing (RNAseq) at 1 day, 1-, 6-, and 12 weeks post injury, in a non-invasive tibial compression (TC) overload mouse model of PTOA that mimics ACL rupture in humans. We identified 1446 genes differentially regulated between injured and contralateral joints. This includes known regulators of osteoarthritis such as MMP3, FN1, and COMP, and several new genes including Suco, Sorcs2, and Medag. We also identified 18 long noncoding RNAs that are differentially expressed in the injured joints. By comparing our data to gene expression data generated using the surgical destabilization of the medial meniscus (DMM) PTOA model, we identified several common genes and shared mechanisms. Our study highlights several differences between these two models and suggests that the TC model may be a more rapidly progressing model of PTOA. This study provides the first account of gene expression changes associated with PTOA development and progression in a TC model. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. J Orthop Res 35:474-485, 2017. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc.

  20. Global molecular changes in a tibial compression induced ACL rupture model of post‐traumatic osteoarthritis

    Science.gov (United States)

    Chang, Jiun C.; Sebastian, Aimy; Murugesh, Deepa K.; Hatsell, Sarah; Economides, Aris N.; Christiansen, Blaine A.

    2016-01-01

    ABSTRACT Joint injury causes post‐traumatic osteoarthritis (PTOA). About ∼50% of patients rupturing their anterior cruciate ligament (ACL) will develop PTOA within 1–2 decades of the injury, yet the mechanisms responsible for the development of PTOA after joint injury are not well understood. In this study, we examined whole joint gene expression by RNA sequencing (RNAseq) at 1 day, 1‐, 6‐, and 12 weeks post injury, in a non‐invasive tibial compression (TC) overload mouse model of PTOA that mimics ACL rupture in humans. We identified 1446 genes differentially regulated between injured and contralateral joints. This includes known regulators of osteoarthritis such as MMP3, FN1, and COMP, and several new genes including Suco, Sorcs2, and Medag. We also identified 18 long noncoding RNAs that are differentially expressed in the injured joints. By comparing our data to gene expression data generated using the surgical destabilization of the medial meniscus (DMM) PTOA model, we identified several common genes and shared mechanisms. Our study highlights several differences between these two models and suggests that the TC model may be a more rapidly progressing model of PTOA. This study provides the first account of gene expression changes associated with PTOA development and progression in a TC model. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. J Orthop Res 35:474–485, 2017. PMID:27088242

  1. A high-resolution ambient seismic noise model for Europe

    Science.gov (United States)

    Kraft, Toni

    2014-05-01

    measurement precision (i.e. earthquake location), while considering this extremely complex boundary condition. To solve this problem I have developed a high-resolution ambient seismic noise model for Europe. The model is based on land-use data derived from satellite imagery by the EU-project CORINE in a resolution of 100x100m. The the CORINE data consists of several land-use classes, which, besides others, contain: industrial areas, mines, urban fabric, agricultural areas, permanent corps, forests and open spaces. Additionally, open GIS data for highways, and major and minor roads and railway lines were included from the OpenStreetMap project (www.openstreetmap.org). This data was divided into three classes that represent good, intermediate and bad ambient conditions of the corresponding land-use class based on expert judgment. To account for noise propagation away from its source a smoothing operator was applied to individual land-use noise-fields. Finally, the noise-fields were stacked to obtain an European map of ambient noise conditions. A calibration of this map with data of existing seismic stations Europe allowed me to estimate the expected noise level in actual ground motion units for the three ambient noise condition classes of the map. The result is a high-resolution ambient seismic noise map, that allows the network designer to make educated predictions on the expected noise level for arbitrary location in Europe. The ambient noise model was successfully tested in several network optimization projects in Switzerland and surrounding countries and will hopefully be a valuable contribution to improving the data quality of microseismic monitoring networks in Europe.

  2. Ruptured eardrum

    Science.gov (United States)

    ... eardrum ruptures. After the rupture, you may have: Drainage from the ear (drainage may be clear, pus, or bloody) Ear noise/ ... doctor to see the eardrum. Audiology testing can measure how much hearing has been lost. Treatment You ...

  3. A Model of Rupturing Lithospheric Faults with Reoccurring Earthquakes Read More: http://epubs.siam.org/doi/abs/10.1137/120870396

    Czech Academy of Sciences Publication Activity Database

    Roubíček, Tomáš; Souček, O.; Vodička, R.

    2013-01-01

    Roč. 73, č. 4 (2013), s. 1460-1488 ISSN 0036-1399 R&D Projects: GA ČR GAP201/10/0357 Institutional support: RVO:61388998 Keywords : seismic fault rupture * tectonic earthquakes * activated processes Subject RIV: BA - General Mathematics Impact factor: 1.414, year: 2013 http://dx.doi.org/10.1137/120870396

  4. A Combined Experimental and Numerical Modeling Study of the Deformation and Rupture of Axisymmetric Liquid Bridges under Coaxial Stretching.

    Science.gov (United States)

    Zhuang, Jinda; Ju, Y Sungtaek

    2015-09-22

    The deformation and rupture of axisymmetric liquid bridges being stretched between two fully wetted coaxial disks are studied experimentally and theoretically. We numerically solve the time-dependent Navier-Stokes equations while tracking the deformation of the liquid-air interface using the arbitrary Lagrangian-Eulerian (ALE) moving mesh method to fully account for the effects of inertia and viscous forces on bridge dynamics. The effects of the stretching velocity, liquid properties, and liquid volume on the dynamics of liquid bridges are systematically investigated to provide direct experimental validation of our numerical model for stretching velocities as high as 3 m/s. The Ohnesorge number (Oh) of liquid bridges is a primary factor governing the dynamics of liquid bridge rupture, especially the dependence of the rupture distance on the stretching velocity. The rupture distance generally increases with the stretching velocity, far in excess of the static stability limit. For bridges with low Ohnesorge numbers, however, the rupture distance stay nearly constant or decreases with the stretching velocity within certain velocity windows due to the relative rupture position switching and the thread shape change. Our work provides an experimentally validated modeling approach and experimental data to help establish foundation for systematic further studies and applications of liquid bridges.

  5. Acoustic/seismic signal propagation and sensor performance modeling

    Science.gov (United States)

    Wilson, D. Keith; Marlin, David H.; Mackay, Sean

    2007-04-01

    Performance, optimal employment, and interpretation of data from acoustic and seismic sensors depend strongly and in complex ways on the environment in which they operate. Software tools for guiding non-expert users of acoustic and seismic sensors are therefore much needed. However, such tools require that many individual components be constructed and correctly connected together. These components include the source signature and directionality, representation of the atmospheric and terrain environment, calculation of the signal propagation, characterization of the sensor response, and mimicking of the data processing at the sensor. Selection of an appropriate signal propagation model is particularly important, as there are significant trade-offs between output fidelity and computation speed. Attenuation of signal energy, random fading, and (for array systems) variations in wavefront angle-of-arrival should all be considered. Characterization of the complex operational environment is often the weak link in sensor modeling: important issues for acoustic and seismic modeling activities include the temporal/spatial resolution of the atmospheric data, knowledge of the surface and subsurface terrain properties, and representation of ambient background noise and vibrations. Design of software tools that address these challenges is illustrated with two examples: a detailed target-to-sensor calculation application called the Sensor Performance Evaluator for Battlefield Environments (SPEBE) and a GIS-embedded approach called Battlefield Terrain Reasoning and Awareness (BTRA).

  6. The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion

    International Nuclear Information System (INIS)

    Moczo, P.; Kristek, J.; Pazak, P.; Balazovjech, M.; Moczo, P.; Kristek, J.; Galis, M.

    2007-01-01

    Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable tool in investigation of the Earth's structure, processes in the Earth, and particularly earthquake phenomena. Among various numerical methods, the finite-difference method is the dominant method in the modeling of earthquake motion. Moreover, it is becoming more important in the seismic exploration and structural modeling. At the same time we are convinced that the best time of the finite-difference method in seismology is in the future. This monograph provides tutorial and detailed introduction to the application of the finite difference (FD), finite-element (FE), and hybrid FD-FE methods to the modeling of seismic wave propagation and earthquake motion. The text does not cover all topics and aspects of the methods. We focus on those to which we have contributed. We present alternative formulations of equation of motion for a smooth elastic continuum. We then develop alternative formulations for a canonical problem with a welded material interface and free surface. We continue with a model of an earthquake source. We complete the general theoretical introduction by a chapter on the constitutive laws for elastic and viscoelastic media, and brief review of strong formulations of the equation of motion. What follows is a block of chapters on the finite-difference and finite-element methods. We develop FD targets for the free surface and welded material interface. We then present various FD schemes for a smooth continuum, free surface, and welded interface. We focus on the staggered-grid and mainly optimally-accurate FD schemes. We also present alternative formulations of the FE method. We include the FD and FE implementations of the traction-at-split-nodes method for simulation of dynamic rupture propagation. The FD modeling is applied to the model of the deep sedimentary Grenoble basin, France. The FD and FE methods are combined in the hybrid FD-FE method. The hybrid

  7. Improving fault image by determination of optimum seismic survey parameters using ray-based modeling

    Science.gov (United States)

    Saffarzadeh, Sadegh; Javaherian, Abdolrahim; Hasani, Hossein; Talebi, Mohammad Ali

    2018-06-01

    In complex structures such as faults, salt domes and reefs, specifying the survey parameters is more challenging and critical owing to the complicated wave field behavior involved in such structures. In the petroleum industry, detecting faults has become crucial for reservoir potential where faults can act as traps for hydrocarbon. In this regard, seismic survey modeling is employed to construct a model close to the real structure, and obtain very realistic synthetic seismic data. Seismic modeling software, the velocity model and parameters pre-determined by conventional methods enable a seismic survey designer to run a shot-by-shot virtual survey operation. A reliable velocity model of structures can be constructed by integrating the 2D seismic data, geological reports and the well information. The effects of various survey designs can be investigated by the analysis of illumination maps and flower plots. Also, seismic processing of the synthetic data output can describe the target image using different survey parameters. Therefore, seismic modeling is one of the most economical ways to establish and test the optimum acquisition parameters to obtain the best image when dealing with complex geological structures. The primary objective of this study is to design a proper 3D seismic survey orientation to achieve fault zone structures through ray-tracing seismic modeling. The results prove that a seismic survey designer can enhance the image of fault planes in a seismic section by utilizing the proposed modeling and processing approach.

  8. Rupture Dynamics and Ground Motion from Earthquakes in Heterogeneous Media

    Science.gov (United States)

    Bydlon, S.; Dunham, E. M.; Kozdon, J. E.

    2012-12-01

    Heterogeneities in the material properties of Earth's crust scatter propagating seismic waves. The effects of scattered waves are reflected in the seismic coda and depend on the relative strength of the heterogeneities, spatial arrangement, and distance from source to receiver. In the vicinity of the fault, scattered waves influence the rupture process by introducing fluctuations in the stresses driving propagating ruptures. Further variability in the rupture process is introduced by naturally occurring geometric complexity of fault surfaces, and the stress changes that accompany slip on rough surfaces. We have begun a modeling effort to better understand the origin of complexity in the earthquake source process, and to quantify the relative importance of source complexity and scattering along the propagation path in causing incoherence of high frequency ground motion. To do this we extended our two-dimensional high order finite difference rupture dynamics code to accommodate material heterogeneities. We generate synthetic heterogeneous media using Von Karman correlation functions and their associated power spectral density functions. We then nucleate ruptures on either flat or rough faults, which obey strongly rate-weakening friction laws. Preliminary results for flat faults with uniform frictional properties and initial stresses indicate that off-fault material heterogeneity alone can lead to a complex rupture process. Our simulations reveal the excitation of high frequency bursts of waves, which radiate energy away from the propagating rupture. The average rupture velocity is thus reduced relative to its value in simulations employing homogeneous material properties. In the coming months, we aim to more fully explore parameter space by varying the correlation length, Hurst exponent, and amplitude of medium heterogeneities, as well as the statistical properties characterizing fault roughness.

  9. Realistic Modeling of Seismic Wave Ground Motion in Beijing City

    Science.gov (United States)

    Ding, Z.; Romanelli, F.; Chen, Y. T.; Panza, G. F.

    Algorithms for the calculation of synthetic seismograms in laterally heterogeneous anelastic media have been applied to model the ground motion in Beijing City. The synthetic signals are compared with the few available seismic recordings (1998, Zhangbei earthquake) and with the distribution of observed macroseismic intensity (1976, Tangshan earthquake). The synthetic three-component seismograms have been computed for the Xiji area and Beijing City. The numerical results show that the thick Tertiary and Quaternary sediments are responsible for the severe amplification of the seismic ground motion. Such a result is well correlated with the abnormally high macroseismic intensity zone in the Xiji area associated with the 1976 Tangshan earthquake as well as with the ground motion recorded in Beijing city in the wake of the 1998 Zhangbei earthquake.

  10. Realistic modeling of seismic wave ground motion in Beijing City

    International Nuclear Information System (INIS)

    Ding, Z.; Chen, Y.T.; Romanelli, F.; Panza, G.F.

    2002-05-01

    Advanced algorithms for the calculation of synthetic seismograms in laterally heterogeneous anelastic media have been applied to model the ground motion in Beijing City. The synthetic signals are compared with the few available seismic recordings (1998, Zhangbei earthquake) and with the distribution of the observed macroseismic intensity (1976, Tangshan earthquake). The synthetic 3-component seismograms have been computed in the Xiji area and in Beijing town. The numerical results show that the thick Tertiary and Quaternary sediments are responsible of the severe amplification of the seismic ground motion. Such a result is well correlated with the abnormally high macroseismic intensity zone (Xiji area) associated to the 1976 Tangshan earthquake and with the records in Beijing town, associated to the 1998 Zhangbei earthquake. (author)

  11. Rupture, waves and earthquakes.

    Science.gov (United States)

    Uenishi, Koji

    2017-01-01

    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but "extraordinary" phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable.

  12. NORA-2, a model for creep deformation and rupture of zircaloy at high temperatures

    International Nuclear Information System (INIS)

    Raff, S.; Meyder, R.

    1983-01-01

    A model has been developed to describe Zircaloy cladding behaviour under LOCA and small leak conditions within specified temperature range and strain rates. The deformation model consists of a strain rate equation with two components representing strain rate controlled contributions from different deformation mechanisms. Transition from one mechanism to the other produces the strain rate dependence of the stress exponent of steady state creep. During transient creep the change of creep mechanisms produces a flow softening behaviour which induces unstable creep. Together with a strain hardening model, the strain history can be described for low and high strain values. The influence of oxidation is taken into account by modelling hardening due to solid solution of oxygen, cracking of the brittle oxide and oxygen stabilised α-phase layers, and by an oxidation-induced creep component in steam atmosphere. The rupture criterion is based on a strain fraction rule whose variables are temperature, strain rate or applied stress, and oxygen content. (author)

  13. Method of experimental and theoretical modeling for multiple pressure tube rupture for RBMK reactor

    International Nuclear Information System (INIS)

    Medvedeva, N.Y.; Goldstein, R.V.; Burrows, J.A.

    2001-01-01

    The rupture of single RBMK reactor channels has occurred at a number of stations with a variety of initiating events. It is assumed in RBMK Safety Cases that the force of the escaping fluid will not cause neighbouring channels to break. This assumption has not been justified. A chain reaction of tube breaks could over-pressurise the reactor cavity leading to catastrophic failure of the containment. To validate the claims of the RBMK Safety Cases the Electrogorsk Research and Engineering Centre, in participation with experts from the Institute of Mechanics of RAS, has developed the method of interacting multiscale physical and mathematical modelling for coupled thermophysical, hydrogasodynamic processes and deformation and break processes causing and (or) accompanying potential failures, design and beyond the design RBMK reactor accidents. To realise the method the set of rigs, physical and mathematical models and specialized computer codes are under creation. This article sets out an experimental philosophy and programme for achieving this objective to solve the problem of credibility or non-credibility for multiple fuel channel rupture in RBMK.(author)

  14. A hierarchical stress release model for synthetic seismicity

    Science.gov (United States)

    Bebbington, Mark

    1997-06-01

    We construct a stochastic dynamic model for synthetic seismicity involving stochastic stress input, release, and transfer in an environment of heterogeneous strength and interacting segments. The model is not fault-specific, having a number of adjustable parameters with physical interpretation, namely, stress relaxation, stress transfer, stress dissipation, segment structure, strength, and strength heterogeneity, which affect the seismicity in various ways. Local parameters are chosen to be consistent with large historical events, other parameters to reproduce bulk seismicity statistics for the fault as a whole. The one-dimensional fault is divided into a number of segments, each comprising a varying number of nodes. Stress input occurs at each node in a simple random process, representing the slow buildup due to tectonic plate movements. Events are initiated, subject to a stochastic hazard function, when the stress on a node exceeds the local strength. An event begins with the transfer of excess stress to neighboring nodes, which may in turn transfer their excess stress to the next neighbor. If the event grows to include the entire segment, then most of the stress on the segment is transferred to neighboring segments (or dissipated) in a characteristic event. These large events may themselves spread to other segments. We use the Middle America Trench to demonstrate that this model, using simple stochastic stress input and triggering mechanisms, can produce behavior consistent with the historical record over five units of magnitude. We also investigate the effects of perturbing various parameters in order to show how the model might be tailored to a specific fault structure. The strength of the model lies in this ability to reproduce the behavior of a general linear fault system through the choice of a relatively small number of parameters. It remains to develop a procedure for estimating the internal state of the model from the historical observations in order to

  15. The SCEC Unified Community Velocity Model (UCVM) Software Framework for Distributing and Querying Seismic Velocity Models

    Science.gov (United States)

    Maechling, P. J.; Taborda, R.; Callaghan, S.; Shaw, J. H.; Plesch, A.; Olsen, K. B.; Jordan, T. H.; Goulet, C. A.

    2017-12-01

    Crustal seismic velocity models and datasets play a key role in regional three-dimensional numerical earthquake ground-motion simulation, full waveform tomography, modern physics-based probabilistic earthquake hazard analysis, as well as in other related fields including geophysics, seismology, and earthquake engineering. The standard material properties provided by a seismic velocity model are P- and S-wave velocities and density for any arbitrary point within the geographic volume for which the model is defined. Many seismic velocity models and datasets are constructed by synthesizing information from multiple sources and the resulting models are delivered to users in multiple file formats, such as text files, binary files, HDF-5 files, structured and unstructured grids, and through computer applications that allow for interactive querying of material properties. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) software framework to facilitate the registration and distribution of existing and future seismic velocity models to the SCEC community. The UCVM software framework is designed to provide a standard query interface to multiple, alternative velocity models, even if the underlying velocity models are defined in different formats or use different geographic projections. The UCVM framework provides a comprehensive set of open-source tools for querying seismic velocity model properties, combining regional 3D models and 1D background models, visualizing 3D models, and generating computational models in the form of regular grids or unstructured meshes that can be used as inputs for ground-motion simulations. The UCVM framework helps researchers compare seismic velocity models and build equivalent simulation meshes from alternative velocity models. These capabilities enable researchers to evaluate the impact of alternative velocity models in ground-motion simulations and seismic hazard analysis applications

  16. Geological and Seismological Analysis of the 13 February 2001 Mw 6.6 El Salvador Earthquake: Evidence for Surface Rupture and Implications for Seismic Hazard

    OpenAIRE

    Canora Catalán, Carolina; Martínez Díaz, José J.; Villamor Pérez, María Pilar; Berryman, K.R.; Álvarez Gómez, José Antonio; Pullinger, Carlos; Capote del Villar, Ramón

    2010-01-01

    The El Salvador earthquake of 13 February 2001 (Mw 6.6) caused tectonic rupture on the El Salvador fault zone (ESFZ). Right-lateral strike-slip surface rupture of the east–west trending fault zone had a maximum surface displacement of 0.60 m. No vertical component was observed. The earthquake resulted in widespread landslides in the epicentral area, where bedrock is composed of volcanic sediments, tephra, and weak ignimbrites. In the aftermath of the earthquake, widespread dama...

  17. Observations and models of Co- and Post-Seismic Deformation Due to the 2015 Mw 7.8 Gorkha (Nepal) Earthquake

    Science.gov (United States)

    Wang, K.; Fialko, Y. A.

    2016-12-01

    The 2015 Mw 7.8 Gorkha (Nepal) earthquake occurred along the central Himalayan arc, a convergent boundary between India and Eurasian plates. We use space geodetic data to investigate co- and post-seismic deformation due to the Gorkha earthquake. Because the epicentral area of the earthquake is characterized by strong variations in surface relief and material properties, we developed finite element models that explicitly account for topography and 3-D elastic structure. Compared with slip models obtained using homogenous elastic half-space models, the model including elastic heterogeneity and topography exhibits greater (up to 10%) slip amplitude. GPS observations spanning more than 1 year following the earthquake show overall southward movement and uplift after the Gorkha earthquake, qualitatively similar to the coseismic deformation pattern. Kinematic inversions of GPS data, and forward modeling of stress-driven creep indicate that the observed post-seismic transient is consistent with afterslip on a down-dip extention of the seismic rupture. The Main Himalayan Thrust (MHT) has negligible creep updip of the 2015 rupture, reiterating a future seismic hazard. A poro-elastic rebound may contribute to the observed uplift southward motion, but the predicted surface displacements are small (on the order of 1 cm or less). We also tested a wide range of visco-elastic relaxation models, including 1-D and 3-D variations in the viscosity structure. All tested visco-elastic models predict the opposite signs of horizontal and vertical displacements compared to those observed. Available surface deformation data allow one to rule out a model of a low viscosity channel beneath Tibetan Plateau invoked to explain variations in surface relief at the plateau margins.

  18. A modified symplectic PRK scheme for seismic wave modeling

    Science.gov (United States)

    Liu, Shaolin; Yang, Dinghui; Ma, Jian

    2017-02-01

    A new scheme for the temporal discretization of the seismic wave equation is constructed based on symplectic geometric theory and a modified strategy. The ordinary differential equation in terms of time, which is obtained after spatial discretization via the spectral-element method, is transformed into a Hamiltonian system. A symplectic partitioned Runge-Kutta (PRK) scheme is used to solve the Hamiltonian system. A term related to the multiplication of the spatial discretization operator with the seismic wave velocity vector is added into the symplectic PRK scheme to create a modified symplectic PRK scheme. The symplectic coefficients of the new scheme are determined via Taylor series expansion. The positive coefficients of the scheme indicate that its long-term computational capability is more powerful than that of conventional symplectic schemes. An exhaustive theoretical analysis reveals that the new scheme is highly stable and has low numerical dispersion. The results of three numerical experiments demonstrate the high efficiency of this method for seismic wave modeling.

  19. Detecting Seismic Events Using a Supervised Hidden Markov Model

    Science.gov (United States)

    Burks, L.; Forrest, R.; Ray, J.; Young, C.

    2017-12-01

    We explore the use of supervised hidden Markov models (HMMs) to detect seismic events in streaming seismogram data. Current methods for seismic event detection include simple triggering algorithms, such as STA/LTA and the Z-statistic, which can lead to large numbers of false positives that must be investigated by an analyst. The hypothesis of this study is that more advanced detection methods, such as HMMs, may decreases false positives while maintaining accuracy similar to current methods. We train a binary HMM classifier using 2 weeks of 3-component waveform data from the International Monitoring System (IMS) that was carefully reviewed by an expert analyst to pick all seismic events. Using an ensemble of simple and discrete features, such as the triggering of STA/LTA, the HMM predicts the time at which transition occurs from noise to signal. Compared to the STA/LTA detection algorithm, the HMM detects more true events, but the false positive rate remains unacceptably high. Future work to potentially decrease the false positive rate may include using continuous features, a Gaussian HMM, and multi-class HMMs to distinguish between types of seismic waves (e.g., P-waves and S-waves). Acknowledgement: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.SAND No: SAND2017-8154 A

  20. Combined Gravimetric-Seismic Crustal Model for Antarctica

    Science.gov (United States)

    Baranov, Alexey; Tenzer, Robert; Bagherbandi, Mohammad

    2018-01-01

    The latest seismic data and improved information about the subglacial bedrock relief are used in this study to estimate the sediment and crustal thickness under the Antarctic continent. Since large parts of Antarctica are not yet covered by seismic surveys, the gravity and crustal structure models are used to interpolate the Moho information where seismic data are missing. The gravity information is also extended offshore to detect the Moho under continental margins and neighboring oceanic crust. The processing strategy involves the solution to the Vening Meinesz-Moritz's inverse problem of isostasy constrained on seismic data. A comparison of our new results with existing studies indicates a substantial improvement in the sediment and crustal models. The seismic data analysis shows significant sediment accumulations in Antarctica, with broad sedimentary basins. According to our result, the maximum sediment thickness in Antarctica is about 15 km under Filchner-Ronne Ice Shelf. The Moho relief closely resembles major geological and tectonic features. A rather thick continental crust of East Antarctic Craton is separated from a complex geological/tectonic structure of West Antarctica by the Transantarctic Mountains. The average Moho depth of 34.1 km under the Antarctic continent slightly differs from previous estimates. A maximum Moho deepening of 58.2 km under the Gamburtsev Subglacial Mountains in East Antarctica confirmed the presence of deep and compact orogenic roots. Another large Moho depth in East Antarctica is detected under Dronning Maud Land with two orogenic roots under Wohlthat Massif (48-50 km) and the Kottas Mountains (48-50 km) that are separated by a relatively thin crust along Jutulstraumen Rift. The Moho depth under central parts of the Transantarctic Mountains reaches 46 km. The maximum Moho deepening (34-38 km) in West Antarctica is under the Antarctic Peninsula. The Moho depth minima in East Antarctica are found under the Lambert Trench (24

  1. Analysis of the 2012 Ahar-Varzeghan (Iran) seismic sequence: Insights from statistical and stress transfer modeling

    Science.gov (United States)

    Yazdi, Pouye; Santoyo, Miguel Angel; Gaspar-Escribano, Jorge M.

    2018-02-01

    The 2012 Ahar-Varzeghan (Northwestern Iran) earthquake doublet and its following seismic sequence are analyzed in this paper. First, it is examined the time-varying statistical characteristics of seismic activity since the occurrence of the doublet (two large events with Mw = 6.4 and 6.2) that initiated the sequence on 11 August 2012. A power law magnitude-frequency distribution (1.9 ≤ M ≤ 6.4) is obtained, with relatively low b-values for the complete series indicating the existence of relatively large magnitudes and high-stress level in the area. The Omori-Utsu model of the aftershock population decay with time shows a moderate decrease in activity rate. An epidemic-type aftershock sequence model that separates background seismicity from triggered aftershocks is then used to describe the temporal evolution of the seismicity during the period following the occurrence of the doublet. Results for the entire series (above cutoff magnitude Mc = 1.9) indicate a relatively low productivity related to the earthquake-earthquake triggering. Indeed, the majority of these events seems to be generated by underlying transient or aseismic processes, which might be added to the tectonic loading stress. The proportion of aftershock events significantly increases when the analysis is limited to larger events (M ≥ 3.0) suggesting that the triggered large aftershocks entail a substantial portion of the energy released. In order to analyze the spatial distribution of the sequence, new source models are proposed for the two main shocks. For the first shock, the coseismic slip distribution is constrained by the available data on surface ruptures. A Coulomb failure stress transfer model produced by the first event along optimally-oriented planes allows identifying the areas with positive stress loads where the rupture of the subsequent aftershocks may have occurred. The positive Δ CFS areas are compared for two depth intervals: 3-10 km and 15-22 km overlapping over 350 relocated

  2. Seismic Creep, USA Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seismic creep is the constant or periodic movement on a fault as contrasted with the sudden rupture associated with an earthquake. It is a usually slow deformation...

  3. Source characterization and dynamic fault modeling of induced seismicity

    Science.gov (United States)

    Lui, S. K. Y.; Young, R. P.

    2017-12-01

    In recent years there are increasing concerns worldwide that industrial activities in the sub-surface can cause or trigger damaging earthquakes. In order to effectively mitigate the damaging effects of induced seismicity, the key is to better understand the source physics of induced earthquakes, which still remain elusive at present. Furthermore, an improved understanding of induced earthquake physics is pivotal to assess large-magnitude earthquake triggering. A better quantification of the possible causes of induced earthquakes can be achieved through numerical simulations. The fault model used in this study is governed by the empirically-derived rate-and-state friction laws, featuring a velocity-weakening (VW) patch embedded into a large velocity-strengthening (VS) region. Outside of that, the fault is slipping at the background loading rate. The model is fully dynamic, with all wave effects resolved, and is able to resolve spontaneous long-term slip history on a fault segment at all stages of seismic cycles. An earlier study using this model has established that aseismic slip plays a major role in the triggering of small repeating earthquakes. This study presents a series of cases with earthquakes occurring on faults with different fault frictional properties and fluid-induced stress perturbations. The effects to both the overall seismicity rate and fault slip behavior are investigated, and the causal relationship between the pre-slip pattern prior to the event and the induced source characteristics is discussed. Based on simulation results, the subsequent step is to select specific cases for laboratory experiments which allow well controlled variables and fault parameters. Ultimately, the aim is to provide better constraints on important parameters for induced earthquakes based on numerical modeling and laboratory data, and hence to contribute to a physics-based induced earthquake hazard assessment.

  4. Seismic assessment and performance of nonstructural components affected by structural modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Jieun; Althoff, Eric; Sezen, Halil; Denning, Richard; Aldemir, Tunc [Ohio State University, Columbus (United States)

    2017-03-15

    Seismic probabilistic risk assessment (SPRA) requires a large number of simulations to evaluate the seismic vulnerability of structural and nonstructural components in nuclear power plants. The effect of structural modeling and analysis assumptions on dynamic analysis of 3D and simplified 2D stick models of auxiliary buildings and the attached nonstructural components is investigated. Dynamic characteristics and seismic performance of building models are also evaluated, as well as the computational accuracy of the models. The presented results provide a better understanding of the dynamic behavior and seismic performance of auxiliary buildings. The results also help to quantify the impact of uncertainties associated with modeling and analysis of simplified numerical models of structural and nonstructural components subjected to seismic shaking on the predicted seismic failure probabilities of these systems.

  5. Seismic Full Waveform Modeling & Imaging in Attenuating Media

    Science.gov (United States)

    Guo, Peng

    Seismic attenuation strongly affects seismic waveforms by amplitude loss and velocity dispersion. Without proper inclusion of Q parameters, errors can be introduced for seismic full waveform modeling and imaging. Three different (Carcione's, Robertsson's, and the generalized Robertsson's) isotropic viscoelastic wave equations based on the generalized standard linear solid (GSLS) are evaluated. The second-order displacement equations are derived, and used to demonstrate that, with the same stress relaxation times, these viscoelastic formulations are equivalent. By introducing separate memory variables for P and S relaxation functions, Robertsson's formulation is generalized to allow different P and S wave stress relaxation times, which improves the physical consistency of the Qp and Qs modelled in the seismograms.The three formulations have comparable computational cost. 3D seismic finite-difference forward modeling is applied to anisotropic viscoelastic media. The viscoelastic T-matrix (a dynamic effective medium theory) relates frequency-dependent anisotropic attenuation and velocity to reservoir properties in fractured HTI media, based on the meso-scale fluid flow attenuation mechanism. The seismic signatures resulting from changing viscoelastic reservoir properties are easily visible. Analysis of 3D viscoelastic seismograms suggests that anisotropic attenuation is a potential tool for reservoir characterization. To compensate the Q effects during reverse-time migration (RTM) in viscoacoustic and viscoelastic media, amplitudes need to be compensated during wave propagation; the propagation velocity of the Q-compensated wavefield needs to be the same as in the attenuating wavefield, to restore the phase information. Both amplitude and phase can be compensated when the velocity dispersion and the amplitude loss are decoupled. For wave equations based on the GSLS, because Q effects are coupled in the memory variables, Q-compensated wavefield propagates faster than

  6. Numerical modeling of intraplate seismicity with a deformable loading plate

    Science.gov (United States)

    So, B. D.; Capitanio, F. A.

    2017-12-01

    We use finite element modeling to investigate on the stress loading-unloading cycles and earthquakes occurrence in the plate interiors, resulting from the interactions of tectonic plates along their boundary. We model a visco-elasto-plastic plate embedding a single or multiple faults, while the tectonic stress is applied along the plate boundary by an external loading visco-elastic plate, reproducing the tectonic setting of two interacting lithospheres. Because the two plates deform viscously, the timescale of stress accumulation and release on the faults is self-consistently determined, from the boundary to the interiors, and seismic recurrence is an emerging feature. This approach overcomes the constraints on recurrence period imposed by stress (stress-drop) and velocity boundary conditions, while here it is unconstrained. We illustrate emerging macroscopic characteristics of this system, showing that the seismic recurrence period τ becomes shorter as Γ and Θ decreases, where Γ = ηI/ηL the viscosity ratio of the viscosities of the internal fault-embedded to external loading plates, respectively, and Θ = σY/σL the stress ratio of the elastic limit of the fault to far-field loading stress. When the system embeds multiple, randomly distributed faults, stress transfer results in recurrence period deviations, however the time-averaged recurrence period of each fault show the same dependence on Γ and Θ, illustrating a characteristic collective behavior. The control of these parameters prevails even when initial pre-stress was randomly assigned in terms of the spatial arrangement and orientation on the internal plate, mimicking local fluctuations. Our study shows the relevance of macroscopic rheological properties of tectonic plates on the earthquake occurrence in plate interiors, as opposed to local factors, proposing a viable model for the seismic behavior of continent interiors in the context of large-scale, long-term deformation of interacting tectonic

  7. Electrowetting on dielectric: experimental and model study of oil conductivity on rupture voltage

    Science.gov (United States)

    Zhao, Qing; Tang, Biao; Dong, Baoqin; Li, Hui; Zhou, Rui; Guo, Yuanyuan; Dou, Yingying; Deng, Yong; Groenewold, Jan; Henzen, Alexander Victor; Zhou, Guofu

    2018-05-01

    Electrowetting on dielectric devices uses a conducting (water) and insulating (oil) liquid phase in conjunction on a dielectric layer. In these devices, the wetting properties of the liquid phases can be manipulated by applying an electric field. The electric field can rupture the initially flat oil film and promotes further dewetting of the oil. Here, we investigate a problem in the operation of electrowetting on dielectric caused by a finite conductivity of the oil. In particular, we find that the voltage at which the oil film ruptures is sensitive to the application of relatively low DC voltages prior to switching. Here, we systematically investigate this dependence using controlled driving schemes. The mechanism behind these history effects point to charge transport processes in the dielectric and the oil, which can be modeled and characterized by a decay time. To quantify the effects the typical response timescales have been measured with a high-speed video camera. The results have been reproduced in simulations. In addition, a simplified yet accurate equivalent circuit model is developed to analyze larger data sets more conveniently. The experimental data support the hypothesis that each pixel can be characterized by a single decay time. We studied an ensemble of pixels and found that they showed a rather broad distribution of decay times with an average value of about 440 ms. This decay time can be interpreted as a discharge timescale of the oil, not to be confused with discharge of the entire system which is generally much faster (<1 ms). Through the equivalent circuit model, we also found that variations in the fluoropolymer (FP) conductivity cannot explain the distribution of decay times, while variations in oil conductivity can.

  8. Geomechanical Modeling of Fault Responses and the Potential for Notable Seismic Events during Underground CO2 Injection

    Science.gov (United States)

    Rutqvist, J.; Cappa, F.; Mazzoldi, A.; Rinaldi, A.

    2012-12-01

    The importance of geomechanics associated with large-scale geologic carbon storage (GCS) operations is now widely recognized. There are concerns related to the potential for triggering notable (felt) seismic events and how such events could impact the long-term integrity of a CO2 repository (as well as how it could impact the public perception of GCS). In this context, we review a number of modeling studies and field observations related to the potential for injection-induced fault reactivations and seismic events. We present recent model simulations of CO2 injection and fault reactivation, including both aseismic and seismic fault responses. The model simulations were conducted using a slip weakening fault model enabling sudden (seismic) fault rupture, and some of the numerical analyses were extended to fully dynamic modeling of seismic source, wave propagation, and ground motion. The model simulations illustrated what it will take to create a magnitude 3 or 4 earthquake that would not result in any significant damage at the groundsurface, but could raise concerns in the local community and could also affect the deep containment of the stored CO2. The analyses show that the local in situ stress field, fault orientation, fault strength, and injection induced overpressure are critical factors in determining the likelihood and magnitude of such an event. We like to clarify though that in our modeling we had to apply very high injection pressure to be able to intentionally induce any fault reactivation. Consequently, our model simulations represent extreme cases, which in a real GCS operation could be avoided by estimating maximum sustainable injection pressure and carefully controlling the injection pressure. In fact, no notable seismic event has been reported from any of the current CO2 storage projects, although some unfelt microseismic activities have been detected by geophones. On the other hand, potential future commercial GCS operations from large power plants

  9. The SCEC Community Modeling Environment(SCEC/CME): A Collaboratory for Seismic Hazard Analysis

    Science.gov (United States)

    Maechling, P. J.; Jordan, T. H.; Minster, J. B.; Moore, R.; Kesselman, C.

    2005-12-01

    The SCEC Community Modeling Environment (SCEC/CME) Project is an NSF-supported Geosciences/IT partnership that is actively developing an advanced information infrastructure for system-level earthquake science in Southern California. This partnership includes SCEC, USC's Information Sciences Institute (ISI), the San Diego Supercomputer Center (SDSC), the Incorporated Institutions for Research in Seismology (IRIS), and the U.S. Geological Survey. The goal of the SCEC/CME is to develop seismological applications and information technology (IT) infrastructure to support the development of Seismic Hazard Analysis (SHA) programs and other geophysical simulations. The SHA application programs developed on the Project include a Probabilistic Seismic Hazard Analysis system called OpenSHA. OpenSHA computational elements that are currently available include a collection of attenuation relationships, and several Earthquake Rupture Forecasts (ERFs). Geophysicists in the collaboration have also developed Anelastic Wave Models (AWMs) using both finite-difference and finite-element approaches. Earthquake simulations using these codes have been run for a variety of earthquake sources. Rupture Dynamic Model (RDM) codes have also been developed that simulate friction-based fault slip. The SCEC/CME collaboration has also developed IT software and hardware infrastructure to support the development, execution, and analysis of these SHA programs. To support computationally expensive simulations, we have constructed a grid-based scientific workflow system. Using the SCEC grid, project collaborators can submit computations from the SCEC/CME servers to High Performance Computers at USC and TeraGrid High Performance Computing Centers. Data generated and archived by the SCEC/CME is stored in a digital library system, the Storage Resource Broker (SRB). This system provides a robust and secure system for maintaining the association between the data seta and their metadata. To provide an easy

  10. Physical Model Method for Seismic Study of Concrete Dams

    Directory of Open Access Journals (Sweden)

    Bogdan Roşca

    2008-01-01

    Full Text Available The study of the dynamic behaviour of concrete dams by means of the physical model method is very useful to understand the failure mechanism of these structures to action of the strong earthquakes. Physical model method consists in two main processes. Firstly, a study model must be designed by a physical modeling process using the dynamic modeling theory. The result is a equations system of dimensioning the physical model. After the construction and instrumentation of the scale physical model a structural analysis based on experimental means is performed. The experimental results are gathered and are available to be analysed. Depending on the aim of the research may be designed an elastic or a failure physical model. The requirements for the elastic model construction are easier to accomplish in contrast with those required for a failure model, but the obtained results provide narrow information. In order to study the behaviour of concrete dams to strong seismic action is required the employment of failure physical models able to simulate accurately the possible opening of joint, sliding between concrete blocks and the cracking of concrete. The design relations for both elastic and failure physical models are based on dimensional analysis and consist of similitude relations among the physical quantities involved in the phenomenon. The using of physical models of great or medium dimensions as well as its instrumentation creates great advantages, but this operation involves a large amount of financial, logistic and time resources.

  11. Rupture disc

    International Nuclear Information System (INIS)

    Newton, R.G.

    1977-01-01

    The intermediate heat transport system for a sodium-cooled fast breeder reactor includes a device for rapidly draining the sodium therefrom should a sodium-water reaction occur within the system. This device includes a rupturable member in a drain line in the system and means for cutting a large opening therein and for positively removing the sheared-out portion from the opening cut in the rupturable member. According to the preferred embodiment of the invention the rupturable member includes a solid head seated in the end of the drain line having a rim extending peripherally therearound, the rim being clamped against the end of the drain line by a clamp ring having an interior shearing edge, the bottom of the rupturable member being convex and extending into the drain line. Means are provided to draw the rupturable member away from the drain line against the shearing edge to clear the drain line for outflow of sodium therethrough

  12. Coupling a Basin Modeling and a Seismic Code using MOAB

    KAUST Repository

    Yan, Mi; Jordan, Kirk; Kaushik, Dinesh; Perrone, Michael; Sachdeva, Vipin; Tautges, Timothy J.; Magerlein, John

    2012-01-01

    We report on a demonstration of loose multiphysics coupling between a basin modeling code and a seismic code running on a large parallel machine. Multiphysics coupling, which is one critical capability for a high performance computing (HPC) framework, was implemented using the MOAB open-source mesh and field database. MOAB provides for code coupling by storing mesh data and input and output field data for the coupled analysis codes and interpolating the field values between different meshes used by the coupled codes. We found it straightforward to use MOAB to couple the PBSM basin modeling code and the FWI3D seismic code on an IBM Blue Gene/P system. We describe how the coupling was implemented and present benchmarking results for up to 8 racks of Blue Gene/P with 8192 nodes and MPI processes. The coupling code is fast compared to the analysis codes and it scales well up to at least 8192 nodes, indicating that a mesh and field database is an efficient way to implement loose multiphysics coupling for large parallel machines.

  13. Coupling a Basin Modeling and a Seismic Code using MOAB

    KAUST Repository

    Yan, Mi

    2012-06-02

    We report on a demonstration of loose multiphysics coupling between a basin modeling code and a seismic code running on a large parallel machine. Multiphysics coupling, which is one critical capability for a high performance computing (HPC) framework, was implemented using the MOAB open-source mesh and field database. MOAB provides for code coupling by storing mesh data and input and output field data for the coupled analysis codes and interpolating the field values between different meshes used by the coupled codes. We found it straightforward to use MOAB to couple the PBSM basin modeling code and the FWI3D seismic code on an IBM Blue Gene/P system. We describe how the coupling was implemented and present benchmarking results for up to 8 racks of Blue Gene/P with 8192 nodes and MPI processes. The coupling code is fast compared to the analysis codes and it scales well up to at least 8192 nodes, indicating that a mesh and field database is an efficient way to implement loose multiphysics coupling for large parallel machines.

  14. Complementary roles of platelets and coagulation in thrombus formation on plaques acutely ruptured by targeted ultrasound treatment: a novel intravital model

    NARCIS (Netherlands)

    Kuijpers, M. J. E.; Gilio, K.; Reitsma, S.; Nergiz-Unal, R.; Prinzen, L.; Heeneman, S.; Lutgens, E.; van Zandvoort, M. A. M. J.; Nieswandt, B.; Egbrink, M. G. A. Oude; Heemskerk, J. W. M.

    2009-01-01

    Atherothrombosis is a major cause of cardiovascular events. However, animal models to study this process are scarce. We describe the first murine model of acute thrombus formation upon plaque rupture to study atherothrombosis by intravital fluorescence microscopy. Localized rupture of an

  15. Seismic variability of subduction thrust faults: Insights from laboratory models

    Science.gov (United States)

    Corbi, F.; Funiciello, F.; Faccenna, C.; Ranalli, G.; Heuret, A.

    2011-06-01

    Laboratory models are realized to investigate the role of interface roughness, driving rate, and pressure on friction dynamics. The setup consists of a gelatin block driven at constant velocity over sand paper. The interface roughness is quantified in terms of amplitude and wavelength of protrusions, jointly expressed by a reference roughness parameter obtained by their product. Frictional behavior shows a systematic dependence on system parameters. Both stick slip and stable sliding occur, depending on driving rate and interface roughness. Stress drop and frequency of slip episodes vary directly and inversely, respectively, with the reference roughness parameter, reflecting the fundamental role for the amplitude of protrusions. An increase in pressure tends to favor stick slip. Static friction is a steeply decreasing function of the reference roughness parameter. The velocity strengthening/weakening parameter in the state- and rate-dependent dynamic friction law becomes negative for specific values of the reference roughness parameter which are intermediate with respect to the explored range. Despite the simplifications of the adopted setup, which does not address the problem of off-fault fracturing, a comparison of the experimental results with the depth distribution of seismic energy release along subduction thrust faults leads to the hypothesis that their behavior is primarily controlled by the depth- and time-dependent distribution of protrusions. A rough subduction fault at shallow depths, unable to produce significant seismicity because of low lithostatic pressure, evolves into a moderately rough, velocity-weakening fault at intermediate depths. The magnitude of events in this range is calibrated by the interplay between surface roughness and subduction rate. At larger depths, the roughness further decreases and stable sliding becomes gradually more predominant. Thus, although interplate seismicity is ultimately controlled by tectonic parameters (velocity of

  16. Estimation of recurrence interval of large earthquakes on the central Longmen Shan fault zone based on seismic moment accumulation/release model.

    Science.gov (United States)

    Ren, Junjie; Zhang, Shimin

    2013-01-01

    Recurrence interval of large earthquake on an active fault zone is an important parameter in assessing seismic hazard. The 2008 Wenchuan earthquake (Mw 7.9) occurred on the central Longmen Shan fault zone and ruptured the Yingxiu-Beichuan fault (YBF) and the Guanxian-Jiangyou fault (GJF). However, there is a considerable discrepancy among recurrence intervals of large earthquake in preseismic and postseismic estimates based on slip rate and paleoseismologic results. Post-seismic trenches showed that the central Longmen Shan fault zone probably undertakes an event similar to the 2008 quake, suggesting a characteristic earthquake model. In this paper, we use the published seismogenic model of the 2008 earthquake based on Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data and construct a characteristic seismic moment accumulation/release model to estimate recurrence interval of large earthquakes on the central Longmen Shan fault zone. Our results show that the seismogenic zone accommodates a moment rate of (2.7 ± 0.3) × 10¹⁷ N m/yr, and a recurrence interval of 3900 ± 400 yrs is necessary for accumulation of strain energy equivalent to the 2008 earthquake. This study provides a preferred interval estimation of large earthquakes for seismic hazard analysis in the Longmen Shan region.

  17. Estimation of Recurrence Interval of Large Earthquakes on the Central Longmen Shan Fault Zone Based on Seismic Moment Accumulation/Release Model

    Directory of Open Access Journals (Sweden)

    Junjie Ren

    2013-01-01

    Full Text Available Recurrence interval of large earthquake on an active fault zone is an important parameter in assessing seismic hazard. The 2008 Wenchuan earthquake (Mw 7.9 occurred on the central Longmen Shan fault zone and ruptured the Yingxiu-Beichuan fault (YBF and the Guanxian-Jiangyou fault (GJF. However, there is a considerable discrepancy among recurrence intervals of large earthquake in preseismic and postseismic estimates based on slip rate and paleoseismologic results. Post-seismic trenches showed that the central Longmen Shan fault zone probably undertakes an event similar to the 2008 quake, suggesting a characteristic earthquake model. In this paper, we use the published seismogenic model of the 2008 earthquake based on Global Positioning System (GPS and Interferometric Synthetic Aperture Radar (InSAR data and construct a characteristic seismic moment accumulation/release model to estimate recurrence interval of large earthquakes on the central Longmen Shan fault zone. Our results show that the seismogenic zone accommodates a moment rate of (2.7 ± 0.3 × 1017 N m/yr, and a recurrence interval of 3900 ± 400 yrs is necessary for accumulation of strain energy equivalent to the 2008 earthquake. This study provides a preferred interval estimation of large earthquakes for seismic hazard analysis in the Longmen Shan region.

  18. RELAP5 model to simulate the thermal-hydraulic effects of grid spacers and cladding rupture during reflood

    Energy Technology Data Exchange (ETDEWEB)

    Nithianandan, C.K.; Klingenfus, J.A.; Reilly, S.S. [B& W Nuclear Technologies, Lynchburg, VA (United States)

    1995-09-01

    Droplet breakup at spacer grids and a cladding swelled and ruptured locations plays an important role in the cooling of nuclear fuel rods during the reflooding period of a loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR). During the reflood phase, a spacer grid affects the thermal-hydraulic system behavior through increased turbulence, droplet breakup due to impact on grid straps, grid rewetting, and liquid holdup due to grid form losses. Recently, models to simulate spacer grid effects and blockage and rupture effects on system thermal hydraulics were added to the B&W Nuclear Technologies (BWNT) version of the RELAP5/MOD2 computer code. Several FLECHT-SEASET forced reflood tests, CCTF Tests C1-19 and C2-6, SCTF Test S3-15, and G2 Test 561 were simulated using RELAP5/MOD2-B&W to verify the applicability of the model at the cladding swelled and rupture locations. The results demonstrate the importance of modeling the thermal-hydraulic effects due to grids, and clad swelling and rupture to correctly predict the clad temperature response during the reflood phase of large break LOCA. The RELAP5 models and the test results are described in this paper.

  19. Source properties of dynamic rupture pulses with off-fault plasticity

    KAUST Repository

    Gabriel, A.-A.

    2013-08-01

    Large dynamic stresses near earthquake rupture fronts may induce an inelastic response of the surrounding materials, leading to increased energy absorption that may affect dynamic rupture. We systematically investigate the effects of off-fault plastic energy dissipation in 2-D in-plane dynamic rupture simulations under velocity-and-state-dependent friction with severe weakening at high slip velocity. We find that plasticity does not alter the nature of the transitions between different rupture styles (decaying versus growing, pulse-like versus crack-like, and subshear versus supershear ruptures) but increases their required background stress and nucleation size. We systematically quantify the effect of amplitude and orientation of background shear stresses on the asymptotic properties of self-similar pulse-like ruptures: peak slip rate, rupture speed, healing front speed, slip gradient, and the relative contribution of plastic strain to seismic moment. Peak slip velocity and rupture speed remain bounded. From fracture mechanics arguments, we derive a nonlinear relation between their limiting values, appropriate also for crack-like and supershear ruptures. At low background stress, plasticity turns self-similar pulses into steady state pulses, for which plastic strain contributes significantly to the seismic moment. We find that the closeness to failure of the background stress state is an adequate predictor of rupture speed for relatively slow events. Our proposed relations between state of stress and earthquake source properties in the presence of off-fault plasticity may contribute to the improved interpretation of earthquake observations and to pseudodynamic source modeling for ground motion prediction.

  20. KFUPM-KAUST Red Sea model: Digital viscoelastic depth model and synthetic seismic data set

    KAUST Repository

    Al-Shuhail, Abdullatif A.; Mousa, Wail A.; Alkhalifah, Tariq Ali

    2017-01-01

    The Red Sea is geologically interesting due to its unique structures and abundant mineral and petroleum resources, yet no digital geologic models or synthetic seismic data of the Red Sea are publicly available for testing algorithms to image and analyze the area's interesting features. This study compiles a 2D viscoelastic model of the Red Sea and calculates a corresponding multicomponent synthetic seismic data set. The models and data sets are made publicly available for download. We hope this effort will encourage interested researchers to test their processing algorithms on this data set and model and share their results publicly as well.

  1. KFUPM-KAUST Red Sea model: Digital viscoelastic depth model and synthetic seismic data set

    KAUST Repository

    Al-Shuhail, Abdullatif A.

    2017-06-01

    The Red Sea is geologically interesting due to its unique structures and abundant mineral and petroleum resources, yet no digital geologic models or synthetic seismic data of the Red Sea are publicly available for testing algorithms to image and analyze the area\\'s interesting features. This study compiles a 2D viscoelastic model of the Red Sea and calculates a corresponding multicomponent synthetic seismic data set. The models and data sets are made publicly available for download. We hope this effort will encourage interested researchers to test their processing algorithms on this data set and model and share their results publicly as well.

  2. Seismogeodesy of the 2014 Mw6.1 Napa earthquake, California: Rapid response and modeling of fast rupture on a dipping strike-slip fault

    Science.gov (United States)

    Melgar, Diego; Geng, Jianghui; Crowell, Brendan W.; Haase, Jennifer S.; Bock, Yehuda; Hammond, William C.; Allen, Richard M.

    2015-07-01

    Real-time high-rate geodetic data have been shown to be useful for rapid earthquake response systems during medium to large events. The 2014 Mw6.1 Napa, California earthquake is important because it provides an opportunity to study an event at the lower threshold of what can be detected with GPS. We show the results of GPS-only earthquake source products such as peak ground displacement magnitude scaling, centroid moment tensor (CMT) solution, and static slip inversion. We also highlight the retrospective real-time combination of GPS and strong motion data to produce seismogeodetic waveforms that have higher precision and longer period information than GPS-only or seismic-only measurements of ground motion. We show their utility for rapid kinematic slip inversion and conclude that it would have been possible, with current real-time infrastructure, to determine the basic features of the earthquake source. We supplement the analysis with strong motion data collected close to the source to obtain an improved postevent image of the source process. The model reveals unilateral fast propagation of slip to the north of the hypocenter with a delayed onset of shallow slip. The source model suggests that the multiple strands of observed surface rupture are controlled by the shallow soft sediments of Napa Valley and do not necessarily represent the intersection of the main faulting surface and the free surface. We conclude that the main dislocation plane is westward dipping and should intersect the surface to the east, either where the easternmost strand of surface rupture is observed or at the location where the West Napa fault has been mapped in the past.

  3. Probabilistic modeling of caprock leakage from seismic reflection data

    DEFF Research Database (Denmark)

    Zunino, Andrea; Hansen, Thomas Mejer; Bergjofd-Kitterød, Ingjerd

    We illustrate a methodology which helps to perform a leakage risk analysis for a CO2 reservoir based on a consistent, probabilistic approach to geophysical and geostatistical inversion. Generally, risk assessments of storage complexes are based on geological models and simulations of CO2 movement...... within the storage complexes. The geological models are built on top of geophysical data such as seismic surveys, geological information and well logs from the reservoir or nearby regions. The risk assessment of CO2 storage requires a careful analysis which accounts for all sources of uncertainty....... However, at present, no well-defined and consistent method for mapping the true uncertainty related to the geophysical data and how that uncertainty affects the overall risk assessment for the potential storage site is available. To properly quantify the uncertainties and to avoid unrealistic...

  4. Effects of induced stress on seismic forward modelling and inversion

    Science.gov (United States)

    Tromp, Jeroen; Trampert, Jeannot

    2018-05-01

    We demonstrate how effects of induced stress may be incorporated in seismic modelling and inversion. Our approach is motivated by the accommodation of pre-stress in global seismology. Induced stress modifies both the equation of motion and the constitutive relationship. The theory predicts that induced pressure linearly affects the unstressed isotropic moduli with a slope determined by their adiabatic pressure derivatives. The induced deviatoric stress produces anisotropic compressional and shear wave speeds; the latter result in shear wave splitting. For forward modelling purposes, we determine the weak form of the equation of motion under induced stress. In the context of the inverse problem, we determine induced stress sensitivity kernels, which may be used for adjoint tomography. The theory is illustrated by considering 2-D propagation of SH waves and related Fréchet derivatives based on a spectral-element method.

  5. Globe Rupture

    Directory of Open Access Journals (Sweden)

    Reid Honda

    2017-07-01

    Full Text Available History of present illness: A 46-year-old male presented to the emergency department (ED with severe left eye pain and decreased vision after tripping and striking the left side of his head on the corner of his wooden nightstand. The patient arrived as an inter-facility transfer for a suspected globe rupture with a protective eye covering in place; thus, further physical examination of the eye was not performed by the emergency physician in order to avoid further leakage of aqueous humor. Significant findings: The patient’s computed tomography (CT head demonstrated a deformed left globe, concerning for ruptured globe. The patient had hyperdense material in the posterior segment (see green arrow, consistent with vitreous hemorrhage. CT findings that are consistent with globe rupture may include a collapsed globe, intraocular air, or foreign bodies. Discussion: A globe rupture is a full-thickness defect in the cornea, sclera, or both.1 It is an ophthalmologic emergency. Globe ruptures are almost always secondary to direct perforation via a penetrating mechanism; however, it can occur due to blunt injury if the force generated creates sufficient intraocular pressure to tear the sclera.2 Globes most commonly rupture at the insertions of the intraocular muscles or at the limbus. They are associated with a high rate of concomitant orbital floor fractures.2,3 Possible physical examination findings include a shallow anterior chamber on slit-lamp exam, hyphema, and an irregular “teardrop” pupil. Additionally, a positive Seidel sign, which is performed by instilling fluorescein in the eye and then examining for a dark stream of aqueous humor, is indicative of a globe rupture.4 CT is often used to assess for globe rupture; finds of a foreign body, intraocular air, abnormal contour or volume of the globe, or disruption of the sclera suggest globe rupture.2 The sensitivity of CT scan for diagnosis of globe rupture is only 75%; thus, high clinical

  6. Seismic moment tensor inversion using 3D velocity model and its application to the 2013 Lushan earthquake sequence

    Science.gov (United States)

    Zhu, Lupei; Zhou, Xiaofeng

    2016-10-01

    Source inversion of small-magnitude events such as aftershocks or mine collapses requires use of relatively high frequency seismic waveforms which are strongly affected by small-scale heterogeneities in the crust. In this study, we developed a new inversion method called gCAP3D for determining general moment tensor of a seismic source using Green's functions of 3D models. It inherits the advantageous features of the ;Cut-and-Paste; (CAP) method to break a full seismogram into the Pnl and surface-wave segments and to allow time shift between observed and predicted waveforms. It uses grid search for 5 source parameters (relative strengths of the isotropic and compensated-linear-vector-dipole components and the strike, dip, and rake of the double-couple component) that minimize the waveform misfit. The scalar moment is estimated using the ratio of L2 norms of the data and synthetics. Focal depth can also be determined by repeating the inversion at different depths. We applied gCAP3D to the 2013 Ms 7.0 Lushan earthquake and its aftershocks using a 3D crustal-upper mantle velocity model derived from ambient noise tomography in the region. We first relocated the events using the double-difference method. We then used the finite-differences method and reciprocity principle to calculate Green's functions of the 3D model for 20 permanent broadband seismic stations within 200 km from the source region. We obtained moment tensors of the mainshock and 74 aftershocks ranging from Mw 5.2 to 3.4. The results show that the Lushan earthquake is a reverse faulting at a depth of 13-15 km on a plane dipping 40-47° to N46° W. Most of the aftershocks occurred off the main rupture plane and have similar focal mechanisms to the mainshock's, except in the proximity of the mainshock where the aftershocks' focal mechanisms display some variations.

  7. Toward a consistent model for strain accrual and release for the New Madrid Seismic Zone, central United States

    Science.gov (United States)

    Hough, S.E.; Page, M.

    2011-01-01

    At the heart of the conundrum of seismogenesis in the New Madrid Seismic Zone is the apparently substantial discrepancy between low strain rate and high recent seismic moment release. In this study we revisit the magnitudes of the four principal 1811–1812 earthquakes using intensity values determined from individual assessments from four experts. Using these values and the grid search method of Bakun and Wentworth (1997), we estimate magnitudes around 7.0 for all four events, values that are significantly lower than previously published magnitude estimates based on macroseismic intensities. We further show that the strain rate predicted from postglacial rebound is sufficient to produce a sequence with the moment release of one Mmax6.8 every 500 years, a rate that is much lower than previous estimates of late Holocene moment release. However, Mw6.8 is at the low end of the uncertainty range inferred from analysis of intensities for the largest 1811–1812 event. We show that Mw6.8 is also a reasonable value for the largest main shock given a plausible rupture scenario. One can also construct a range of consistent models that permit a somewhat higher Mmax, with a longer average recurrence rate. It is thus possible to reconcile predicted strain and seismic moment release rates with alternative models: one in which 1811–1812 sequences occur every 500 years, with the largest events being Mmax∼6.8, or one in which sequences occur, on average, less frequently, with Mmax of ∼7.0. Both models predict that the late Holocene rate of activity will continue for the next few to 10 thousand years.

  8. Development of a structural model for the nonlinear shear deformation behavior of a seismic isolator

    International Nuclear Information System (INIS)

    Lee, Jae Han; Koo, Gyeong Hoi; Yoo, Bong

    2002-02-01

    The seismic excitation test results of an isolated test structure for artificial time history excitation are summarized for structure models of the isolated structure and isolation bearing. To simulate the response characteristic of isolated structure, shear hysteresis curves of isolators are analyzed. A simple analysis model is developed representing the actual dynamic behaviors of the test model, and the seismic responses using the simple model of the isolated structure and structure models, which are developed such as linear and bilinear models for isolators, are performed and compared with those of the seismic tests. The developed bilinear model is well applicable only to large shear strain area of LLRB

  9. Erosion influences the seismicity of active thrust faults.

    Science.gov (United States)

    Steer, Philippe; Simoes, Martine; Cattin, Rodolphe; Shyu, J Bruce H

    2014-11-21

    Assessing seismic hazards remains one of the most challenging scientific issues in Earth sciences. Deep tectonic processes are classically considered as the only persistent mechanism driving the stress loading of active faults over a seismic cycle. Here we show via a mechanical model that erosion also significantly influences the stress loading of thrust faults at the timescale of a seismic cycle. Indeed, erosion rates of about ~0.1-20 mm yr(-1), as documented in Taiwan and in other active compressional orogens, can raise the Coulomb stress by ~0.1-10 bar on the nearby thrust faults over the inter-seismic phase. Mass transfers induced by surface processes in general, during continuous or short-lived and intense events, represent a prominent mechanism for inter-seismic stress loading of faults near the surface. Such stresses are probably sufficient to trigger shallow seismicity or promote the rupture of deep continental earthquakes up to the surface.

  10. Ruptured Spleen

    Science.gov (United States)

    ... be caused by various underlying problems, such as mononucleosis and other infections, liver disease, and blood cancers. ... cause a ruptured spleen. For instance, people with mononucleosis — a viral infection that can cause an enlarged ...

  11. Multi-hole seismic modeling in 3-D space and cross-hole seismic tomography analysis for boulder detection

    Science.gov (United States)

    Cheng, Fei; Liu, Jiangping; Wang, Jing; Zong, Yuquan; Yu, Mingyu

    2016-11-01

    A boulder stone, a common geological feature in south China, is referred to the remnant of a granite body which has been unevenly weathered. Undetected boulders could adversely impact the schedule and safety of subway construction when using tunnel boring machine (TBM) method. Therefore, boulder detection has always been a key issue demanded to be solved before the construction. Nowadays, cross-hole seismic tomography is a high resolution technique capable of boulder detection, however, the method can only solve for velocity in a 2-D slice between two wells, and the size and central position of the boulder are generally difficult to be accurately obtained. In this paper, the authors conduct a multi-hole wave field simulation and characteristic analysis of a boulder model based on the 3-D elastic wave staggered-grid finite difference theory, and also a 2-D imaging analysis based on first arrival travel time. The results indicate that (1) full wave field records could be obtained from multi-hole seismic wave simulations. Simulation results describe that the seismic wave propagation pattern in cross-hole high-velocity spherical geological bodies is more detailed and can serve as a basis for the wave field analysis. (2) When a cross-hole seismic section cuts through the boulder, the proposed method provides satisfactory cross-hole tomography results; however, when the section is closely positioned to the boulder, such high-velocity object in the 3-D space would impact on the surrounding wave field. The received diffracted wave interferes with the primary wave and in consequence the picked first arrival travel time is not derived from the profile, which results in a false appearance of high-velocity geology features. Finally, the results of 2-D analysis in 3-D modeling space are comparatively analyzed with the physical model test vis-a-vis the effect of high velocity body on the seismic tomographic measurements.

  12. Real-Time Detection of Rupture Development: Earthquake Early Warning Using P Waves From Growing Ruptures

    Science.gov (United States)

    Kodera, Yuki

    2018-01-01

    Large earthquakes with long rupture durations emit P wave energy throughout the rupture period. Incorporating late-onset P waves into earthquake early warning (EEW) algorithms could contribute to robust predictions of strong ground motion. Here I describe a technique to detect in real time P waves from growing ruptures to improve the timeliness of an EEW algorithm based on seismic wavefield estimation. The proposed P wave detector, which employs a simple polarization analysis, successfully detected P waves from strong motion generation areas of the 2011 Mw 9.0 Tohoku-oki earthquake rupture. An analysis using 23 large (M ≥ 7) events from Japan confirmed that seismic intensity predictions based on the P wave detector significantly increased lead times without appreciably decreasing the prediction accuracy. P waves from growing ruptures, being one of the fastest carriers of information on ongoing rupture development, have the potential to improve the performance of EEW systems.

  13. Mechanical tests for validation of seismic isolation elastomer constitutive models

    International Nuclear Information System (INIS)

    Kulak, R.F.; Hughes, T.H.

    1992-01-01

    High damping laminated elastomeric bearings are becoming the preferred device for seismic isolation of large buildings and structures, such as nuclear power plants. The key component of these bearings is a filled natural rubber elastomer. This material exhibits nonlinear behavior within the normal design range. The material damping cannot be classified as either viscous or hysteritic, but it seems to fall somewhere in between. This paper describes a series of tests that can be used to characterize the mechanical response of these elastomers. The tests are designed to determine the behavior of the elastomer in the time scale of the earthquake, which is typically from 30 to 60 seconds. The test results provide data for use in determining the material parameters associated with nonlinear constitutive models. 4 refs

  14. Preliminary deformation model for National Seismic Hazard map of Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Meilano, Irwan; Gunawan, Endra; Sarsito, Dina; Prijatna, Kosasih; Abidin, Hasanuddin Z. [Geodesy Research Division, Faculty of Earth Science and Technology, Institute of Technology Bandung (Indonesia); Susilo,; Efendi, Joni [Agency for Geospatial Information (BIG) (Indonesia)

    2015-04-24

    Preliminary deformation model for the Indonesia’s National Seismic Hazard (NSH) map is constructed as the block rotation and strain accumulation function at the elastic half-space. Deformation due to rigid body motion is estimated by rotating six tectonic blocks in Indonesia. The interseismic deformation due to subduction is estimated by assuming coupling on subduction interface while deformation at active fault is calculated by assuming each of the fault‘s segment slips beneath a locking depth or in combination with creeping in a shallower part. This research shows that rigid body motion dominates the deformation pattern with magnitude more than 15 mm/year, except in the narrow area near subduction zones and active faults where significant deformation reach to 25 mm/year.

  15. Mathematical model of the seismic electromagnetic signals (SEMS) in non crystalline substances

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, L. C. C.; Yahya, N.; Daud, H.; Shafie, A. [Electromagnetic cluster, Universiti Teknologi Petronas, 31750 Tronoh, Perak (Malaysia)

    2012-09-26

    The mathematical model of seismic electromagnetic waves in non crystalline substances is developed and the solutions are discussed to show the possibility of improving the electromagnetic waves especially the electric field. The shear stress of the medium in fourth order tensor gives the equation of motion. Analytic methods are selected for the solutions written in Hansen vector form. From the simulated SEMS, the frequency of seismic waves has significant effects to the SEMS propagating characteristics. EM waves transform into SEMS or energized seismic waves. Traveling distance increases once the frequency of the seismic waves increases from 100% to 1000%. SEMS with greater seismic frequency will give seismic alike waves but greater energy is embedded by EM waves and hence further distance the waves travel.

  16. A model of characteristic earthquakes and its implications for regional seismicity

    DEFF Research Database (Denmark)

    López-Ruiz, R.; Vázquez-Prada, M.; Pacheco, A.F.

    2004-01-01

    Regional seismicity (i.e. that averaged over large enough areas over long enough periods of time) has a size-frequency relationship, the Gutenberg-Richter law, which differs from that found for some seismic faults, the Characteristic Earthquake relationship. But all seismicity comes in the end from...... active faults, so the question arises of how one seismicity pattern could emerge from the other. The recently introduced Minimalist Model of Vázquez-Prada et al. of characteristic earthquakes provides a simple representation of the seismicity originating from a single fault. Here, we show...... that a Characteristic Earthquake relationship together with a fractal distribution of fault lengths can accurately describe the total seismicity produced in a region. The resulting earthquake catalogue accounts for the addition of both all the characteristic and all the non-characteristic events triggered in the faults...

  17. Mathematical model of the seismic electromagnetic signals (SEMS) in non crystalline substances

    International Nuclear Information System (INIS)

    Dennis, L. C. C.; Yahya, N.; Daud, H.; Shafie, A.

    2012-01-01

    The mathematical model of seismic electromagnetic waves in non crystalline substances is developed and the solutions are discussed to show the possibility of improving the electromagnetic waves especially the electric field. The shear stress of the medium in fourth order tensor gives the equation of motion. Analytic methods are selected for the solutions written in Hansen vector form. From the simulated SEMS, the frequency of seismic waves has significant effects to the SEMS propagating characteristics. EM waves transform into SEMS or energized seismic waves. Traveling distance increases once the frequency of the seismic waves increases from 100% to 1000%. SEMS with greater seismic frequency will give seismic alike waves but greater energy is embedded by EM waves and hence further distance the waves travel.

  18. Investigation into Mechanism of Floor Dynamic Rupture by Evolution Characteristics of Stress and Mine Tremors: A Case Study in Guojiahe Coal Mine, China

    Directory of Open Access Journals (Sweden)

    Guangjian Liu

    2018-01-01

    Full Text Available In order to explore the mechanism of floor dynamic rupture, the current study adopts a thin plate model to further investigate the condition of floor failure. One of the possible explanations could be floor buckling due to high horizontal stress and dynamic disturbance ultimately leading to rapid and massive release of elastic energy thus inducing dynamic rupture. Seismic computed tomography and 3D location were employed to explore the evolution characteristics of floor stress distribution and positions of mine tremors. In the regions of floor dynamic rupture, higher P-wave velocity was recorded prior to the dynamic rupture. On the contrary, relatively lower reading was observed after the dynamic rupture thus depicting a high stress concentration condition. Meanwhile, evolution of mine tremors revealed the accumulation and subsequent release of energy during the dynamic rupture process. It was further revealed that dynamic rupture was induced due to the superposition of static and dynamic stresses: (i the high static stress concentration due to frontal and lateral abutment stress from coal pillar and (ii dynamic stress from the fracture and caving of coal pillar, hard roof, and key stratum. In the later part of this study, the floor dynamic rupture occurrence process would be reproduced through numerical simulations within a 0.6 sec time frame. The above-mentioned findings would be used to propose a feasible mechanism for prewarning and prevention of floor dynamic rupture using seismic computed tomography and mine tremors 3D location.

  19. Large earthquake rupture process variations on the Middle America megathrust

    Science.gov (United States)

    Ye, Lingling; Lay, Thorne; Kanamori, Hiroo

    2013-11-01

    The megathrust fault between the underthrusting Cocos plate and overriding Caribbean plate recently experienced three large ruptures: the August 27, 2012 (Mw 7.3) El Salvador; September 5, 2012 (Mw 7.6) Costa Rica; and November 7, 2012 (Mw 7.4) Guatemala earthquakes. All three events involve shallow-dipping thrust faulting on the plate boundary, but they had variable rupture processes. The El Salvador earthquake ruptured from about 4 to 20 km depth, with a relatively large centroid time of ˜19 s, low seismic moment-scaled energy release, and a depleted teleseismic short-period source spectrum similar to that of the September 2, 1992 (Mw 7.6) Nicaragua tsunami earthquake that ruptured the adjacent shallow portion of the plate boundary. The Costa Rica and Guatemala earthquakes had large slip in the depth range 15 to 30 km, and more typical teleseismic source spectra. Regional seismic recordings have higher short-period energy levels for the Costa Rica event relative to the El Salvador event, consistent with the teleseismic observations. A broadband regional waveform template correlation analysis is applied to categorize the focal mechanisms for larger aftershocks of the three events. Modeling of regional wave spectral ratios for clustered events with similar mechanisms indicates that interplate thrust events have corner frequencies, normalized by a reference model, that increase down-dip from anomalously low values near the Middle America trench. Relatively high corner frequencies are found for thrust events near Costa Rica; thus, variations along strike of the trench may also be important. Geodetic observations indicate trench-parallel motion of a forearc sliver extending from Costa Rica to Guatemala, and low seismic coupling on the megathrust has been inferred from a lack of boundary-perpendicular strain accumulation. The slip distributions and seismic radiation from the large regional thrust events indicate relatively strong seismic coupling near Nicoya, Costa

  20. Forecasting Induced Seismicity Using Saltwater Disposal Data and a Hydromechanical Earthquake Nucleation Model

    Science.gov (United States)

    Norbeck, J. H.; Rubinstein, J. L.

    2017-12-01

    The earthquake activity in Oklahoma and Kansas that began in 2008 reflects the most widespread instance of induced seismicity observed to date. In this work, we demonstrate that the basement fault stressing conditions that drive seismicity rate evolution are related directly to the operational history of 958 saltwater disposal wells completed in the Arbuckle aquifer. We developed a fluid pressurization model based on the assumption that pressure changes are dominated by reservoir compressibility effects. Using injection well data, we established a detailed description of the temporal and spatial variability in stressing conditions over the 21.5-year period from January 1995 through June 2017. With this stressing history, we applied a numerical model based on rate-and-state friction theory to generate seismicity rate forecasts across a broad range of spatial scales. The model replicated the onset of seismicity, the timing of the peak seismicity rate, and the reduction in seismicity following decreased disposal activity. The behavior of the induced earthquake sequence was consistent with the prediction from rate-and-state theory that the system evolves toward a steady seismicity rate depending on the ratio between the current and background stressing rates. Seismicity rate transients occurred over characteristic timescales inversely proportional to stressing rate. We found that our hydromechanical earthquake rate model outperformed observational and empirical forecast models for one-year forecast durations over the period 2008 through 2016.

  1. Reservoir creep and induced seismicity: inferences from geomechanical modeling of gas depletion in the Groningen field

    Science.gov (United States)

    van Wees, Jan-Diederik; Osinga, Sander; Van Thienen-Visser, Karin; Fokker, Peter A.

    2018-03-01

    The Groningen gas field in the Netherlands experienced an immediate reduction in seismic events in the year following a massive cut in production. This reduction is inconsistent with existing models of seismicity predictions adopting compaction strains as proxy, since reservoir creep would then result in a more gradual reduction of seismic events after a production stop. We argue that the discontinuity in seismic response relates to a physical discontinuity in stress loading rate on faults upon the arrest of pressure change. The stresses originate from a combination of the direct poroelastic effect through the pressure changes and the delayed effect of ongoing compaction after cessation of reservoir production. Both mechanisms need to be taken into account. To this end, we employed finite-element models in a workflow that couples Kelvin-Chain reservoir creep with a semi-analytical approach for the solution of slip and seismic moment from the predicted stress change. For ratios of final creep and elastic compaction up to 5, the model predicts that the cumulative seismic moment evolution after a production stop is subject to a very moderate increase, 2-10 times less than the values predicted by the alternative approaches using reservoir compaction strain as proxy. This is in agreement with the low seismicity in the central area of the Groningen field immediately after reduction in production. The geomechanical model findings support scope for mitigating induced seismicity through adjusting rates of pressure change by cutting down production.

  2. An experimental investigation for scalability of the seismic response of microconcrete model nuclear power plant structures

    International Nuclear Information System (INIS)

    Bennett, J.G.; Dove, R.C.; Dunwoody, W.E.; Farrar, C.R.

    1987-01-01

    The paper reports the results from tests including reduced stiffnesses found in the prototype and 1/4 scale model, implications of the test results on the validity of past tests, and implications of these results from the 1986 tests on the seismic behavior of actual Seismic Category I Structures and their attached equipment. (orig./HP)

  3. Seismic wavefield modeling based on time-domain symplectic and Fourier finite-difference method

    Science.gov (United States)

    Fang, Gang; Ba, Jing; Liu, Xin-xin; Zhu, Kun; Liu, Guo-Chang

    2017-06-01

    Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps.

  4. Development of 3-axis precise positioning seismic physical modeling system in the simulation of marine seismic exploration

    Science.gov (United States)

    Kim, D.; Shin, S.; Ha, J.; Lee, D.; Lim, Y.; Chung, W.

    2017-12-01

    Seismic physical modeling is a laboratory-scale experiment that deals with the actual and physical phenomena that may occur in the field. In seismic physical modeling, field conditions are downscaled and used. For this reason, even a small error may lead to a big error in an actual field. Accordingly, the positions of the source and the receiver must be precisely controlled in scale modeling. In this study, we have developed a seismic physical modeling system capable of precisely controlling the 3-axis position. For automatic and precise position control of an ultrasonic transducer(source and receiver) in the directions of the three axes(x, y, and z), a motor was mounted on each of the three axes. The motor can automatically and precisely control the positions with positional precision of 2''; for the x and y axes and 0.05 mm for the z axis. As it can automatically and precisely control the positions in the directions of the three axes, it has an advantage in that simulations can be carried out using the latest exploration techniques, such as OBS and Broadband Seismic. For the signal generation section, a waveform generator that can produce a maximum of two sources was used, and for the data acquisition section, which receives and stores reflected signals, an A/D converter that can receive a maximum of four signals was used. As multiple sources and receivers could be used at the same time, the system was set up in such a way that diverse exploration methods, such as single channel, multichannel, and 3-D exploration, could be realized. A computer control program based on LabVIEW was created, so that it could control the position of the transducer, determine the data acquisition parameters, and check the exploration data and progress in real time. A marine environment was simulated using a water tank 1 m wide, 1 m long, and 0.9 m high. To evaluate the performance and applicability of the seismic physical modeling system developed in this study, single channel and

  5. Comparison of seismic waveform inversion results for the rupture history of a finite fault: application to the 1986 North Palm Springs, California, earthquake

    Science.gov (United States)

    Hartzell, S.

    1989-01-01

    The July 8, 1986, North Palm Strings earthquake is used as a basis for comparison of several different approaches to the solution for the rupture history of a finite fault. The inversion of different waveform data is considered; both teleseismic P waveforms and local strong ground motion records. Linear parametrizations for slip amplitude are compared with nonlinear parametrizations for both slip amplitude and rupture time. Inversions using both synthetic and empirical Green's functions are considered. In general, accurate Green's functions are more readily calculable for the teleseismic problem where simple ray theory and flat-layered velocity structures are usually sufficient. However, uncertainties in the variation in t* with frequency most limit the resolution of teleseismic inversions. A set of empirical Green's functions that are well recorded at teleseismic distances could avoid the uncertainties in attenuation. In the inversion of strong motion data, the accurate calculation of propagation path effects other than attenuation effects is the limiting factor in the resolution of source parameters. -from Author

  6. Broadband seismic : case study modeling and data processing

    Science.gov (United States)

    Cahyaningtyas, M. B.; Bahar, A.

    2018-03-01

    Seismic data with wide range of frequency is needed due to its close relation to resolution and the depth of the target. Low frequency provides deeper penetration for the imaging of deep target. In addition, the wider the frequency bandwidth, the sharper the wavelet. Sharp wavelet is responsible for high-resolution imaging and is very helpful to resolve thin bed. As a result, the demand for broadband seismic data is rising and it spurs the technology development of broadband seismic in oil and gas industry. An obstacle that is frequently found on marine seismic data is the existence of ghost that affects the frequency bandwidth contained on the seismic data. Ghost alters bandwidth to bandlimited. To reduce ghost effect and to acquire broadband seismic data, lots of attempts are used, both on the acquisition and on the processing of seismic data. One of the acquisition technique applied is the multi-level streamer, where some streamers are towed on some levels of depth. Multi-level streamer will yield data with varied ghost notch shown on frequency domain. If the ghost notches are not overlapping, the summation of multi-level streamer data will reduce the ghost effect. The result of the multi-level streamer data processing shows that reduction of ghost notch on frequency domain indeed takes place.

  7. Seismic analysis of the APR1400 nuclear reactor system using a verified beam element model

    International Nuclear Information System (INIS)

    Park, Jong-beom; Park, No-Cheol; Lee, Sang-Jeong; Park, Young-Pil; Choi, Youngin

    2017-01-01

    Highlights: • A simplified beam element model is constructed based on the real dynamic characteristics of the APR1400. • Time history analysis is performed to calculate the seismic responses of the structures. • Large deformations can be observed at the in-phase mode of reactor vessel and core support barrel. - Abstract: Structural integrity is the first priority in the design of nuclear reactor internal structures. In particular, nuclear reactor internals should be designed to endure external forces, such as those due to earthquakes. Many researchers have performed finite element analyses to meet these design requirements. Generally, a seismic analysis model should reflect the dynamic characteristics of the target system. However, seismic analysis based on the finite element method requires long computation times as well as huge storage space. In this research, a beam element model was developed and confirmed based on the real dynamic characteristics of an advanced pressurized water nuclear reactor 1400 (APR1400) system. That verification process enhances the accuracy of the finite element analysis using the beam elements, remarkably. Also, the beam element model reduces seismic analysis costs. Therefore, the beam element model was used to perform the seismic analysis. Then, the safety of the APR1400 was assessed based on a seismic analysis of the time history responses of its structures. Thus, efficient, accurate seismic analysis was demonstrated using the proposed beam element model.

  8. Seismic analysis of the APR1400 nuclear reactor system using a verified beam element model

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong-beom [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Park, No-Cheol, E-mail: pnch@yonsei.ac.kr [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Lee, Sang-Jeong; Park, Young-Pil [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Choi, Youngin [Korea Institute of Nuclear Safety, 62 Gwahak-ro, Yuseong-gu, Daejeon 34142 (Korea, Republic of)

    2017-03-15

    Highlights: • A simplified beam element model is constructed based on the real dynamic characteristics of the APR1400. • Time history analysis is performed to calculate the seismic responses of the structures. • Large deformations can be observed at the in-phase mode of reactor vessel and core support barrel. - Abstract: Structural integrity is the first priority in the design of nuclear reactor internal structures. In particular, nuclear reactor internals should be designed to endure external forces, such as those due to earthquakes. Many researchers have performed finite element analyses to meet these design requirements. Generally, a seismic analysis model should reflect the dynamic characteristics of the target system. However, seismic analysis based on the finite element method requires long computation times as well as huge storage space. In this research, a beam element model was developed and confirmed based on the real dynamic characteristics of an advanced pressurized water nuclear reactor 1400 (APR1400) system. That verification process enhances the accuracy of the finite element analysis using the beam elements, remarkably. Also, the beam element model reduces seismic analysis costs. Therefore, the beam element model was used to perform the seismic analysis. Then, the safety of the APR1400 was assessed based on a seismic analysis of the time history responses of its structures. Thus, efficient, accurate seismic analysis was demonstrated using the proposed beam element model.

  9. Why Did the Fault Rupture of the 2008 Wenchuan Earthquake Propagate Predominately Northeastwards?

    Science.gov (United States)

    Zhu, S.; Yuan, J.

    2017-12-01

    The rupture processes of the 2008 Wenchuan earthquake are much complex. The rupture propagated northeastward a large distance as long as 300 km, but rupture length is short in the southwest direction. Although a great deal of attention has been paid to why the rupture propagated preponderantly northeastward in the 2008 Wenchuan earthquake, the physical mechanism remains unclear. By means of finite element model, in which bimaterial contrast across the Longmen Shan fault is taken into account, nucleation process is initiated at the center of the fault, ruptures then spread out outward spontaneously in both directions. The simulated results show that the different materials between both sides of the fault lead to tensile changes of normal stresses on the fault, which enhance the propagation of the ruptures in northeastward direction. We found that bimaterial mechanism is important for earthquake ruptures, and mode II rupture evolves with propagation distance along a bimaterial interface to a unilateral wrinkle-like Weertman pulse in the direction of slip on the more compliant side of the fault, namely in the positive direction (i.e, the northeast direction in the study). The Weertman pulse can be self-amplified, self-sustained and self-healing, which gives rise to little frictional energy and long propagation distance. This may be the reason why the Wenchuan earthquake is a unilateral fault rupture and a high seismic magnitude. In addition, the modelling results suggest that the rupture distance is much smaller if the material in the model is homogeneous, in which no huge earthquakes can occur like the 2008 Wenchan event. This research was jointly supported by the National Natural Science Foundation of China (41574041), Beijing Natural Science Foundation (8152034), and by Basic Research Project (ZDJ2017-08).

  10. Statistical Analysis and ETAS Modeling of Seismicity Induced by Production of Geothermal Energy from Hydrothermal Systems

    Science.gov (United States)

    Dinske, C.; Langenbruch, C.; Shapiro, S. A.

    2017-12-01

    We investigate seismicity related to hydrothermal systems in Germany and Italy, focussing on temporal changes of seismicity rates. Our analysis was motivated by numerical simulations The modeling of stress changes caused by the injection and production of fluid revealed that seismicity rates decrease on a long-term perspective which is not observed in the considered case studies. We analyze the waiting time distributions of the seismic events in both time domain (inter event times) and fluid volume domain (inter event volume). We find clear indications that the observed seismicity comprises two components: (1) seismicity that is directly triggered by production and re-injection of fluid, i.e. induced events, and (2) seismicity that is triggered by earthquake interactions, i.e. aftershock triggering. In order to better constrain our numerical simulations using the observed induced seismicity we apply catalog declustering to seperate the two components. We use the magnitude-dependent space-time windowing approach introduced by Gardner and Knopoff (1974) and test several published algorithms to calculate the space-time windows. After declustering, we conclude that the different hydrothermal reservoirs show a comparable seismic response to the circulation of fluid and additional triggering by earthquake interactions. The declustered catalogs contain approximately 50 per cent of the number of events in the original catalogs. We then perform ETAS (Epidemic Type Aftershock; Ogata, 1986, 1988) modeling for two reasons. First, we want to know whether the different reservoirs are also comparable regarding earthquake interaction patterns. Second, if we identify systematic patterns, ETAS modeling can contribute to forecast seismicity during production of geothermal energy. We find that stationary ETAS models cannot accurately capture real seismicity rate changes. One reason for this finding is given by the rate of observed induced events which is not constant over time. Hence

  11. An asymptotic model of seismic reflection from a permeable layer

    Energy Technology Data Exchange (ETDEWEB)

    Silin, D.; Goloshubin, G.

    2009-10-15

    Analysis of compression wave propagation in a poroelastic medium predicts a peak of reflection from a high-permeability layer in the low-frequency end of the spectrum. An explicit formula expresses the resonant frequency through the elastic moduli of the solid skeleton, the permeability of the reservoir rock, the fluid viscosity and compressibility, and the reservoir thickness. This result is obtained through a low-frequency asymptotic analysis of Biot's model of poroelasticity. A review of the derivation of the main equations from the Hooke's law, momentum and mass balance equations, and Darcy's law suggests an alternative new physical interpretation of some coefficients of the classical poroelasticity. The velocity of wave propagation, the attenuation factor, and the wave number, are expressed in the form of power series with respect to a small dimensionless parameter. The absolute value of this parameter is equal to the product of the kinematic reservoir fluid mobility and the wave frequency. Retaining only the leading terms of the series leads to explicit and relatively simple expressions for the reflection and transmission coefficients for a planar wave crossing an interface between two permeable media, as well as wave reflection from a thin highly-permeable layer (a lens). Practical applications of the obtained asymptotic formulae are seismic modeling, inversion, and at-tribute analysis.

  12. Stochastic Modelling as a Tool for Seismic Signals Segmentation

    Directory of Open Access Journals (Sweden)

    Daniel Kucharczyk

    2016-01-01

    Full Text Available In order to model nonstationary real-world processes one can find appropriate theoretical model with properties following the analyzed data. However in this case many trajectories of the analyzed process are required. Alternatively, one can extract parts of the signal that have homogenous structure via segmentation. The proper segmentation can lead to extraction of important features of analyzed phenomena that cannot be described without the segmentation. There is no one universal method that can be applied for all of the phenomena; thus novel methods should be invented for specific cases. They might address specific character of the signal in different domains (time, frequency, time-frequency, etc.. In this paper we propose two novel segmentation methods that take under consideration the stochastic properties of the analyzed signals in time domain. Our research is motivated by the analysis of vibration signals acquired in an underground mine. In such signals we observe seismic events which appear after the mining activity, like blasting, provoked relaxation of rock, and some unexpected events, like natural rock burst. The proposed segmentation procedures allow for extraction of such parts of the analyzed signals which are related to mentioned events.

  13. Importance of modeling beam-column joints for seismic safety of reinforced concrete structures

    International Nuclear Information System (INIS)

    Sharma, Akanshu; Reddy, G.R.; Vaze, K.K.; Eligehausen, R.; Hofmann, J.

    2011-01-01

    Almost all structures, except the containment building, in a NPP can be classified as reinforced concrete (RC) framed structures. In case of such structures subjected to seismic loads, beam-column joints are recognized as the critical and vulnerable zone. During an earthquake, the global behavior of the structure is highly governed by the behavior of the joints. If the joints behave in a ductile manner, the global behavior generally will be ductile, whereas if the joints behave in a brittle fashion then the structure will display a brittle behavior. The joints of old and non-seismically detailed structures are more vulnerable and behave poorly under the earthquakes compared to the joints of new and seismically detailed structures. Modeling of these joint regions is very important for correct assessment of the seismic performance of the structures. In this paper, it is shown with the help of a recently developed joint model that not modeling the inelastic behavior of the joints can lead to significantly misleading and unsafe results in terms of the performance assessment of the structures under seismic loads. Comparison of analytical and experimental results is shown for two structures, tested under lateral monotonic seismic pushover loads. It is displayed that the model can predict the inelastic seismic response of structures considering joint distortion with high accuracy by little extra effort in modeling. (author)

  14. Scale model study of the seismic response of a nuclear reactor core

    International Nuclear Information System (INIS)

    Dove, R.C.; Dunwoody, W.E.; Rhorer, R.L.

    1983-01-01

    The use of scale models to study the dynamics of a system of graphite core blocks used in certain nuclear reactor designs is described. Scaling laws, material selecton, model instrumentation to measure collision forces, and the response of several models to simulated seismic excitation are covered. The effects of Coulomb friction between the blocks and the clearance gaps between the blocks on the system response to seismic excitation are emphasized

  15. Motorized Activity on Legacy Seismic Lines: A Predictive Modeling Approach to Prioritize Restoration Efforts.

    Science.gov (United States)

    Hornseth, M L; Pigeon, K E; MacNearney, D; Larsen, T A; Stenhouse, G; Cranston, J; Finnegan, L

    2018-05-11

    Natural regeneration of seismic lines, cleared for hydrocarbon exploration, is slow and often hindered by vegetation damage, soil compaction, and motorized human activity. There is an extensive network of seismic lines in western Canada which is known to impact forest ecosystems, and seismic lines have been linked to declines in woodland caribou (Rangifer tarandus caribou). Seismic line restoration is costly, but necessary for caribou conservation to reduce cumulative disturbance. Understanding where motorized activity may be impeding regeneration of seismic lines will aid in prioritizing restoration. Our study area in west-central Alberta, encompassed five caribou ranges where restoration is required under federal species at risk recovery strategies, hence prioritizing seismic lines for restoration is of immediate conservation value. To understand patterns of motorized activity on seismic lines, we evaluated five a priori hypotheses using a predictive modeling framework and Geographic Information System variables across three landscapes in the foothills and northern boreal regions of Alberta. In the northern boreal landscape, motorized activity was most common in dry areas with a large industrial footprint. In highly disturbed areas of the foothills, motorized activity on seismic lines increased with low vegetation heights, relatively dry soils, and further from forest cutblocks, while in less disturbed areas of the foothills, motorized activity on seismic lines decreased proportional to seismic line density, slope steepness, and white-tailed deer abundance, and increased proportional with distance to roads. We generated predictive maps of high motorized activity, identifying 21,777 km of seismic lines where active restoration could expedite forest regeneration.

  16. Release of UF6 from a ruptured model 48Y cylinder at Sequoyah Fuels Corporation Facility: lessons-learned report

    International Nuclear Information System (INIS)

    1986-08-01

    The uranium hexafluoride (UF 6 ) release of January 4, 1986, at the Sequoyah Fuels Corporation facility has been reviewed by a NRC Lessons-Learned Group. A Model 48Y cylinder containing UF 6 ruptured upon being heated after it was grossly overfilled. The UF 6 released upon rupture of the cylinder reacted with airborne moisture to produce hydrofluoric acid (HF) and uranyl fluoride (UO 2 F 2 ). One individual died from exposure to airborne HF and several others were injured. There were no significant immediate effects from exposure to uranyl fluoride. This supplement report contains NRC's response to the recommendations made in NUREG-1198 by the Lessons Learned Group. In developing a response to each of the recommendations, the staff considered actions that should be taken: (1) for the restart of the Sequoyah Fuels Facility; (2) to make near-term improvement; and (3) to improve the regulatory framework

  17. Probabilistic Seismic Performance Model for Tunnel Form Concrete Building Structures

    Directory of Open Access Journals (Sweden)

    S. Bahram Beheshti Aval

    2016-12-01

    Full Text Available Despite widespread construction of mass-production houses with tunnel form structural system across the world, unfortunately no special seismic code is published for design of this type of construction. Through a literature survey, only a few studies are about the seismic behavior of this type of structural system. Thus based on reasonable numerical results, the seismic performance of structures constructed with this technique considering the effective factors on structural behavior is highly noteworthy in a seismic code development process. In addition, due to newness of this system and observed damages in past earthquakes, and especially random nature of future earthquakes, the importance of probabilistic approach and necessity of developing fragility curves in a next generation Performance Based Earthquake Engineering (PBEE frame work are important. In this study, the seismic behavior of 2, 5 and 10 story tunnel form structures with a regular plan is examined. First, the performance levels of these structures under the design earthquake (return period of 475 years with time history analysis and pushover method are assessed, and then through incremental dynamic analysis, fragility curves are extracted for different levels of damage in walls and spandrels. The results indicated that the case study structures have high capacity and strength and show appropriate seismic performance. Moreover, all three structures subjected were in immediate occupancy performance level.

  18. Global catalog of earthquake rupture velocities shows anticorrelation between stress drop and rupture velocity

    Science.gov (United States)

    Chounet, Agnès; Vallée, Martin; Causse, Mathieu; Courboulex, Françoise

    2018-05-01

    Application of the SCARDEC method provides the apparent source time functions together with seismic moment, depth, and focal mechanism, for most of the recent earthquakes with magnitude larger than 5.6-6. Using this large dataset, we have developed a method to systematically invert for the rupture direction and average rupture velocity Vr, when unilateral rupture propagation dominates. The approach is applied to all the shallow (z earthquakes of the catalog over the 1992-2015 time period. After a careful validation process, rupture properties for a catalog of 96 earthquakes are obtained. The subsequent analysis of this catalog provides several insights about the seismic rupture process. We first report that up-dip ruptures are more abundant than down-dip ruptures for shallow subduction interface earthquakes, which can be understood as a consequence of the material contrast between the slab and the overriding crust. Rupture velocities, which are searched without any a-priori up to the maximal P wave velocity (6000-8000 m/s), are found between 1200 m/s and 4500 m/s. This observation indicates that no earthquakes propagate over long distances with rupture velocity approaching the P wave velocity. Among the 23 ruptures faster than 3100 m/s, we observe both documented supershear ruptures (e.g. the 2001 Kunlun earthquake), and undocumented ruptures that very likely include a supershear phase. We also find that the correlation of Vr with the source duration scaled to the seismic moment (Ts) is very weak. This directly implies that both Ts and Vr are anticorrelated with the stress drop Δσ. This result has implications for the assessment of the peak ground acceleration (PGA) variability. As shown by Causse and Song (2015), an anticorrelation between Δσ and Vr significantly reduces the predicted PGA variability, and brings it closer to the observed variability.

  19. A model of seismic focus and related statistical distributions of earthquakes

    International Nuclear Information System (INIS)

    Apostol, Bogdan-Felix

    2006-01-01

    A growth model for accumulating seismic energy in a localized seismic focus is described, which introduces a fractional parameter r on geometrical grounds. The model is employed for deriving a power-type law for the statistical distribution in energy, where the parameter r contributes to the exponent, as well as corresponding time and magnitude distributions for earthquakes. The accompanying seismic activity of foreshocks and aftershocks is discussed in connection with this approach, as based on Omori distributions, and the rate of released energy is derived

  20. Seismic soil structure interaction: analysis and centrifuge model studies

    International Nuclear Information System (INIS)

    Finn, W.D.L.; Ledbetter, R.H.; Beratan, L.L.

    1985-01-01

    A method for non-linear dynamic effective stress analysis is introduced which is applicable to soil-structure interaction problems. Full interaction including slip between structure and foundation is taken into account and the major factors are included which must be considered when computing dynamic soil response. An experimental investigation was conducted using simulated earthquake tests on centrifuged geotechnical models in order to obtain prototype response data of foundation soils carrying both surface and embedded structures and to validate the dynamic effective stress analysis. Horizontal and vertical accelerations were measured at various points on structures and in the sand foundation. Seismically-induced pore water pressure changes were also measured at various locations in the foundation. Computer plots of the data were obtained while the centrifuge was in flight and representative samples are presented. The results show clearly the pronounced effect that increasing pore water pressures have on dynamic response. It is demonstrated that a coherent picture of dynamic response of soil-structure systems is provided by dynamic effective stress non-linear analysis. Based on preliminary results, it appears that the pore water pressure effects can be predicted

  1. Seismic soil-structure interaction: Analysis and centrifuge model studies

    International Nuclear Information System (INIS)

    Finn, W.D.L.; Ledbetter, R.H.; Beratan, L.L.

    1986-01-01

    A method for nonlinear dynamic effective stress analysis applicable to soil-structure interaction problems is introduced. Full interaction including slip between structure and foundation is taken into account and the major factors that must be considered when computing dynamic soil response are included. An experimental investigation using simulated earthquake tests on centrifuged geotechnical models was conducted to obtain prototype response data of foundation soils carrying both surface and embedded structures and to validate the dynamic effective stress analysis. The centrifuge tests were conducted in the Geotechnical Centrifuge at Cambridge University, England. Horizontal and vertical accelerations were measured at various points on structures and in the sand foundation. Seismically induced pore water pressure changes were also measured at various locations in the foundation. Computer plots of the data were obtained while the centrifuge was in flight and representative samples are presented. The results clearly show the pronounced effect of increasing pore water pressures on dynamic response. It is demonstrated that a coherent picture of dynamic response of soil-structure systems is provided by dynamic effective stress nonlinear analysis. On the basis of preliminary results, it appears that the effects of pore water pressure can be predicted. (orig.)

  2. A robust absorbing layer method for anisotropic seismic wave modeling

    Energy Technology Data Exchange (ETDEWEB)

    Métivier, L., E-mail: ludovic.metivier@ujf-grenoble.fr [LJK, CNRS, Université de Grenoble, BP 53, 38041 Grenoble Cedex 09 (France); ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France); Brossier, R. [ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France); Labbé, S. [LJK, CNRS, Université de Grenoble, BP 53, 38041 Grenoble Cedex 09 (France); Operto, S. [Géoazur, Université de Nice Sophia-Antipolis, CNRS, IRD, OCA, Villefranche-sur-Mer (France); Virieux, J. [ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France)

    2014-12-15

    When applied to wave propagation modeling in anisotropic media, Perfectly Matched Layers (PML) exhibit instabilities. Incoming waves are amplified instead of being absorbed. Overcoming this difficulty is crucial as in many seismic imaging applications, accounting accurately for the subsurface anisotropy is mandatory. In this study, we present the SMART layer method as an alternative to PML approach. This method is based on the decomposition of the wavefield into components propagating inward and outward the domain of interest. Only outgoing components are damped. We show that for elastic and acoustic wave propagation in Transverse Isotropic media, the SMART layer is unconditionally dissipative: no amplification of the wavefield is possible. The SMART layers are not perfectly matched, therefore less accurate than conventional PML. However, a reasonable increase of the layer size yields an accuracy similar to PML. Finally, we illustrate that the selective damping strategy on which is based the SMART method can prevent the generation of spurious S-waves by embedding the source in a small zone where only S-waves are damped.

  3. A robust absorbing layer method for anisotropic seismic wave modeling

    International Nuclear Information System (INIS)

    Métivier, L.; Brossier, R.; Labbé, S.; Operto, S.; Virieux, J.

    2014-01-01

    When applied to wave propagation modeling in anisotropic media, Perfectly Matched Layers (PML) exhibit instabilities. Incoming waves are amplified instead of being absorbed. Overcoming this difficulty is crucial as in many seismic imaging applications, accounting accurately for the subsurface anisotropy is mandatory. In this study, we present the SMART layer method as an alternative to PML approach. This method is based on the decomposition of the wavefield into components propagating inward and outward the domain of interest. Only outgoing components are damped. We show that for elastic and acoustic wave propagation in Transverse Isotropic media, the SMART layer is unconditionally dissipative: no amplification of the wavefield is possible. The SMART layers are not perfectly matched, therefore less accurate than conventional PML. However, a reasonable increase of the layer size yields an accuracy similar to PML. Finally, we illustrate that the selective damping strategy on which is based the SMART method can prevent the generation of spurious S-waves by embedding the source in a small zone where only S-waves are damped

  4. Microvessel rupture induced by high-intensity therapeutic ultrasound-a study of parameter sensitivity in a simple in vivo model.

    Science.gov (United States)

    Kim, Yeonho; Nabili, Marjan; Acharya, Priyanka; Lopez, Asis; Myers, Matthew R

    2017-01-01

    Safety analyses of transcranial therapeutic ultrasound procedures require knowledge of the dependence of the rupture probability and rupture time upon sonication parameters. As previous vessel-rupture studies have concentrated on a specific set of exposure conditions, there is a need for more comprehensive parametric studies. Probability of rupture and rupture times were measured by exposing the large blood vessel of a live earthworm to high-intensity focused ultrasound pulse trains of various characteristics. Pressures generated by the ultrasound transducers were estimated through numerical solutions to the KZK (Khokhlov-Zabolotskaya-Kuznetsov) equation. Three ultrasound frequencies (1.1, 2.5, and 3.3 MHz) were considered, as were three pulse repetition frequencies (1, 3, and 10 Hz), and two duty factors (0.0001, 0.001). The pressures produced ranged from 4 to 18 MPa. Exposures of up to 10 min in duration were employed. Trials were repeated an average of 11 times. No trends as a function of pulse repetition rate were identifiable, for either probability of rupture or rupture time. Rupture time was found to be a strong function of duty factor at the lower pressures; at 1.1 MHz the rupture time was an order of magnitude lower for the 0.001 duty factor than the 0.0001. At moderate pressures, the difference between the duty factors was less, and there was essentially no difference between duty factors at the highest pressure. Probability of rupture was not found to be a strong function of duty factor. Rupture thresholds were about 4 MPa for the 1.1 MHz frequency, 7 MPa at 3.3 MHz, and 11 MPa for the 2.5 MHz, though the pressure value at 2.5 MHz frequency will likely be reduced when steep-angle corrections are accounted for in the KZK model used to estimate pressures. Mechanical index provided a better collapse of the data (less separation of the curves pertaining to the different frequencies) than peak negative pressure, for both probability of rupture and

  5. Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs

    Science.gov (United States)

    We have conducted numerical simulation studies to assess the potential for injection-induced fault reactivation and notable seismic events associated with shale-gas hydraulic fracturing operations. The modeling is generally tuned toward conditions usually encountered in the Marce...

  6. Realistic modelling of observed seismic motion in complex sedimentary basins

    International Nuclear Information System (INIS)

    Faeh, D.; Panza, G.F.

    1994-03-01

    Three applications of a numerical technique are illustrated to model realistically the seismic ground motion for complex two-dimensional structures. First we consider a sedimentary basin in the Friuli region, and we model strong motion records from an aftershock of the 1976 earthquake. Then we simulate the ground motion caused in Rome by the 1915, Fucino (Italy) earthquake, and we compare our modelling with the damage distribution observed in the town. Finally we deal with the interpretation of ground motion recorded in Mexico City, as a consequence of earthquakes in the Mexican subduction zone. The synthetic signals explain the major characteristics (relative amplitudes, spectral amplification, frequency content) of the considered seismograms, and the space distribution of the available macroseismic data. For the sedimentary basin in the Friuli area, parametric studies demonstrate the relevant sensitivity of the computed ground motion to small changes in the subsurface topography of the sedimentary basin, and in the velocity and quality factor of the sediments. The total energy of ground motion, determined from our numerical simulation in Rome, is in very good agreement with the distribution of damage observed during the Fucino earthquake. For epicentral distances in the range 50km-100km, the source location and not only the local soil conditions control the local effects. For Mexico City, the observed ground motion can be explained as resonance effects and as excitation of local surface waves, and the theoretical and the observed maximum spectral amplifications are very similar. In general, our numerical simulations permit the estimate of the maximum and average spectral amplification for specific sites, i.e. are a very powerful tool for accurate micro-zonation. (author). 38 refs, 19 figs, 1 tab

  7. Attenuation tomography in the rupture area of the 2010 M8.8 Maule, Chile, earthquake

    Science.gov (United States)

    Heather-Smith, Helen; Rietbrock, Andreas

    2016-04-01

    In recent years several seismological studies have developed a detailed image of the megathrust interface between the subducting Nazca plate and and the overriding South American plate in the rupture area of the 2010 M8.8 Maule, Chile, earthquake. Hicks et al. (2014) have published a high resolution 3D seismic tomography model and characterised the different regimes acting along the interface based on their seismic properties. A more detailed study by Moreno et al. (2014) showed that the seismic Vp/Vs ratio and inter-seismic locking determined from GPS measurements are correlated. Together these observations open up the possibility to map the rupture potential of possible future earthquakes, although the underlying processes are yet not fully understood and a more in depth analysis of other physical properties is needed. 3D seismic attenuation structure as well as seismic stress-drop distribution based on the aftershock seismicity are providing independent data sets to better constrain the physical processes acting along the subduction zone interface. As seismic attenuation is particularly sensitive to fluid saturation it opens up the possibility to study more directly the influence of fluids on aftershock activity as compared to standard velocity tomography studies. Based on our event catalogue of approximately 30,000 aftershocks we are currently selecting the most appropriate data set for the staggered 3D attenuation tomography. The inverted attenuation model will then be used to calculate seismic stress drop values for the complete aftershock catalogue. We will present our preliminary 3D attenuation model together with our stress drop estimates and compare our finding to the 3D velocity structure and slip distribution.

  8. Robust seismicity forecasting based on Bayesian parameter estimation for epidemiological spatio-temporal aftershock clustering models.

    Science.gov (United States)

    Ebrahimian, Hossein; Jalayer, Fatemeh

    2017-08-29

    In the immediate aftermath of a strong earthquake and in the presence of an ongoing aftershock sequence, scientific advisories in terms of seismicity forecasts play quite a crucial role in emergency decision-making and risk mitigation. Epidemic Type Aftershock Sequence (ETAS) models are frequently used for forecasting the spatio-temporal evolution of seismicity in the short-term. We propose robust forecasting of seismicity based on ETAS model, by exploiting the link between Bayesian inference and Markov Chain Monte Carlo Simulation. The methodology considers the uncertainty not only in the model parameters, conditioned on the available catalogue of events occurred before the forecasting interval, but also the uncertainty in the sequence of events that are going to happen during the forecasting interval. We demonstrate the methodology by retrospective early forecasting of seismicity associated with the 2016 Amatrice seismic sequence activities in central Italy. We provide robust spatio-temporal short-term seismicity forecasts with various time intervals in the first few days elapsed after each of the three main events within the sequence, which can predict the seismicity within plus/minus two standard deviations from the mean estimate within the few hours elapsed after the main event.

  9. Estimation of time to rupture in a fire using 6FIRE, a lumped parameter UF6 cylinder transient heat transfer/stress analysis model

    International Nuclear Information System (INIS)

    Williams, W.R.; Anderson, J.C.

    1995-01-01

    The transportation of UF 6 is subject to regulations requiring the evaluation of packaging under a sequence of hypothetical accident conditions including exposure to a 30-min 800 degree C (1475 degree F) fire [10 CFR 71.73(c)(3)]. An issue of continuing interest is whether bare cylinders can withstand such a fire without rupturing. To address this issue, a lumped parameter heat transfer/stress analysis model (6FIRE) has been developed to simulate heating to the point of rupture of a cylinder containing UF 6 when it is exposed to a fire. The model is described, then estimates of time to rupture are presented for various cylinder types, fire temperatures, and fill conditions. An assessment of the quantity of UF 6 released from containment after rupture is also presented. Further documentation of the model is referenced

  10. Use of regional mechanical properties of abdominal aortic aneurysms to advance finite element modeling of rupture risk.

    Science.gov (United States)

    Tierney, Áine P; Callanan, Anthony; McGloughlin, Timothy M

    2012-02-01

    To investigate the use of regional variations in the mechanical properties of abdominal aortic aneurysms (AAA) in finite element (FE) modeling of AAA rupture risk, which has heretofore assumed homogeneous mechanical tissue properties. Electrocardiogram-gated computed tomography scans from 3 male patients with known infrarenal AAA were used to characterize the behavior of the aneurysm in 4 different segments (posterior, anterior, and left and right lateral) at maximum diameter and above the infrarenal aorta. The elasticity of the aneurysm (circumferential cyclic strain, compliance, and the Hudetz incremental modulus) was calculated for each segment and the aneurysm as a whole. The FE analysis inclusive of prestress (pre-existing tensile stress) produced a detailed stress pattern on each of the aneurysm models under pressure loading. The 4 largest areas of stress in each region were considered in conjunction with the local regional properties of the segment to define a specific regional prestress rupture index (RPRI). In terms of elasticity, there were average reductions of 68% in circumferential cyclic strain and 63% in compliance, with a >5-fold increase in incremental modulus, between the healthy and the aneurysmal aorta for each patient. There were also regional variations in all elastic properties in each individual patient. The average difference in total stress inclusive of prestress was 59%, 67%, and 15%, respectively, for the 3 patients. Comparing the strain from FE models with the CT scans revealed an average difference in strain of 1.55% for the segmented models and 3.61% for the homogeneous models, which suggests that the segmented models more accurately reflect in vivo behavior. RPRI values were calculated for each segment for all patients. A greater understanding of the local material properties and their use in FE models is essential for greater accuracy in rupture prediction. Quantifying the regional behavior will yield insight into the changes in

  11. Seismic analysis of a reinforced concrete containment vessel model

    International Nuclear Information System (INIS)

    Randy, James J.; Cherry, Jeffery L.; Rashid, Yusef R.; Chokshi, Nilesh

    2000-01-01

    Pre-and post-test analytical predictions of the dynamic behavior of a 1:10 scale model Reinforced Concrete Containment Vessel are presented. This model, designed and constructed by the Nuclear Power Engineering Corp., was subjected to seismic simulation tests using the high-performance shaking table at the Tadotsu Engineering Laboratory in Japan. A group of tests representing design-level and beyond-design-level ground motions were first conducted to verify design safety margins. These were followed by a series of tests in which progressively larger base motions were applied until structural failure was induced. The analysis was performed by ANATECH Corp. and Sandia National Laboratories for the US Nuclear Regulatory Commission, employing state-of-the-art finite-element software specifically developed for concrete structures. Three-dimensional time-history analyses were performed, first as pre-test blind predictions to evaluate the general capabilities of the analytical methods, and second as post-test validation of the methods and interpretation of the test result. The input data consisted of acceleration time histories for the horizontal, vertical and rotational (rocking) components, as measured by accelerometers mounted on the structure's basemat. The response data consisted of acceleration and displacement records for various points on the structure, as well as time-history records of strain gages mounted on the reinforcement. This paper reports on work in progress and presents pre-test predictions and post-test comparisons to measured data for tests simulating maximum design basis and extreme design basis earthquakes. The pre-test analyses predict the failure earthquake of the test structure to have an energy level in the range of four to five times the energy level of the safe shutdown earthquake. The post-test calculations completed so far show good agreement with measured data

  12. Imaging the Chicxulub central crater zone from large scale seismic acoustic wave propagation and gravity modeling

    Science.gov (United States)

    Fucugauchi, J. U.; Ortiz-Aleman, C.; Martin, R.

    2017-12-01

    Large complex craters are characterized by central uplifts that represent large-scale differential movement of deep basement from the transient cavity. Here we investigate the central sector of the large multiring Chicxulub crater, which has been surveyed by an array of marine, aerial and land-borne geophysical methods. Despite high contrasts in physical properties,contrasting results for the central uplift have been obtained, with seismic reflection surveys showing lack of resolution in the central zone. We develop an integrated seismic and gravity model for the main structural elements, imaging the central basement uplift and melt and breccia units. The 3-D velocity model built from interpolation of seismic data is validated using perfectly matched layer seismic acoustic wave propagation modeling, optimized at grazing incidence using shift in the frequency domain. Modeling shows significant lack of illumination in the central sector, masking presence of the central uplift. Seismic energy remains trapped in an upper low velocity zone corresponding to the sedimentary infill, melt/breccias and surrounding faulted blocks. After conversion of seismic velocities into a volume of density values, we use massive parallel forward gravity modeling to constrain the size and shape of the central uplift that lies at 4.5 km depth, providing a high-resolution image of crater structure.The Bouguer anomaly and gravity response of modeled units show asymmetries, corresponding to the crater structure and distribution of post-impact carbonates, breccias, melt and target sediments

  13. Modeling of seismic hazards for dynamic reliability analysis

    International Nuclear Information System (INIS)

    Mizutani, M.; Fukushima, S.; Akao, Y.; Katukura, H.

    1993-01-01

    This paper investigates the appropriate indices of seismic hazard curves (SHCs) for seismic reliability analysis. In the most seismic reliability analyses of structures, the seismic hazards are defined in the form of the SHCs of peak ground accelerations (PGAs). Usually PGAs play a significant role in characterizing ground motions. However, PGA is not always a suitable index of seismic motions. When random vibration theory developed in the frequency domain is employed to obtain statistics of responses, it is more convenient for the implementation of dynamic reliability analysis (DRA) to utilize an index which can be determined in the frequency domain. In this paper, we summarize relationships among the indices which characterize ground motions. The relationships between the indices and the magnitude M are arranged as well. In this consideration, duration time plays an important role in relating two distinct class, i.e. energy class and power class. Fourier and energy spectra are involved in the energy class, and power and response spectra and PGAs are involved in the power class. These relationships are also investigated by using ground motion records. Through these investigations, we have shown the efficiency of employing the total energy as an index of SHCs, which can be determined in the time and frequency domains and has less variance than the other indices. In addition, we have proposed the procedure of DRA based on total energy. (author)

  14. Continental rupture and the creation of new crust in the Salton Trough rift, Southern California and northern Mexico: Results from the Salton Seismic Imaging Project

    Science.gov (United States)

    Han, Liang; Hole, John A.; Stock, Joann M.; Fuis, Gary S.; Kell, Annie; Driscoll, Neal W.; Kent, Graham M.; Harding, Alistair J.; Rymer, Michael J.; González-Fernández, Antonio; Lázaro-Mancilla, Octavio

    2016-10-01

    A refraction and wide-angle reflection seismic profile along the axis of the Salton Trough, California and Mexico, was analyzed to constrain crustal and upper mantle seismic velocity structure during active continental rifting. From the northern Salton Sea to the southern Imperial Valley, the crust is 17-18 km thick and approximately one-dimensional. The transition at depth from Colorado River sediment to underlying crystalline rock is gradual and is not a depositional surface. The crystalline rock from 3 to 8 km depth is interpreted as sediment metamorphosed by high heat flow. Deeper felsic crystalline rock could be stretched preexisting crust or higher-grade metamorphosed sediment. The lower crust below 12 km depth is interpreted to be gabbro emplaced by rift-related magmatic intrusion by underplating. Low upper mantle velocity indicates high temperature and partial melting. Under the Coachella Valley, sediment thins to the north and the underlying crystalline rock is interpreted as granitic basement. Mafic rock does not exist at 12-18 km depth as it does to the south, and a weak reflection suggests Moho at 28 km depth. Structure in adjacent Mexico has slower midcrustal velocity, and rocks with mantle velocity must be much deeper than in the Imperial Valley. Slower velocity and thicker crust in the Coachella and Mexicali valleys define the rift zone between them to be >100 km wide in the direction of plate motion. North American lithosphere in the central Salton Trough has been rifted apart and is being replaced by new crust created by magmatism, sedimentation, and metamorphism.

  15. Continental rupture and the creation of new crust in the Salton Trough rift, southern California and northern Mexico: Results from the Salton Seismic Imaging Project

    Science.gov (United States)

    Han, Liang; Hole, John A.; Stock, Joann M.; Fuis, Gary S.; Kell, Annie; Driscoll, Neal W.; Kent, Graham M.; Rymer, Michael J.; Gonzalez-Fernandez, Antonio; Aburto-Oropeza, Octavio

    2016-01-01

    A refraction and wide-angle reflection seismic profile along the axis of the Salton Trough, California and Mexico, was analyzed to constrain crustal and upper mantle seismic velocity structure during active continental rifting. From the northern Salton Sea to the southern Imperial Valley, the crust is 17-18 km thick and approximately one-dimensional. The transition at depth from Colorado River sediment to underlying crystalline rock is gradual and is not a depositional surface. The crystalline rock from ~3 to ~8 km depth is interpreted as sediment metamorphosed by high heat flow. Deeper felsic crystalline rock could be stretched pre-existing crust or higher grade metamorphosed sediment. The lower crust below ~12 km depth is interpreted to be gabbro emplaced by rift-related magmatic intrusion by underplating. Low upper-mantle velocity indicates high temperature and partial melting. Under the Coachella Valley, sediment thins to the north and the underlying crystalline rock is interpreted as granitic basement. Mafic rock does not exist at 12-18 depth as it does to the south, and a weak reflection suggests Moho at ~28 km depth. Structure in adjacent Mexico has slower mid-crustal velocity and rocks with mantle velocity must be much deeper than in the Imperial Valley. Slower velocity and thicker crust in the Coachella and Mexicali valleys define the rift zone between them to be >100 km wide in the direction of plate motion. North American lithosphere in the central Salton Trough has been rifted apart and is being replaced by new crust created by magmatism, sedimentation, and metamorphism.

  16. A local adaptive method for the numerical approximation in seismic wave modelling

    Directory of Open Access Journals (Sweden)

    Galuzzi Bruno G.

    2017-12-01

    Full Text Available We propose a new numerical approach for the solution of the 2D acoustic wave equation to model the predicted data in the field of active-source seismic inverse problems. This method consists in using an explicit finite difference technique with an adaptive order of approximation of the spatial derivatives that takes into account the local velocity at the grid nodes. Testing our method to simulate the recorded seismograms in a marine seismic acquisition, we found that the low computational time and the low approximation error of the proposed approach make it suitable in the context of seismic inversion problems.

  17. Use of generalized regression models for the analysis of stress-rupture data

    International Nuclear Information System (INIS)

    Booker, M.K.

    1978-01-01

    The design of components for operation in an elevated-temperature environment often requires a detailed consideration of the creep and creep-rupture properties of the construction materials involved. Techniques for the analysis and extrapolation of creep data have been widely discussed. The paper presents a generalized regression approach to the analysis of such data. This approach has been applied to multiple heat data sets for types 304 and 316 austenitic stainless steel, ferritic 2 1 / 4 Cr-1 Mo steel, and the high-nickel austenitic alloy 800H. Analyses of data for single heats of several materials are also presented. All results appear good. The techniques presented represent a simple yet flexible and powerful means for the analysis and extrapolation of creep and creep-rupture data

  18. Distribution of ground rigidity and ground model for seismic response analysis in Hualian project of large scale seismic test

    International Nuclear Information System (INIS)

    Kokusho, T.; Nishi, K.; Okamoto, T.; Tanaka, Y.; Ueshima, T.; Kudo, K.; Kataoka, T.; Ikemi, M.; Kawai, T.; Sawada, Y.; Suzuki, K.; Yajima, K.; Higashi, S.

    1997-01-01

    An international joint research program called HLSST is proceeding. HLSST is large-scale seismic test (LSST) to investigate soil-structure interaction (SSI) during large earthquake in the field in Hualien, a high seismic region in Taiwan. A 1/4-scale model building was constructed on the gravelly soil in this site, and the backfill material of crushed stone was placed around the model plant after excavation for the construction. Also the model building and the foundation ground were extensively instrumental to monitor structure and ground response. To accurately evaluate SSI during earthquakes, geotechnical investigation and forced vibration test were performed during construction process namely before/after base excavation, after structure construction and after backfilling. And the distribution of the mechanical properties of the gravelly soil and the backfill are measured after the completion of the construction by penetration test and PS-logging etc. This paper describes the distribution and the change of the shear wave velocity (V s ) measured by the field test. Discussion is made on the effect of overburden pressure during the construction process on V s in the neighbouring soil and, further on the numerical soil model for SSI analysis. (orig.)

  19. Period-dependent source rupture behavior of the 2011 Tohoku earthquake estimated by multi period-band Bayesian waveform inversion

    Science.gov (United States)

    Kubo, H.; Asano, K.; Iwata, T.; Aoi, S.

    2014-12-01

    Previous studies for the period-dependent source characteristics of the 2011 Tohoku earthquake (e.g., Koper et al., 2011; Lay et al., 2012) were based on the short and long period source models using different method. Kubo et al. (2013) obtained source models of the 2011 Tohoku earthquake using multi period-bands waveform data by a common inversion method and discussed its period-dependent source characteristics. In this study, to achieve more in detail spatiotemporal source rupture behavior of this event, we introduce a new fault surface model having finer sub-fault size and estimate the source models in multi period-bands using a Bayesian inversion method combined with a multi-time-window method. Three components of velocity waveforms at 25 stations of K-NET, KiK-net, and F-net of NIED are used in this analysis. The target period band is 10-100 s. We divide this period band into three period bands (10-25 s, 25-50 s, and 50-100 s) and estimate a kinematic source model in each period band using a Bayesian inversion method with MCMC sampling (e.g., Fukuda & Johnson, 2008; Minson et al., 2013, 2014). The parameterization of spatiotemporal slip distribution follows the multi-time-window method (Hartzell & Heaton, 1983). The Green's functions are calculated by the 3D FDM (GMS; Aoi & Fujiwara, 1999) using a 3D velocity structure model (JIVSM; Koketsu et al., 2012). The assumed fault surface model is based on the Pacific plate boundary of JIVSM and is divided into 384 subfaults of about 16 * 16 km^2. The estimated source models in multi period-bands show the following source image: (1) First deep rupture off Miyagi at 0-60 s toward down-dip mostly radiating relatively short period (10-25 s) seismic waves. (2) Shallow rupture off Miyagi at 45-90 s toward up-dip with long duration radiating long period (50-100 s) seismic wave. (3) Second deep rupture off Miyagi at 60-105 s toward down-dip radiating longer period seismic waves then that of the first deep rupture. (4) Deep

  20. Comparative Application of Capacity Models for Seismic Vulnerability Evaluation of Existing RC Structures

    International Nuclear Information System (INIS)

    Faella, C.; Lima, C.; Martinelli, E.; Nigro, E.

    2008-01-01

    Seismic vulnerability assessment of existing buildings is one of the most common tasks in which Structural Engineers are currently engaged. Since, its is often a preliminary step to approach the issue of how to retrofit non-seismic designed and detailed structures, it plays a key role in the successful choice of the most suitable strengthening technique. In this framework, the basic information for both seismic assessment and retrofitting is related to the formulation of capacity models for structural members. Plenty of proposals, often contradictory under the quantitative standpoint, are currently available within the technical and scientific literature for defining the structural capacity in terms of force and displacements, possibly with reference to different parameters representing the seismic response. The present paper shortly reviews some of the models for capacity of RC members and compare them with reference to two case studies assumed as representative of a wide class of existing buildings

  1. 2D and 3D numerical modeling of seismic waves from explosion sources

    International Nuclear Information System (INIS)

    McLaughlin, K.L.; Stevens, J.L.; Barker, T.G.; Shkoller, B.; Day, S.M.

    1993-01-01

    Over the last decade, nonlinear and linear 2D axisymmetric finite difference codes have been used in conjunction with far-field seismic Green's functions to simulate seismic waves from a variety of sources. In this paper we briefly review some of the results and conclusions that have resulted from numerical simulations and explosion modeling in support of treaty verification research at S-CUBED in the last decade. We then describe in more detail the results from two recent projects. Our goal is to provide a flavor for the kinds of problems that can be examined with numerical methods for modeling excitation of seismic waves from explosions. Two classes of problems have been addressed; nonlinear and linear near-source interactions. In both classes of problems displacements and tractions are saved on a closed surface in the linear region and the representation theorem is used to propagate the seismic waves to the far-field

  2. Estimation of Seismic Wavelets Based on the Multivariate Scale Mixture of Gaussians Model

    Directory of Open Access Journals (Sweden)

    Jing-Huai Gao

    2009-12-01

    Full Text Available This paper proposes a new method for estimating seismic wavelets. Suppose a seismic wavelet can be modeled by a formula with three free parameters (scale, frequency and phase. We can transform the estimation of the wavelet into determining these three parameters. The phase of the wavelet is estimated by constant-phase rotation to the seismic signal, while the other two parameters are obtained by the Higher-order Statistics (HOS (fourth-order cumulant matching method. In order to derive the estimator of the Higher-order Statistics (HOS, the multivariate scale mixture of Gaussians (MSMG model is applied to formulating the multivariate joint probability density function (PDF of the seismic signal. By this way, we can represent HOS as a polynomial function of second-order statistics to improve the anti-noise performance and accuracy. In addition, the proposed method can work well for short time series.

  3. Use of a viscoelastic model for the seismic response of base-isolated buildings

    International Nuclear Information System (INIS)

    Uras, R.A.

    1994-01-01

    Due to recent developments in elastomer technology, seismic isolation using elastomer bearings is rapidly becoming an acceptable design tool to enhance structural seismic margins and to protect people and equipment from earthquake damage. With proper design of isolators, high-energy seismic input motions are transformed into low-frequency, low energy harmonic motions and the accelerations acting on the isolated building are significantly reduced. Several alternatives exist for the modeling of the isolators. This study is concerned with the use of a viscoelastic model to predict the seismic response of base-isolated buildings. The in-house finite element computer code has been modified to incorporate a viscoelastic spring element, and several simulations are performed. Then, the computed results have been compared with the corresponding observed data recorded at the test facility

  4. Modeling the impact of melt on seismic properties during mountain building

    Science.gov (United States)

    Lee, Amicia L.; Walker, Andrew M.; Lloyd, Geoffrey E.; Torvela, Taija

    2017-03-01

    Initiation of partial melting in the mid/lower crust causes a decrease in P wave and S wave velocities; recent studies imply that the relationship between these velocities and melt is not simple. We have developed a modeling approach to assess the combined impact of various melt and solid phase properties on seismic velocities and anisotropy. The modeling is based on crystallographic preferred orientation (CPO) data measured from migmatite samples, allowing quantification of the variation of seismic velocities with varying melt volumes, shapes, orientations, and matrix anisotropy. The results show nonlinear behavior of seismic properties as a result of the interaction of all of these physical properties, which in turn depend on lithology, stress regime, strain rate, preexisting rock fabrics, and pressure-temperature conditions. This nonlinear behavior is evident when applied to a suite of samples from a traverse across a migmatitic shear zone in the Seiland Igneous Province, Northern Norway. Critically, changes in solid phase composition and CPO, and melt shape and orientation with respect to the wave propagation direction can result in huge variations in the same seismic property even if the melt fraction remains the same. A comparison with surface wave interpretations from tectonically active regions highlights the issues in current models used to predict melt percentages or partially molten regions. Interpretation of seismic data to infer melt percentages or extent of melting should, therefore, always be underpinned by robust modeling of the underlying geological parameters combined with examination of multiple seismic properties in order to reduce uncertainty of the interpretation.

  5. Nonlinear time series modeling and forecasting the seismic data of the Hindu Kush region

    Science.gov (United States)

    Khan, Muhammad Yousaf; Mittnik, Stefan

    2018-01-01

    In this study, we extended the application of linear and nonlinear time models in the field of earthquake seismology and examined the out-of-sample forecast accuracy of linear Autoregressive (AR), Autoregressive Conditional Duration (ACD), Self-Exciting Threshold Autoregressive (SETAR), Threshold Autoregressive (TAR), Logistic Smooth Transition Autoregressive (LSTAR), Additive Autoregressive (AAR), and Artificial Neural Network (ANN) models for seismic data of the Hindu Kush region. We also extended the previous studies by using Vector Autoregressive (VAR) and Threshold Vector Autoregressive (TVAR) models and compared their forecasting accuracy with linear AR model. Unlike previous studies that typically consider the threshold model specifications by using internal threshold variable, we specified these models with external transition variables and compared their out-of-sample forecasting performance with the linear benchmark AR model. The modeling results show that time series models used in the present study are capable of capturing the dynamic structure present in the seismic data. The point forecast results indicate that the AR model generally outperforms the nonlinear models. However, in some cases, threshold models with external threshold variables specification produce more accurate forecasts, indicating that specification of threshold time series models is of crucial importance. For raw seismic data, the ACD model does not show an improved out-of-sample forecasting performance over the linear AR model. The results indicate that the AR model is the best forecasting device to model and forecast the raw seismic data of the Hindu Kush region.

  6. Finite Element Modelling of Seismic Liquefaction in Soils

    NARCIS (Netherlands)

    Galavi, V.; Petalas, A.; Brinkgreve, R.B.J.

    2013-01-01

    Numerical aspects of seismic liquefaction in soils as implemented in the finite element code, PLAXIS, is described in this paper. After description of finite element equations of dynamic problems, three practical dynamic boundary conditions, namely viscous boundary tractions, tied degrees of freedom

  7. On the modeling and inversion of seismic data

    NARCIS (Netherlands)

    Stolk, C.C.

    2000-01-01

    In this thesis we investigate some mathematical questions related to the inversion of seismic data. In Chapter 2 we review results in the literature and give some new results on wave equations with coefficients that are just bounded and measurable. We show that these equations have unique

  8. The 2014, MW6.9 North Aegean earthquake: seismic and geodetic evidence for coseismic slip on persistent asperities

    Science.gov (United States)

    Konca, Ali Ozgun; Cetin, Seda; Karabulut, Hayrullah; Reilinger, Robert; Dogan, Ugur; Ergintav, Semih; Cakir, Ziyadin; Tari, Ergin

    2018-05-01

    We report that asperities with the highest coseismic slip in the 2014 MW6.9 North Aegean earthquake persisted through the interseismic, coseismic and immediate post-seismic periods. We use GPS and seismic data to obtain the source model of the 2014 earthquake, which is located on the western extension of the North Anatolian Fault (NAF). The earthquake ruptured a bilateral, 90 km strike-slip fault with three slip patches: one asperity located west of the hypocentre and two to the east with a rupture duration of 40 s. Relocated pre-earthquake seismicity and aftershocks show that zones with significant coseismic slip were relatively quiet during both the 7 yr of interseismic and the 3-month aftershock periods, while the surrounding regions generated significant seismicity during both the interseismic and post-seismic periods. We interpret the unusually long fault length and source duration, and distribution of pre- and post-main-shock seismicity as evidence for a rupture of asperities that persisted through strain accumulation and coseismic strain release in a partially coupled fault zone. We further suggest that the association of seismicity with fault creep may characterize the adjacent Izmit, Marmara Sea and Saros segments of the NAF. Similar behaviour has been reported for sections of the San Andreas Fault, and some large subduction zones, suggesting that the association of seismicity with creeping fault segments and rapid relocking of asperities may characterize many large earthquake faults.

  9. Influence of hemodynamic factors on rupture of intracranial aneurysms: patient-specific 3D mirror aneurysms model computational fluid dynamics simulation.

    Science.gov (United States)

    Lu, G; Huang, L; Zhang, X L; Wang, S Z; Hong, Y; Hu, Z; Geng, D Y

    2011-08-01

    Hemodynamics factors play an important role in the rupture of cerebral aneurysms. The purpose of this study was to evaluate the impact of hemodynamic factors on the rupture of the MANs with 3D reconstruction model CFD simulation. RDSA was performed in 9 pairs of intracranial MANs. Each pair was divided into ruptured and unruptured groups. The hemodynamic factors of the aneurysms and their parent arteries were compared. There was a significant difference in the WSS at peak systole between the regions of the aneurysms and their parent arteries in the ruptured group (ie, 6.49 ± 3.48 Pa versus 8.78 ± 3.57 Pa, P =.015) but not in the unruptured group (ie, 9.80 ± 4.12 Pa versus 10.17 ± 7.48 Pa, P =.678). The proportion of the low WSS area to the whole area of the aneurysms was 12.20 ± 18.08% in the ruptured group and 3.96 ± 6.91% in the unruptured group; the difference between the 2 groups was statistically significant (P =.015). The OSI was 0.0879 ± 0.0764 in the ruptured group, which was significantly higher than that of the unruptured group (ie, 0.0183 ± 0.0191, P =.008). MANs may be a useful disease model to investigate possible causes linked to ruptured aneurysms. The ruptured aneurysms manifested lower WSS compared with their parent arteries, a higher proportion of the low WSS area to the whole area of aneurysm, and higher OSI compared with the unruptured aneurysms.

  10. Great paleoearthquakes of the central Himalaya and their implications for seismotectonic models and seismic hazard assessment

    Science.gov (United States)

    Yule, D.; Lave, J.; Kumar, S.; Wesnousky, S.

    2007-12-01

    A growing body of paleoseismic data collected from more than ten sites in Nepal and India has documented large coseismic displacements at the thrust front (Main Frontal thrust (MFT)). Three great earthquakes have been identified: in ~A.D. 1410 centered north of Delhi, in A.D. 1505 centered in far-western Nepal, and in ~A.D. 1100 centered in eastern Nepal. It is noteworthy that wherever exposures of the MFT have been studied estimates of surface slip are consistently large; with a range of 9-26 m. Historic accounts of the 1505 earthquake describe strong shaking across a 600-km-long stretch of the central Himalaya. A magnitude for this event is estimated to be >Mw 8.5 based on the maximum extent of felt strong shaking, the 100 km width of the locked portion of the basal detachment, and an average slip of 10-15 m. Though no historic accounts exist for the ~1410 and ~1100 earthquakes, the similarity between their surface expression and the 1505 rupture suggests that these events may have been equally large. These surface-rupturing earthquakes are distinctly different from a host of blind thrust events (Mw 7.5-8.4) that dominate the historic record since A.D. 1505. Both blind and emergent earthquakes are presumed to rupture the basal detachment and release interseismic strain that accumulates near the base of the High Himalaya and carry it to the thrust front where Holocene shortening occurs at rates of 15-22 mm/yr. Whereas the surface-rupturing earthquakes clearly deform the thrust front, survey data from the region affected by the 1906 Dehra Dun earthquake suggest that blind events contribute negligible, if any, deformation to the frontal structures. The factors controlling whether or not surface rupture occurs on the MFT remain unconstrained, but the current data seem to suggest that >Mw 8.5 surface-rutpuring earthquakes are the primary contributors to the shortening observed at the thrust front. It is sobering to consider that the 'Big One' has not struck the

  11. Application of mass-spring model in seismic analysis of liquid storage tank

    International Nuclear Information System (INIS)

    Liu Jiayi; Bai Xinran; Li Xiaoxuan

    2013-01-01

    There are many tanks for storing liquid in nuclear power plant. When seismic analysis is performed, swaying of liquid may change the mechanical parameters of those tanks, such as the center of mass and the moment of inertia, etc., so the load due to swaying of liquid can't be neglected. Mass-spring model is a simplified model to calculate the dynamic pressure of liquid in tank under earthquake, which is derived by the theory of Housner and given in the specification of seismic analysis of Safety-Related Nuclear Structures and Commentary-4-98 (ASCE-4-98 for short hereinafter). According to the theory of Housner and ASCE-4-98, the mass-spring 3-D FEM model for storage tank and liquid in it was established, by which the force of stored liquid acted on liquid storage tank in nuclear power plant under horizontal seismic load was calculated. The calculated frequency of liquid swaying and effect of liquid convection on storage tank were compared with those calculated by simplified formula. It is shown that the results of 3-D FEM model are reasonable and reliable. Further more, it is more direct and convenient compared with description in ASCE-4-98 when the mass-spring model is applied to 3-D FEM model for seismic analysis, from which the displacement and stress distributions of the plate-shell elements or the 3-D solid finite elements can be obtained directly from the seismic input model. (authors)

  12. Modeling earthquake magnitudes from injection-induced seismicity on rough faults

    Science.gov (United States)

    Maurer, J.; Dunham, E. M.; Segall, P.

    2017-12-01

    It is an open question whether perturbations to the in-situ stress field due to fluid injection affect the magnitudes of induced earthquakes. It has been suggested that characteristics such as the total injected fluid volume control the size of induced events (e.g., Baisch et al., 2010; Shapiro et al., 2011). On the other hand, Van der Elst et al. (2016) argue that the size distribution of induced earthquakes follows Gutenberg-Richter, the same as tectonic events. Numerical simulations support the idea that ruptures nucleating inside regions with high shear-to-effective normal stress ratio may not propagate into regions with lower stress (Dieterich et al., 2015; Schmitt et al., 2015), however, these calculations are done on geometrically smooth faults. Fang & Dunham (2013) show that rupture length on geometrically rough faults is variable, but strongly dependent on background shear/effective normal stress. In this study, we use a 2-D elasto-dynamic rupture simulator that includes rough fault geometry and off-fault plasticity (Dunham et al., 2011) to simulate earthquake ruptures under realistic conditions. We consider aggregate results for faults with and without stress perturbations due to fluid injection. We model a uniform far-field background stress (with local perturbations around the fault due to geometry), superimpose a poroelastic stress field in the medium due to injection, and compute the effective stress on the fault as inputs to the rupture simulator. Preliminary results indicate that even minor stress perturbations on the fault due to injection can have a significant impact on the resulting distribution of rupture lengths, but individual results are highly dependent on the details of the local stress perturbations on the fault due to geometric roughness.

  13. Present-Day Mars' Seismicity Predicted From 3-D Thermal Evolution Models of Interior Dynamics

    Science.gov (United States)

    Plesa, A.-C.; Knapmeyer, M.; Golombek, M. P.; Breuer, D.; Grott, M.; Kawamura, T.; Lognonné, P.; Tosi, N.; Weber, R. C.

    2018-03-01

    The Interior Exploration using Seismic Investigations, Geodesy and Heat Transport mission, to be launched in 2018, will perform a comprehensive geophysical investigation of Mars in situ. The Seismic Experiment for Interior Structure package aims to detect global and regional seismic events and in turn offer constraints on core size, crustal thickness, and core, mantle, and crustal composition. In this study, we estimate the present-day amount and distribution of seismicity using 3-D numerical thermal evolution models of Mars, taking into account contributions from convective stresses as well as from stresses associated with cooling and planetary contraction. Defining the seismogenic lithosphere by an isotherm and assuming two end-member cases of 573 K and the 1073 K, we determine the seismogenic lithosphere thickness. Assuming a seismic efficiency between 0.025 and 1, this thickness is used to estimate the total annual seismic moment budget, and our models show values between 5.7 × 1016 and 3.9 × 1019 Nm.

  14. A GIS-based time-dependent seismic source modeling of Northern Iran

    Science.gov (United States)

    Hashemi, Mahdi; Alesheikh, Ali Asghar; Zolfaghari, Mohammad Reza

    2017-01-01

    The first step in any seismic hazard study is the definition of seismogenic sources and the estimation of magnitude-frequency relationships for each source. There is as yet no standard methodology for source modeling and many researchers have worked on this topic. This study is an effort to define linear and area seismic sources for Northern Iran. The linear or fault sources are developed based on tectonic features and characteristic earthquakes while the area sources are developed based on spatial distribution of small to moderate earthquakes. Time-dependent recurrence relationships are developed for fault sources using renewal approach while time-independent frequency-magnitude relationships are proposed for area sources based on Poisson process. GIS functionalities are used in this study to introduce and incorporate spatial-temporal and geostatistical indices in delineating area seismic sources. The proposed methodology is used to model seismic sources for an area of about 500 by 400 square kilometers around Tehran. Previous researches and reports are studied to compile an earthquake/fault catalog that is as complete as possible. All events are transformed to uniform magnitude scale; duplicate events and dependent shocks are removed. Completeness and time distribution of the compiled catalog is taken into account. The proposed area and linear seismic sources in conjunction with defined recurrence relationships can be used to develop time-dependent probabilistic seismic hazard analysis of Northern Iran.

  15. New Frontiers on Seismic Modeling of Masonry Structures

    Directory of Open Access Journals (Sweden)

    Salvatore Caddemi

    2017-07-01

    Full Text Available An accurate evaluation of the non-linear behavior of masonry structural elements in existing buildings still represents a complex issue that rigorously requires non-linear finite element strategies difficult to apply to real large structures. Nevertheless, for the static and seismic assessment of existing structures, involving the contribution of masonry materials, engineers need reliable and efficient numerical tools, whose complexity and computational demand should be suitable for practical purposes. For these reasons, the formulation and the validation of simplified numerical strategies represent a very important issue in masonry computational research. In this paper, an innovative macroelement approach, developed by the authors in the last decade, is presented. The proposed macroelement formulation is based on different, plane and spatial, macroelements for the simulation of both the in-plane and out-of-plane behavior of masonry structures also in presence of masonry elements with curved geometry. The mechanical response of the adopted macroelement is governed by non-linear zero-thickness interfaces, whose calibration follows a straightforward fiber discretization, and the non-linear internal shear deformability is ruled by equivalence with a corresponding geometrically consistent homogenized medium. The approach can be considered as “parsimonious” since the kinematics of the adopted elements is controlled by very few degrees of freedom, if compared to a corresponding discretization performed by using non-linear finite element method strategies. This innovative discrete element strategy has been implemented in two user-oriented software codes 3DMacro (Caliò et al., 2012b and HiStrA (Historical Structures Analysis (Caliò et al., 2015, which simplify the modeling of buildings and historical structures by means of several wizard generation tools and input/output facilities. The proposed approach, that represents a powerful tool for the

  16. Development of tube rupture evaluation code for FBR steam generator (II). Modification of heat transfer model in sodium side

    International Nuclear Information System (INIS)

    Hamada, H.; Kurihara, A.

    2003-05-01

    The thermal effect of sodium-water reaction jet on neighboring heat transfer tubes was examined to rationally evaluate the structural integrity of the tube for overheating rupture under a water leak in an FBR steam generator. Then, the development of new heat transfer model and the application analysis were carried out. Main results in this paper are as follows. (1) The evaluation method of heat flux and heat transfer coefficient (HTC) on the tube exposed to reaction jet was developed. By using the method, it was confirmed that the heat flux could be realistically evaluated in comparison with the previous method. (2) The HTC between reaction jet and the tube was theoretically examined in the two-phase flow model, and new heat transfer model considering the effect of fluid temperature and cover gas pressure was developed. By applying the model, a tentative experimental correlation was conservatively obtained by using SWAT-1R test data. (3) The new model was incorporated to the Tube Rupture Evaluation Code (TRUE), and the conservatism of the model was confirmed by using sodium-water reaction data such as the SWAT-3 tests. (4) In the application analysis of the PFR large leak event, there was no significant difference of calculation results between the new model and previous one; the importance of depressurization in the tube was confirmed. (5) In the application analysis of the Monju evaporator, it was confirmed that the calculation result in the previous model would be more conservative than that in the new one and that the maximum cumulative damage of 25% could be reduced in the new model. (author)

  17. Body and Surface Wave Modeling of Observed Seismic Events

    Science.gov (United States)

    1981-04-30

    mechanisms for foreshock , mainshock, and aftershock sequences using Seismic Research Observatory (SRO) data, EOS, 57(12), p. 954, 1976. Bache, T.C., W.L...the event as well as that of the immediate foreshock were 95 located (Allen and Nordquist, 1972) and where the largest surface displacements were...1972). Foreshock , main shock and larger aftershocks of the Borrego Mountain earthquake, U. S. Geological Survey Professional Paper 787, 16-23. Bache

  18. Application of Seismic Array Processing to Tsunami Early Warning

    Science.gov (United States)

    An, C.; Meng, L.

    2015-12-01

    Tsunami wave predictions of the current tsunami warning systems rely on accurate earthquake source inversions of wave height data. They are of limited effectiveness for the near-field areas since the tsunami waves arrive before data are collected. Recent seismic and tsunami disasters have revealed the need for early warning to protect near-source coastal populations. In this work we developed the basis for a tsunami warning system based on rapid earthquake source characterisation through regional seismic array back-projections. We explored rapid earthquake source imaging using onshore dense seismic arrays located at regional distances on the order of 1000 km, which provides faster source images than conventional teleseismic back-projections. We implement this method in a simulated real-time environment, and analysed the 2011 Tohoku earthquake rupture with two clusters of Hi-net stations in Kyushu and Northern Hokkaido, and the 2014 Iquique event with the Earthscope USArray Transportable Array. The results yield reasonable estimates of rupture area, which is approximated by an ellipse and leads to the construction of simple slip models based on empirical scaling of the rupture area, seismic moment and average slip. The slip model is then used as the input of the tsunami simulation package COMCOT to predict the tsunami waves. In the example of the Tohoku event, the earthquake source model can be acquired within 6 minutes from the start of rupture and the simulation of tsunami waves takes less than 2 min, which could facilitate a timely tsunami warning. The predicted arrival time and wave amplitude reasonably fit observations. Based on this method, we propose to develop an automatic warning mechanism that provides rapid near-field warning for areas of high tsunami risk. The initial focus will be Japan, Pacific Northwest and Alaska, where dense seismic networks with the capability of real-time data telemetry and open data accessibility, such as the Japanese HiNet (>800

  19. Post-seismic relaxation theory on laterally heterogeneous viscoelastic model

    Science.gov (United States)

    Pollitz, F.F.

    2003-01-01

    Investigation was carried out into the problem of relaxation of a laterally heterogeneous viscoelastic Earth following an impulsive moment release event. The formal solution utilizes a semi-analytic solution for post-seismic deformation on a laterally homogeneous Earth constructed from viscoelastic normal modes, followed by application of mode coupling theory to derive the response on the aspherical Earth. The solution is constructed in the Laplace transform domain using the correspondence principle and is valid for any linear constitutive relationship between stress and strain. The specific implementation described in this paper is a semi-analytic discretization method which assumes isotropic elastic structure and a Maxwell constitutive relation. It accounts for viscoelastic-gravitational coupling under lateral variations in elastic parameters and viscosity. For a given viscoelastic structure and minimum wavelength scale, the computational effort involved with the numerical algorithm is proportional to the volume of the laterally heterogeneous region. Examples are presented of the calculation of post-seismic relaxation with a shallow, laterally heterogeneous volume following synthetic impulsive seismic events, and they illustrate the potentially large effect of regional 3-D heterogeneities on regional deformation patterns.

  20. The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion

    International Nuclear Information System (INIS)

    Moszo, P.; Kristek, J.; Galis, M.; Pazak, P.; Balazovijech, M.

    2006-01-01

    Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable tool in investigation of the Earth's structure, processes in the Earth, and particularly earthquake phenomena. Among various numerical methods, the finite-difference method is the dominant method in the modeling of earthquake motion. Moreover, it is becoming more important in the seismic exploration and structural modeling. At the same time we are convinced that the best time of the finite-difference method in seismology is in the future. This monograph provides tutorial and detailed introduction to the application of the finite-difference, finite-element, and hybrid finite-difference-finite-element methods to the modeling of seismic wave propagation and earthquake motion. The text does not cover all topics and aspects of the methods. We focus on those to which we have contributed. (Author)

  1. Three-dimensional cellular automata as a model of a seismic fault

    International Nuclear Information System (INIS)

    Gálvez, G; Muñoz, A

    2017-01-01

    The Earth's crust is broken into a series of plates, whose borders are the seismic fault lines and it is where most of the earthquakes occur. This plating system can in principle be described by a set of nonlinear coupled equations describing the motion of the plates, its stresses, strains and other characteristics. Such a system of equations is very difficult to solve, and nonlinear parts leads to a chaotic behavior, which is not predictable. In 1989, Bak and Tang presented an earthquake model based on the sand pile cellular automata. The model though simple, provides similar results to those observed in actual earthquakes. In this work the cellular automata in three dimensions is proposed as a best model to approximate a seismic fault. It is noted that the three-dimensional model reproduces similar properties to those observed in real seismicity, especially, the Gutenberg-Richter law. (paper)

  2. Time-lapse seismic waveform modelling and attribute analysis using hydromechanical models for a deep reservoir undergoing depletion

    Science.gov (United States)

    He, Y.-X.; Angus, D. A.; Blanchard, T. D.; Wang, G.-L.; Yuan, S.-Y.; Garcia, A.

    2016-04-01

    Extraction of fluids from subsurface reservoirs induces changes in pore pressure, leading not only to geomechanical changes, but also perturbations in seismic velocities and hence observable seismic attributes. Time-lapse seismic analysis can be used to estimate changes in subsurface hydromechanical properties and thus act as a monitoring tool for geological reservoirs. The ability to observe and quantify changes in fluid, stress and strain using seismic techniques has important implications for monitoring risk not only for petroleum applications but also for geological storage of CO2 and nuclear waste scenarios. In this paper, we integrate hydromechanical simulation results with rock physics models and full-waveform seismic modelling to assess time-lapse seismic attribute resolution for dynamic reservoir characterization and hydromechanical model calibration. The time-lapse seismic simulations use a dynamic elastic reservoir model based on a North Sea deep reservoir undergoing large pressure changes. The time-lapse seismic traveltime shifts and time strains calculated from the modelled and processed synthetic data sets (i.e. pre-stack and post-stack data) are in a reasonable agreement with the true earth models, indicating the feasibility of using 1-D strain rock physics transform and time-lapse seismic processing methodology. Estimated vertical traveltime shifts for the overburden and the majority of the reservoir are within ±1 ms of the true earth model values, indicating that the time-lapse technique is sufficiently accurate for predicting overburden velocity changes and hence geomechanical effects. Characterization of deeper structure below the overburden becomes less accurate, where more advanced time-lapse seismic processing and migration is needed to handle the complex geometry and strong lateral induced velocity changes. Nevertheless, both migrated full-offset pre-stack and near-offset post-stack data image the general features of both the overburden and

  3. Application of probabilistic seismic hazard models with special calculation for the waste storage sites in Egypt

    International Nuclear Information System (INIS)

    Othman, A.A.; El-Hemamy, S.T.

    2000-01-01

    Probabilistic strong motion maps of Egypt are derived by applying Gumbel models and likelihood method to 8 earthquake source zones in Egypt and adjacent regions. Peak horizontal acceleration is mapped. Seismic data are collected from Helwan Catalog (1900-1997), regional catalog of earthquakes from the International Seismological Center (ISC,1910-1993) and earthquake data reports of US Department of International Geological Survey (USCGS, 1900-1994). Iso-seismic maps are also available for some events, which occurred in Egypt. Some earthquake source zones are well defined on the basis of both tectonics and average seismicity rates, but a lack of understanding of the near field effects of the large earthquakes prohibits accurate estimates of ground motion in their vicinity. Some source zones have no large-scale crustal features or zones of weakness that can explain the seismicity and must, therefore, be defined simply as concentrations of seismic activity with no geological or geophysical controls on the boundaries. Other source zones lack information on low-magnitude seismicity that would be representative of longer periods of time. Comparisons of the new probabilistic ground motion estimates in Egypt with equivalent estimates made in 1990 have been done. The new ground motion estimates are used to produce a new peak ground acceleration map to replace the 1990 peak acceleration zoning maps in the Building code of Egypt. (author)

  4. The Great Maule earthquake: seismicity prior to and after the main shock from amphibious seismic networks

    Science.gov (United States)

    Lieser, K.; Arroyo, I. G.; Grevemeyer, I.; Flueh, E. R.; Lange, D.; Tilmann, F. J.

    2013-12-01

    The Chilean subduction zone is among the seismically most active plate boundaries in the world and its coastal ranges suffer from a magnitude 8 or larger megathrust earthquake every 10-20 years. The Constitución-Concepción or Maule segment in central Chile between ~35.5°S and 37°S was considered to be a mature seismic gap, rupturing last in 1835 and being seismically quiet without any magnitude 4.5 or larger earthquakes reported in global catalogues. It is located to the north of the nucleation area of the 1960 magnitude 9.5 Valdivia earthquake and to the south of the 1928 magnitude 8 Talca earthquake. On 27 February 2010 this segment ruptured in a Mw=8.8 earthquake, nucleating near 36°S and affecting a 500-600 km long segment of the margin between 34°S and 38.5°S. Aftershocks occurred along a roughly 600 km long portion of the central Chilean margin, most of them offshore. Therefore, a network of 30 ocean-bottom-seismometers was deployed in the northern portion of the rupture area for a three month period, recording local offshore aftershocks between 20 September 2010 and 25 December 2010. In addition, data of a network consisting of 33 landstations of the GeoForschungsZentrum Potsdam were included into the network, providing an ideal coverage of both the rupture plane and areas affected by post-seismic slip as deduced from geodetic data. Aftershock locations are based on automatically detected P wave onsets and a 2.5D velocity model of the combined on- and offshore network. Aftershock seismicity analysis in the northern part of the survey area reveals a well resolved seismically active splay fault in the accretionary prism of the Chilean forearc. Our findings imply that in the northernmost part of the rupture zone, co-seismic slip most likely propagated along the splay fault and not the subduction thrust fault. In addition, the updip limit of aftershocks along the plate interface can be verified to about 40 km landwards from the deformation front. Prior to

  5. Salton Trough Post-seismic Afterslip, Viscoelastic Response, and Contribution to Regional Hazard

    Science.gov (United States)

    Parker, J. W.; Donnellan, A.; Lyzenga, G. A.

    2012-12-01

    The El Mayor-Cucapah M7.2 April 4 2010 earthquake in Baja California may have affected accumulated hazard to Southern California cities due to loading of regional faults including the Elsinore, San Jacinto and southern San Andreas, faults which already have over a century of tectonic loading. We examine changes observed via multiple seismic and geodetic techniques, including micro seismicity and proposed seismicity-based indicators of hazard, high-quality fault models, the Plate Boundary Observatory GNSS array (with 174 stations showing post-seismic transients with greater than 1 mm amplitude), and interferometric radar maps from UAVSAR (aircraft) flights, showing a network of aseismic fault slip events at distances up to 60 km from the end of the surface rupture. Finite element modeling is used to compute the expected coseismic motions at GPS stations with general agreement, including coseismic uplift at sites ~200 km north of the rupture. Postseismic response is also compared, with GNSS and also with the CIG software "RELAX." An initial examination of hazard is made comparing micro seismicity-based metrics, fault models, and changes to coulomb stress on nearby faults using the finite element model. Comparison of seismicity with interferograms and historic earthquakes show aseismic slip occurs on fault segments that have had earthquakes in the last 70 years, while other segments show no slip at the surface but do show high triggered seismicity. UAVSAR-based estimates of fault slip can be incorporated into the finite element model to correct Coloumb stress change.

  6. Differentially expressed proteins on postoperative 3 days healing in rabbit Achilles tendon rupture model after early kinesitherapy.

    Science.gov (United States)

    Jialili, Ainuer; Jielile, Jiasharete; Abudoureyimu, Shajidan; Sabirhazi, Gulnur; Redati, Darebai; Bai, Jing-Ping; Bin, Liang; Duisabai, Sailike; Aishan, Jiangaguli; Kasimu, Haxiaobieke

    2011-04-01

    , peroxiredoxin 1, alpha-1-antiproteinase E a-1 and MAD2L1 binding protein, etc. And some with the molecular chaperone, oxidative stress, energy metabolism, signal transduction, coupled with the tendon cell expression and protein synthesis, proliferate, differentiate and are closely related to the AT healing. The GAPDH protein was further validated through Western blotting. It was indicated that some differentially expressed proteins were involved in various metabolism pathways and may play an important role in initial healing of AT rupture. Differentially expressed proteins in rabbit healing AT model may contribute to 3 days healing of AT rupture through a new mechanobiological mechanism due to the application of postoperative early kinesitherapy.

  7. Evidence for a continental unstable triple junction as an alternate model for Vrancea seismicity

    International Nuclear Information System (INIS)

    Besutiu, L.

    2002-01-01

    The Vrancea active seismic zone located in the bending area of Romanian Carpathians stands for a long time as a challenge to geoscientists all over the world. Deep seismicity in continental collision circumstances is rather rare and always constraints on dynamics of subduction. The pattern of the intermediate-depth seismicity in the Vrancea region suggests a confined prismatic nearly vertical seismic body. The small size and geometry of the seismic zone have made it difficult to interpret the kinematics of subduction and continental collision in the area. During the years, several models, almost all subduction-related, have more or less successfully tried to explain this phenomenon. The paper represents an attempt to explain the Vrancea intermediate depth seismicity starting from a new concept, as introduced by the plate tectonics theory: the triple junction. A continental unstable triple junction is proposed as an alternate model to explain the unusual seismicity in the Vrancea seismic area. Three tectonic plates / microplates seem to join in the region: East European Plate (EEP), Moesian microplate (MoP), and the Intra-Alpine microplate (IaP). Their edges are geophysically documented and their motion is evidenced. The differentiation in their relative velocities generated an unstable transform-transform-compression triple junction that determined the vertical collapse of the lithospheric segment to which the intermediate seismicity within Vrancea zone is associated. Three major plates' wedges bound the seismic body: Tornquist-Teissyere zone, Peceneaga-Camena fault, and Trans-Getica fault. Temperature accommodation phenomena associated to the sinking lithospheric body into the hotter upper mantle environment (such as convective cells, phase-transform processes, and devolatilization) could be responsible for the earthquakes occurrence. The problem of the missing subduction related volcanism within Vrancea triple junction (VTJ) area is definitely solved in the case

  8. Aseismic and seismic slip induced by fluid injection from poroelastic and rate-state friction modeling

    Science.gov (United States)

    Liu, Y.; Deng, K.; Harrington, R. M.; Clerc, F.

    2016-12-01

    Solid matrix stress change and pore pressure diffusion caused by fluid injection has been postulated as key factors for inducing earthquakes and aseismic slip on pre-existing faults. In this study, we have developed a numerical model that simulates aseismic and seismic slip in a rate-and-state friction framework with poroelastic stress perturbations from multi-stage hydraulic fracturing scenarios. We apply the physics-based model to the 2013-2015 earthquake sequences near Fox Creek, Alberta, Canada, where three magnitude 4.5 earthquakes were potentially induced by nearby hydraulic fracturing activity. In particular, we use the relocated December 2013 seismicity sequence to approximate the fault orientation, and find the seismicity migration spatiotemporally correlate with the positive Coulomb stress changes calculated from the poroelastic model. When the poroelastic stress changes are introduced to the rate-state friction model, we find that slip on the fault evolves from aseismic to seismic in a manner similar to the onset of seismicity. For a 15-stage hydraulic fracturing that lasted for 10 days, modeled fault slip rate starts to accelerate after 3 days of fracking, and rapidly develops into a seismic event, which also temporally coincides with the onset of induced seismicity. The poroelastic stress perturbation and consequently fault slip rate continue to evolve and remain high for several weeks after hydraulic fracturing has stopped, which may explain the continued seismicity after shut-in. In a comparison numerical experiment, fault slip rate quickly decreases to the interseismic level when stress perturbations are instantaneously returned to zero at shut-in. Furthermore, when stress perturbations are removed just a few hours after the fault slip rate starts to accelerate (that is, hydraulic fracturing is shut down prematurely), only aseismic slip is observed in the model. Our preliminary results thus suggest the design of fracturing duration and flow

  9. Seismic tests on models of reinforced-concrete Category I buildings

    International Nuclear Information System (INIS)

    Dove, R.C.; Endebrock, E.G.; Dunwoody, W.E.; Bennett, J.G.

    1985-01-01

    The behavior of reinforced concrete (R/C), Category I noncontainment nuclear power plant structures subjected to seismic events of magnitude greater than used in their original design has been investigated using two sizes of scale models. Test results were analyzed to determine (1) maximum input for the response to remain linear/elastic; (2) changes in stiffness, damping, and modal frequency that are produced by seismic input greater than that causing linear elastic response; (3) changes in floor response spectra when the structure's response is nonlinear/inelastic; and (4) the magnitude of the seismic event necessary to fail (excessively crack) these structures. By constructing models of two sizes, it was possible to make two independent predictions of prototype behavior and to compare the results from the two models. 1 ref., 4 figs., 1 tab

  10. Mechanical testing of newly developed biomaterial designed for intra-articular reinforcement of partially ruptured cranial cruciate ligament: ex vivo pig model

    Directory of Open Access Journals (Sweden)

    Petra Fedorová

    2014-01-01

    Full Text Available The study deals with mechanical testing of newly developed material polyethylene terephtalate coated with polycaprolactone nanofibers in combination with biodagradable Hexalon ACL/PCL screws as a new possibility of intra-articular reinforcement of partially ruptured cranial cruciate ligament. Four groups of ex vivo models of pig stifle joints were prepared and tested: a model with intact CCL (group 1, a model with partial CCL rupture (group 2, a model with CCL rupture stabilized with 7 mm Mersilene® strip (group 3, and a model with CCL rupture stabilized with 5 mm PET/PCL biomaterial strip (group 4. The models were loaded in the standing angle of 100° and the maximum load (N and the shift (mm were monitored. The mean maximum peak power and the shift were 1266.0 ± 146.9 N and 13.7 ± 2.5 mm for group 1, and 1164.7 ± 228.2 N and 1 6.8 ± 3.3 mm for group 2, respectively. In all cases after reaching the maximum load, a tibial fracture occurred but never a CCL rupture. In groups 3 and 4, the initial fixation failure occurred in the mean values of 375.7 ± 81.5 and 360.4 ± 52.0 N, respectively, and with a bigger shift of 52.3 ± 11.9 mm and 39.4 ± 14.6 mm, respectively, compared to group 1. A critical point of failure was the anchoring in the bone. It can be concluded that the PET/PCL substitute in the ex vivo model has mechanically comparable properties with the clinically used Mersilene®, and based on its proven ability to carry stem cells it could be appropriate for partially ruptured CCL protection.

  11. Homogenised constitutive model dedicated to reinforced concrete plates subjected to seismic solicitations

    International Nuclear Information System (INIS)

    Combescure, Christelle

    2013-01-01

    Safety reassessments are periodically performed on the EDF nuclear power plants and the recent seismic reassessments leaded to the necessity of taking into account the non-linear behaviour of materials when modeling and simulating industrial structures of these power plants under seismic solicitations. A large proportion of these infrastructures is composed of reinforced concrete buildings, including reinforced concrete slabs and walls, and literature seems to be poor on plate modeling dedicated to seismic applications for this material. As for the few existing models dedicated to these specific applications, they present either a lack of dissipation energy in the material behaviour, or no micromechanical approach that justifies the parameters needed to properly describe the model. In order to provide a constitutive model which better represents the reinforced concrete plate behaviour under seismic loadings and whose parameters are easier to identify for the civil engineer, a constitutive model dedicated to reinforced concrete plates under seismic solicitations is proposed: the DHRC (Dissipative Homogenised Reinforced Concrete) model. Justified by a periodic homogenisation approach, this model includes two dissipative phenomena: damage of concrete matrix and internal sliding at the interface between steel rebar and surrounding concrete. An original coupling term between damage and sliding, resulting from the homogenisation process, induces a better representation of energy dissipation during the material degradation. The model parameters are identified from the geometric characteristics of the plate and a restricted number of material characteristics, allowing a very simple use of the model. Numerical validations of the DHRC model are presented, showing good agreement with experimental behaviour. A one dimensional simplification of the DHRC model is proposed, allowing the representation of reinforced concrete bars and simplified models of rods and wire mesh

  12. Release of UF6 from a ruptured Model 48Y cylinder at Sequoyah Fuels Corporation Facility: lessons-learned report

    International Nuclear Information System (INIS)

    1986-06-01

    The uranium hexafluoride (UF 6 ) release of January 4, 1986, at the Sequoyah Fuels Corporation facility has been reviewed by a NRC Lessons-Learned Group. A Model 48Y cylinder containing UF 6 ruptured upon being heated after it was grossly overfilled. The Uf 6 released upon rupture of the cylinder reacted with airborne moisture to produce hydrofluoric acid (HF) and uranyl fluoride (UO 2 F 2 ). One individual died from exposure to airborne HF and several others were injured. There were no significant immediate effects from exposure to uranyl fluoride. This report of the Lessons-Learned Group presents discussions and recommendations on the process, operation and design of the facility, as well as on the responses of the licensee, NRC, and other local, state and federal agencies to the incident. It also provides recommendations in the areas of NRC licensing and inspection of fuel facility and certain other NMSS licensees. The implementation of some recommendations will depend on decisions to be made regarding the scope of NRC responsibilities with respect to those aspects of the design and operation of such facilities that are not directly related to radiological safety

  13. Predictability in the Epidemic-Type Aftershock Sequence model of interacting triggered seismicity

    Science.gov (United States)

    Helmstetter, AgnèS.; Sornette, Didier

    2003-10-01

    As part of an effort to develop a systematic methodology for earthquake forecasting, we use a simple model of seismicity on the basis of interacting events which may trigger a cascade of earthquakes, known as the Epidemic-Type Aftershock Sequence model (ETAS). The ETAS model is constructed on a bare (unrenormalized) Omori law, the Gutenberg-Richter law, and the idea that large events trigger more numerous aftershocks. For simplicity, we do not use the information on the spatial location of earthquakes and work only in the time domain. We demonstrate the essential role played by the cascade of triggered seismicity in controlling the rate of aftershock decay as well as the overall level of seismicity in the presence of a constant external seismicity source. We offer an analytical approach to account for the yet unobserved triggered seismicity adapted to the problem of forecasting future seismic rates at varying horizons from the present. Tests presented on synthetic catalogs validate strongly the importance of taking into account all the cascades of still unobserved triggered events in order to predict correctly the future level of seismicity beyond a few minutes. We find a strong predictability if one accepts to predict only a small fraction of the large-magnitude targets. Specifically, we find a prediction gain (defined as the ratio of the fraction of predicted events over the fraction of time in alarms) equal to 21 for a fraction of alarm of 1%, a target magnitude M ≥ 6, an update time of 0.5 days between two predictions, and for realistic parameters of the ETAS model. However, the probability gains degrade fast when one attempts to predict a larger fraction of the targets. This is because a significant fraction of events remain uncorrelated from past seismicity. This delineates the fundamental limits underlying forecasting skills, stemming from an intrinsic stochastic component in these interacting triggered seismicity models. Quantitatively, the fundamental

  14. A Bimodal Hybrid Model for Time-Dependent Probabilistic Seismic Hazard Analysis

    Science.gov (United States)

    Yaghmaei-Sabegh, Saman; Shoaeifar, Nasser; Shoaeifar, Parva

    2018-03-01

    The evaluation of evidence provided by geological studies and historical catalogs indicates that in some seismic regions and faults, multiple large earthquakes occur in cluster. Then, the occurrences of large earthquakes confront with quiescence and only the small-to-moderate earthquakes take place. Clustering of large earthquakes is the most distinguishable departure from the assumption of constant hazard of random occurrence of earthquakes in conventional seismic hazard analysis. In the present study, a time-dependent recurrence model is proposed to consider a series of large earthquakes that occurs in clusters. The model is flexible enough to better reflect the quasi-periodic behavior of large earthquakes with long-term clustering, which can be used in time-dependent probabilistic seismic hazard analysis with engineering purposes. In this model, the time-dependent hazard results are estimated by a hazard function which comprises three parts. A decreasing hazard of last large earthquake cluster and an increasing hazard of the next large earthquake cluster, along with a constant hazard of random occurrence of small-to-moderate earthquakes. In the final part of the paper, the time-dependent seismic hazard of the New Madrid Seismic Zone at different time intervals has been calculated for illustrative purpose.

  15. THMC Modeling of EGS Reservoirs -- Continuum through Discontinuum Representations. Capturing Reservoir Stimulation, Evolution and Induced Seismicity

    Energy Technology Data Exchange (ETDEWEB)

    Elsworth, Derek [Pennsylvania State Univ., State College, PA (United States); Izadi, Ghazal [Pennsylvania State Univ., State College, PA (United States); Gan, Quan [Pennsylvania State Univ., State College, PA (United States); Fang, Yi [Pennsylvania State Univ., State College, PA (United States); Taron, Josh [US Geological Survey, Menlo Park, CA (United States); Sonnenthal, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-07-28

    This work has investigated the roles of effective stress induced by changes in fluid pressure, temperature and chemistry in contributing to the evolution of permeability and induced seismicity in geothermal reservoirs. This work has developed continuum models [1] to represent the progress or seismicity during both stimulation [2] and production [3]. These methods have been used to resolve anomalous observations of induced seismicity at the Newberry Volcano demonstration project [4] through the application of modeling and experimentation. Later work then focuses on the occurrence of late stage seismicity induced by thermal stresses [5] including the codifying of the timing and severity of such responses [6]. Furthermore, mechanistic linkages between observed seismicity and the evolution of permeability have been developed using data from the Newberry project [7] and benchmarked against field injection experiments. Finally, discontinuum models [8] incorporating the roles of discrete fracture networks have been applied to represent stimulation and then thermal recovery for new arrangements of geothermal wells incorporating the development of flow manifolds [9] in order to increase thermal output and longevity in EGS systems.

  16. Experience and modeling of radioactivity transport following steam generator tube rupture

    International Nuclear Information System (INIS)

    Hopenfeld, J.

    1985-01-01

    A review of the capabilities of the CITADEL computer code as well as plant experience to project radioactivity releases following a steam generator tube rupture in pressurized-water reactors shows that certain experimental data are needed for reliable offsite dose predictions. This article defines five parameters that are the key for such predictions and discusses the functional dependence of these parameters on various operational variables. The above parameters can be used in conjuction with CITADEL or they can be inserted in the appropriate equations, which then can be programmed conveniently as a subroutine in thermal-hydraulic system codes. A joint Westinghouse Electric Corporation, Electric Power Research Institute, and Nuclear Regulatory Commission program aimed at obtaining the five parameters empirically is described

  17. Viscoplastic discontinuum model of time-dependent fracture and seismicity effects in brittle rock

    CSIR Research Space (South Africa)

    Napier, JAL

    1997-10-01

    Full Text Available A model is proposed for the direct mechanistic simulation of seismic activity and stress transfer effects in deep level mines. The model uses a discontinuum viscoplastic formulation to relate the rate of slip on a crack to the shear stress acting...

  18. The effect of the number of condensed phases modeled on aerosol behavior during an induced steam generator tube rupture sequence

    International Nuclear Information System (INIS)

    Bixler, N.E.; Schaperow, J.H.

    1998-06-01

    VICTORIA is a mechanistic computer code designed to analyze fission product behavior within a nuclear reactor coolant system (RCS) during a severe accident. It provides detailed predictions of the release of radioactive and nonradioactive materials from the reactor core and transport and deposition of these materials within the RCS. A recently completed independent peer review of VICTORIA, while confirming the overall adequacy of the code, recommended a number of modeling improvements. One of these recommendations, to model three rather than a single condensed phase, is the focus of the work reported here. The recommendation has been implemented as an option so that either a single or three condensed phases can be treated. Both options have been employed in the study of fission product behavior during an induced steam generator tube rupture sequence. Differences in deposition patterns and mechanisms predicted using these two options are discussed

  19. Monte Carlo Analysis of Reservoir Models Using Seismic Data and Geostatistical Models

    Science.gov (United States)

    Zunino, A.; Mosegaard, K.; Lange, K.; Melnikova, Y.; Hansen, T. M.

    2013-12-01

    We present a study on the analysis of petroleum reservoir models consistent with seismic data and geostatistical constraints performed on a synthetic reservoir model. Our aim is to invert directly for structure and rock bulk properties of the target reservoir zone. To infer the rock facies, porosity and oil saturation seismology alone is not sufficient but a rock physics model must be taken into account, which links the unknown properties to the elastic parameters. We then combine a rock physics model with a simple convolutional approach for seismic waves to invert the "measured" seismograms. To solve this inverse problem, we employ a Markov chain Monte Carlo (MCMC) method, because it offers the possibility to handle non-linearity, complex and multi-step forward models and provides realistic estimates of uncertainties. However, for large data sets the MCMC method may be impractical because of a very high computational demand. To face this challenge one strategy is to feed the algorithm with realistic models, hence relying on proper prior information. To address this problem, we utilize an algorithm drawn from geostatistics to generate geologically plausible models which represent samples of the prior distribution. The geostatistical algorithm learns the multiple-point statistics from prototype models (in the form of training images), then generates thousands of different models which are accepted or rejected by a Metropolis sampler. To further reduce the computation time we parallelize the software and run it on multi-core machines. The solution of the inverse problem is then represented by a collection of reservoir models in terms of facies, porosity and oil saturation, which constitute samples of the posterior distribution. We are finally able to produce probability maps of the properties we are interested in by performing statistical analysis on the collection of solutions.

  20. A Geo-referenced 3D model of the Juan de Fuca Slab and associated seismicity

    Science.gov (United States)

    Blair, J.L.; McCrory, P.A.; Oppenheimer, D.H.; Waldhauser, F.

    2011-01-01

    We present a Geographic Information System (GIS) of a new 3-dimensional (3D) model of the subducted Juan de Fuca Plate beneath western North America and associated seismicity of the Cascadia subduction system. The geo-referenced 3D model was constructed from weighted control points that integrate depth information from hypocenter locations and regional seismic velocity studies. We used the 3D model to differentiate earthquakes that occur above the Juan de Fuca Plate surface from earthquakes that occur below the plate surface. This GIS project of the Cascadia subduction system supersedes the one previously published by McCrory and others (2006). Our new slab model updates the model with new constraints. The most significant updates to the model include: (1) weighted control points to incorporate spatial uncertainty, (2) an additional gridded slab surface based on the Generic Mapping Tools (GMT) Surface program which constructs surfaces based on splines in tension (see expanded description below), (3) double-differenced hypocenter locations in northern California to better constrain slab location there, and (4) revised slab shape based on new hypocenter profiles that incorporate routine depth uncertainties as well as data from new seismic-reflection and seismic-refraction studies. We also provide a 3D fly-through animation of the model for use as a visualization tool.

  1. Necessity of using heterogeneous ellipsoidal Earth model with terrain to calculate co-seismic effect

    Science.gov (United States)

    Cheng, Huihong; Zhang, Bei; Zhang, Huai; Huang, Luyuan; Qu, Wulin; Shi, Yaolin

    2016-04-01

    Co-seismic deformation and stress changes, which reflect the elasticity of the earth, are very important in the earthquake dynamics, and also to other issues, such as the evaluation of the seismic risk, fracture process and triggering of earthquake. Lots of scholars have researched the dislocation theory and co-seismic deformation and obtained the half-space homogeneous model, half-space stratified model, spherical stratified model, and so on. Especially, models of Okada (1992) and Wang (2003, 2006) are widely applied in the research of calculating co-seismic and post-seismic effects. However, since both semi-infinite space model and layered model do not take the role of the earth curvature or heterogeneity or topography into consideration, there are large errors in calculating the co-seismic displacement of a great earthquake in its impacted area. Meanwhile, the computational methods of calculating the co-seismic strain and stress are different between spherical model and plane model. Here, we adopted the finite element method which could well deal with the complex characteristics (such as anisotropy, discontinuities) of rock and different conditions. We use the mash adaptive technique to automatically encrypt the mesh at the fault and adopt the equivalent volume force replace the dislocation source, which can avoid the difficulty in handling discontinuity surface with conventional (Zhang et al., 2015). We constructed an earth model that included earth's layered structure and curvature, the upper boundary was set as a free surface and the core-mantle boundary was set under buoyancy forces. Firstly, based on the precision requirement, we take a testing model - - a strike-slip fault (the length of fault is 500km and the width is 50km, and the slippage is 10m) for example. Because of the curvature of the Earth, some errors certainly occur in plane coordinates just as previous studies (Dong et al., 2014; Sun et al., 2012). However, we also found that: 1) the co-seismic

  2. Numerical modeling of landslides and generated seismic waves: The Bingham Canyon Mine landslides

    Science.gov (United States)

    Miallot, H.; Mangeney, A.; Capdeville, Y.; Hibert, C.

    2016-12-01

    Landslides are important natural hazards and key erosion processes. They create long period surface waves that can be recorded by regional and global seismic networks. The seismic signals are generated by acceleration/deceleration of the mass sliding over the topography. They consist in a unique and powerful tool to detect, characterize and quantify the landslide dynamics. We investigate here the processes at work during the two massive landslides that struck the Bingham Canyon Mine on the 10th April 2013. We carry a combined analysis of the generated seismic signals and the landslide processes computed with a 3D modeling on a complex topography. Forces computed by broadband seismic waveform inversion are used to constrain the study and particularly the force-source and the bulk dynamic. The source time function are obtained by a 3D model (Shaltop) where rheological parameters can be adjusted. We first investigate the influence of the initial shape of the sliding mass which strongly affects the whole landslide dynamic. We also see that the initial shape of the source mass of the first landslide constrains pretty well the second landslide source mass. We then investigate the effect of a rheological parameter, the frictional angle, that strongly influences the resulted computed seismic source function. We test here numerous friction laws as the frictional Coulomb law and a velocity-weakening friction law. Our results show that the force waveform fitting the observed data is highly variable depending on these different choices.

  3. Depth varying rupture properties during the 2015 Mw 7.8 Gorkha (Nepal) earthquake

    Science.gov (United States)

    Yue, Han; Simons, Mark; Duputel, Zacharie; Jiang, Junle; Fielding, Eric; Liang, Cunren; Owen, Susan; Moore, Angelyn; Riel, Bryan; Ampuero, Jean Paul; Samsonov, Sergey V.

    2017-09-01

    On April 25th 2015, the Mw 7.8 Gorkha (Nepal) earthquake ruptured a portion of the Main Himalayan Thrust underlying Kathmandu and surrounding regions. We develop kinematic slip models of the Gorkha earthquake using both a regularized multi-time-window (MTW) approach and an unsmoothed Bayesian formulation, constrained by static and high rate GPS observations, synthetic aperture radar (SAR) offset images, interferometric SAR (InSAR), and teleseismic body wave records. These models indicate that Kathmandu is located near the updip limit of fault slip and approximately 20 km south of the centroid of fault slip. Fault slip propagated unilaterally along-strike in an ESE direction for approximately 140 km with a 60 km cross-strike extent. The deeper portions of the fault are characterized by a larger ratio of high frequency (0.03-0.2 Hz) to low frequency slip than the shallower portions. From both the MTW and Bayesian results, we can resolve depth variations in slip characteristics, with higher slip roughness, higher rupture velocity, longer rise time and higher complexity of subfault source time functions in the deeper extents of the rupture. The depth varying nature of rupture characteristics suggests that the up-dip portions are characterized by relatively continuous rupture, while the down-dip portions may be better characterized by a cascaded rupture. The rupture behavior and the tectonic setting indicate that the earthquake may have ruptured both fully seismically locked and a deeper transitional portions of the collision interface, analogous to what has been seen in major subduction zone earthquakes.

  4. NEESROCK: A Physical and Numerical Modeling Investigation of Seismically Induced Rock-Slope Failure

    Science.gov (United States)

    Applegate, K. N.; Wartman, J.; Keefer, D. K.; Maclaughlin, M.; Adams, S.; Arnold, L.; Gibson, M.; Smith, S.

    2013-12-01

    Worldwide, seismically induced rock-slope failures have been responsible for approximately 30% of the most significant landslide catastrophes of the past century. They are among the most common, dangerous, and still today, least understood of all seismic hazards. Seismically Induced Rock-Slope Failure: Mechanisms and Prediction (NEESROCK) is a major research initiative that fully integrates physical modeling (geotechnical centrifuge) and advanced numerical simulations (discrete element modeling) to investigate the fundamental mechanisms governing the stability of rock slopes during earthquakes. The research is part of the National Science Foundation-supported Network for Earthquake Engineering Simulation Research (NEES) program. With its focus on fractures and rock materials, the project represents a significant departure from the traditional use of the geotechnical centrifuge for studying soil, and pushes the boundaries of physical modeling in new directions. In addition to advancing the fundamental understanding of the rock-slope failure process under seismic conditions, the project is developing improved rock-slope failure assessment guidelines, analysis procedures, and predictive tools. Here, we provide an overview of the project, present experimental and numerical modeling results, discuss special considerations for the use of synthetic rock materials in physical modeling, and address the suitability of discrete element modeling for simulating the dynamic rock-slope failure process.

  5. Detection of thrombosis and plaque rupture in atherosclerotic rabbit model by using 3.0 T MR imaging

    International Nuclear Information System (INIS)

    Ma Xiaohai; Zhang Zhaoqi; Zhao Lei; Zhao Quanming; Shang Jianfeng; Feng Tingting; Zeng Conghe

    2011-01-01

    Objective: To explore the imaging of the thrombosis after pharmacological triggering of plaque rupture in atherosclerotic rabbit model by using 3.0 T high-resolution magnetic resonance imaging. Methods: Twenty male New Zealand white rabbits were divided into an experimental group (n=16) and a control group (n=4). The aortic wall injuries were induced by an intravascular balloon in experimental group rabbits after high cholesterol diet. The pharmacological triggering with Russell's viper venom and histamine was performed after 3 months of establishment of model. All of the animals underwent pre-trigger and post-trigger MR examinations including 3D time of fight (3D TOF), T 1 WI, T 2 WI and post contrast T 1 WI. Euthanasia was performed in all rabbits and gross anatomy and histological specimen of aorta were obtained. Comparing the location and length of the thrombus between MRI images and histopathology was used Pearson test. Comparing the calculated indexes of abdominal aorta between rabbits with and without thrombosis was used AVONA test and LSD-t test. Results: After triggering, 8 in 14 survived rabbits developed thrombosis in experimental group, meanwhile, no thrombus was found in control group. The accuracy of multi-sequences MRI for detecting of thrombus was 87.1% (27/31). MRI data correlated with the histopathology regarding thrombus length (r=0.85, P 2 vs. (8.93±5.36) mm 2 , P<0.01]. Conclusion: MRI is useful tool to determine the thrombosis and plaque rupture in atherosclerotic rabbit model. (authors)

  6. Seismic assessment of Kozloduy VVER 440, Model 230 nuclear power plant

    International Nuclear Information System (INIS)

    Monette, P.; Baltus, R.; Yanev, P.; Campbell, R.

    1991-01-01

    Excluding system design deficiency relative to US and Western Europe standards, it was found that the plant has many seismic vulnerabilities similar to those that existed in many of the US plants prior to about 1979 when the Systematic Evaluation Program was initiated. The primary coolant system has been substantially upgraded after the 1977 Vrancea earthquake. Other upgrades have been made to weak elements in the ECCS and electrical systems. There are still a number of components that could likely survive the currently defined Safe Shutdown Earthquake of 0.1 g but which would not meet current design standards. Many of the weakest components could be upgraded at a moderate cost to withstand a seismic event exceeding 0.1 g. Current studies of the site seismicity lean toward a higher peak ground acceleration and increased amplification of building motion, thus backfits that have been accomplished may become marginal for newly defined loads. However the proper consideration of soil structure interaction and detailed structural analysis using less conservative modeling assumptions, could mitigate the impact of increasing the seismic input and limit the amount of reinforcement required. In the interim, substantial improvements to seismic safety could be accomplished by simple, inexpensive modifications to equipment anchorage and some achievable improvements to connection detail of the precast concrete structures. (author)

  7. A transparent and data-driven global tectonic regionalization model for seismic hazard assessment

    Science.gov (United States)

    Chen, Yen-Shin; Weatherill, Graeme; Pagani, Marco; Cotton, Fabrice

    2018-05-01

    A key concept that is common to many assumptions inherent within seismic hazard assessment is that of tectonic similarity. This recognizes that certain regions of the globe may display similar geophysical characteristics, such as in the attenuation of seismic waves, the magnitude scaling properties of seismogenic sources or the seismic coupling of the lithosphere. Previous attempts at tectonic regionalization, particularly within a seismic hazard assessment context, have often been based on expert judgements; in most of these cases, the process for delineating tectonic regions is neither reproducible nor consistent from location to location. In this work, the regionalization process is implemented in a scheme that is reproducible, comprehensible from a geophysical rationale, and revisable when new relevant data are published. A spatial classification-scheme is developed based on fuzzy logic, enabling the quantification of concepts that are approximate rather than precise. Using the proposed methodology, we obtain a transparent and data-driven global tectonic regionalization model for seismic hazard applications as well as the subjective probabilities (e.g. degree of being active/degree of being cratonic) that indicate the degree to which a site belongs in a tectonic category.

  8. Surface Rupture Effects on Earthquake Moment-Area Scaling Relations

    Science.gov (United States)

    Luo, Yingdi; Ampuero, Jean-Paul; Miyakoshi, Ken; Irikura, Kojiro

    2017-09-01

    Empirical earthquake scaling relations play a central role in fundamental studies of earthquake physics and in current practice of earthquake hazard assessment, and are being refined by advances in earthquake source analysis. A scaling relation between seismic moment ( M 0) and rupture area ( A) currently in use for ground motion prediction in Japan features a transition regime of the form M 0- A 2, between the well-recognized small (self-similar) and very large (W-model) earthquake regimes, which has counter-intuitive attributes and uncertain theoretical underpinnings. Here, we investigate the mechanical origin of this transition regime via earthquake cycle simulations, analytical dislocation models and numerical crack models on strike-slip faults. We find that, even if stress drop is assumed constant, the properties of the transition regime are controlled by surface rupture effects, comprising an effective rupture elongation along-dip due to a mirror effect and systematic changes of the shape factor relating slip to stress drop. Based on this physical insight, we propose a simplified formula to account for these effects in M 0- A scaling relations for strike-slip earthquakes.

  9. Study on vertical seismic response model of BWR-type reactor building

    International Nuclear Information System (INIS)

    Konno, T.; Motohashi, S.; Izumi, M.; Iizuka, S.

    1993-01-01

    A study on advanced seismic design for LWR has been carried out by the Nuclear Power Engineering Corporation (NUPEC), under the sponsorship of the Ministry of International Trade and Industry (MITI) of Japan. As a part of the study, it has been investigated to construct an accurate analytical model of reactor buildings for a seismic response analysis, which can reasonably represent dynamic characteristics of the building. In Japan, vibration models of reactor buildings for horizontal ground motion have been studied and examined through many simulation analyses for forced vibration tests and earthquake observations of actual buildings. And now it is possible to establish a reliable horizontal vibration model on the basis of multi-lumped mass and spring model. However, vertical vibration models have not been so much studied as horizontal models, due to less observed data for vertical motions. In this paper, the vertical seismic response models of a BWR-type reactor building including soil-structure interaction effect are numerically studied, by comparing the dynamic characteristics of (1) three dimensional finite element model, (2) multi-stick lumped mass model with a flexible base-mat, (3) multi-stick lumped mass model with a rigid base-mat and (4) single-stick lumped mass model. In particular, the BWR-type reactor building has the long span truss roof which is considered to be one of the critical members to vertical excitation. The modelings of the roof trusses are also studied

  10. Three-dimensional crustal model of the Moravo-Silesian region obtained by seismic tomography

    Czech Academy of Sciences Publication Activity Database

    Růžek, Bohuslav; Holub, Karel; Rušajová, Jana

    2011-01-01

    Roč. 55, č. 1 (2011), s. 87-107 ISSN 0039-3169 R&D Projects: GA AV ČR IAA200120701; GA MŽP SB/630/3/02; GA ČR GA205/03/0999 Institutional research plan: CEZ:AV0Z30120515; CEZ:AV0Z30860518 Keywords : seismic tomography * 3D seismic velocity model * Moravo-Silesian region Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.700, year: 2011

  11. Evaluating the Possibility of a joint San Andreas-Imperial Fault Rupture in the Salton Trough Region

    Science.gov (United States)

    Kyriakopoulos, C.; Oglesby, D. D.; Meltzner, A. J.; Rockwell, T. K.

    2016-12-01

    A geodynamic investigation of possible earthquakes in a given region requires both field data and numerical simulations. In particular, the investigation of past earthquakes is also a fundamental part of understanding the earthquake potential of the Salton Trough region. Geological records from paleoseismic trenches inform us of past ruptures (length, magnitude, timing), while dynamic rupture models allow us to evaluate numerically the mechanics of such earthquakes. The two most recent events (Mw 6.4 1940 and Mw 6.9 1979) on the Imperial fault (IF) both ruptured up to the northern end of the mapped fault, giving the impression that rupture doesn't propagate further north. This result is supported by small displacements, 20 cm, measured at the Dogwood site near the end of the mapped rupture in each event. However, 3D paleoseismic data from the same site corresponding to the most recent pre-1940 event (1710 CE) and 5th (1635 CE) and 6th events back revealed up to 1.5 m of slip in those events. Since we expect the surface displacement to decrease toward the termination of a rupture, we postulate that in these earlier cases the rupture propagated further north than in 1940 or 1979. Furthermore, paleoseismic data from the Coachella site (Philibosian et al., 2011) on the San Andreas fault (SAF) indicates slip events ca. 1710 CE and 1588-1662 CE. In other words, the timing of two large paleoseismic displacements on the IF cannot be distinguished from the timing of the two most recent events on the southern SAF, leaving a question: is it possible to have through-going rupture in the Salton Trough? We investigate this question through 3D dynamic finite element rupture modeling. In our work, we considered two scenarios: rupture initiated on the IF propagating northward, and rupture initiated on the SAF propagating southward. Initial results show that, in the first case, rupture propagates north of the mapped northern terminus of the IF only under certain pre

  12. Seismic Hazard Analysis on a Complex, Interconnected Fault Network

    Science.gov (United States)

    Page, M. T.; Field, E. H.; Milner, K. R.

    2017-12-01

    In California, seismic hazard models have evolved from simple, segmented prescriptive models to much more complex representations of multi-fault and multi-segment earthquakes on an interconnected fault network. During the development of the 3rd Uniform California Earthquake Rupture Forecast (UCERF3), the prevalence of multi-fault ruptures in the modeling was controversial. Yet recent earthquakes, for example, the Kaikora earthquake - as well as new research on the potential of multi-fault ruptures (e.g., Nissen et al., 2016; Sahakian et al. 2017) - have validated this approach. For large crustal earthquakes, multi-fault ruptures may be the norm rather than the exception. As datasets improve and we can view the rupture process at a finer scale, the interconnected, fractal nature of faults is revealed even by individual earthquakes. What is the proper way to model earthquakes on a fractal fault network? We show multiple lines of evidence that connectivity even in modern models such as UCERF3 may be underestimated, although clustering in UCERF3 mitigates some modeling simplifications. We need a methodology that can be applied equally well where the fault network is well-mapped and where it is not - an extendable methodology that allows us to "fill in" gaps in the fault network and in our knowledge.

  13. Beam model for seismic analysis of complex shear wall structure based on the strain energy equivalence

    International Nuclear Information System (INIS)

    Reddy, G.R.; Mahajan, S.C.; Suzuki, Kohei

    1997-01-01

    A nuclear reactor building structure consists of shear walls with complex geometry, beams and columns. The complexity of the structure is explained in the section Introduction. Seismic analysis of the complex reactor building structure using the continuum mechanics approach may produce good results but this method is very difficult to apply. Hence, the finite element approach is found to be an useful technique for solving the dynamic equations of the reactor building structure. In this approach, the model which uses finite elements such as brick, plate and shell elements may produce accurate results. However, this model also poses some difficulties which are explained in the section Modeling Techniques. Therefore, seismic analysis of complex structures is generally carried out using a lumped mass beam model. This model is preferred because of its simplicity and economy. Nevertheless, mathematical modeling of a shear wall structure as a beam requires specialized skill and a thorough understanding of the structure. For accurate seismic analysis, it is necessary to model more realistically the stiffness, mass and damping. In linear seismic analysis, modeling of the mass and damping may pose few problems compared to modeling the stiffness. When used to represent a complex structure, the stiffness of the beam is directly related to the shear wall section properties such as area, shear area and moment of inertia. Various beam models which are classified based on the method of stiffness evaluation are also explained under the section Modeling Techniques. In the section Case Studies the accuracy and simplicity of the beam models are explained. Among various beam models, the one which evaluates the stiffness using strain energy equivalence proves to be the simplest and most accurate method for modeling the complex shear wall structure. (author)

  14. Combined rock-physical modelling and seismic inversion techniques for characterisation of stacked sandstone reservoir

    NARCIS (Netherlands)

    Justiniano, A.; Jaya, Y.; Diephuis, G.; Veenhof, R.; Pringle, T.

    2015-01-01

    The objective of the study is to characterise the Triassic massive stacked sandstone deposits of the Main Buntsandstein Subgroup at Block Q16 located in the West Netherlands Basin. The characterisation was carried out through combining rock-physics modelling and seismic inversion techniques. The

  15. Results from an acoustic modelling study of seismic airgun survey noise in Queen Charlotte Basin

    Energy Technology Data Exchange (ETDEWEB)

    MacGillivray, A.O.; Chapman, N.R. [Victoria Univ., BC (Canada). School of Earth and Ocean Sciences

    2005-12-07

    An acoustic modelling study was conducted to examine seismic survey noise propagation in the Queen Charlotte Basin (QCB) and better understand the physical aspects of sound transmission. The study results are intended to help determine the potential physiological and behavioural effects of airgun noise on marine mammals and fish. The scope of the study included a numerical simulation of underwater sound transmission in QCB in areas where oil and gas exploration activities may be conducted; a forecast of received noise levels by combining acoustic transmission loss computations with acoustic source levels representative of seismic exploration activity and, the use of received forecasts to estimate zones of impact for marine mammals. The critical environmental parameters in the QCB are the bathymetry of the ocean, the sound speed profile in the water and the geoacoustic profile of the seabed. The RAM acoustic propagation model developed by the United States Naval Research Laboratory was used to compute acoustic transmission loss in the QCB. The source level and directionality of the seismic array was determined by a full-waveform array source signature model. This modelling study of noise propagation from seismic surveys revealed several key findings. Among them, it showed that received noise levels in the water are affected by the source location, array orientation and the shape of the sound speed profile with respect to water depth. It also showed that noise levels are lowest in shallow bathymetry. 30 refs., 5 tabs., 13 figs.

  16. co-seismic grace gravity based 11-layered 3-d thrust fault model for ...

    Indian Academy of Sciences (India)

    30

    It honours co-seismic deformation of ocean surface, ocean ... has caused great damage (Sumatra earthquake 2004 Wikipedia) when the Indian Plate ..... Gokula, A P, Sastry R G (2015a) Gravitational attraction of a vertical pyramid model of flat ... Journal. 14, 1-21. Lay T, Kanamori H, Ammon CJ, Nettles M, Ward SN, Aster ...

  17. Strain-dependent Damage Evolution and Velocity Reduction in Fault Zones Induced by Earthquake Rupture

    Science.gov (United States)

    Zhong, J.; Duan, B.

    2009-12-01

    Low-velocity fault zones (LVFZs) with reduced seismic velocities relative to the surrounding wall rocks are widely observed around active faults. The presence of such a zone will affect rupture propagation, near-field ground motion, and off-fault damage in subsequent earth-quakes. In this study, we quantify the reduction of seismic velocities caused by dynamic rup-ture on a 2D planar fault surrounded by a low-velocity fault zone. First, we implement the damage rheology (Lyakhovsky et al. 1997) in EQdyna (Duan and Oglesby 2006), an explicit dynamic finite element code. We further extend this damage rheology model to include the dependence of strains on crack density. Then, we quantify off-fault continuum damage distribution and velocity reduction induced by earthquake rupture with the presence of a preexisting LVFZ. We find that the presence of a LVFZ affects the tempo-spatial distribu-tions of off-fault damage. Because lack of constraint in some damage parameters, we further investigate the relationship between velocity reduction and these damage prameters by a large suite of numerical simulations. Slip velocity, slip, and near-field ground motions computed from damage rheology are also compared with those from off-fault elastic or elastoplastic responses. We find that the reduction in elastic moduli during dynamic rupture has profound impact on these quantities.

  18. Forecasting the Rupture Directivity of Large Earthquakes: Centroid Bias of the Conditional Hypocenter Distribution

    Science.gov (United States)

    Donovan, J.; Jordan, T. H.

    2012-12-01

    Forecasting the rupture directivity of large earthquakes is an important problem in probabilistic seismic hazard analysis (PSHA), because directivity is known to strongly influence ground motions. We describe how rupture directivity can be forecast in terms of the "conditional hypocenter distribution" or CHD, defined to be the probability distribution of a hypocenter given the spatial distribution of moment release (fault slip). The simplest CHD is a uniform distribution, in which the hypocenter probability density equals the moment-release probability density. For rupture models in which the rupture velocity and rise time depend only on the local slip, the CHD completely specifies the distribution of the directivity parameter D, defined in terms of the degree-two polynomial moments of the source space-time function. This parameter, which is zero for a bilateral rupture and unity for a unilateral rupture, can be estimated from finite-source models or by the direct inversion of seismograms (McGuire et al., 2002). We compile D-values from published studies of 65 large earthquakes and show that these data are statistically inconsistent with the uniform CHD advocated by McGuire et al. (2002). Instead, the data indicate a "centroid biased" CHD, in which the expected distance between the hypocenter and the hypocentroid is less than that of a uniform CHD. In other words, the observed directivities appear to be closer to bilateral than predicted by this simple model. We discuss the implications of these results for rupture dynamics and fault-zone heterogeneities. We also explore their PSHA implications by modifying the CyberShake simulation-based hazard model for the Los Angeles region, which assumed a uniform CHD (Graves et al., 2011).

  19. Model Based Beamforming and Bayesian Inversion Signal Processing Methods for Seismic Localization of Underground Source

    DEFF Research Database (Denmark)

    Oh, Geok Lian

    properties such as the elastic wave speeds and soil densities. One processing method is casting the estimation problem into an inverse problem to solve for the unknown material parameters. The forward model for the seismic signals used in the literatures include ray tracing methods that consider only...... density values of the discretized ground medium, which leads to time-consuming computations and instability behaviour of the inversion process. In addition, the geophysics inverse problem is generally ill-posed due to non-exact forward model that introduces errors. The Bayesian inversion method through...... the first arrivals of the reflected compressional P-waves from the subsurface structures, or 3D elastic wave models that model all the seismic wave components. The ray tracing forward model formulation is linear, whereas the full 3D elastic wave model leads to a nonlinear inversion problem. In this Ph...

  20. Predicting creep rupture from early strain data

    International Nuclear Information System (INIS)

    Holmstroem, Stefan; Auerkari, Pertti

    2009-01-01

    To extend creep life modelling from classical rupture modelling, a robust and effective parametric strain model has been developed. The model can reproduce with good accuracy all parts of the creep curve, economically utilising the available rupture models. The resulting combined model can also be used to predict rupture from the available strain data, and to further improve the rupture models. The methodology can utilise unfailed specimen data for life assessment at lower stress levels than what is possible from rupture data alone. Master curves for creep strain and rupture have been produced for oxygen-free phosphorus-doped (OFP) copper with a maximum testing time of 51,000 h. Values of time to specific strain at given stress (40-165 MPa) and temperature (125-350 deg. C) were fitted to the models in the strain range of 0.1-38%. With typical inhomogeneous multi-batch creep data, the combined strain and rupture modelling involves the steps of investigation of the data quality, extraction of elastic and creep strain response, rupture modelling, data set balancing and creep strain modelling. Finally, the master curves for strain and rupture are tested and validated for overall fitting efficiency. With the Wilshire equation as the basis for the rupture model, the strain model applies classical parametric principles with an Arrhenius type of thermal activation and a power law type of stress dependence for the strain rate. The strain model also assumes that the processes of primary and secondary creep can be reasonably correlated. The rupture model represents a clear improvement over previous models in the range of the test data. The creep strain information from interrupted and running tests were assessed together with the rupture data investigating the possibility of rupture model improvement towards lower stress levels by inverse utilisation of the combined rupture based strain model. The developed creep strain model together with the improved rupture model is

  1. Seismic modeling of multidimensional heterogeneity scales of Mallik gas hydrate reservoirs, Northwest Territories of Canada

    Science.gov (United States)

    Huang, Jun-Wei; Bellefleur, Gilles; Milkereit, Bernd

    2009-07-01

    In hydrate-bearing sediments, the velocity and attenuation of compressional and shear waves depend primarily on the spatial distribution of hydrates in the pore space of the subsurface lithologies. Recent characterizations of gas hydrate accumulations based on seismic velocity and attenuation generally assume homogeneous sedimentary layers and neglect effects from large- and small-scale heterogeneities of hydrate-bearing sediments. We present an algorithm, based on stochastic medium theory, to construct heterogeneous multivariable models that mimic heterogeneities of hydrate-bearing sediments at the level of detail provided by borehole logging data. Using this algorithm, we model some key petrophysical properties of gas hydrates within heterogeneous sediments near the Mallik well site, Northwest Territories, Canada. The modeled density, and P and S wave velocities used in combination with a modified Biot-Gassmann theory provide a first-order estimate of the in situ volume of gas hydrate near the Mallik 5L-38 borehole. Our results suggest a range of 528 to 768 × 106 m3/km2 of natural gas trapped within hydrates, nearly an order of magnitude lower than earlier estimates which did not include effects of small-scale heterogeneities. Further, the petrophysical models are combined with a 3-D finite difference modeling algorithm to study seismic attenuation due to scattering and leaky mode propagation. Simulations of a near-offset vertical seismic profile and cross-borehole numerical surveys demonstrate that attenuation of seismic energy may not be directly related to the intrinsic attenuation of hydrate-bearing sediments but, instead, may be largely attributed to scattering from small-scale heterogeneities and highly attenuate leaky mode propagation of seismic waves through larger-scale heterogeneities in sediments.

  2. Experimental processing of a model data set using Geobit seismic software

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Sang Yong [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    A seismic data processing software, Geobit, has been developed and is continuously updated to implement newer processing techniques and to support more hardware platforms. Geobit is intended to support all Unix platforms ranging from PC to CRAY. The current version supports two platform, i.e., PC/Linux and Sun Sparc based Sun OS 4.1.x. PC/Linux attracted geophysicists in some universities trying to install Geobit in their laboratories to be used as their research tool. However, one of the problem is the difficulty in getting the seismic data. The primary reason is its huge volume. The field data is too bulky to fit their relatively small storage media, such as PC disk. To solve the problem, KIGAM released a model seismic data set via ftp.kigam.re.kr. This study aims two purposes. The first one is testing Geobit software for its suitability in seismic data processing. The test includes reproducing the model through the seismic data processing. If it fails to reproduce the original model, the software is considered buggy and incomplete. However, if it can successfully reproduce the input model, I would be proud of what I have accomplished for the last few years in writing Geobit. The second purpose is to give a guide on Geobit usage by providing an example set of job files needed to process a given data. This example will help scientists lacking Geobit experience to concentrate on their study more easily. Once they know the Geobit processing technique, and later on Geobit programming, they can implement their own processing idea, contributing newer technologies to Geobit. The complete Geobit job files needed to process the model data is written, in the following job sequence: (1) data loading, (2) CDP sort, (3) decon analysis, (4) velocity analysis, (5) decon verification, (6) stack, (7) filter analysis, (8) filtered stack, (9) time migration, (10) depth migration. The control variables in the job files are discussed. (author). 10 figs., 1 tab.

  3. Realistic modeling of seismic input for megacities and large urban areas

    International Nuclear Information System (INIS)

    Panza, Giuliano F.; Alvarez, Leonardo; Aoudia, Abdelkrim

    2002-06-01

    The project addressed the problem of pre-disaster orientation: hazard prediction, risk assessment, and hazard mapping, in connection with seismic activity and man-induced vibrations. The definition of realistic seismic input has been obtained from the computation of a wide set of time histories and spectral information, corresponding to possible seismotectonic scenarios for different source and structural models. The innovative modeling technique, that constitutes the common tool to the entire project, takes into account source, propagation and local site effects. This is done using first principles of physics about wave generation and propagation in complex media, and does not require to resort to convolutive approaches, that have been proven to be quite unreliable, mainly when dealing with complex geological structures, the most interesting from the practical point of view. In fact, several techniques that have been proposed to empirically estimate the site effects using observations convolved with theoretically computed signals corresponding to simplified models, supply reliable information about the site response to non-interfering seismic phases. They are not adequate in most of the real cases, when the seismic sequel is formed by several interfering waves. The availability of realistic numerical simulations enables us to reliably estimate the amplification effects even in complex geological structures, exploiting the available geotechnical, lithological, geophysical parameters, topography of the medium, tectonic, historical, palaeoseismological data, and seismotectonic models. The realistic modeling of the ground motion is a very important base of knowledge for the preparation of groundshaking scenarios that represent a valid and economic tool for the seismic microzonation. This knowledge can be very fruitfully used by civil engineers in the design of new seismo-resistant constructions and in the reinforcement of the existing built environment, and, therefore

  4. Modeling the effects of structure on seismic anisotropy in the Chester gneiss dome, southeast Vermont

    Science.gov (United States)

    Saif, S.; Brownlee, S. J.

    2017-12-01

    Compositional and structural heterogeneity in the continental crust are factors that contribute to the complex expression of crustal seismic anisotropy. Understanding deformation and flow in the crust using seismic anisotropy has thus proven difficult. Seismic anisotropy is affected by rock microstructure and mineralogy, and a number of studies have begun to characterize the full elastic tensors of crustal rocks in an attempt to increase our understanding of these intrinsic factors. However, there is still a large gap in length-scale between laboratory characterization on the scale of centimeters and seismic wavelengths on the order of kilometers. To address this length-scale gap we are developing a 3D crustal model that will help us determine the effects of rotating laboratory-scale elastic tensors into field-scale structures. The Chester gneiss dome in southeast Vermont is our primary focus. The model combines over 2000 structural data points from field measurements and published USGS structural data with elastic tensors of Chester dome rocks derived from electron backscatter diffraction data. We created a uniformly spaced grid by averaging structural measurements together in equally spaced grid boxes. The surface measurements are then projected into the third dimension using existing subsurface interpretations. A measured elastic tensor for the specific rock type is rotated according to its unique structural input at each point in the model. The goal is to use this model to generate artificial seismograms using existing numerical wave propagation codes. Once completed, the model input can be varied to examine the effects of different subsurface structure interpretations, as well as heterogeneity in rock composition and elastic tensors. Our goal is to be able to make predictions for how specific structures will appear in seismic data, and how that appearance changes with variations in rock composition.

  5. A new approach to integrate seismic and production data in reservoir models

    Energy Technology Data Exchange (ETDEWEB)

    Ouenes, A.; Chawathe, A.; Weiss, W. [New Mexico Tech, Socorro, NM (United States)] [and others

    1997-08-01

    A great deal of effort is devoted to reducing the uncertainties in reservoir modeling. For example, seismic properties are used to improve the characterization of interwell properties by providing porosity maps constrained to seismic impedance. Another means to reduce uncertainties is to constrain the reservoir model to production data. This paper describes a new approach where the production and seismic data are simultaneously used to reduce the uncertainties. In this new approach, the primary geologic parameter that controls reservoir properties is identified. Next, the geophysical parameter that is sensitive to the dominant geologic parameter is determined. Then the geology and geophysics are linked using analytic correlations. Unfortunately, the initial guess resulted in a reservoir model that did not match the production history. Since the time required for trial and error matching of production history is exorbitant, an automatic history matching method based on a fast optimization method was used to find the correlating parameters. This new approach was illustrated with an actual field in the Williston Basin. Upscalling problems do not arise since the scale is imposed by the size of the seismic bin (66m, 219 ft) which is the size of the simulator gridblocks.

  6. Two-dimensional horizontal model seismic test and analysis for HTGR core

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Honma, Toshiaki.

    1988-05-01

    The resistance against earthquakes of high-temperature gas-cooled reactor (HTGR) core with block-type fuels is not fully ascertained yet. Seismic studies must be made if such a reactor plant is to be installed in areas with frequent earthquakes. The paper presented the test results of seismic behavior of a half scale two-dimensional horizontal slice core model and analysis. The following is a summary of the more important results. (1) When the core is subjected to the single axis excitation and simultaneous two-axis excitations to the core across-corners, it has elliptical motion. The core stays lumped motion at the low excitation frequencies. (2) When the load is placed on side fixed reflector blocks from outside to the core center, the core displacement and reflector impact reaction force decrease. (3) The maximum displacement occurs at simultaneous two-axis excitations. The maximum displacement occurs at the single axis excitation to the core across-flats. (4) The results of two-dimensional horizontal slice core model was compared with the results of two-dimensional vertical one. It is clarified that the seismic response of actual core can be predicted from the results of two-dimensional vertical slice core model. (5) The maximum reflector impact reaction force for seismic waves was below 60 percent of that for sinusoidal waves. (6) Vibration behavior and impact response are in good agreement between test and analysis. (author)

  7. Joint inversion of seismic refraction and resistivity data using layered models - applications to hydrogeology

    Science.gov (United States)

    Juhojuntti, N. G.; Kamm, J.

    2010-12-01

    We present a layered-model approach to joint inversion of shallow seismic refraction and resistivity (DC) data, which we believe is a seldom tested method of addressing the problem. This method has been developed as we believe that for shallow sedimentary environments (roughly fairly simple 2D geometries, mainly for checking the validity of the calculations. The inversion generally converges towards the correct solution, although there could be stability problems if the starting model is too erroneous. We have also applied the code to field data from seismic refraction and multi-electrode resistivity measurements at typical sand-gravel groundwater reservoirs. The tests are promising, as the calculated depths agree fairly well with information from drilling and the velocity and resistivity values appear reasonable. Current work includes better regularization of the inversion as well as defining individual weight factors for the different datasets, as the present algorithm tends to constrain the depths mainly by using the seismic data. More complex synthetic examples will also be tested, including models addressing the seismic hidden-layer problem.

  8. Conditional Probabilities of Large Earthquake Sequences in California from the Physics-based Rupture Simulator RSQSim

    Science.gov (United States)

    Gilchrist, J. J.; Jordan, T. H.; Shaw, B. E.; Milner, K. R.; Richards-Dinger, K. B.; Dieterich, J. H.

    2017-12-01

    Within the SCEC Collaboratory for Interseismic Simulation and Modeling (CISM), we are developing physics-based forecasting models for earthquake ruptures in California. We employ the 3D boundary element code RSQSim (Rate-State Earthquake Simulator of Dieterich & Richards-Dinger, 2010) to generate synthetic catalogs with tens of millions of events that span up to a million years each. This code models rupture nucleation by rate- and state-dependent friction and Coulomb stress transfer in complex, fully interacting fault systems. The Uniform California Earthquake Rupture Forecast Version 3 (UCERF3) fault and deformation models are used to specify the fault geometry and long-term slip rates. We have employed the Blue Waters supercomputer to generate long catalogs of simulated California seismicity from which we calculate the forecasting statistics for large events. We have performed probabilistic seismic hazard analysis with RSQSim catalogs that were calibrated with system-wide parameters and found a remarkably good agreement with UCERF3 (Milner et al., this meeting). We build on this analysis, comparing the conditional probabilities of sequences of large events from RSQSim and UCERF3. In making these comparisons, we consider the epistemic uncertainties associated with the RSQSim parameters (e.g., rate- and state-frictional parameters), as well as the effects of model-tuning (e.g., adjusting the RSQSim parameters to match UCERF3 recurrence rates). The comparisons illustrate how physics-based rupture simulators might assist forecasters in understanding the short-term hazards of large aftershocks and multi-event sequences associated with complex, multi-fault ruptures.

  9. Rupture Speed and Dynamic Frictional Processes for the 1995 ML4.1 Shacheng, Hebei, China, Earthquake Sequence

    Science.gov (United States)

    Liu, B.; Shi, B.

    2010-12-01

    An earthquake with ML4.1 occurred at Shacheng, Hebei, China, on July 20, 1995, followed by 28 aftershocks with 0.9≤ML≤4.0 (Chen et al, 2005). According to ZÚÑIGA (1993), for the 1995 ML4.1 Shacheng earthquake sequence, the main shock is corresponding to undershoot, while aftershocks should match overshoot. With the suggestion that the dynamic rupture processes of the overshoot aftershocks could be related to the crack (sub-fault) extension inside the main fault. After main shock, the local stresses concentration inside the fault may play a dominant role in sustain the crack extending. Therefore, the main energy dissipation mechanism should be the aftershocks fracturing process associated with the crack extending. We derived minimum radiation energy criterion (MREC) following variational principle (Kanamori and Rivera, 2004)(ES/M0')min≧[3M0/(ɛπμR3)](v/β)3, where ES and M0' are radiated energy and seismic moment gained from observation, μ is the modulus of fault rigidity, ɛ is the parameter of ɛ=M0'/M0,M0 is seismic moment and R is rupture size on the fault, v and β are rupture speed and S-wave speed. From II and III crack extending model, we attempt to reconcile a uniform expression for calculate seismic radiation efficiency ηG, which can be used to restrict the upper limit efficiency and avoid the non-physics phenomenon that radiation efficiency is larger than 1. In ML 4.1 Shacheng earthquake sequence, the rupture speed of the main shock was about 0.86 of S-wave speed β according to MREC, closing to the Rayleigh wave speed, while the rupture speeds of the remained 28 aftershocks ranged from 0.05β to 0.55β. The rupture speed was 0.9β, and most of the aftershocks are no more than 0.35β using II and III crack extending model. In addition, the seismic radiation efficiencies for this earthquake sequence were: for the most aftershocks, the radiation efficiencies were less than 10%, inferring a low seismic efficiency, whereas the radiation efficiency

  10. Complementary roles of platelets and coagulation in thrombus formation on plaques acutely ruptured by targeted ultrasound treatment: a novel intravital model.

    Science.gov (United States)

    Kuijpers, M J E; Gilio, K; Reitsma, S; Nergiz-Unal, R; Prinzen, L; Heeneman, S; Lutgens, E; van Zandvoort, M A M J; Nieswandt, B; Egbrink, M G A Oude; Heemskerk, J W M

    2009-01-01

    Atherothrombosis is a major cause of cardiovascular events. However, animal models to study this process are scarce. We describe the first murine model of acute thrombus formation upon plaque rupture to study atherothrombosis by intravital fluorescence microscopy. Localized rupture of an atherosclerotic plaque in a carotid artery from Apoe(-/-) mice was induced in vivo using ultrasound. Rupture of the plaque and formation of localized thrombi were verified by two-photon laser scanning microscopy (TPLSM) in isolated arteries, and by immunohistochemistry. The thrombotic reaction was quantified by intravital fluorescence microscopy. Inspection of the ultrasound-treated plaques by histochemistry and TPLSM demonstrated local damage, collagen exposure, luminal thrombus formation as well as intra-plaque intrusion of erythrocytes and fibrin. Ultrasound treatment of healthy carotid arteries resulted in endothelial damage and limited platelet adhesion. Real-time intravital fluorescence microscopy demonstrated rapid platelet deposition on plaques and formation of a single thrombus that remained subocclusive. The thrombotic process was antagonized by thrombin inhibition, or by blocking of collagen or adenosine diphosphate receptor pathways. Multiple thrombi were formed in 70% of mice lacking CD40L. Targeted rupture of murine plaques results in collagen exposure and non-occlusive thrombus formation. The thrombotic process relies on platelet activation as well as on thrombin generation and coagulation, and is sensitive to established and novel antithrombotic medication. This model provides new possibilities to study atherothrombosis in vivo.

  11. SEISRISK II; a computer program for seismic hazard estimation

    Science.gov (United States)

    Bender, Bernice; Perkins, D.M.

    1982-01-01

    The computer program SEISRISK II calculates probabilistic ground motion values for use in seismic hazard mapping. SEISRISK II employs a model that allows earthquakes to occur as points within source zones and as finite-length ruptures along faults. It assumes that earthquake occurrences have a Poisson distribution, that occurrence rates remain constant during the time period considered, that ground motion resulting from an earthquake is a known function of magnitude and distance, that seismically homogeneous source zones are defined, that fault locations are known, that fault rupture lengths depend on magnitude, and that earthquake rates as a function of magnitude are specified for each source. SEISRISK II calculates for each site on a grid of sites the level of ground motion that has a specified probability of being exceeded during a given time period. The program was designed to process a large (essentially unlimited) number of sites and sources efficiently and has been used to produce regional and national maps of seismic hazard.}t is a substantial revision of an earlier program SEISRISK I, which has never been documented. SEISRISK II runs considerably [aster and gives more accurate results than the earlier program and in addition includes rupture length and acceleration variability which were not contained in the original version. We describe the model and how it is implemented in the computer program and provide a flowchart and listing of the code.

  12. Realistic modelling of the seismic input: Site effects and parametric studies

    International Nuclear Information System (INIS)

    Romanelli, F.; Vaccari, F.; Panza, G.F.

    2002-11-01

    We illustrate the work done in the framework of a large international cooperation, showing the very recent numerical experiments carried out within the framework of the EC project 'Advanced methods for assessing the seismic vulnerability of existing motorway bridges' (VAB) to assess the importance of non-synchronous seismic excitation of long structures. The definition of the seismic input at the Warth bridge site, i.e. the determination of the seismic ground motion due to an earthquake with a given magnitude and epicentral distance from the site, has been done following a theoretical approach. In order to perform an accurate and realistic estimate of site effects and of differential motion it is necessary to make a parametric study that takes into account the complex combination of the source and propagation parameters, in realistic geological structures. The computation of a wide set of time histories and spectral information, corresponding to possible seismotectonic scenarios for different sources and structural models, allows us the construction of damage scenarios that are out of the reach of stochastic models, at a very low cost/benefit ratio. (author)

  13. Air gun seismic effects on larvae and fry offshore; modeling and simulation

    International Nuclear Information System (INIS)

    Holmstroem, S.

    1993-04-01

    This report presents results from modeling and simulation of air gun seismic effects on fish and fry. A model has been developed to describe the behavior of fishes when a seismic ship is approaching and passes by the volume of residence of the fishes. The swimming capacity, the reaction to acoustic stimuli, the hearing threshold and the vertical distribution of the fishes have been included in the model. The model has been applied on cod fishes of length 25 and 350 mm. For realistic vertical distributions the big cod fishes will get away from the region near the boat where the probability for a mortal damage is greatest. 121 refs., 40 figs., 13 tabs

  14. Seismic response analysis of reactor containment structures - axisymmetric model with modified ground motion

    International Nuclear Information System (INIS)

    Saha, S.; Dasgupta, A.; Basu, P.C.

    1993-01-01

    Seismic analysis of a Reactor Building is performed idealising the system as a beam model (BM) and also an Axi-symmetric model (ASM) and the results compared. In both the cases effect of Soil-Structure Interaction have been taken Into account. Since the lower boundary of the ASM was at a depth much lower than that of the BM, deconvolution of the specified Free-Field Motion (FFM) was necessary. The deconvolution has been performed using frequency domain approach. (author)

  15. Seismic behavior of an Italian Renaissance Sanctuary: Damage assessment by numerical modelling

    Science.gov (United States)

    Clementi, Francesco; Nespeca, Andrea; Lenci, Stefano

    2016-12-01

    The paper deals with modelling and analysis of architectural heritage through the discussion of an illustrative case study: the Medieval Sanctuary of Sant'Agostino (Offida, Italy). Using the finite element technique, a 3D numerical model of the sanctuary is built, and then used to identify the main sources of the damages. The work shows that advanced numerical analyses could offer significant information for the understanding of the causes of existing damage and, more generally, on the seismic vulnerability.

  16. Earthquake rupture process recreated from a natural fault surface

    Science.gov (United States)

    Parsons, Thomas E.; Minasian, Diane L.

    2015-01-01

    What exactly happens on the rupture surface as an earthquake nucleates, spreads, and stops? We cannot observe this directly, and models depend on assumptions about physical conditions and geometry at depth. We thus measure a natural fault surface and use its 3D coordinates to construct a replica at 0.1 m resolution to obviate geometry uncertainty. We can recreate stick-slip behavior on the resulting finite element model that depends solely on observed fault geometry. We clamp the fault together and apply steady state tectonic stress until seismic slip initiates and terminates. Our recreated M~1 earthquake initiates at contact points where there are steep surface gradients because infinitesimal lateral displacements reduce clamping stress most efficiently there. Unclamping enables accelerating slip to spread across the surface, but the fault soon jams up because its uneven, anisotropic shape begins to juxtapose new high-relief sticking points. These contacts would ultimately need to be sheared off or strongly deformed before another similar earthquake could occur. Our model shows that an important role is played by fault-wall geometry, though we do not include effects of varying fluid pressure or exotic rheologies on the fault surfaces. We extrapolate our results to large fault systems using observed self-similarity properties, and suggest that larger ruptures might begin and end in a similar way, though the scale of geometrical variation in fault shape that can arrest a rupture necessarily scales with magnitude. In other words, fault segmentation may be a magnitude dependent phenomenon and could vary with each subsequent rupture.

  17. Transpressional Rupture Cascade of the 2016 Mw 7.8 Kaikoura Earthquake, New Zealand

    Science.gov (United States)

    Xu, Wenbin; Feng, Guangcai; Meng, Lingsen; Zhang, Ailin; Ampuero, Jean Paul; Bürgmann, Roland; Fang, Lihua

    2018-03-01

    Large earthquakes often do not occur on a simple planar fault but involve rupture of multiple geometrically complex faults. The 2016 Mw 7.8 Kaikoura earthquake, New Zealand, involved the rupture of at least 21 faults, propagating from southwest to northeast for about 180 km. Here we combine space geodesy and seismology techniques to study subsurface fault geometry, slip distribution, and the kinematics of the rupture. Our finite-fault slip model indicates that the fault motion changes from predominantly right-lateral slip near the epicenter to transpressional slip in the northeast with a maximum coseismic surface displacement of about 10 m near the intersection between the Kekerengu and Papatea faults. Teleseismic back projection imaging shows that rupture speed was overall slow (1.4 km/s) but faster on individual fault segments (approximately 2 km/s) and that the conjugate, oblique-reverse, north striking faults released the largest high-frequency energy. We show that the linking Conway-Charwell faults aided in propagation of rupture across the step over from the Humps fault zone to the Hope fault. Fault slip cascaded along the Jordan Thrust, Kekerengu, and Needles faults, causing stress perturbations that activated two major conjugate faults, the Hundalee and Papatea faults. Our results shed important light on the study of earthquakes and seismic hazard evaluation in geometrically complex fault systems.

  18. Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    John Rogers

    2011-12-31

    The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO{sub 2} injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO{sub 2} plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting the Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO{sub 2} sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO{sub 2} injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO{sub 2} was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume

  19. Numerical calculation models of the elastoplastic response of a structure under seismic action

    International Nuclear Information System (INIS)

    Edjtemai, Nima.

    1982-06-01

    Two digital calculation models developed in this work have made it possible to analyze the exact dynamic behaviour of ductile structures with one or several degrees of liberty, during earthquakes. With the first model, response spectra were built in the linear and non-linear fields for different absorption and ductility values and two types of seismic accelerograms. The comparative study of these spectra made it possible to check the validity of certain hypotheses suggested for the construction of elastoplastic spectra from corresponding linear spectra. A simplified method of non-linear seismic calculation based on the modal analysis and the spectra of elastoplastic response was then applied to structures with a varying number of degrees of liberty. The results obtained in this manner were compared with those provided by an exact calculation provided by the second digital model developed by us [fr

  20. Modeling Seismic Cycles of Great Megathrust Earthquakes Across the Scales With Focus at Postseismic Phase

    Science.gov (United States)

    Sobolev, Stephan V.; Muldashev, Iskander A.

    2017-12-01

    Subduction is substantially multiscale process where the stresses are built by long-term tectonic motions, modified by sudden jerky deformations during earthquakes, and then restored by following multiple relaxation processes. Here we develop a cross-scale thermomechanical model aimed to simulate the subduction process from 1 min to million years' time scale. The model employs elasticity, nonlinear transient viscous rheology, and rate-and-state friction. It generates spontaneous earthquake sequences and by using an adaptive time step algorithm, recreates the deformation process as observed naturally during the seismic cycle and multiple seismic cycles. The model predicts that viscosity in the mantle wedge drops by more than three orders of magnitude during the great earthquake with a magnitude above 9. As a result, the surface velocities just an hour or day after the earthquake are controlled by viscoelastic relaxation in the several hundred km of mantle landward of the trench and not by the afterslip localized at the fault as is currently believed. Our model replicates centuries-long seismic cycles exhibited by the greatest earthquakes and is consistent with the postseismic surface displacements recorded after the Great Tohoku Earthquake. We demonstrate that there is no contradiction between extremely low mechanical coupling at the subduction megathrust in South Chile inferred from long-term geodynamic models and appearance of the largest earthquakes, like the Great Chile 1960 Earthquake.

  1. AxiSEM3D: broadband seismic wavefields in 3-D aspherical Earth models

    Science.gov (United States)

    Leng, K.; Nissen-Meyer, T.; Zad, K. H.; van Driel, M.; Al-Attar, D.

    2017-12-01

    Seismology is the primary tool for data-informed inference of Earth structure and dynamics. Simulating seismic wave propagation at a global scale is fundamental to seismology, but remains as one of most challenging problems in scientific computing, because of both the multiscale nature of Earth's interior and the observable frequency band of seismic data. We present a novel numerical method to simulate global seismic wave propagation in realistic 3-D Earth models. Our method, named AxiSEM3D, is a hybrid of spectral element method and pseudospectral method. It reduces the azimuthal dimension of wavefields by means of a global Fourier series parameterization, of which the number of terms can be locally adapted to the inherent azimuthal smoothness of the wavefields. AxiSEM3D allows not only for material heterogeneities, such as velocity, density, anisotropy and attenuation, but also for finite undulations on radial discontinuities, both solid-solid and solid-fluid, and thereby a variety of aspherical Earth features such as ellipticity, topography, variable crustal thickness, and core-mantle boundary topography. Such interface undulations are equivalently interpreted as material perturbations of the contiguous media, based on the "particle relabelling transformation". Efficiency comparisons show that AxiSEM3D can be 1 to 3 orders of magnitude faster than conventional 3-D methods, with the speedup increasing with simulation frequency and decreasing with model complexity, but for all realistic structures the speedup remains at least one order of magnitude. The observable frequency range of global seismic data (up to 1 Hz) has been covered for wavefield modelling upon a 3-D Earth model with reasonable computing resources. We show an application of surface wave modelling within a state-of-the-art global crustal model (Crust1.0), with the synthetics compared to real data. The high-performance C++ code is released at github.com/AxiSEM3D/AxiSEM3D.

  2. Heterogeneous slip and rupture models of the San Andreas fault zone based upon three-dimensional earthquake tomography

    Energy Technology Data Exchange (ETDEWEB)

    Foxall, William [Univ. of California, Berkeley, CA (United States)

    1992-11-01

    Crystal fault zones exhibit spatially heterogeneous slip behavior at all scales, slip being partitioned between stable frictional sliding, or fault creep, and unstable earthquake rupture. An understanding the mechanisms underlying slip segmentation is fundamental to research into fault dynamics and the physics of earthquake generation. This thesis investigates the influence that large-scale along-strike heterogeneity in fault zone lithology has on slip segmentation. Large-scale transitions from the stable block sliding of the Central 4D Creeping Section of the San Andreas, fault to the locked 1906 and 1857 earthquake segments takes place along the Loma Prieta and Parkfield sections of the fault, respectively, the transitions being accomplished in part by the generation of earthquakes in the magnitude range 6 (Parkfield) to 7 (Loma Prieta). Information on sub-surface lithology interpreted from the Loma Prieta and Parkfield three-dimensional crustal velocity models computed by Michelini (1991) is integrated with information on slip behavior provided by the distributions of earthquakes located using, the three-dimensional models and by surface creep data to study the relationships between large-scale lithological heterogeneity and slip segmentation along these two sections of the fault zone.

  3. Non-linear analysis up to rupture of a model of a multi-cavity prestressed concrete pressure vessel

    International Nuclear Information System (INIS)

    Rebora, B.; Uffer, F.; Zimmermann, T.

    1977-01-01

    Within the frame of a German-Swiss agreement concerning the project of a high-temperature nuclear plant (HHT), the Swiss Federal Institute for Reactor Research (EIR, in Wuerlingen) has developed an integrated variant of an helium-cooled high temperature reactor of 3x500 Mwe. A test on a model (1:20) of this prestressed concrete nuclear vessel with multiple cavities has been carried out under the supervision of 'Bonnard et Gardel ingenieurs-conseils SA (BG). The aim of this analysis is to determine the mechanism of ruin and ultimate load of the structure. In addition, comparison with the results of the test emphasizes the mathematical model with a view to its utilisation for the analysis of any prestressed concrete nuclear vessel. The principal interest of this paper is to show the accuracy of non-linear analysis of a complex massive structure with the test results and the evolution of the behaviour of the structure from the apparition of the first crack up to the ruin by rupture of the steel wires. (Auth.)

  4. A comparative study of two statistical approaches for the analysis of real seismicity sequences and synthetic seismicity generated by a stick-slip experimental model

    Science.gov (United States)

    Flores-Marquez, Leticia Elsa; Ramirez Rojaz, Alejandro; Telesca, Luciano

    2015-04-01

    The study of two statistical approaches is analyzed for two different types of data sets, one is the seismicity generated by the subduction processes occurred at south Pacific coast of Mexico between 2005 and 2012, and the other corresponds to the synthetic seismic data generated by a stick-slip experimental model. The statistical methods used for the present study are the visibility graph in order to investigate the time dynamics of the series and the scaled probability density function in the natural time domain to investigate the critical order of the system. This comparison has the purpose to show the similarities between the dynamical behaviors of both types of data sets, from the point of view of critical systems. The observed behaviors allow us to conclude that the experimental set up globally reproduces the behavior observed in the statistical approaches used to analyses the seismicity of the subduction zone. The present study was supported by the Bilateral Project Italy-Mexico Experimental Stick-slip models of tectonic faults: innovative statistical approaches applied to synthetic seismic sequences, jointly funded by MAECI (Italy) and AMEXCID (Mexico) in the framework of the Bilateral Agreement for Scientific and Technological Cooperation PE 2014-2016.

  5. Coseismic and Early Post-Seismic Slip Distributions of the 2012 Emilia (Northern Italy) Seismic Sequence: New Insights in the Faults Activation and Resulting Stress Changes on Adjacent Faults

    Science.gov (United States)

    Cheloni, D.; Giuliani, R.; D'Agostino, N.; Mattone, M.; Bonano, M.; Fornaro, G.; Lanari, R.; Reale, D.

    2015-12-01

    The 2012 Emilia sequence (main shocks Mw 6.1 May 20 and Mw 5.9 May 29) ruptured two thrust segments of a ~E-W trending fault system of the buried Ferrara Arc, along a portion of the compressional system of the Apennines that had remained silent during past centuries. Here we use the rupture geometry constrained by the aftershocks and new geodetic data (levelling, InSAR and GPS measurements) to estimate an improved coseismic slip distribution of the two main events. In addition, we use post-seismic displacements, described and analyzed here for the first time, to infer a brand new post-seismic slip distribution of the May 29 event in terms of afterslip on the same coseismic plane. In particular, in this study we use a catalog of precisely relocated aftershocks to explore the different proposed geometries of the proposed thrust segments that have been published so far and estimate the coseismic and post-seismic slip distributions of the ruptured planes responsible for the two main seismic events from a joint inversion of the geodetic data.Joint inversion results revealed that the two earthquakes ruptured two distinct planar thrust faults, characterized by single main coseismic patches located around the centre of the rupture planes, in agreement with the seismological and geological information pointing out the Ferrara and the Mirandola thrust faults, as the causative structures of the May 20 and May 29 main shocks respectively.The preferred post-seismic slip distribution related to the 29 May event, yielded to a main patch of afterslip (equivalent to a Mw 5.6 event) located westward and up-dip of the main coseismic patch, suggesting that afterslip was triggered at the edges of the coseismic asperity. We then use these co- and post-seismic slip distribution models to calculate the stress changes on adjacent fault.

  6. Directly Estimating Earthquake Rupture Area using Second Moments to Reduce the Uncertainty in Stress Drop

    Science.gov (United States)

    McGuire, Jeffrey J.; Kaneko, Yoshihiro

    2018-06-01

    The key kinematic earthquake source parameters: rupture velocity, duration and area, shed light on earthquake dynamics, provide direct constraints on stress-drop, and have implications for seismic hazard. However, for moderate and small earthquakes, these parameters are usually poorly constrained due to limitations of the standard analysis methods. Numerical experiments by Kaneko and Shearer [2014,2015] demonstrated that standard spectral fitting techniques can lead to roughly 1 order of magnitude variation in stress-drop estimates that do not reflect the actual rupture properties even for simple crack models. We utilize these models to explore an alternative approach where we estimate the rupture area directly. For the suite of models, the area averaged static stress drop is nearly constant for models with the same underlying friction law, yet corner frequency based stress-drop estimates vary by a factor of 5-10 even for noise free data. Alternatively, we simulated inversions for the rupture area as parameterized by the second moments of the slip distribution. A natural estimate for the rupture area derived from the second moments is A=πLcWc, where Lc and Wc are the characteristic rupture length and width. This definition yields estimates of stress drop that vary by only 10% between the models but are slightly larger than the true area-averaged values. We simulate inversions for the second moments for the various models and find that the area can be estimated well when there are at least 15 available measurements of apparent duration at a variety of take-off angles. The improvement compared to azimuthally-averaged corner-frequency based approaches results from the second moments accounting for directivity and removing the assumption of a circular rupture area, both of which bias the standard approach. We also develop a new method that determines the minimum and maximum values of rupture area that are consistent with a particular dataset at the 95% confidence

  7. Validation of PWR core seismic models with shaking table tests on interacting scale 1 fuel assemblies

    International Nuclear Information System (INIS)

    Viallet, E.; Bolsee, G.; Ladouceur, B.; Goubin, T.; Rigaudeau, J.

    2003-01-01

    The fuel assembly mechanical strength must be justified with respect to the lateral loads under accident conditions, in particular seismic loads. This justification is performed by means of time-history analyses with dynamic models of an assembly row in the core, allowing for assembly deformations, impacts at grid locations and reactor coolant effects. Due to necessary simplifications, the models include 'equivalent' parameters adjusted with respect to dynamic characterisation tests of the fuel assemblies. Complementing such tests on isolated assemblies by an overall model validation with shaking table tests on interacting assemblies is obviously desirable. Seismic tests have been performed by French CEA (Commissariat a l'Energie Atomique) on a row of six full scale fuel assemblies, including two types of 17 x 17 12ft design. The row models are built according to the usual procedure, with preliminary characterisation tests performed on a single assembly. The test-calculation comparisons are made for two test configurations : in air and in water. The relatively large number of accelerograms (15, used for each configuration) is also favourable to significant comparisons. The results are presented for the impact forces at row ends, displacements at mid assembly, and also 'statistical' parameters. Despite a non-negligible scattering in the results obtained with different accelerograms, the calculations prove realistic, and the modelling process is validated with a good confidence level. This satisfactory validation allows to evaluate precisely the margins in the seismic design methodology of the fuel assemblies, and thus to confirm the safety of the plants in case of seismic event. (author)

  8. Building an Ensemble Seismic Hazard Model for the Magnitude Distribution by Using Alternative Bayesian Implementations

    Science.gov (United States)

    Taroni, M.; Selva, J.

    2017-12-01

    In this work we show how we built an ensemble seismic hazard model for the magnitude distribution for the TSUMAPS-NEAM EU project (http://www.tsumaps-neam.eu/). The considered source area includes the whole NEAM region (North East Atlantic, Mediterranean and connected seas). We build our models by using the catalogs (EMEC and ISC), their completeness and the regionalization provided by the project. We developed four alternative implementations of a Bayesian model, considering tapered or truncated Gutenberg-Richter distributions, and fixed or variable b-value. The frequency size distribution is based on the Weichert formulation. This allows for simultaneously assessing all the frequency-size distribution parameters (a-value, b-value, and corner magnitude), using multiple completeness periods for the different magnitudes. With respect to previous studies, we introduce the tapered Pareto distribution (in addition to the classical truncated Pareto), and we build a novel approach to quantify the prior distribution. For each alternative implementation, we set the prior distributions using the global seismic data grouped according to the different types of tectonic setting, and assigned them to the related regions. The estimation is based on the complete (not declustered) local catalog in each region. Using the complete catalog also allows us to consider foreshocks and aftershocks in the seismic rate computation: the Poissonicity of the tsunami events (and similarly the exceedances of the PGA) will be insured by the Le Cam's theorem. This Bayesian approach provides robust estimations also in the zones where few events are available, but also leaves us the possibility to explore the uncertainty associated with the estimation of the magnitude distribution parameters (e.g. with the classical Metropolis-Hastings Monte Carlo method). Finally we merge all the models with their uncertainty to create the ensemble model that represents our knowledge of the seismicity in the

  9. Seismic response of base-isolated buildings using a viscoelastic model

    International Nuclear Information System (INIS)

    Uras, R.A.

    1993-01-01

    Due to recent developments in elastomer technology,seismic isolation using elastomer bearings is rapidly gaining acceptance as a design tool to enhance structural seismic margins and to protect people and equipment from earthquake damage. With proper design of isolators, the fundamental frequency of the structure can be reduced to a value that is lower than the dominant frequencies of earthquake ground motions. The other feature of an isolation system is that it can provide a mechanism for energy dissipation. In the USA, the use of seismic base-isolation has become an alternate strategy for advanced Liquid Metal-cooled Reactors (LMRs). ANL has been deeply involved in the development and implementation of seismic isolation for use in both nuclear facilities and civil structures for the past decade. Shimizu Corporation of Japan has a test facility at Tohoku University in Sendai, Japan. The test facility has two buildings: one is base isolated and the other is conventionally founded. The buildings are full-size, three-story reinforced concrete structures. The dimensions and construction of the superstructures are identical. They were built side by side in a seismically active area. In 1988, the ANL/Shimizu Joint Program was established to study the differences in behavior of base-isolated and ordinarily founded structures when subjected to earthquake loading. A more comprehensive description of this joint program is presented in a companion paper (Wang et al. 1993). With the increased use of elastomeric polymers in industrial applications such as isolation bearings, the importance of constitutive modeling of viscoelastic materials is more and more pronounced. A realistic representation of material behavior is essential for computer simulations to replicate the response observed in experiments

  10. Do French macroseismic intensity observations agree with expectations from the European Seismic Hazard Model 2013?

    Science.gov (United States)

    Rey, Julien; Beauval, Céline; Douglas, John

    2018-02-01

    Probabilistic seismic hazard assessments are the basis of modern seismic design codes. To test fully a seismic hazard curve at the return periods of interest for engineering would require many thousands of years' worth of ground-motion recordings. Because strong-motion networks are often only a few decades old (e.g. in mainland France the first accelerometric network dates from the mid-1990s), data from such sensors can be used to test hazard estimates only at very short return periods. In this article, several hundreds of years of macroseismic intensity observations for mainland France are interpolated using a robust kriging-with-a-trend technique to establish the earthquake history of every French mainland municipality. At 24 selected cities representative of the French seismic context, the number of exceedances of intensities IV, V and VI is determined over time windows considered complete. After converting these intensities to peak ground accelerations using the global conversion equation of Caprio et al. (Ground motion to intensity conversion equations (GMICEs): a global relationship and evaluation of regional dependency, Bulletin of the Seismological Society of America 105:1476-1490, 2015), these exceedances are compared with those predicted by the European Seismic Hazard Model 2013 (ESHM13). In half of the cities, the number of observed exceedances for low intensities (IV and V) is within the range of predictions of ESHM13. In the other half of the cities, the number of observed exceedances is higher than the predictions of ESHM13. For intensity VI, the match is closer, but the comparison is less meaningful due to a scarcity of data. According to this study, the ESHM13 underestimates hazard in roughly half of France, even when taking into account the uncertainty in the conversion from intensity to acceleration. However, these results are valid only for the acceleration range tested in this study (0.01 to 0.09 g).

  11. Do French macroseismic intensity observations agree with expectations from the European Seismic Hazard Model 2013?

    Science.gov (United States)

    Rey, Julien; Beauval, Céline; Douglas, John

    2018-05-01

    Probabilistic seismic hazard assessments are the basis of modern seismic design codes. To test fully a seismic hazard curve at the return periods of interest for engineering would require many thousands of years' worth of ground-motion recordings. Because strong-motion networks are often only a few decades old (e.g. in mainland France the first accelerometric network dates from the mid-1990s), data from such sensors can be used to test hazard estimates only at very short return periods. In this article, several hundreds of years of macroseismic intensity observations for mainland France are interpolated using a robust kriging-with-a-trend technique to establish the earthquake history of every French mainland municipality. At 24 selected cities representative of the French seismic context, the number of exceedances of intensities IV, V and VI is determined over time windows considered complete. After converting these intensities to peak ground accelerations using the global conversion equation of Caprio et al. (Ground motion to intensity conversion equations (GMICEs): a global relationship and evaluation of regional dependency, Bulletin of the Seismological Society of America 105:1476-1490, 2015), these exceedances are compared with those predicted by the European Seismic Hazard Model 2013 (ESHM13). In half of the cities, the number of observed exceedances for low intensities (IV and V) is within the range of predictions of ESHM13. In the other half of the cities, the number of observed exceedances is higher than the predictions of ESHM13. For intensity VI, the match is closer, but the comparison is less meaningful due to a scarcity of data. According to this study, the ESHM13 underestimates hazard in roughly half of France, even when taking into account the uncertainty in the conversion from intensity to acceleration. However, these results are valid only for the acceleration range tested in this study (0.01 to 0.09 g).

  12. Soil structure interaction model and variability of parameters in seismic analysis of nuclear island connected building

    International Nuclear Information System (INIS)

    Subramanian, K.V.; Palekar, S.M.; Bavare, M.S.; Mapari, H.A.; Patel, S.C.; Pillai, C.S.

    2005-01-01

    This paper provides salient features of the Soil Structure Interaction analysis of Nuclear Island Connected Building (NICB). The dynamic analysis of NICB is performed on a full 3D model accounting for the probable variation in the stiffness of the founding medium. A range analyses was performed to establish the effect of variability of subgrade parameters on the results of seismic analyses of NICB. This paper presents details of various analyses with respect to the subgrade model, uncertainties in subgrade properties, results of seismic analyses and a study of effect of the variability of parameters on the results of these analyses. The results of this study indicate that the variability of soil parameters beyond a certain value of shear wave velocity does not influence the response and in fact the response marginally diminishes. (authors)

  13. Modeling of the Sedimentary Interbedded Basalt Stratigraphy for the Idaho National Laboratory Probabilistic Seismic Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Suzette Payne

    2006-04-01

    This report summarizes how the effects of the sedimentary interbedded basalt stratigraphy were modeled in the probabilistic seismic hazard analysis (PSHA) of the Idaho National Laboratory (INL). Drill holes indicate the bedrock beneath INL facilities is composed of about 1.1 km of alternating layers of basalt rock and loosely consolidated sediments. Alternating layers of hard rock and “soft” loose sediments tend to attenuate seismic energy greater than uniform rock due to scattering and damping. The INL PSHA incorporated the effects of the sedimentary interbedded basalt stratigraphy by developing site-specific shear (S) wave velocity profiles. The profiles were used in the PSHA to model the near-surface site response by developing site-specific stochastic attenuation relationships.

  14. Modeling of the Sedimentary Interbedded Basalt Stratigraphy for the Idaho National Laboratory Probabilistic Seismic Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Suzette Payne

    2007-08-01

    This report summarizes how the effects of the sedimentary interbedded basalt stratigraphy were modeled in the probabilistic seismic hazard analysis (PSHA) of the Idaho National Laboratory (INL). Drill holes indicate the bedrock beneath INL facilities is composed of about 1.1 km of alternating layers of basalt rock and loosely consolidated sediments. Alternating layers of hard rock and “soft” loose sediments tend to attenuate seismic energy greater than uniform rock due to scattering and damping. The INL PSHA incorporated the effects of the sedimentary interbedded basalt stratigraphy by developing site-specific shear (S) wave velocity profiles. The profiles were used in the PSHA to model the near-surface site response by developing site-specific stochastic attenuation relationships.

  15. Application of thermodynamics-based rate-dependent constitutive models of concrete in the seismic analysis of concrete dams

    Directory of Open Access Journals (Sweden)

    Leng Fei

    2008-09-01

    Full Text Available This paper discusses the seismic analysis of concrete dams with consideration of material nonlinearity. Based on a consistent rate-dependent model and two thermodynamics-based models, two thermodynamics-based rate-dependent constitutive models were developed with consideration of the influence of the strain rate. They can describe the dynamic behavior of concrete and be applied to nonlinear seismic analysis of concrete dams taking into account the rate sensitivity of concrete. With the two models, a nonlinear analysis of the seismic response of the Koyna Gravity Dam and the Dagangshan Arch Dam was conducted. The results were compared with those of a linear elastic model and two rate-independent thermodynamics-based constitutive models, and the influences of constitutive models and strain rate on the seismic response of concrete dams were discussed. It can be concluded from the analysis that, during seismic response, the tensile stress is the control stress in the design and seismic safety evaluation of concrete dams. In different models, the plastic strain and plastic strain rate of concrete dams show a similar distribution. When the influence of the strain rate is considered, the maximum plastic strain and plastic strain rate decrease.

  16. Shortcomings of the Winkler Model in the Assessment of Sectioned Tunnels under Seismic Loading

    DEFF Research Database (Denmark)

    Andersen, Lars; Lyngs, J. H.

    2009-01-01

    A Winkler-type model is often applied in the design of tunnels subject to seismic loading. Since the subgrade stiffness is modelled by disjoint springs, distributed continuously along the tunnel, the model does not account for retroaction via the soil. This may not be a problem in the design......-element solution, using a planned tunnel at Thessaloniki, Greece, as a case study. The aim of the analysis is to quantify the inaccuracy of the Winkler model in the prediction of damage at a gasket between two tunnel elements....

  17. Shortcomings of the Winkler Model in the Assessment of Sectioned Tunnels under Seismic Loading

    DEFF Research Database (Denmark)

    Andersen, Lars; Lyngs, Jakob Hausgaard

    A Winkler-type model is often applied in the design of tunnels subject to seismic loading. Since the subgrade stiffness is modelled by disjoint springs, distributed continuously along the tunnel, the model does not account for retroaction via the soil. This may not be a problem in the design......-element solution, using a planned tunnel at Thessaloniki, Greece, as a case study. The aim of the analysis is to quantify the inaccuracy of the Winkler model in the prediction of damage at a gasket between two tunnel elements....

  18. Effects of Source RDP Models and Near-source Propagation: Implication for Seismic Yield Estimation

    Science.gov (United States)

    Saikia, C. K.; Helmberger, D. V.; Stead, R. J.; Woods, B. B.

    - It has proven difficult to uniquely untangle the source and propagation effects on the observed seismic data from underground nuclear explosions, even when large quantities of near-source, broadband data are available for analysis. This leads to uncertainties in our ability to quantify the nuclear seismic source function and, consequently the accuracy of seismic yield estimates for underground explosions. Extensive deterministic modeling analyses of the seismic data recorded from underground explosions at a variety of test sites have been conducted over the years and the results of these studies suggest that variations in the seismic source characteristics between test sites may be contributing to the observed differences in the magnitude/yield relations applicable at those sites. This contributes to our uncertainty in the determination of seismic yield estimates for explosions at previously uncalibrated test sites. In this paper we review issues involving the relationship of Nevada Test Site (NTS) source scaling laws to those at other sites. The Joint Verification Experiment (JVE) indicates that a magnitude (mb) bias (δmb) exists between the Semipalatinsk test site (STS) in the former Soviet Union (FSU) and the Nevada test site (NTS) in the United States. Generally this δmb is attributed to differential attenuation in the upper-mantle beneath the two test sites. This assumption results in rather large estimates of yield for large mb tunnel shots at Novaya Zemlya. A re-examination of the US testing experiments suggests that this δmb bias can partly be explained by anomalous NTS (Pahute) source characteristics. This interpretation is based on the modeling of US events at a number of test sites. Using a modified Haskell source description, we investigated the influence of the source Reduced Displacement Potential (RDP) parameters ψ ∞ , K and B by fitting short- and long-period data simultaneously, including the near-field body and surface waves. In general

  19. Surgical treatment of Achilles tendon ruptures: the comparison of open and percutaneous methods in a rabbit model.

    Science.gov (United States)

    Yılmaz, Güney; Doral, Mahmut Nedim; Turhan, Egemen; Dönmez, Gürhan; Atay, Ahmet Özgür; Kaya, Defne

    2014-09-01

    This study was intended to investigate the healing properties of open and percutaneous techniques in a rabbit model and compare histological, electron microscopical, and biomechanical findings of the healed tendon between the groups. Twenty-six rabbits were randomly assigned to two groups of thirteen rabbits each. Percutaneous tenotomy of the Achilles tendon (AT) was applied through a stab incision on the right side 1.5 cm above the calcaneal insertion in all animals. Using the same Bunnell suture, the first group was repaired with the open and the second group was repaired with the percutaneous method. ATs were harvested at the end of eight weeks for biomechanical and histological evaluation. When the sections were evaluated for fibrillar density under electron microscopy, it was noted that fibrils were more abundant in the percutaneous repair group. The tendon scores in the percutaneous group were less than the open group indicating closer histological morphology to normal. The difference was not significant (p=0.065). The mean force to rupture the tendon was 143.7± 9.5 N in percutaneous group and 139.2±8.2 N in the open group. The difference was not significant (p=0.33). Percutaneous techniques provide as good clinical results as the open techniques do. The healing tendon shows better findings in histological and electron microscopical level with percutaneous technique.

  20. Seismic Travel Time Tomography in Modeling Low Velocity Anomalies between the Boreholes

    Science.gov (United States)

    Octova, A.; Sule, R.

    2018-04-01

    Travel time cross-hole seismic tomography is applied to describing the structure of the subsurface. The sources are placed at one borehole and some receivers are placed in the others. First arrival travel time data that received by each receiver is used as the input data in seismic tomography method. This research is devided into three steps. The first step is reconstructing the synthetic model based on field parameters. Field parameters are divided into 24 receivers and 45 receivers. The second step is applying inversion process for the field data that consists of five pairs bore holes. The last step is testing quality of tomogram with resolution test. Data processing using FAST software produces an explicit shape and resemble the initial model reconstruction of synthetic model with 45 receivers. The tomography processing in field data indicates cavities in several place between the bore holes. Cavities are identified on BH2A-BH1, BH4A-BH2A and BH4A-BH5 with elongated and rounded structure. In resolution tests using a checker-board, anomalies still can be identified up to 2 meter x 2 meter size. Travel time cross-hole seismic tomography analysis proves this mothod is very good to describing subsurface structure and boundary layer. Size and anomalies position can be recognized and interpreted easily.

  1. Depth geological model building: application to the 3D high resolution 'ANDRA' seismic block

    International Nuclear Information System (INIS)

    Mari, J.L.; Yven, B.

    2012-01-01

    Document available in extended abstract form only. 3D seismic blocks and logging data, mainly acoustic and density logs, are often used for geological model building in time. The geological model must be then converted from time to depth. Geostatistical approach for time-to-depth conversion of seismic horizons is often used in many geo-modelling projects. From a geostatistical point of view, the time-to-depth conversion of seismic horizons is a classical estimation problem involving one or more secondary variables. Bayesian approach [1] provides an excellent estimator which is more general than the traditional kriging with external drift(s) and fits very well to the needs for time-to-depth conversion of seismic horizons. The time-to-depth conversion of the selected seismic horizons is used to compute a time-to-depth conversion model at the time sampling rate (1 ms). The 3D depth conversion model allows the computation of an interval velocity block which is compared with the acoustic impedance block to estimate a density block as QC. Non realistic density values are edited and the interval velocity block as well as the depth conversion model is updated. The proposed procedure has been applied on a 3D data set. The dataset comes from a High Resolution 3D seismic survey recorded in France at the boundary of the Meuse and Haute-Marne departments in the vicinity of the Andra Center (National radioactive waste management Agency). The 3D design is a cross spread. The active spread is composed of 12 receiver lines with 120 stations each. The source lines are perpendicular to the receiver lines. The receiver and source line spacings are respectively 80 m and 120 m. The receiver and source point spacings are 20 m. The source is a Vibroseis source generating a signal in the 14 - 140 Hz frequency bandwidth.. The bin size is 10 x 10 m 2 . The nominal fold is 60. A conventional seismic sequence was applied to the data set. It includes amplitude recovery, deconvolution and wave

  2. Combined reservoir simulation and seismic technology, a new approach for modeling CHOPS

    Energy Technology Data Exchange (ETDEWEB)

    Aghabarati, H.; Lines, L.; Settari, A. [Calgary Univ., AB (Canada); Dumitrescu, C. [Sensor Geophysical Ltd., Calgary, AB (Canada)

    2008-10-15

    One of the primary recovery schemes for developing heavy oil reservoirs in Canada is cold heavy oil production with sand (CHOPS). With the introduction of progressive cavity pumps, CHOPS can be applied in unconsolidated or weakly consolidated formations. In order to better understand reservoir properties and recovery mechanism, this paper discussed the use of a combined reservoir simulation and seismic technology that were applied for a heavy oil reservoir situated in Saskatchewan, Canada. Using a seismic survey acquired in 1989, the study used geostatistical methods to estimate the initial reservoir porosity. Sand production was then modeled using an erosional velocity approach and the model was run based on oil production. The paper also compared the results of true porosity derived from simulation against the porosity estimated from a second seismic survey acquired in 2001. Last, the extent and the shape of the enhanced permeability region was modelled in order to estimate porosity distribution. It was concluded that the performance of the CHOPS wells depended greatly on the rate of creation of the high permeability zone around the wells. 9 refs., 2 tabs., 18 figs., 1 appendix.

  3. Seismic Studies

    Energy Technology Data Exchange (ETDEWEB)

    R. Quittmeyer

    2006-09-25

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground

  4. Seismic Studies

    International Nuclear Information System (INIS)

    R. Quittmeyer

    2006-01-01

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at

  5. Seismic Response Analysis and Test of 1/8 Scale Model for a Spent Fuel Storage Cask

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Han; Park, C. G.; Koo, G. H.; Seo, G. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yeom, S. H. [Chungnam Univ., Daejeon (Korea, Republic of); Choi, B. I.; Cho, Y. D. [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2005-07-15

    The seismic response tests of a spent fuel dry storage cask model of 1/8 scale are performed for an typical 1940 El-centro and Kobe earthquakes. This report firstly focuses on the data generation by seismic response tests of a free standing storage cask model to check the overturing possibility of a storage cask and the slipping displacement on concrete slab bed. The variations in seismic load magnitude and cask/bed interface friction are considered in tests. The test results show that the model gives an overturning response for an extreme condition only. A FEM model is built for the test model of 1/8 scale spent fuel dry storage cask using available 3D contact conditions in ABAQUS/Explicit. Input load for this analysis is El-centro earthquake, and the friction coefficients are obtained from the test result. Penalty and kinematic contact methods of ABAQUS are used for a mechanical contact formulation. The analysis methods was verified with the rocking angle obtained by seismic response tests. The kinematic contact method with an adequate normal contact stiffness showed a good agreement with tests. Based on the established analysis method for 1/8 scale model, the seismic response analyses of a full scale model are performed for design and beyond design seismic loads.

  6. Seismic testing

    International Nuclear Information System (INIS)

    Sollogoub, Pierre

    2001-01-01

    This lecture deals with: qualification methods for seismic testing; objectives of seismic testing; seismic testing standards including examples; main content of standard; testing means; and some important elements of seismic testing

  7. Waveform modeling of the seismic response of a mid-ocean ridge axial melt sill

    Science.gov (United States)

    Xu, Min; Stephen, R. A.; Canales, J. Pablo

    2017-12-01

    Seismic reflections from axial magma lens (AML) are commonly observed along many mid-ocean ridges, and are thought to arise from the negative impedance contrast between a solid, high-speed lid and the underlying low-speed, molten or partially molten (mush) sill. The polarity of the AML reflection ( P AML P) at vertical incidence and the amplitude vs offset (AVO) behavior of the AML reflections (e.g., P AML P and S-converted P AML S waves) are often used as a diagnostic tool for the nature of the low-speed sill. Time-domain finite difference calculations for two-dimensional laterally homogeneous models show some scenarios make the interpretation of melt content from partial-offset stacks of P- and S-waves difficult. Laterally heterogeneous model calculations indicate diffractions from the edges of the finite-width AML reducing the amplitude of the AML reflections. Rough seafloor and/or a rough AML surface can also greatly reduce the amplitude of peg-leg multiples because of scattering and destructive interference. Mid-crustal seismic reflection events are observed in the three-dimensional multi-channel seismic dataset acquired over the RIDGE-2000 Integrated Study Site at East Pacific Rise (EPR, cruise MGL0812). Modeling indicates that the mid-crustal seismic reflection reflections are unlikely to arise from peg-leg multiples of the AML reflections, P-to- S converted phases, or scattering due to rough topography, but could probably arise from deeper multiple magma sills. Our results support the identification of Marjanović et al. (Nat Geosci 7(11):825-829, 2014) that a multi-level complex of melt lenses is present beneath the axis of the EPR.

  8. Seismic attenuation in fractured porous media: insights from a hybrid numerical and analytical model

    International Nuclear Information System (INIS)

    Ekanem, A M; Li, X Y; Chapman, M; Main, I G

    2015-01-01

    Seismic attenuation in fluid-saturated porous rocks can occur by geometric spreading, wave scattering or the internal dissipation of energy, most likely due to the squirt-flow mechanism. In principle, the pattern of seismic attenuation recorded on an array of sensors contains information about the medium, in terms of material heterogeneity and anisotropy, as well as material properties such as porosity, crack density, and pore-fluid composition and mobility. In practice, this inverse problem is challenging. Here we provide some insights into the effects of internal dissipation by analysing synthetic data produced by a hybrid numerical and analytical model for seismic wave propagation in a fractured medium embedded within a layered geological structure. The model is made up of one anisotropic and three isotropic horizontal layers. The anisotropic layer consists of a porous, fluid-saturated material containing vertically aligned inclusions representing a set of fractures. This combination allows squirt-flow to occur between the pores in the matrix and the model fractures. Our results show that the fluid mobility and the associated relaxation time of the fluid-pressure gradient control the frequency range over which attenuation occurs. This induced attenuation increases with incidence angle and azimuth away from the fracture strike-direction. Azimuthal variations in the induced attenuation are elliptical allowing the fracture orientations to be obtained from the axes of the ellipse. These observations hold out the potential of using seismic attenuation as an additional diagnostic in the characterisation of rock formations for a variety of applications including hydrocarbon exploration and production, subsurface storage of CO 2 , and geothermal energy extraction. (paper)

  9. Highly-optimized TWSM software package for seismic diffraction modeling adapted for GPU-cluster

    Science.gov (United States)

    Zyatkov, Nikolay; Ayzenberg, Alena; Aizenberg, Arkady

    2015-04-01

    Oil producing companies concern to increase resolution capability of seismic data for complex oil-and-gas bearing deposits connected with salt domes, basalt traps, reefs, lenses, etc. Known methods of seismic wave theory define shape of hydrocarbon accumulation with nonsufficient resolution, since they do not account for multiple diffractions explicitly. We elaborate alternative seismic wave theory in terms of operators of propagation in layers and reflection-transmission at curved interfaces. Approximation of this theory is realized in the seismic frequency range as the Tip-Wave Superposition Method (TWSM). TWSM based on the operator theory allows to evaluate of wavefield in bounded domains/layers with geometrical shadow zones (in nature it can be: salt domes, basalt traps, reefs, lenses, etc.) accounting for so-called cascade diffraction. Cascade diffraction includes edge waves from sharp edges, creeping waves near concave parts of interfaces, waves of the whispering galleries near convex parts of interfaces, etc. The basic algorithm of TWSM package is based on multiplication of large-size matrices (make hundreds of terabytes in size). We use advanced information technologies for effective realization of numerical procedures of the TWSM. In particular, we actively use NVIDIA CUDA technology and GPU accelerators allowing to significantly improve the performance of the TWSM software package, that is important in using it for direct and inverse problems. The accuracy, stability and efficiency of the algorithm are justified by numerical examples with curved interfaces. TWSM package and its separate components can be used in different modeling tasks such as planning of acquisition systems, physical interpretation of laboratory modeling, modeling of individual waves of different types and in some inverse tasks such as imaging in case of laterally inhomogeneous overburden, AVO inversion.

  10. Earthquake scaling laws for rupture geometry and slip heterogeneity

    Science.gov (United States)

    Thingbaijam, Kiran K. S.; Mai, P. Martin; Goda, Katsuichiro

    2016-04-01

    We analyze an extensive compilation of finite-fault rupture models to investigate earthquake scaling of source geometry and slip heterogeneity to derive new relationships for seismic and tsunami hazard assessment. Our dataset comprises 158 earthquakes with a total of 316 rupture models selected from the SRCMOD database (http://equake-rc.info/srcmod). We find that fault-length does not saturate with earthquake magnitude, while fault-width reveals inhibited growth due to the finite seismogenic thickness. For strike-slip earthquakes, fault-length grows more rapidly with increasing magnitude compared to events of other faulting types. Interestingly, our derived relationship falls between the L-model and W-model end-members. In contrast, both reverse and normal dip-slip events are more consistent with self-similar scaling of fault-length. However, fault-width scaling relationships for large strike-slip and normal dip-slip events, occurring on steeply dipping faults (δ~90° for strike-slip faults, and δ~60° for normal faults), deviate from self-similarity. Although reverse dip-slip events in general show self-similar scaling, the restricted growth of down-dip fault extent (with upper limit of ~200 km) can be seen for mega-thrust subduction events (M~9.0). Despite this fact, for a given earthquake magnitude, subduction reverse dip-slip events occupy relatively larger rupture area, compared to shallow crustal events. In addition, we characterize slip heterogeneity in terms of its probability distribution and spatial correlation structure to develop a complete stochastic random-field characterization of earthquake slip. We find that truncated exponential law best describes the probability distribution of slip, with observable scale parameters determined by the average and maximum slip. Applying Box-Cox transformation to slip distributions (to create quasi-normal distributed data) supports cube-root transformation, which also implies distinctive non-Gaussian slip

  11. A creep rupture model accounting for cavitation at sliding grain boundaries

    NARCIS (Netherlands)

    Giessen, Erik van der; Tvergaard, Viggo

    1991-01-01

    An axisymmetric cell model analysis is used to study creep failure by grain boundary cavitation at facets normal to the maximum principal tensile stress, taking into account the influence of cavitation and sliding at adjacent inclined grain boundaries. It is found that the interaction between the

  12. Fundamental aspects of the integration of seismic monitoring with numerical modelling.

    CSIR Research Space (South Africa)

    Mendecki, AJ

    2001-06-01

    Full Text Available of the physical state of the rock- mass. ! It must be equipped with the capability of converting the parameters of a real seismic event into a corresponding model-compatible input in the form of an additional loading on the rock-mass. ! It must allow... for an unambiguous identification and quantification of Aseismic events @ among the model-generated data. Structure of an integrated numerical model The functionality interrelations between the different components of a software package designed to implement...

  13. Modelling of stiffness and damping change in reinforced concrete structures under seismic actions

    International Nuclear Information System (INIS)

    Koenig, G.; Oetes, A.

    1985-01-01

    Restoring force and energy dissipation properties of ductile reinforced concrete structures during seismic excitation are investigated. Interpreting the results of earthquake simulation experiments with large scale reinforced concrete structural members mainly subjected to cyclic bending the various types of the force-deflection response and energy dissipation capability will be identified. Two alternative concepts are suggested for modelling: A rigorous model which considers the numerous deformation and dissipation mechanisms using a step by step algorithm for analysis and a simplified practical model which employs a modified spectrum analysis technique and a simple updating procedure for changing stiffness and damping properties of the members. (orig.)

  14. Underground gas storage Lobodice geological model development based on 3D seismic interpretation

    International Nuclear Information System (INIS)

    Kopal, L.

    2015-01-01

    Aquifer type underground gas storage (UGS) Lobodice was developed in the Central Moravian part of Carpathian foredeep in Czech Republic 50 years ago. In order to improve knowledge about UGS geological structure 3D seismic survey was performed in 2009. Reservoir is rather shallow (400 - 500 m below surface) it is located in complicated locality so limitations for field acquisition phase were abundant. This article describes process work flow from 3D seismic field data acquisition to geological model creation. The outcomes of this work flow define geometry of UGS reservoir, its tectonics, structure spill point, cap rock and sealing features of the structure. Improving of geological knowledge about the reservoir enables less risky new well localization for UGS withdrawal rate increasing. (authors)

  15. Energy and stiffness of mine models and seismicity

    CSIR Research Space (South Africa)

    Spottiswoode, SM

    2008-09-01

    Full Text Available of the Carbon Leader reef (CLR) and the Ventersdorp Contact reef (VCR). More than 500,000 m2 of reef were mined over several years and generated more than 10,000 events of magnitude greater than 0,0 in each case. The researchers proposed a simple softening model...

  16. A calculation model for a HTR core seismic response

    International Nuclear Information System (INIS)

    Buland, P.; Berriaud, C.; Cebe, E.; Livolant, M.

    1975-01-01

    The paper presents the experimental results obtained at Saclay on a HTGR core model and comparisons with analytical results. Two series of horizontal tests have been performed on the shaking table VESUVE: sinusoidal test and time history response. Acceleration of graphite blocks, forces on the boundaries, relative displacement of the core and PCRB model, impact velocity of the blocks on the boundaries were recorded. These tests have shown the strongly non-linear dynamic behaviour of the core. The resonant frequency of the core is dependent on the level of the excitation. These phenomena have been explained by a computer code, which is a lumped mass non-linear model. Good correlation between experimental and analytical results was obtained for impact velocities and forces on the boundaries. This comparison has shown that the damping of the core is a critical parameter for the estimation of forces and velocities. Time history displacement at the level of PCRV was reproduced on the shaking table. The analytical model was applied to this excitation and good agreement was obtained for forces and velocities. (orig./HP) [de

  17. an improved structural model for seismic analysis of tall frames

    African Journals Online (AJOL)

    Dr Obe

    ABSTRACT. This paper proposed and examined an improved structural model ... The equation of motion of multI-storey building shown in fig. 2 can be ... The response of the nth mode at any time t of the MDOF system demands the solution of ...

  18. Co-seismic deformation of the August 27, 2012 Mw 7.3 El Salvador and September 5, 2012 Mw 7.6 Costa Rica earthquakes

    Science.gov (United States)

    Geirsson, H.; La Femina, P. C.; DeMets, C.; Mattioli, G. S.; Hernández, D.

    2013-05-01

    We investigate the co-seismic deformation of two significant earthquakes that occurred along the Middle America trench in 2012. The August 27 Mw 7.3 El Salvador and September 5 Mw 7.6 Nicoya Peninsula, Costa Rica earthquakes, were examined using a combination of episodic and continuous Global Positioning System (GPS) data. USGS finite fault models based on seismic data predict fundamentally different characteristics for the two ruptures. The El Salvador event occurred in a historical seismic gap and on the shallow segment of the Middle America Trench main thrust, rupturing a large area, but with a low magnitude of slip. A small tsunami was observed along the coast in Nicaragua and El Salvador, additionally indicating near-trench rupture. Conversely, the Nicoya, Costa Rica earthquake was predicted to have an order of magnitude higher slip on a spatially smaller patch deeper on the main thrust. We present results from episodic and continuous geodetic GPS measurements made in conjunction with the two earthquakes, including data from newly installed COCONet (Continuously Operating Caribbean GPS Observational Network) sites. Episodic GPS measurements made in El Salvador, Honduras, and Nicaragua following the earthquakes, allow us to estimate the co-seismic deformation field from both earthquakes. Because of the small magnitude of the El Salvador earthquake and its shallow rupture the observed co-seismic deformation is small (earthquake occurred directly beneath a seismic and geodetic network specifically designed to capture such events. The observed displacements exceeded 0.5 m and there is a significant post-seismic transient following the earthquake. We use our estimated co-seismic offsets for both earthquakes to model the magnitude and spatial variability of slip for these two events.

  19. FE Modelling of the Seismic Behavior of Wide Beam-Column Joints Strengthened with CFRP Systems

    Directory of Open Access Journals (Sweden)

    Giuseppe Santarsiero

    2018-02-01

    Full Text Available A large share of reinforced concrete (RC framed buildings is provided with wide beams being a type of beam allowing greater freedom in the architectural arrangement of interiors, beyond further advantage due to fewer formworks needed during the construction. Nevertheless, little attention has been devoted to the seismic vulnerability of this kind of framed RC buildings as well as to the study of strengthening systems purposely developed for wide beams and wide beam-column connections. Under these premises, this paper proposes simple strengthening solutions made by Fibre Reinforced Polymers (FRP systems able to effectively improve seismic capacity through feasible arrangement suitable in case a wide beam is present. On the basis of wide beam-column joints previously tested without strengthening system, detailed nonlinear finite element models were calibrated. Then, an FRP strengthening intervention based on a brand new arrangement was modeled in order to perform additional simulations under seismic actions. This way, the effectiveness of the strengthening intervention was assessed finding out that significant strength and ductility increments were achieved with a relatively simple and cheap strengthening arrangement. Additional research would be desirable in the form of experimental tests on the simulated wide beam-column joints.

  20. A sampling-based Bayesian model for gas saturation estimationusing seismic AVA and marine CSEM data

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jinsong; Hoversten, Michael; Vasco, Don; Rubin, Yoram; Hou,Zhangshuan

    2006-04-04

    We develop a sampling-based Bayesian model to jointly invertseismic amplitude versus angles (AVA) and marine controlled-sourceelectromagnetic (CSEM) data for layered reservoir models. The porosityand fluid saturation in each layer of the reservoir, the seismic P- andS-wave velocity and density in the layers below and above the reservoir,and the electrical conductivity of the overburden are considered asrandom variables. Pre-stack seismic AVA data in a selected time windowand real and quadrature components of the recorded electrical field areconsidered as data. We use Markov chain Monte Carlo (MCMC) samplingmethods to obtain a large number of samples from the joint posteriordistribution function. Using those samples, we obtain not only estimatesof each unknown variable, but also its uncertainty information. Thedeveloped method is applied to both synthetic and field data to explorethe combined use of seismic AVA and EM data for gas saturationestimation. Results show that the developed method is effective for jointinversion, and the incorporation of CSEM data reduces uncertainty influid saturation estimation, when compared to results from inversion ofAVA data only.

  1. Detection of Natural Fractures from Observed Surface Seismic Data Based on a Linear-Slip Model

    Science.gov (United States)

    Chen, Huaizhen; Zhang, Guangzhi

    2018-03-01

    Natural fractures play an important role in migration of hydrocarbon fluids. Based on a rock physics effective model, the linear-slip model, which defines fracture parameters (fracture compliances) for quantitatively characterizing the effects of fractures on rock total compliance, we propose a method to detect natural fractures from observed seismic data via inversion for the fracture compliances. We first derive an approximate PP-wave reflection coefficient in terms of fracture compliances. Using the approximate reflection coefficient, we derive azimuthal elastic impedance as a function of fracture compliances. An inversion method to estimate fracture compliances from seismic data is presented based on a Bayesian framework and azimuthal elastic impedance, which is implemented in a two-step procedure: a least-squares inversion for azimuthal elastic impedance and an iterative inversion for fracture compliances. We apply the inversion method to synthetic and real data to verify its stability and reasonability. Synthetic tests confirm that the method can make a stable estimation of fracture compliances in the case of seismic data containing a moderate signal-to-noise ratio for Gaussian noise, and the test on real data reveals that reasonable fracture compliances are obtained using the proposed method.

  2. Bayesian nonlinear structural FE model and seismic input identification for damage assessment of civil structures

    Science.gov (United States)

    Astroza, Rodrigo; Ebrahimian, Hamed; Li, Yong; Conte, Joel P.

    2017-09-01

    A methodology is proposed to update mechanics-based nonlinear finite element (FE) models of civil structures subjected to unknown input excitation. The approach allows to jointly estimate unknown time-invariant model parameters of a nonlinear FE model of the structure and the unknown time histories of input excitations using spatially-sparse output response measurements recorded during an earthquake event. The unscented Kalman filter, which circumvents the computation of FE response sensitivities with respect to the unknown model parameters and unknown input excitations by using a deterministic sampling approach, is employed as the estimation tool. The use of measurement data obtained from arrays of heterogeneous sensors, including accelerometers, displacement sensors, and strain gauges is investigated. Based on the estimated FE model parameters and input excitations, the updated nonlinear FE model can be interrogated to detect, localize, classify, and assess damage in the structure. Numerically simulated response data of a three-dimensional 4-story 2-by-1 bay steel frame structure with six unknown model parameters subjected to unknown bi-directional horizontal seismic excitation, and a three-dimensional 5-story 2-by-1 bay reinforced concrete frame structure with nine unknown model parameters subjected to unknown bi-directional horizontal seismic excitation are used to illustrate and validate the proposed methodology. The results of the validation studies show the excellent performance and robustness of the proposed algorithm to jointly estimate unknown FE model parameters and unknown input excitations.

  3. The Gassmann-Burgers Model to Simulate Seismic Waves at the Earth Crust And Mantle

    Science.gov (United States)

    Carcione, José M.; Poletto, Flavio; Farina, Biancamaria; Craglietto, Aronne

    2017-03-01

    The upper part of the crust shows generally brittle behaviour while deeper zones, including the mantle, may present ductile behaviour, depending on the pressure-temperature conditions; moreover, some parts are melted. Seismic waves can be used to detect these conditions on the basis of reflection and transmission events. Basically, from the elastic-plastic point of view the seismic properties (seismic velocity and density) depend on effective pressure and temperature. Confining and pore pressures have opposite effects on these properties, such that very small effective pressures (the presence of overpressured fluids) may substantially decrease the P- and S-wave velocities, mainly the latter, by opening of cracks and weakening of grain contacts. Similarly, high temperatures induce the same effect by partial melting. To model these effects, we consider a poro-viscoelastic model based on Gassmann equations and Burgers mechanical model to represent the properties of the rock frame and describe ductility in which deformation takes place by shear plastic flow. The Burgers elements allow us to model the effects of seismic attenuation, velocity dispersion and steady-state creep flow, respectively. The stiffness components of the brittle and ductile media depend on stress and temperature through the shear viscosity, which is obtained by the Arrhenius equation and the octahedral stress criterion. Effective pressure effects are taken into account in the dry-rock moduli using exponential functions whose parameters are obtained by fitting experimental data as a function of confining pressure. Since fluid effects are important, the density and bulk modulus of the saturating fluids (water and steam) are modeled using the equations provided by the NIST website, including supercritical behaviour. The theory allows us to obtain the phase velocity and quality factor as a function of depth and geological pressure and temperature as well as time frequency. We then obtain the PS and SH

  4. Identification of temporal patterns in the seismicity of Sumatra using Poisson Hidden Markov models

    Directory of Open Access Journals (Sweden)

    Katerina Orfanogiannaki

    2014-05-01

    Full Text Available On 26 December 2004 and 28 March 2005 two large earthquakes occurred between the Indo-Australian and the southeastern Eurasian plates with moment magnitudes Mw=9.1 and Mw=8.6, respectively. Complete data (mb≥4.2 of the post-1993 time interval have been used to apply Poisson Hidden Markov models (PHMMs for identifying temporal patterns in the time series of the two earthquake sequences. Each time series consists of earthquake counts, in given and constant time units, in the regions determined by the aftershock zones of the two mainshocks. In PHMMs each count is generated by one of m different Poisson processes that are called states. The series of states is unobserved and is in fact a Markov chain. The model incorporates a varying seismicity rate, it assigns a different rate to each state and it detects the changes on the rate over time. In PHMMs unobserved factors, related to the local properties of the region are considered affecting the earthquake occurrence rate. Estimation and interpretation of the unobserved sequence of states that underlie the data contribute to better understanding of the geophysical processes that take place in the region. We applied PHMMs to the time series of the two mainshocks and we estimated the unobserved sequences of states that underlie the data. The results obtained showed that the region of the 26 December 2004 earthquake was in state of low seismicity during almost the entire observation period. On the contrary, in the region of the 28 March 2005 earthquake the seismic activity is attributed to triggered seismicity, due to stress transfer from the region of the 2004 mainshock.

  5. Modeling of the mechanical behaviour of welded structures: behaviour laws and rupture criteria

    International Nuclear Information System (INIS)

    Paris, T.; Delaplanche, D.; Saanouni, K.

    2006-01-01

    In the framework of the technological developments carried out in the CEA, the analysis of the mechanical behaviour of the heterogeneous welded bonds Ta/TA6V is a main preoccupation. Indeed, the welding of these two materials which cannot be distinguished by their mechanical and thermal properties induces strong microstructural heterogeneities in the melted zone. In order to characterize the behaviour of the welded joints and to develop a model of mechanical behaviour, a four points bending test on a notched specimen has been developed and implemented. This new test has allowed to obtain a macroscopic response of strength-displacement type but to analyze too more finely, with an optical extensometry and images correlation method, the influence of the heterogeneities on the local deformation of the welded joint. The confrontation of these results to a metallurgical study allows to validate the first conclusions deduced of the mechanical characterization tests and to conclude as for the local mechanisms governing the behaviour and the damage of the melted zone. The mechanical behaviour can be restored by an elasto-viscoplastic model with isotropic and non linear kinematic strain hardening coupled to this damage. The proposed model allows to identify the macroscopic behaviour of the weld bead. (O.M.)

  6. Modeling Regional Seismic Waves from Underground Nuclear Explosion

    Science.gov (United States)

    1989-05-15

    source outside the basin, small solid box beneath Ama. Little waveform distortion is observed along the path towsrds Pasadena (upper four trames) while...effects not accounted for in the wed and analytical solutions were derived for soluble interpretations given (Nuttli 1973, 1978, 1981; Herman & special...in a trnition region of COUPLING lengh L. The hybrid method used in the present study allows the the layering. Several types of solutions for models

  7. Modeling of the mechanical behaviour of welded structures: behaviour laws and rupture criteria; Modelisation du comportement mecanique de structures soudees: lois de comportement et criteres de rupture

    Energy Technology Data Exchange (ETDEWEB)

    Paris, T.; Delaplanche, D. [CEA Valduc, Laboratoire Calcul et Simulations, 21120 Is-sur-Tille (France); Saanouni, K. [LASMIS-CNRS-FRE 2719, Universite de Technologie de Troyes BP 2060 - 10010 Troyes - (France)

    2006-07-01

    In the framework of the technological developments carried out in the CEA, the analysis of the mechanical behaviour of the heterogeneous welded bonds Ta/TA6V is a main preoccupation. Indeed, the welding of these two materials which cannot be distinguished by their mechanical and thermal properties induces strong microstructural heterogeneities in the melted zone. In order to characterize the behaviour of the welded joints and to develop a model of mechanical behaviour, a four points bending test on a notched specimen has been developed and implemented. This new test has allowed to obtain a macroscopic response of strength-displacement type but to analyze too more finely, with an optical extensometry and images correlation method, the influence of the heterogeneities on the local deformation of the welded joint. The confrontation of these results to a metallurgical study allows to validate the first conclusions deduced of the mechanical characterization tests and to conclude as for the local mechanisms governing the behaviour and the damage of the melted zone. The mechanical behaviour can be restored by an elasto-viscoplastic model with isotropic and non linear kinematic strain hardening coupled to this damage. The proposed model allows to identify the macroscopic behaviour of the weld bead. (O.M.)

  8. Dynamic rupture scenarios from Sumatra to Iceland - High-resolution earthquake source physics on natural fault systems

    Science.gov (United States)

    Gabriel, Alice-Agnes; Madden, Elizabeth H.; Ulrich, Thomas; Wollherr, Stephanie

    2017-04-01

    Capturing the observed complexity of earthquake sources in dynamic rupture simulations may require: non-linear fault friction, thermal and fluid effects, heterogeneous fault stress and fault strength initial conditions, fault curvature and roughness, on- and off-fault non-elastic failure. All of these factors have been independently shown to alter dynamic rupture behavior and thus possibly influence the degree of realism attainable via simulated ground motions. In this presentation we will show examples of high-resolution earthquake scenarios, e.g. based on the 2004 Sumatra-Andaman Earthquake, the 1994 Northridge earthquake and a potential rupture of the Husavik-Flatey fault system in Northern Iceland. The simulations combine a multitude of representations of source complexity at the necessary spatio-temporal resolution enabled by excellent scalability on modern HPC systems. Such simulations allow an analysis of the dominant factors impacting earthquake source physics and ground motions given distinct tectonic settings or distinct focuses of seismic hazard assessment. Across all simulations, we find that fault geometry concurrently with the regional background stress state provide a first order influence on source dynamics and the emanated seismic wave field. The dynamic rupture models are performed with SeisSol, a software package based on an ADER-Discontinuous Galerkin scheme for solving the spontaneous dynamic earthquake rupture problem with high-order accuracy in space and time. Use of unstructured tetrahedral meshes allows for a realistic representation of the non-planar fault geometry, subsurface structure and bathymetry. The results presented highlight the fact that modern numerical methods are essential to further our understanding of earthquake source physics and complement both physic-based ground motion research and empirical approaches in seismic hazard analysis.

  9. Evaluation of seismic reliability of steel moment resisting frames rehabilitated by concentric braces with probabilistic models

    Directory of Open Access Journals (Sweden)

    Fateme Rezaei

    2017-08-01

    Full Text Available Probability of structure failure which has been designed by "deterministic methods" can be more than the one which has been designed in similar situation using probabilistic methods and models considering "uncertainties". The main purpose of this research was to evaluate the seismic reliability of steel moment resisting frames rehabilitated with concentric braces by probabilistic models. To do so, three-story and nine-story steel moment resisting frames were designed based on resistant criteria of Iranian code and then they were rehabilitated based on controlling drift limitations by concentric braces. Probability of frames failure was evaluated by probabilistic models of magnitude, location of earthquake, ground shaking intensity in the area of the structure, probabilistic model of building response (based on maximum lateral roof displacement and probabilistic methods. These frames were analyzed under subcrustal source by sampling probabilistic method "Risk Tools" (RT. Comparing the exceedance probability of building response curves (or selected points on it of the three-story and nine-story model frames (before and after rehabilitation, seismic response of rehabilitated frames, was reduced and their reliability was improved. Also the main effective variables in reducing the probability of frames failure were determined using sensitivity analysis by FORM probabilistic method. The most effective variables reducing the probability of frames failure are  in the magnitude model, ground shaking intensity model error and magnitude model error

  10. The Burgers/squirt-flow seismic model of the crust and mantle

    Science.gov (United States)

    Carcione, José M.; Poletto, Flavio; Farina, Biancamaria

    2018-01-01

    Part of the crust shows generally brittle behaviour while areas of high temperature and/or high pore pressure, including the mantle, may present ductile behaviour. For instance, the potential heat source of geothermal fields, overpressured formations and molten rocks. Seismic waves can be used to detect these conditions on the basis of reflection and transmission events. Basically, from the elastic-plastic point of view the seismic properties (seismic velocity, quality factor and density) depend on effective pressure and temperature. Confining and pore pressures have opposite effects on these properties, and high temperatures may induce a similar behaviour by partial melting. In order to model these effects, we consider a poro-viscoelastic model based on the Burgers mechanical element and the squirt-flow model to represent the properties of the rock frame to describe ductility in which deformation takes place by shear plastic flow, and to model local and global fluid flow effects. The Burgers element allows us to model the effects of the steady-state creep flow on the dry-rock frame. The stiffness components of the brittle and ductile media depend on stress and temperature through the shear viscosity, which is obtained by the Arrhenius equation and the octahedral stress criterion. Effective pressure effects are taken into account in the dry-rock moduli by using exponential functions whose parameters are obtained by fitting experimental data as a function of confining pressure. Since fluid effects are important, the density and bulk modulus of the saturating fluids (water at sub- and supercritical conditions) are modeled by using the equations provided by the NIST website. The squirt-flow model has a single free parameter represented by the aspect ratio of the grain contacts. The theory generalizes a preceding theory based on Gassmann (low-frequency) moduli to the more general case of the presence of local (squirt) flow and global (Biot) flow, which contribute with

  11. Insights into the Fault Geometry and Rupture History of the 2016 MW 7.8 Kaikoura, New Zealand, Earthquake

    Science.gov (United States)

    Adams, M.; Ji, C.

    2017-12-01

    The November 14th 2016 MW 7.8 Kaikoura, New Zealand earthquake occurred along the east coast of the northern part of the South Island. The local tectonic setting is complicated. The central South Island is dominated by oblique continental convergence, whereas the southern part of this island experiences eastward subduction of the Australian plate. Available information (e.g., Hamling et al., 2017; Bradley et al., 2017) indicate that this earthquake involved multiple fault segments of the Marlborough fault system (MFS) as the rupture propagated northwards for more than 150 km. Additional slip might also occur on the subduction interface of the Pacific plate under the Australian plate, beneath the MFS. However, the exact number of involved fault segments as well as the temporal co-seismic rupture sequence has not been fully determined with geodetic and geological observations. Knowledge of the kinematics of complex fault interactions has important implications for our understanding of global seismic hazards, particularly to relatively unmodeled multisegment ruptures. Understanding the Kaikoura earthquake will provide insight into how one incorporates multi-fault ruptures in seismic-hazard models. We propose to apply a multiple double-couple inversion to determine the fault geometry and spatiotemporal rupture history using teleseismic and strong motion waveforms, before constraining the detailed slip history using both seismic and geodetic data. The Kaikoura earthquake will be approximated as the summation of multiple subevents—each represented as a double-couple point source, characterized by i) fault geometry (strike, dip and rake), ii) seismic moment, iii) centroid time, iv) half-duration and v) location (latitude, longitude and depth), a total of nine variables. We progressively increase the number of point sources until the additional source cannot produce significant improvement to the observations. Our preliminary results using only teleseismic data indicate

  12. Response spectrum analysis of a stochastic seismic model

    International Nuclear Information System (INIS)

    Kimura, Koji; Sakata, Masaru; Takemoto, Shinichiro.

    1990-01-01

    The stochastic response spectrum approach is presented for predicting the dynamic behavior of structures to earthquake excitation expressed by a random process, one of whose sample functions can be regarded as a recorded strong-motion earthquake accelerogram. The approach consists of modeling recorded ground motion by a random process and the root-mean-square response (rms) analysis of a single-degree-of-freedom system by using the moment equations method. The stochastic response spectrum is obtained as a plot of the maximum rms response versus the natural period of the system and is compared with the conventional response spectrum. (author)

  13. Rupture of primigravid uterus and recurrent rupture

    Directory of Open Access Journals (Sweden)

    Nahreen Akhtar

    2016-08-01

    Full Text Available Uterine rupture is a deadly obstetrical emergency endangering the life of both mother and fetus. In Bangladesh, majority of deliveries arc attended by unskilled traditional birth attendant and maternal mortality is still quite high. It is rare Ln developed country but unfortunately it is common in a developing country like Bangladesh. We report a case history of a patient age 32yrs from Daudkandi, Comilla admitted with H/0 previous two rupture uterus and repair with no living issue. We did caesarean section at her 31+ weeks of pregnancy when she developed Jabour pain. A baby of 1.4 kg was delivered. During cesarean section, focal rupture was noted in previous scar of rupture. Unfortunately the baby expired in neonatal ICU after 36 hours.

  14. Structural control on the Tohoku earthquake rupture process investigated by 3D FEM, tsunami and geodetic data.

    Science.gov (United States)

    Romano, F; Trasatti, E; Lorito, S; Piromallo, C; Piatanesi, A; Ito, Y; Zhao, D; Hirata, K; Lanucara, P; Cocco, M

    2014-07-09

    The 2011 Tohoku earthquake (Mw = 9.1) highlighted previously unobserved features for megathrust events, such as the large slip in a relatively limited area and the shallow rupture propagation. We use a Finite Element Model (FEM), taking into account the 3D geometrical and structural complexities up to the trench zone, and perform a joint inversion of tsunami and geodetic data to retrieve the earthquake slip distribution. We obtain a close spatial correlation between the main deep slip patch and the local seismic velocity anomalies, and large shallow slip extending also to the North coherently with a seismically observed low-frequency radiation. These observations suggest that the friction controlled the rupture, initially confining the deeper rupture and then driving its propagation up to the trench, where it spreads laterally. These findings are relevant to earthquake and tsunami hazard assessment because they may help to detect regions likely prone to rupture along the megathrust, and to constrain the probability of high slip near the trench. Our estimate of ~40 m slip value around the JFAST (Japan Trench Fast Drilling Project) drilling zone contributes to constrain the dynamic shear stress and friction coefficient of the fault obtained by temperature measurements to ~0.68 MPa and ~0.10, respectively.

  15. Seismic Modeling Of Reservoir Heterogeneity Scales: An Application To Gas Hydrate Reservoirs

    Science.gov (United States)

    Huang, J.; Bellefleur, G.; Milkereit, B.

    2008-12-01

    Natural gas hydrates, a type of inclusion compound or clathrate, are composed of gas molecules trapped within a cage of water molecules. The occurrence of gas hydrates in permafrost regions has been confirmed by core samples recovered from the Mallik gas hydrate research wells located within Mackenzie Delta in Northwest Territories of Canada. Strong vertical variations of compressional and shear sonic velocities and weak surface seismic expressions of gas hydrates indicate that lithological heterogeneities control the distribution of hydrates. Seismic scattering studies predict that typical scales and strong physical contrasts due to gas hydrate concentration will generate strong forward scattering, leaving only weak energy captured by surface receivers. In order to understand the distribution of hydrates and the seismic scattering effects, an algorithm was developed to construct heterogeneous petrophysical reservoir models. The algorithm was based on well logs showing power law features and Gaussian or Non-Gaussian probability density distribution, and was designed to honor the whole statistical features of well logs such as the characteristic scales and the correlation among rock parameters. Multi-dimensional and multi-variable heterogeneous models representing the same statistical properties were constructed and applied to the heterogeneity analysis of gas hydrate reservoirs. The petrophysical models provide the platform to estimate rock physics properties as well as to study the impact of seismic scattering, wave mode conversion, and their integration on wave behavior in heterogeneous reservoirs. Using the Biot-Gassmann theory, the statistical parameters obtained from Mallik 5L-38, and the correlation length estimated from acoustic impedance inversion, gas hydrate volume fraction in Mallik area was estimated to be 1.8%, approximately 2x108 m3 natural gas stored in a hydrate bearing interval within 0.25 km2 lateral extension and between 889 m and 1115 m depth

  16. Seismic assessment of Kozloduy WWER-440, model 230 nuclear power plant

    International Nuclear Information System (INIS)

    Monette, P.; Baltus, R.; Yanev, P.; Campbell, R.

    1993-01-01

    A preliminary report is given of the findings of an IAEA sponsored walkdown of the WWER-440, model 230 at Kozloduy, in May 1991. The scope of the IAEA mission was to determine the lower bound seismic capacity of the plant and to make recommendations for improvements to increase the earthquake resistance. The methodology utilized in the assessment is that used for evaluation of the seismic margin in U.S. nuclear power plants subjected to earthquakes beyond their design basis. Included in the assessment is the establishment of a safe shutdown path which would include the capacity to mitigate a small break in the primary system, performance of a walkdown of the safe shutdown path and calculation of the high-confidence-of-low-probability-of-failure (HCLPF) of the safe shutdown path. Excluding system design deficiency relative to U.S. and Western Europe standards, it was found that the plant has many seismic vulnerabilities similar to those that existed in many of the U.S. plants prior to about 1979 when the Systematic Evaluation Program was initiated. (Z.S.) 1 tab., 1 fig

  17. Two-dimensional vertical model seismic test and analysis for HTGR core

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Honma, Toshiaki.

    1983-02-01

    The resistance against earthquakes of high-temperature gas cooled reactor (HTGR) core with block-type fuels is not fully ascertained yet. Seismic studies must be made if such a reactor plant is to be installed in areas with frequent earthquakes. In the paper the test results of seismic behavior of a half-scale two-dimensional vertical slice core model and analysis are presented. The following results were obtained: (1) With soft spring support of the fixed side reflector structure, the relative column displacement is larger than that for hand support but the impact reaction force is smaller. (2) In the case of hard spring support the dowel force is smaller than for soft support. (3) The relative column displacement is larger in the core center than at the periphery. The impact acceleration (force) in the center is smaller than at the periphery. (4) The relative column displacement and impact reaction force are smaller with the gas pressure simulation spring than without. (5) With decreasing gap width between the top blocks of columns, the relative column displacement and impact reaction force decrease. (6) The column damping ratio was estimated as 4 -- 10% of critical. (7) The maximum impact reaction force for random waves such as seismic was below 60% that for a sinusoidal wave. (8) Vibration behavior and impact response are in good agreement between test and analysis. (author)

  18. Relocating San Miguel Volcanic Seismic Events for Receiver Functions and Tomographic Models

    Science.gov (United States)

    Patlan, E.; Velasco, A. A.; Konter, J.

    2009-12-01

    The San Miguel volcano lies near the city of San Miguel, El Salvador (13.43N and -88.26W). San Miguel volcano, an active stratovolcano, presents a significant natural hazard for the city of San Miguel. Furthermore, the internal state and activity of volcanoes remains an important component to understanding volcanic hazard. The main technology for addressing volcanic hazards and processes is through the analysis of data collected from the deployment of seismic sensors that record ground motion. Six UTEP seismic stations were deployed around San Miguel volcano from 2007-2008 to define the magma chamber and assess the seismic and volcanic hazard. We utilize these data to develop images of the earth structure beneath the volcano, studying the volcanic processes by identifying different sources, and investigating the role of earthquakes and faults in controlling the volcanic processes. We will calculate receiver functions to determine the thickness of San Miguel volcano internal structure, within the Caribbean plate. Crustal thicknesses will be modeled using calculated receiver functions from both theoretical and hand-picked P-wave arrivals. We will use this information derived from receiver functions, along with P-wave delay times, to map the location of the magma chamber.

  19. Rupture of Model 48Y UF6 cylinder and release of uranium hexafluoride, Sequoyah Fuels Facility, Gore, Oklahoma, January 4, 1986. Volume 1

    International Nuclear Information System (INIS)

    1986-02-01

    At 11:30 a.m. on January 4, 1986, a Model 48Y UF 6 cylinder filled with uranium hexafluoride (UF 6 ) ruptured while it was being heated in a steam chest at the Sequoyah Fuels Conversion Facility near Gore, Oklahoma. One worker died because he inhaled hydrogen fluoride fumes, a reaction product of UF 6 and airborne moisture. Several other workers were injured by the fumes, but none seriously. Much of the facility complex and some offsite areas to the south were contaminated with hydrogen fluoride and a second reaction product, uranyl fluoride. The interval of release was approximately 40 minutes. The cylinder, which had been overfilled, ruptured while it was being heated because of the expansion of UF 6 as it changed from the solid to the liquid phase. The maximum safe capacity for the cylinder is 27,560 pounds of product. Evidence indicates that it was filled with an amount exceeding this limit. 18 figs

  20. Effect of fault roughness on aftershock distribution and post co-seismic strain accumulation.

    Science.gov (United States)

    Aslam, K.; Daub, E. G.

    2017-12-01

    We perform physics-based simulations of earthquake rupture propagation on geometrically complex strike-slip faults. We consider many different realization of the fault roughness and obtain heterogeneous stress fields by performing dynamic rupture simulation of large earthquakes. We calculate the Coulomb failure function (CFF) for all these realizations so that we can quantify zones of stress increase/shadows surrounding the main fault and compare our results to seismic catalogs. To do this comparison, we use relocated earthquake catalogs from Northern and Southern California. We specify the range of fault roughness parameters based on past observational studies. The Hurst exponent (H) varies in range from 0.5 to 1 and RMS height to wavelength ratio ( RMS deviation of a fault profile from planarity) has values between 10-2 to 10-3. For any realization of fault roughness, the Probability density function (PDF) values relative to the mean CFF change show a wider spread near the fault and this spread squeezes into a narrow band as we move away from fault. For lower value of RMS ratio ( 10-3), we see bigger zones of stress change near the hypocenter and for higher value of RMS ratio ( 10-2), we see alternate zones of stress increase/decrease surrounding the fault to have comparable lengths. We also couple short-term dynamic rupture simulation with long-term tectonic modelling. We do this by giving the stress output from one of the dynamic rupture simulation (of a single realization of fault roughness) to long term tectonic model (LTM) as initial condition and then run LTM over duration of seismic cycle. This short term and long term coupling enables us to understand how heterogeneous stresses due to fault geometry influence the dynamics of strain accumulation in the post-seismic and inter-seismic phase of seismic cycle.

  1. Complex rupture process of the Mw 7.8, 2016, Kaikoura earthquake, New Zealand, and its aftershock sequence

    Science.gov (United States)

    Cesca, S.; Zhang, Y.; Mouslopoulou, V.; Wang, R.; Saul, J.; Savage, M.; Heimann, S.; Kufner, S.-K.; Oncken, O.; Dahm, T.

    2017-11-01

    The M7.8 Kaikoura Earthquake that struck the northeastern South Island, New Zealand, on November 14, 2016 (local time), is one of the largest ever instrumentally recorded earthquakes in New Zealand. It occurred at the southern termination of the Hikurangi subduction margin, where the subducting Pacific Plate transitions into the dextral Alpine transform fault. The earthquake produced significant distributed uplift along the north-eastern part of the South Island, reaching a peak amplitude of ∼8 m, which was accompanied by large (≥10 m) horizontal coseismic displacements at the ground surface along discrete active faults. The seismic waveforms' expression of the main shock indicate a complex rupture process. Early automated centroid moment tensor solutions indicated a strong non-double-couple term, which supports a complex rupture involving multiple faults. The hypocentral distribution of aftershocks, which appears diffuse over a broad region, clusters spatially along lineaments with different orientations. A key question of global interest is to shed light on the mechanism with which such a complex rupture occurred, and whether the underlying plate-interface was involved in the rupture. The consequences for seismic hazard of such a distributed, shallow faulting is important to be assessed. We perform a broad seismological analysis, combining regional and teleseismic seismograms, GPS and InSAR, to determine the rupture process of the main shock and moment tensors of 118 aftershocks down to Mw 4.2. The joint interpretation of the main rupture and aftershock sequence allow reconstruction of the geometry, and suggests sequential activation and slip distribution on at least three major active fault domains. We find that the rupture nucleated as a weak strike-slip event along the Humps Fault, which progressively propagated northward onto a shallow reverse fault, where most of the seismic moment was released, before it triggered slip on a second set of strike

  2. Centrifuge model test of rock slope failure caused by seismic excitation. Plane failure of dip slope

    International Nuclear Information System (INIS)

    Ishimaru, Makoto; Kawai, Tadashi

    2008-01-01

    Recently, it is necessary to assess quantitatively seismic safety of critical facilities against the earthquake induced rock slope failure from the viewpoint of seismic PSA. Under these circumstances, it is essential to evaluate more accurately the possibilities of rock slope failure and the potential failure boundary, which are triggered by earthquake ground motions. The purpose of this study is to analyze dynamic failure characteristics of rock slopes by centrifuge model tests for verification and improvement of the analytical methods. We conducted a centrifuge model test using a dip slope model with discontinuities limitated by Teflon sheets. The centrifugal acceleration was 50G, and the acceleration amplitude of input sin waves increased gradually at every step. The test results were compared with safety factors of the stability analysis based on the limit equilibrium concept. Resultant conclusions are mainly as follows: (1) The slope model collapsed when it was excited by the sine wave of 400gal, which was converted to real field scale, (2) Artificial discontinuities were considerably concerned in the collapse, and the type of collapse was plane failure, (3) From response acceleration records observed at the slope model, we can say that tension cracks were generated near the top of the slope model during excitation, and that might be cause of the collapse, (4) By considering generation of the tension cracks in the stability analysis, correspondence of the analytical results and the experimental results improved. From the obtained results, we need to consider progressive failure in evaluating earthquake induced rock slope failure. (author)

  3. An Ensemble Model for Co-Seismic Landslide Susceptibility Using GIS and Random Forest Method

    Directory of Open Access Journals (Sweden)

    Suchita Shrestha

    2017-11-01

    Full Text Available The Mw 7.8 Gorkha earthquake of 25 April 2015 triggered thousands of landslides in the central part of the Nepal Himalayas. The main goal of this study was to generate an ensemble-based map of co-seismic landslide susceptibility in Sindhupalchowk District using model comparison and combination strands. A total of 2194 co-seismic landslides were identified and were randomly split into 1536 (~70%, to train data for establishing the model, and the remaining 658 (~30% for the validation of the model. Frequency ratio, evidential belief function, and weight of evidence methods were applied and compared using 11 different causative factors (peak ground acceleration, epicenter proximity, fault proximity, geology, elevation, slope, plan curvature, internal relief, drainage proximity, stream power index, and topographic wetness index to prepare the landslide susceptibility map. An ensemble of random forest was then used to overcome the various prediction limitations of the individual models. The success rates and prediction capabilities were critically compared using the area under the curve (AUC of the receiver operating characteristic curve (ROC. By synthesizing the results of the various models into a single score, the ensemble model improved accuracy and provided considerably more realistic prediction capacities (91% than the frequency ratio (81.2%, evidential belief function (83.5% methods, and weight of evidence (80.1%.

  4. Surface rupturing earthquakes repeated in the 300 years along the ISTL active fault system, central Japan

    Science.gov (United States)

    Katsube, Aya; Kondo, Hisao; Kurosawa, Hideki

    2017-06-01

    Surface rupturing earthquakes produced by intraplate active faults generally have long recurrence intervals of a few thousands to tens of thousands of years. We here report the first evidence for an extremely short recurrence interval of 300 years for surface rupturing earthquakes on an intraplate system in Japan. The Kamishiro fault of the Itoigawa-Shizuoka Tectonic Line (ISTL) active fault system generated a Mw 6.2 earthquake in 2014. A paleoseismic trench excavation across the 2014 surface rupture showed the evidence for the 2014 event and two prior paleoearthquakes. The slip of the penultimate earthquake was similar to that of 2014 earthquake, and its timing was constrained to be after A.D. 1645. Judging from the timing, the damaged area, and the amount of slip, the penultimate earthquake most probably corresponds to a historical earthquake in A.D. 1714. The recurrence interval of the two most recent earthquakes is thus extremely short compared with intervals on other active faults known globally. Furthermore, the slip repetition during the last three earthquakes is in accordance with the time-predictable recurrence model rather than the characteristic earthquake model. In addition, the spatial extent of the 2014 surface rupture accords with the distribution of a serpentinite block, suggesting that the relatively low coefficient of friction may account for the unusually frequent earthquakes. These findings would affect long-term forecast of earthquake probability and seismic hazard assessment on active faults.

  5. A case for historic joint rupture of the San Andreas and San Jacinto faults

    Science.gov (United States)

    Lozos, Julian C.

    2016-01-01

    The San Andreas fault is considered to be the primary plate boundary fault in southern California and the most likely fault to produce a major earthquake. I use dynamic rupture modeling to show that the San Jacinto fault is capable of rupturing along with the San Andreas in a single earthquake, and interpret these results along with existing paleoseismic data and historic damage reports to suggest that this has likely occurred in the historic past. In particular, I find that paleoseismic data and historic observations for the ~M7.5 earthquake of 8 December 1812 are best explained by a rupture that begins on the San Jacinto fault and propagates onto the San Andreas fault. This precedent carries the implications that similar joint ruptures are possible in the future and that the San Jacinto fault plays a more significant role in seismic hazard in southern California than previously considered. My work also shows how physics-based modeling can be used for interpreting paleoseismic data sets and understanding prehistoric fault behavior. PMID:27034977

  6. A case for historic joint rupture of the San Andreas and San Jacinto faults.

    Science.gov (United States)

    Lozos, Julian C

    2016-03-01

    The San Andreas fault is considered to be the primary plate boundary fault in southern California and the most likely fault to produce a major earthquake. I use dynamic rupture modeling to show that the San Jacinto fault is capable of rupturing along with the San Andreas in a single earthquake, and interpret these results along with existing paleoseismic data and historic damage reports to suggest that this has likely occurred in the historic past. In particular, I find that paleoseismic data and historic observations for the ~M7.5 earthquake of 8 December 1812 are best explained by a rupture that begins on the San Jacinto fault and propagates onto the San Andreas fault. This precedent carries the implications that similar joint ruptures are possible in the future and that the San Jacinto fault plays a more significant role in seismic hazard in southern California than previously considered. My work also shows how physics-based modeling can be used for interpreting paleoseismic data sets and understanding prehistoric fault behavior.

  7. Simulating Earthquake Rupture and Off-Fault Fracture Response: Application to the Safety Assessment of the Swedish Nuclear Waste Repository

    KAUST Repository

    Falth, B.

    2014-12-09

    To assess the long-term safety of a deep repository of spent nuclear fuel, upper bound estimates of seismically induced secondary fracture shear displacements are needed. For this purpose, we analyze a model including an earthquake fault, which is surrounded by a number of smaller discontinuities representing fractures on which secondary displacements may be induced. Initial stresses are applied and a rupture is initiated at a predefined hypocenter and propagated at a specified rupture speed. During rupture we monitor shear displacements taking place on the nearby fracture planes in response to static as well as dynamic effects. As a numerical tool, we use the 3Dimensional Distinct Element Code (3DEC) because it has the capability to handle numerous discontinuities with different orientations and at different locations simultaneously. In tests performed to benchmark the capability of our method to generate and propagate seismic waves, 3DEC generates results in good agreement with results from both Stokes solution and the Compsyn code package. In a preliminary application of our method to the nuclear waste repository site at Forsmark, southern Sweden, we assume end-glacial stress conditions and rupture on a shallow, gently dipping, highly prestressed fault with low residual strength. The rupture generates nearly complete stress drop and an M-w 5.6 event on the 12 km(2) rupture area. Of the 1584 secondary fractures (150 m radius), with a wide range of orientations and locations relative to the fault, a majority move less than 5 mm. The maximum shear displacement is some tens of millimeters at 200 m fault-fracture distance.

  8. GRACE gravity data help constraining seismic models of the 2004 Sumatran earthquake

    Science.gov (United States)

    Cambiotti, G.; Bordoni, A.; Sabadini, R.; Colli, L.

    2011-10-01

    The analysis of Gravity Recovery and Climate Experiment (GRACE) Level 2 data time series from the Center for Space Research (CSR) and GeoForschungsZentrum (GFZ) allows us to extract a new estimate of the co-seismic gravity signal due to the 2004 Sumatran earthquake. Owing to compressible self-gravitating Earth models, including sea level feedback in a new self-consistent way and designed to compute gravitational perturbations due to volume changes separately, we are able to prove that the asymmetry in the co-seismic gravity pattern, in which the north-eastern negative anomaly is twice as large as the south-western positive anomaly, is not due to the previously overestimated dilatation in the crust. The overestimate was due to a large dilatation localized at the fault discontinuity, the gravitational effect of which is compensated by an opposite contribution from topography due to the uplifted crust. After this localized dilatation is removed, we instead predict compression in the footwall and dilatation in the hanging wall. The overall anomaly is then mainly due to the additional gravitational effects of the ocean after water is displaced away from the uplifted crust, as first indicated by de Linage et al. (2009). We also detail the differences between compressible and incompressible material properties. By focusing on the most robust estimates from GRACE data, consisting of the peak-to-peak gravity anomaly and an asymmetry coefficient, that is given by the ratio of the negative gravity anomaly over the positive anomaly, we show that they are quite sensitive to seismic source depths and dip angles. This allows us to exploit space gravity data for the first time to help constraining centroid-momentum-tensor (CMT) source analyses of the 2004 Sumatran earthquake and to conclude that the seismic moment has been released mainly in the lower crust rather than the lithospheric mantle. Thus, GRACE data and CMT source analyses, as well as geodetic slip distributions aided

  9. Simulation of seismic waves in the brittle-ductile transition (BDT) using a Burgers model

    Science.gov (United States)

    Poletto, Flavio; Farina, Biancamaria; Carcione, José Maria

    2014-05-01

    The seismic characterization of the brittle-ductile transition (BDT) in the Earth's crust is of great importance for the study of high-enthalpy geothermal fields in the proximity of magmatic zones. It is well known that the BDT can be viewed as the transition between zones with viscoelastic and plastic behavior, i.e., the transition between the upper, cooler, brittle crustal zone, and the deeper ductile zone. Depending on stress and temperature conditions, the BDT behavior is basically determined by the viscosity of the crustal rocks, which acts as a key factor. In situ shear stress and temperature are related to shear viscosity and steady-state creep flow through the Arrhenius equation, and deviatory stress by octahedral stress criterion. We present a numerical approach to simulate the propagation of P-S and SH seismic waves in a 2D model of the heterogeneous Earth's crust. The full-waveform simulation code is based on a Burgers mechanical model (Carcione, 2007), which enables us to describe both the seismic attenuation effects and the steady-state creep flow (Carcione and Poletto, 2013; Carcione et al. 2013). The differential equations of motion are calculated for the Burgers model, and recast in the velocity-stress formulation. Equations are solved in the time domain using memory variables. The approach uses a direct method based on the Runge-Kutta technique, and the Fourier pseudo-spectral methods, for time integration and for spatial derivation, respectively. In this simulation we assume isotropic models. To test the code, the signals generated by the full-waveform simulation algorithm are compared with success to analytic solutions obtained with different shear viscosities. Moreover, synthetic results are calculated to simulate surface and VSP seismograms in a realistic rheological model with a dramatic temperature change, to study the observability of BDT by seismic reflection methods. The medium corresponds to a selected rheology of the Iceland scenario

  10. Theoretical models for crustal displacement assessment and monitoring in Vrancea-Focsani seismic zone by integrated remote sensing and local geophysical data for seismic prognosis

    International Nuclear Information System (INIS)

    Zoran, Maria; Ciobanu, Mircea; Mitrea, Marius Gabriel; Talianu, Camelia; Cotarlan, Costel; Mateciuc, Doru; Radulescu, Florin; Biter Mircea

    2002-01-01

    The majority of strong Romanian earthquakes has the origin in Vrancea region. Subduction of the Black Sea Sub-Plate under the Pannonian Plate produces faulting processes. Crustal displacement identification and monitoring is very important for a seismically active area like Vrancea-Focsani. Earthquake displacements are very well revealed by satellite remote sensing data. At the same time, geomorphologic analysis of topographic maps is carried out and particularly longitudinal and transverse profiles are constructed, as well as structural-geomorphologic maps. Faults are interpreted by specific features in nature of relief, straightness of line of river beds and their tributaries, exits of springs, etc. Remote sensing analysis and field studies of active faults can provide a geologic history that overcomes many of the shortcomings of instrumental and historic records. Our theoretical models developed in the frame of this project are presented as follows: a) Spectral Mixture Analysis model of geomorphological and topographic characteristics for Vrancea region proposed for satellite images analysis which assumes that the different classes present in a pixel (image unit) contribute independently to its reflectance. Therefore, the reflectance of a pixel at a particular frequency is the sum of the reflectances of the components at that frequency. The same test region in Vrancea area is imaged at several different frequencies (spectral bands), leading to multispectral observations for each pixel. It is useful to merge different satellite data into a hybrid image with high spatial and spectral resolution to create detailed images map of the abundance of various materials within the scene based on material spectral fingerprint. Image fusion produces a high-resolution multispectral image that is then unmixed into high-resolution material maps. b) Model of seismic cross section analysis which is applied in seismic active zones morphology. Since a seismic section can be

  11. A California statewide three-dimensional seismic velocity model from both absolute and differential times

    Science.gov (United States)

    Lin, G.; Thurber, C.H.; Zhang, H.; Hauksson, E.; Shearer, P.M.; Waldhauser, F.; Brocher, T.M.; Hardebeck, J.

    2010-01-01

    We obtain a seismic velocity model of the California crust and uppermost mantle using a regional-scale double-difference tomography algorithm. We begin by using absolute arrival-time picks to solve for a coarse three-dimensional (3D) P velocity (VP) model with a uniform 30 km horizontal node spacing, which we then use as the starting model for a finer-scale inversion using double-difference tomography applied to absolute and differential pick times. For computational reasons, we split the state into 5 subregions with a grid spacing of 10 to 20 km and assemble our final statewide VP model by stitching together these local models. We also solve for a statewide S-wave model using S picks from both the Southern California Seismic Network and USArray, assuming a starting model based on the VP results and a VP=VS ratio of 1.732. Our new model has improved areal coverage compared with previous models, extending 570 km in the SW-NE directionand 1320 km in the NW-SE direction. It also extends to greater depth due to the inclusion of substantial data at large epicentral distances. Our VP model generally agrees with previous separate regional models for northern and southern California, but we also observe some new features, such as high-velocity anomalies at shallow depths in the Klamath Mountains and Mount Shasta area, somewhat slow velocities in the northern Coast Ranges, and slow anomalies beneath the Sierra Nevada at midcrustal and greater depths. This model can be applied to a variety of regional-scale studies in California, such as developing a unified statewide earthquake location catalog and performing regional waveform modeling.

  12. Global seasonal strain and stress models derived from GRACE loading, and their impact on seismicity

    Science.gov (United States)

    Chanard, K.; Fleitout, L.; Calais, E.; Craig, T. J.; Rebischung, P.; Avouac, J. P.

    2017-12-01

    Loading by continental water, atmosphere and oceans deforms the Earth at various spatio-temporal scales, inducing crustal and mantelic stress perturbations that may play a role in earthquake triggering.Deformation of the Earth by this surface loading is observed in GNSS position time series. While various models predict well vertical observations, explaining horizontal displacements remains challenging. We model the elastic deformation induced by loading derived from GRACE for coefficients 2 and higher. We estimate the degree-1 deformation field by comparison between predictions of our model and IGS-repro2 solutions at a globally distributed network of 700 GNSS sites, separating the horizontal and vertical components to avoid biases between components. The misfit between model and data is reduced compared to previous studies, particularly on the horizontal component. The associated geocenter motion time series are consistent with results derived from other datasets. We also discuss the impact on our results of systematic errors in GNSS geodetic products, in particular of the draconitic error.We then compute stress tensors time series induced by GRACE loads and discuss the potential link between large scale seasonal mass redistributions and seismicity. Within the crust, we estimate hydrologically induced stresses in the intraplate New Madrid Seismic Zone, where secular stressing rates are unmeasurably low. We show that a significant variation in the rate of micro-earthquakes at annual and multi-annual timescales coincides with stresses induced by hydrological loading in the upper Mississippi embayment, with no significant phase-lag, directly modulating regional seismicity. We also investigate pressure variations in the mantle transition zone and discuss potential correlations between the statistically significant observed seasonality of deep-focus earthquakes, most likely due to mineralogical transformations, and surface hydrological loading.

  13. Attenuation of seismic waves and the universal rheological model of the Earth's mantle

    Science.gov (United States)

    Birger, B. I.

    2007-08-01

    Analysis of results of laboratory studies on creep of mantle rocks, data on seismic wave attenuation in the mantle, and rheological micromechanisms shows that the universal, i.e., relevant to all time scales, rheological model of the mantle can be represented as four rheological elements connected in series. These elements account for elasticity, diffusion rheology, high temperature dislocation rheology, and low temperature dislocation rheology. The diffusion rheology element is described in terms of a Newtonian viscous fluid. The high temperature dislocation rheology element is described by the rheological model previously proposed by the author. This model is a combination of a power-law non-Newtonian fluid model for stationary flows and the linear hereditary Andrade model for flows associated with small strains. The low temperature dislocation rheology element is described by the linear hereditary Lomnitz model.

  14. Modelling of internal structure in seismic analysis of a PHWR building

    International Nuclear Information System (INIS)

    Reddy, G.R.; Vaze, K.K.; Kushawaha, H.S.; Ingle, R.K.; Subramanian, K.V.

    1991-01-01

    Seismic analysis of complex and large structures, consisting of thick shear walls, such as Reactor Building is very involved and time consuming. It is a standard practice to model the structure as a stick model to predict reasonably the dynamic behaviour of the structure. It is required to determine approximate equivalent sectional properties of Internal Structure for representation in the stick model. The restraint to warping can change the stress distribution thus affecting the centre of rigidity and torsional inertia, Hence, standard formulae does not hold good for determination of sectional properties of the Internal Structure. In this case the equivalent sectional properties for the Internal Structure are calculated using a Finite Element Model (FEM) of the Internal Structure and applying unit horizontal forces in each direction. A 3-D stick model is developed using the guidelines. Using the properties calculated by FEM and also by standard formulae, the responses of the 3-D stick model are compared. (J.P.N.)

  15. Micromechanics and statistics of slipping events in a granular seismic fault model

    Energy Technology Data Exchange (ETDEWEB)

    Arcangelis, L de [Department of Information Engineering and CNISM, Second University of Naples, Aversa (Italy); Ciamarra, M Pica [CNR-SPIN, Dipartimento di Scienze Fisiche, Universita di Napoli Federico II (Italy); Lippiello, E; Godano, C, E-mail: dearcangelis@na.infn.it [Department of Environmental Sciences and CNISM, Second University of Naples, Caserta (Italy)

    2011-09-15

    The stick-slip is investigated in a seismic fault model made of a confined granular system under shear stress via three dimensional Molecular Dynamics simulations. We study the statistics of slipping events and, in particular, the dependence of the distribution on model parameters. The distribution consistently exhibits two regimes: an initial power law and a bump at large slips. The initial power law decay is in agreement with the the Gutenberg-Richter law characterizing real seismic occurrence. The exponent of the initial regime is quite independent of model parameters and its value is in agreement with experimental results. Conversely, the position of the bump is solely controlled by the ratio of the drive elastic constant and the system size. Large slips also become less probable in absence of fault gouge and tend to disappear for stiff drives. A two-time force-force correlation function, and a susceptibility related to the system response to pressure changes, characterize the micromechanics of slipping events. The correlation function unveils the micromechanical changes occurring both during microslips and slips. The mechanical susceptibility encodes the magnitude of the incoming microslip. Numerical results for the cellular-automaton version of the spring block model confirm the parameter dependence observed for size distribution in the granular model.

  16. Row of fuel assemblies analysis under seismic loading: Modelling and experimental validation

    International Nuclear Information System (INIS)

    Ricciardi, Guillaume; Bellizzi, Sergio; Collard, Bruno; Cochelin, Bruno

    2009-01-01

    The aim of this study was to develop a numerical model for predicting the impact behaviour at fuel assembly level of a whole reactor core under seismic loading conditions. This model was based on a porous medium approach accounting for the dynamics of both the fluid and structure, which interact. The fluid is studied in the whole reactor core domain and each fuel assembly is modelled in the form of a deformable porous medium with a nonlinear constitutive law. The contact between fuel assemblies is modelled in the form of elastic stops, so that the impact forces can be assessed. Simulations were performed to predict the dynamics of a six fuel assemblies row immersed in stagnant water and the whole apparatus was placed on a shaking table mimicking seismic loading conditions. The maximum values of the impact forces predicted by the model were in good agreement with the experimental data. A Proper Orthogonal Decomposition analysis was performed on the numerical data to analyse the mechanical behaviour of the fluid and structure more closely.

  17. Surface rupture and vertical deformation associated with 20 May 2016 M6 Petermann Ranges earthquake, Northern Territory, Australia

    Science.gov (United States)

    Gold, Ryan; Clark, Dan; King, Tamarah; Quigley, Mark

    2017-04-01

    Surface-rupturing earthquakes in stable continental regions (SCRs) occur infrequently, though when they occur in heavily populated regions the damage and loss of life can be severe (e.g., 2001 Bhuj earthquake). Quantifying the surface-rupture characteristics of these low-probability events is therefore important, both to improve understanding of the on- and off-fault deformation field near the rupture trace and to provide additional constraints on earthquake magnitude to rupture length and displacement, which are critical inputs for seismic hazard calculations. This investigation focuses on the 24 August 2016 M6.0 Petermann Ranges earthquake, Northern Territory, Australia. We use 0.3-0.5 m high-resolution optical Worldview satellite imagery to map the trace of the surface rupture associated with the earthquake. From our mapping, we are able to trace the rupture over a length of 20 km, trending NW, and exhibiting apparent north-side-up motion. To quantify the magnitude of vertical surface deformation, we use stereo Worldview images processed using NASA Ames Stereo Pipeline software to generate pre- and post-earthquake digital terrain models with a spatial resolution of 1.5 to 2 m. The surface scarp is apparent in much of the post-event digital terrain model. Initial efforts to difference the pre- and post-event digital terrain models yield noisy results, though we detect vertical deformation of 0.2 to 0.6 m over length scales of 100 m to 1 km from the mapped trace of the rupture. Ongoing efforts to remove ramps and perform spatial smoothing will improve our understanding of the extent and pattern of vertical deformation. Additionally, we will compare our results with InSAR and field measurements obtained following the earthquake.

  18. Fault-related-folding structures and reflection seismic sections. Study by seismic modeling and balanced cross section; Danso ga kaizaisuru shukyoku kozo no keitai to jishin tansa danmen. 2. Seismic modeling oyobi balanced cross section ni yoru study

    Energy Technology Data Exchange (ETDEWEB)

    Tamagawa, T; Matsuoka, T [Japan Petroleum Exploration Corp., Tokyo (Japan); Tsukui, R [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1997-05-27

    It occasionally happens that there exists a part where reflection near the thrust is not clearly observed in a thrust zone seismic survey cross section. For the effective interpretation of such an occurrence, the use of geological structures as well as the reflected pattern is effective. When the velocity structures for a fold structure having a listric fault caused anticline (unidirectionally inclined with a backlimb, without a forelimb) and for a fault propagation fold are involved, a wrong interpretation may be made since they look alike in reflection wave pattern despite their difference in geological structure. In the concept of balanced cross section, a check is performed, when the stratum after deformation is recovered to the time of deposition, as to whether the geologic stratum area is conserved without excess or shortage. An excess or shortage occurs if there is an error in the model, and this shows that the fault surface or fold structure is not correctly reflected. Positive application of geological knowledge is required in the processing and interpreting of data from a seismic survey. 6 refs., 6 figs.

  19. A Bayesian Stepwise Discriminant Model for Predicting Risk Factors of Preterm Premature Rupture of Membranes: A Case-control Study.

    Science.gov (United States)

    Zhang, Li-Xia; Sun, Yang; Zhao, Hai; Zhu, Na; Sun, Xing-De; Jin, Xing; Zou, Ai-Min; Mi, Yang; Xu, Ji-Ru

    2017-10-20

    Preterm premature rupture of membrane (PPROM) can lead to serious consequences such as intrauterine infection, prolapse of the umbilical cord, and neonatal respiratory distress syndrome. Genital infection is a very important risk which closely related with PPROM. The preliminary study only made qualitative research on genital infection, but there was no deep and clear judgment about the effects of pathogenic bacteria. This study was to analyze the association of infections with PPROM in pregnant women in Shaanxi, China, and to establish Bayesian stepwise discriminant analysis to predict the incidence of PPROM. In training group, the 112 pregnant women with PPROM were enrolled in the case subgroup, and 108 normal pregnant women in the control subgroup using an unmatched case-control method. The sociodemographic characteristics of these participants were collected by face-to-face interviews. Vaginal excretions from each participant were sampled at 28-36+6 weeks of pregnancy using a sterile swab. DNA corresponding to Chlamydia trachomatis (CT), Ureaplasma urealyticum (UU), Candida albicans, group B streptococci (GBS), herpes simplex virus-1 (HSV-1), and HSV-2 were detected in each participant by real-time polymerase chain reaction. A model of Bayesian discriminant analysis was established and then verified by a multicenter validation group that included 500 participants in the case subgroup and 500 participants in the control subgroup from five different hospitals in the Shaanxi province, respectively. The sociological characteristics were not significantly different between the case and control subgroups in both training and validation groups (all P > 0.05). In training group, the infection rates of UU (11.6% vs. 3.7%), CT (17.0% vs. 5.6%), and GBS (22.3% vs. 6.5%) showed statistically different between the case and control subgroups (all P case and control subgroups (P case and control subgroup were 84.1% and 86.8% in the training and validation groups, respectively

  20. Hepatic rupture in preeclampsia

    International Nuclear Information System (INIS)

    Winer-Muram, H.T.; Muram, D.; Salazar, J.; Massie, J.D.

    1985-01-01

    The diagnosis of hepatic rupture in patients with pregnancy-induced hypertension (preeclampsia and eclampsia) is rarely made preoperatively. Diagnostic imaging can be utilized in some patients to confirm the preoperative diagnosis. Since hematoma formation precedes hepatic rupture, then, when diagnostic modalities such as sonography and computed tomography identify patients with hematomas, these patients are at risk of rupture, and should be hospitalized until the hematomas resolve

  1. Present mantle flow in North China Craton constrained by seismic anisotropy and numerical modelling

    Science.gov (United States)

    Qu, W.; Guo, Z.; Zhang, H.; Chen, Y. J.

    2017-12-01

    North China Carton (NCC) has undergone complicated geodynamic processes during the Cenozoic, including the westward subduction of the Pacific plate to its east and the collision of the India-Eurasia plates to its southwest. Shear wave splitting measurements in NCC reveal distinct seismic anisotropy patterns at different tectonic blocks, that is, the predominantly NW-SE trending alignment of fast directions in the western NCC and eastern NCC, weak anisotropy within the Ordos block, and N-S fast polarization beneath the Trans-North China Orogen (TNCO). To better understand the origin of seismic anisotropy from SKS splitting in NCC, we obtain a high-resolution dynamic model that absorbs multi-geophysical observations and state-of-the-art numerical methods. We calculate the mantle flow using a most updated version of software ASPECT (Kronbichler et al., 2012) with high-resolution temperature and density structures from a recent 3-D thermal-chemical model by Guo et al. (2016). The thermal-chemical model is obtained by multi-observable probabilistic inversion using high-quality surface wave measurements, potential fields, topography, and surface heat flow (Guo et al., 2016). The viscosity is then estimated by combining the dislocation creep, diffusion creep, and plasticity, which is depended on temperature, pressure, and chemical composition. Then we calculate the seismic anisotropy from the shear deformation of mantle flow by DREX, and predict the fast direction and delay time of SKS splitting. We find that when complex boundary conditions are applied, including the far field effects of the deep subduction of Pacific plate and eastward escaping of Tibetan Plateau, our model can successfully predict the observed shear wave splitting patterns. Our model indicates that seismic anisotropy revealed by SKS is primarily resulting from the LPO of olivine due to the shear deformation from asthenospheric flow. We suggest that two branches of mantle flow may contribute to the

  2. Biomechanical rupture risk assessment of abdominal aortic aneurysms based on a novel probabilistic rupture risk index.

    Science.gov (United States)

    Polzer, Stanislav; Gasser, T Christian

    2015-12-06

    A rupture risk assessment is critical to the clinical treatment of abdominal aortic aneurysm (AAA) patients. The biomechanical AAA rupture risk assessment quantitatively integrates many known AAA rupture risk factors but the variability of risk predictions due to model input uncertainties remains a challenging limitation. This study derives a probabilistic rupture risk index (PRRI). Specifically, the uncertainties in AAA wall thickness and wall strength were considered, and wall stress was predicted with a state-of-the-art deterministic biomechanical model. The discriminative power of PRRI was tested in a diameter-matched cohort of ruptured (n = 7) and intact (n = 7) AAAs and compared to alternative risk assessment methods. Computed PRRI at 1.5 mean arterial pressure was significantly (p = 0.041) higher in ruptured AAAs (20.21(s.d. 14.15%)) than in intact AAAs (3.71(s.d. 5.77)%). PRRI showed a high sensitivity and specificity (discriminative power of 0.837) to discriminate between ruptured and intact AAA cases. The underlying statistical representation of stochastic data of wall thickness, wall strength and peak wall stress had only negligible effects on PRRI computations. Uncertainties in AAA wall stress predictions, the wide range of reported wall strength and the stochastic nature of failure motivate a probabilistic rupture risk assessment. Advanced AAA biomechanical modelling paired with a probabilistic rupture index definition as known from engineering risk assessment seems to be superior to a purely deterministic approach. © 2015 The Author(s).

  3. Coupling Hydrodynamic and Wave Propagation Codes for Modeling of Seismic Waves recorded at the SPE Test.

    Science.gov (United States)

    Larmat, C. S.; Rougier, E.; Delorey, A.; Steedman, D. W.; Bradley, C. R.

    2016-12-01

    The goal of the Source Physics Experiment (SPE) is to bring empirical and theoretical advances to the problem of detection and identification of underground nuclear explosions. For this, the SPE program includes a strong modeling effort based on first principles calculations with the challenge to capture both the source and near-source processes and those taking place later in time as seismic waves propagate within complex 3D geologic environments. In this paper, we report on results of modeling that uses hydrodynamic simulation codes (Abaqus and CASH) coupled with a 3D full waveform propagation code, SPECFEM3D. For modeling the near source region, we employ a fully-coupled Euler-Lagrange (CEL) modeling capability with a new continuum-based visco-plastic fracture model for simulation of damage processes, called AZ_Frac. These capabilities produce high-fidelity models of various factors believed to be key in the generation of seismic waves: the explosion dynamics, a weak grout-filled borehole, the surrounding jointed rock, and damage creation and deformations happening around the source and the free surface. SPECFEM3D, based on the Spectral Element Method (SEM) is a direct numerical method for full wave modeling with mathematical accuracy. The coupling interface consists of a series of grid points of the SEM mesh situated inside of the hydrodynamic code's domain. Displacement time series at these points are computed using output data from CASH or Abaqus (by interpolation if needed) and fed into the time marching scheme of SPECFEM3D. We will present validation tests with the Sharpe's model and comparisons of waveforms modeled with Rg waves (2-8Hz) that were recorded up to 2 km for SPE. We especially show effects of the local topography, velocity structure and spallation. Our models predict smaller amplitudes of Rg waves for the first five SPE shots compared to pure elastic models such as Denny &Johnson (1991).

  4. Progressive Seismic Failure, Seismic Gap, and Great Seismic Risk across the Densely Populated North China Basin

    Science.gov (United States)

    Yin, A.; Yu, X.; Shen, Z.

    2014-12-01

    Although the seismically active North China basin has the most complete written records of pre-instrumentation earthquakes in the world, this information has not been fully utilized for assessing potential earthquake hazards of this densely populated region that hosts ~200 million people. In this study, we use the historical records to document the earthquake migration pattern and the existence of a 180-km seismic gap along the 600-km long right-slip Tangshan-Hejian-Cixian (THC) fault zone that cuts across the North China basin. The newly recognized seismic gap, which is centered at Tianjin with a population of 11 million people and ~120 km from Beijing (22 million people) and Tangshan (7 million people), has not been ruptured in the past 1000 years by M≥6 earthquakes. The seismic migration pattern in the past millennium suggests that the epicenters of major earthquakes have shifted towards this seismic gap along the THC fault, which implies that the 180- km gap could be the site of the next great earthquake with M≈7.6 if it is ruptured by a single event. Alternatively, the seismic gap may be explained by aseismic creeping or seismic strain transfer between active faults.

  5. Crustal Models Assessment in Western Part of Romania Employing Active Seismic and Seismologic Methods

    Science.gov (United States)

    Bala, Andrei; Toma-Danila, Dragos; Tataru, Dragos; Grecu, Bogdan

    2017-12-01

    In the years 1999 - 2000 two regional seismic refraction lines were performed within a close cooperation with German partners from University of Karlsruhe. One of these lines is Vrancea 2001, with 420 km in length, almost half of them recorded in Transylvanian Basin. The structure of the crust along the seismic line revealed a very complicated crustal structure beginning with Eastern Carpathians and continuing in the Transylvanian Basin until Medias. As a result of the development of the National Seismic Network in the last ten years, more than 100 permanent broadband stations are now continuously operating in Romania. Complementary to this national dataset, maintained and developed in the National Institute for Earth Physics, new data emerged from the temporary seismologic networks established during the joint projects with European partners in the last decades. The data gathered so far is valuable both for seismology purposes and crustal structure studies, especially for the western part of the country, where this kind of data were sparse until now. Between 2009 and 2011, a new reference model for the Earth’s crust and mantle of the European Plate was defined through the NERIES project from existing data and models. The database gathered from different kind of measurements in Transylvanian Basin and eastern Pannonian Basin were included in this NERIES model and an improved and upgraded model of the Earth crust emerged for western part of Romania. Although the dataset has its origins in several periods over the last 50 years, the results are homogeneous and they improve and strengthen our image about the depth of the principal boundaries in the crust. In the last chapter two maps regarding these boundaries are constructed, one for mid-crustal boundary and one for Moho. They were build considering all the punctual information available from different sources in active seismic and seismology which are introduced in the general maps from the NERIES project for

  6. Elementary catastrophe theory modelling of Duffing's equation for seismic excitation of nuclear power facilities

    International Nuclear Information System (INIS)

    Alesso, H.P.

    1979-01-01

    Elementary catastrophe theory can provide conceptual insight into some aspects of a variety of problems in dynamics. It is a qualitative tool with some quantitative results. In this paper, it is applied to forced nonlinear vibrations of seismic disturbances, which may be approximated by Duffin's equation. The behavior of such a system fits naturally into ECT modelling, where changes in parameters of the system lead to 'jump' type behavior. The important conclusion is that nonlinear oscillators can exhibit elementary catastrophes, but the design engineer may be able to manipulate characteristics of the system in order to avoid the 'jump' behavior of the response. (Auth.)

  7. Tsunami simulation using submarine displacement calculated from simulation of ground motion due to seismic source model

    Science.gov (United States)

    Akiyama, S.; Kawaji, K.; Fujihara, S.

    2013-12-01

    Since fault fracturing due to an earthquake can simultaneously cause ground motion and tsunami, it is appropriate to evaluate the ground motion and the tsunami by single fault model. However, several source models are used independently in the ground motion simulation or the tsunami simulation, because of difficulty in evaluating both phenomena simultaneously. Many source models for the 2011 off the Pacific coast of Tohoku Earthquake are proposed from the inversion analyses of seismic observations or from those of tsunami observations. Most of these models show the similar features, which large amount of slip is located at the shallower part of fault area near the Japan Trench. This indicates that the ground motion and the tsunami can be evaluated by the single source model. Therefore, we examine the possibility of the tsunami prediction, using the fault model estimated from seismic observation records. In this study, we try to carry out the tsunami simulation using the displacement field of oceanic crustal movements, which is calculated from the ground motion simulation of the 2011 off the Pacific coast of Tohoku Earthquake. We use two fault models by Yoshida et al. (2011), which are based on both the teleseismic body wave and on the strong ground motion records. Although there is the common feature in those fault models, the amount of slip near the Japan trench is lager in the fault model from the strong ground motion records than in that from the teleseismic body wave. First, the large-scale ground motion simulations applying those fault models used by the voxel type finite element method are performed for the whole eastern Japan. The synthetic waveforms computed from the simulations are generally consistent with the observation records of K-NET (Kinoshita (1998)) and KiK-net stations (Aoi et al. (2000)), deployed by the National Research Institute for Earth Science and Disaster Prevention (NIED). Next, the tsunami simulations are performed by the finite

  8. Keeping pace with the science: Seismic hazard analysis in the western United States

    International Nuclear Information System (INIS)

    Youngs, R.R.; Coppersmith, K.J.

    1989-01-01

    Recent years have witnessed rapid advances in the understanding of the earthquake generation process in the western US, with particular emphasis on geologic studies of fault behavior and seismologic studies of the rupture process. The authors discuss how probabilistic seismic hazard analysis (PSHA) methodologies have been refined to keep pace with scientific understanding. Identified active faults are modeled as three-dimensional surfaces with the rupture shape and distribution of nucleation points estimated from physical constraints and seismicity. Active blind thrust ramps at depth and sources associated with subduction zones such as the Cascadia zone off Oregon and Washington can also be modeled. Maximum magnitudes are typically estimated from evaluations of possible rupture dimensions and empirical relations between these dimensions and earthquake magnitude. A rapidly evolving technique for estimating the length of future ruptures on a fault is termed segmentation, and incorporates behavior and geometric fault characteristics. To extend the short historical record, fault slip rate is now commonly used to constrain earthquake recurrence. Paleoseismic studies of fault behavior have led to the characteristic earthquake recurrence model specifying the relative frequency of earthquakes of various sizes. Recent studies have indicated the importance of faulting style and crustal structure on earthquake ground motions. For site-specific applications, empirical estimation techniques are being supplemented with numerical modeling approaches

  9. Modeling continuous seismic velocity changes due to ground shaking in Chile

    Science.gov (United States)

    Gassenmeier, Martina; Richter, Tom; Sens-Schönfelder, Christoph; Korn, Michael; Tilmann, Frederik

    2015-04-01

    In order to investigate temporal seismic velocity changes due to earthquake related processes and environmental forcing, we analyze 8 years of ambient seismic noise recorded by the Integrated Plate Boundary Observatory Chile (IPOC) network in northern Chile between 18° and 25° S. The Mw 7.7 Tocopilla earthquake in 2007 and the Mw 8.1 Iquique earthquake in 2014 as well as numerous smaller events occurred in this area. By autocorrelation of the ambient seismic noise field, approximations of the Green's functions are retrieved. The recovered function represents backscattered or multiply scattered energy from the immediate neighborhood of the station. To detect relative changes of the seismic velocities we apply the stretching method, which compares individual autocorrelation functions to stretched or compressed versions of a long term averaged reference autocorrelation function. We use time windows in the coda of the autocorrelations, that contain scattered waves which are highly sensitive to minute changes in the velocity. At station PATCX we observe seasonal changes in seismic velocity as well as temporary velocity reductions in the frequency range of 4-6 Hz. The seasonal changes can be attributed to thermal stress changes in the subsurface related to variations of the atmospheric temperature. This effect can be modeled well by a sine curve and is subtracted for further analysis of short term variations. Temporary velocity reductions occur at the time of ground shaking usually caused by earthquakes and are followed by a recovery. We present an empirical model that describes the seismic velocity variations based on continuous observations of the local ground acceleration. Our hypothesis is that not only the shaking of earthquakes provokes velocity drops, but any small vibrations continuously induce minor velocity variations that are immediately compensated by healing in the steady state. We show that the shaking effect is accumulated over time and best described by

  10. An experimental scale-model study of seismic response of an underground opening in jointed rock mass

    International Nuclear Information System (INIS)

    Kana, D.D.; Fox, D.J.; Hsiung, S.; Chowdhury, A.H.

    1997-02-01

    This report describes an experimental investigation conducted by the Center for Nuclear Waste Regulatory Analyses (CNWRA) to (i) obtain a better understanding of the seismic response of an underground opening in a highly-fractured and jointed rock mass and (ii) generate a data set that can be used to evaluate the capabilities (analytical methods) to calculate such response. This report describes the design and implementation of simulated seismic experiments and results for a 1/15 scale model of a jointed rock mass with a circular tunnel in the middle. The discussion on the design of the scale model includes a description of the associated similitude theory, physical design rationale, model material development, preliminary analytical evaluation, instrumentation design and calibration, and model assembly and pretest procedures. The thrust of this discussion is intended to provide the information necessary to understand the experimental setup and to provide the background necessary to understand the experimental results. The discussion on the experimental procedures and results includes the seismic input test procedures, test runs, and measured excitation and response time histories. The closure of the tunnel due to various levels of seismic activity is presented. A threshold level of seismic input amplitude was required before significant rock mass motion occurred. The experiment, though designed as a two-dimensional representation of a rock mass, behaved in a somewhat three-dimensional manner, which will have an effect on subsequent analytical model comparison

  11. Fault geometry, rupture dynamics and ground motion from potential earthquakes on the North Anatolian Fault under the Sea of Marmara

    KAUST Repository

    Oglesby, David D.

    2012-03-01

    Using the 3-D finite-element method, we develop dynamic spontaneous rupture models of earthquakes on the North Anatolian Fault system in the Sea of Marmara, Turkey, considering the geometrical complexity of the fault system in this region. We find that the earthquake size, rupture propagation pattern and ground motion all strongly depend on the interplay between the initial (static) regional pre-stress field and the dynamic stress field radiated by the propagating rupture. By testing several nucleation locations, we observe that those far from an oblique normal fault stepover segment (near Istanbul) lead to large through-going rupture on the entire fault system, whereas nucleation locations closer to the stepover segment tend to produce ruptures that die out in the stepover. However, this pattern can change drastically with only a 10° rotation of the regional stress field. Our simulations also reveal that while dynamic unclamping near fault bends can produce a new mode of supershear rupture propagation, this unclamping has a much smaller effect on the speed of the peak in slip velocity along the fault. Finally, we find that the complex fault geometry leads to a very complex and asymmetric pattern of near-fault ground motion, including greatly amplified ground motion on the insides of fault bends. The ground-motion pattern can change significantly with different hypocentres, even beyond the typical effects of directivity. The results of this study may have implications for seismic hazard in this region, for the dynamics and ground motion of geometrically complex faults, and for the interpretation of kinematic inverse rupture models.

  12. Fault geometry, rupture dynamics and ground motion from potential earthquakes on the North Anatolian Fault under the Sea of Marmara

    KAUST Repository

    Oglesby, David D.; Mai, Paul Martin

    2012-01-01

    Using the 3-D finite-element method, we develop dynamic spontaneous rupture models of earthquakes on the North Anatolian Fault system in the Sea of Marmara, Turkey, considering the geometrical complexity of the fault system in this region. We find that the earthquake size, rupture propagation pattern and ground motion all strongly depend on the interplay between the initial (static) regional pre-stress field and the dynamic stress field radiated by the propagating rupture. By testing several nucleation locations, we observe that those far from an oblique normal fault stepover segment (near Istanbul) lead to large through-going rupture on the entire fault system, whereas nucleation locations closer to the stepover segment tend to produce ruptures that die out in the stepover. However, this pattern can change drastically with only a 10° rotation of the regional stress field. Our simulations also reveal that while dynamic unclamping near fault bends can produce a new mode of supershear rupture propagation, this unclamping has a much smaller effect on the speed of the peak in slip velocity along the fault. Finally, we find that the complex fault geometry leads to a very complex and asymmetric pattern of near-fault ground motion, including greatly amplified ground motion on the insides of fault bends. The ground-motion pattern can change significantly with different hypocentres, even beyond the typical effects of directivity. The results of this study may have implications for seismic hazard in this region, for the dynamics and ground motion of geometrically complex faults, and for the interpretation of kinematic inverse rupture models.

  13. Influence of fault steps on rupture termination of strike-slip earthquake faults

    Science.gov (United States)

    Li, Zhengfang; Zhou, Bengang

    2018-03-01

    A statistical analysis was completed on the rupture data of 29 historical strike-slip earthquakes across the world. The purpose of this study is to examine the effects of fault steps on the rupture termination of these events. The results show good correlations between the type and length of steps with the seismic rupture and a poor correlation between the step number and seismic rupture. For different magnitude intervals, the smallest widths of the fault steps (Lt) that can terminate the rupture propagation are variable: Lt = 3 km for Ms 6.5 6.9, Lt = 4 km for Ms 7.0 7.5, Lt = 6 km for Ms 7.5 8.0, and Lt = 8 km for Ms 8.0 8.5. The dilational fault step is easier to rupture through than the compression fault step. The smallest widths of the fault step for the rupture arrest can be used as an indicator to judge the scale of the rupture termination of seismic faults. This is helpful for research on fault segmentation, as well as estimating the magnitude of potential earthquakes, and is thus of significance for the assessment of seismic risks.

  14. The Devil in the Dark: A Fully Self-Consistent Seismic Model for Venus

    Science.gov (United States)

    Unterborn, C. T.; Schmerr, N. C.; Irving, J. C. E.

    2017-12-01

    The bulk composition and structure of Venus is unknown despite accounting for 40% of the mass of all the terrestrial planets in our Solar System. As we expand the scope of planetary science to include those planets around other stars, the lack of measurements of basic planetary properties such as moment of inertia, core-size and thermal profile for Venus hinders our ability to compare the potential uniqueness of the Earth and our Solar System to other planetary systems. Here we present fully self-consistent, whole-planet density and seismic velocity profiles calculated using the ExoPlex and BurnMan software packages for various potential Venusian compositions. Using these models, we explore the seismological implications of the different thermal and compositional initial conditions, taking into account phase transitions due to changes in pressure, temperature as well as composition. Using mass-radius constraints, we examine both the centre frequencies of normal mode oscillations and the waveforms and travel times of body waves. Seismic phases which interact with the core, phase transitions in the mantle, and shallower parts of Venus are considered. We also consider the detectability and transmission of these seismic waves from within the dense atmosphere of Venus. Our work provides coupled compositional-seismological reference models for the terrestrial planet in our Solar System of which we know the least. Furthermore, these results point to the potential wealth of fundamental scientific insights into Venus and Earth, as well as exoplanets, which could be gained by including a seismometer on future planetary exploration missions to Venus, the devil in the dark.

  15. The 2018 and 2020 Updates of the U.S. National Seismic Hazard Models

    Science.gov (United States)

    Petersen, M. D.

    2017-12-01

    During 2018 the USGS will update the 2014 National Seismic Hazard Models by incorporating new seismicity models, ground motion models, site factors, fault inputs, and by improving weights to ground motion models using empirical and other data. We will update the earthquake catalog for the U.S. and introduce new rate models. Additional fault data will be used to improve rate estimates on active faults. New ground motion models (GMMs) and site factors for Vs30 have been released by the Pacific Earthquake Engineering Research Center (PEER) and we will consider these in assessing ground motions in craton and extended margin regions of the central and eastern U.S. The USGS will also include basin-depth terms for selected urban areas of the western United States to improve long-period shaking assessments using published depth estimates to 1.0 and 2.5 km/s shear wave velocities. We will produce hazard maps for input into the building codes that span a broad range of periods (0.1 to 5 s) and site classes (shear wave velocity from 2000 m/s to 200 m/s in the upper 30 m of the crust, Vs30). In the 2020 update we plan on including: a new national crustal model that defines basin depths required in the latest GMMs, new 3-D ground motion simulations for several urban areas, new magnitude-area equations, and new fault geodetic and geologic strain rate models. The USGS will also consider including new 3-D ground motion simulations for inclusion in these long-period maps. These new models are being evaluated and will be discussed at one or more regional and topical workshops held at the beginning of 2018.

  16. Numerical modeling and experimental validation of seismic uplift pressure variations in cracked concrete dams

    Energy Technology Data Exchange (ETDEWEB)

    Javanmardi, F.; Leger, P. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. of Civil, Mining and Geological Engineering; Tinawi, R. [Quebec Univ., Montreal, PQ (Canada)

    2004-07-01

    Concrete dams could sustain cracking and damage during maximum design earthquakes (MDE). Dam safety guidelines are established so that dams maintain a stable condition following MDE oscillatory motions. In this study, a theoretical model was developed to calculate the uplift pressure variations along concrete cracks with moving walls. The proposed model was verified using experimental crack test data. The model was applied in a finite element computer program for dynamic analysis of gravity dams considering hydro-mechanical water-crack coupling. An analysis of a typical 90 metre dam subjected to low and high frequency sinusoidal accelerations demonstrated that water can penetrate into part of a seismically initiated crack. Pressure tends to develop in a region close to the crack mouth, therefore detrimental effects for the global dam stability are unlikely to occur. The study showed that the seismic uplift force during the heel crack opening mode is small compared to the dam weight. This preliminary study suggests that the critical sliding safety factors (SSF) of the dam against downstream sliding could be computed by considering zero uplift pressure in the crack region subjected to tensile opening. 14 refs., 1 tab., 7 figs.

  17. Marked point process for modelling seismic activity (case study in Sumatra and Java)

    Science.gov (United States)

    Pratiwi, Hasih; Sulistya Rini, Lia; Wayan Mangku, I.

    2018-05-01

    Earthquake is a natural phenomenon that is random, irregular in space and time. Until now the forecast of earthquake occurrence at a location is still difficult to be estimated so that the development of earthquake forecast methodology is still carried out both from seismology aspect and stochastic aspect. To explain the random nature phenomena, both in space and time, a point process approach can be used. There are two types of point processes: temporal point process and spatial point process. The temporal point process relates to events observed over time as a sequence of time, whereas the spatial point process describes the location of objects in two or three dimensional spaces. The points on the point process can be labelled with additional information called marks. A marked point process can be considered as a pair (x, m) where x is the point of location and m is the mark attached to the point of that location. This study aims to model marked point process indexed by time on earthquake data in Sumatra Island and Java Island. This model can be used to analyse seismic activity through its intensity function by considering the history process up to time before t. Based on data obtained from U.S. Geological Survey from 1973 to 2017 with magnitude threshold 5, we obtained maximum likelihood estimate for parameters of the intensity function. The estimation of model parameters shows that the seismic activity in Sumatra Island is greater than Java Island.

  18. Ground motion models used in the 2014 U.S. National Seismic Hazard Maps

    Science.gov (United States)

    Rezaeian, Sanaz; Petersen, Mark D.; Moschetti, Morgan P.

    2015-01-01

    The National Seismic Hazard Maps (NSHMs) are an important component of seismic design regulations in the United States. This paper compares hazard using the new suite of ground motion models (GMMs) relative to hazard using the suite of GMMs applied in the previous version of the maps. The new source characterization models are used for both cases. A previous paper (Rezaeian et al. 2014) discussed the five NGA-West2 GMMs used for shallow crustal earthquakes in the Western United States (WUS), which are also summarized here. Our focus in this paper is on GMMs for earthquakes in stable continental regions in the Central and Eastern United States (CEUS), as well as subduction interface and deep intraslab earthquakes. We consider building code hazard levels for peak ground acceleration (PGA), 0.2-s, and 1.0-s spectral accelerations (SAs) on uniform firm-rock site conditions. The GMM modifications in the updated version of the maps created changes in hazard within 5% to 20% in WUS; decreases within 5% to 20% in CEUS; changes within 5% to 15% for subduction interface earthquakes; and changes involving decreases of up to 50% and increases of up to 30% for deep intraslab earthquakes for most U.S. sites. These modifications were combined with changes resulting from modifications in the source characterization models to obtain the new hazard maps.

  19. REGIONAL SEISMIC AMPLITUDE MODELING AND TOMOGRAPHY FOR EARTHQUAKE-EXPLOSION DISCRIMINATION

    Energy Technology Data Exchange (ETDEWEB)

    Walter, W R; Pasyanos, M E; Matzel, E; Gok, R; Sweeney, J; Ford, S R; Rodgers, A J

    2008-07-08

    We continue exploring methodologies to improve earthquake-explosion discrimination using regional amplitude ratios such as P/S in a variety of frequency bands. Empirically we demonstrate that such ratios separate explosions from earthquakes using closely located pairs of earthquakes and explosions recorded on common, publicly available stations at test sites around the world (e.g. Nevada, Novaya Zemlya, Semipalatinsk, Lop Nor, India, Pakistan, and North Korea). We are also examining if there is any relationship between the observed P/S and the point source variability revealed by longer period full waveform modeling (e. g. Ford et al 2008). For example, regional waveform modeling shows strong tectonic release from the May 1998 India test, in contrast with very little tectonic release in the October 2006 North Korea test, but the P/S discrimination behavior appears similar in both events using the limited regional data available. While regional amplitude ratios such as P/S can separate events in close proximity, it is also empirically well known that path effects can greatly distort observed amplitudes and make earthquakes appear very explosion-like. Previously we have shown that the MDAC (Magnitude Distance Amplitude Correction, Walter and Taylor, 2001) technique can account for simple 1-D attenuation and geometrical spreading corrections, as well as magnitude and site effects. However in some regions 1-D path corrections are a poor approximation and we need to develop 2-D path corrections. Here we demonstrate a new 2-D attenuation tomography technique using the MDAC earthquake source model applied to a set of events and stations in both the Middle East and the Yellow Sea Korean Peninsula regions. We believe this new 2-D MDAC tomography has the potential to greatly improve earthquake-explosion discrimination, particularly in tectonically complex regions such as the Middle East. Monitoring the world for potential nuclear explosions requires characterizing seismic

  20. 3D Dynamic Rupture Simulations along Dipping Faults, with a focus on the Wasatch Fault Zone, Utah

    Science.gov (United States)

    Withers, K.; Moschetti, M. P.

    2017-12-01

    We study dynamic rupture and ground motion from dip-slip faults in regions that have high-seismic hazard, such as the Wasatch fault zone, Utah. Previous numerical simulations have modeled deterministic ground motion along segments of this fault in the heavily populated regions near Salt Lake City but were restricted to low frequencies ( 1 Hz). We seek to better understand the rupture process and assess broadband ground motions and variability from the Wasatch Fault Zone by extending deterministic ground motion prediction to higher frequencies (up to 5 Hz). We perform simulations along a dipping normal fault (40 x 20 km along strike and width, respectively) with characteristics derived from geologic observations to generate a suite of ruptures > Mw 6.5. This approach utilizes dynamic simulations (fully physics-based models, where the initial stress drop and friction law are imposed) using a summation by parts (SBP) method. The simulations include rough-fault topography following a self-similar fractal distribution (over length scales from 100 m to the size of the fault) in addition to off-fault plasticity. Energy losses from heat and other mechanisms, modeled as anelastic attenuation, are also included, as well as free-surface topography, which can significantly affect ground motion patterns. We compare the effect of material structure and both rate and state and slip-weakening friction laws have on rupture propagation. The simulations show reduced slip and moment release in the near surface with the inclusion of plasticity, better agreeing with observations of shallow slip deficit. Long-wavelength fault geometry imparts a non-uniform stress distribution along both dip and strike, influencing the preferred rupture direction and hypocenter location, potentially important for seismic hazard estimation.

  1. Joint inversion of GNSS and teleseismic data for the rupture process of the 2017 M w6.5 Jiuzhaigou, China, earthquake

    Science.gov (United States)

    Li, Qi; Tan, Kai; Wang, Dong Zhen; Zhao, Bin; Zhang, Rui; Li, Yu; Qi, Yu Jie

    2018-05-01

    The spatio-temporal slip distribution of the earthquake that occurred on 8 August 2017 in Jiuzhaigou, China, was estimated from the teleseismic body wave and near-field Global Navigation Satellite System (GNSS) data (coseismic displacements and high-rate GPS data) based on a finite fault model. Compared with the inversion results from the teleseismic body waves, the near-field GNSS data can better restrain the rupture area, the maximum slip, the source time function, and the surface rupture. The results show that the maximum slip of the earthquake approaches 1.4 m, the scalar seismic moment is 8.0 × 1018 N·m ( M w ≈ 6.5), and the centroid depth is 15 km. The slip is mainly driven by the left-lateral strike-slip and it is initially inferred that the seismogenic fault occurs in the south branch of the Tazang fault or an undetectable fault, a NW-trending left-lateral strike-slip fault, and belongs to one of the tail structures at the easternmost end of the eastern Kunlun fault zone. The earthquake rupture is mainly concentrated at depths of 5-15 km, which results in the complete rupture of the seismic gap left by the previous four earthquakes with magnitudes > 6.0 in 1973 and 1976. Therefore, the possibility of a strong aftershock on the Huya fault is low. The source duration is 30 s and there are two major ruptures. The main rupture occurs in the first 10 s, 4 s after the earthquake; the second rupture peak arrives in 17 s. In addition, the Coulomb stress study shows that the epicenter of the earthquake is located in the area where the static Coulomb stress change increased because of the 12 May 2017 M w7.9 Wenchuan, China, earthquake. Therefore, the Wenchuan earthquake promoted the occurrence of the 8 August 2017 Jiuzhaigou earthquake.

  2. A Thermo-Hydro-Mechanical coupled Numerical modeling of Injection-induced seismicity on a pre-existing fault

    Science.gov (United States)

    Kim, Jongchan; Archer, Rosalind

    2017-04-01

    In terms of energy development (oil, gas and geothermal field) and environmental improvement (carbon dioxide sequestration), fluid injection into subsurface has been dramatically increased. As a side effect of these operations, a number of injection-induced seismic activities have also significantly risen. It is known that the main causes of induced seismicity are changes in local shear and normal stresses and pore pressure as well. This mechanism leads to increase in the probability of earthquake occurrence on permeable pre-existing fault zones predominantly. In this 2D fully coupled THM geothermal reservoir numerical simulation of injection-induced seismicity, we investigate the thermal, hydraulic and mechanical behavior of the fracture zone, considering a variety of 1) fault permeability, 2) injection rate and 3) injection temperature to identify major contributing parameters to induced seismic activity. We also calculate spatiotemporal variation of the Coulomb stress which is a combination of shear stress, normal stress and pore pressure and lastly forecast the seismicity rate on the fault zone by computing the seismic prediction model of Dieterich (1994).

  3. Development of a seismic source model for probabilistic seismic hazard assessment of nuclear power plant sites in Switzerland: the view from PEGASOS Expert Group 4 (EG1d)

    International Nuclear Information System (INIS)

    Wiemer, S.; Garcia-Fernandez, M.; Burg, J.-P.

    2009-01-01

    We present a seismogenic source model for site-specific probabilistic seismic hazard assessment at the sites of Swiss nuclear power plants. Our model is one of four developed in the framework of the PEGASOS project; it contains a logic tree with nine levels of decision-making. The two primary sources of input used in the areal zonation developed by us are the historical and instrumental seismicity record and large-scale geological/rheological units. From this, we develop a zonation of six macro zones, refined in a series of seven decision steps up to a maximum of 13 zones. Within zones, activity rates are either assumed homogeneous or smoothed using a Gaussian kernel with width of 5 or 15 km. To estimate recurrence rate, we assume a double truncated Gutenberg-Richter law, and consider five models of recurrence parameters with different degrees of freedom. Models are weighted in the logic tree using a weighted Akaike score. The maximum magnitude is estimated following the EPRI approach. We perform extensive sensitivity analyses in rate and hazard space in order to assess the role of de-clustering, the completeness model, quarry contamination, border properties, stationarity, regional b-value and magnitude-dependent hypocentral depth. (author)

  4. Development of a seismic source model for probabilistic seismic hazard assessment of nuclear power plant sites in Switzerland: the view from PEGASOS Expert Group 4 (EG1d)

    Energy Technology Data Exchange (ETDEWEB)

    Wiemer, S. [Institute of Geophysics, ETH Zuerich, Zuerich (Switzerland); Garcia-Fernandez, M. [Spanish Council for Scientific Research, Museum of Natural History, Dept. of Volcanology and Geophysics, Madrid (Spain); Burg, J.-P. [Institute of Geology, ETH Zuerich, Zuerich (Switzerland)

    2009-05-15

    We present a seismogenic source model for site-specific probabilistic seismic hazard assessment at the sites of Swiss nuclear power plants. Our model is one of four developed in the framework of the PEGASOS project; it contains a logic tree with nine levels of decision-making. The two primary sources of input used in the areal zonation developed by us are the historical and instrumental seismicity record and large-scale geological/rheological units. From this, we develop a zonation of six macro zones, refined in a series of seven decision steps up to a maximum of 13 zones. Within zones, activity rates are either assumed homogeneous or smoothed using a Gaussian kernel with width of 5 or 15 km. To estimate recurrence rate, we assume a double truncated Gutenberg-Richter law, and consider five models of recurrence parameters with different degrees of freedom. Models are weighted in the logic tree using a weighted Akaike score. The maximum magnitude is estimated following the EPRI approach. We perform extensive sensitivity analyses in rate and hazard space in order to assess the role of de-clustering, the completeness model, quarry contamination, border properties, stationarity, regional b-value and magnitude-dependent hypocentral depth. (author)

  5. Studying physical properties of deformed intact and fractured rocks by micro-scale hydro-mechanical-seismicity model

    Science.gov (United States)

    Raziperchikolaee, Samin

    The pore pressure variation in an underground formation during hydraulic stimulation of low permeability formations or CO2 sequestration into saline aquifers can induce microseismicity due to fracture generation or pre-existing fracture activation. While the analysis of microseismic data mainly focuses on mapping the location of fractures, the seismic waves generated by the microseismic events also contain information for understanding of fracture mechanisms based on microseismic source analysis. We developed a micro-scale geomechanics, fluid-flow and seismic model that can predict transport and seismic source behavior during rock failure. This model features the incorporation of microseismic source analysis in fractured and intact rock transport properties during possible rock damage and failure. The modeling method considers comprehensive grains and cements interaction through a bonded-particle-model. As a result of grain deformation and microcrack development in the rock sample, forces and displacements in the grains involved in the bond breakage are measured to determine seismic moment tensor. In addition, geometric description of the complex pore structure is regenerated to predict fluid flow behavior of fractured samples. Numerical experiments are conducted for different intact and fractured digital rock samples, representing various mechanical behaviors of rocks and fracture surface properties, to consider their roles on seismic and transport properties of rocks during deformation. Studying rock deformation in detail provides an opportunity to understand the relationship between source mechanism of microseismic events and transport properties of damaged rocks to have a better characterizing of fluid flow behavior in subsurface formations.

  6. Development of a State-Wide 3-D Seismic Tomography Velocity Model for California

    Science.gov (United States)

    Thurber, C. H.; Lin, G.; Zhang, H.; Hauksson, E.; Shearer, P.; Waldhauser, F.; Hardebeck, J.; Brocher, T.

    2007-12-01

    We report on progress towards the development of a state-wide tomographic model of the P-wave velocity for the crust and uppermost mantle of California. The dataset combines first arrival times from earthquakes and quarry blasts recorded on regional network stations and travel times of first arrivals from explosions and airguns recorded on profile receivers and network stations. The principal active-source datasets are Geysers-San Pablo Bay, Imperial Valley, Livermore, W. Mojave, Gilroy-Coyote Lake, Shasta region, Great Valley, Morro Bay, Mono Craters-Long Valley, PACE, S. Sierras, LARSE 1 and 2, Loma Prieta, BASIX, San Francisco Peninsula and Parkfield. Our beta-version model is coarse (uniform 30 km horizontal and variable vertical gridding) but is able to image the principal features in previous separate regional models for northern and southern California, such as the high-velocity subducting Gorda Plate, upper to middle crustal velocity highs beneath the Sierra Nevada and much of the Coast Ranges, the deep low-velocity basins of the Great Valley, Ventura, and Los Angeles, and a high- velocity body in the lower crust underlying the Great Valley. The new state-wide model has improved areal coverage compared to the previous models, and extends to greater depth due to the data at large epicentral distances. We plan a series of steps to improve the model. We are enlarging and calibrating the active-source dataset as we obtain additional picks from investigators and perform quality control analyses on the existing and new picks. We will also be adding data from more quarry blasts, mainly in northern California, following an identification and calibration procedure similar to Lin et al. (2006). Composite event construction (Lin et al., in press) will be carried out for northern California for use in conventional tomography. A major contribution of the state-wide model is the identification of earthquakes yielding arrival times at both the Northern California Seismic

  7. Fault Branching and Long-Term Earthquake Rupture Scenario for Strike-Slip Earthquake

    Science.gov (United States)

    Klinger, Y.; CHOI, J. H.; Vallage, A.

    2017-12-01

    Careful examination of surface rupture for large continental strike-slip earthquakes reveals that for the majority of earthquakes, at least one major branch is involved in the rupture pattern. Often, branching might