WorldWideScience

Sample records for seismic risk analysis

  1. Source modelling in seismic risk analysis for nuclear power plants

    International Nuclear Information System (INIS)

    Yucemen, M.S.

    1978-12-01

    The proposed probabilistic procedure provides a consistent method for the modelling, analysis and updating of uncertainties that are involved in the seismic risk analysis for nuclear power plants. The potential earthquake activity zones are idealized as point, line or area sources. For these seismic source types, expressions to evaluate their contribution to seismic risk are derived, considering all the possible site-source configurations. The seismic risk at a site is found to depend not only on the inherent randomness of the earthquake occurrences with respect to magnitude, time and space, but also on the uncertainties associated with the predicted values of the seismic and geometric parameters, as well as the uncertainty in the attenuation model. The uncertainty due to the attenuation equation is incorporated into the analysis through the use of random correction factors. The influence of the uncertainty resulting from the insufficient information on the seismic parameters and source geometry is introduced into the analysis by computing a mean risk curve averaged over the various alternative assumptions on the parameters and source geometry. Seismic risk analysis is carried for the city of Denizli, which is located in the seismically most active zone of Turkey. The second analysis is for Akkuyu

  2. Development of seismic risk analysis methodologies at JAERI

    International Nuclear Information System (INIS)

    Tanaka, T.; Abe, K.; Ebisawa, K.; Oikawa, T.

    1988-01-01

    The usefulness of probabilistic safety assessment (PSA) is recognized worldwidely for balanced design and regulation of nuclear power plants. In Japan, the Japan Atomic Energy Research Institute (JAERI) has been engaged in developing methodologies necessary for carrying out PSA. The research and development program was started in 1980. In those days the effort was only for internal initiator PSA. In 1985 the program was expanded so as to include external event analysis. Although this expanded program is to cover various external initiators, the current effort is dedicated for seismic risk analysis. There are three levels of seismic PSA, similarly to internal initiator PSA: Level 1: Evaluation of core damage frequency, Level 2: Evaluation of radioactive release frequency and source terms, and Level 3: Evaluation of environmental consequence. In the JAERI's program, only the methodologies for level 1 seismic PSA are under development. The methodology development for seismic risk analysis is divided into two phases. The Phase I study is to establish a whole set of simple methodologies based on currently available data. In the Phase II, Sensitivity study will be carried out to identify the parameters whose uncertainty may result in lage uncertainty in seismic risk, and For such parameters, the methodology will be upgraded. Now the Phase I study has almost been completed. In this report, outlines of the study and some of its outcomes are described

  3. Approach for seismic risk analysis for CANDU plants in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B-S; Kim, T; Kang, S-K [Korea Power Engineering Co., Seoul (Korea, Republic of); Hong, S-Y; Roh, S-R [Korea Electric Power Corp., Taejon (Korea, Republic of). Research Centre

    1996-12-31

    A seismic risk analysis for CANDU type plants has never been performed. The study presented here suggested that the approach generally applied to LWR type plants could lead to unacceptable result, if directly applied to CANDU plants. This paper presents a modified approach for the seismic risk analysis of CANDU plants. (author). 5 refs., 2 tabs., 2 figs.

  4. A scenario-based procedure for seismic risk analysis

    International Nuclear Information System (INIS)

    Kluegel, J.-U.; Mualchin, L.; Panza, G.F.

    2006-12-01

    A new methodology for seismic risk analysis based on probabilistic interpretation of deterministic or scenario-based hazard analysis, in full compliance with the likelihood principle and therefore meeting the requirements of modern risk analysis, has been developed. The proposed methodology can easily be adjusted to deliver its output in a format required for safety analysts and civil engineers. The scenario-based approach allows the incorporation of all available information collected in a geological, seismotectonic and geotechnical database of the site of interest as well as advanced physical modelling techniques to provide a reliable and robust deterministic design basis for civil infrastructures. The robustness of this approach is of special importance for critical infrastructures. At the same time a scenario-based seismic hazard analysis allows the development of the required input for probabilistic risk assessment (PRA) as required by safety analysts and insurance companies. The scenario-based approach removes the ambiguity in the results of probabilistic seismic hazard analysis (PSHA) which relies on the projections of Gutenberg-Richter (G-R) equation. The problems in the validity of G-R projections, because of incomplete to total absence of data for making the projections, are still unresolved. Consequently, the information from G-R must not be used in decisions for design of critical structures or critical elements in a structure. The scenario-based methodology is strictly based on observable facts and data and complemented by physical modelling techniques, which can be submitted to a formalised validation process. By means of sensitivity analysis, knowledge gaps related to lack of data can be dealt with easily, due to the limited amount of scenarios to be investigated. The proposed seismic risk analysis can be used with confidence for planning, insurance and engineering applications. (author)

  5. Study on structural seismic margin and probabilistic seismic risk. Development of a structural capacity-seismic risk diagram

    International Nuclear Information System (INIS)

    Nakajima, Masato; Ohtori, Yasuki; Hirata, Kazuta

    2010-01-01

    Seismic margin is extremely important index and information when we evaluate and account seismic safety of critical structures, systems and components quantitatively. Therefore, it is required that electric power companies evaluate the seismic margin of each plant in back-check of nuclear power plants in Japan. The seismic margin of structures is usually defined as a structural capacity margin corresponding to design earthquake ground motion. However, there is little agreement as to the definition of the seismic margin and we have no knowledge about a relationship between the seismic margin and seismic risk (annual failure probability) which is obtained in PSA (Probabilistic Safety Assessment). The purpose of this report is to discuss a definition of structural seismic margin and to develop a diagram which can identify a relation between seismic margin and seismic risk. The main results of this paper are described as follows: (1) We develop seismic margin which is defined based on the fact that intensity of earthquake ground motion is more appropriate than the conventional definition (i.e., the response-based seismic margin) for the following reasons: -seismic margin based on earthquake ground motion is invariant where different typed structures are considered, -stakeholders can understand the seismic margin based on the earthquake ground motion better than the response-based one. (2) The developed seismic margin-risk diagram facilitates us to judge easily whether we need to perform detailed probabilistic risk analysis or only deterministic analysis, given that the reference risk level although information on the uncertainty parameter beta is not obtained. (3) We have performed numerical simulations based on the developed method for four sites in Japan. The structural capacity-risk diagram differs depending on each location because the diagram is greatly influenced by seismic hazard information for a target site. Furthermore, the required structural capacity

  6. Seismic risk assessment of a BWR

    International Nuclear Information System (INIS)

    Wells, J.E.; Bernreuter, D.L.; Chen, J.C.; Lappa, D.A.; Chuang, T.Y.; Murray, R.C.; Johnson, J.J.

    1987-01-01

    The simplified seismic risk methodology developed in the USNRC Seismic Safety Margins Research Program (SSMRP) was demonstrated by its application to the Zion nuclear power plant (PWR). The simplified seismic risk methodology was developed to reduce the costs associated with a seismic risk analysis while providing adequate results. A detailed model of Zion, including systems analysis models (initiating events, event trees, and fault trees), SSI and structure models, and piping models, was developed and used in assessing the seismic risk of the Zion nuclear power plant (FSAR). The simplified seismic risk methodology was applied to the LaSalle County Station nuclear power plant, a BWR; to further demonstrate its applicability, and if possible, to provide a basis for comparing the seismic risk from PWRs and BWRs. (orig./HP)

  7. Seismic Risk Perception compared with seismic Risk Factors

    Science.gov (United States)

    Crescimbene, Massimo; La Longa, Federica; Pessina, Vera; Pino, Nicola Alessandro; Peruzza, Laura

    2016-04-01

    The communication of natural hazards and their consequences is one of the more relevant ethical issues faced by scientists. In the last years, social studies have provided evidence that risk communication is strongly influenced by the risk perception of people. In order to develop effective information and risk communication strategies, the perception of risks and the influencing factors should be known. A theory that offers an integrative approach to understanding and explaining risk perception is still missing. To explain risk perception, it is necessary to consider several perspectives: social, psychological and cultural perspectives and their interactions. This paper presents the results of the CATI survey on seismic risk perception in Italy, conducted by INGV researchers on funding by the DPC. We built a questionnaire to assess seismic risk perception, with a particular attention to compare hazard, vulnerability and exposure perception with the real data of the same factors. The Seismic Risk Perception Questionnaire (SRP-Q) is designed by semantic differential method, using opposite terms on a Likert scale to seven points. The questionnaire allows to obtain the scores of five risk indicators: Hazard, Exposure, Vulnerability, People and Community, Earthquake Phenomenon. The questionnaire was administered by telephone interview (C.A.T.I.) on a statistical sample at national level of over 4,000 people, in the period January -February 2015. Results show that risk perception seems be underestimated for all indicators considered. In particular scores of seismic Vulnerability factor are extremely low compared with house information data of the respondents. Other data collected by the questionnaire regard Earthquake information level, Sources of information, Earthquake occurrence with respect to other natural hazards, participation at risk reduction activities and level of involvement. Research on risk perception aims to aid risk analysis and policy-making by

  8. Analysis of parameter uncertainties in the assessment of seismic risk for nuclear power plants

    International Nuclear Information System (INIS)

    Yucemen, S.M.

    1981-04-01

    Probabilistic and statistical methods are used to develop a procedure by which the seismic risk at a specific site can be systematically analyzed. The proposed probabilistic procedure provides a consisted method for the modelling, analysis and updating of uncertainties that are involved in the seismic risk analysis for nuclear power plants. Methods are proposed for including these uncertainties in the final value of calculated risks. Two specific case studies are presented in detail to illustrate the application of the probabilistic method of seismic risk evaluation and to investigate the sensitivity of results to different assumptions

  9. Seismic risk analysis for the Westinghouse Electric facility, Cheswick, Pennsylvania

    International Nuclear Information System (INIS)

    1977-01-01

    This report presents the results of a detailed seismic risk analysis of the Westinghouse Electric plutonium fuel development facility at Cheswick, Pennsylvania. This report focuses on earthquakes. The historical seismic record was established after a review of available literature, consultation with operators of local seismic arrays and examination of appropriate seismic data bases. Because of the aseismicity of the region around the site, an analysis different from the conventional closest approach in a tectonic province was adapted. Earthquakes as far from the site as 1,000 km were included, as were the possibility of earthquakes at the site. In addition, various uncertainties in the input were explicitly considered in the analysis. For example, allowance was made for both the uncertainty in predicting maximum possible earthquakes in the region and the effect of the dispersion of data about the best fit attenuation relation. The attenuation relationship is derived from two of the most recent, advanced studies relating earthquake intensity reports and acceleration. Results of the risk analysis, which include a Bayesian estimate of the uncertainties, are presented as return period accelerations. The best estimate curve indicates that the Westinghouse facility will experience 0.05 g every 220 years and 0.10 g every 1400 years. The accelerations are very insensitive to the details of the source region geometries or the historical earthquake statistics in each region and each of the source regions contributes almost equally to the cumulative risk at the site

  10. Seismic risk map for Southeastern Brazil

    International Nuclear Information System (INIS)

    Mioto, J.A.

    1984-01-01

    During the last few years, some studies regarding seismic risk were prepared for three regions of Brazil. They were carried on account of two basic interests: first, toward the seismic history and recurrence of Brazilian seismic events; second, in a way as to provide seismic parameters for the design and construction of hydro and nuclear power plants. The first seismic risk map prepared for the southeastern region was elaborated in 1979 by 6he Universidade de Brasilia (UnB-Brasilia Seismological Station). In 1981 another seismic risk map was completed on the basis of seismotectonic studies carried out for the design and construction of the Nuclear power plants of Itaorna Beach (Angra dos Reis, Rio de Janeiro) by IPT (Mining and Applied Geology Division). In Brazil, until 1984, seismic studies concerning hydro and nuclear power plants and other civil construction of larger size did not take into account the seismic events from the point of view of probabilities of seismic recurrences. Such analysis in design is more important than the choice of a level of intensity or magnitude, or adoption of a seismicity level ased on deterministic methods. In this way, some considerations were made, concerning the use of seisms in Brazilian designs of hydro and nuclear power plants, as far as seismic analysis is concerned, recently altered over the current seismic risk panorama. (D.J.M.) [pt

  11. Seismic risk analysis for General Electric Plutonium Facility, Pleasanton, California

    International Nuclear Information System (INIS)

    1978-01-01

    This report presents the results of a seismic risk analysis that focuses on all possible sources of seismic activity, with the exception of the postulated Verona Fault. The best estimate curve indicates that the Vallecitos facility will experience 30% g with a return period of roughly 130 years and 60% g with a return period of roughly 700 years

  12. Seismic risk analysis in the German risk study phase B

    International Nuclear Information System (INIS)

    Hasser, D.; Liemersdorf, J.

    1989-01-01

    The paper discusses some aspects of the seismic risk part of the German risk study for nuclear power plants, phase B. First simplified analyses in phase A of the study allowed a rough classification of structures and systems of the PWR reference plant according to their seismic risk contribution. These studies were extended in phase B using improved models for the dynamic analyses of buildings, structures and components as well as for the probabilistic analyses of seismic loading, failure probabilities and event trees. The methodology of deriving probabilistic seismic load descriptions is explained and compared with the methods in phase A of the study and in other studies. Some details of the linear and nonlinear dynamic analyses of structures are reported, in order to demonstrate the influence of different assumptions for material behavior and failure criteria. The probabilistic structural and event tree analyses are discussed with respect to the distribution assumptions, acceptable simplifications, special results for the PWR reference plant and, finally, the influence of model uncertainties

  13. Probability problems in seismic risk analysis and load combinations for nuclear power plants

    International Nuclear Information System (INIS)

    George, L.L.

    1983-01-01

    This workshop describes some probability problems in power plant reliability and maintenance analysis. The problems are seismic risk analysis, loss of load probability, load combinations, and load sharing. The seismic risk problem is to compute power plant reliability given an earthquake and the resulting risk. Component survival occurs if its peak random response to the earthquake does not exceed its strength. Power plant survival is a complicated Boolean function of component failures and survivals. The responses and strengths of components are dependent random processes, and the peak responses are maxima of random processes. The resulting risk is the expected cost of power plant failure

  14. Seismic risk assessment of a BWR: status report

    International Nuclear Information System (INIS)

    Chuang, T.Y.; Bernreuter, D.L.; Wells, J.E.; Johnson, J.J.

    1985-02-01

    The seismic risk methodology developed in the US NRC Seismic Safety Margins Research Program (SSMRP) was demonstrated by its application to the Zion nuclear power plant, a pressurized water reactor (PWR). A detailed model of Zion, including systems analysis models (initiating events, event trees, and fault trees), SSI and structure models, and piping models was developed and analyzed. The SSMRP methodology can equally be applied to a boiling water reactor (BWR). To demonstrate its applicability, to identify fundamental differences in seismic risk between a PWR and a BWR, and to provide a basis of comparison of seismic risk between a PWR and a BWR when analyzed with comparable methodology and assumptions, a seismic risk analysis is being performed on the LaSalle County Station nuclear power plant

  15. Overview of seismic probabilistic risk assessment for structural analysis in nuclear facilities

    International Nuclear Information System (INIS)

    Reed, J.W.

    1989-01-01

    Probabilistic Risk Assessment (PRA) for seismic events is currently being performed for nuclear and DOE facilities. The background on seismic PRA is presented along with a basic description of the method. The seismic PRA technique is applicable to other critical facilities besides nuclear plants. The different approaches for obtained structure fragility curves are discussed and their applications to structures and equipment, in general, are addressed. It is concluded that seismic PRA is a useful technique for conducting probability analysis for a wide range of classes of structures and equipment

  16. Seismic risk analysis for the Babcock and Wilcox facility, Leechburg, Pennsylvania

    International Nuclear Information System (INIS)

    1977-01-01

    The results of a detailed seismic risk analysis of the Babcock and Wilcox Plutonium Fuel Fabrication facility at Leechburg, Pennsylvania are presented. This report focuses on earthquakes; the other natural hazards, being addressed in separate reports, are severe weather (strong winds and tornados) and floods. The calculational method used is based on Cornell's work (1968); it has been previously applied to safety evaluations of major projects. The historical seismic record was established after a review of available literature, consultation with operators of local seismic arrays and examination of appropriate seismic data bases. Because of the aseismicity of the region around the site, an analysis different from the conventional closest approach in a tectonic province was adapted. Earthquakes as far from the site as 1,000 km were included, as were the possibility of earthquakes at the site. In addition, various uncertainties in the input were explicitly considered in the analysis. The results of the risk analysis, which include a Bayesian estimate of the uncertainties, are presented, expressed as return period accelerations. The best estimate curve indicates that the Babcock and Wilcox facility will experience 0.05 g every 220 years and 0.10 g every 1400 years. The bounding curves roughly represent the one standard deviation confidence limits about the best estimate, reflecting the uncertainty in certain of the input. Detailed examination of the results show that the accelerations are very insensitive to the details of the source region geometries or the historical earthquake statistics in each region and that each of the source regions contributes almost equally to the cumulative risk at the site. If required for structural analysis, acceleration response spectra for the site can be constructed by scaling the mean response spectrum for alluvium in WASH 1255 by these peak accelerations

  17. Seismic risk analysis for the fast breeder prototype SNR-300 in Kalkar (FRG)

    International Nuclear Information System (INIS)

    Hosser, D.

    1983-01-01

    This paper summarizes the seismic part of the SNR-300 Risk Oriented Analysis. Two different approaches were used for the seismic hazard description. In the first one, similar to the German Risk Study for PWR, the seismic input was given by a site-independent mean acceleration response spectrum and duration of strong motion prescribed for the design of the plant; the spectrum was scaled with the peak ground acceleration the probability of exceedance of which at the site Kalkar had been calculated in a former seismic hazard tudy. For the second approach, site- and intensity- dependent mean acceleration response spectra and duration of strong motion were derived and the probability of exceedance of the site intensity was evaluated in a probabilistic seismic hazard analysis. The seismic responses of safety related and other important buildings were calculated by time-history analyses using artificial acceleration time-histories with the given frequency content and duration of strong motion. The influence of uncertainties in dynamic soil parameters and structural modelling was assessed in parametric studies. Some important structural elements within the buildings were investigated in more detail. Their seismic performance was evaluated using ultimate limit state definitions according to the respective design codes or rotation limits for nonlinear dynamic calculations. (orig./RW)

  18. Assessing the seismic risk potential of South America

    Science.gov (United States)

    Jaiswal, Kishor; Petersen, Mark D.; Harmsen, Stephen; Smoczyk, Gregory M.

    2016-01-01

    We present here a simplified approach to quantifying regional seismic risk. The seismic risk for a given region can be inferred in terms of average annual loss (AAL) that represents long-term value of earthquake losses in any one year caused from a long-term seismic hazard. The AAL are commonly measured in the form of earthquake shaking-induced deaths, direct economic impacts or indirect losses caused due to loss of functionality. In the context of South American subcontinent, the analysis makes use of readily available public data on seismicity, population exposure, and the hazard and vulnerability models for the region. The seismic hazard model was derived using available seismic catalogs, fault databases, and the hazard methodologies that are analogous to the U.S. Geological Survey’s national seismic hazard mapping process. The Prompt Assessment of Global Earthquakes for Response (PAGER) system’s direct empirical vulnerability functions in terms of fatality and economic impact were used for performing exposure and risk analyses. The broad findings presented and the risk maps produced herein are preliminary, yet they do offer important insights into the underlying zones of high and low seismic risks in the South American subcontinent. A more detailed analysis of risk may be warranted by engaging local experts, especially in some of the high risk zones identified through the present investigation.

  19. Seismic risk assessment and application in the central United States

    Science.gov (United States)

    Wang, Z.

    2011-01-01

    Seismic risk is a somewhat subjective, but important, concept in earthquake engineering and other related decision-making. Another important concept that is closely related to seismic risk is seismic hazard. Although seismic hazard and seismic risk have often been used interchangeably, they are fundamentally different: seismic hazard describes the natural phenomenon or physical property of an earthquake, whereas seismic risk describes the probability of loss or damage that could be caused by a seismic hazard. The distinction between seismic hazard and seismic risk is of practical significance because measures for seismic hazard mitigation may differ from those for seismic risk reduction. Seismic risk assessment is a complicated process and starts with seismic hazard assessment. Although probabilistic seismic hazard analysis (PSHA) is the most widely used method for seismic hazard assessment, recent studies have found that PSHA is not scientifically valid. Use of PSHA will lead to (1) artifact estimates of seismic risk, (2) misleading use of the annual probability of exccedance (i.e., the probability of exceedance in one year) as a frequency (per year), and (3) numerical creation of extremely high ground motion. An alternative approach, which is similar to those used for flood and wind hazard assessments, has been proposed. ?? 2011 ASCE.

  20. Development of seismic hazard analysis in Japan

    International Nuclear Information System (INIS)

    Itoh, T.; Ishii, K.; Ishikawa, Y.; Okumura, T.

    1987-01-01

    In recent years, seismic risk assessment of the nuclear power plant have been conducted increasingly in various countries, particularly in the United States to evaluate probabilistically the safety of existing plants under earthquake loading. The first step of the seismic risk assessment is the seismic hazard analysis, in which the relationship between the maximum earthquake ground motions at the plant site and their annual probability of exceedance, i.e. the seismic hazard curve, is estimated. In this paper, seismic hazard curves are evaluated and examined based on historical earthquake records model, in which seismic sources are modeled with area-sources, for several different sites in Japan. A new evaluation method is also proposed to compute the response spectra of the earthquake ground motions in connection with estimating the probabilistic structural response. Finally the numerical result of probabilistic risk assessment for a base-isolated three story RC structure, in which the frequency of seismic induced structural failure is evaluated combining the seismic hazard analysis, is described briefly

  1. Seismic risk analysis for the Atomics International Nuclear Materials Development Facility, Santa Susana California

    International Nuclear Information System (INIS)

    1978-01-01

    This report presents the results of a detailed seismic risk analysis of the Nuclear Materials Development Facility (NMDF) operated by Atomics International at Santa Susana, California. The historical seismic record was established after a review of available literature, consultation with operators of local seismic arrays and examination of appropriate seismic data bases including the USGS, California Institute of Technology and NEIS data bases. The resulting seismic record, covering the period 1969 to 1977, was used to identify all possible sources of seismicity that could affect the site. The best estimate curve indicates that the facility will experience 30% g with a return period of 55 years and 60% g with a return period of 750 years

  2. Seismic risk analysis for the Atomics International Nuclear Materials Development Facility, Santa Susana California

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-29

    This report presents the results of a detailed seismic risk analysis of the Nuclear Materials Development Facility (NMDF) operated by Atomics International at Santa Susana, California. The historical seismic record was established after a review of available literature, consultation with operators of local seismic arrays and examination of appropriate seismic data bases including the USGS, California Institute of Technology and NEIS data bases. The resulting seismic record, covering the period 1969 to 1977, was used to identify all possible sources of seismicity that could affect the site. The best estimate curve indicates that the facility will experience 30% g with a return period of 55 years and 60% g with a return period of 750 years.

  3. The application of seismic risk-benefit analysis to land use planning in Taipei City.

    Science.gov (United States)

    Hung, Hung-Chih; Chen, Liang-Chun

    2007-09-01

    In the developing countries of Asia local authorities rarely use risk analysis instruments as a decision-making support mechanism during planning and development procedures. The main purpose of this paper is to provide a methodology to enable planners to undertake such analyses. We illustrate a case study of seismic risk-benefit analysis for the city of Taipei, Taiwan, using available land use maps and surveys as well as a new tool developed by the National Science Council in Taiwan--the HAZ-Taiwan earthquake loss estimation system. We use three hypothetical earthquakes to estimate casualties and total and annualised direct economic losses, and to show their spatial distribution. We also characterise the distribution of vulnerability over the study area using cluster analysis. A risk-benefit ratio is calculated to express the levels of seismic risk attached to alternative land use plans. This paper suggests ways to perform earthquake risk evaluations and the authors intend to assist city planners to evaluate the appropriateness of their planning decisions.

  4. Seismic risk and heavy industrial facilities conference: proceedings

    International Nuclear Information System (INIS)

    1983-01-01

    Summaries of over 50 papers related to seismic risk analysis were presented. The papers cover areas such as seismic input description, response of components and structures, assessment of risk and reliability including human factors, and results of integrated studies. Papers have been individually abstracted for the Energy Data Base

  5. Geomorphology and seismic risk

    Science.gov (United States)

    Panizza, Mario

    1991-07-01

    The author analyses the contributions provided by geomorphology in studies suited to the assessment of seismic risk: this is defined as function of the seismic hazard, of the seismic susceptibility, and of the vulnerability. The geomorphological studies applicable to seismic risk assessment can be divided into two sectors: (a) morpho-neotectonic investigations conducted to identify active tectonic structures; (b) geomorphological and morphometric analyses aimed at identifying the particular situations that amplify or reduce seismic susceptibility. The morpho-neotectonic studies lead to the identification, selection and classification of the lineaments that can be linked with active tectonic structures. The most important geomorphological situations that can condition seismic susceptibility are: slope angle, debris, morphology, degradational slopes, paleo-landslides and underground cavities.

  6. Component fragility analysis methodology for seismic risk assessment projects. Proven PSA safety document processing and assessment procedures

    International Nuclear Information System (INIS)

    Kolar, Ladislav

    2013-03-01

    The seismic risk task assessment task should be structured as follows: (i) Define all reactor unit building structures, components and equipment involved in the creation of an initiating event (IE) induced by an seismic event or contributing to the reliability of reactor unit response to an IE; (ii) construct and estimate of the fragility curves for the building and component groups sub (i); (iii) determine the HCLPF for each group of buildings, components or equipment; (iv) determine the nuclear source's seismic resistance (SME) as the minimum HCLPF from the group of equipment in the risk-dominant scenarios; (v) define the risk-limiting group of components, equipment and building structures to the SME value; (vi) based on the fragility levels, identify component groups for which a more detailed fragility analysis is needed; and (vii) recommend groups of equipment or building structures that should be taken into account with respect to the seismic risk, i.e. such groups of equipment or building structures as exhibit a low seismic resistance (HCLPF) and, at the same time, are involved to a significant extent in the reactor unit's seismic risk (are present in the dominant risk scenarios). (P.A.)

  7. Towards Improved Considerations of Risk in Seismic Design (Plinius Medal Lecture)

    Science.gov (United States)

    Sullivan, T. J.

    2012-04-01

    The aftermath of recent earthquakes is a reminder that seismic risk is a very relevant issue for our communities. Implicit within the seismic design standards currently in place around the world is that minimum acceptable levels of seismic risk will be ensured through design in accordance with the codes. All the same, none of the design standards specify what the minimum acceptable level of seismic risk actually is. Instead, a series of deterministic limit states are set which engineers then demonstrate are satisfied for their structure, typically through the use of elastic dynamic analyses adjusted to account for non-linear response using a set of empirical correction factors. From the early nineties the seismic engineering community has begun to recognise numerous fundamental shortcomings with such seismic design procedures in modern codes. Deficiencies include the use of elastic dynamic analysis for the prediction of inelastic force distributions, the assignment of uniform behaviour factors for structural typologies irrespective of the structural proportions and expected deformation demands, and the assumption that hysteretic properties of a structure do not affect the seismic displacement demands, amongst other things. In light of this a number of possibilities have emerged for improved control of risk through seismic design, with several innovative displacement-based seismic design methods now well developed. For a specific seismic design intensity, such methods provide a more rational means of controlling the response of a structure to satisfy performance limit states. While the development of such methodologies does mark a significant step forward for the control of seismic risk, they do not, on their own, identify the seismic risk of a newly designed structure. In the U.S. a rather elaborate performance-based earthquake engineering (PBEE) framework is under development, with the aim of providing seismic loss estimates for new buildings. The PBEE framework

  8. Importance and sensitivity of parameters affecting the Zion Seismic Risk

    International Nuclear Information System (INIS)

    George, L.L.; O'Connell, W.J.

    1985-06-01

    This report presents the results of a study on the importance and sensitivity of structures, systems, equipment, components and design parameters used in the Zion Seismic Risk Calculations. This study is part of the Seismic Safety Margins Research Program (SSMRP) supported by the NRC Office of Nuclear Regulatory Research. The objective of this study is to provide the NRC with results on the importance and sensitivity of parameters used to evaluate seismic risk. These results can assist the NRC in making decisions dealing with the allocation of research resources on seismic issues. This study uses marginal analysis in addition to importance and sensitivity analysis to identify subject areas (input parameter areas) for improvements that reduce risk, estimate how much the improvement dfforts reduce risk, and rank the subject areas for improvements. Importance analysis identifies the systems, components, and parameters that are important to risk. Sensitivity analysis estimates the change in risk per unit improvement. Marginal analysis indicates the reduction in risk or uncertainty for improvement effort made in each subject area. The results described in this study were generated using the SEISIM (Systematic Evaluation of Important Safety Improvement Measures) and CHAIN computer codes. Part 1 of the SEISIM computer code generated the failure probabilities and risk values. Part 2 of SEISIM, along with the CHAIN computer code, generated the importance and sensitivity measures

  9. Importance and sensitivity of parameters affecting the Zion Seismic Risk

    Energy Technology Data Exchange (ETDEWEB)

    George, L.L.; O' Connell, W.J.

    1985-06-01

    This report presents the results of a study on the importance and sensitivity of structures, systems, equipment, components and design parameters used in the Zion Seismic Risk Calculations. This study is part of the Seismic Safety Margins Research Program (SSMRP) supported by the NRC Office of Nuclear Regulatory Research. The objective of this study is to provide the NRC with results on the importance and sensitivity of parameters used to evaluate seismic risk. These results can assist the NRC in making decisions dealing with the allocation of research resources on seismic issues. This study uses marginal analysis in addition to importance and sensitivity analysis to identify subject areas (input parameter areas) for improvements that reduce risk, estimate how much the improvement dfforts reduce risk, and rank the subject areas for improvements. Importance analysis identifies the systems, components, and parameters that are important to risk. Sensitivity analysis estimates the change in risk per unit improvement. Marginal analysis indicates the reduction in risk or uncertainty for improvement effort made in each subject area. The results described in this study were generated using the SEISIM (Systematic Evaluation of Important Safety Improvement Measures) and CHAIN computer codes. Part 1 of the SEISIM computer code generated the failure probabilities and risk values. Part 2 of SEISIM, along with the CHAIN computer code, generated the importance and sensitivity measures.

  10. Comparison between seismic and domestic risk in moderate seismic hazard prone region: the Grenoble City (France test site

    Directory of Open Access Journals (Sweden)

    F. Dunand

    2012-02-01

    Full Text Available France has a moderate level of seismic activity, characterized by diffuse seismicity, sometimes experiencing earthquakes of a magnitude of more than 5 in the most active zones. In this seismicity context, Grenoble is a city of major economic and social importance. However, earthquakes being rare, public authorities and the decision makers are only vaguely committed to reducing seismic risk: return periods are long and local policy makers do not have much information available. Over the past 25 yr, a large number of studies have been conducted to improve our knowledge of seismic hazard in this region. One of the decision-making concerns of Grenoble's public authorities, as managers of a large number of public buildings, is to know not only the seismic-prone regions, the variability of seismic hazard due to site effects and the city's overall vulnerability, but also the level of seismic risk and exposure for the entire city, also compared to other natural or/and domestic hazards. Our seismic risk analysis uses a probabilistic approach for regional and local hazards and the vulnerability assessment of buildings. Its applicability to Grenoble offers the advantage of being based on knowledge acquired by previous projects conducted over the years. This paper aims to compare the level of seismic risk with that of other risks and to introduce the notion of risk acceptability in order to offer guidance in the management of seismic risk. This notion of acceptability, which is now part of seismic risk consideration for existing buildings in Switzerland, is relevant in moderately seismic-prone countries like France.

  11. Development of component failure data for seismic risk analysis

    International Nuclear Information System (INIS)

    Fray, R.R.; Moulia, T.A.

    1981-01-01

    This paper describes the quantification and utilization of seismic failure data used in the Diablo Canyon Seismic Risk Study. A single variable representation of earthquake severity that uses peak horizontal ground acceleration to characterize earthquake severity was employed. The use of a multiple variable representation would allow direct consideration of vertical accelerations and the spectral nature of earthquakes but would have added such complexity that the study would not have been feasible. Vertical accelerations and spectral nature were indirectly considered because component failure data were derived from design analyses, qualification tests and engineering judgment that did include such considerations. Two types of functions were used to describe component failure probabilities. Ramp functions were used for components, such as piping and structures, qualified by stress analysis. 'Anchor points' for ramp functions were selected by assuming a zero probability of failure at code allowable stress levels and unity probability of failure at ultimate stress levels. The accelerations corresponding to allowable and ultimate stress levels were determined by conservatively assuming a linear relationship between seismic stress and ground acceleration. Step functions were used for components, such as mechanical and electrical equipment, qualified by testing. Anchor points for step functions were selected by assuming a unity probability of failure above the qualification acceleration. (orig./HP)

  12. Seismic qualification of equipment by means of probabilistic risk assessment

    International Nuclear Information System (INIS)

    Azarm, M.A.; Farahzad, P.; Boccio, J.L.

    1982-01-01

    Upon the sponsorship of the Equipment Qualification Branch (EQB) of NRC, Brookhaven National Laboratory (BNL) has utilized a risk-based approach for identifying, in a generic fashion, seismically risk-sensitive equipment. It is anticipated that the conclusions drawn therefrom and the methodology employed will, in part, reconcile some of the concerns dealing with the seismic qualification of equipment in operating plants. The approach taken augments an existing sensitivity analysis, based upon the WASH-1400 Reactor Safety Study (RSS), by accounting for seismicity and component fragility with the Kennedy model and by essentially including the requisite seismic data presented in the Zion Probabilistic Safety Study (ZPSS). Parametrically adjusting the seismic-related variables and ascertaining their effects on overall plant risk, core-melt probability, accident sequence probability, etc., allows one to identify those seismically risk-sensitive systems and equipment. This paper describes the approach taken and highlights the results obtained thus far for a hypothetical pressurized water reactor

  13. Seismic risk map of Korea

    International Nuclear Information System (INIS)

    Lee, S.H.; Lee, Y.K.; Eum, S.H.; Yang, S.J.; Chun, M.S.

    1983-01-01

    A study on seismic hazard level in Korea has been performed and the main results of the study are summarized as follows: 1. Historians suggest that the quality of historical earthquake data may be accurate in some degree and the data should be used in seismic risk analysis. 2. The historical damage events are conformed in historical literatures and their intensities are re-evaluated by joint researchers. The maximum MM intensity of them is VIII evaluated for 17 events. 3. The relation of earthquakes to surface fault is not clear. It seems resonable to related them to tectonic provinces. 4. Statistical seismic risk analysis shows that the acceleration expected within 50O year return period is less than 0.25G when only instrumental earthquakes are used and less than 0.10G if all of instrumental and historical earthquakes are used. The acceleration in Western Coast and Kyungsang area is higher than the other regions in Korea. 5. The maximum horizontal acceleration determined by conservative method is 0.26G when historical earthquake data are used and less than 0.20G if only instrumental earthquakes are used. The return period of 0.26G is 240 years in Kyungsang province and longer in other provinces. (Author)

  14. Seismic Risk Assessment for the Kyrgyz Republic

    Science.gov (United States)

    Pittore, Massimiliano; Sousa, Luis; Grant, Damian; Fleming, Kevin; Parolai, Stefano; Fourniadis, Yannis; Free, Matthew; Moldobekov, Bolot; Takeuchi, Ko

    2017-04-01

    The Kyrgyz Republic is one of the most socially and economically dynamic countries in Central Asia, and one of the most endangered by earthquake hazard in the region. In order to support the government of the Kyrgyz Republic in the development of a country-level Disaster Risk Reduction strategy, a comprehensive seismic risk study has been developed with the support of the World Bank. As part of this project, state-of-the-art hazard, exposure and vulnerability models have been developed and combined into the assessment of direct physical and economic risk on residential, educational and transportation infrastructure. The seismic hazard has been modelled with three different approaches, in order to provide a comprehensive overview of the possible consequences. A probabilistic seismic hazard assessment (PSHA) approach has been used to quantitatively evaluate the distribution of expected ground shaking intensity, as constrained by the compiled earthquake catalogue and associated seismic source model. A set of specific seismic scenarios based on events generated from known fault systems have been also considered, in order to provide insight on the expected consequences in case of strong events in proximity of densely inhabited areas. Furthermore, long-span catalogues of events have been generated stochastically and employed in the probabilistic analysis of expected losses over the territory of the Kyrgyz Republic. Damage and risk estimates have been computed by using an exposure model recently developed for the country, combined with the assignment of suitable fragility/vulnerability models. The risk estimation has been carried out with spatial aggregation at the district (rayon) level. The obtained results confirm the high level of seismic risk throughout the country, also pinpointing the location of several risk hotspots, particularly in the southern districts, in correspondence with the Ferghana valley. The outcome of this project will further support the local

  15. NSR&D Program Fiscal Year (FY) 2015 Call for Proposals Mitigation of Seismic Risk at Nuclear Facilities using Seismic Isolation

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    Seismic isolation (SI) has the potential to drastically reduce seismic response of structures, systems, or components (SSCs) and therefore the risk associated with large seismic events (large seismic event could be defined as the design basis earthquake (DBE) and/or the beyond design basis earthquake (BDBE) depending on the site location). This would correspond to a potential increase in nuclear safety by minimizing the structural response and thus minimizing the risk of material release during large seismic events that have uncertainty associated with their magnitude and frequency. The national consensus standard America Society of Civil Engineers (ASCE) Standard 4, Seismic Analysis of Safety Related Nuclear Structures recently incorporated language and commentary for seismically isolating a large light water reactor or similar large nuclear structure. Some potential benefits of SI are: 1) substantially decoupling the SSC from the earthquake hazard thus decreasing risk of material release during large earthquakes, 2) cost savings for the facility and/or equipment, and 3) applicability to both nuclear (current and next generation) and high hazard non-nuclear facilities. Issue: To date no one has evaluated how the benefit of seismic risk reduction reduces cost to construct a nuclear facility. Objective: Use seismic probabilistic risk assessment (SPRA) to evaluate the reduction in seismic risk and estimate potential cost savings of seismic isolation of a generic nuclear facility. This project would leverage ongoing Idaho National Laboratory (INL) activities that are developing advanced (SPRA) methods using Nonlinear Soil-Structure Interaction (NLSSI) analysis. Technical Approach: The proposed study is intended to obtain an estimate on the reduction in seismic risk and construction cost that might be achieved by seismically isolating a nuclear facility. The nuclear facility is a representative pressurized water reactor building nuclear power plant (NPP) structure

  16. French experience in seismic risk analysis and associated research works

    International Nuclear Information System (INIS)

    Mohammadioun, B.

    1984-11-01

    This communication reviews the basic principles of the seismic risk analysis for nuclear installations in France practiced by the IPSN of the CEA. The presentation of each stage of the analysis includes an account of the methods used, the difficulties met, and a comparison with the recommendations of the AIEA-SG-S1. First, this paper deals with the sismotectonic analysis and with the definition of two reference earthquakes. Then, the calculation of the ground motion corresponding to the reference earthquakes is presented. A particular attention is paid to the problems of calculation of ground motion in the case of important earthquakes near active faults and to the effect of the soil on these movements. Finally, some criticisms, a description of studies undertaken at the moment and some recommendations are presented [fr

  17. Seismic Probabilistic Risk Assessment (SPRA), approach and results

    International Nuclear Information System (INIS)

    Campbell, R.D.

    1995-01-01

    During the past 15 years there have been over 30 Seismic Probabilistic Risk Assessments (SPRAs) and Seismic Probabilistic Safety Assessments (SPSAs) conducted of Western Nuclear Power Plants, principally of US design. In this paper PRA and PSA are used interchangeably as the overall process is essentially the same. Some similar assessments have been done for reactors in Taiwan, Korea, Japan, Switzerland and Slovenia. These plants were also principally US supplied or built under US license. Since the restructuring of the governments in former Soviet Bloc countries, there has been grave concern regarding the safety of the reactors in these countries. To date there has been considerable activity in conducting partial seismic upgrades but the overall quantification of risk has not been pursued to the depth that it has in Western countries. This paper summarizes the methodology for Seismic PRA/PSA and compares results of two partially completed and two completed PRAs of soviet designed reactors to results from earlier PRAs on US Reactors. A WWER 440 and a WWER 1000 located in low seismic activity regions have completed PRAs and results show the seismic risk to be very low for both designs. For more active regions, partially completed PRAs of a WWER 440 and WWER 1000 located at the same site show the WWER 440 to have much greater seismic risk than the WWER 1000 plant. The seismic risk from the 1000 MW plant compares with the high end of seismic risk for earlier seismic PRAs in the US. Just as for most US plants, the seismic risk appears to be less than the risk from internal events if risk is measured is terms of mean core damage frequency. However, due to the lack of containment for the earlier WWER 440s, the risk to the public may be significantly greater due to the more probable scenario of an early release. The studies reported have not taken the accident sequences beyond the stage of core damage hence the public heath risk ratios are speculative. (author)

  18. Probabilistic seismic vulnerability and risk assessment of stone masonry structures

    Science.gov (United States)

    Abo El Ezz, Ahmad

    Earthquakes represent major natural hazards that regularly impact the built environment in seismic prone areas worldwide and cause considerable social and economic losses. The high losses incurred following the past destructive earthquakes promoted the need for assessment of the seismic vulnerability and risk of the existing buildings. Many historic buildings in the old urban centers in Eastern Canada such as Old Quebec City are built of stone masonry and represent un-measurable architectural and cultural heritage. These buildings were built to resist gravity loads only and generally offer poor resistance to lateral seismic loads. Seismic vulnerability assessment of stone masonry buildings is therefore the first necessary step in developing seismic retrofitting and pre-disaster mitigation plans. The objective of this study is to develop a set of probability-based analytical tools for efficient seismic vulnerability and uncertainty analysis of stone masonry buildings. A simplified probabilistic analytical methodology for vulnerability modelling of stone masonry building with systematic treatment of uncertainties throughout the modelling process is developed in the first part of this study. Building capacity curves are developed using a simplified mechanical model. A displacement based procedure is used to develop damage state fragility functions in terms of spectral displacement response based on drift thresholds of stone masonry walls. A simplified probabilistic seismic demand analysis is proposed to capture the combined uncertainty in capacity and demand on fragility functions. In the second part, a robust analytical procedure for the development of seismic hazard compatible fragility and vulnerability functions is proposed. The results are given by sets of seismic hazard compatible vulnerability functions in terms of structure-independent intensity measure (e.g. spectral acceleration) that can be used for seismic risk analysis. The procedure is very efficient for

  19. Seismically induced accident sequence analysis of the advanced test reactor

    International Nuclear Information System (INIS)

    Khericha, S.T.; Henry, D.M.; Ravindra, M.K.; Hashimoto, P.S.; Griffin, M.J.; Tong, W.H.; Nafday, A.M.

    1991-01-01

    A seismic probabilistic risk assessment (PRA) was performed for the Department of Energy (DOE) Advanced Test Reactor (ATR) as part of the external events analysis. The risk from seismic events to the fuel in the core and in the fuel storage canal was evaluated. The key elements of this paper are the integration of seismically induced internal flood and internal fire, and the modeling of human error rates as a function of the magnitude of earthquake. The systems analysis was performed by EG ampersand G Idaho, Inc. and the fragility analysis and quantification were performed by EQE International, Inc. (EQE)

  20. State of the Art in Input Ground Motions for Seismic Fragility and Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Han; Choi, In Kil; Kim, Min Kyu [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of a Seismic Probabilistic Safety Analysis (SPSA) is to determine the probability distribution of core damage due to the potential effects of earthquakes. The SPSA is performed based on four steps, a seismic hazard analysis, a component fragility evaluation, a plant system and accident sequence analysis, and a consequence analysis. There are very different spectrum shapes in every ground motions. The structural response and the seismic load applied to equipment are greatly influenced by a spectral shape of the input ground motion. Therefore the input ground motion need to be determined under the same assumption in risk calculation. Several technic for the determination of input ground motions has developed and reviewed in this study. In this research, the methodologies of the determination of input ground motion for the seismic risk assessment are reviewed and discussed. It has developed to reduce the uncertainty in fragility curves and to remove the conservatism in risk values.

  1. Seismic risk perception test

    Science.gov (United States)

    Crescimbene, Massimo; La Longa, Federica; Camassi, Romano; Pino, Nicola Alessandro

    2013-04-01

    The perception of risks involves the process of collecting, selecting and interpreting signals about uncertain impacts of events, activities or technologies. In the natural sciences the term risk seems to be clearly defined, it means the probability distribution of adverse effects, but the everyday use of risk has different connotations (Renn, 2008). The two terms, hazards and risks, are often used interchangeably by the public. Knowledge, experience, values, attitudes and feelings all influence the thinking and judgement of people about the seriousness and acceptability of risks. Within the social sciences however the terminology of 'risk perception' has become the conventional standard (Slovic, 1987). The mental models and other psychological mechanisms which people use to judge risks (such as cognitive heuristics and risk images) are internalized through social and cultural learning and constantly moderated (reinforced, modified, amplified or attenuated) by media reports, peer influences and other communication processes (Morgan et al., 2001). Yet, a theory of risk perception that offers an integrative, as well as empirically valid, approach to understanding and explaining risk perception is still missing". To understand the perception of risk is necessary to consider several areas: social, psychological, cultural, and their interactions. Among the various research in an international context on the perception of natural hazards, it seemed promising the approach with the method of semantic differential (Osgood, C.E., Suci, G., & Tannenbaum, P. 1957, The measurement of meaning. Urbana, IL: University of Illinois Press). The test on seismic risk perception has been constructed by the method of the semantic differential. To compare opposite adjectives or terms has been used a Likert's scale to seven point. The test consists of an informative part and six sections respectively dedicated to: hazard; vulnerability (home and workplace); exposed value (with reference to

  2. Intelligent seismic risk mitigation system on structure building

    Science.gov (United States)

    Suryanita, R.; Maizir, H.; Yuniorto, E.; Jingga, H.

    2018-01-01

    Indonesia located on the Pacific Ring of Fire, is one of the highest-risk seismic zone in the world. The strong ground motion might cause catastrophic collapse of the building which leads to casualties and property damages. Therefore, it is imperative to properly design the structural response of building against seismic hazard. Seismic-resistant building design process requires structural analysis to be performed to obtain the necessary building responses. However, the structural analysis could be very difficult and time consuming. This study aims to predict the structural response includes displacement, velocity, and acceleration of multi-storey building with the fixed floor plan using Artificial Neural Network (ANN) method based on the 2010 Indonesian seismic hazard map. By varying the building height, soil condition, and seismic location in 47 cities in Indonesia, 6345 data sets were obtained and fed into the ANN model for the learning process. The trained ANN can predict the displacement, velocity, and acceleration responses with up to 96% of predicted rate. The trained ANN architecture and weight factors were later used to build a simple tool in Visual Basic program which possesses the features for prediction of structural response as mentioned previously.

  3. Review of seismic probabilistic risk assessment and the use of sensitivity analysis

    International Nuclear Information System (INIS)

    Shiu, K.K.; Reed, J.W.; McCann, M.W. Jr.

    1985-01-01

    This paper presents results of sensitivity reviews performed to address a range of questions which arise in the context of seismic probabilistic risk assessment (PRA). In a seismic PRA, sensitivity evaluations can be divided into three areas: hazard, fragility, and system modeling. As a part of the review of standard boiling water reactor seismic PRA which was performed by General Electric (GE), a reassessment of the plant damage states frequency and a detailed sensitivity analysis were conducted at Brookhaven National Laboratory. The rationale for such an undertaking is that in this case: (1) the standard plant may be sited anywhere in the eastern US (i.e., in regions with safety shutdown earthquake (SSE) values equal to or less than 0.3g peak ground acceleration), (2) it may have equipment whose fragility values could vary over a wide range; and (3) there are variations in system designs outside the original defined scope. Seismic event trees and fault trees were developed to model the different system and plant accident sequences. Hazard curves which represent various sites on the east coast were obtained; alternate structure and equipment fragility data were postulated. Various combinations of hazard and fragility data were analyzed. In addition, system modeling was perturbed to examine the impact upon the final results. Orders of magnitude variation were observed in the plant damage state frequency among the different cases. 7 references, 3 figures, 2 tables

  4. Risk perception versus seismic risk: An introduction

    International Nuclear Information System (INIS)

    Cubeddu, Francesca

    2015-01-01

    A seismic event generally has consequences on the social relationships, economy and culture of the impacted territory. As Mary Douglas quotes, a change into the social perception of risk as consequence of an earthquake may have effects on the lifestyle of the local community. The above mentioned statement is the starting point of this article. illustrating the difference between peril and risk is the second point. According to the Aristotelian theory of categories, risk can be considered as a human characteristic depending on social and cultural factors. Risk is here intended as a social category and cannot be de facto reported as a statistical or stochastic function based on a mathematical formula, as long assumed in the past. This approach, then, requires a deep revision. In this sense, and following the concept of risk perception, seismic risk is analysed in this article in terms of impacts, precautionary measures, risk assessment and management. Knowledge of this topic cannot be intended as a simple philosophical exercise, since right on awareness depend risk reduction, humans and goods too [it

  5. Generalized Fragility Relationships with Local Site Conditions for Probabilistic Performance-based Seismic Risk Assessment of Bridge Inventories

    Directory of Open Access Journals (Sweden)

    Sivathayalan S.

    2012-01-01

    Full Text Available The current practice of detailed seismic risk assessment cannot be easily applied to all the bridges in a large transportation networks due to limited resources. This paper presents a new approach for seismic risk assessment of large bridge inventories in a city or national bridge network based on the framework of probabilistic performance based seismic risk assessment. To account for the influences of local site effects, a procedure to generate site-specific hazard curves that includes seismic hazard microzonation information has been developed for seismic risk assessment of bridge inventories. Simulated ground motions compatible with the site specific seismic hazard are used as input excitations in nonlinear time history analysis of representative bridges for calibration. A normalizing procedure to obtain generalized fragility relationships in terms of structural characteristic parameters of bridge span and size and longitudinal and transverse reinforcement ratios is presented. The seismic risk of bridges in a large inventory can then be easily evaluated using the normalized fragility relationships without the requirement of carrying out detailed nonlinear time history analysis.

  6. Seismic Hazard and Risk Assessments for Beijing-Tianjin-Tangshan, China, Area

    Science.gov (United States)

    Xie, Furen; Wang, Zhenming; Liu, Jingwei

    2011-03-01

    Seismic hazard and risk in the Beijing-Tianjin-Tangshan, China, area were estimated from 500-year intensity observations. First, we digitized the intensity observations (maps) using ArcGIS with a cell size of 0.1 × 0.1°. Second, we performed a statistical analysis on the digitized intensity data, determined an average b value (0.39), and derived the intensity-frequency relationship (hazard curve) for each cell. Finally, based on a Poisson model for earthquake occurrence, we calculated seismic risk in terms of a probability of I ≥ 7, 8, or 9 in 50 years. We also calculated the corresponding 10 percent probability of exceedance of these intensities in 50 years. The advantages of assessing seismic hazard and risk from intensity records are that (1) fewer assumptions (i.e., earthquake source and ground motion attenuation) are made, and (2) site-effect is included. Our study shows that the area has high seismic hazard and risk. Our study also suggests that current design peak ground acceleration or intensity for the area may not be adequate.

  7. A Framework for Understanding Uncertainty in Seismic Risk Assessment.

    Science.gov (United States)

    Foulser-Piggott, Roxane; Bowman, Gary; Hughes, Martin

    2017-10-11

    A better understanding of the uncertainty that exists in models used for seismic risk assessment is critical to improving risk-based decisions pertaining to earthquake safety. Current models estimating the probability of collapse of a building do not consider comprehensively the nature and impact of uncertainty. This article presents a model framework to enhance seismic risk assessment and thus gives decisionmakers a fuller understanding of the nature and limitations of the estimates. This can help ensure that risks are not over- or underestimated and the value of acquiring accurate data is appreciated fully. The methodology presented provides a novel treatment of uncertainties in input variables, their propagation through the model, and their effect on the results. The study presents ranges of possible annual collapse probabilities for different case studies on buildings in different parts of the world, exposed to different levels of seismicity, and with different vulnerabilities. A global sensitivity analysis was conducted to determine the significance of uncertain variables. Two key outcomes are (1) that the uncertainty in ground-motion conversion equations has the largest effect on the uncertainty in the calculation of annual collapse probability; and (2) the vulnerability of a building appears to have an effect on the range of annual collapse probabilities produced, i.e., the level of uncertainty in the estimate of annual collapse probability, with less vulnerable buildings having a smaller uncertainty. © 2017 Society for Risk Analysis.

  8. Risk based seismic design criteria

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1999-01-01

    In order to develop a risk based seismic design criteria the following four issues must be addressed: (1) What target annual probability of seismic induced unacceptable performance is acceptable? (2) What minimum seismic margin is acceptable? (3) Given the decisions made under Issues 1 and 2, at what annual frequency of exceedance should the safe-shutdown-earthquake (SSE) ground motion be defined? (4) What seismic design criteria should be established to reasonably achieve the seismic margin defined under Issue 2? The first issue is purely a policy decision and is not addressed in this paper. Each of the other three issues are addressed. Issues 2 and 3 are integrally tied together so that a very large number of possible combinations of responses to these two issues can be used to achieve the target goal defined under Issue 1. Section 2 lays out a combined approach to these two issues and presents three potentially attractive combined resolutions of these two issues which reasonably achieves the target goal. The remainder of the paper discusses an approach which can be used to develop seismic design criteria aimed at achieving the desired seismic margin defined in resolution of Issue 2. Suggestions for revising existing seismic design criteria to more consistently achieve the desired seismic margin are presented. (orig.)

  9. Seismic risk analyses in the German Risk Study, phase B

    International Nuclear Information System (INIS)

    Hosser, D.; Liemersdorf, H.

    1991-01-01

    The paper discusses some aspects of the seismic risk part of the German Risk Study for Nuclear Power Plants, Phase B. First simplified analyses in Phase A of the study allowed only a rough classification of structures and systems of the PWR reference plant according to their seismic risk contribution. These studies were extended in Phase B using improved models for the dynamic analyses of buildings, structures and components as well as for the probabilistic analyses of seismic loading, failure probabilities and event trees. The methodology of deriving probabilistic seismic load descriptions is explained and compared with the methods in Phase A of the study and in other studies. Some details of the linear and nonlinear dynamic analyses of structures are reported in order to demonstrate the influence of different assumptions for material behaviour and failure criteria. The probabilistic structural and event tree analyses are discussed with respect to distribution assumptions, acceptable simplifications and model uncertainties. Some results for the PWR reference plant are given. (orig.)

  10. Comparison of seismic margin assessment and probabilistic risk assessment in seismic IPE

    International Nuclear Information System (INIS)

    Reed, J.W.; Kassawara, R.P.

    1993-01-01

    A comparison of technical requirements and managerial issues between seismic margin assessment (SMA) and seismic probabilistic risk assessment (SPRA) in a seismic Individual Plant Examination (IPE) is presented and related to requirements for an Unresolved Safety Issue (USI) A-46 review which is required for older nuclear power plants. Advantages and disadvantages are discussed for each approach. Technical requirements reviewed for a seismic IPE include: scope of plants covered, seismic input, scope of review, selection of equipment, required experience and training of engineers, walkdown procedure, evaluation of components, relay review, containment review, quality assurance, products, documentation requirements, and closure procedure. Managerial issues discussed include regulatory acceptability, compatibility with seismic IPE, compliance with seismic IPE requirements, ease of use by utilities, and relative cost

  11. Risk-Informed External Hazards Analysis for Seismic and Flooding Phenomena for a Generic PWR

    Energy Technology Data Exchange (ETDEWEB)

    Parisi, Carlo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steve [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ma, Zhegang [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spears, Bob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Szilard, Ronaldo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosbab, Ben [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-26

    This report describes the activities performed during the FY2017 for the US-DOE Light Water Reactor Sustainability Risk-Informed Safety Margin Characterization (LWRS-RISMC), Industry Application #2. The scope of Industry Application #2 is to deliver a risk-informed external hazards safety analysis for a representative nuclear power plant. Following the advancements occurred during the previous FYs (toolkits identification, models development), FY2017 focused on: increasing the level of realism of the analysis; improving the tools and the coupling methodologies. In particular the following objectives were achieved: calculation of buildings pounding and their effects on components seismic fragility; development of a SAPHIRE code PRA models for 3-loops Westinghouse PWR; set-up of a methodology for performing static-dynamic PRA coupling between SAPHIRE and EMRALD codes; coupling RELAP5-3D/RAVEN for performing Best-Estimate Plus Uncertainty analysis and automatic limit surface search; and execute sample calculations for demonstrating the capabilities of the toolkit in performing a risk-informed external hazards safety analyses.

  12. Probabilistic Seismic Hazard Analysis for Yemen

    Directory of Open Access Journals (Sweden)

    Rakesh Mohindra

    2012-01-01

    Full Text Available A stochastic-event probabilistic seismic hazard model, which can be used further for estimates of seismic loss and seismic risk analysis, has been developed for the territory of Yemen. An updated composite earthquake catalogue has been compiled using the databases from two basic sources and several research publications. The spatial distribution of earthquakes from the catalogue was used to define and characterize the regional earthquake source zones for Yemen. To capture all possible scenarios in the seismic hazard model, a stochastic event set has been created consisting of 15,986 events generated from 1,583 fault segments in the delineated seismic source zones. Distribution of horizontal peak ground acceleration (PGA was calculated for all stochastic events considering epistemic uncertainty in ground-motion modeling using three suitable ground motion-prediction relationships, which were applied with equal weight. The probabilistic seismic hazard maps were created showing PGA and MSK seismic intensity at 10% and 50% probability of exceedance in 50 years, considering local soil site conditions. The resulting PGA for 10% probability of exceedance in 50 years (return period 475 years ranges from 0.2 g to 0.3 g in western Yemen and generally is less than 0.05 g across central and eastern Yemen. The largest contributors to Yemen’s seismic hazard are the events from the West Arabian Shield seismic zone.

  13. Seismic risk control of nuclear power plants using seismic protection systems in stable continental regions: The UK case

    Energy Technology Data Exchange (ETDEWEB)

    Medel-Vera, Carlos, E-mail: cbmedel@uc.cl; Ji, Tianjian, E-mail: tianjian.ji@manchester.ac.uk

    2016-10-15

    Highlights: • Strategies to reduce seismic risk for nuclear power stations in the UK are analysed. • Efficiency of devices to reduce risk: viscous-based higher than hysteretic-based. • Scenario-based incremental dynamic analysis is introduced for use in nuclear stations. • Surfaces of seismic unacceptable performance for nuclear stations are proposed. - Abstract: This article analyses three different strategies on the use of seismic protection systems (SPS) for nuclear power plants (NPPs) in the UK. Such strategies are based on the experience reported elsewhere of seismically protected nuclear reactor buildings in other stable continental regions. Analyses are conducted using an example of application based on a 1000 MW Pressurised Water Reactor building located in a representative UK nuclear site. The efficiency of the SPS is probabilistically assessed to achieve possible risk reduction for both rock and soil sites in comparison with conventionally constructed NPPs. Further analyses are conducted to study how the reduction of risk changes when all controlling scenarios of the site are included. This is done by introducing a scenario-based incremental dynamic analysis aimed at the generation of surfaces for unacceptable performance of NPPs as a function of earthquake magnitude (M{sub w}) and distance-to-site (R{sub epi}). General guidelines are proposed to potentially use SPS in future NPPs in the UK. Such recommendations can be used by the British nuclear industry in the future development of 12 new reactors to be built in the next two decades to generate 16 GWe of new nuclear capacity.

  14. A procedure for seismic risk reduction in Campania Region

    International Nuclear Information System (INIS)

    Zuccaro, G.; Palmieri, M.; Cicalese, S.; Grassi, V.; Rauci, M.; Maggio, F.

    2008-01-01

    The Campania Region has set and performed a peculiar procedure in the field of seismic risk reduction. Great attention has been paid to public strategic buildings such as town halls, civil protection buildings and schools. The Ordinance 3274 promulgate in the 2004 by the Italian central authority obliged the owners of strategic buildings to perform seismic analyses within 2008 in order to check the safety of the structures and the adequacy to the use. In the procedure the Campania region, instead of the local authorities, ensure the complete drafting of seismic checks through financial resources of the Italian Government. A regional scientific technical committee has been constituted, composed of scientific experts, academics in seismic engineering. The committee has drawn up guidelines for the processing of seismic analyses. At the same time, the Region has issued a public competition to select technical seismic engineering experts to appoint seismic analysis in accordance with guidelines. The scientific committee has the option of requiring additional documents and studies in order to approve the safety checks elaborated. The Committee is supported by a technical and administrative secretariat composed of a group of expert in seismic engineering. At the moment several seismic safety checks have been completed. The results will be presented in this paper. Moreover, the policy to mitigate the seismic risk, set by Campania region, was to spend the most of the financial resources available on structural strengthening of public strategic buildings rather than in safety checks. A first set of buildings of which the response under seismic action was already known by data and studies of vulnerability previously realised, were selected for immediate retrofitting designs. Secondly, an other set of buildings were identified for structural strengthening. These were selected by using the criteria specified in the Guide Line prepared by the Scientific Committee and based on

  15. A procedure for seismic risk reduction in Campania Region

    Science.gov (United States)

    Zuccaro, G.; Palmieri, M.; Maggiò, F.; Cicalese, S.; Grassi, V.; Rauci, M.

    2008-07-01

    The Campania Region has set and performed a peculiar procedure in the field of seismic risk reduction. Great attention has been paid to public strategic buildings such as town halls, civil protection buildings and schools. The Ordinance 3274 promulgate in the 2004 by the Italian central authority obliged the owners of strategic buildings to perform seismic analyses within 2008 in order to check the safety of the structures and the adequacy to the use. In the procedure the Campania region, instead of the local authorities, ensure the complete drafting of seismic checks through financial resources of the Italian Government. A regional scientific technical committee has been constituted, composed of scientific experts, academics in seismic engineering. The committee has drawn up guidelines for the processing of seismic analyses. At the same time, the Region has issued a public competition to select technical seismic engineering experts to appoint seismic analysis in accordance with guidelines. The scientific committee has the option of requiring additional documents and studies in order to approve the safety checks elaborated. The Committee is supported by a technical and administrative secretariat composed of a group of expert in seismic engineering. At the moment several seismic safety checks have been completed. The results will be presented in this paper. Moreover, the policy to mitigate the seismic risk, set by Campania region, was to spend the most of the financial resources available on structural strengthening of public strategic buildings rather than in safety checks. A first set of buildings of which the response under seismic action was already known by data and studies of vulnerability previously realised, were selected for immediate retrofitting designs. Secondly, an other set of buildings were identified for structural strengthening. These were selected by using the criteria specified in the Guide Line prepared by the Scientific Committee and based on

  16. Evolution of a seismic risk assessment technique

    International Nuclear Information System (INIS)

    Wells, J.E.; Cummings, G.E.

    1985-01-01

    To assist the NRC in its licensing evaluation role the Seismic Safety Margins Research Program (SSMRP) was started at LLNL in 1978. Its goal was to develop tools and data bases to evaluate the probability of earthquake caused radioactive releases from commercial nuclear power plants. The methodology was finalized in 1982 and a seismic risk assessment of the Zion Nuclear Power Plant was finished in 1983. Work continues on the study of the LaSalle Boiling Water Reactor. This paper will discuss some of the effects of the assumptions made during development of the systems analysis techniques used in SSMRP in light of the results obtained on studies to date. 5 refs

  17. Seismic risk assessment of Trani's Cathedral bell tower in Apulia, Italy

    Science.gov (United States)

    Diaferio, Mariella; Foti, Dora

    2017-09-01

    The present paper deals with the evaluation of the seismic vulnerability of slender historical buildings; these structures, in fact, may manifest a high risk with respect to seismic actions as usually they have been designed to resist to gravitational loads only, and are characterized by a high flexibility. To evaluate this behavior, the bell tower of the Trani's Cathedral is investigated. The tower is 57 m tall and is characterized by an unusual building typology, i.e., the walls are composed of a concrete core coupled with external masonry stones. The dynamic parameters and the mechanical properties of the tower have been evaluated on the basis of an extensive experimental campaign that made use of ambient vibration tests and ground penetrating radar tests. Such data have been utilized to calibrate a numerical model of the examined tower. A linear static analysis, a dynamic analysis and a nonlinear static analysis have been carried out on such model to evaluate the displacement capacity of the tower and the seismic risk assessment in accordance with the Italian guidelines.

  18. Seismic analysis response factors and design margins of piping systems

    International Nuclear Information System (INIS)

    Shieh, L.C.; Tsai, N.C.; Yang, M.S.; Wong, W.L.

    1985-01-01

    The objective of the simplified methods project of the Seismic Safety Margins Research Program is to develop a simplified seismic risk methodology for general use. The goal is to reduce seismic PRA costs to roughly 60 man-months over a 6 to 8 month period, without compromising the quality of the product. To achieve the goal, it is necessary to simplify the calculational procedure of the seismic response. The response factor approach serves this purpose. The response factor relates the median level response to the design data. Through a literature survey, we identified the various seismic analysis methods adopted in the U.S. nuclear industry for the piping system. A series of seismic response calculations was performed. The response factors and their variabilities for each method of analysis were computed. A sensitivity study of the effect of piping damping, in-structure response spectra envelop method, and analysis method was conducted. In addition, design margins, which relate the best-estimate response to the design data, are also presented

  19. Seismic risk maps of Switzerland; description of the probabilistic method and discussion of some input parameters

    International Nuclear Information System (INIS)

    Mayer-Rosa, D.; Merz, H.A.

    1976-01-01

    The probabilistic model used in a seismic risk mapping project for Switzerland is presented. Some of its advantages and limitations are spelled out. In addition some earthquake parameters which should be carefully investigated before using them in a seismic risk analysis are discussed

  20. Seismic Fragility Analysis of a Condensate Storage Tank with Age-Related Degradations

    Energy Technology Data Exchange (ETDEWEB)

    Nie, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Braverman, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hofmayer, C [Brookhaven National Lab. (BNL), Upton, NY (United States); Choun, Y-S [Brookhaven National Lab. (BNL), Upton, NY (United States); Kim, MK [Brookhaven National Lab. (BNL), Upton, NY (United States); Choi, I-K [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2011-04-01

    The Korea Atomic Energy Research Institute (KAERI) is conducting a five-year research project to develop a realistic seismic risk evaluation system which includes the consideration of aging of structures and components in nuclear power plants (NPPs). The KAERI research project includes three specific areas that are essential to seismic probabilistic risk assessment (PRA): (1) probabilistic seismic hazard analysis, (2) seismic fragility analysis including the effects of aging, and (3) a plant seismic risk analysis. Since 2007, Brookhaven National Laboratory (BNL) has entered into a collaboration agreement with KAERI to support its development of seismic capability evaluation technology for degraded structures and components. The collaborative research effort is intended to continue over a five year period. The goal of this collaboration endeavor is to assist KAERI to develop seismic fragility analysis methods that consider the potential effects of age-related degradation of structures, systems, and components (SSCs). The research results of this multi-year collaboration will be utilized as input to seismic PRAs. This report describes the research effort performed by BNL for the Year 4 scope of work. This report was developed as an update to the Year 3 report by incorporating a major supplement to the Year 3 fragility analysis. In the Year 4 research scope, an additional study was carried out to consider an additional degradation scenario, in which the three basic degradation scenarios, i.e., degraded tank shell, degraded anchor bolts, and cracked anchorage concrete, are combined in a non-perfect correlation manner. A representative operational water level is used for this effort. Building on the same CDFM procedure implemented for the Year 3 Tasks, a simulation method was applied using optimum Latin Hypercube samples to characterize the deterioration behavior of the fragility capacity as a function of age-related degradations. The results are summarized in Section 5

  1. Research items regarding seismic residual risk evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    After learning the Fukushima Dai-ichi NPP severe accidents in 2011, the government investigation committee proposed the effective use of probabilistic safety assessment (PSA), and now it is required to establish new safety rules reflecting the results of probabilistic risk assessment (PRA) and proposed severe accident measures. Since the Seismic Design Guide has been revised on September 19, 2006, JNES has been discussing seismic PRA (Levels 1-3) methods to review licensees' residual risk assessment while preparing seismic PRA models. Meanwhile, new safety standards for light water reactors are to be issued and enforced on July 2013, which require the residual risk of tsunami, in addition to earthquakes, should be lowered as much as possible. The Fukushima accidents raised the problems related to risk assessment, e.g. approaches based on multi-hazard (earthquake and tsunami), multi-unit, multi-site, and equipment's common cause failure. This fiscal year, while performing seismic and/or tsunami PRA to work on these problems, JNES picked up the equipment whose failure greatly contribute to core damage, surveyed accident management measures on those equipment as well as effectiveness to reduce core damage probability. (author)

  2. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    Energy Technology Data Exchange (ETDEWEB)

    E.N. Lindner

    2004-12-03

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  3. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    International Nuclear Information System (INIS)

    E.N. Lindner

    2004-01-01

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  4. Seismic Isolation Working Meeting Gap Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The ultimate goal in nuclear facility and nuclear power plant operations is operating safety during normal operations and maintaining core cooling capabilities during off-normal events including external hazards. Understanding the impact external hazards, such as flooding and earthquakes, have on nuclear facilities and NPPs is critical to deciding how to manage these hazards to expectable levels of risk. From a seismic risk perspective the goal is to manage seismic risk. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components (SSCs)). There are large uncertainties associated with evolving nature of the seismic hazard curves. Additionally there are requirements within DOE and potential requirements within NRC to reconsider updated seismic hazard curves every 10 years. Therefore opportunity exists for engineered solutions to manage this seismic uncertainty. One engineered solution is seismic isolation. Current seismic isolation (SI) designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefit of SI application in the nuclear industry is being recognized and SI systems have been proposed, in the American Society of Civil Engineers (ASCE) 4 standard, to be released in 2014, for Light Water Reactors (LWR) facilities using commercially available technology. However, there is a lack of industry application to the nuclear industry and uncertainty with implementing the procedures outlined in ASCE-4. Opportunity exists to determine barriers associated with implementation of current ASCE-4 standard language.

  5. Advanced Seismic Fragility Modeling using Nonlinear Soil-Structure Interaction Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bolisetti, Chandu [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Talaat, Mohamed [Simpson-Gupertz & Heger, Waltham, MA (United States); Hashimoto, Philip [Simpson-Gupertz & Heger, Waltham, MA (United States)

    2015-09-01

    The goal of this effort is to compare the seismic fragilities of a nuclear power plant system obtained by a traditional seismic probabilistic risk assessment (SPRA) and an advanced SPRA that utilizes Nonlinear Soil-Structure Interaction (NLSSI) analysis. Soil-structure interaction (SSI) response analysis for a traditional SPRA involves the linear analysis, which ignores geometric nonlinearities (i.e., soil and structure are glued together and the soil material undergoes tension when the structure uplifts). The NLSSI analysis will consider geometric nonlinearities.

  6. Extreme seismicity and disaster risks: Hazard versus vulnerability (Invited)

    Science.gov (United States)

    Ismail-Zadeh, A.

    2013-12-01

    Although the extreme nature of earthquakes has been known for millennia due to the resultant devastation from many of them, the vulnerability of our civilization to extreme seismic events is still growing. It is partly because of the increase in the number of high-risk objects and clustering of populations and infrastructure in the areas prone to seismic hazards. Today an earthquake may affect several hundreds thousand lives and cause significant damage up to hundred billion dollars; it can trigger an ecological catastrophe if occurs in close vicinity to a nuclear power plant. Two types of extreme natural events can be distinguished: (i) large magnitude low probability events, and (ii) the events leading to disasters. Although the first-type events may affect earthquake-prone countries directly or indirectly (as tsunamis, landslides etc.), the second-type events occur mainly in economically less-developed countries where the vulnerability is high and the resilience is low. Although earthquake hazards cannot be reduced, vulnerability to extreme events can be diminished by monitoring human systems and by relevant laws preventing an increase in vulnerability. Significant new knowledge should be gained on extreme seismicity through observations, monitoring, analysis, modeling, comprehensive hazard assessment, prediction, and interpretations to assist in disaster risk analysis. The advanced disaster risk communication skill should be developed to link scientists, emergency management authorities, and the public. Natural, social, economic, and political reasons leading to disasters due to earthquakes will be discussed.

  7. Seismic risk assessment for road in Indonesia

    Science.gov (United States)

    Toyfur, Mona Foralisa; Pribadi, Krishna S.

    2016-05-01

    Road networks in Indonesia consist of 446,000 km of national, provincial and local roads as well as toll highways. Indonesia is one of countries that exposed to various natural hazards, such as earthquakes, floods, landslides, etc. Within the Indonesian archipelago, several global tectonic plates interact, such as the Indo-Australian, Pacific, Eurasian, resulting in a complex geological setting, characterized by the existence of seismically active faults and subduction zones and a chain of more than one hundred active volcanoes. Roads in Indonesia are vital infrastructure needed for people and goods movement, thus supporting community life and economic activities, including promoting regional economic development. Road damages and losses due to earthquakes have not been studied widely, whereas road disruption caused enormous economic damage. The aim of this research is to develop a method to analyse risk caused by seismic hazard to roads. The seismic risk level of road segment is defined using an earthquake risk index, adopting the method of Earthquake Disaster Risk Index model developed by Davidson (1997). Using this method, road segments' risk level can be defined and compared, and road risk map can be developed as a tool for prioritizing risk mitigation programs for road networks in Indonesia.

  8. Seismic analysis of liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Gilbert, R.J.; Martelli, A.

    1989-06-01

    This report is a general survey of the recent methods to predict the seismic structural behaviour of LMFBRs. It shall put into evidence the impact of seismic analysis on the design of the different structures of the reactor. This report is addressed to specialists and institutions of governmental organizations in industrialized and developing countries responsible for the design and operation of LMFBRs. The information presented should enable specialists in the R and D institutions and industries likely to be involved, to establish the correct course of the design and operation of LMFBRs. Also, the safety aspect of seismic risk are emphasized in the report. Refs and figs

  9. Seismic Risk Assessment and Loss Estimation for Tbilisi City

    Science.gov (United States)

    Tsereteli, Nino; Alania, Victor; Varazanashvili, Otar; Gugeshashvili, Tengiz; Arabidze, Vakhtang; Arevadze, Nika; Tsereteli, Emili; Gaphrindashvili, Giorgi; Gventcadze, Alexander; Goguadze, Nino; Vephkhvadze, Sophio

    2013-04-01

    The proper assessment of seismic risk is of crucial importance for society protection and city sustainable economic development, as it is the essential part to seismic hazard reduction. Estimation of seismic risk and losses is complicated tasks. There is always knowledge deficiency on real seismic hazard, local site effects, inventory on elements at risk, infrastructure vulnerability, especially for developing countries. Lately great efforts was done in the frame of EMME (earthquake Model for Middle East Region) project, where in the work packages WP1, WP2 , WP3 and WP4 where improved gaps related to seismic hazard assessment and vulnerability analysis. Finely in the frame of work package wp5 "City Scenario" additional work to this direction and detail investigation of local site conditions, active fault (3D) beneath Tbilisi were done. For estimation economic losses the algorithm was prepared taking into account obtained inventory. The long term usage of building is very complex. It relates to the reliability and durability of buildings. The long term usage and durability of a building is determined by the concept of depreciation. Depreciation of an entire building is calculated by summing the products of individual construction unit' depreciation rates and the corresponding value of these units within the building. This method of calculation is based on an assumption that depreciation is proportional to the building's (constructions) useful life. We used this methodology to create a matrix, which provides a way to evaluate the depreciation rates of buildings with different type and construction period and to determine their corresponding value. Finally loss was estimated resulting from shaking 10%, 5% and 2% exceedance probability in 50 years. Loss resulting from scenario earthquake (earthquake with possible maximum magnitude) also where estimated.

  10. Urban seismic risk assessment: statistical repair cost data and probable structural losses based on damage scenario—correlation analysis

    Science.gov (United States)

    Eleftheriadou, Anastasia K.; Baltzopoulou, Aikaterini D.; Karabinis, Athanasios I.

    2016-06-01

    The current seismic risk assessment is based on two discrete approaches, actual and probable, validating afterwards the produced results. In the first part of this research, the seismic risk is evaluated from the available data regarding the mean statistical repair/strengthening or replacement cost for the total number of damaged structures (180,427 buildings) after the 7/9/1999 Parnitha (Athens) earthquake. The actual evaluated seismic risk is afterwards compared to the estimated probable structural losses, which is presented in the second part of the paper, based on a damage scenario in the referring earthquake. The applied damage scenario is based on recently developed damage probability matrices (DPMs) from Athens (Greece) damage database. The seismic risk estimation refers to 750,085 buildings situated in the extended urban region of Athens. The building exposure is categorized in five typical structural types and represents 18.80 % of the entire building stock in Greece. The last information is provided by the National Statistics Service of Greece (NSSG) according to the 2000-2001 census. The seismic input is characterized by the ratio, a g/ a o, where a g is the regional peak ground acceleration (PGA) which is evaluated from the earlier estimated research macroseismic intensities, and a o is the PGA according to the hazard map of the 2003 Greek Seismic Code. Finally, the collected investigated financial data derived from different National Services responsible for the post-earthquake crisis management concerning the repair/strengthening or replacement costs or other categories of costs for the rehabilitation of earthquake victims (construction and function of settlements for earthquake homeless, rent supports, demolitions, shorings) are used to determine the final total seismic risk factor.

  11. Risk assessment and early warning systems for industrial facilities in seismic zones

    International Nuclear Information System (INIS)

    Salzano, Ernesto; Garcia Agreda, Anita; Di Carluccio, Antonio; Fabbrocino, Giovanni

    2009-01-01

    Industrial equipments and systems can suffer structural damage when hit by earthquakes, so that accidental scenarios as fire, explosion and dispersion of toxic substances can take place. As a result, overall damage to people, environment and properties increases. The present paper deals with seismic risk analysis of industrial facilities where atmospheric storage tanks (anchored or unanchored to ground), horizontal pressurised tanks, reactors and pumps are installed. Simplified procedures and methodologies based on historical database and literature data on natural-technological (Na-Tech) accidents for seismic risk assessment are discussed. Equipment-specific fragility curves have been thus derived depending on a single earthquake measure, peak ground acceleration (PGA). Fragility parameters have been then transformed to linear probit coefficients in order to obtain reliable threshold values for earthquake intensity measure, both for structural damage and loss of containment. These threshold values are of great interest when development of active and passive mitigation actions and systems, safety management, and the implementation of early warning system are concerned. The approach is general and can be implemented in any available code or procedure for risk assessment. Some results of seismic analysis of atmospheric storage tanks are also presented for validation.

  12. Seismic hazard assessment: Issues and alternatives

    Science.gov (United States)

    Wang, Z.

    2011-01-01

    Seismic hazard and risk are two very important concepts in engineering design and other policy considerations. Although seismic hazard and risk have often been used inter-changeably, they are fundamentally different. Furthermore, seismic risk is more important in engineering design and other policy considerations. Seismic hazard assessment is an effort by earth scientists to quantify seismic hazard and its associated uncertainty in time and space and to provide seismic hazard estimates for seismic risk assessment and other applications. Although seismic hazard assessment is more a scientific issue, it deserves special attention because of its significant implication to society. Two approaches, probabilistic seismic hazard analysis (PSHA) and deterministic seismic hazard analysis (DSHA), are commonly used for seismic hazard assessment. Although PSHA has been pro-claimed as the best approach for seismic hazard assessment, it is scientifically flawed (i.e., the physics and mathematics that PSHA is based on are not valid). Use of PSHA could lead to either unsafe or overly conservative engineering design or public policy, each of which has dire consequences to society. On the other hand, DSHA is a viable approach for seismic hazard assessment even though it has been labeled as unreliable. The biggest drawback of DSHA is that the temporal characteristics (i.e., earthquake frequency of occurrence and the associated uncertainty) are often neglected. An alternative, seismic hazard analysis (SHA), utilizes earthquake science and statistics directly and provides a seismic hazard estimate that can be readily used for seismic risk assessment and other applications. ?? 2010 Springer Basel AG.

  13. Seismic margin analysis technique for nuclear power plant structures

    International Nuclear Information System (INIS)

    Seo, Jeong Moon; Choi, In Kil

    2001-04-01

    In general, the Seismic Probabilistic Risk Assessment (SPRA) and the Seismic Margin Assessment(SAM) are used for the evaluation of realistic seismic capacity of nuclear power plant structures. Seismic PRA is a systematic process to evaluate the seismic safety of nuclear power plant. In our country, SPRA has been used to perform the probabilistic safety assessment for the earthquake event. SMA is a simple and cost effective manner to quantify the seismic margin of individual structural elements. This study was performed to improve the reliability of SMA results and to confirm the assessment procedure. To achieve this goal, review for the current status of the techniques and procedures was performed. Two methodologies, CDFM (Conservative Deterministic Failure Margin) sponsored by NRC and FA (Fragility Analysis) sponsored by EPRI, were developed for the seismic margin review of NPP structures. FA method was originally developed for Seismic PRA. CDFM approach is more amenable to use by experienced design engineers including utility staff design engineers. In this study, detailed review on the procedures of CDFM and FA methodology was performed

  14. Russian regulatory approaches to seismic design and seismic analysis of NPP piping

    International Nuclear Information System (INIS)

    Kaliberda, Y.V.

    2003-01-01

    The paper presents an overview of Russian regulatory approaches to seismic design and seismic analysis of NPP piping. The paper is focused on categorization and seismic analysis of nuclear power plant items (piping, equipment, supports, valves, but not building structures). The paper outlines the current seismic recommendations, corresponding methods with the examples of calculation models. The paper considers calculation results of the mechanisms of dynamic behavior and the problems of developing a rational and economical approaches to seismic design and seismic protection. (author)

  15. Advanced Seismic Probabilistic Risk Assessment Demonstration Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Idaho National Laboratories (INL) has an ongoing research and development (R&D) project to remove excess conservatism from seismic probabilistic risk assessments (SPRA) calculations. These risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. This report presents a plan for improving our current traditional SPRA process using a seismic event recorded at a nuclear power plant site, with known outcomes, to improve the decision making process. SPRAs are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility).

  16. Seismic hazard, risk, and design for South America

    Science.gov (United States)

    Petersen, Mark D.; Harmsen, Stephen; Jaiswal, Kishor; Rukstales, Kenneth S.; Luco, Nicolas; Haller, Kathleen; Mueller, Charles; Shumway, Allison

    2018-01-01

    We calculate seismic hazard, risk, and design criteria across South America using the latest data, models, and methods to support public officials, scientists, and engineers in earthquake risk mitigation efforts. Updated continental scale seismic hazard models are based on a new seismicity catalog, seismicity rate models, evaluation of earthquake sizes, fault geometry and rate parameters, and ground‐motion models. Resulting probabilistic seismic hazard maps show peak ground acceleration, modified Mercalli intensity, and spectral accelerations at 0.2 and 1 s periods for 2%, 10%, and 50% probabilities of exceedance in 50 yrs. Ground shaking soil amplification at each site is calculated by considering uniform soil that is applied in modern building codes or by applying site‐specific factors based on VS30">VS30 shear‐wave velocities determined through a simple topographic proxy technique. We use these hazard models in conjunction with the Prompt Assessment of Global Earthquakes for Response (PAGER) model to calculate economic and casualty risk. Risk is computed by incorporating the new hazard values amplified by soil, PAGER fragility/vulnerability equations, and LandScan 2012 estimates of population exposure. We also calculate building design values using the guidelines established in the building code provisions. Resulting hazard and associated risk is high along the northern and western coasts of South America, reaching damaging levels of ground shaking in Chile, western Argentina, western Bolivia, Peru, Ecuador, Colombia, Venezuela, and in localized areas distributed across the rest of the continent where historical earthquakes have occurred. Constructing buildings and other structures to account for strong shaking in these regions of high hazard and risk should mitigate losses and reduce casualties from effects of future earthquake strong ground shaking. National models should be developed by scientists and engineers in each country using the best

  17. Coupling mode-destination accessibility with seismic risk assessment to identify at-risk communities

    International Nuclear Information System (INIS)

    Miller, Mahalia; Baker, Jack W.

    2016-01-01

    In this paper, we develop a framework for coupling mode-destination accessibility with quantitative seismic risk assessment to identify communities at high risk for travel disruptions after an earthquake. Mode-destination accessibility measures the ability of people to reach destinations they desire. We use a probabilistic seismic risk assessment procedure, including a stochastic set of earthquake events, ground-motion intensity maps, damage maps, and realizations of traffic and accessibility impacts. For a case study of the San Francisco Bay Area, we couple our seismic risk framework with a practical activity-based traffic model. As a result, we quantify accessibility risk probabilistically by community and household type. We find that accessibility varies more strongly as a function of travelers' geographic location than as a function of their income class, and we identify particularly at-risk communities. We also observe that communities more conducive to local trips by foot or bike are predicted to be less impacted by losses in accessibility. This work shows the potential to link quantitative risk assessment methodologies with high-resolution travel models used by transportation planners. Quantitative risk metrics of this type should have great utility for planners working to reduce risk to a region's infrastructure systems. - Highlights: • We couple mode-destination accessibility with probabilistic seismic risk assessment. • Results identify communities at high risk for post-earthquake travel disruptions. • Accessibility varies more as a function of home location than by income. • Our model predicts reduced accessibility risk for more walking-friendly communities.

  18. Seismotectonic Conditions and Seismic Risk in Gori

    International Nuclear Information System (INIS)

    Varazanashvili, O.; Tsereteli, N.; Sumbadze, B.; Mukhadze, T.

    2006-01-01

    The seismic history and seismotectonic conditions of earthquake initiation are investigated in Gori and surrounding area. The main parameters of the newly discovered past earthquake at Takhtisdziri are estimated. The levels of seismic risk of 7,8 and 9 intensity scenario earthquakes estimated in Gori. Also damage of sity caused by destroying Kartli earthquake of 1920 is estimated. (author)

  19. Magnitudes and frequencies of earthquakes in relation to seismic risk

    International Nuclear Information System (INIS)

    Sharma, R.D.

    1989-01-01

    Estimating the frequencies of occurrence of earthquakes of different magnitudes on a regional basis is an important task in estimating seismic risk at a construction site. Analysis of global earthquake data provides an insight into the magnitudes frequency relationship in a statistical manner. It turns out that, whereas a linear relationship between the logarithm of earthquake occurrence rates and the corresponding earthquake magnitudes fits well in the magnitude range between 5 and 7, a second degree polynomial in M, the earthquake magnitude provides a better description of the frequencies of earthquakes in a much wider range of magnitudes. It may be possible to adopt magnitude frequency relation for regions, for which adequate earthquake data are not available, to carry out seismic risk calculations. (author). 32 refs., 8 tabs., 7 figs

  20. Cities at risk: status of Italian planning system in reducing seismic and hydrogeological risks

    Directory of Open Access Journals (Sweden)

    Grazia Di Giovanni

    2016-03-01

    Full Text Available Italy and its urban systems are under high seismic and hydrogeological risks. The awareness about the role of human activities in the genesis of disasters is achieved in the scientific debate, as well as the role of urban and regional planning in reducing risks. The paper reviews the state of Italian major cities referred to hydrogeological and seismic risk by: 1 extrapolating data and maps about seismic hazard and landslide risk concerning cities with more than 50.000 inhabitants and metropolitan contexts, and 2 outlining how risk reduction is framed in Italian planning system (at national and regional levels. The analyses of available data and the review of the normative framework highlight the existing gaps in addressing risk reduction: nevertheless a wide knowledge about natural risks afflicting Italian territory and an articulated regulatory framework, the available data about risks are not exhaustive, and risk reduction policies and multidisciplinary pro-active approaches are only partially fostered and applied.

  1. Assessing the cost-effectiveness of seismic risk reduction options in oil industry

    International Nuclear Information System (INIS)

    Nasserasadi, K.; Ghafory-Ashtiany, M.

    2007-01-01

    An integrated probabilistic methodology for cost-efficiency estimation of different sort of seismic risk management measures are introduced by adding Cost Benefit Analysis (CBA) module to an integrated seismic risk assessment model. An oil refinery in Iran has been selected for case study and cost-efficiency of software and hardware mitigation measures are evaluated. The results have shown that: (1) software mitigation measures have more benefit than hardware ones, (2) considering indirect loss in CBA lead to more benefit-cost ratio and (3) although increase of discount ratio decreases the benefit-cost ratio, the arrangement of mitigation measures from benefit-cost viewpoint are constant. (authors)

  2. Seismic fragility analysis of buried steel piping at P, L, and K reactors

    International Nuclear Information System (INIS)

    Wingo, H.E.

    1989-10-01

    Analysis of seismic strength of buried cooling water piping in reactor areas is necessary to evaluate the risk of reactor operation because seismic events could damage these buried pipes and cause loss of coolant accidents. This report documents analysis of the ability of this piping to withstand the combined effects of the propagation of seismic waves, the possibility that the piping may not behave in a completely ductile fashion, and the distortions caused by relative displacements of structures connected to the piping

  3. Seismic Risk Assessment of Italian Seaports Using GIS

    International Nuclear Information System (INIS)

    Bartolomei, Anna; Corigliano, Mirko; Lai, Carlo G.

    2008-01-01

    Seaports are crucial elements in the export and import of goods and/or on the flow of travellers in the tourism industry of many industrialised nations included Italy. Experience gained from recent earthquakes (e.g. 1989 Loma Prieta in USA, 1995 Hyogoken-Nanbu and 2003 Tokachi-Oki in Japan) have dramatically demonstrated the seismic vulnerability of seaport structures and the severe damage that can be caused by ground shaking. In Italy, the Department of Civil Protection has funded a research project to develop a methodology for the seismic design of new marginal wharves and assessment of existing structures at seaports located in areas of medium or high seismicity. This paper shows part of the results of this research project, currently underway, with particular reference to the seismic risk assessment through an interactive, geographically referenced database (GIS). Standard risk assessment have been carried out for the Gioia Tauro port in Calabria (Italy) using the empirical curves implemented by the National Institute of Building Sciences (NIBS, 2004)

  4. Seismic Risk Assessment of Italian Seaports Using GIS

    Science.gov (United States)

    Bartolomei, Anna; Corigliano, Mirko; Lai, Carlo G.

    2008-07-01

    Seaports are crucial elements in the export and import of goods and/or on the flow of travellers in the tourism industry of many industrialised nations included Italy. Experience gained from recent earthquakes (e.g. 1989 Loma Prieta in USA, 1995 Hyogoken-Nanbu and 2003 Tokachi-Oki in Japan) have dramatically demonstrated the seismic vulnerability of seaport structures and the severe damage that can be caused by ground shaking. In Italy, the Department of Civil Protection has funded a research project to develop a methodology for the seismic design of new marginal wharves and assessment of existing structures at seaports located in areas of medium or high seismicity. This paper shows part of the results of this research project, currently underway, with particular reference to the seismic risk assessment through an interactive, geographically referenced database (GIS). Standard risk assessment have been carried out for the Gioia Tauro port in Calabria (Italy) using the empirical curves implemented by the National Institute of Building Sciences (NIBS, 2004).

  5. Seismic fragility analysis of the block masonry wall in nuclear power plants

    International Nuclear Information System (INIS)

    Wang, Z-L.; Pandey, M.D.; Xie, X-C.

    2014-01-01

    The evaluation of seismic fragility of a structure is an integral part in the Seismic Probabilistic Risk Analysis (SPRA). The block masonry wall, a commonly used barrier in nuclear power plants, is fairly vulnerable to failure under an earthquake. In practice, the seismic fragility of block walls is commonly evaluated using a simple deterministic approach called Conservative Deterministic Failure Margin (CDFM) method. This paper presents a more formal fragility analysis of a block wall based on rigorous probabilistic methods and the accuracy of the CDFM method is evaluated by comparison to the more rigorous FA method. (author)

  6. Structural reliability analysis and seismic risk assessment

    International Nuclear Information System (INIS)

    Hwang, H.; Reich, M.; Shinozuka, M.

    1984-01-01

    This paper presents a reliability analysis method for safety evaluation of nuclear structures. By utilizing this method, it is possible to estimate the limit state probability in the lifetime of structures and to generate analytically the fragility curves for PRA studies. The earthquake ground acceleration, in this approach, is represented by a segment of stationary Gaussian process with a zero mean and a Kanai-Tajimi Spectrum. All possible seismic hazard at a site represented by a hazard curve is also taken into consideration. Furthermore, the limit state of a structure is analytically defined and the corresponding limit state surface is then established. Finally, the fragility curve is generated and the limit state probability is evaluated. In this paper, using a realistic reinforced concrete containment as an example, results of the reliability analysis of the containment subjected to dead load, live load and ground earthquake acceleration are presented and a fragility curve for PRA studies is also constructed

  7. The role of GIS in urban seismic risk studies: application to the city of Almería (southern Spain)

    Science.gov (United States)

    Rivas-Medina, A.; Gaspar-Escribano, J. M.; Benito, B.; Bernabé, M. A.

    2013-11-01

    This work describes the structure and characteristics of the geographic information system (GIS) developed for the urban seismic risk study of the city of Almería (southern Spain), identifying the stages in which the use of this tool proved to be very beneficial for adopting informed decisions throughout the execution of the work. After the completion of the regional emergency plans for seismic risk in Spain and its subsequent approval by the National Civil Defence Commission, the municipalities that need to develop specific local seismic risk plans have been identified. Hence, the next action is to develop urban seismic risk analyses at a proper scale (Urban Seismic Risk Evaluation - Risk-UR). For this evaluation, different factors influencing seismic risk such as seismic hazard, geotechnical soil characteristics, vulnerability of structures of the region, reparation costs of damaged buildings and exposed population are combined. All these variables are gathered and analysed within a GIS and subsequently used for seismic risk estimation. The GIS constitutes a highly useful working tool because it facilitates data interoperability, making the great volume of information required and the numerous processes that take part in the calculations easier to handle, speeding up the analysis and the interpretation and presentation of the results of the different working phases. The result of this study is based on a great set of variables that provide a comprehensive view of the urban seismic risk, such as the damage distribution of buildings and dwellings of different typologies, the mean damage and the number of uninhabitable buildings for the expected seismic motion, the number of dead and injured at different times of the day, the cost of reconstruction and repair of buildings, among others. These results are intended for interpretation and decision making in emergency management by unspecialised users (Civil Defence technicians and managers).

  8. Seismic risk evaluation for high voltage air insulated substations

    International Nuclear Information System (INIS)

    Camensig, Carlo; Bresesti, Luca; Clementel, Stefano; Salvetti, Maurizio

    1997-01-01

    This paper describes the results of the analytical and experimental activities performed by ISMES for the evaluation of the structural reliability of electrical substations with respect to seismic events. In the following, the reference station is described along with the methods used to define the site seismic input, the analytical and experimental evaluation of the components' fragility curves and the whole station seismic risk evaluation

  9. Nonlinear seismic analysis of a large sodium pump

    International Nuclear Information System (INIS)

    Huang, S.N.

    1985-01-01

    The bearings and seismic bumpers used in a large sodium pump of a typical breeder reactor plant may need to be characterized by nonlinear springs and gaps. Then, nonlinear seismic analysis utilizing the time-history method is an effective way to predict the pump behaviors during seismic events, especially at those bearing and seismic bumper areas. In this study, synthesized time histories were developed based on specified seismic response spectra. A nonlinear seismic analysis was then conducted and results were compared with those obtained by linear seismic analysis using the response spectrum method. In contrast to some previous nonlinear analysis trends, the bearing impact forces predicted by nonlinear analysis were higher than those obtained by the response spectrum method. This might be due to the larger gaps and stiffer bearing supports used in this specific pump. However, at locations distant from the impact source, the nonlinear seismic analysis has predicted slightly less responses than those obtained by linear seismic analysis. The seismically induced bearing impact forces were used to study the friction induced thermal stresses on the hydrostatic bearing and to predict the coastdown time of the pump. Results and discussions are presented

  10. Nonlinear seismic analysis of a large sodium pump

    International Nuclear Information System (INIS)

    Huang, S.N.

    1985-01-01

    The bearings and seismic bumpers used in a large sodium pump of a typical breeder reactor plant may need to be characterized by nonlinear springs and gaps. Then, nonlinear seismic analysis utilizing the time-history method is an effective way to predict the pump behaviors during seismic events - especially at those bearing and seismic bumper areas. In this study, synthesized time histories were developed based on specified seismic response spectra. A nonlinear seismic analysis was then conducted and results were compared with those obtained by linear seismic analysis using the response spectrum method. In contrast to some previous nonlinear analysis trends, the bearing impact forces predicted by nonlinear analysis were higher than those obtained by the response spectrum method. This might be due to the larger gaps and stiffer bearing supports used in this specific pump. However, at locations distant from the impact source, the nonlinear seismic analysis has predicted slightly less responses than those obtained by linear seismic analysis. The seismically induced bearing impact forces were used to study the friction induced thermal stresses on the hydrostatic bearing and to predict the coastdown time of the pump. Results and discussions are presented

  11. Seismic fragility analysis of a nuclear building based on probabilistic seismic hazard assessment and soil-structure interaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, R.; Ni, S.; Chen, R.; Han, X.M. [CANDU Energy Inc, Mississauga, Ontario (Canada); Mullin, D. [New Brunswick Power, Point Lepreau, New Brunswick (Canada)

    2016-09-15

    Seismic fragility analyses are conducted as part of seismic probabilistic safety assessment (SPSA) for nuclear facilities. Probabilistic seismic hazard assessment (PSHA) has been undertaken for a nuclear power plant in eastern Canada. Uniform Hazard Spectra (UHS), obtained from the PSHA, is characterized by high frequency content which differs from the original plant design basis earthquake spectral shape. Seismic fragility calculations for the service building of a CANDU 6 nuclear power plant suggests that the high frequency effects of the UHS can be mitigated through site response analysis with site specific geological conditions and state-of-the-art soil-structure interaction analysis. In this paper, it is shown that by performing a detailed seismic analysis using the latest technology, the conservatism embedded in the original seismic design can be quantified and the seismic capacity of the building in terms of High Confidence of Low Probability of Failure (HCLPF) can be improved. (author)

  12. Dynamic evaluation of seismic hazard and risks based on the Unified Scaling Law for Earthquakes

    Science.gov (United States)

    Kossobokov, V. G.; Nekrasova, A.

    2016-12-01

    We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing seismic hazard maps based on the Unified Scaling Law for Earthquakes (USLE), i.e. log N(M,L) = A + B•(6 - M) + C•log L, where N(M,L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L, A characterizes the average annual rate of strong (M = 6) earthquakes, B determines the balance between magnitude ranges, and C estimates the fractal dimension of seismic locus in projection to the Earth surface. The parameters A, B, and C of USLE are used to assess, first, the expected maximum magnitude in a time interval at a seismically prone cell of a uniform grid that cover the region of interest, and then the corresponding expected ground shaking parameters. After a rigorous testing against the available seismic evidences in the past (e.g., the historically reported macro-seismic intensity or paleo data), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures. The hazard maps for a given territory change dramatically, when the methodology is applied to a certain size moving time window, e.g. about a decade long for an intermediate-term regional assessment or exponentially increasing intervals for a daily local strong aftershock forecasting. The of dynamical seismic hazard and risks assessment is illustrated by applications to the territory of Greater Caucasus and Crimea and the two-year series of aftershocks of the 11 October 2008 Kurchaloy, Chechnya earthquake which case-history appears to be encouraging for further systematic testing as potential short-term forecasting tool.

  13. Evaluation of Seismic Risk of Siberia Territory

    Science.gov (United States)

    Seleznev, V. S.; Soloviev, V. M.; Emanov, A. F.

    The outcomes of modern geophysical researches of the Geophysical Survey SB RAS, directed on study of geodynamic situation in large industrial and civil centers on the territory of Siberia with the purpose of an evaluation of seismic risk of territories and prediction of origin of extreme situations of natural and man-caused character, are pre- sented in the paper. First of all it concerns the testing and updating of a geoinformation system developed by Russian Emergency Ministry designed for calculations regarding the seismic hazard and response to distructive earthquakes. The GIS database contains the catalogues of earthquakes and faults, seismic zonation maps, vectorized city maps, information on industrial and housing fund, data on character of building and popula- tion in inhabited places etc. The geoinformation system allows to solve on a basis of probabilistic approaches the following problems: - estimating the earthquake impact, required forces, facilities and supplies for life-support of injured population; - deter- mining the consequences of failures on chemical and explosion-dangerous objects; - optimization problems on assurance technology of conduct of salvage operations. Using this computer program, the maps of earthquake risk have been constructed for several seismically dangerous regions of Siberia. These maps display the data on the probable amount of injured people and relative economic damage from an earthquake, which can occur in various sites of the territory according to the map of seismic zona- tion. The obtained maps have allowed determining places where the detailed seismo- logical observations should be arranged. Along with it on the territory of Siberia the wide-ranging investigations with use of new methods of evaluation of physical state of industrial and civil establishments (buildings and structures, hydroelectric power stations, bridges, dams, etc.), high-performance detailed electromagnetic researches of ground conditions of city

  14. Seismic margins and calibration of piping systems

    International Nuclear Information System (INIS)

    Shieh, L.C.; Tsai, N.C.; Yang, M.S.; Wong, W.L.

    1985-01-01

    The Seismic Safety Margins Research Program (SSMRP) is a US Nuclear Regulatory Commission-funded, multiyear program conducted by Lawrence Livermore National Laboratory (LLNL). Its objective is to develop a complete, fully coupled analysis procedure for estimating the risk of earthquake-induced radioactive release from a commercial nuclear power plant and to determine major contributors to the state-of-the-art seismic and systems analysis process and explicitly includes the uncertainties in such a process. The results will be used to improve seismic licensing requirements for nuclear power plants. In Phase I of SSMRP, the overall seismic risk assessment methodology was developed and assembled. The application of this methodology to the seismic PRA (Probabilistic Risk Assessment) at the Zion Nuclear Power Plant has been documented. This report documents the method deriving response factors. The response factors, which relate design calculated responses to best estimate values, were used in the seismic response determination of piping systems for a simplified seismic probablistic risk assessment. 13 references, 31 figures, 25 tables

  15. Assessment of the impact of degraded shear wall stiffnesses on seismic plant risk and seismic design loads

    International Nuclear Information System (INIS)

    Klamerus, E.W.; Bohn, M.P.; Johnson, J.J.; Asfura, A.P.; Doyle, D.J.

    1994-02-01

    Test results sponsored by the USNRC have shown that reinforced shear wall (Seismic Category I) structures exhibit stiffnesses and natural frequencies which are smaller than those calculated in the design process. The USNRC has sponsored Sandia National Labs to perform an evaluation of the effects of the reduced frequencies on several existing seismic PRAs in order to determine the seismic risk implications inherent in these test results. This report presents the results for the re-evaluation of the seismic risk for three nuclear power plants: the Peach Bottom Atomic Power Station, the Zion Nuclear Power Plant, and Arkansas Nuclear One -- Unit 1 (ANO-1). Increases in core damage frequencies for seismic initiated events at Peach Bottom were 25 to 30 percent (depending on whether LLNL or EPRI hazard curves were used). At the ANO-1 site, the corresponding increases in plant risk were 10 percent (for each set of hazard curves). Finally, at Zion, there was essentially no change in the computed core damage frequency when the reduction in shear wall stiffness was included. In addition, an evaluation of deterministic ''design-like'' structural dynamic calculations with and without the shear stiffness reductions was made. Deterministic loads calculated for these two cases typically increased on the order of 10 to 20 percent for the affected structures

  16. Induced seismicity and carbon storage: Risk assessment and mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    White, Joshua A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foxall, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bachmann, Corinne [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chiaramonte, Laura [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Daley, Thomas M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-01-28

    Geologic carbon storage (GCS) is widely recognized as an important strategy to reduce atmospheric carbon dioxide (CO2) emissions. Like all technologies, however, sequestration projects create a number of potential environmental and safety hazards that must be addressed. These include earthquakes—from microseismicity to large, damaging events—that can be triggered by altering pore-pressure conditions in the subsurface. To date, measured seismicity due to CO2 injection has been limited to a few modest events, but the hazard exists and must be considered. There are important similarities between CO2 injection and fluid injection from other applications that have induced significant events—e.g. geothermal systems, waste-fluid injection, hydrocarbon extraction, and others. There are also important distinctions among these technologies that should be considered in a discussion of seismic hazard. This report focuses on strategies for assessing and mitigating risk during each phase of a CO2 storage project. Four key risks related to fault reactivation and induced seismicity were considered. Induced slip on faults could potentially lead to: (1) infrastructure damage, (2) a public nuisance, (3) brine-contaminated drinking water, and (4) CO2-contaminated drinking water. These scenarios lead to different types of damage—to property, to drinking water quality, or to the public welfare. Given these four risks, this report focuses on strategies for assessing (and altering) their likelihoods of occurrence and the damage that may result. This report begins with an overview of the basic physical mechanisms behind induced seismicity. This science basis—and its gaps—is crucial because it forms the foundation for risk assessment and mitigation. Available techniques for characterizing and monitoring seismic behavior are also described. Again, this technical basis—and its limitations—must be factored into the risk

  17. A GIS approach to seismic risk assessment with an application to mining-related seismicity in Johannesburg, South Africa

    Science.gov (United States)

    Liebenberg, Keagen; Smit, Ansie; Coetzee, Serena; Kijko, Andrzej

    2017-08-01

    The majority of seismic activity in South Africa is related to extensive mining operations, usually in close proximity to densely populated areas where a relatively weak seismic event could cause damage. Despite a significant decrease in mining operations in the Witwatersrand area, the number of seismic events appears to be increasing and is attributed to the acid mine drainage problem. The increased seismicity is raising concern amongst disaster management centres and in the insurance industry. A better understanding is required of the vulnerability and the size of the potential loss of people and infrastructure in densely populated Johannesburg and its surrounding areas. Results of a deterministic seismic risk, vulnerability, and loss assessment are presented by making use of a geographic information system (GIS). The results illustrate the benefits of using GIS and contribute to a better understanding of the risk, which can assist in improving disaster preparedness.

  18. Methodology for seismic PSA of NPPs

    International Nuclear Information System (INIS)

    Jirsa, P.

    1999-09-01

    A general methodology is outlined for seismic PSA (probabilistic safety assessment). The main objectives of seismic PSA include: description of the course of an event; understanding the most probable failure sequences; gaining insight into the overall probability of reactor core damage; identification of the main seismic risk contributors; identification of the range of peak ground accelerations contributing significantly to the plant risk; and comparison of the seismic risk with risks from other events. The results of seismic PSA are typically compared with those of internal PSA and of PSA of other external events. If the results of internal and external PSA are available, sensitivity studies and cost benefit analyses are performed prior to any decision regarding corrective actions. If the seismic PSA involves analysis of the containment, useful information can be gained regarding potential seismic damage of the containment. (P.A.)

  19. Applications of seismic damage hazard analysis for the qualification of existing nuclear and offshore facilities

    International Nuclear Information System (INIS)

    Bazzurro, P.; Manfredini, G.M.; Diaz Molina, I.

    1995-01-01

    The Seismic Damage Hazard Analysis (SDHA) is a methodology which couples conventional Seismic Hazard Analysis (SHA) and non-linear response analysis to seismic loadings. This is a powerful tool in the retrofit process: SDHA permits the direct computation of the probability of occurrence of damage and, eventually, collapse of existing and upgraded structural systems. The SDHA methodology is a significant step towards a better understanding and quantification of structural seismic risk. SDHA incorporates and explicitly accounts for seismic load variability, seismic damage potential variability and structural resistance uncertainty. In addition, SDHA makes available a sound strategy to perform non-linear dynamic analyses. A limited number of non-linear dynamic analyses is sufficient to obtain estimates of damage and its probability of occurrence. The basic concepts of the SDHA methodology are briefly reviewed. Illustrative examples are presented, regarding a power house structure, a tubular structure and seabed slope stability problem. (author)

  20. Seismic risk evaluation within the technology neutral framework

    International Nuclear Information System (INIS)

    Johnson, B.C.; Apostolakis, G.E.

    2012-01-01

    Highlights: ► We examine seismic risk within the Technology Neutral Framework (TNF). ► We find that the risk goals in the TNF to be stringent compared with current goals. ► We note that the current fleet reactors would not meet the TNF goals. ► We recommend that an initiating frequency cutoff of 10 −5 per year be use in evaluating seismic risk. - Abstract: The NRC Office of Nuclear Regulatory Research has proposed a risk-informed and performance-based licensing process that is referred to as the technology neutral framework (TNF). In the TNF, licensing basis events (LBEs), determined using probabilistic risk assessment methods, take the place of design basis accidents. These LBEs are constructed by grouping together accident sequences with similar phenomenology. All event sequences with a mean frequency greater than 10 −7 per reactor year are to be considered as part of the licensing basis. Imposing such a limit would require that earthquakes with a mean return period of ten million years be considered as part of the licensing basis. It is difficult to get seismic hazards (i.e., ground accelerations) from expert seismologists at such low frequencies. This is because it is difficult or impossible to confidently say what the seismic hazard might be at these extremely low frequencies. A linear extrapolation in log-log space of hazard curves at the Clinton site down to 10 −7 per year leads to a peak ground acceleration of about 4.5 g. A Weibull distribution is also used to fit the curve leading to a peak ground acceleration of about 2.6 g. These extrapolations demonstrate the extreme nature of rare earthquakes. Even when seismic isolation is implemented, the TNF goal is not met. The problem appears to be that there is no limit on initiating event frequency in the TNF. Demonstrating that a design meets the goals of the TNF would be nearly impossible. A frequency limit for earthquakes could be imposed at a frequency of about 10 −5 per year to focus on

  1. Recent Vs. Historical Seismicity Analysis For Banat Seismic Region (Western Part Of Romania)

    OpenAIRE

    Oros Eugen; Diaconescu Mihai

    2015-01-01

    The present day seismic activity from a region reflects the active tectonics and can confirm the seismic potential of the seismogenic sources as they are modelled using the historical seismicity. This paper makes a comparative analysis of the last decade seismicity recorded in the Banat Seismic Region (western part of Romania) and the historical seismicity of the region (Mw≥4.0). Four significant earthquake sequences have been recently localized in the region, three of them nearby the city of...

  2. Risk assessment to determine the advisability of seismic trip systems

    International Nuclear Information System (INIS)

    Cummings, G.E.; Wells, J.E.

    1977-01-01

    Seismic trip (scram) systems have been used for many years on certain research, test, and production reactors, but not on commercial power reactors. An assessment is made of the risks associated with the presence and absence of such trip systems on power reactors. An attempt was made to go beyond the reactor per se and to consider the risks to society as a whole; for example, the advantages of tripping to avoid an earthquake-caused accident were weighed against the disadvantages associated with interrupting electric power in a time when it would be needed for emergency services. The comparative risk assessment was performed by means of fault tree analysis

  3. Assessment of wind turbine seismic risk : existing literature and simple study of tower moment demand.

    Energy Technology Data Exchange (ETDEWEB)

    Prowell, Ian (University of California, San Diego, CA); Veers, Paul S.

    2009-03-01

    Various sources of risk exist for all civil structures, one of which is seismic risk. As structures change in scale, the magnitude of seismic risk changes relative to risk from other sources. This paper presents an introduction to seismic hazard as applied to wind turbine structures. The existing design methods and research regarding seismic risk for wind turbines is then summarized. Finally a preliminary assessment is made based on current guidelines to understand how tower moment demand scales as rated power increases. Potential areas of uncertainty in the application of the current guidelines are summarized.

  4. Seismic risk reduction for architectural heritage. A comparison between experiences from Colombia and Japan

    OpenAIRE

    Niglio, Olimpia; Valencia Mina, William; Universidad del Quindío

    2015-01-01

    Seismic risk is a problem in many countries, especially in Latin America, the Middle East and the Far East, particularly Japan. From the analysis of seismicity and built heritage in Japan and Colombia, this article presents the first results of a comparative research between the two countries, the different methods of intervention and management to protectthe architectural heritage, which is important to reduce their vulnerability. This paper also presents some thoughts on the legal regulatio...

  5. Development of fragility descriptions of equipment for seismic risk assessment of nuclear power plants

    International Nuclear Information System (INIS)

    Hardy, G.S.; Campbell, R.D.

    1983-01-01

    Probabilistic risk assessment (PRA) of a nuclear power plant for postulated hazard requires the development of fragility relationships for the plants' safety related equipment. The objective of this paper is to present some general results and conclusions concerning the development of these seismic fragility levels. Participation in fragility-related research and experience gained from the completion of several PRA studies of a variety of nuclear power plants have provided much insight as to the most vulnerable equipment and the most efficient use of resources for development of fragilities. Plants studied had seismic design bases ranging from very simple equivalent static analysis for some of the earlier plants to state-of-the-art complex multimode dyanamic analyses for plants currently under construction. Increased sophistication and rigor in seismic qualification of equipment has resulted for the most part in increased seismic resistance. The majority of equipment has been found, however, to possess more than adequate resistance to seismic loading regardless of the degree of sophistication utilized in design as long as seismic loading was included in the design process. This paper presents conclusions of the authors as to which items of equipment typically require an individual ''plant-specific'' fragility analysis and which can be treated in a generic fashion. In addition, general conclusions on the relative seismic capacity levels and most frequent failure modes are summarized for generic equipment groups

  6. Transparent Global Seismic Hazard and Risk Assessment

    Science.gov (United States)

    Smolka, Anselm; Schneider, John; Pinho, Rui; Crowley, Helen

    2013-04-01

    Vulnerability to earthquakes is increasing, yet advanced reliable risk assessment tools and data are inaccessible to most, despite being a critical basis for managing risk. Also, there are few, if any, global standards that allow us to compare risk between various locations. The Global Earthquake Model (GEM) is a unique collaborative effort that aims to provide organizations and individuals with tools and resources for transparent assessment of earthquake risk anywhere in the world. By pooling data, knowledge and people, GEM acts as an international forum for collaboration and exchange, and leverages the knowledge of leading experts for the benefit of society. Sharing of data and risk information, best practices, and approaches across the globe is key to assessing risk more effectively. Through global projects, open-source IT development and collaborations with more than 10 regions, leading experts are collaboratively developing unique global datasets, best practice, open tools and models for seismic hazard and risk assessment. Guided by the needs and experiences of governments, companies and citizens at large, they work in continuous interaction with the wider community. A continuously expanding public-private partnership constitutes the GEM Foundation, which drives the collaborative GEM effort. An integrated and holistic approach to risk is key to GEM's risk assessment platform, OpenQuake, that integrates all above-mentioned contributions and will become available towards the end of 2014. Stakeholders worldwide will be able to calculate, visualise and investigate earthquake risk, capture new data and to share their findings for joint learning. Homogenized information on hazard can be combined with data on exposure (buildings, population) and data on their vulnerability, for loss assessment around the globe. Furthermore, for a true integrated view of seismic risk, users can add social vulnerability and resilience indices to maps and estimate the costs and benefits

  7. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Payne, Suzette; Coppersmith, Ryan; Coppersmith, Kevin; Rodriguez-Marek, Adrian; Falero, Valentina Montaldo; Youngs, Robert

    2016-01-01

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Naval Reactors Facility (NRF), and the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) (Figure 1-1). The PSHA followed the approaches and procedures appropriate for a Study Level 1 provided in the guidance advanced by the Senior Seismic Hazard Analysis Committee (SSHAC) in U.S. Nuclear Regulatory Commission (NRC) NUREG/CR-6372 and NUREG-2117 (NRC, 1997; 2012a). The SSHAC Level 1 PSHAs for MFC and ATR were conducted as part of the Seismic Risk Assessment (SRA) project (INL Project number 31287) to develop and apply a new-risk informed methodology, respectively. The SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels. The SRA project is developing a new risk-informed methodology that will provide a systematic approach for evaluating the need for an update of an existing PSHA. The new methodology proposes criteria to be employed at specific analysis, decision, or comparison points in its evaluation process. The first four of seven criteria address changes in inputs and results of the PSHA and are given in U.S. Department of Energy (DOE) Standard, DOE-STD-1020-2012 (DOE, 2012a) and American National Standards Institute/American Nuclear Society (ANSI/ANS) 2.29 (ANS, 2008a). The last three criteria address evaluation of quantitative hazard and risk-focused information of an existing nuclear facility. The seven criteria and decision points are applied to Seismic Design Category (SDC) 3, 4, and 5, which are defined in American Society of Civil Engineers/Structural Engineers Institute (ASCE/SEI) 43-05 (ASCE, 2005). The application of the criteria and decision points could lead to an update or could determine that such update is not necessary.

  8. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Suzette [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coppersmith, Ryan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coppersmith, Kevin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rodriguez-Marek, Adrian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Falero, Valentina Montaldo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Youngs, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Naval Reactors Facility (NRF), and the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) (Figure 1-1). The PSHA followed the approaches and procedures appropriate for a Study Level 1 provided in the guidance advanced by the Senior Seismic Hazard Analysis Committee (SSHAC) in U.S. Nuclear Regulatory Commission (NRC) NUREG/CR-6372 and NUREG-2117 (NRC, 1997; 2012a). The SSHAC Level 1 PSHAs for MFC and ATR were conducted as part of the Seismic Risk Assessment (SRA) project (INL Project number 31287) to develop and apply a new-risk informed methodology, respectively. The SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels. The SRA project is developing a new risk-informed methodology that will provide a systematic approach for evaluating the need for an update of an existing PSHA. The new methodology proposes criteria to be employed at specific analysis, decision, or comparison points in its evaluation process. The first four of seven criteria address changes in inputs and results of the PSHA and are given in U.S. Department of Energy (DOE) Standard, DOE-STD-1020-2012 (DOE, 2012a) and American National Standards Institute/American Nuclear Society (ANSI/ANS) 2.29 (ANS, 2008a). The last three criteria address evaluation of quantitative hazard and risk-focused information of an existing nuclear facility. The seven criteria and decision points are applied to Seismic Design Category (SDC) 3, 4, and 5, which are defined in American Society of Civil Engineers/Structural Engineers Institute (ASCE/SEI) 43-05 (ASCE, 2005). The application of the criteria and decision points could lead to an update or could determine that such update is not necessary.

  9. Seismic isolation of plants at risk of a severe accident

    International Nuclear Information System (INIS)

    Forni, Massimo

    2015-01-01

    More and more devastating earthquakes struck every year our planet. Many of these, though occurring in areas considered at high risk of earthquakes, far exceed the levels required by law. The industrial plants subjected to risk of severe accident, in particular petrochemical and nuclear power plants, are particularly exposed to this risk because of the number and the complexity of the structures and critical components of which they are composed. For this type of structures, anti-seismic techniques able to provide complete protection, even in case of unforeseen events, are needed. Seismic isolation is certainly the most promising technology of modern antiseismic as it allows not only to significantly reduce the dynamic load acting on the structures in case of seismic attack, but to provide safety margins against violent earthquakes, exceeding the assumed maximum design limit. [it

  10. Demonstration of NonLinear Seismic Soil Structure Interaction and Applicability to New System Fragility Seismic Curves

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States). Nuclear Science and Technology

    2014-09-01

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). SPRAs are performed by convolving the seismic hazard (the frequency of certain magnitude events) with the seismic fragility (the conditional probability of failure of a structure, system, or component given the occurrence of earthquake ground motion). In this calculation, there are three main pieces to seismic risk quantification, 1) seismic hazard and nuclear power plants (NPPs) response to the hazard, fragility or capacity of structures, systems and components (SSC), and systems analysis. Figure 1 provides a high level overview of the risk quantification process. The focus of this research is on understanding and removing conservatism (when possible) in the quantification of seismic risk at NPPs.

  11. Seismic and dynamic qualification methods

    International Nuclear Information System (INIS)

    Lin, C.W.

    1985-01-01

    This book presents the papers given at a conference on seismic effects on nuclear power plants. Topics considered at the conference included seismic qualification of equipment, multifrequency test methodologies, damping in piping systems, the amplification factor, thermal insulation, welded joints, and response factors for seismic risk analysis of piping

  12. Impact of ground motion characterization on conservatism and variability in seismic risk estimates

    International Nuclear Information System (INIS)

    Sewell, R.T.; Toro, G.R.; McGuire, R.K.

    1996-07-01

    This study evaluates the impact, on estimates of seismic risk and its uncertainty, of alternative methods in treatment and characterization of earthquake ground motions. The objective of this study is to delineate specific procedures and characterizations that may lead to less biased and more precise seismic risk results. This report focuses on sources of conservatism and variability in risk that may be introduced through the analytical processes and ground-motion descriptions which are commonly implemented at the interface of seismic hazard and fragility assessments. In particular, implication of the common practice of using a single, composite spectral shape to characterize motions of different magnitudes is investigated. Also, the impact of parameterization of ground motion on fragility and hazard assessments is shown. Examination of these results demonstrates the following. (1) There exists significant conservatism in the review spectra (usually, spectra characteristic of western U.S. earthquakes) that have been used in conducting past seismic risk assessments and seismic margin assessments for eastern U.S. nuclear power plants. (2) There is a strong dependence of seismic fragility on earthquake magnitude when PGA is used as the ground-motion characterization. When, however, magnitude-dependent spectra are anchored to a common measure of elastic spectral acceleration averaged over the appropriate frequency range, seismic fragility shows no important nor consistent dependence on either magnitude or strong-motion duration. Use of inelastic spectral acceleration (at the proper frequency) as the ground spectrum anchor demonstrates a very similar result. This study concludes that a single, composite-magnitude spectrum can generally be used to characterize ground motion for fragility assessment without introducing significant bias or uncertainty in seismic risk estimates

  13. Impact of ground motion characterization on conservatism and variability in seismic risk estimates

    Energy Technology Data Exchange (ETDEWEB)

    Sewell, R.T.; Toro, G.R.; McGuire, R.K.

    1996-07-01

    This study evaluates the impact, on estimates of seismic risk and its uncertainty, of alternative methods in treatment and characterization of earthquake ground motions. The objective of this study is to delineate specific procedures and characterizations that may lead to less biased and more precise seismic risk results. This report focuses on sources of conservatism and variability in risk that may be introduced through the analytical processes and ground-motion descriptions which are commonly implemented at the interface of seismic hazard and fragility assessments. In particular, implication of the common practice of using a single, composite spectral shape to characterize motions of different magnitudes is investigated. Also, the impact of parameterization of ground motion on fragility and hazard assessments is shown. Examination of these results demonstrates the following. (1) There exists significant conservatism in the review spectra (usually, spectra characteristic of western U.S. earthquakes) that have been used in conducting past seismic risk assessments and seismic margin assessments for eastern U.S. nuclear power plants. (2) There is a strong dependence of seismic fragility on earthquake magnitude when PGA is used as the ground-motion characterization. When, however, magnitude-dependent spectra are anchored to a common measure of elastic spectral acceleration averaged over the appropriate frequency range, seismic fragility shows no important nor consistent dependence on either magnitude or strong-motion duration. Use of inelastic spectral acceleration (at the proper frequency) as the ground spectrum anchor demonstrates a very similar result. This study concludes that a single, composite-magnitude spectrum can generally be used to characterize ground motion for fragility assessment without introducing significant bias or uncertainty in seismic risk estimates.

  14. Seismic fragilities for nuclear power plant risk studies

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Ravindra, M.K.

    1983-01-01

    Seismic fragilities of critical structures and equipment are developed as families of conditional failure frequency curves plotted against peak ground acceleration. The procedure is based on available data combined with judicious extrapolation of design information on plant structures and equipment. Representative values of fragility parameters for typical modern nuclear power plants are provided. Based on the fragility evaluation for about a dozen nuclear power plants, it is proposed that unnecessary conservatism existing in current seismic design practice could be removed by properly accounting for inelastic energy absorption capabilities of structures. The paper discusses the key contributors to seismic risk and the significance of possible correlation between component failures and potential design and construction errors

  15. Conceptual design by analysis of KALIMER seismic isolation

    International Nuclear Information System (INIS)

    You, Bong; Koo, Kyung Hoi; Lee, Jae Han

    1996-06-01

    The objectives of this report are to preliminarily evaluate the seismic isolation performance of KALIMER (Korea Advance LIquid MEtal Reactor) by seismic analyses, investigate the design feasibility, and find the critical points of KALIMER reactor structures. The work scopes performed in this study are 1) the establishment of seismic design basis, 2) the development of seismic analysis model of KALIMER, 3) the modal analysis, 4) seismic time history analysis, 5) the evaluations of seismic isolation performance and seismic design margins, and 6) the evaluation of seismic capability of KALIMER. The horizontal fundamental frequency of KALIMER reactor structure is 8 Hz, which is far remote from the seismic isolation frequency, 0.7 Hz. The vertical first and second natural frequencies are about 2 Hz and 8 Hz respectively. These vertical natural frequencies are in a dominant ground motion frequency bands, therefore these modes will result in large vertical response amplifications. From the results of seismic time history analyses, the horizontal isolation performance is great but the large vertical amplifications are occurred in reactor structures. The RV Liner has the smallest seismic design margin as 0.18. From the results of seismic design margins evaluation, the critical design change are needed in the support barrel, separation plate, and baffle plate points. The seismic capability of KALIMER is about 0.35g. This value can be increased by the design changes of the separation plate and etc.. 11 tabs., 29 figs., 7 refs. (Author) .new

  16. Seismic analysis for the ALMR

    International Nuclear Information System (INIS)

    Tajirian, F.F.

    1992-01-01

    The Advanced Liquid Metal Reactor (ALMR) design uses seismic isolation as a cost effective approach for simplifying seismic design of the reactor module, and for enhancing margins to handle beyond design basis earthquakes (BDBE). A comprehensive seismic analysis plan has been developed to confirm the adequacy of the design and to support regulatory licensing activities. In this plan state-of-the-art computer programs are used to evaluate the system response of the ALMR. Several factors that affect seismic response will be investigated. These include variability in the input earthquake mechanism, soil-structure interaction effects, and nonlinear response of the isolators. This paper reviews the type of analyses that are planned, and discuses the approach that will be used for validating the specific features of computer programs that are required in the analysis of isolated structures. To date, different linear and nonlinear seismic analyses have been completed. The results of recently completed linear analyses have been summarized elsewhere. The findings of three-dimensional seismic nonlinear analyses are presented in this paper. These analyses were performed to evaluate the effect of changes of isolator horizontal stiffness with horizontal displacement on overall response, to develop an approach for representing BDBE events with return periods exceeding 10,000 years, and to assess margins in the design for BDBEs. From the results of these analyses and bearing test data, it can be concluded that a properly designed and constructed seismic isolation system can accommodate displacements several times the design safe shutdown earthquake (SSE) for the ALMR. (author)

  17. Development and seismic evaluation of the seismic monitoring analysis system for HANARO

    International Nuclear Information System (INIS)

    Ryu, J. S.; Youn, D. B.; Kim, H. G.; Woo, J. S.

    2003-01-01

    Since the start of operation, the seismic monitoring system has been utilized for monitoring an earthquake at the HANARO site. The existing seismic monitoring system consists of field sensors and monitoring panel. The analog-type monitoring system with magnetic tape recorder is out-of-date model. In addition, the disadvantage of the existing system is that it does not include signal-analyzing equipment. Therefore, we have improved the analog seismic monitoring system except the field sensors into a new digital Seismic Monitoring Analysis System(SMAS) that can monitor and analyze earthquake signals. To achieve this objective for HANARO, the digital type hardware of the SMAS has been developed. The seismic monitoring and analysis programs that can provide rapid and precise information for an earthquake were developed. After the installation of the SMAS, we carried out the Site Acceptance Test (SAT) to confirm the functional capability of the newly developed system. The results of the SAT satisfy the requirements of the fabrication technical specifications. In addition, the seismic characteristics and structural integrity of the SMAS were evaluated. The results show that the cabinet of SMAS can withstand the effects of seismic loads and remain functional. This new SMAS is operating in the HANARO instrument room to acquire and analyze the signal of an earthquake

  18. A risk-mitigation approach to the management of induced seismicity

    Science.gov (United States)

    Bommer, Julian J.; Crowley, Helen; Pinho, Rui

    2015-04-01

    Earthquakes may be induced by a wide range of anthropogenic activities such as mining, fluid injection and extraction, and hydraulic fracturing. In recent years, the increased occurrence of induced seismicity and the impact of some of these earthquakes on the built environment have heightened both public concern and regulatory scrutiny, motivating the need for a framework for the management of induced seismicity. Efforts to develop systems to enable control of seismicity have not yet resulted in solutions that can be applied with confidence in most cases. The more rational approach proposed herein is based on applying the same risk quantification and mitigation measures that are applied to the hazard from natural seismicity. This framework allows informed decision-making regarding the conduct of anthropogenic activities that may cause earthquakes. The consequent risk, if related to non-structural damage (when re-location is not an option), can be addressed by appropriate financial compensation. If the risk poses a threat to life and limb, then it may be reduced through the application of strengthening measures in the built environment—the cost of which can be balanced against the economic benefits of the activity in question—rather than attempting to ensure that some threshold on earthquake magnitude or ground-shaking amplitude is not exceeded. However, because of the specific characteristics of induced earthquakes—which may occur in regions with little or no natural seismicity—the procedures used in standard earthquake engineering need adaptation and modification for application to induced seismicity.

  19. Vrancea earthquakes. Specific actions to mitigate seismic risk

    International Nuclear Information System (INIS)

    Marmureanu, Gheorghe; Marmureanu, Alexandru

    2005-01-01

    natural disasters given by earthquakes, there is a need to reverse trends in seismic risk mitigation to future events. Main courses of specific action to mitigate the seismic risks from strong deep Vrancea earthquakes should be considered as key to future development projects, including: - Early warning system for industrial facilities; - Short and long term prediction program of strong Vrancea earthquakes; - Seismic hazard map of Romania; - Seismic microzonation of large populated cities; - Shake map; - Seismic tomography of dams for avoiding disasters. The quality of life and the security of infrastructure (including human services, civil and industrial structures, financial infrastructure, information transmission and processing systems) in every nation are increasingly vulnerable to disasters caused by events that have geological, atmospheric, hydrologic, and technological origins. As UN Secretary General Kofi Annan pointed out, 'Building a culture of prevention is not easy. While the costs of prevention have to be paid in the present, its benefits lie in a distant future'. In other words: Prevention pays off. This may not always become apparent immediately, but, in the long run, the benefits from prevention measures will always outweigh their costs by far. Romania is an earthquake prone area and these main specific actions are really contributing to seismic risk mitigation. These specific actions are provided for in Law nr. 372/March 18,2004 -'The National Program of Seismic Risk Management'. (authors)

  20. Seismic analysis and testing of nuclear power plants

    International Nuclear Information System (INIS)

    1979-01-01

    The following subjects are discussed in this guide: General Recommendations for seismic classification, loading combinations and allowable limits; seismic analysis methods; implications for seismic design; seismic testing and qualification; seismic instrumentation; modelling techniques; material property characterization; seismic response of soil deposits and earth structures; liquefaction and ground failure; slope stability; sloshing effects in water pools; qualification testing by means of the transport vehicle

  1. CONCIDERATION OF FOUNDATION AND SEISMIC CONDITIONS OF AREA IN ANALYSIS OF SEISMIC RESISTANCE OF REACTOR COMPARTMENT

    Directory of Open Access Journals (Sweden)

    SEDIN V. L.

    2015-11-01

    Full Text Available Problem statement. Providing of safe exploitation of nuclear power plants, as well as a safety of staff and environment is a very important problem. A distinct feature of this problem is a necessity to provide not only a strength of structures, but also a safe functioning of all systems that control nuclear process. In particular, the influence of earthquake should be considered on constructions of buildings and structures of nuclear and thermal power plant, taking into account soil-structure interaction. According to IAEA’s SSD-9 recommendations, a risk of vibration of soil should be analyzed for each NPP connected with earthquakes soil that means researches, including general, detailed and microseismic zoning of the area works. One of the distinctive features of the considered problem is an evaluation of the seismicity of area and getting the response spectrum on the free surface. Purpose. Determination of seismic resistance of buildings of high category of safety with the example of the reactor compartment of Zaporoghskaya NPP including the soil structure interaction. Conclusion The seismicity assessment of the area and obtaining of response specters on free surface was made during research and analysis of seismic resistance of buildings of high category of safety including the effects of foundation and structures. The method of modeling of the equivalent dynamic characteristics of the base was considered during the research in seismic impacts.

  2. Three-dimensional seismic analysis for spent fuel storage rack

    International Nuclear Information System (INIS)

    Lee, Gyu Mahn; Kim, Kang Soo; Park, Keun Bae; Park, Jong Kyun

    1998-01-01

    Time history analysis is usually performed to characterize the nonlinear seismic behavior of a spent fuel storage rack (SFSR). In the past, the seismic analyses of the SFSR were performed with two-dimensional planar models, which could not account for torsional response and simultaneous multi-directional seismic input. In this study, three-dimensional seismic analysis methodology is developed for the single SFSR using the ANSY code. The 3-D model can be used to determine the nonlinear behavior of the rack, i.e., sliding, uplifting, and impact evaluation between the fuel assembly and rack, and rack and the pool wall. This paper also reviews the 3-D modeling of the SFSR and the adequacy of the ANSYS for the seismic analysis. As a result of the adequacy study, the method of ANSYS transient analysis with acceleration time history is suitable for the seismic analysis of highly nonlinear structure such as an SFSR but it isn't appropriate to use displacement time history of seismic input. (author)

  3. Seismic and volcanic risk in the Azores: reasons to stay in endangered places

    OpenAIRE

    Arroz, Ana Margarida Moura; Palos, Ana Cristina Pires; Rego, Isabel Estrela

    2008-01-01

    SRA 2008 Annual Meeting "Risk Analysis: The Science and the Art", Boston, Massachusetts, Sunday, 7 December 2008 to Wednesday, 10 December 2008. Earthquakes and volcanic eruptions have been regular phenomena throughout the Azores' six centuries of history. In spite of the knowledge already gathered by local historians and Earth sciences researchers, there are no scientific data on the socio-cultural dimensions of volcanic and seismic risks. A study – TOPOI METUS. Social cosmographies of d...

  4. Seismic fragility analyses

    International Nuclear Information System (INIS)

    Kostov, Marin

    2000-01-01

    In the last two decades there is increasing number of probabilistic seismic risk assessments performed. The basic ideas of the procedure for performing a Probabilistic Safety Analysis (PSA) of critical structures (NUREG/CR-2300, 1983) could be used also for normal industrial and residential buildings, dams or other structures. The general formulation of the risk assessment procedure applied in this investigation is presented in Franzini, et al., 1984. The probability of failure of a structure for an expected lifetime (for example 50 years) can be obtained from the annual frequency of failure, β E determined by the relation: β E ∫[d[β(x)]/dx]P(flx)dx. β(x) is the annual frequency of exceedance of load level x (for example, the variable x may be peak ground acceleration), P(fI x) is the conditional probability of structure failure at a given seismic load level x. The problem leads to the assessment of the seismic hazard β(x) and the fragility P(fl x). The seismic hazard curves are obtained by the probabilistic seismic hazard analysis. The fragility curves are obtained after the response of the structure is defined as probabilistic and its capacity and the associated uncertainties are assessed. Finally the fragility curves are combined with the seismic loading to estimate the frequency of failure for each critical scenario. The frequency of failure due to seismic event is presented by the scenario with the highest frequency. The tools usually applied for probabilistic safety analyses of critical structures could relatively easily be adopted to ordinary structures. The key problems are the seismic hazard definitions and the fragility analyses. The fragility could be derived either based on scaling procedures or on the base of generation. Both approaches have been presented in the paper. After the seismic risk (in terms of failure probability) is assessed there are several approaches for risk reduction. Generally the methods could be classified in two groups. The

  5. Seismic risk and safety of nuclear installations. A look at the Cadarache Centre

    International Nuclear Information System (INIS)

    Verrhiest-Leblanc, G.; Chevallier, A.

    2010-01-01

    After a brief recall of some important seismic events which occurred in the past in the south-eastern part of France, the authors indicate the nuclear installations present in this region. They outline the difference between requirements for a usual building and for basic nuclear installations. They indicate laws and regulations which are to be applied to these installations like to any hazardous industrial installation. They describe the seismic risk as it has been determined for the Cadarache area, and evoke the para-seismic design of new nuclear installations which are to be built in Cadarache and actions for a para-seismic reinforcement of existing constructions. Finally, they evoke organisational aspects (emergency plans) and the approach for a better information and transparency about the seismic risk

  6. The exponential rise of induced seismicity with increasing stress levels in the Groningen gas field and its implications for controlling seismic risk

    Science.gov (United States)

    Bourne, S. J.; Oates, S. J.; van Elk, J.

    2018-06-01

    Induced seismicity typically arises from the progressive activation of recently inactive geological faults by anthropogenic activity. Faults are mechanically and geometrically heterogeneous, so their extremes of stress and strength govern the initial evolution of induced seismicity. We derive a statistical model of Coulomb stress failures and associated aftershocks within the tail of the distribution of fault stress and strength variations to show initial induced seismicity rates will increase as an exponential function of induced stress. Our model provides operational forecasts consistent with the observed space-time-magnitude distribution of earthquakes induced by gas production from the Groningen field in the Netherlands. These probabilistic forecasts also match the observed changes in seismicity following a significant and sustained decrease in gas production rates designed to reduce seismic hazard and risk. This forecast capability allows reliable assessment of alternative control options to better inform future induced seismic risk management decisions.

  7. Seismic analysis and design of NPP structures

    International Nuclear Information System (INIS)

    de Carvalho Santos, S.H.; da Silva, R.E.

    1989-01-01

    Numerical methods for static and dynamic analysis of structures, as well as for the design of individual structural elements under the applied loads are under continuous development, being very sophisticated methods nowadays available for the engineering practice. Nevertheless, this sophistication will be useless if some important aspects necessary to assure full compatability between analysis and design are disregarded. Some of these aspects are discussed herein. This paper presents an integrated approach for the seismic analysis and design of NPP structures: the development of models for the seismic analysis, the distribution of the global seismic forces among the seismic-resistant elements and the criteria for the design of the individual elements for combined static and dynamic forces are the main topics to be discussed herein. The proposed methodology is illustrated. Some examples taken from the project practice are presented for illustration the exposed concepts

  8. DRY TRANSFER FACILITY SEISMIC ANALYSIS

    International Nuclear Information System (INIS)

    EARNEST, S.; KO, H.; DOCKERY, W.; PERNISI, R.

    2004-01-01

    The purpose of this calculation is to perform a dynamic and static analysis on the Dry Transfer Facility, and to determine the response spectra seismic forces for the design basis ground motions. The resulting seismic forces and accelerations will be used in a subsequent calculation to complete preliminary design of the concrete shear walls, diaphragms, and basemat

  9. Seismic analysis for conceptual design of HCCR TBM-set

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won, E-mail: dwlee@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Seong Dae; Jin, Hyung Gon; Lee, Eo Hwak; Kim, Suk-Kwon; Yoon, Jae Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Shin, Kyu In [Gentec Co., Daejeon, Republic of Korea (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • The seismic analysis of KO HCCR TBM-set are performed. • The seismic envents like SL-1, SL-2, and SMHV are selected and evaluated with FEM code (ANSYS). • The results of the stresses and deformations are confirmed to meet the design criteria. - Abstract: Using the conceptual design of the Korean helium cooled ceramic reflector (HCCR) test blanket module (TBM) including the TBM-shield for testing in ITER, a seismic analysis is performed. According to the ITER TBM port plug (TBM PP) system load specifications, seismic events are selected as SL-1 (seismic level-1), SL-2 (seismic level-2), and SMHV (seismes maximaux historiquement vraisemblables, Maximum Histroically Probable Earthquakes). In a modal analysis a total of 50 modes are obtained. Then, a spectra response analysis for each seismic event is carried out using ANSYS based on the modal analysis results. For each event, the obtained Tresca stress is evaluated to confirm the design integrity, by comparing the resulting stress to the design criteria. The Tresca strain and displacement are also estimated for the HCCR TBM-set. From the analysis, it was concluded that the maximum stresses by the seismic events meet the design criteria, and the displacements are lower than the designed gap from the TBM PP frame. The results are provided to a load combination analysis.

  10. A probabilistic seismic risk assessment procedure for nuclear power plants: (I) Methodology

    Science.gov (United States)

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.

    2011-01-01

    A new procedure for probabilistic seismic risk assessment of nuclear power plants (NPPs) is proposed. This procedure modifies the current procedures using tools developed recently for performance-based earthquake engineering of buildings. The proposed procedure uses (a) response-based fragility curves to represent the capacity of structural and nonstructural components of NPPs, (b) nonlinear response-history analysis to characterize the demands on those components, and (c) Monte Carlo simulations to determine the damage state of the components. The use of response-rather than ground-motion-based fragility curves enables the curves to be independent of seismic hazard and closely related to component capacity. The use of Monte Carlo procedure enables the correlation in the responses of components to be directly included in the risk assessment. An example of the methodology is presented in a companion paper to demonstrate its use and provide the technical basis for aspects of the methodology. ?? 2011 Published by Elsevier B.V.

  11. Seismic analysis of steam generator and parameter sensitivity studies

    International Nuclear Information System (INIS)

    Qian Hao; Xu Dinggen; Yang Ren'an; Liang Xingyun

    2013-01-01

    Background: The steam generator (SG) serves as the primary means for removing the heat generated within the reactor core and is part of the reactor coolant system (RCS) pressure boundary. Purpose: Seismic analysis in required for SG, whose seismic category is Cat. I. Methods: The analysis model of SG is created with moisture separator assembly and tube bundle assembly herein. The seismic analysis is performed with RCS pipe and Reactor Pressure Vessel (RPV). Results: The seismic stress results of SG are obtained. In addition, parameter sensitivities of seismic analysis results are studied, such as the effect of another SG, support, anti-vibration bars (AVBs), and so on. Our results show that seismic results are sensitive to support and AVBs setting. Conclusions: The guidance and comments on these parameters are summarized for equipment design and analysis, which should be focused on in future new type NPP SG's research and design. (authors)

  12. Risk management considerations for seismic upgrading of an older facility for short-term residue stabilization

    International Nuclear Information System (INIS)

    Additon, S.L.; Peregoy, W.L.; Foppe, T.L.

    1999-01-01

    Building 707 and its addition, Building 707A, were selected, after the production mission of Rocky Flats was terminated a few years ago, to stabilize many of the plutonium residues remaining at the site by 2002. The facility had undergone substantial safety improvements to its safety systems and conduct of operations for resumption of plutonium operations in the early 1990s and appeared ideally suited for this new mission to support accelerated Site closure. During development of a new authorization basis, a seismic evaluation was performed. This evaluation addressed an unanalyzed expansion joint and suspect connection details for the precast concrete tilt-up construction and concluded that the seismic capacity of the facility is less than half of that determined by previous analysis. Further, potential seismic interaction was identified between a collapsing Building 707 and the seismically upgraded Building 707A, possibly causing the partial collapse of the latter. Both the operating contractor and the Department of Energy sought a sound technical basis for deciding how to proceed. This paper addresses the risks of the as-is facility and possible benefits of upgrades to support a decision on whether to upgrade the seismic capacity of Building 707, accept the risk of the as-is facility for its short remaining mission, or relocate critical stabilization missions. The paper also addresses the Department of Energy's policy on natural phenomena

  13. Methodology and applications for the benefit cost analysis of the seismic risk reduction in building portfolios at broadscale

    OpenAIRE

    Valcarcel, Jairo A.; Mora, Miguel G.; Cardona, Omar D.; Pujades, Lluis G.; Barbat, Alex H.; Bernal, Gabriel A.

    2013-01-01

    This article presents a methodology for an estimate of the benefit cost ratio of the seismic risk reduction in buildings portfolio at broadscale, for a world region, allowing comparing the results obtained for the countries belonging to that region. This methodology encompasses (1) the generation of a set of random seismic events and the evaluation of the spectral accelerations at the buildings location; (2) the estimation of the buildings built area, the economic value, as well as the cla...

  14. Preliminary Seismic Response and Fragility Analysis for DACS Cabinet

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jinho; Kwag, Shinyoung; Lee, Jongmin; Kim, Youngki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    A DACS cabinet is installed in the main control room. The objective of this paper is to perform seismic analyses and evaluate the preliminary structural integrity and seismic capacity of the DACS cabinet. For this purpose, a 3-D finite element model of the DACS cabinet was developed and its modal analyses are carried out to analyze the dynamic characteristics. The response spectrum analyses and the related safety evaluation are then performed for the DACS cabinet subject to seismic loads. Finally, the seismic margin and seismic fragility of the DACS cabinet are investigated. A seismic analysis and preliminary structural integrity of the DACS cabinet under self weight and SSE load have been evaluated. For this purpose, 3-D finite element models of the DACS cabinet were developed. A modal analysis, response spectrum analysis, and seismic fragility analysis were then performed. From the structural analysis results, the DACS cabinet is below the structural design limit of under SSE 0.3g, and can structurally withstand until less than SSE 3g based on an evaluation of the maximum effective stresses. The HCLPF capacity for the DGRS of the SSE 0.3g is 0.55g. A modal analysis, response spectrum analysis, and seismic fragility analysis were then performed. From the structural analysis results, the DACS cabinet is below the structural design limit of under SSE 0.3g, and can structurally withstand until less than SSE 3g based on an evaluation of the maximum effective stresses. The HCLPF capacity for the DGRS of the SSE 0.3g is 0.55g. Therefore, it is concluded that the DACS cabinet was safely designed in that no damage to the preliminary structural integrity and sufficient seismic margin is expected.

  15. Preliminary Seismic Response and Fragility Analysis for DACS Cabinet

    International Nuclear Information System (INIS)

    Oh, Jinho; Kwag, Shinyoung; Lee, Jongmin; Kim, Youngki

    2013-01-01

    A DACS cabinet is installed in the main control room. The objective of this paper is to perform seismic analyses and evaluate the preliminary structural integrity and seismic capacity of the DACS cabinet. For this purpose, a 3-D finite element model of the DACS cabinet was developed and its modal analyses are carried out to analyze the dynamic characteristics. The response spectrum analyses and the related safety evaluation are then performed for the DACS cabinet subject to seismic loads. Finally, the seismic margin and seismic fragility of the DACS cabinet are investigated. A seismic analysis and preliminary structural integrity of the DACS cabinet under self weight and SSE load have been evaluated. For this purpose, 3-D finite element models of the DACS cabinet were developed. A modal analysis, response spectrum analysis, and seismic fragility analysis were then performed. From the structural analysis results, the DACS cabinet is below the structural design limit of under SSE 0.3g, and can structurally withstand until less than SSE 3g based on an evaluation of the maximum effective stresses. The HCLPF capacity for the DGRS of the SSE 0.3g is 0.55g. A modal analysis, response spectrum analysis, and seismic fragility analysis were then performed. From the structural analysis results, the DACS cabinet is below the structural design limit of under SSE 0.3g, and can structurally withstand until less than SSE 3g based on an evaluation of the maximum effective stresses. The HCLPF capacity for the DGRS of the SSE 0.3g is 0.55g. Therefore, it is concluded that the DACS cabinet was safely designed in that no damage to the preliminary structural integrity and sufficient seismic margin is expected

  16. Seismic fragility capacity of equipment

    International Nuclear Information System (INIS)

    Iijima, Toru; Abe, Hiroshi; Suzuki, Kenichi

    2006-01-01

    Seismic probabilistic safety assessment (PSA) is an available method to evaluate residual risks of nuclear plants that are designed on definitive seismic conditions. From our preliminary seismic PSA analysis, horizontal shaft pumps are important components that have significant influences on the core damage frequency (CDF). An actual horizontal shaft pump and some kinds of elements were tested to evaluate realistic fragility capacities. Our test results showed that the realistic fragility capacity of horizontal shaft pump would be at least four times as high as a current value, 1.6 x 9.8 m/s 2 , used for our seismic PSA. We are going to incorporate the fragility capacity data that were obtained from those tests into our seismic PSA analysis, and we expect that the reliability of seismic PSA should increase. (author)

  17. Recent Vs. Historical Seismicity Analysis For Banat Seismic Region (Western Part Of Romania

    Directory of Open Access Journals (Sweden)

    Oros Eugen

    2015-03-01

    Full Text Available The present day seismic activity from a region reflects the active tectonics and can confirm the seismic potential of the seismogenic sources as they are modelled using the historical seismicity. This paper makes a comparative analysis of the last decade seismicity recorded in the Banat Seismic Region (western part of Romania and the historical seismicity of the region (Mw≥4.0. Four significant earthquake sequences have been recently localized in the region, three of them nearby the city of Timisoara (January 2012 and March 2013 and the fourth within Hateg Basin, South Carpathians (October 2013. These sequences occurred within the epicentral areas of some strong historical earthquakes (Mw≥5.0. The main events had some macroseismic effects on people up to some few kilometers from the epicenters. Our results update the Romanian earthquakes catalogue and bring new information along the local seismic hazard sources models and seismotectonics.

  18. The KnowRISK project - Know your city, Reduce seISmic risK through non-structural elements

    Science.gov (United States)

    Sousa Oliveria, Carlos; Amaral Ferreira, Mónica; Lopez, Mário; Sousa Silva, Delta; Musacchio, Gemma; Rupakhety, Rajesh; Falsaperla, Susanna; Meroni, Fabrizio; Langer, Horst

    2016-04-01

    Historically, there is a tendency to focus on seismic structural performance of buildings, neglecting the potential for damage of non-structural elements. In particular, non-structural elements of buildings are their architectural parts (i.e. partitions, ceilings, cladding), electrical and mechanical components (i.e., distribution panels, piping, plumbing), and contents (e.g., furniture, bookcases, computers and desktop equipment). Damage of these elements often contributes significantly to earthquake impacts. In the 1999 Izmit Earthquake, Turkey, 50% of the injuries and 3% of human losses were caused by non-structural failures. In the 2010-2011 Christchurch Earthquakes (New Zealand), 40% of building damage was induced by non-structural malfunctions. Around 70%-85% of construction cost goes into these elements, and their damage can strongly influence the ability of communities to cope with and recover from earthquakes. The project Know your city, Reduce seISmic risK through non-structural elements (KnowRISK) aims at facilitating local communities' access to expert knowledge on non-structural seismic protection solutions. The project will study seismic scenarios critical for non-structural damage, produce a portfolio of non-structural protection measures and investigate the level of awareness in specific communities. We will implement risk communication strategies that will take into account the social and cultural background and a participatory approach to raise awareness in local communities. The paradox between the progress of scientific knowledge and the ongoing increase of losses from natural disasters worldwide is a well-identified gap in the UN Hyogo Framework for Action 2005-2015, in which one of the main priorities is the investment on "knowledge use, innovation and education to build a culture of safety and resilience". The KnowRISK is well aligned with these priorities and will contribute to participatory action aimed at: i) transferring expert knowledge

  19. Seismic risk assessment in the Mexican Nuclear Center applying the Gumbel-I distribution

    International Nuclear Information System (INIS)

    Flores R, J.H.; Arguelles F, R.; Camacho L, M.E.; Urrutia F, J.

    1997-01-01

    A licensing requirement for the operation of nuclear facilities is the performance of different kinds of studies, one of which is seismic risk assessment. This study is useful for the validation of the seismic coefficient applied in the structural design of the facilities. Thus, for the construction of a pilot nuclear fuel plant at Mexico Nuclear Centre of the Instituto Nacional de Investigaciones Nucleares (ININ), was necessary to make such study. The seismicity data for the period between 1912 and 1990 were used and the extreme values Gumbel-I distribution was applied to them. With this, ground acceleration seismic risk maps for recurrence periods of 1, 25 and 50 years were drawn up, showing maximum values of 1.2, 4.25, and 5.0 gales, respectively. (Author)

  20. Seismic Hazard and risk assessment for Romania -Bulgaria cross-border region

    Science.gov (United States)

    Simeonova, Stela; Solakov, Dimcho; Alexandrova, Irena; Vaseva, Elena; Trifonova, Petya; Raykova, Plamena

    2016-04-01

    Among the many kinds of natural and man-made disasters, earthquakes dominate with regard to their social and economical impact on the urban environment. Global seismic hazard and vulnerability to earthquakes are steadily increasing as urbanization and development occupy more areas that are prone to effects of strong earthquakes. The assessment of the seismic hazard and risk is particularly important, because it provides valuable information for seismic safety and disaster mitigation, and it supports decision making for the benefit of society. Romania and Bulgaria, situated in the Balkan Region as a part of the Alpine-Himalayan seismic belt, are characterized by high seismicity, and are exposed to a high seismic risk. Over the centuries, both countries have experienced strong earthquakes. The cross-border region encompassing the northern Bulgaria and southern Romania is a territory prone to effects of strong earthquakes. The area is significantly affected by earthquakes occurred in both countries, on the one hand the events generated by the Vrancea intermediate-depth seismic source in Romania, and on the other hand by the crustal seismicity originated in the seismic sources: Shabla (SHB), Dulovo, Gorna Orjahovitza (GO) in Bulgaria. The Vrancea seismogenic zone of Romania is a very peculiar seismic source, often described as unique in the world, and it represents a major concern for most of the northern part of Bulgaria as well. In the present study the seismic hazard for Romania-Bulgaria cross-border region on the basis of integrated basic geo-datasets is assessed. The hazard results are obtained by applying two alternative approaches - probabilistic and deterministic. The MSK64 intensity (MSK64 scale is practically equal to the new EMS98) is used as output parameter for the hazard maps. We prefer to use here the macroseismic intensity instead of PGA, because it is directly related to the degree of damages and, moreover, the epicentral intensity is the original

  1. Sensitivity Analysis on Elbow Piping Components in Seismically Isolated NPP under Seismic Loading

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Hee Kun; Hahm, Dae Gi; Kim, Min Kyu [KAERI, Daejeon (Korea, Republic of); Jeon, Bub Gyu; Kim, Nam Sik [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    In this study, the FE model is verified using specimen test results and simulation with parameter variations are conducted. Effective parameters will randomly sampled and used as input values for simulations to be applied to the fragility analysis. pipelines are representative of them because they could undergo larger displacements when they are supported on both isolated and non-isolated structures simultaneously. Especially elbows are critical components of pipes under severed loading conditions such as earthquake action because strain is accumulated on them during the repeated bending of the pipe. Therefore, seismic performance of pipe elbow components should be examined thoroughly based on the fragility analysis. Fragility assessment of interface pipe should take different sources of uncertainty into account. However, selection of important sources and repeated tests with many random input values are very time consuming and expensive, so numerical analysis is commonly used. In the present study, finite element (FE) model of elbow component will be validated using the dynamic test results of elbow components. Using the verified model, sensitivity analysis will be implemented as a preliminary process of seismic fragility of piping system. Several important input parameters are selected and how the uncertainty of them are apportioned to the uncertainty of the elbow response is to be studied. Piping elbows are critical components under cyclic loading conditions as they are subjected large displacement. In a seismically isolated NPP, seismic capacity of piping system should be evaluated with caution. Seismic fragility assessment preliminarily needs parameter sensitivity analysis about the output of interest with different input parameter values.

  2. Seismic hazard and seismic risk assessment based on the unified scaling law for earthquakes: Himalayas and adjacent regions

    Science.gov (United States)

    Nekrasova, A. K.; Kossobokov, V. G.; Parvez, I. A.

    2015-03-01

    For the Himalayas and neighboring regions, the maps of seismic hazard and seismic risk are constructed with the use of the estimates for the parameters of the unified scaling law for earthquakes (USLE), in which the Gutenberg-Richter law for magnitude distribution of seismic events within a given area is applied in the modified version with allowance for linear dimensions of the area, namely, log N( M, L) = A + B (5 - M) + C log L, where N( M, L) is the expected annual number of the earthquakes with magnitude M in the area with linear dimension L. The spatial variations in the parameters A, B, and C for the Himalayas and adjacent regions are studied on two time intervals from 1965 to 2011 and from 1980 to 2011. The difference in A, B, and C between these two time intervals indicates that seismic activity experiences significant variations on a scale of a few decades. With a global consideration of the seismic belts of the Earth overall, the estimates of coefficient A, which determines the logarithm of the annual average frequency of the earthquakes with a magnitude of 5.0 and higher in the zone with a linear dimension of 1 degree of the Earth's meridian, differ by a factor of 30 and more and mainly fall in the interval from -1.1 to 0.5. The values of coefficient B, which describes the balance between the number of earthquakes with different magnitudes, gravitate to 0.9 and range from less than 0.6 to 1.1 and higher. The values of coefficient C, which estimates the fractal dimension of the local distribution of epicenters, vary from 0.5 to 1.4 and higher. In the Himalayas and neighboring regions, the USLE coefficients mainly fall in the intervals of -1.1 to 0.3 for A, 0.8 to 1.3 for B, and 1.0 to 1.4 for C. The calculations of the local value of the expected peak ground acceleration (PGA) from the maximal expected magnitude provided the necessary basis for mapping the seismic hazards in the studied region. When doing this, we used the local estimates of the

  3. Fast principal component analysis for stacking seismic data

    Science.gov (United States)

    Wu, Juan; Bai, Min

    2018-04-01

    Stacking seismic data plays an indispensable role in many steps of the seismic data processing and imaging workflow. Optimal stacking of seismic data can help mitigate seismic noise and enhance the principal components to a great extent. Traditional average-based seismic stacking methods cannot obtain optimal performance when the ambient noise is extremely strong. We propose a principal component analysis (PCA) algorithm for stacking seismic data without being sensitive to noise level. Considering the computational bottleneck of the classic PCA algorithm in processing massive seismic data, we propose an efficient PCA algorithm to make the proposed method readily applicable for industrial applications. Two numerically designed examples and one real seismic data are used to demonstrate the performance of the presented method.

  4. Analysis of EAST tokamak cryostat anti-seismic performance

    International Nuclear Information System (INIS)

    Chen Wei; Kong Xiaoling; Liu Sumei; Ni Xiaojun; Wang Zhongwei

    2014-01-01

    A 3-D finite element model for EAST tokamak cryostat is established by using ANSYS. On the basis of the modal analysis, the seismic response of the EAST tokamak cryostat structure is calculated according to an input of the design seismic response spectrum referring to code for seismic design of nuclear power plants. Calculation results show that EAST cryostat displacement and stress response is small under the action of earthquake. According to the standards, EAST tokamak cryostat structure under the action of design seismic can meet the requirements of anti-seismic design intensity, and ensure the anti-seismic safety of equipment. (authors)

  5. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Payne, Suzette Jackson; Coppersmith, Ryan; Coppersmith, Kevin; Rodriguez-Marek, Adrian; Falero, Valentina Montaldo; Youngs, Robert

    2016-01-01

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Advanced Test Reactor (ATR), and Naval Reactors Facility (NRF) at the Idaho National Laboratory (INL). The PSHA followed the approaches and procedures for Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 study and included a Participatory Peer Review Panel (PPRP) to provide the confident technical basis and mean-centered estimates of the ground motions. A new risk-informed methodology for evaluating the need for an update of an existing PSHA was developed as part of the Seismic Risk Assessment (SRA) project. To develop and implement the new methodology, the SRA project elected to perform two SSHAC Level 1 PSHAs. The first was for the Fuel Manufacturing Facility (FMF), which is classified as a Seismic Design Category (SDC) 3 nuclear facility. The second was for the ATR Complex, which has facilities classified as SDC-4. The new methodology requires defensible estimates of ground motion levels (mean and full distribution of uncertainty) for its criteria and evaluation process. The INL SSHAC Level 1 PSHA demonstrates the use of the PPRP, evaluation and integration through utilization of a small team with multiple roles and responsibilities (four team members and one specialty contractor), and the feasibility of a short duration schedule (10 months). Additionally, a SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels for the Spent Fuel Handling Recapitalization Project (SFHP) process facility.

  6. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Suzette Jackson [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coppersmith, Ryan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coppersmith, Kevin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rodriguez-Marek, Adrian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Falero, Valentina Montaldo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Youngs, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Advanced Test Reactor (ATR), and Naval Reactors Facility (NRF) at the Idaho National Laboratory (INL). The PSHA followed the approaches and procedures for Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 study and included a Participatory Peer Review Panel (PPRP) to provide the confident technical basis and mean-centered estimates of the ground motions. A new risk-informed methodology for evaluating the need for an update of an existing PSHA was developed as part of the Seismic Risk Assessment (SRA) project. To develop and implement the new methodology, the SRA project elected to perform two SSHAC Level 1 PSHAs. The first was for the Fuel Manufacturing Facility (FMF), which is classified as a Seismic Design Category (SDC) 3 nuclear facility. The second was for the ATR Complex, which has facilities classified as SDC-4. The new methodology requires defensible estimates of ground motion levels (mean and full distribution of uncertainty) for its criteria and evaluation process. The INL SSHAC Level 1 PSHA demonstrates the use of the PPRP, evaluation and integration through utilization of a small team with multiple roles and responsibilities (four team members and one specialty contractor), and the feasibility of a short duration schedule (10 months). Additionally, a SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels for the Spent Fuel Handling Recapitalization Project (SFHP) process facility.

  7. Seismic risk assessment of Navarre (Northern Spain)

    Science.gov (United States)

    Gaspar-Escribano, J. M.; Rivas-Medina, A.; García Rodríguez, M. J.; Benito, B.; Tsige, M.; Martínez-Díaz, J. J.; Murphy, P.

    2009-04-01

    The RISNA project, financed by the Emergency Agency of Navarre (Northern Spain), aims at assessing the seismic risk of the entire region. The final goal of the project is the definition of emergency plans for future earthquakes. With this purpose, four main topics are covered: seismic hazard characterization, geotechnical classification, vulnerability assessment and damage estimation to structures and exposed population. A geographic information system is used to integrate, analyze and represent all information colleted in the different phases of the study. Expected ground motions on rock conditions with a 90% probability of non-exceedance in an exposure time of 50 years are determined following a Probabilistic Seismic Hazard Assessment (PSHA) methodology that includes a logic tree with different ground motion and source zoning models. As the region under study is located in the boundary between Spain and France, an effort is required to collect and homogenise seismological data from different national and regional agencies. A new homogenised seismic catalogue, merging data from Spanish, French, Catalonian and international agencies and establishing correlations between different magnitude scales, is developed. In addition, a new seismic zoning model focused on the study area is proposed. Results show that the highest ground motions on rock conditions are expected in the northeastern part of the region, decreasing southwards. Seismic hazard can be expressed as low-to-moderate. A geotechnical classification of the entire region is developed based on surface geology, available borehole data and morphotectonic constraints. Frequency-dependent amplification factors, consistent with code values, are proposed. The northern and southern parts of the region are characterized by stiff and soft soils respectively, being the softest soils located along river valleys. Seismic hazard maps including soil effects are obtained by applying these factors to the seismic hazard maps

  8. Vrancea earthquakes. Courses for specific actions to mitigate seismic risk

    International Nuclear Information System (INIS)

    Marmureanu, Gheorghe; Marmureanu, Alexandru

    2005-01-01

    Earthquakes in the Carpathian-Pannonian region are confined to the crust, except the Vrancea zone, where earthquakes with focal depth down to 200 Km occur. For example, the ruptured area migrated from 150 km to 180 km (November 10,1940, M w = 7.7) from 90 km to 110 km (March 4, 1977, M w 7.4), from 130 km to 150 km (August 30, 1986, M w = 7.1) and from 70 km to 90 km (May 30, 1990, M w = 6.9) depth. The depth interval between 110 km and 130 km remains not ruptured since 1802, October 26, when it was the strongest earthquake occurred in this part of Central Europe. The magnitude is assumed to be M w = 7.9 - 8.0 and this depth interval is a natural candidate for the next strong Vrancea event. While no country in the world is entirely safe, the lack of capacity to limit the impact of seismic hazards remains a major burden for all countries and while the world has witnessed an exponential increase in human and material losses due to natural disasters given by earthquakes, there is a need to reverse trends in seismic risk mitigation to future events. Main courses for specific actions to mitigate the seismic risk given by strong deep Vrancea earthquakes should be considered as key for development actions: - Early warning system for industrial facilities. Early warning is more than a technological instrument to detect, monitor and submit warnings. It should become part of a management information system for decision-making in the context of national institutional frameworks for disaster management and part of national and local strategies and programmers for risk mitigation; - Prediction program of Vrancea strong earthquakes of short and long term; - Hazard seismic map of Romania. The wrong assessment of the seismic hazard can lead to dramatic situations as those from Bucharest or Kobe. Before the 1977 Vrancea earthquake, the city of Bucharest was designed to intensity I = VII (MMI) and the real intensity was I = IX1/2-X (MMI); - Seismic microzonation of large populated

  9. Seismic analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Halbritter, A.L.

    1984-01-01

    Nuclear Power Plants require exceptional safety guarantees which are reflected in a rigorous control of the employed materials, advanced construction technology, sophisticated methods of analysis and consideration of non conventional load cases such as the earthquake loading. In this paper, the current procedures used in the seismic analysis of Nuclear Power Plants are presented. The seismic analysis of the structures has two objectives: the determination of forces in the structure in order to design it against earthquakes and the generation of floor response spectra to be used in the design of mechanical and electrical components and piping systems. (Author) [pt

  10. A methodology for assessment seismic risk in PSAs

    International Nuclear Information System (INIS)

    Jae, Moo Sung

    2001-01-01

    This paper suggested a new framework for assessing seismic risk in PSAs. The framework used the concepts of requirement and achievement in the reliability physics. The quantified correlation which is a function of the requirement variable (hazard curve) and the achievement variable (fragility curve) results in a quantity, the unconditional frequency of exceeding a damage lelvel. This framework can be applied to any other external safety assessment, such as Fire and Flood Risk in PSAs

  11. Seismic hazard and risk assessment for large Romanian dams situated in the Moldavian Platform

    Science.gov (United States)

    Moldovan, Iren-Adelina; Popescu, Emilia; Otilia Placinta, Anica; Petruta Constantin, Angela; Toma Danila, Dragos; Borleanu, Felix; Emilian Toader, Victorin; Moldoveanu, Traian

    2016-04-01

    Besides periodical technical inspections, the monitoring and the surveillance of dams' related structures and infrastructures, there are some more seismic specific requirements towards dams' safety. The most important one is the seismic risk assessment that can be accomplished by rating the dams into seismic risk classes using the theory of Bureau and Ballentine (2002), and Bureau (2003), taking into account the maximum expected peak ground motions at the dams site - values obtained using probabilistic hazard assessment approaches (Moldovan et al., 2008), the structures vulnerability and the downstream risk characteristics (human, economical, historic and cultural heritage, etc) in the areas that might be flooded in the case of a dam failure. Probabilistic seismic hazard (PSH), vulnerability and risk studies for dams situated in the Moldavian Platform, starting from Izvorul Muntelui Dam, down on Bistrita and following on Siret River and theirs affluent will be realized. The most vulnerable dams will be studied in detail and flooding maps will be drawn to find the most exposed downstream localities both for risk assessment studies and warnings. GIS maps that clearly indicate areas that are potentially flooded are enough for these studies, thus giving information on the number of inhabitants and goods that may be destroyed. Geospatial servers included topography is sufficient to achieve them, all other further studies are not necessary for downstream risk assessment. The results will consist of local and regional seismic information, dams specific characteristics and locations, seismic hazard maps and risk classes, for all dams sites (for more than 30 dams), inundation maps (for the most vulnerable dams from the region) and possible affected localities. The studies realized in this paper have as final goal to provide the local emergency services with warnings of a potential dam failure and ensuing flood as a result of an large earthquake occurrence, allowing further

  12. GUI program to compute probabilistic seismic hazard analysis

    International Nuclear Information System (INIS)

    Shin, Jin Soo; Chi, H. C.; Cho, J. C.; Park, J. H.; Kim, K. G.; Im, I. S.

    2006-12-01

    The development of program to compute probabilistic seismic hazard is completed based on Graphic User Interface(GUI). The main program consists of three part - the data input processes, probabilistic seismic hazard analysis and result output processes. The probabilistic seismic hazard analysis needs various input data which represent attenuation formulae, seismic zoning map, and earthquake event catalog. The input procedure of previous programs based on text interface take a much time to prepare the data. The data cannot be checked directly on screen to prevent input erroneously in existing methods. The new program simplifies the input process and enable to check the data graphically in order to minimize the artificial error within limits of the possibility

  13. Seismic hazard analysis of Sinop province, Turkey using ...

    Indian Academy of Sciences (India)

    1997-01-11

    Jan 11, 1997 ... 2008 in the Sinop province of Turkey this study presents a seismic hazard analysis based on ... Considering the development and improvement ... It is one of the most populated cities in the coun- ... done as reliably as the seismic hazard of region per- .... Seismic safety work of underground networks was.

  14. Probabilistic Seismic Risk Assessment in Manizales, Colombia:Quantifying Losses for Insurance Purposes

    Institute of Scientific and Technical Information of China (English)

    Mario A.Salgado-Gálvez; Gabriel A.Bernal; Daniela Zuloaga; Mabel C.Marulanda; Omar-Darío Cardona; Sebastián Henao

    2017-01-01

    A fully probabilistic seismic risk assessment was developed in Manizales,Colombia,considering assets of different types.The first type includes elements that are part of the water and sewage network,and the second type includes public and private buildings.This assessment required the development of a probabilistic seismic hazard analysis that accounts for the dynamic soil response,assembling high resolution exposure databases,and the development of damage models for different types of elements.The economic appraisal of the exposed assets was developed together with specialists of the water utilities company of Manizales and the city administration.The risk assessment was performed using several Comprehensive Approach to Probabilistic Risk Assessment modules as well as the R-System,obtaining results in terms of traditional metrics such as loss exceedance curve,average annual loss,and probable maximum loss.For the case of pipelines,repair rates were also estimated.The results for the water and sewage network were used in activities related to the expansion and maintenance strategies,as well as for the exploration of financial retention and transfer alternatives using insurance schemes based on technical,probabilistic,and prospective damage and loss estimations.In the case of the buildings,the results were used in the update of the technical premium values of the existing collective insurance scheme.

  15. Enhancing the seismic margin review methodology to obtain risk insights

    International Nuclear Information System (INIS)

    Budnitz, R.J.

    1992-01-01

    This paper discusses methods for obtaining risk insights from the seismic margin review (SMR) methodology. The SMR methodology was originally developed in 1984-1987 with the objective of analyzing an individual nuclear power plant to ascertain whether the plant has the ability to withstand earthquakes substantially beyond the design-basis earthquake without suffering a core-damage accident. Recently, in the context of Nuclear Regulatory Commission's (NRC's) Individual Plant Evaluation for External Events (IPEEE) program, the SMR methodology has been developed further by NRC to allow plants to identify plant-specific vulnerabilities (in the IPEEE sense) to seismic events. The objective of these enhancements has been to provide a methodology for IPEEE seismic review that is substantially less expensive than a full-scope seismic PRA, but that achieves the IPEEE's vulnerability-search objectives. In this paper, the steps involved in the enhanced methodology are discussed

  16. Seismic analysis of liquid storage container in nuclear reactors

    International Nuclear Information System (INIS)

    Zhang Zhengming; He Shuyan; Xu Ming

    2007-01-01

    Seismic analysis of liquid storage containers is always difficult in the seismic design of nuclear reactor equipment. The main reason is that the liquid will generate significant seismic loads under earthquake. These dynamic liquid loads usually form the main source of the stresses in the container. For this kind of structure-fluid coupling problem, some simplified theoretical methods were usually used previously. But this cannot satisfy the requirements of engineering design. The Finite Element Method, which is now full developed and very useful for the structural analysis, is still not mature for the structure-fluid coupling problem. This paper introduces a method suitable for engineering mechanical analysis. Combining theoretical analysis of the dynamic liquid loads and finite element analysis of the structure together, this method can give practical solutions in the seismic design of liquid storage containers

  17. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; RINKER MW; CARPENTER BG; HENDRIX C; ABATT FG

    2009-01-15

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Analyses. The original scope of the project was to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). Although Milestone M-48-14 has been met, Revision I is being issued to address external review comments with emphasis on changes in the modeling of anchor bolts connecting the concrete dome and the steel primary tank. The work statement provided to M&D (PNNL 2003) required that a nonlinear soil structure interaction (SSI) analysis be performed on the DSTs. The analysis is required to include the effects of sliding interfaces and fluid sloshing (fluid-structure interaction). SSI analysis has traditionally been treated by frequency domain computer codes such as SHAKE (Schnabel, et al. 1972) and SASSI (Lysmer et al. 1999a). Such frequency domain programs are limited to the analysis of linear systems. Because of the contact surfaces, the response of the DSTs to a seismic event is inherently nonlinear and consequently outside the range of applicability of the linear frequency domain programs. That is, the nonlinear response of the DSTs to seismic excitation requires the use of a time domain code. The capabilities and limitations of the commercial time domain codes ANSYS{reg_sign} and MSC Dytran{reg_sign} for performing seismic SSI analysis of the DSTs and the methodology required to perform the detailed seismic analysis of the DSTs has been addressed in Rinker et al (2006a). On the basis of the results reported in Rinker et al

  18. Development of analysis methods for seismically isolated nuclear structures

    International Nuclear Information System (INIS)

    Yoo, Bong; Lee, Jae-Han; Koo, Gyeng-Hoi

    2002-01-01

    KAERI's contributions to the project entitled Development of Analysis Methods for Seismically Isolated Nuclear Structures under IAEA CRP of the intercomparison of analysis methods for predicting the behaviour of seismically isolated nuclear structures during 1996-1999 in effort to develop the numerical analysis methods and to compare the analysis results with the benchmark test results of seismic isolation bearings and isolated nuclear structures provided by participating countries are briefly described. Certain progress in the analysis procedures for isolation bearings and isolated nuclear structures has been made throughout the IAEA CRPs and the analysis methods developed can be improved for future nuclear facility applications. (author)

  19. Uncertainty Analysis and Expert Judgment in Seismic Hazard Analysis

    Science.gov (United States)

    Klügel, Jens-Uwe

    2011-01-01

    The large uncertainty associated with the prediction of future earthquakes is usually regarded as the main reason for increased hazard estimates which have resulted from some recent large scale probabilistic seismic hazard analysis studies (e.g. the PEGASOS study in Switzerland and the Yucca Mountain study in the USA). It is frequently overlooked that such increased hazard estimates are characteristic for a single specific method of probabilistic seismic hazard analysis (PSHA): the traditional (Cornell-McGuire) PSHA method which has found its highest level of sophistication in the SSHAC probability method. Based on a review of the SSHAC probability model and its application in the PEGASOS project, it is shown that the surprising results of recent PSHA studies can be explained to a large extent by the uncertainty model used in traditional PSHA, which deviates from the state of the art in mathematics and risk analysis. This uncertainty model, the Ang-Tang uncertainty model, mixes concepts of decision theory with probabilistic hazard assessment methods leading to an overestimation of uncertainty in comparison to empirical evidence. Although expert knowledge can be a valuable source of scientific information, its incorporation into the SSHAC probability method does not resolve the issue of inflating uncertainties in PSHA results. Other, more data driven, PSHA approaches in use in some European countries are less vulnerable to this effect. The most valuable alternative to traditional PSHA is the direct probabilistic scenario-based approach, which is closely linked with emerging neo-deterministic methods based on waveform modelling.

  20. 76 FR 57767 - Proposed Generic Communication; Draft NRC Generic Letter 2011-XX: Seismic Risk Evaluations for...

    Science.gov (United States)

    2011-09-16

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0204] Proposed Generic Communication; Draft NRC Generic Letter 2011-XX: Seismic Risk Evaluations for Operating Reactors AGENCY: Nuclear Regulatory Commission... FR 54507), that requested public comment on Draft NRC Generic Letter 2011- XX: Seismic Risk...

  1. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY, T.C.

    2006-03-17

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratory (PNNL) to perform seismic analysis of the Hanford Site double-shell tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project--DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST system at Hanford in support of Tri-Party Agreement Milestone M-48-14, The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DSTs assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil and the effects of the primary tank contents. The DSTs and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary

  2. Analysis of post-blasting source mechanisms of mining-induced seismic events in Rudna copper mine, Poland

    Directory of Open Access Journals (Sweden)

    Caputa Alicja

    2015-10-01

    Full Text Available The exploitation of georesources by underground mining can be responsible for seismic activity in areas considered aseismic. Since strong seismic events are connected with rockburst hazard, it is a continuous requirement to reduce seismic risk. One of the most effective methods to do so is blasting in potentially hazardous mining panels. In this way, small to moderate tremors are provoked and stress accumulation is substantially reduced. In this paper we present an analysis of post-blasting events using Full Moment Tensor (MT inversion at the Rudna mine, Poland, underground seismic network. In addition, we describe the problems we faced when analyzing seismic signals. Our studies show that focal mechanisms for events that occurred after blasts exhibit common features in the MT solution. The strong isotropic and small Double Couple (DC component of the MT, indicate that these events were provoked by detonations. On the other hand, post-blasting MT is considerably different than the MT obtained for strong mining events. We believe that seismological analysis of provoked and unprovoked events can be a very useful tool in confirming the effectiveness of blasting in seismic hazard reduction in mining areas.

  3. Seismic risk assessment of architectural heritages in Gyeongju considering local site effects

    Science.gov (United States)

    Park, H.-J.; Kim, D.-S.; Kim, D.-M.

    2013-02-01

    A seismic risk assessment is conducted for cultural heritage sites in Gyeongju, the capital of Korea's ancient Silla Kingdom. Gyeongju, home to UNESCO World Heritage sites, contains remarkable artifacts of Korean Buddhist art. An extensive geotechnical survey including a series of in situ tests is presented, providing pertinent soil profiles for site response analyses on thirty cultural heritage sites. After the shear wave velocity profiles and dynamic material properties were obtained, site response analyses were carried out at each historical site and the amplification characteristics, site period, and response spectrum of the site were determined for the earthquake levels of 2400 yr and 1000 yr return periods based on the Korean seismic hazard map. Response spectrum and corresponding site coefficients obtained from site response analyses considering geologic conditions differ significantly from the current Korean seismic code. This study confirms the importance of site-specific ground response analyses considering local geological conditions. Results are given in the form of the spatial distribution of bedrock depth, site period, and site amplification coefficients, which are particularly valuable in the context of a seismic vulnerability study. This study presents the potential amplification of hazard maps and provides primary data on the seismic risk assessment of each cultural heritage.

  4. Seismic response analysis of floating nuclear power plant

    International Nuclear Information System (INIS)

    Hagiwara, Yutaka; Nakamura, Hideharu; Shiojiri, Hiroo

    1988-01-01

    Since Floating Nuclear Power Plants (FNPs) are considered to be isolated from horizontal seismic motion, it is anticipated to reduce seismic load for plant components and buildings on the barge. On the other hand, barge oscillation and sloshing in the closed basin might be excited by earthquakes, because natural periods of those motions correspond to relatively-long period component (between 2 and 20 seconds) of seismic motion. Therefore, it is necessary to evaluate seismic isolation effects and barge oscillation, for the rational design of FNPs. However, there do not exist any reasonable analytical tools which can evaluate seismic response of floating structures in closed basin. The purpose of the present report is to develop a seismic analysis method for FNPs. The proposed method is based on the finite element method, and the formulation includes fluid-structure interaction, water surface wave, buoyancy effect, and non-linear characteristics of mooring system. Response analysis can be executed in both time-domain and frequency-domain. Shaking table tests were conducted to validate the proposed method of analysis. The test results showed significant isolation effect of floating structure, and apparent interaction between the barge and the basin. And 2-D and 3-D frequency domain analyses and the 2-D linear and non-linear time-domain analyses were done and those analyses could simulate the test results well. (author)

  5. One-dimensional Seismic Analysis of a Solid-Waste Landfill

    International Nuclear Information System (INIS)

    Castelli, Francesco; Lentini, Valentina; Maugeri, Michele

    2008-01-01

    Analysis of the seismic performance of solid waste landfill follows generally the same procedures for the design of embankment dams, even if the methods and safety requirements should be different. The characterization of waste properties for seismic design is difficult due the heterogeneity of the material, requiring the procurement of large samples. The dynamic characteristics of solid waste materials play an important role on the seismic response of landfill, and it also is important to assess the dynamic shear strengths of liner materials due the effect of inertial forces in the refuse mass. In the paper the numerical results of a dynamic analysis are reported and analysed to determine the reliability of the common practice of using 1D analysis to evaluate the seismic response of a municipal solid-waste landfill. Numerical results indicate that the seismic response of a landfill can vary significantly due to reasonable variations of waste properties, fill heights, site conditions, and design rock motions

  6. Taking into account seismic risk on glove boxes

    Energy Technology Data Exchange (ETDEWEB)

    Ladurelle, Marie; Philipponneau, Yannick

    2005-01-01

    Built in 1981, the LEFCA is a Basic Nuclear Facility (BNF) in which experimental plutonium based fuels are produced and characterised in about a hundred Gloves Boxes (GB). Many safety rules are required, especially those concerning seismic risk. In order to prepare the December 2003 safety reconsideration, the following methodology has been proposed so that GB might resist the Safe Shutdown Earthquake. 1) The determination of a safety target: the GB static containment. 2) The realisation of an ''in situ'' assessment: the definition of several classes of GB, vibrating table tests and the modelling of the GB behaviour with seismic solicitations, 3) A strength diagnosis for equipment: filters, connecting tunnels and pipes holding. 4) A proposal for further strengthening modifications if necessary : fixing the frame, interlocking GB and the frame, taking internal or external GB missiles into account. This process has contributed to a reduction in the radiological potential seismic impact for the neighbouring populations. We shall present the implemented methodology and the strengthening works that have been approved by Safety Authorities. Reinforcement modifications will begin in 2004. (Author)

  7. Taking into account seismic risk on glove boxes

    International Nuclear Information System (INIS)

    Ladurelle, Marie; Philipponneau, Yannick

    2005-01-01

    Built in 1981, the LEFCA is a Basic Nuclear Facility (BNF) in which experimental plutonium based fuels are produced and characterised in about a hundred Gloves Boxes (GB). Many safety rules are required, especially those concerning seismic risk. In order to prepare the December 2003 safety reconsideration, the following methodology has been proposed so that GB might resist the Safe Shutdown Earthquake. 1) The determination of a safety target: the GB static containment. 2) The realisation of an ''in situ'' assessment: the definition of several classes of GB, vibrating table tests and the modelling of the GB behaviour with seismic solicitations, 3) A strength diagnosis for equipment: filters, connecting tunnels and pipes holding. 4) A proposal for further strengthening modifications if necessary : fixing the frame, interlocking GB and the frame, taking internal or external GB missiles into account. This process has contributed to a reduction in the radiological potential seismic impact for the neighbouring populations. We shall present the implemented methodology and the strengthening works that have been approved by Safety Authorities. Reinforcement modifications will begin in 2004. (Author)

  8. The impact of seismically-induced relay chatter on nuclear plant risk

    International Nuclear Information System (INIS)

    Bley, D.C.; McIntyre, T.J.; Smith, B.; Kassawara, R.P.

    1987-01-01

    This paper describes a systematic scheme for analyzing the impact of relay chatter that is amenable to both PRA analysis and seismic margins analysis. It uses knowledge of the systems engineering of the plant to bound the scope of the problem to a tractable size and has been applied to both the Diablo Canyon PRA and the EPRI seismic margines program trial evaluation at the Catawba Nuclear Power Plant. It has also been coordinated with similar EPRI-sponsored work on relay functionality for the Seismic Qualification Utility Group. (orig./HP)

  9. GUI program to compute probabilistic seismic hazard analysis

    International Nuclear Information System (INIS)

    Shin, Jin Soo; Chi, H. C.; Cho, J. C.; Park, J. H.; Kim, K. G.; Im, I. S.

    2005-12-01

    The first stage of development of program to compute probabilistic seismic hazard is completed based on Graphic User Interface (GUI). The main program consists of three part - the data input processes, probabilistic seismic hazard analysis and result output processes. The first part has developed and others are developing now in this term. The probabilistic seismic hazard analysis needs various input data which represent attenuation formulae, seismic zoning map, and earthquake event catalog. The input procedure of previous programs based on text interface take a much time to prepare the data. The data cannot be checked directly on screen to prevent input erroneously in existing methods. The new program simplifies the input process and enable to check the data graphically in order to minimize the artificial error within the limits of the possibility

  10. Destructiveness criteria for seismic risk evaluation of nuclear power plant

    International Nuclear Information System (INIS)

    Saragoni, G.R.

    1995-01-01

    Two criteria of destructiveness for seismic risk evaluation of nuclear power plant are presented. The first one is a simple linear criterion that allows to compute average response spectra in terms of earthquake accelerogram characteristics. The second defines the destructiveness potential factor P D which measures the capacity of earthquake to produce nonlinear damage. This second criterion that shows large differences of destructiveness capacity for earthquake accelerograms of different seismic environment, specially between subductive and transcursive, is strongly recommended. (author). 8 refs., 1 fig. 1 tab

  11. Proceedings of the OECD/NEA workshop on seismic risk - Summary and conclusions - Committee on the Safety of Nuclear Installations PWG3 and PWG5

    International Nuclear Information System (INIS)

    2001-01-01

    wider use of seismic PSA technology for design of NPPs. Improvements in methodology and database and examinations of the importance of issues in the following areas will further enhance the usefulness of seismic PSA/Margin studies: - Database and guidance for evaluation of seismic capacities of components (with consideration of differences in design philosophy and practice); - Correlations; - Effect of ageing of structures and components; - Analysis of post-earthquake operator actions; - Use of seismic PSA for identifying effective strategy for accident management; - Risk goal oriented design methodology including the use of probabilistic seismic hazard analysis; - Extension of the scope of seismic PSA to consider unique situations of other operating modes such as low power/shutdown state. It was also pointed out that the importance of seismic risk is strongly dependent on the geological conditions and design practices of countries and that analysts should select appropriate methodology for their objectives and scope of the seismic PSA/Margin studies with consideration of such conditions in their countries. Efforts by countries and international organisations such as NEA to promote international information exchange in the above areas as well as the experiences in applications and reviewing of seismic PSA/Margin studies are highly recommended

  12. A methodology for the quantitative risk assessment of major accidents triggered by seismic events

    International Nuclear Information System (INIS)

    Antonioni, Giacomo; Spadoni, Gigliola; Cozzani, Valerio

    2007-01-01

    A procedure for the quantitative risk assessment of accidents triggered by seismic events in industrial facilities was developed. The starting point of the procedure was the use of available historical data to assess the expected frequencies and the severity of seismic events. Available equipment-dependant failure probability models (vulnerability or fragility curves) were used to assess the damage probability of equipment items due to a seismic event. An analytic procedure was subsequently developed to identify, evaluate the credibility and finally assess the expected consequences of all the possible scenarios that may follow the seismic events. The procedure was implemented in a GIS-based software tool in order to manage the high number of event sequences that are likely to be generated in large industrial facilities. The developed methodology requires a limited amount of additional data with respect to those used in a conventional QRA, and yields with a limited effort a preliminary quantitative assessment of the contribution of the scenarios triggered by earthquakes to the individual and societal risk indexes. The application of the methodology to several case-studies evidenced that the scenarios initiated by seismic events may have a relevant influence on industrial risk, both raising the overall expected frequency of single scenarios and causing specific severe scenarios simultaneously involving several plant units

  13. Level-1 seismic probabilistic risk assessment for a PWR plant

    International Nuclear Information System (INIS)

    Kondo, Keisuke; Nishio, Masahide; Fujimoto, Haruo; Ichitsuka, Akihiro

    2014-01-01

    In Japan, revised Seismic Design Guidelines for the domestic light water reactors was published on September 19, 2006. These new guidelines have introduced the purpose to confirm that residual risk resulting from earthquake that exceeds the design limit seismic ground motion (Ss) is sufficiently small, based on the probabilistic risk assessment (PRA) method, in addition to conventional deterministic design base methodology. In response to this situation, JNES had been working to improve seismic PRA (SPRA) models for individual domestic light water reactors. In case of PWR in Japan, total of 24 plants were grouped into 11 categories to develop individual SPRA model. The new regulatory rules against the Fukushima dai-ichi nuclear power plants' severe accidents occurred on March 11, 2011, are going to be enforced in July 2013 and utilities are necessary to implement additional safety measures to avoid and mitigate severe accident occurrence due to external events such as earthquake and tsunami, by referring to the results of severe accident study including SPRA. In this paper a SPRA model development for a domestic 3-loop PWR plant as part of the above-mentioned 11 categories is described. We paid special attention to how to categorize initiating events that are specific to seismic phenomena and how to confirm the effect of the simultaneous failure probability calculation model for the multiple components on the result of core damage frequency evaluation. Simultaneous failure probability for multiple components has been evaluated by power multiplier method. Then tentative level-1 seismic probabilistic risk assessment (SPRA) has been performed by the developed SPSA model with seismic hazard and fragility data. The base case was evaluated under the condition with calculated fragility data and conventional power multiplier. The difference in CDF between the case of conventional power multiplier and that of power multiplier=1 (complete dependence) was estimated to be

  14. Role of seismic PRA in seismic safety decisions of nuclear power plants

    International Nuclear Information System (INIS)

    Ravindra, M.K.; Kennedy, R.P.; Sues, R.H.

    1985-01-01

    This paper highlights the important roles that seismic probabilistic risk assessments (PRAs) can play in the seismic safety decisions of nuclear power plants. If a seismic PRA has been performed for a plant, its results can be utilized to evaluate the seismic capability beyond the safe shutdown event (SSE). Seismic fragilities of key structures and equipment, fragilities of dominant plant damage states and the frequencies of occurrence of these plant damage states are reviewed to establish the seismic safety of the plant beyond the SSE level. Guidelines for seismic margin reviews and upgrading may be developed by first identifying the generic classes of structures and equipment that have been shown to be dominant risk contributors in the completed seismic PRAs, studying the underlying causes for their contribution and examining why certain other items (e.g., piping) have not proved to be high-risk-contributors

  15. Seismic response of buried pipelines: a state-of-the-art review

    International Nuclear Information System (INIS)

    Datta, T.K.

    1999-01-01

    A state-of-the-art review of the seismic response of buried pipelines is presented. The review includes modeling of soil-pipe system and seismic excitation, methods of response analysis of buried pipelines, seismic behavior of buried pipelines under different parametric variations, seismic stresses at the bends and intersections of network of pipelines. pipe damage in earthquakes and seismic risk analysis of buried pipelines. Based on the review, the future scope of work on the subject is outlined. (orig.)

  16. Rescaled Range analysis of Induced Seismicity: rapid classification of clusters in seismic crisis

    Science.gov (United States)

    Bejar-Pizarro, M.; Perez Lopez, R.; Benito-Parejo, M.; Guardiola-Albert, C.; Herraiz, M.

    2017-12-01

    Different underground fluid operations, mainly gas storing, fracking and water pumping, can trigger Induced Seismicity (IS). This seismicity is normally featured by small-sized earthquakes (M<2.5), although particular cases reach magnitude as great as 5. It has been up for debate whether earthquakes greater than 5 can be triggered by IS or this level of magnitude only corresponds to tectonic earthquakes caused by stress change. Whatever the case, the characterization of IS for seismic clusters and seismic series recorded close but not into the gas storage, is still under discussion. Time-series of earthquakes obey non-linear patterns where the Hurst exponent describes the persistency or anti-persistency of the sequence. Natural seismic sequences have an H-exponent close to 0.7, which combined with the b-value time evolution during the time clusters, give us valuable information about the stationarity of the phenomena. Tectonic earthquakes consist in a main shock with a decay of time-occurrence of seismic shocks obeying the Omori's empirical law. On the contrary, IS does not exhibit a main shock and the time occurrence depends on the injection operations instead of on the tectonic energy released. In this context, the H-exponent can give information about the origin of the sequence. In 2013, a seismic crisis was declared from the Castor underground gas storing located off-shore in the Mediterranean Sea, close to the Northeastern Spanish cost. The greatest induced earthquake was 3.7. However, a 4.2 earthquake, probably of tectonic origin, occurred few days after the operations stopped. In this work, we have compared the H-exponent and the b-value time evolution according to the timeline of gas injection. Moreover, we have divided the seismic sequence into two groups: (1) Induced Seismicity and (2) Triggered Seismicity. The rescaled range analysis allows the differentiation between natural and induced seismicity and gives information about the persistency and long

  17. Validation of seismic probabilistic risk assessments of nuclear power plants

    International Nuclear Information System (INIS)

    Ellingwood, B.

    1994-01-01

    A seismic probabilistic risk assessment (PRA) of a nuclear plant requires identification and information regarding the seismic hazard at the plant site, dominant accident sequences leading to core damage, and structure and equipment fragilities. Uncertainties are associated with each of these ingredients of a PRA. Sources of uncertainty due to seismic hazard and assumptions underlying the component fragility modeling may be significant contributors to uncertainty in estimates of core damage probability. Design and construction errors also may be important in some instances. When these uncertainties are propagated through the PRA, the frequency distribution of core damage probability may span three orders of magnitude or more. This large variability brings into question the credibility of PRA methods and the usefulness of insights to be gained from a PRA. The sensitivity of accident sequence probabilities and high-confidence, low probability of failure (HCLPF) plant fragilities to seismic hazard and fragility modeling assumptions was examined for three nuclear power plants. Mean accident sequence probabilities were found to be relatively insensitive (by a factor of two or less) to: uncertainty in the coefficient of variation (logarithmic standard deviation) describing inherent randomness in component fragility; truncation of lower tail of fragility; uncertainty in random (non-seismic) equipment failures (e.g., diesel generators); correlation between component capacities; and functional form of fragility family. On the other hand, the accident sequence probabilities, expressed in the form of a frequency distribution, are affected significantly by the seismic hazard modeling, including slopes of seismic hazard curves and likelihoods assigned to those curves

  18. Characterizing the Benefits of Seismic Isolation for Nuclear Structures: A Framework for Risk-Based Decision Making

    Energy Technology Data Exchange (ETDEWEB)

    Bolisetti, Chandrakanth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yu, Chingching [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Whittaker, Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosbab, Ben [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-11-01

    This report provides a framework for assessing the benefits of seismic isolation and exercises the framework on a Generic Department of Energy Nuclear Facility (GDNF). These benefits are (1) reduction in the risk of unacceptable seismic performance and a dramatic reduction in the probability of unacceptable performance at beyond-design basis shaking, and (2) a reduction in capital cost at sites with moderate to high seismic hazard. The framework includes probabilistic risk assessment and estimates of overnight capital cost for the GDNF.

  19. Seismicity and earthquake risk in western Sicily

    Directory of Open Access Journals (Sweden)

    P. COSENTINO

    1978-06-01

    Full Text Available The seismicity and the earthquake risk in Western Sicily are here
    evaluated on the basis of the experimental data referring to the historical
    and instrumentally recorded earthquakes in this area (from 1248
    up to 1968, which have been thoroughly collected, analyzed, tested and
    normalized in order to assure the quasi-stationarity of the series of
    events.
    The approximated magnitude values — obtained by means of a compared
    analysis of the magnitude and epicentral intensity values of the
    latest events — have allowed to study the parameters of the frequency-
    magnitude relation with both the classical exponential model and
    the truncated exponential one previously proposed by the author.
    So, the basic parameters, including the maximum possible regional
    magnitude, have been estimated by means of different procedures, and
    their behaviours have been studied as functions of the threshold magnitude.

  20. A probabilistic seismic risk assessment procedure for nuclear power plants: (II) Application

    Science.gov (United States)

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.

    2011-01-01

    This paper presents the procedures and results of intensity- and time-based seismic risk assessments of a sample nuclear power plant (NPP) to demonstrate the risk-assessment methodology proposed in its companion paper. The intensity-based assessments include three sets of sensitivity studies to identify the impact of the following factors on the seismic vulnerability of the sample NPP, namely: (1) the description of fragility curves for primary and secondary components of NPPs, (2) the number of simulations of NPP response required for risk assessment, and (3) the correlation in responses between NPP components. The time-based assessment is performed as a series of intensity-based assessments. The studies illustrate the utility of the response-based fragility curves and the inclusion of the correlation in the responses of NPP components directly in the risk computation. ?? 2011 Published by Elsevier B.V.

  1. A microseismic workflow for managing induced seismicity risk as CO2 storage projects

    Energy Technology Data Exchange (ETDEWEB)

    Matzel, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morency, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pyle, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Templeton, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-27

    It is well established that fluid injection has the potential to induce earthquakes—from microseismicity to large, damaging events—by altering state-of-stress conditions in the subsurface. While induced seismicity has not been a major operational issue for carbon storage projects to date, a seismicity hazard exists and must be carefully addressed. Two essential components of effective seismic risk management are (1) sensitive microseismic monitoring and (2) robust data interpretation tools. This report describes a novel workflow, based on advanced processing algorithms applied to microseismic data, to help improve management of seismic risk. This workflow has three main goals: (1) to improve the resolution and reliability of passive seismic monitoring, (2) to extract additional, valuable information from continuous waveform data that is often ignored in standard processing, and (3) to minimize the turn-around time between data collection, interpretation, and decision-making. These three objectives can allow for a better-informed and rapid response to changing subsurface conditions.

  2. Seismic component fragility data base for IPEEE

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Hofmayer, C.

    1990-01-01

    Seismic probabilistic risk assessment or a seismic margin study will require a reliable data base of seismic fragility of various equipment classes. Brookhaven National Laboratory (BNL) has selected a group of equipment and generically evaluated the seismic fragility of each equipment class by use of existing test data. This paper briefly discusses the evaluation methodology and the fragility results. The fragility analysis results when used in the Individual Plant Examination for External Events (IPEEE) Program for nuclear power plants are expected to provide insights into seismic vulnerabilities of equipment for earthquakes beyond the design basis. 3 refs., 1 fig., 1 tab

  3. Development of an evaluation method for seismic isolation systems of nuclear power facilities. Seismic design analysis methods for crossover piping system

    International Nuclear Information System (INIS)

    Tai, Koichi; Sasajima, Keisuke; Fukushima, Shunsuke; Takamura, Noriyuki; Onishi, Shigenobu

    2014-01-01

    This paper provides seismic design analysis methods suitable for crossover piping system, which connects between seismic isolated building and non-isolated building in the seismic isolated nuclear power plant. Through the numerical study focused on the main steam crossover piping system, seismic response spectrum analysis applying ISM (Independent Support Motion) method with SRSS combination or CCFS (Cross-oscillator, Cross-Floor response Spectrum) method has found to be quite effective for the seismic design of multiply supported crossover piping system. (author)

  4. Seismic risks at Elsie Lake Main Dam

    International Nuclear Information System (INIS)

    McCammon, N.R.; Momenzadeh, M.; Hawson, H.H.; Nielsen, N.M.

    1991-01-01

    The Elsie Lake dams are located on Vancouver Island in an area of high seismic risk. A safety review in 1986 indicated potential deficiencies in the earthfill main dam with respect to modern earthquake design standards. A detailed field investigation program comprising drilling and penetration tests was carried out and the results used in an assessment of seismic stability. A 0.8 m thick less dense layer in the granular shell of the dam, possibly caused by wet construction conditions, would likely liquefy in a major earthquake but sufficient residual strength would likely remain to prevent catastrophic failure. The dam shell might undergo some distortion, and an assessment was initiated to determine the requirements for reservoir drawdown following an extreme earthquake to ensure the timely lowering of the reservoir for inspection and repair. It was suggested that an adequate evacuation capability would be 25% and 50% drawdown in not more than 30 and 50 days, respectively. 9 refs., 11 figs., 1 tab

  5. Seismic vulnerability of natural gas pipelines

    International Nuclear Information System (INIS)

    Lanzano, Giovanni; Salzano, Ernesto; Santucci de Magistris, Filippo; Fabbrocino, Giovanni

    2013-01-01

    This work deals with the analysis of the interaction of earthquakes with pipelines transporting and distributing natural gas for industrial and civil use. To this aim, a new large data-set of seismic information classified on the basis of selected seismological, geotechnical and structural parameters is presented and analyzed. Particular attention is devoted to continuous pipelines under strong ground shaking, which is the geotechnical effect due to passage of waves in soil. Results are provided in terms of the likelihood of the loss of containment with respect to Peak Ground Velocity (PGV), a seismic intensity parameter which may be easily retrieved either from local authorities and public databases or from site dependent hazard analysis. Fragility functions and seismic intensity threshold values for the failure and for the loss of containment of gas from pipeline systems are also given. The obtained functions can be easily implemented in existing codes and guidelines for industrial risk assessment, land-use planning, and for the design of public distribution network, with specific reference to Natural—Technological interaction (Na-Tech). -- Highlights: • The seismic vulnerability of natural gas pipelines is analyzed. • A collection of data for pipelines damaged by earthquake is given. • Damage states and risk states for pipelines are defined. • Consequence-based fragility formulations for the loss of containment are given • Seismic threshold values for public authority, risk assessment and gas distribution are shown

  6. Nonlinear seismic analysis of continuous RC bridge

    Directory of Open Access Journals (Sweden)

    Čokić Miloš M.

    2017-01-01

    Full Text Available Nonlinear static analysis, known as a pushover method (NSPA is oftenly used to study the behaviour of a bridge structure under the seismic action. It is shown that the Equivalent Linearization Method - ELM, recommended in FEMA 440, is appropriate for the response analysis of the bridge columns, with different geometric characteristics, quantity and distribution of steel reinforcement. The subject of analysis is a bridge structure with a carriageway plate - a continuous beam with three spans, with the 24 + 40 + 24 m range. Main girder is made of prestressed concrete and it has a box cross section of a constant height. It is important to study the behaviour, not only in the transverse, but also in the longitudinal direction of the bridge axis, when analysing the bridge columns exposed to horizontal seismic actions. The columns were designed according to EN1992, parts 1 and 2. Seismic action analysis is conducted according to EN 1998: 2004 standard. Response spectrum type 1, for the ground type B, was applied and the analysis also includes 20% of traffic load. The analysis includes the values of columns displacement and ductility. To describe the behaviour of elements under the earthquake action in both - longitudinal and transverse direction, pushover curves were formed.

  7. Seismic Response Analysis of Continuous Multispan Bridges with Partial Isolation

    Directory of Open Access Journals (Sweden)

    E. Tubaldi

    2015-01-01

    Full Text Available Partially isolated bridges are a particular class of bridges in which isolation bearings are placed only between the piers top and the deck whereas seismic stoppers restrain the transverse motion of the deck at the abutments. This paper proposes an analytical formulation for the seismic analysis of these bridges, modelled as beams with intermediate viscoelastic restraints whose properties describe the pier-isolator behaviour. Different techniques are developed for solving the seismic problem. The first technique employs the complex mode superposition method and provides an exact benchmark solution to the problem at hand. The two other simplified techniques are based on an approximation of the displacement field and are useful for preliminary assessment and design purposes. A realistic bridge is considered as case study and its seismic response under a set of ground motion records is analyzed. First, the complex mode superposition method is applied to study the characteristic features of the dynamic and seismic response of the system. A parametric analysis is carried out to evaluate the influence of support stiffness and damping on the seismic performance. Then, a comparison is made between the exact solution and the approximate solutions in order to evaluate the accuracy and suitability of the simplified analysis techniques for evaluating the seismic response of partially isolated bridges.

  8. Methods for seismic analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Gantenbein, F.

    1990-01-01

    The seismic analysis of a complex structure, such as a nuclear power plant, is done in various steps. An overview of the methods, used in each of these steps will be given in the following chapters: Seismic analysis of the buildings taking into account structures with important mass or stiffness. The input to the building analysis, called ground motion, is described by an accelerogram or a response spectra. In this step, soil structure interaction has to be taken into account. Various methods are available: Impedance, finite element. The response of the structure can be calculated by spectral method or by time history analysis; advantages and limitations of each method will be shown. Calculation of floor response spectrum which are the data for the equipment analysis. Methods to calculate this spectrum will be described. Seismic analysis of the equipments. Presentation of the methods for both monosupported and multisupported equipment will be given. In addition methods to analyse equipments which present non-linearities associated to the boundary conditions such as impacts, sliding will be presented. (author). 30 refs, 15 figs

  9. Seismic analysis of a large LMFBR with fluid-structure interactions

    International Nuclear Information System (INIS)

    Ma, D.C.

    1985-01-01

    The seismic analysis of a large LMFBR with many internal components and structures is presented. Both vertical and horizontal seismic excitations are considered. The important hydrodynamic phenomena such as fluid-structure interaction, sloshing, fluid coupling and fluid inertia effects are included in the analysis. The results of this study are discussed in detail. Information which is useful to the design of future reactions under seismic conditions is also given. 4 refs., 12 figs

  10. Progressive Seismic Failure, Seismic Gap, and Great Seismic Risk across the Densely Populated North China Basin

    Science.gov (United States)

    Yin, A.; Yu, X.; Shen, Z.

    2014-12-01

    Although the seismically active North China basin has the most complete written records of pre-instrumentation earthquakes in the world, this information has not been fully utilized for assessing potential earthquake hazards of this densely populated region that hosts ~200 million people. In this study, we use the historical records to document the earthquake migration pattern and the existence of a 180-km seismic gap along the 600-km long right-slip Tangshan-Hejian-Cixian (THC) fault zone that cuts across the North China basin. The newly recognized seismic gap, which is centered at Tianjin with a population of 11 million people and ~120 km from Beijing (22 million people) and Tangshan (7 million people), has not been ruptured in the past 1000 years by M≥6 earthquakes. The seismic migration pattern in the past millennium suggests that the epicenters of major earthquakes have shifted towards this seismic gap along the THC fault, which implies that the 180- km gap could be the site of the next great earthquake with M≈7.6 if it is ruptured by a single event. Alternatively, the seismic gap may be explained by aseismic creeping or seismic strain transfer between active faults.

  11. Seismic behaviour of geotechnical structures

    Directory of Open Access Journals (Sweden)

    F. Vinale

    2002-06-01

    Full Text Available This paper deals with some fundamental considerations regarding the behaviour of geotechnical structures under seismic loading. First a complete definition of the earthquake disaster risk is provided, followed by the importance of performing site-specific hazard analysis. Then some suggestions are provided in regard to adequate assessment of soil parameters, a crucial point to properly analyze the seismic behaviour of geotechnical structures. The core of the paper is centered on a critical review of the analysis methods available for studying geotechnical structures under seismic loadings. All of the available methods can be classified into three main classes, including the pseudo-static, pseudo-dynamic and dynamic approaches, each of which is reviewed for applicability. A more advanced analysis procedure, suitable for a so-called performance-based design approach, is also described in the paper. Finally, the seismic behaviour of the El Infiernillo Dam was investigated. It was shown that coupled elastoplastic dynamic analyses disclose some of the important features of dam behaviour under seismic loading, confirmed by comparing analytical computation and experimental measurements on the dam body during and after a past earthquake.

  12. Systems considerations in seismic margin evaluations

    International Nuclear Information System (INIS)

    Buttermer, D.R.

    1987-01-01

    Increasing knowledge in the geoscience field has led to the understanding that, although highly unlikely, it is possible for a nuclear power plant to be subjected to earthquake ground motion greater than that for which the plant was designed. While it is recognized that there are conservatisms inherent in current design practices, interest has developed in evaluating the seismic risk of operating plants. Several plant-specific seismic probabilistic risk assessments (SPRA) have been completed to address questions related to the seismic risk of a plant. The results from such SPRAs are quite informative, but such studies may entail a considerable amount of expensive analysis of large portions of the plant. As an alternative to an SPRA, it may be more practical to select an earthquake level above the design basis for which plant survivability is to be demonstrated. The principal question to be addressed in a seismic margin evaluation is: At what ground motion levels does one have a high confidence that the probability of seismically induced core damage is sufficiently low? In a seismic margin evaluation, an earthquake level is selected (based on site-specific geoscience considerations) for which a stable, long-term safe shutdown condition is to be demonstrated. This prespecified earthquake level is commonly referred to as the seismic margin earthquake (SME). The Electric Power Research Institute is currently supporting a research project to develop procedures for use by the utilities to allow them to perform nuclear plant seismic margin evaluations. This paper describes the systems-related aspects of these procedures

  13. Quantitative Seismic Amplitude Analysis

    NARCIS (Netherlands)

    Dey, A.K.

    2011-01-01

    The Seismic Value Chain quantifies the cyclic interaction between seismic acquisition, imaging and reservoir characterization. Modern seismic innovation to address the global imbalance in hydrocarbon supply and demand requires such cyclic interaction of both feed-forward and feed-back processes.

  14. Development of probabilistic seismic hazard analysis for international sites, challenges and guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Ares, Antonio, E-mail: antonio.fernandez@rizzoassoc.com [Paul C. Rizzo Associates, Inc., 500 Penn Center Boulevard, Penn Center East, Suite 100, Pittsburgh, PA 15235 (United States); Fatehi, Ali, E-mail: ali.fatehi@rizzoassoc.com [Paul C. Rizzo Associates, Inc., 500 Penn Center Boulevard, Penn Center East, Suite 100, Pittsburgh, PA 15235 (United States)

    2013-06-15

    Research highlights: ► Site-specific seismic hazard study and suggestions for overcoming those challenges that are inherent to the significant amounts of epistemic uncertainty for sites at remote locations. ► Main aspects of probabilistic seismic hazard analysis (PSHA). ► Regional and site geology in the context of a probabilistic seismic hazard analysis (PSHA), including state-of-the-art ground motion estimation methods, and geophysical conditions. ► Senior seismic hazard analysis (SSHAC) as a mean to incorporate the opinions and contributions of the informed scientific community. -- Abstract: This article provides guidance to conduct a site-specific seismic hazard study, giving suggestions for overcoming those challenges that are inherent to the significant amounts of epistemic uncertainty for sites at remote locations. The text follows the general process of a seismic hazard study, describing both the deterministic and probabilistic approaches. Key and controversial items are identified in the areas of recorded seismicity, seismic sources, magnitude, ground motion models, and local site effects. A case history corresponding to a seismic hazard study in the Middle East for a Greenfield site in a remote location is incorporated along the development of the recommendations. Other examples of analysis case histories throughout the World are presented as well.

  15. The forecast of mining-induced seismicity and the consequent risk of damage to the excavation in the area of seismic event

    Directory of Open Access Journals (Sweden)

    Jan Drzewiecki

    2017-01-01

    Full Text Available The Central Mining Institute has developed a method for forecasting the amount of seismic energy created by tremors induced by mining operations. The results of geophysical measurements of S wave velocity anomalies in a rock mass or the results of analytic calculations of the values of pressure on the horizon of the elastic layers are used in the process of calculating the energy. The calculation program which has been developed and adopted has been modified over recent years and it now enables not only the prediction of the energy of dynamic phenomena induced by mining but also the forecasting of the devastating range of seismic shock. The results obtained from this calculation, usually presented in a more readable graphic form, are useful for the macroscopic evaluation of locations that are potential sources of seismic energy. Forecasting of the maximum energy of seismic shock without prior knowledge of the location of the shock's source, does not allow shock attenuation that results from, for example, a distance of tremor source from the excavation which will be affected by seismic energy, to be taken into consideration. The phenomena of energy dissipation, which is taken into account in the forecasts, create a new quality of assessment of threat to the excavation. The paper presents the principle of a method of forecasting the seismic energy of a shock and the risk of damage to the excavation as a result of the impact of its energy wave. The solution assumes that the source of the energy shock is a resilient layer in which the sum of the gravitational stresses, resulting from natural disturbances and those induced by the conducted or planned mining exploitation, is estimated. The proposed solution assumes a spherical model for the tremor source, for which seismic energy is forecasted as a function of the longwall advance and the elementary value of seismic energy destroying the excavation. Subsequently, the following are calculated for the

  16. Seismic analysis - what goal

    International Nuclear Information System (INIS)

    Tagart, S.W.

    1978-01-01

    The seismic analysis of nuclear components is characterized today by extensive engineering computer calculations in order to satisfy both the component standard codes such as ASME III as well as federal regulations and guides. The current nuclear siesmic design procedure has envolved in a fragmented fashion and continues to change its elements as improved technology leads to changing standards and guides. The dominant trend is a monotonic increase in the overall conservation with time causing a similar trend in costs of nuclear power plants. Ironically the improvements in the state of art are feeding a process which is eroding the very incentives that attracted us to nuclear power in the first place. This paper examines the cause of this process and suggests that what is needed is a realistic goal which appropriately addresses the overall uncertainty of the seismic design process. (Auth.)

  17. Vibration analysis and innovative technologies in the seismic preservation of cultural heritage

    International Nuclear Information System (INIS)

    Clemente, P.; Conti, C.; De Stefano, A.

    2015-01-01

    In order to preserve historical buildings and monuments against the effects of earthquakes a detailed analysis is needed to evaluate the characteristics of the seismic input and the dynamic behaviour of structures under seismic actions and to choose the most suitable seismic rehabilitation technique. In this paper the experimental analysis carried out on the Colosseum and the Lateran Obelisk are first shown. Then the application of seismic isolation in historical buildings is discussed and a new structure for the seismic isolation of existing building is presented.

  18. Induced seismicity hazard and risk by enhanced geothermal systems: an expert elicitation approach

    Science.gov (United States)

    Trutnevyte, Evelina; Azevedo, Inês L.

    2018-03-01

    Induced seismicity is a concern for multiple geoenergy applications, including low-carbon enhanced geothermal systems (EGS). We present the results of an international expert elicitation (n = 14) on EGS induced seismicity hazard and risk. Using a hypothetical scenario of an EGS plant and its geological context, we show that expert best-guess estimates of annualized exceedance probabilities of an M ≥ 3 event range from 0.2%-95% during reservoir stimulation and 0.2%-100% during operation. Best-guess annualized exceedance probabilities of M ≥ 5 event span from 0.002%-2% during stimulation and 0.003%-3% during operation. Assuming that tectonic M7 events could occur, some experts do not exclude induced (triggered) events of up to M7 too. If an induced M = 3 event happens at 5 km depth beneath a town with 10 000 inhabitants, most experts estimate a 50% probability that the loss is contained within 500 000 USD without any injuries or fatalities. In the case of an induced M = 5 event, there is 50% chance that the loss is below 50 million USD with the most-likely outcome of 50 injuries and one fatality or none. As we observe a vast diversity in quantitative expert judgements and underlying mental models, we conclude with implications for induced seismicity risk governance. That is, we suggest documenting individual expert judgements in induced seismicity elicitations before proceeding to consensual judgements, to convene larger expert panels in order not to cherry-pick the experts, and to aim for multi-organization multi-model assessments of EGS induced seismicity hazard and risk.

  19. Seismic reevaluation of existing nuclear power plants

    International Nuclear Information System (INIS)

    Hennart, J.C.

    1978-01-01

    The codes and regulations governing Nuclear Power Plant seismic analysis are continuously becoming more stringent. In addition, design ground accelerations of existing plants must sometimes be increased as a result of discovery of faulting zones or recording of recent earthquakes near the plant location after plant design. These new factors can result in augmented seismic design criteria. Seismic reanalysius of the existing Nuclear Power Plant structures and equipments is necessary to prevent the consequences of newly postulated accidents that could cause undue risk to the health or safety of the public. This paper reviews the developments of seismic analysis as applied to Nuclear Power Plants and the methods used by Westinghouse to requalify existing plants to the most recent safety requirements. (author)

  20. Review Article: Numerical analysis of the seismic behaviour of earth dam

    Directory of Open Access Journals (Sweden)

    Y. Parish

    2009-03-01

    Full Text Available The present study concerns analysis of the seismic response of earth dams. The behaviour of both the shell and core of the dam is described using the simple and popular non associated Mohr-Coulomb criterion. The use of this constitutive model is justified by the difficulty to obtain constitutive parameters for more advanced constitutive relations including isotropic and kinematic hardening. Analyses with real earthquake records show that the seismic loading induces plasticity in a large part of the shell and in the lower part of the core. Analysis shows that plasticity should be considered in the analysis of the seismic response of the dam, because it leads to a decrease in the natural frequencies of the dam together to energy dissipation, which could significantly affect the seismic response of the dam. Plastic analysis constitutes also a good tool for the verification of the stability of the dam under seismic loading.

  1. Slope Stability Analysis In Seismic Areas Of The Northern Apennines (Italy)

    International Nuclear Information System (INIS)

    Lo Presti, D.; Fontana, T.; Marchetti, D.

    2008-01-01

    Several research works have been published on the slope stability in the northern Tuscany (central Italy) and particularly in the seismic areas of Garfagnana and Lunigiana (Lucca and Massa-Carrara districts), aimed at analysing the slope stability under static and dynamic conditions and mapping the landslide hazard. In addition, in situ and laboratory investigations are available for the study area, thanks to the activities undertaken by the Tuscany Seismic Survey. Based on such a huge information the co-seismic stability of few ideal slope profiles have been analysed by means of Limit equilibrium method LEM - (pseudo-static) and Newmark sliding block analysis (pseudo-dynamic). The analysis--results gave indications about the most appropriate seismic coefficient to be used in pseudo-static analysis after establishing allowable permanent displacement. Such indications are commented in the light of the Italian and European prescriptions for seismic stability analysis with pseudo-static approach. The stability conditions, obtained from the previous analyses, could be used to define microzonation criteria for the study area

  2. Elements of seismic imaging and velocity analysis – Forward modeling and diffraction analysis of conventional seismic data from the North Sea

    DEFF Research Database (Denmark)

    Montazeri, Mahboubeh

    2018-01-01

    comprises important oil and gas reservoirs. By application of well-established conventional velocity analysis methods and high-quality diffraction imaging techniques, this study aims to increase the resolution and the image quality of the seismic data. In order to analyze seismic wave propagation......-outs and salt delineations, which can be extracted from the diffractions. The potential of diffraction imaging techniques was studied for 2D seismic stacked data from the North Sea. In this approach, the applied plane-wave destruction method was successful in order to suppress the reflections from the stacked....... This improved seismic imaging is demonstrated for a salt structure as well as for Overpressured Shale structures and the Top Chalk of the North Sea....

  3. A framework of risk-informed seismic safety evaluation of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Kondo, S.; Sakagami, M.; Hirano, M.; Shiba, M.

    2001-01-01

    A framework of risk-informed seismic design and safety evaluation of nuclear power plants is under consideration in Japan so as to utilize the progress in the seismic probabilistic safety assessment methodology. Issues resolved to introduce this framework are discussed after the concept, evaluation process and characteristics of the framework are described. (author)

  4. Nuclear power plant of Fessenheim: evaluation of the seismic risk; Centrale Nucleaire de Fessenheim: appreciation du risque sismique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The seismic risk taken into account during the sizing of the nuclear power plant of Fessenheim seems to have been under evaluated at this time. The revaluation of the seismic risk, as proposed, until this day by EDF in order to the third ten-year visit of the power plant, planned for 2009, leads to a significant under evaluation of the risk and then is not acceptable. The present expertise details point by point the weaknesses of these revaluation. The power plant has been sized in an elastic manner that is generally strongly for the safety side. It is imperative to proceed the most quickly as possible to a deep control of the seismic resistance of the power plant of Fessenheim and then after having proceeded to a revision of the seismic risk in taking into account the actual knowledge in this field. (N.C.)

  5. Seismic studies for nuclear installations sites

    International Nuclear Information System (INIS)

    Mohammadioun, B.; Faure, J.

    1988-01-01

    The french experience in seismic risks assessment for french nuclear installations permits to set out the objectives, the phases the geographic extensions of workings to be realized for the installation safety. The data to be collected for the safety analysis are specified, they concern the regional seismotectonics, the essential seismic data for determining the seism level to be taken into account and defining the soil movement spectra adapted to the site. It is necessary to follow up the seismic surveillance during the installation construction and life. 7 refs. (F.M.)

  6. First results of cross-correlation analysis of ambient seismic noise from the Hellenic Unified Seismic Network

    NARCIS (Netherlands)

    Panou, Areti; Paulssen, Hanneke; Hatzidimitriou, Panagiotis

    2015-01-01

    In this study we present phase velocity maps that were obtained from the cross-correlation analysis of ambient seismic noise recorded in the region of Greece.We used one year (2013) of ambient seismic data obtained from the vertical component of 64 broadband permanent seismological stations that are

  7. Seismic analysis of the in-pile test section

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. M.; Park, K. N.; Chi, D. Y.; Park, S. K.; Sim, B. S.; Ahn, S. H.; Lee, C. Y.; Kim, Y. J. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    This study gives the results of the seismic analysis of the IPS (In Pile Section) with lower bracket support. The results cover the natural frequency and seismic response of the IPS for the SSE and OBE events. An FE (Finite Element) model which includes the two vessels of the IPS and its support structure were analyzed by ABAQUS.

  8. Time-lapse seismic waveform modelling and attribute analysis using hydromechanical models for a deep reservoir undergoing depletion

    Science.gov (United States)

    He, Y.-X.; Angus, D. A.; Blanchard, T. D.; Wang, G.-L.; Yuan, S.-Y.; Garcia, A.

    2016-04-01

    Extraction of fluids from subsurface reservoirs induces changes in pore pressure, leading not only to geomechanical changes, but also perturbations in seismic velocities and hence observable seismic attributes. Time-lapse seismic analysis can be used to estimate changes in subsurface hydromechanical properties and thus act as a monitoring tool for geological reservoirs. The ability to observe and quantify changes in fluid, stress and strain using seismic techniques has important implications for monitoring risk not only for petroleum applications but also for geological storage of CO2 and nuclear waste scenarios. In this paper, we integrate hydromechanical simulation results with rock physics models and full-waveform seismic modelling to assess time-lapse seismic attribute resolution for dynamic reservoir characterization and hydromechanical model calibration. The time-lapse seismic simulations use a dynamic elastic reservoir model based on a North Sea deep reservoir undergoing large pressure changes. The time-lapse seismic traveltime shifts and time strains calculated from the modelled and processed synthetic data sets (i.e. pre-stack and post-stack data) are in a reasonable agreement with the true earth models, indicating the feasibility of using 1-D strain rock physics transform and time-lapse seismic processing methodology. Estimated vertical traveltime shifts for the overburden and the majority of the reservoir are within ±1 ms of the true earth model values, indicating that the time-lapse technique is sufficiently accurate for predicting overburden velocity changes and hence geomechanical effects. Characterization of deeper structure below the overburden becomes less accurate, where more advanced time-lapse seismic processing and migration is needed to handle the complex geometry and strong lateral induced velocity changes. Nevertheless, both migrated full-offset pre-stack and near-offset post-stack data image the general features of both the overburden and

  9. Integrating Social impacts on Health and Health-Care Systems in Systemic Seismic Vulnerability Analysis

    Science.gov (United States)

    Kunz-Plapp, T.; Khazai, B.; Daniell, J. E.

    2012-04-01

    This paper presents a new method for modeling health impacts caused by earthquake damage which allows for integrating key social impacts on individual health and health-care systems and for implementing these impacts in quantitative systemic seismic vulnerability analysis. In current earthquake casualty estimation models, demand on health-care systems is estimated by quantifying the number of fatalities and severity of injuries based on empirical data correlating building damage with casualties. The expected number of injured people (sorted by priorities of emergency treatment) is combined together with post-earthquake reduction of functionality of health-care facilities such as hospitals to estimate the impact on healthcare systems. The aim here is to extend these models by developing a combined engineering and social science approach. Although social vulnerability is recognized as a key component for the consequences of disasters, social vulnerability as such, is seldom linked to common formal and quantitative seismic loss estimates of injured people which provide direct impact on emergency health care services. Yet, there is a consensus that factors which affect vulnerability and post-earthquake health of at-risk populations include demographic characteristics such as age, education, occupation and employment and that these factors can aggravate health impacts further. Similarly, there are different social influences on the performance of health care systems after an earthquake both on an individual as well as on an institutional level. To link social impacts of health and health-care services to a systemic seismic vulnerability analysis, a conceptual model of social impacts of earthquakes on health and the health care systems has been developed. We identified and tested appropriate social indicators for individual health impacts and for health care impacts based on literature research, using available European statistical data. The results will be used to

  10. An Investigation of Seismicity for Western Anatolia

    International Nuclear Information System (INIS)

    Sayil, N.

    2007-01-01

    In order to determine the seismicity of western Anatolia limited with the coordinates of 36degree-40degreeN, 26degree-32degreeE, Gutenberg-Richter magnitude-frequency relation, seismic risk and recurrence period have been computed. The data belonging to both the historical period before 1900 (I0 3 6.0 corresponding to MS 3 5.0) and the instrumental period until 2005 (MS 3 4.0) have been used in the analysis. The study area has been divided into 13 sub-regions due to certain seismotectonic characteristics, plate tectonic models and geology of the region. Computations from a and b parameters and seismic risk and recurrence period for each sub-regions have showed that subregions 1 and 8 (Balikesir and Izmir-Sakiz Island), where have the lowest b values, have the highest risks and the shortest recurrence periods

  11. Evaluation of structural fragilities for an IPEEE seismic probabilistic risk assessment study

    International Nuclear Information System (INIS)

    Ghiocel, D.M.; Wilson, P.R.; Stevenson, J.D.

    1995-01-01

    The paper presents the main issues and results of a structural fragility analysis for a Seismic Probabilistic Risk Assessment (SPRA) study of a nuclear power plant (NPP) in the Eastern US. The fragility evaluations were performed for the Reactor Building, Auxiliary Building, Intake Structure and Diesel Generator Building. The random seismic input is defined in terms of the Uniform Hazard Spectrum (UHS) earthquake on the NPP site anchored to a reference level of 0.40 g Zero Period Ground Acceleration (ZPGA). Because of the soft soil conditions new Soil-Structure Interaction (SSI) analyses were performed using the original finite element (stick) structural models and the complex frequency approach. The soil deposit randomness was described by the variations in both the low strain soil shear modules and in its dependence with the shear strain. The probabilistic SSI analyses were performed using digital simulation techniques. The critical failure modes for each structure are investigated and the fragility evaluations are discussed. Concluding remarks and recommendations for improving the quality of the structural fragility analyses are included

  12. Seismic analysis of plutonium glovebox by MSC/NASTRAN

    International Nuclear Information System (INIS)

    Hirata, Masaru; Ishikawa, Kazuya; Korosawa, Makoto; Fukushima, Susumu; Hoshina, Hirofumi.

    1993-01-01

    Seismic analysis of the structural strength of gloveboxes is important for plutonium confinement evaluation. However, the analytical methods must be developed for evaluating the mutual displacement between the window frame and acrylic resin window panel with regard to plutonium confinement during an earthquake. Therefore, seismic analysis for a standard glovebox in Plutonium Fuel Research Facility at Oarai Research Establishment of JAERI has been conducted by FEM (Finite Element Method) computer code MSC/NASTRAN (MacNeal-Schwendler Corporation NASA Structural Analysis). Modelling of glovebox window frame has been investigated from the results of natural frequency analysis and static analysis. After the acquisition of a suitable model, displacement around the window frame and glovebox structural strength have been evaluated in detail by use of floor response spectrum analysis and time-history (transient response) analysis. (author)

  13. Evaluation of seismic characteristics and structural integrity for the cabinet of HANARO seismic monitoring analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Yoon, Doo Byung

    2003-06-01

    The HANARO SMAS(Seismic Monitoring Analysis System) is classified as Non-Nuclear Safety(NNS), seismic category I, and quality class T. It is required that this system can perform required functions, which are to preserve its structural integrity during and after an OBE or SSE. In this work, the structural integrity and seismic characteristics of the cabinet of the newly developed SMAS have been estimated. The most parts of the cabinet are identically designed with those of Yonggwhang and Gori Nuclear Power Plants(NPPs), unit 1 that successfully completed the required seismic qualification tests. The structure of the cabinet of the SMAS is manufactured by the manufacturer of the cabinet of Yonggwhang and Gori NPPs. To evaluate the seismic characteristics of the SMAS, the RRS(Required Response Spectra) of the newly developed cabinet are compared with those of Yonggwhang and Gori NPPs, unit 1. In addition, natural frequencies of the cabinet of HANARO, Yonggwhang, and Gori NPPs were measured for the comparison of the seismic characteristics of the installed cabinets. In case of HANARO, the bottom of the cabinet is welded to the base plate. The base plate is fixed to the concrete foundation by using anchor bolts. For the evaluation of the structural integrity of the welding parts and the anchor bolts, the maximum stresses and forces of the welding parts and the anchor bolts due to seismic loading are estimated. The analysis results show that maximum stresses and forces are less than the allowable limits. This new SMAS is operating at HANARO instrument room to acquire and analyze the signal of earthquake.

  14. Modeling of seismic hazards for dynamic reliability analysis

    International Nuclear Information System (INIS)

    Mizutani, M.; Fukushima, S.; Akao, Y.; Katukura, H.

    1993-01-01

    This paper investigates the appropriate indices of seismic hazard curves (SHCs) for seismic reliability analysis. In the most seismic reliability analyses of structures, the seismic hazards are defined in the form of the SHCs of peak ground accelerations (PGAs). Usually PGAs play a significant role in characterizing ground motions. However, PGA is not always a suitable index of seismic motions. When random vibration theory developed in the frequency domain is employed to obtain statistics of responses, it is more convenient for the implementation of dynamic reliability analysis (DRA) to utilize an index which can be determined in the frequency domain. In this paper, we summarize relationships among the indices which characterize ground motions. The relationships between the indices and the magnitude M are arranged as well. In this consideration, duration time plays an important role in relating two distinct class, i.e. energy class and power class. Fourier and energy spectra are involved in the energy class, and power and response spectra and PGAs are involved in the power class. These relationships are also investigated by using ground motion records. Through these investigations, we have shown the efficiency of employing the total energy as an index of SHCs, which can be determined in the time and frequency domains and has less variance than the other indices. In addition, we have proposed the procedure of DRA based on total energy. (author)

  15. Evaluation of Fourier integral. Spectral analysis of seismic events

    International Nuclear Information System (INIS)

    Chitaru, Cristian; Enescu, Dumitru

    2003-01-01

    Spectral analysis of seismic events represents a method for great earthquake prediction. The seismic signal is not a sinusoidal signal; for this, it is necessary to find a method for best approximation of real signal with a sinusoidal signal. The 'Quanterra' broadband station allows the data access in numerical and/or graphical forms. With the numerical form we can easily make a computer program (MSOFFICE-EXCEL) for spectral analysis. (authors)

  16. Seismic assessment and performance of nonstructural components affected by structural modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Jieun; Althoff, Eric; Sezen, Halil; Denning, Richard; Aldemir, Tunc [Ohio State University, Columbus (United States)

    2017-03-15

    Seismic probabilistic risk assessment (SPRA) requires a large number of simulations to evaluate the seismic vulnerability of structural and nonstructural components in nuclear power plants. The effect of structural modeling and analysis assumptions on dynamic analysis of 3D and simplified 2D stick models of auxiliary buildings and the attached nonstructural components is investigated. Dynamic characteristics and seismic performance of building models are also evaluated, as well as the computational accuracy of the models. The presented results provide a better understanding of the dynamic behavior and seismic performance of auxiliary buildings. The results also help to quantify the impact of uncertainties associated with modeling and analysis of simplified numerical models of structural and nonstructural components subjected to seismic shaking on the predicted seismic failure probabilities of these systems.

  17. Synchrosqueezing-based Transform and its Application in Seismic Data Analysis

    Directory of Open Access Journals (Sweden)

    Saman Gholtashi

    2015-10-01

    Full Text Available Seismic waves are non-stationary due to its propagation through the earth. Time-frequency transforms are suitable tools for analyzing non-stationary seismic signals. Spectral decomposition can reveal the non-stationary characteristics which cannot be easily observed in the time or frequency representation alone. Various types of spectral decomposition methods have been introduced by some researchers. Conventional spectral decompositions have some restrictions such as Heisenberg uncertainty principle and cross-terms which limit their applications in signal analysis. In this paper, synchrosqueezingbased transforms were used to overcome the mentioned restrictions; also, as an application of this new high resolution time-frequency analysis method, it was applied to random noise removal and the detection of low-frequency shadows in seismic data. The efficiency of this method is evaluated by applying it to both synthetic and real seismic data. The results show that the mentioned transform is a proper tool for seismic data processing and interpretation.

  18. Seismic analysis of liquid metal reactor piping systems

    International Nuclear Information System (INIS)

    Wang, C.Y.

    1987-01-01

    This paper describes the finite-element numerical algorithm and its applications to LMR piping under seismic excitations. A time-history analysis technique using the implicit temporal integration scheme is addressed. A 3-D pipe element is formulated which has eight degrees of freedom per node (three displacements, three rotations, one membrane displacement, and one bending rotation) to account for the hoop, flexural, rotational, and torsional modes of the piping system. Both geometric and material nonlinearities are considered. This algorithm is unconditionally stable and is particularly suited for the seismic analysis. (orig./GL)

  19. Structural Analysis and Seismic Design for Cold Neutron Laboratory Building

    International Nuclear Information System (INIS)

    Wu, Sangik; Kim, Y. K.; Kim, H. R.

    2007-05-01

    This report describes all the major results of the dynamic structural analysis and seismic design for the Cold Neutron Laboratory Building which is classified in seismic class II. The results are summarized of the ground response spectrum as seismic input loads, mechanical properties of subsoil, the buoyancy stability due to ground water, the maximum displacement of the main frame under the seismic load and the member design. This report will be used as a basic design report to maintenance its structural integrity in future

  20. Research on the spatial analysis method of seismic hazard for island

    International Nuclear Information System (INIS)

    Jia, Jing; Jiang, Jitong; Zheng, Qiuhong; Gao, Huiying

    2017-01-01

    Seismic hazard analysis(SHA) is a key component of earthquake disaster prevention field for island engineering, whose result could provide parameters for seismic design microscopically and also is the requisite work for the island conservation planning’s earthquake and comprehensive disaster prevention planning macroscopically, in the exploitation and construction process of both inhabited and uninhabited islands. The existing seismic hazard analysis methods are compared in their application, and their application and limitation for island is analysed. Then a specialized spatial analysis method of seismic hazard for island (SAMSHI) is given to support the further related work of earthquake disaster prevention planning, based on spatial analysis tools in GIS and fuzzy comprehensive evaluation model. The basic spatial database of SAMSHI includes faults data, historical earthquake record data, geological data and Bouguer gravity anomalies data, which are the data sources for the 11 indices of the fuzzy comprehensive evaluation model, and these indices are calculated by the spatial analysis model constructed in ArcGIS’s Model Builder platform. (paper)

  1. Research on the spatial analysis method of seismic hazard for island

    Science.gov (United States)

    Jia, Jing; Jiang, Jitong; Zheng, Qiuhong; Gao, Huiying

    2017-05-01

    Seismic hazard analysis(SHA) is a key component of earthquake disaster prevention field for island engineering, whose result could provide parameters for seismic design microscopically and also is the requisite work for the island conservation planning’s earthquake and comprehensive disaster prevention planning macroscopically, in the exploitation and construction process of both inhabited and uninhabited islands. The existing seismic hazard analysis methods are compared in their application, and their application and limitation for island is analysed. Then a specialized spatial analysis method of seismic hazard for island (SAMSHI) is given to support the further related work of earthquake disaster prevention planning, based on spatial analysis tools in GIS and fuzzy comprehensive evaluation model. The basic spatial database of SAMSHI includes faults data, historical earthquake record data, geological data and Bouguer gravity anomalies data, which are the data sources for the 11 indices of the fuzzy comprehensive evaluation model, and these indices are calculated by the spatial analysis model constructed in ArcGIS’s Model Builder platform.

  2. Seismic analysis of piping with nonlinear supports

    International Nuclear Information System (INIS)

    Barta, D.A.; Huang, S.N.; Severud, L.K.

    1980-01-01

    The modeling and results of nonlinear time-history seismic analyses for three sizes of pipelines restrained by mechanical snubbes are presented. Numerous parametric analyses were conducted to obtain sensitivity information which identifies relative importance of the model and analysis ingredients. Special considerations for modeling the pipe clamps and the mechanical snubbers based on experimental characterization data are discussed. Comparisions are also given of seismic responses, loads and pipe stresses predicted by standard response spectra methods and the nonlinear time-history methods

  3. New "Risk-Targeted" Seismic Maps Introduced into Building Codes

    Science.gov (United States)

    Luco, Nicholas; Garrett, B.; Hayes, J.

    2012-01-01

    Throughout most municipalities of the United States, structural engineers design new buildings using the U.S.-focused International Building Code (IBC). Updated editions of the IBC are published every 3 years. The latest edition (2012) contains new "risk-targeted maximum considered earthquake" (MCER) ground motion maps, which are enabling engineers to incorporate a more consistent and better defined level of seismic safety into their building designs.

  4. Seismic margin review of the Maine Yankee Atomic Power Station: Fragility analysis

    International Nuclear Information System (INIS)

    Ravindra, M.K.; Hardy, G.S.; Hashimoto, P.S.; Griffin, M.J.

    1987-03-01

    This Fragility Analysis is the third of three volumes for the Seismic Margin Review of the Maine Yankee Atomic Power Station. Volume 1 is the Summary Report of the first trial seismic margin review. Volume 2, Systems Analysis, documents the results of the systems screening for the review. The three volumes are part of the Seismic Margins Program initiated in 1984 by the Nuclear Regulatory Commission (NRC) to quantify seismic margins at nuclear power plants. The overall objectives of the trial review are to assess the seismic margins of a particular pressurized water reactor, and to test the adequacy of this review approach, quantification techniques, and guidelines for performing the review. Results from the trial review will be used to revise the seismic margin methodology and guidelines so that the NRC and industry can readily apply them to assess the inherent quantitative seismic capacity of nuclear power plants

  5. Seismic margin review of the Maine Yankee Atomic Power Station: Fragility analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ravindra, M. K.; Hardy, G. S.; Hashimoto, P. S.; Griffin, M. J.

    1987-03-01

    This Fragility Analysis is the third of three volumes for the Seismic Margin Review of the Maine Yankee Atomic Power Station. Volume 1 is the Summary Report of the first trial seismic margin review. Volume 2, Systems Analysis, documents the results of the systems screening for the review. The three volumes are part of the Seismic Margins Program initiated in 1984 by the Nuclear Regulatory Commission (NRC) to quantify seismic margins at nuclear power plants. The overall objectives of the trial review are to assess the seismic margins of a particular pressurized water reactor, and to test the adequacy of this review approach, quantification techniques, and guidelines for performing the review. Results from the trial review will be used to revise the seismic margin methodology and guidelines so that the NRC and industry can readily apply them to assess the inherent quantitative seismic capacity of nuclear power plants.

  6. Historical seismicity in France. Its role in the assessment of seismic risk on French nuclear sites

    International Nuclear Information System (INIS)

    Levret, A.

    1987-11-01

    Since 1975 in order to be in conformity with the requirements of the French nuclear program, a review of historical seismicity was undertaken in France. The assessment of seismic hazard for the safety of nuclear plants is in fact based upon a seismotectonic approach which needs to take into account the seismic activity over as long a period of time as possible. The method adopted for reviewing historical earthquakes entails a systematic consultation of the original sources and a critical analysis there of in the light of the historical, geographical and political contexts of the time. The same standards apply where the acquisition of new elements of information is involved. Each item of information is assigned a degree of reliability, then compiled in a computer file, up-dated annually; this file currently contains more than 4.500 events covering a period of time of about a millenary

  7. Seismic risks posed by mine flooding

    CSIR Research Space (South Africa)

    Goldbach, OD

    2009-09-01

    Full Text Available are allowed to flood. Such flooding-induced seismicity can have significant environmental, social and economic consequences, and may endanger neighbouring mines and surface communities. While fluid-induced seismicity has been observed in other settings (e...

  8. Setting the Stage for Harmonized Risk Assessment by Seismic Hazard Harmonization in Europe (SHARE)

    Science.gov (United States)

    Woessner, Jochen; Giardini, Domenico; SHARE Consortium

    2010-05-01

    Probabilistic seismic hazard assessment (PSHA) is arguably one of the most useful products that seismology can offer to society. PSHA characterizes the best available knowledge on the seismic hazard of a study area, ideally taking into account all sources of uncertainty. Results form the baseline for informed decision making, such as building codes or insurance rates and provide essential input to each risk assessment application. Several large scale national and international projects have recently been launched aimed at improving and harmonizing PSHA standards around the globe. SHARE (www.share-eu.org) is the European Commission funded project in the Framework Programme 7 (FP-7) that will create an updated, living seismic hazard model for the Euro-Mediterranean region. SHARE is a regional component of the Global Earthquake Model (GEM, www.globalquakemodel.org), a public/private partnership initiated and approved by the Global Science Forum of the OECD-GSF. GEM aims to be the uniform, independent and open access standard to calculate and communicate earthquake hazard and risk worldwide. SHARE itself will deliver measurable progress in all steps leading to a harmonized assessment of seismic hazard - in the definition of engineering requirements, in the collection of input data, in procedures for hazard assessment, and in engineering applications. SHARE scientists will create a unified framework and computational infrastructure for seismic hazard assessment and produce an integrated European probabilistic seismic hazard assessment (PSHA) model and specific scenario based modeling tools. The results will deliver long-lasting structural impact in areas of societal and economic relevance, they will serve as reference for the Eurocode 8 (EC8) application, and will provide homogeneous input for the correct seismic safety assessment for critical industry, such as the energy infrastructures and the re-insurance sector. SHARE will cover the whole European territory, the

  9. Seismic rehabilitation and analysis of Chaohe earth dam

    Science.gov (United States)

    Fu, Lei; Zeng, Xiangwu

    2005-12-01

    Stability of earth dams during earthquakes has been a major concern for geotechnical engineers in seismic active regions. Liquefaction induced slope failure occurred at the upstream slope of a major earth dam in the suburb of Beijing, China, during the 1976 Tangshan Earthquake. The gravelly soil with loose initial condition liquefied under relatively small ground vibration. In recent years, a major seismic rehabilitation project was carried out on a similar earth dam nearby using dumped quarry stone. Seismic stability analysis was carried out using model test, finite element simulation, and pseudo-static slope stability program after taking into account the influence of excess pore pressure.

  10. Hurst analysis of seismicity in Corinth rift and Mygdonia graben (Greece)

    International Nuclear Information System (INIS)

    Gkarlaouni, Charikleia; Lasocki, Stanislaw; Papadimitriou, Eleftheria; George, Tsaklidis

    2017-01-01

    Highlights: • Long-term memory properties of seismicity are investigated using R/S analysis. • Small and moderate earthquake interevent times exhibit strong interdependence. • Strong earthquake occurrence indicates a memoryless process. • Seismicity variations in time are associated with Hurst temporal fluctuations. - Abstract: Temporal and spatial analysis of seismicity is performed via the Rescaled Range (R/S) analysis for revealing the hidden characteristics of long memory dependence and clustering between earthquakes. The analysis is applied in two seismogenic units belonging to the extensional Aegean back-arc region, namely the Corinth rift and the Mygdonian graben. The Hurst exponent estimations were used for the interpretation of earthquake collective properties, regarding magnitude, interevent time and interevent epicentral distance for consecutive events. Additional stochastic tools were then engaged for the validation of the results. Τhe analysis outcome is a significant long memory content in the seismic process of both areas, especially for the interevent time of recent micro seismicity and moderate earthquakes in the last decades. This property is not ascertained for the strong (M ≥ 6.0) historical earthquakes indicating that stronger events are rather independent, whereas the weaker ones may be primary carriers of persistence in the seismogenesis process.

  11. An assessment of the low seismic risk of the inherently safe sodium advanced fast reactor (SAFR)

    International Nuclear Information System (INIS)

    Rutherford, P.D.

    1988-01-01

    A recent probabilistic risk assessment (PRA) of the sodium advanced fast reactor (SAFR) demonstrated the inherently low risk of advanced liquid-metal, pool-type fast reactors with inherent safety systems. As a result, it was recognized that external events, especially seismic events, may not only be a major contributor to risk (as shown in several LWR PRAs) but also may completely dominate the risk. Accordingly, a seismic risk assessment has been completed for SAFR, which resulted in a core damage frequency of 2 x 10 -7 /year and a large release frequency of 4 x 10 -9 /year. This paper reports that public health risk in terms of early fatality risk and latent fatality risk were also several orders of magnitude below the NRC safety goals and below recent LWR risks reported in NUREB/CR1150

  12. Seismic hazard analysis of the NPP Kozloduy site

    International Nuclear Information System (INIS)

    Petrovski, D.; Stamatovska, S.; Arsovski, M.; Hadzievski, D.; Sokerova, D.; Solakov, D.; Vaptzarov, I.; Satchanski, S.

    1993-01-01

    The principal objective of this study is to define the seismic hazard for the NPP Kozloduy site. Seismic hazard is by rule defined by the probability distribution function of the peak value of the chosen ground motion parameter in a defined time interval. The overall study methodology consists of reviewing the existing geological, seismological and tectonic information to formulate this information into a mathematical model of seismic activity of the region and using this assess earthquake ground motion in terms of probability. Detailed regional and local seismological investigations have been performed. Regional investigations encompass the area within a radius of 320 km from the NPP Kozloduy site. The results of these investigations include all seismological parameters that are necessary for determination of the mathematical model of the seismicity of the region needed for the seismic hazard analysis. Regional geological and neotectonic investigations were also performed for the wider area including almost the whole territory of Bulgaria, a large part of Serbia, part of Macedonia and almost the whole south part of Romania

  13. HTGR core seismic analysis using an array processor

    International Nuclear Information System (INIS)

    Shatoff, H.; Charman, C.M.

    1983-01-01

    A Floating Point Systems array processor performs nonlinear dynamic analysis of the high-temperature gas-cooled reactor (HTGR) core with significant time and cost savings. The graphite HTGR core consists of approximately 8000 blocks of various shapes which are subject to motion and impact during a seismic event. Two-dimensional computer programs (CRUNCH2D, MCOCO) can perform explicit step-by-step dynamic analyses of up to 600 blocks for time-history motions. However, use of two-dimensional codes was limited by the large cost and run times required. Three-dimensional analysis of the entire core, or even a large part of it, had been considered totally impractical. Because of the needs of the HTGR core seismic program, a Floating Point Systems array processor was used to enhance computer performance of the two-dimensional core seismic computer programs, MCOCO and CRUNCH2D. This effort began by converting the computational algorithms used in the codes to a form which takes maximum advantage of the parallel and pipeline processors offered by the architecture of the Floating Point Systems array processor. The subsequent conversion of the vectorized FORTRAN coding to the array processor required a significant programming effort to make the system work on the General Atomic (GA) UNIVAC 1100/82 host. These efforts were quite rewarding, however, since the cost of running the codes has been reduced approximately 50-fold and the time threefold. The core seismic analysis with large two-dimensional models has now become routine and extension to three-dimensional analysis is feasible. These codes simulate the one-fifth-scale full-array HTGR core model. This paper compares the analysis with the test results for sine-sweep motion

  14. An-integrated seismic approach to de-risk hydrocarbon accumulation for Pliocene deep marine slope channels, offshore West Nile Delta, Egypt

    Science.gov (United States)

    Othman, Adel A. A.; Bakr, Ali; Maher, Ali

    2017-12-01

    The Nile Delta basin is a hydrocarbon rich province that has hydrocarbon accumulations generated from biogenic and thermogenic source rocks and trapped in a clastic channel reservoirs ranging in age from Pliocene to Early Cretaceous. Currently, the offshore Nile Delta is the most active exploration and development province in Egypt. The main challenge of the studied area is that we have only one well in a channel system exceeds fifteen km length, where seismic reservoir characterization is used to de-risk development scenarios for the field by discriminating between gas sand, water sand and shale. Extracting the gas-charged geobody from the seismic data is magnificent input for 3D reservoir static modelling. Seismic data, being non-stationary in nature, have varying frequency content in time. Spectral decomposition analysis unravels the seismic signal into its initial constituent frequencies. Frequency decomposition of a seismic signal aims to characterize the time-dependent frequency response of subsurface rocks and reservoirs for imaging and mapping of bed thickness, geologic discontinuities and channel connectivity. Inversion feasibility study using crossplot between P-wave impedance (Ip) and S-wave impedance (Is) which derived from well logs (P-wave velocity, S-wave velocity and density) is applied to investigate which inversion type would be sufficient enough to discriminate between gas sand, water sand and shale. Integration between spectral analysis, inversion results and Ip vs. Is crossplot cutoffs help to generate 3D lithofacies cubes, which used to extract gas sand and water sand geobodies, which is extremely wonderful for constructing facies depositional static model in area with unknown facies distribution and sand connectivity. Therefore de-risking hydrocarbon accumulation and GIIP estimation for the field became more confident for drilling new development wells.

  15. The contribution of the Global Change Observatory Central Asia to seismic hazard and risk assessment in the Central Asian region

    Science.gov (United States)

    Parolai, S.; Bindi, D.; Haberland, C. A.; Pittore, M.; Pilz, M.; Rosenau, M.; Schurr, B.; Wieland, M.; Yuan, X.

    2012-12-01

    Central Asia has one of the world's highest levels of earthquake hazard, owing to its exceptionally high deformation rates. Moreover, vulnerability to natural disasters in general is increasing, due to rising populations and a growing dependence on complex lifelines and technology. Therefore, there is an urgent need to undertake seismic hazard and risk assessment in this region, while at the same time improving upon existing methodologies, including the consideration of temporal variability in the seismic hazard, and in structural and social vulnerability. Over the last few years, the German Research Center for Geosciences (GFZ), in collaboration with local partners, has initiated a number of scientific activities within the framework of the Global Change Observatory Central Asia (GCO-CA). The work is divided into projects with specific concerns: - The installation and maintenance of the Central-Asian Real-time Earthquake MOnitoring Network (CAREMON) and the setup of a permanent wireless mesh network for structural health monitoring in Bishkek. - The TIPAGE and TIPTIMON projects focus on the geodynamics of the Tien-Shan, Pamir and Hindu Kush region, the deepest and most active intra-continental subduction zone in the world. The work covers time scales from millions of years to short-term snapshots based on geophysical measurements of seismotectonic activity and of the physical properties of the crust and upper mantle, as well as their coupling with other surface processes (e.g., landslides). - Existing risk analysis methods assume time-independent earthquake hazard and risk, although temporal changes are likely to occur due to, for example, co- and post-seismic changes in the regional stress field. We therefore aim to develop systematic time-dependent hazard and risk analysis methods in order to undertake the temporal quantification of earthquake activity (PROGRESS). - To improve seismic hazard assessment for better loss estimation, detailed site effects studies

  16. RSEIS and RFOC: Seismic Analysis in R

    Science.gov (United States)

    Lees, J. M.

    2015-12-01

    Open software is essential for reproducible scientific exchange. R-packages provide a platform for development of seismological investigation software that can be properly documented and traced for data processing. A suite of R packages designed for a wide range of seismic analysis is currently available in the free software platform called R. R is a software platform based on the S-language developed at Bell Labs decades ago. Routines in R can be run as standalone function calls, or developed in object-oriented mode. R comes with a base set of routines, and thousands of user developed packages. The packages developed at UNC include subroutines and interactive codes for processing seismic data, analyzing geographic information (GIS) and inverting data involved in a variety of geophysical applications. On CRAN (Comprehensive R Archive Network, http://www.r-project.org/) currently available packages related to seismic analysis are RSEIS, Rquake, GEOmap, RFOC, zoeppritz, RTOMO, and geophys, Rwave, PEIP, hht, rFDSN. These include signal processing, data management, mapping, earthquake location, deconvolution, focal mechanisms, wavelet transforms, Hilbert-Huang Transforms, tomographic inversion, and Mogi deformation among other useful functionality. All software in R packages is required to have detailed documentation, making the exchange and modification of existing software easy. In this presentation, I will focus on packages RSEIS and RFOC, showing examples from a variety of seismic analyses. The R approach has similarities to the popular (and expensive) MATLAB platform, although R is open source and free to down load.

  17. Application of a simplified seismic risk methodology to the La Salle County Station Unit 2 BWR

    International Nuclear Information System (INIS)

    Lappa, D.A.; Wells, J.E.

    1986-01-01

    It is important to bear in mind that no risk assessment of any U.S. nuclear power plant can be interpreted to be generally representative of more than a handful of other U.S. plants. Variations in factors ranging from plant age and operating experience to NRC licensing requirements and design guidelines have led to a wide diversity of power plants in the United States. Except for a few combinations of plants of comparable design and vintage, the extension of plant-specific results to other nuclear power plants should only be done with considerable trepidation. This situation is worsened for a seismic PRA because of the variability in the seismic hazard from site to site. In the case of this study, it would be a mistake to infer that all BWRs are sufficiently resistant to earthquakes because of the generally low seismic failure probabilities at La Salle. Unless those BWRs had similar site characteristics and were of a similar design and vintage as La Salle, no immediate extension of this study's results would be appropriate. With these thoughts in mind, we turn our attention to one of the questions which the La Salle seismic PRA is supposed to address, namely, the comparable seismic vulnerability of BWRs and PWRs. The La Salle study has provided us with some insight to the seismic risk at a particular BWR. This information may or may not be useful to understanding the seismic vulnerability of other BWRs

  18. Seismic analysis of the Aguirre Nuclear Reactor

    International Nuclear Information System (INIS)

    Sepulveda Soza, Cristian

    1999-01-01

    This thesis aims to verify the seismic design of the Aguirre Nuclear Reactor using the finite elements method and comparing the results with the original analysis. The study focused on the dynamic interaction of soil and structures, using the ANSYS program for the analysis, which was implemented for a work station under a UNIX platform belonging to the Chilean Nuclear Energy Commission. The modeling of the structures was carried out following International Atomic Energy recommendations, those of the makers of the Swanson Analysis Systems program and the prior study by S y S Ingenieros Consultores. Two-dimensional models were developed with axial and symmetry and three-dimensional models with symmetric and asymmetric plans, where the retaining building, the pond block and the soil down to the basal rock were included. The seismic stresses were defined according to the Chilean Standard NCh433.of96, using the spectrum of design accelerations for type II soils for the structural models and type IV for the soil-structure interaction models.The results of interest for this study are: the compression and cutting tensions, the unitary cut distortions and the displacements, which are shown graphically and are compared between the different models and with the original analysis. A sensitivity analysis was prepared for the models with axial symmetry considering soil reaction coefficient values of 20, 10, 5, 2, 1 and 0.5 kp/cm 3 ; and four screens with maximum sizes of 100, 50, 25 and 12.5 cm. The behavior of the stressed materials was studied as well as the result of the seismic stress (CS)

  19. Unsupervised seismic facies analysis with spatial constraints using regularized fuzzy c-means

    Science.gov (United States)

    Song, Chengyun; Liu, Zhining; Cai, Hanpeng; Wang, Yaojun; Li, Xingming; Hu, Guangmin

    2017-12-01

    Seismic facies analysis techniques combine classification algorithms and seismic attributes to generate a map that describes main reservoir heterogeneities. However, most of the current classification algorithms only view the seismic attributes as isolated data regardless of their spatial locations, and the resulting map is generally sensitive to noise. In this paper, a regularized fuzzy c-means (RegFCM) algorithm is used for unsupervised seismic facies analysis. Due to the regularized term of the RegFCM algorithm, the data whose adjacent locations belong to same classification will play a more important role in the iterative process than other data. Therefore, this method can reduce the effect of seismic data noise presented in discontinuous regions. The synthetic data with different signal/noise values are used to demonstrate the noise tolerance ability of the RegFCM algorithm. Meanwhile, the fuzzy factor, the neighbour window size and the regularized weight are tested using various values, to provide a reference of how to set these parameters. The new approach is also applied to a real seismic data set from the F3 block of the Netherlands. The results show improved spatial continuity, with clear facies boundaries and channel morphology, which reveals that the method is an effective seismic facies analysis tool.

  20. Japanese-South African collaboration to mitigate seismic risks in deep gold mines

    CSIR Research Space (South Africa)

    Ogasawara, H

    2009-09-01

    Full Text Available Japanese-South African collaborative project entitled "Observational study to mitigate seismic risks in mines". The project will build on previous studies carried out by Japanese seismologists in South African mines, and will develop human and instrumental...

  1. Seismic analysis of fuel and target assemblies at a production reactor

    International Nuclear Information System (INIS)

    Braverman, J.I.; Wang, Y.K.

    1991-01-01

    This paper describes the unique modeling and analysis considerations used to assess the seismic adequacy of the fuel and target assemblies in a production reactor at Savannah River Site. This confirmatory analysis was necessary to provide assurance that the reactor can operate safely during a seismic event and be brought to a safe shutdown condition. The plant which was originally designed in the 1950's required to be assessed to more current seismic criteria. The design of the reactor internals and the magnitude of the structural responses enabled the use of a linear elastic dynamic analysis. A seismic analysis was performed using a finite element model consisting of the fuel and target assemblies, reactor tank, and a portion of the concrete structure supporting the reactor tank. The effects of submergence of the fuel and target assemblies in the water contained within the reactor tank can have a significant effect on their seismic response. Thus, the model included hydrodynamic fluid coupling effects between the assemblies and the reactor tank. Fluid coupling mass terms were based on formulations for solid bodies immersed in incompressible and frictionless fluids. The potential effects of gap conditions were also assessed in this evaluation. 5 refs., 6 figs., 1 tab

  2. Seismic risk analysis for General Electric Plutonium Facility, Pleasanton, California. Final report, part II

    International Nuclear Information System (INIS)

    1980-01-01

    This report is the second of a two part study addressing the seismic risk or hazard of the special nuclear materials (SNM) facility of the General Electric Vallecitos Nuclear Center at Pleasanton, California. The Part I companion to this report, dated July 31, 1978, presented the seismic hazard at the site that resulted from exposure to earthquakes on the Calaveras, Hayward, San Andreas and, additionally, from smaller unassociated earthquakes that could not be attributed to these specific faults. However, while this study was in progress, certain additional geologic information became available that could be interpreted in terms of the existance of a nearby fault. Although substantial geologic investigations were subsequently deployed, the existance of this postulated fault, called the Verona Fault, remained very controversial. The purpose of the Part II study was to assume the existance of such a capable fault and, under this assumption, to examine the loads that the fault could impose on the SNM facility. This report first reviews the geologic setting with a focus on specifying sufficient geologic parameters to characterize the postulated fault. The report next presents the methodology used to calculate the vibratory ground motion hazard. Because of the complexity of the fault geometry, a slightly different methodology is used here compared to the Part I report. This section ends with the results of the calculation applied to the SNM facility. Finally, the report presents the methodology and results of the rupture hazard calculation

  3. Adding seismic broadband analysis to characterize Andean backarc seismicity in Argentina

    Science.gov (United States)

    Alvarado, P.; Giuliano, A.; Beck, S.; Zandt, G.

    2007-05-01

    Characterization of the highly seismically active Andean backarc is crucial for assessment of earthquake hazards in western Argentina. Moderate-to-large crustal earthquakes have caused several deaths, damage and drastic economic consequences in Argentinean history. We have studied the Andean backarc crust between 30°S and 36°S using seismic broadband data available from a previous ("the CHARGE") IRIS-PASSCAL experiment. We collected more than 12 terabytes of continuous seismic data from 22 broadband instruments deployed across Chile and Argentina during 1.5 years. Using free software we modeled full regional broadband waveforms and obtained seismic moment tensor inversions of crustal earthquakes testing for the best focal depth for each event. We also mapped differences in the Andean backarc crustal structure and found a clear correlation with different types of crustal seismicity (i.e. focal depths, focal mechanisms, magnitudes and frequencies of occurrence) and previously mapped terrane boundaries. We now plan to use the same methodology to study other regions in Argentina using near-real time broadband data available from the national seismic (INPRES) network and global seismic networks operating in the region. We will re-design the national seismic network to optimize short-period and broadband seismic station coverage for different network purposes. This work is an international effort that involves researchers and students from universities and national government agencies with the goal of providing more information about earthquake hazards in western Argentina.

  4. Seismic analysis of the reactor coolant system of PWR nuclear power plants

    International Nuclear Information System (INIS)

    Borsoi, L.; Sollogoub, P.

    1986-01-01

    For safety considerations, seismic analyses are performed of the Reactor Coolant System (R.C.S.) of PWR Plants. After a brief description of the R.C.S. and R.C.S. operation, the paper presents the two types of analysis used to determine the effect of earthquake on the R.C.S.: modal spectral analysis and nonlinear time history analysis. The paper finally shows how seismic loadings are combined with other types of loadings and illustrates how the consideration of seismic loads affects R.C.S. design [fr

  5. Seismic analysis of nuclear piping system

    International Nuclear Information System (INIS)

    Shrivastava, S.K.; Pillai, K.R.V.; Nandakumar, S.

    1975-01-01

    To illustrate seismic analysis of nuclear power plant piping, a simple piping system running between two floors of the reactor building is assumed. Reactor building floor response is derived from time-history method. El Centre earthquake (1940) accelerogram is used for time-history analysis. The piping system is analysed as multimass lumped system. Behaviour of the pipe during the said earthquake is discussed. (author)

  6. Selecting the seismic HRA approach for Savannah River Plant PRA revision 1

    International Nuclear Information System (INIS)

    Papouchado, K.; Salaymeh, J.

    1993-10-01

    The Westinghouse Savannah River Company (WSRC) has prepared a level I probabilistic risk assessment (PRA), Rev. 0 of reactor operations for externally-initiated events including seismic events. The SRS PRA, Rev. 0 Seismic HRA received a critical review that expressed skepticism with the approach used for human reliability analysis because it had not been previously used and accepted in other published PRAs. This report provides a review of published probabilistic risk assessments (PRAs), the associated methodology guidance documents, and the psychological literature to identify parameters important to seismic human reliability analysis (HRA). It also describes a recommended approach for use in the Savannah River Site (SRS) PRA. The SRS seismic event PRA performs HRA to account for the contribution of human errors in the accident sequences. The HRA of human actions during and after a seismic event is an area subject to many uncertainties and involves significant analyst judgment. The approach recommended by this report is based on seismic HRA methods and associated issues and concerns identified from the review of these referenced documents that represent the current state-of-the- art knowledge and acceptance in the seismic HRA field

  7. Overview of seismic margin insights gained from seismic PRA results

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Sues, R.H.; Campbell, R.D.

    1986-01-01

    This paper presents the findings of a study conducted under NRC and EPRI sponsorship in which published seismic PRAs were reviewed in order to gain insight to the seismic margins inherent in existing nuclear plants. The approach taken was to examine the fragilities of those components which have been found to be dominant contributors to seismic risk at plants in low-to-moderate seismic regions (SSE levels between 0.12g and 0.25g). It is concluded that there is significant margin inherent in the capacity of most critical components above the plant design basis. For ground motions less than about 0.3g, the predominant sources of seismic risk are loss of offsite power coupled with random failure of the emergency diesels, non-recoverable circuit breaker trip due to relay chatter, unanchored equipment, unreinforced non-load bearing block walls, vertical water storage tanks, systems interactions and possibly soil liquefaction. Recommendations as to which components should be reviewed in seismic margin studies for margin earthquakes less than 0.3g, between 0.3g and 0.5g, and greater than 0.5g, developed by the NRC expert panel on the quantification of seismic margins (based on the review of past PRA data, earthquake experience data, and their own personal experience) are presented

  8. The risks to miners, mines, and the public posed by large seismic events in the gold mining districts of South Africa

    CSIR Research Space (South Africa)

    Durrheim, RJ

    2006-10-01

    Full Text Available are incorporating the risks of seismicity in their disaster management plans, and Johannesburg is urged to do likewise. Some buildings are considered vulnerable to damage by large seismic events, posing safety and financial risks....

  9. Parameters and criteria for repair and strengthening of buildings in the old town core of Dubrovnik based on seismic risk analysis

    Directory of Open Access Journals (Sweden)

    M. Vladimir

    1995-06-01

    Full Text Available Definition of the seismicity conditions, the design seismic parameters and the seismic risk level are important and inevitable phases ol the complex process of repair and strengthening of existing structures in certain towns located in seismically active areas. These should be studied in all necessary details in order to provide corresponding bases and define the necessary preventive measures against expected strong earthquakes. Such an approach becomes even nlore necessary arter the experience regarding the last catastrophic earthquakes that occurred in Former Yugoslavia (Skopje. Banja Luka, Montenegro coast and Kopaonik and inflicted heavy losses of human lives and material properties. The old town core of Dubrovnik is known for the large concentration of buildings of enorrnous cultural-historic importance. Considering the high seismic activity of this area. all these buildings are very likely to experience heavy damage and failure. Tlie history of the town records many catastrophic earthquakes that inflicted heavy material losses and loss of human lives. Here, we can rnention the great Dubrovnik earthquake of 1667 and the last Montenegro earthquake of April 15, 1979 with an epicenter in the Ulcinj-Bar area. The consequences of the latter are well known. The purpose of this paper is to present some results and experience gained from the investigations performed for the area of Dubro~nikil lustrated by several examples of buildings existing in the old town core of Dubrovnik.

  10. Seismic Risk of the Base Isolation System Protected by the Hard Stop

    International Nuclear Information System (INIS)

    Kim, Jung Han; Choi, In-Kil; Kim, Min Kyu

    2015-01-01

    The concept of base isolation is to permit the deformation of isolator for absorbing seismic input wave from the ground. In a nuclear power plant design, allowable shear deformation of isolators should be enough to absorb the displacement response by extended design basis (EDB) ground motions. However isolators cannot resist over its displacement capacity. So, the clearance of hard stop (CHS) needs to be set between the response of base isolation system excited by the EDB ground motion and the displacement capacity of isolators. The isolation system must survive with high confidence in any seismic accident because it is a non-redundant system. Therefore, the CHS should be determined carefully based on the failure risk of base isolation system considering the uncertainties of earthquake responses and isolator capacities. In this research, the fragility curve of isolation system and its failure risk were estimated. The procedure to calculate the acceleration based fragility curve of the isolation system was developed. The fragility curve and failure risk for example case was estimated and its result was compared with different isolator capacities

  11. Seismic Risk of the Base Isolation System Protected by the Hard Stop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Han; Choi, In-Kil; Kim, Min Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The concept of base isolation is to permit the deformation of isolator for absorbing seismic input wave from the ground. In a nuclear power plant design, allowable shear deformation of isolators should be enough to absorb the displacement response by extended design basis (EDB) ground motions. However isolators cannot resist over its displacement capacity. So, the clearance of hard stop (CHS) needs to be set between the response of base isolation system excited by the EDB ground motion and the displacement capacity of isolators. The isolation system must survive with high confidence in any seismic accident because it is a non-redundant system. Therefore, the CHS should be determined carefully based on the failure risk of base isolation system considering the uncertainties of earthquake responses and isolator capacities. In this research, the fragility curve of isolation system and its failure risk were estimated. The procedure to calculate the acceleration based fragility curve of the isolation system was developed. The fragility curve and failure risk for example case was estimated and its result was compared with different isolator capacities.

  12. Seismic analysis of fast breeder reactor block

    International Nuclear Information System (INIS)

    Gantenbein, F.

    1990-01-01

    Seismic analysis of LMFBR reactor block is complex due mainly to the fluid structure interaction and the 3D geometry of the structure. Analytical methods which have been developed for this analysis will be briefly described in the paper and applications to a geometry similar to SPX1 will be shown

  13. SEISMIC RISK CARTOGRAPHIC VISUALIZATION FOR CRISIS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Nina I. Frolova

    2014-01-01

    Full Text Available Earthquake loss estimations before future events and following strong earthquakesin emergency mode and their corresponding visualization are extremely important for properdecision on preventive measures and effective response in order to save lives and properties. The paper addresses the methodological issues of seismic risk and vulnerability assessment, mapping with GIS technology application. Requirements for simulation models,databases used at different levels, as well as ways of visualizations oriented for EmergencyManagement Agencies, as well federal and local authorities are discussed. Examples ofmapping at the different levels: global, country, region and urban one are given and theinfluence of input data uncertainties on the reliability of loss computations is analyzed.

  14. Multifractal Analysis of Seismically Induced Soft-Sediment Deformation Structures Imaged by X-Ray Computed Tomography

    Science.gov (United States)

    Nakashima, Yoshito; Komatsubara, Junko

    Unconsolidated soft sediments deform and mix complexly by seismically induced fluidization. Such geological soft-sediment deformation structures (SSDSs) recorded in boring cores were imaged by X-ray computed tomography (CT), which enables visualization of the inhomogeneous spatial distribution of iron-bearing mineral grains as strong X-ray absorbers in the deformed strata. Multifractal analysis was applied to the two-dimensional (2D) CT images with various degrees of deformation and mixing. The results show that the distribution of the iron-bearing mineral grains is multifractal for less deformed/mixed strata and almost monofractal for fully mixed (i.e. almost homogenized) strata. Computer simulations of deformation of real and synthetic digital images were performed using the egg-beater flow model. The simulations successfully reproduced the transformation from the multifractal spectra into almost monofractal spectra (i.e. almost convergence on a single point) with an increase in deformation/mixing intensity. The present study demonstrates that multifractal analysis coupled with X-ray CT and the mixing flow model is useful to quantify the complexity of seismically induced SSDSs, standing as a novel method for the evaluation of cores for seismic risk assessment.

  15. Non-linear seismic analysis of structures coupled with fluid

    International Nuclear Information System (INIS)

    Descleve, P.; Derom, P.; Dubois, J.

    1983-01-01

    This paper presents a method to calculate non-linear structure behaviour under horizontal and vertical seismic excitation, making possible the full non-linear seismic analysis of a reactor vessel. A pseudo forces method is used to introduce non linear effects and the problem is solved by superposition. Two steps are used in the method: - Linear calculation of the complete model. - Non linear analysis of thin shell elements and calculation of seismic induced pressure originating from linear and non linear effects, including permanent loads and thermal stresses. Basic aspects of the mathematical formulation are developed. It has been applied to axi-symmetric shell element using a Fourier series solution. For the fluid interaction effect, a comparison is made with a dynamic test. In an example of application, the displacement and pressure time history are given. (orig./GL)

  16. Application of Nonlinear Seismic Soil-Structure Interaction Analysis for Identification of Seismic Margins at Nuclear Power Plants

    International Nuclear Information System (INIS)

    Varma, Amit H.; Seo, Jungil; Coleman, Justin Leigh

    2015-01-01

    Seismic probabilistic risk assessment (SPRA) methods and approaches at nuclear power plants (NPP) were first developed in the 1970s and aspects of them have matured over time as they were applied and incrementally improved. SPRA provides information on risk and risk insights and allows for some accounting for uncertainty and variability. As a result, SPRA is now used as an important basis for risk-informed decision making for both new and operating NPPs in the US and in an increasing number of countries globally. SPRAs are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in some instances the current SPRA approach contains large uncertainties, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). INL has an advanced SPRA research and development (R&D) activity that will identify areas in the calculation process that contain significant uncertainties. One current area of focus is the use of nonlinear soil-structure interaction (NLSSI) analysis methods to accurately capture: 1) nonlinear soil behavior and 2) gapping and sliding between the NPP and soil. The goal of this study is to compare numerical NLSSI analysis results with recorded earthquake ground motions at Fukushima Daichii (Great Tohuku Earthquake) and evaluate the sources of nonlinearity contributing to the observed reduction in peak acceleration. Comparisons are made using recorded data in the free-field (soil column with no structural influence) and recorded data on the NPP basemat (in-structure response). Results presented in this study should identify areas of focus for future R&D activities with the goal of minimizing uncertainty in SPRA calculations. This is not a validation activity since there are too many sources of uncertainty that a numerical analysis would need

  17. A Study on the Fuel Assembly Seismic Analysis without Holddown Springs

    International Nuclear Information System (INIS)

    Kwon, O Cheol; Ha, Dong Geun; Lee, Kyou Seok; Jeon, Sang Yoon; Suh, Jung Min

    2013-01-01

    In this study, the effect for the fuel assembly removed holddown spring under seismic event has been evaluated through the comparison with the seismic analysis result of fuel assembly with holddown spring. In order to compare each design, the simplified fuel assembly seismic analysis models have been established according to reference. The mid grid impact force, natural frequency, and top nozzle displacement for each fuel assembly model has been analyzed using ANSYS. The fuel assembly seismic analyses without holddown springs are performed and compared to the model with holddown springs. The grid impact forces of CPM 1 and CPM 2 are almost doubled in comparison with CPM 3 and almost tripled in comparison with CPM 4 so the grid impact forces depend on CPM types. The grid impact forces of the fuel assembly model without holddown springs have similar tendencies in comparison with fuel assembly with holddown springs. Moreover, the model without holddown springs analysis time is much longer than the model with holddown springs. Consequently, it is moderate that the fuel assembly analysis model with holddown springs would be used for effective analysis even though the actual model has no holddown springs

  18. A Study on the Fuel Assembly Seismic Analysis without Holddown Springs

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, O Cheol; Ha, Dong Geun; Lee, Kyou Seok; Jeon, Sang Yoon; Suh, Jung Min [KEPCO Nuclear Fuel, Daejeon (Korea, Republic of)

    2013-10-15

    In this study, the effect for the fuel assembly removed holddown spring under seismic event has been evaluated through the comparison with the seismic analysis result of fuel assembly with holddown spring. In order to compare each design, the simplified fuel assembly seismic analysis models have been established according to reference. The mid grid impact force, natural frequency, and top nozzle displacement for each fuel assembly model has been analyzed using ANSYS. The fuel assembly seismic analyses without holddown springs are performed and compared to the model with holddown springs. The grid impact forces of CPM{sub 1} and CPM{sub 2} are almost doubled in comparison with CPM{sub 3} and almost tripled in comparison with CPM{sub 4} so the grid impact forces depend on CPM types. The grid impact forces of the fuel assembly model without holddown springs have similar tendencies in comparison with fuel assembly with holddown springs. Moreover, the model without holddown springs analysis time is much longer than the model with holddown springs. Consequently, it is moderate that the fuel assembly analysis model with holddown springs would be used for effective analysis even though the actual model has no holddown springs.

  19. Reduction of uncertainties in probabilistic seismic hazard analysis

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong Moon; Choun, Young Sun; Choi, In Kil [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-02-01

    An integrated research for the reduction of conservatism and uncertainties in PSHA in Korea was performed. The research consisted of five technical task areas as follows; Task 1: Earthquake Catalog Development for PSHA. Task 2: Evaluation of Seismicity and Tectonics of the Korea Region. Task 3: Development of a Ground Motion Relationships. Task 4: Improvement of PSHA Modelling Methodology. Task 5: Development of Seismic Source Interpretations for the region of Korea for Inputs to PSHA. A series of tests on an ancient wooden house and an analysis on medium size earthquake in Korea were performed intensively. Signification improvement, especially in the estimation of historical earthquake, ground motion attenuation, and seismic source interpretations, were made through this study. 314 refs., 180 figs., 54 tabs. (Author)

  20. Risk insights from seismic margin reviews

    International Nuclear Information System (INIS)

    Budnitz, R.J.

    1990-01-01

    This paper discusses the information that has been derived from the three seismic-margin reviews conducted so far, and the information that is potentially available from using the seismic-margin method more generally. There are two different methodologies for conducting seismic margin reviews of nuclear power plants, one developed under NRC sponsorship and one developed under sponsorship of the Electric Power Research Institute. Both methodologies will be covered in this paper. The paper begins with a summary of the steps necessary to complete a margin review, and will then outline the key technical difficulties that need to be addressed. After this introduction, the paper covers the safety and operational insights derived from the three seismic-margin reviews already completed: the NRC-sponsored review at Maine Yankee; the EPRI-sponsored review at Catawba; and the joint EPRI/NRC/utility effort at Hatch. The emphasis is on engineering insights, with attention to the aspects of the reviews that are easiest to perform and that provide the most readily available insights

  1. Seismicity, seismic input and site effects in the Sahel-Algiers region (north Algeria)

    International Nuclear Information System (INIS)

    Harbi, A.; Maouche, S.; Oussadou, F.; Vaccari, F.; Aoudia, A.; Panza, G.F.; Benouar, D.

    2005-07-01

    Algiers city is located in a seismogenic zone. To reduce the impact of seismic risk in this capital city, a realistic modelling of the seismic ground motion using the hybrid method that combines the finite-differences method and the modal summation, is conducted. For this purpose, a complete database in terms of geological, geophysical and earthquake data is constructed. A critical re-appraisal of the seismicity of the zone (2.25 deg. E-3.50 deg. E, 36.50 deg. N-37.00 deg. N) is performed and an earthquake list, for the period 1359-2002, is compiled. The analysis of existing and newly retrieved macroseismic information allowed the definition of earthquake parameters of macroseismic events for which a degree of reliability is assigned. Geological cross-sections have been built up to model the seismic ground motion in the city, caused by the 1989 Mont-Chenoua and the 1924 Douera earthquakes; a set of synthetic seismograms and response spectral ratio is produced for Algiers. The numerical results show that the soft sediments in Algiers centre are responsible of the noticed amplification of the seismic ground motion. (author)

  2. User's manual of SECOM2: a computer code for seismic system reliability analysis

    International Nuclear Information System (INIS)

    Uchiyama, Tomoaki; Oikawa, Tetsukuni; Kondo, Masaaki; Tamura, Kazuo

    2002-03-01

    This report is the user's manual of seismic system reliability analysis code SECOM2 (Seismic Core Melt Frequency Evaluation Code Ver.2) developed at the Japan Atomic Energy Research Institute for systems reliability analysis, which is one of the tasks of seismic probabilistic safety assessment (PSA) of nuclear power plants (NPPs). The SECOM2 code has many functions such as: Calculation of component failure probabilities based on the response factor method, Extraction of minimal cut sets (MCSs), Calculation of conditional system failure probabilities for given seismic motion levels at the site of an NPP, Calculation of accident sequence frequencies and the core damage frequency (CDF) with use of the seismic hazard curve, Importance analysis using various indicators, Uncertainty analysis, Calculation of the CDF taking into account the effect of the correlations of responses and capacities of components, and Efficient sensitivity analysis by changing parameters on responses and capacities of components. These analyses require the fault tree (FT) representing the occurrence condition of the system failures and core damage, information about response and capacity of components and seismic hazard curve for the NPP site as inputs. This report presents the models and methods applied in the SECOM2 code and how to use those functions. (author)

  3. A procedure for the determination of scenario earthquakes for seismic design based on probabilistic seismic hazard analysis

    International Nuclear Information System (INIS)

    Hirose, Jiro; Muramatsu, Ken

    2002-03-01

    This report presents a study on the procedures for the determination of scenario earthquakes for seismic design of nuclear power plants (NPPs) based on probabilistic seismic hazard analysis (PSHA). In the recent years, the use of PSHA, which is a part of seismic probabilistic safety assessment (PSA), to determine the design basis earthquake motions for NPPs has been proposed. The identified earthquakes are called probability-based scenario earthquakes (PBSEs). The concept of PBSEs originates both from the study of US NRC and from Ishikawa and Kameda. The assessment of PBSEs is composed of seismic hazard analysis and identification of dominant earthquakes. The objectives of this study are to formulate the concept of PBSEs and to examine the procedures for determining the PBSEs for a domestic NPP site. This report consists of three parts, namely, procedures to compile analytical conditions for PBSEs, an assessment to identify PBSEs for a model site using the Ishikawa's concept and the examination of uncertainties involved in analytical conditions. The results obtained from the examination of PBSEs using Ishikawa's concept are as follows. (a) Since PBSEs are expressed by hazard-consistent magnitude and distance in terms of a prescribed reference probability, it is easy to obtain a concrete image of earthquakes that determine the ground response spectrum to be considered in the design of NPPs. (b) Source contribution factors provide the information on the importance of the earthquake source regions and/or active faults, and allows the selection of a couple of PBSEs based on their importance to the site. (c) Since analytical conditions involve uncertainty, sensitivity analyses on uncertainties that would affect seismic hazard curves and identification of PBSEs were performed on various aspects and provided useful insights for assessment of PBSEs. A result from this sensitivity analysis was that, although the difference in selection of attenuation equations led to a

  4. Rethinking ASME III seismic analysis for piping operability evaluations

    International Nuclear Information System (INIS)

    Adams, T.M.; Stevenson, J.D.

    1994-01-01

    It has been recognized since the mid 1980's that there are very large seismic margins to failure for nuclear piping systems when designed using current industry practice, design criteria, and methods. As a result of this realization there are or have been approximately eighteen initiatives within the ASME , Boiler and Pressure Vessel Code Section III, Division 1, in the form of proposed code cases and proposed code text changes designed to reduce these failure margins to more realistic values. For the most part these initiatives have concentrated on reclassifying seismic inertia stresses in the piping as secondary and increasing the allowable stress limits permitted by Section III of the ASME, Boiler Code. This paper focuses on the application of non-linear spectral analysis methods as a method to reduce the input seismic demand determination and thereby reduce the seismic failure margins. The approach is evaluated using the ASME Boiler Pressure Vessel Code Section III Subgroup on Design benchmark procedure as proposed by the Subgroup's Special Task Group on Integrated Piping Criteria. Using this procedure, criteria are compared to current code criterion and analysis methods, and several other of the currently proposed Boiler and Pressure Vessel, Section III, changes. Finally, the applicability of the non-linear spectral analysis to continued Safe Operation Evaluations is reviewed and discussed

  5. Seismic design and analysis methods

    International Nuclear Information System (INIS)

    Varpasuo, P.

    1993-01-01

    Seismic load is in many areas of the world the most important loading situation from the point of view of structural strength. Taking this into account it is understandable, that there has been a strong allocation of resources in the seismic analysis during the past ten years. In this study there are three areas of the center of gravity: (1) Random vibrations; (2) Soil-structure interaction and (3) The methods for determining structural response. The solution of random vibration problems is clarified with the aid of applications in this study and from the point of view of mathematical treatment and mathematical formulations it is deemed sufficient to give the relevant sources. In the soil-structure interaction analysis the focus has been the significance of frequency dependent impedance functions. As a result it was obtained, that the description of the soil with the aid of frequency dependent impedance functions decreases the structural response and it is thus always the preferred method when compared to more conservative analysis types. From the methods to determine the C structural response the following four were tested: (1) The time history method; (2) The complex frequency-response method; (3) Response spectrum method and (4) The equivalent static force method. The time history appeared to be the most accurate method and the complex frequency-response method did have the widest area of application. (orig.). (14 refs., 35 figs.)

  6. TREATING UNCERTAINTIES IN A NUCLEAR SEISMIC PROBABILISTIC RISK ASSESSMENT BY MEANS OF THE DEMPSTER-SHAFER THEORY OF EVIDENCE

    OpenAIRE

    Lo , Chung-Kung; Pedroni , N.; Zio , Enrico

    2014-01-01

    International audience; The analyses carried out within the Seismic Probabilistic Risk Assessments (SPRAs) of Nuclear Power Plants (NPPs) are affected by significant aleatory and epistemic uncertainties. These uncertainties have to be represented and quantified coherently with the data, information and knowledge available, to provide reasonable assurance that related decisions can be taken robustly and with confidence. The amount of data, information and knowledge available for seismic risk a...

  7. Seismic Analysis of a Viscoelastic Damping Isolator

    Directory of Open Access Journals (Sweden)

    Bo-Wun Huang

    2015-01-01

    Full Text Available Seismic prevention issues are discussed much more seriously around the world after Fukushima earthquake, Japan, April 2011, especially for those countries which are near the earthquake zone. Approximately 1.8×1012 kilograms of explosive energy will be released from a magnitude 9 earthquake. It destroys most of the unprotected infrastructure within several tens of miles in diameter from the epicenter. People can feel the earthquake even if living hundreds of miles away. This study is a seismic simulation analysis for an innovated and improved design of viscoelastic damping isolator, which can be more effectively applied to earthquake prevention and damage reduction of high-rise buildings, roads, bridges, power generation facilities, and so forth, from earthquake disaster. Solidworks graphic software is used to draw the 3D geometric model of the viscoelastic isolator. The dynamic behavior of the viscoelastic isolator through shock impact of specific earthquake loading, recorded by a seismometer, is obtained via ANSYS finite element package. The amplitude of the isolator is quickly reduced by the viscoelastic material in the device and is shown in a time response diagram. The result of this analysis can be a crucial reference when improving the design of a seismic isolator.

  8. Analysis of Cylindrical Granular Material Silos under Seismic Excitation

    Directory of Open Access Journals (Sweden)

    Christoph Butenweg

    2017-07-01

    Full Text Available Silos generally work as storage structures between supply and demand for various goods, and their structural safety has long been of interest to the civil engineering profession. This is especially true for dynamically loaded silos, e.g., in case of seismic excitation. Particularly thin-walled cylindrical silos are highly vulnerable to seismic induced pressures, which can cause critical buckling phenomena of the silo shell. The analysis of silos can be carried out in two different ways. In the first, the seismic loading is modeled through statically equivalent loads acting on the shell. Alternatively, a time history analysis might be carried out, in which nonlinear phenomena due to the filling as well as the interaction between the shell and the granular material are taken into account. The paper presents a comparison of these approaches. The model used for the nonlinear time history analysis considers the granular material by means of the intergranular strain approach for hypoplasticity theory. The interaction effects between the granular material and the shell is represented by contact elements. Additionally, soil–structure interaction effects are taken into account.

  9. A guidebook for the operation and maintenance of HANARO seismic monitoring analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Yoon, Doo Byung; Kim, Hyung Kyoo

    2003-09-01

    Systems and structures related to HANARO safety are classified as seismic category I. Since 1995, the seismic monitoring system has been utilized for monitoring an earthquake at the HANARO site. The existing seismic monitoring system consists of field sensors and monitoring panel. The analog-type monitoring system with magnetic tape recorder is out-of-date model. In addition, the disadvantage of the existing system is that it does not include signal-analyzing equipment. Therefore, we have improved the analog seismic monitoring system into a new digital Seismic Monitoring Analysis System(SMAS) that can offer precise and detail information of the earthquake signals. This newly developed SMAS is operating at the HANARO instrument room to acquire and analyze the signal of an earthquake. This document is a guidebook for the operation and maintenance of the SMAS. The first chapter gives an outline of the SMAS. The second chapter describes functional capability and specification of the hardware. Chapters 3 and 4 describe starting procedure of the SMAS and how to operate the seismic monitoring program, respectively. Chapter 5 illustrates the seismic analysis algorithm used in the SMAS. The way of operating the seismic analysis program is described in chapter 6. Chapter 7 illustrates the calibration procedure for data acquisition module. Chapter 8 describes the symptoms of common malfunctions and its countermeasure suited to the occasions.

  10. Current issues and related activities in seismic hazard analysis in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong-Moon [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of); Lee, Jong-Rim; Chang, Chun-Joong

    1997-03-01

    This paper discusses some technical issues identified from the seismic hazard analyses for probabilistic safety assessment on the operating Korean nuclear power plants and the related activities to resolve the issues. Since there are no strong instrumental earthquake records in Korea, the seismic hazard analysis is mainly dependent on the historical earthquake records. Results of the past seismic hazard analyses show that there are many uncertainties in attenuation function and intensity level and that there is a need to improve statistical method. The identification of the activity of the Yangsan Fault, which is close to nuclear power plant sites, has been an important issue. But the issue has not been resolved yet in spite of much research works done. Recently, some capable faults were found in the offshore area of Gulupdo Island in the Yellow Sea. It is anticipated that the results of research on both the Yangsan Fault and reduction of uncertainty in seismic hazard analysis will have an significant influence on seismic design and safety assessment of nuclear power plants in the future. (author)

  11. Current issues and related activities in seismic hazard analysis in Korea

    International Nuclear Information System (INIS)

    Seo, Jeong-Moon; Lee, Jong-Rim; Chang, Chun-Joong.

    1997-01-01

    This paper discusses some technical issues identified from the seismic hazard analyses for probabilistic safety assessment on the operating Korean nuclear power plants and the related activities to resolve the issues. Since there are no strong instrumental earthquake records in Korea, the seismic hazard analysis is mainly dependent on the historical earthquake records. Results of the past seismic hazard analyses show that there are many uncertainties in attenuation function and intensity level and that there is a need to improve statistical method. The identification of the activity of the Yangsan Fault, which is close to nuclear power plant sites, has been an important issue. But the issue has not been resolved yet in spite of much research works done. Recently, some capable faults were found in the offshore area of Gulupdo Island in the Yellow Sea. It is anticipated that the results of research on both the Yangsan Fault and reduction of uncertainty in seismic hazard analysis will have an significant influence on seismic design and safety assessment of nuclear power plants in the future. (author)

  12. Communicating Low-Probability High-Consequence Risk, Uncertainty and Expert Confidence: Induced Seismicity of Deep Geothermal Energy and Shale Gas.

    Science.gov (United States)

    Knoblauch, Theresa A K; Stauffacher, Michael; Trutnevyte, Evelina

    2018-04-01

    Subsurface energy activities entail the risk of induced seismicity including low-probability high-consequence (LPHC) events. For designing respective risk communication, the scientific literature lacks empirical evidence of how the public reacts to different written risk communication formats about such LPHC events and to related uncertainty or expert confidence. This study presents findings from an online experiment (N = 590) that empirically tested the public's responses to risk communication about induced seismicity and to different technology frames, namely deep geothermal energy (DGE) and shale gas (between-subject design). Three incrementally different formats of written risk communication were tested: (i) qualitative, (ii) qualitative and quantitative, and (iii) qualitative and quantitative with risk comparison. Respondents found the latter two the easiest to understand, the most exact, and liked them the most. Adding uncertainty and expert confidence statements made the risk communication less clear, less easy to understand and increased concern. Above all, the technology for which risks are communicated and its acceptance mattered strongly: respondents in the shale gas condition found the identical risk communication less trustworthy and more concerning than in the DGE conditions. They also liked the risk communication overall less. For practitioners in DGE or shale gas projects, the study shows that the public would appreciate efforts in describing LPHC risks with numbers and optionally risk comparisons. However, there seems to be a trade-off between aiming for transparency by disclosing uncertainty and limited expert confidence, and thereby decreasing clarity and increasing concern in the view of the public. © 2017 Society for Risk Analysis.

  13. Site Specific Probabilistic Seismic Hazard and Risk Analysis for Surrounding Communities of The Geysers Geothermal Development Area

    Science.gov (United States)

    Miah, M.; Hutchings, L. J.; Savy, J. B.

    2014-12-01

    We conduct a probabilistic seismic hazard and risk analysis from induced and tectonic earthquakes for a 50 km radius area centered on The Geysers, California and for the next ten years. We calculate hazard with both a conventional and physics-based approach. We estimate site specific hazard. We convert hazard to risk of nuisance and damage to structures per year and map the risk. For the conventional PSHA we assume the past ten years is indicative of hazard for the next ten years from Mnoise. Then, we interpolate within each geologic unit in finely gridded points. All grid points within a unit are weighted by distance from each data collection point. The entire process is repeated for all of the other types of geologic units until the entire area is gridded and assigned a hazard value for every grid points. We found that nuisance and damage risks calculated by both conventional and physics-based approaches provided almost identical results. This is very surprising since they were calculated by completely independent means. The conventional approach used the actual catalog of the past ten years of earthquakes to estimate the hazard for the next ten year. While the physics-based approach used geotechnical modeling to calculate the catalog for the next ten years. Similarly, for the conventional PSHA, we utilized attenuation relations from past earthquakes recorded at the Geysers to translate the ground motion from the source to the site. While for the physics-based approach we calculated ground motion from simulation of actual earthquake rupture. Finally, the source of the earthquakes was the actual source for the conventional PSHA. While, we assumed random fractures for the physics-based approach. From all this, we consider the calculation of the conventional approach, based on actual data, to validate the physics-based approach used.

  14. Soil-structure interaction analysis of large scale seismic test model at Hualien in Taiwan

    International Nuclear Information System (INIS)

    Jang, J. B.; Ser, Y. P.; Lee, J. L.

    2001-01-01

    The issue of SSI in seismic analysis and design of NPPs is getting important, as it may be inevitable to build NPPs at sites with soft foundation due to ever-increasing difficulty in acquiring new construction sites for NPPs. And, the improvement of seismic analysis technique including soil-structure interaction analysis essential to achieve reasonable seismic design for structures and equipments, etc. of NPPs. Therefore, among the existing SSI analysis programs, the most prevalent SASSI is verified through the comparison numerical analysis results with recorded response results of Hualien project in this study. As a result, SASSI accurately estimated the recorded response results for the fundamental frequency and peak acceleration of structure and was proved to be reliable and useful for the seismic analysis and design of NPPs

  15. Subsystem response review. Seismic safety margins research program

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Campbell, R.D.; Wesley, D.A.; Kamil, H.; Gantayat, A.; Vasudevan, R.

    1981-07-01

    A study was conducted to document the state of the art in seismic qualification of nuclear power plant components and subsystems by analysis and testing and to identify the sources and magnitude of the uncertainties associated with analysis and testing methods. The uncertainties are defined in probabilistic terms for use in probabilistic seismic risk studies. Recommendations are made for the most appropriate subsystem response analysis methods to minimize response uncertainties. Additional studies, to further quantify testing uncertainties, are identified. Although the general effect of non-linearities on subsystem response is discussed, recommendations and conclusions are based principally on linear elastic analysis and testing models. (author)

  16. Seismic analysis of the APR1400 nuclear reactor system using a verified beam element model

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong-beom [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Park, No-Cheol, E-mail: pnch@yonsei.ac.kr [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Lee, Sang-Jeong; Park, Young-Pil [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Choi, Youngin [Korea Institute of Nuclear Safety, 62 Gwahak-ro, Yuseong-gu, Daejeon 34142 (Korea, Republic of)

    2017-03-15

    Highlights: • A simplified beam element model is constructed based on the real dynamic characteristics of the APR1400. • Time history analysis is performed to calculate the seismic responses of the structures. • Large deformations can be observed at the in-phase mode of reactor vessel and core support barrel. - Abstract: Structural integrity is the first priority in the design of nuclear reactor internal structures. In particular, nuclear reactor internals should be designed to endure external forces, such as those due to earthquakes. Many researchers have performed finite element analyses to meet these design requirements. Generally, a seismic analysis model should reflect the dynamic characteristics of the target system. However, seismic analysis based on the finite element method requires long computation times as well as huge storage space. In this research, a beam element model was developed and confirmed based on the real dynamic characteristics of an advanced pressurized water nuclear reactor 1400 (APR1400) system. That verification process enhances the accuracy of the finite element analysis using the beam elements, remarkably. Also, the beam element model reduces seismic analysis costs. Therefore, the beam element model was used to perform the seismic analysis. Then, the safety of the APR1400 was assessed based on a seismic analysis of the time history responses of its structures. Thus, efficient, accurate seismic analysis was demonstrated using the proposed beam element model.

  17. Seismic analysis of the APR1400 nuclear reactor system using a verified beam element model

    International Nuclear Information System (INIS)

    Park, Jong-beom; Park, No-Cheol; Lee, Sang-Jeong; Park, Young-Pil; Choi, Youngin

    2017-01-01

    Highlights: • A simplified beam element model is constructed based on the real dynamic characteristics of the APR1400. • Time history analysis is performed to calculate the seismic responses of the structures. • Large deformations can be observed at the in-phase mode of reactor vessel and core support barrel. - Abstract: Structural integrity is the first priority in the design of nuclear reactor internal structures. In particular, nuclear reactor internals should be designed to endure external forces, such as those due to earthquakes. Many researchers have performed finite element analyses to meet these design requirements. Generally, a seismic analysis model should reflect the dynamic characteristics of the target system. However, seismic analysis based on the finite element method requires long computation times as well as huge storage space. In this research, a beam element model was developed and confirmed based on the real dynamic characteristics of an advanced pressurized water nuclear reactor 1400 (APR1400) system. That verification process enhances the accuracy of the finite element analysis using the beam elements, remarkably. Also, the beam element model reduces seismic analysis costs. Therefore, the beam element model was used to perform the seismic analysis. Then, the safety of the APR1400 was assessed based on a seismic analysis of the time history responses of its structures. Thus, efficient, accurate seismic analysis was demonstrated using the proposed beam element model.

  18. Light Water Reactor Sustainability Program Advanced Seismic Soil Structure Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bolisetti, Chandrakanth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in some instances the current SPRA approach has large uncertainties, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). SPRA’s are performed by convolving the seismic hazard (this is the estimate of all likely damaging earthquakes at the site of interest) with the seismic fragility (the conditional probability of failure of a structure, system, or component given the occurrence of earthquake ground motion). In this calculation, there are three main pieces to seismic risk quantification, 1) seismic hazard and nuclear power plants (NPPs) response to the hazard, 2) fragility or capacity of structures, systems and components (SSC), and 3) systems analysis. Two areas where NLSSI effects may be important in SPRA calculations are, 1) when calculating in-structure response at the area of interest, and 2) calculation of seismic fragilities (current fragility calculations assume a lognormal distribution for probability of failure of components). Some important effects when using NLSSI in the SPRA calculation process include, 1) gapping and sliding, 2) inclined seismic waves coupled with gapping and sliding of foundations atop soil, 3) inclined seismic waves coupled with gapping and sliding of deeply embedded structures, 4) soil dilatancy, 5) soil liquefaction, 6) surface waves, 7) buoyancy, 8) concrete cracking and 9) seismic isolation The focus of the research task presented here-in is on implementation of NLSSI into the SPRA calculation process when calculating in-structure response at the area

  19. LANL seismic screening method for existing buildings

    International Nuclear Information System (INIS)

    Dickson, S.L.; Feller, K.C.; Fritz de la Orta, G.O.

    1997-01-01

    The purpose of the Los Alamos National Laboratory (LANL) Seismic Screening Method is to provide a comprehensive, rational, and inexpensive method for evaluating the relative seismic integrity of a large building inventory using substantial life-safety as the minimum goal. The substantial life-safety goal is deemed to be satisfied if the extent of structural damage or nonstructural component damage does not pose a significant risk to human life. The screening is limited to Performance Category (PC) -0, -1, and -2 buildings and structures. Because of their higher performance objectives, PC-3 and PC-4 buildings automatically fail the LANL Seismic Screening Method and will be subject to a more detailed seismic analysis. The Laboratory has also designated that PC-0, PC-1, and PC-2 unreinforced masonry bearing wall and masonry infill shear wall buildings fail the LANL Seismic Screening Method because of their historically poor seismic performance or complex behavior. These building types are also recommended for a more detailed seismic analysis. The results of the LANL Seismic Screening Method are expressed in terms of separate scores for potential configuration or physical hazards (Phase One) and calculated capacity/demand ratios (Phase Two). This two-phase method allows the user to quickly identify buildings that have adequate seismic characteristics and structural capacity and screen them out from further evaluation. The resulting scores also provide a ranking of those buildings found to be inadequate. Thus, buildings not passing the screening can be rationally prioritized for further evaluation. For the purpose of complying with Executive Order 12941, the buildings failing the LANL Seismic Screening Method are deemed to have seismic deficiencies, and cost estimates for mitigation must be prepared. Mitigation techniques and cost-estimate guidelines are not included in the LANL Seismic Screening Method

  20. Assessment of the Metrological Performance of Seismic Tables for a QMS Recognition

    International Nuclear Information System (INIS)

    Ribeiro, A Silva; Costa, A Campos; Candeias, P; Martins, L Lages; Martins, A C Freitas; Ferreira, A C; Sousa, J Alves e

    2016-01-01

    Seismic testing and analysis using large infrastructures, such as shaking tables and reaction walls, is performed worldwide requiring the use of complex instrumentation systems. To assure the accuracy of these systems, conformity assessment is needed to verify the compliance with standards and applications, and the Quality Management Systems (QMS) is being increasingly applied to domains where risk analysis is critical as a way to provide a formal recognition. This paper describes an approach to the assessment of the metrological performance of seismic shake tables as part of a QMS recognition, with the analysis of a case study of LNEC Seismic shake table. (paper)

  1. Assessment of the Metrological Performance of Seismic Tables for a QMS Recognition

    Science.gov (United States)

    Silva Ribeiro, A.; Campos Costa, A.; Candeias, P.; Sousa, J. Alves e.; Lages Martins, L.; Freitas Martins, A. C.; Ferreira, A. C.

    2016-11-01

    Seismic testing and analysis using large infrastructures, such as shaking tables and reaction walls, is performed worldwide requiring the use of complex instrumentation systems. To assure the accuracy of these systems, conformity assessment is needed to verify the compliance with standards and applications, and the Quality Management Systems (QMS) is being increasingly applied to domains where risk analysis is critical as a way to provide a formal recognition. This paper describes an approach to the assessment of the metrological performance of seismic shake tables as part of a QMS recognition, with the analysis of a case study of LNEC Seismic shake table.

  2. Seismic rupture modelling, strong motion prediction and seismic hazard assessment: fundamental and applied approaches

    International Nuclear Information System (INIS)

    Berge-Thierry, C.

    2007-05-01

    The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)

  3. Romanian Educational Seismic Network Project

    Science.gov (United States)

    Tataru, Dragos; Ionescu, Constantin; Zaharia, Bogdan; Grecu, Bogdan; Tibu, Speranta; Popa, Mihaela; Borleanu, Felix; Toma, Dragos; Brisan, Nicoleta; Georgescu, Emil-Sever; Dobre, Daniela; Dragomir, Claudiu-Sorin

    2013-04-01

    Romania is one of the most active seismic countries in Europe, with more than 500 earthquakes occurring every year. The seismic hazard of Romania is relatively high and thus understanding the earthquake phenomena and their effects at the earth surface represents an important step toward the education of population in earthquake affected regions of the country and aims to raise the awareness about the earthquake risk and possible mitigation actions. In this direction, the first national educational project in the field of seismology has recently started in Romania: the ROmanian EDUcational SEISmic NETwork (ROEDUSEIS-NET) project. It involves four partners: the National Institute for Earth Physics as coordinator, the National Institute for Research and Development in Construction, Urban Planning and Sustainable Spatial Development " URBAN - INCERC" Bucharest, the Babeş-Bolyai University (Faculty of Environmental Sciences and Engineering) and the software firm "BETA Software". The project has many educational, scientific and social goals. The main educational objectives are: training students and teachers in the analysis and interpretation of seismological data, preparing of several comprehensive educational materials, designing and testing didactic activities using informatics and web-oriented tools. The scientific objective is to introduce into schools the use of advanced instruments and experimental methods that are usually restricted to research laboratories, with the main product being the creation of an earthquake waveform archive. Thus a large amount of such data will be used by students and teachers for educational purposes. For the social objectives, the project represents an effective instrument for informing and creating an awareness of the seismic risk, for experimentation into the efficacy of scientific communication, and for an increase in the direct involvement of schools and the general public. A network of nine seismic stations with SEP seismometers

  4. CORSSA: The Community Online Resource for Statistical Seismicity Analysis

    Science.gov (United States)

    Michael, Andrew J.; Wiemer, Stefan

    2010-01-01

    Statistical seismology is the application of rigorous statistical methods to earthquake science with the goal of improving our knowledge of how the earth works. Within statistical seismology there is a strong emphasis on the analysis of seismicity data in order to improve our scientific understanding of earthquakes and to improve the evaluation and testing of earthquake forecasts, earthquake early warning, and seismic hazards assessments. Given the societal importance of these applications, statistical seismology must be done well. Unfortunately, a lack of educational resources and available software tools make it difficult for students and new practitioners to learn about this discipline. The goal of the Community Online Resource for Statistical Seismicity Analysis (CORSSA) is to promote excellence in statistical seismology by providing the knowledge and resources necessary to understand and implement the best practices, so that the reader can apply these methods to their own research. This introduction describes the motivation for and vision of CORRSA. It also describes its structure and contents.

  5. CARES-ESTSC, Seismic Structure Safety Analysis for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Costantino, C.J.; Miller, C.A.; Heymsfield, E.; Yang, A.

    1999-01-01

    1 - Description of program or function: CARES, Computer Analysis for Rapid Evaluation of Structures, was developed for NRC staff use to determine the validity and accuracy of the analysis methods used by various utilities for structural safety evaluations of nuclear power plants. CARES is organized in a modular format with the basic modules of the system performing static, seismic, and nonlinear analysis. In this release, only the seismic module is implemented. This module defines the design seismic criteria at a given site, evaluates the free-field motion, and computes the structural response and floor response spectra including soil-structure interaction. The eight options in CARES currently are: a general manager for the seismic module, deconvolution analysis, structural data preparation for soil-structure interaction (SSI) analysis, input motion preparation for SSI analysis, SSI analysis, earthquake simulations/data, PSD (Power Spectral Density) related acceleration time history/spectra analysis, and plot generation. 2 - Method of solution: The seismic module works in the frequency domain. Earthquake motion simulation is based on the fundamental property that any periodic function can be expanded in a series of sinusoidal waves. The computer uses a random number generator to produce strings of phase angles with uniform distribution in the 0-2 pi range. Then, a linear correction procedure due to Scanlon and Sacks is employed to derive an adjusted array of amplitudes. The acceleration ensemble is subsequently modified by a deterministic intensity function composed of three segments: an initial buildup, a stationary duration, and exponential steady decay. A parabolic correction procedure outlined by Jennings and Housner is applied to the acceleration ensemble to bring the end velocity of the ground motion to zero. The soil-structure system is represented by a three-dimensional lumped parameter type model. The structural model is built up from three

  6. Multi-hole seismic modeling in 3-D space and cross-hole seismic tomography analysis for boulder detection

    Science.gov (United States)

    Cheng, Fei; Liu, Jiangping; Wang, Jing; Zong, Yuquan; Yu, Mingyu

    2016-11-01

    A boulder stone, a common geological feature in south China, is referred to the remnant of a granite body which has been unevenly weathered. Undetected boulders could adversely impact the schedule and safety of subway construction when using tunnel boring machine (TBM) method. Therefore, boulder detection has always been a key issue demanded to be solved before the construction. Nowadays, cross-hole seismic tomography is a high resolution technique capable of boulder detection, however, the method can only solve for velocity in a 2-D slice between two wells, and the size and central position of the boulder are generally difficult to be accurately obtained. In this paper, the authors conduct a multi-hole wave field simulation and characteristic analysis of a boulder model based on the 3-D elastic wave staggered-grid finite difference theory, and also a 2-D imaging analysis based on first arrival travel time. The results indicate that (1) full wave field records could be obtained from multi-hole seismic wave simulations. Simulation results describe that the seismic wave propagation pattern in cross-hole high-velocity spherical geological bodies is more detailed and can serve as a basis for the wave field analysis. (2) When a cross-hole seismic section cuts through the boulder, the proposed method provides satisfactory cross-hole tomography results; however, when the section is closely positioned to the boulder, such high-velocity object in the 3-D space would impact on the surrounding wave field. The received diffracted wave interferes with the primary wave and in consequence the picked first arrival travel time is not derived from the profile, which results in a false appearance of high-velocity geology features. Finally, the results of 2-D analysis in 3-D modeling space are comparatively analyzed with the physical model test vis-a-vis the effect of high velocity body on the seismic tomographic measurements.

  7. Neo-Deterministic and Probabilistic Seismic Hazard Assessments: a Comparative Analysis

    Science.gov (United States)

    Peresan, Antonella; Magrin, Andrea; Nekrasova, Anastasia; Kossobokov, Vladimir; Panza, Giuliano F.

    2016-04-01

    Objective testing is the key issue towards any reliable seismic hazard assessment (SHA). Different earthquake hazard maps must demonstrate their capability in anticipating ground shaking from future strong earthquakes before an appropriate use for different purposes - such as engineering design, insurance, and emergency management. Quantitative assessment of maps performances is an essential step also in scientific process of their revision and possible improvement. Cross-checking of probabilistic models with available observations and independent physics based models is recognized as major validation procedure. The existing maps from the classical probabilistic seismic hazard analysis (PSHA), as well as those from the neo-deterministic analysis (NDSHA), which have been already developed for several regions worldwide (including Italy, India and North Africa), are considered to exemplify the possibilities of the cross-comparative analysis in spotting out limits and advantages of different methods. Where the data permit, a comparative analysis versus the documented seismic activity observed in reality is carried out, showing how available observations about past earthquakes can contribute to assess performances of the different methods. Neo-deterministic refers to a scenario-based approach, which allows for consideration of a wide range of possible earthquake sources as the starting point for scenarios constructed via full waveforms modeling. The method does not make use of empirical attenuation models (i.e. Ground Motion Prediction Equations, GMPE) and naturally supplies realistic time series of ground shaking (i.e. complete synthetic seismograms), readily applicable to complete engineering analysis and other mitigation actions. The standard NDSHA maps provide reliable envelope estimates of maximum seismic ground motion from a wide set of possible scenario earthquakes, including the largest deterministically or historically defined credible earthquake. In addition

  8. Handbook of nuclear power plant seismic fragilities, Seismic Safety Margins Research Program

    International Nuclear Information System (INIS)

    Cover, L.E.; Bohn, M.P.; Campbell, R.D.; Wesley, D.A.

    1983-12-01

    The Seismic Safety Margins Research Program (SSMRP) has a gola to develop a complete fully coupled analysis procedure (including methods and computer codes) for estimating the risk of an earthquake-induced radioactive release from a commercial nuclear power plant. As part of this program, calculations of the seismic risk from a typical commercial nuclear reactor were made. These calculations required a knowledge of the probability of failure (fragility) of safety-related components in the reactor system which actively participate in the hypothesized accident scenarios. This report describes the development of the required fragility relations and the data sources and data reduction techniques upon which they are based. Both building and component fragilities are covered. The building fragilities are for the Zion Unit 1 reactor which was the specific plant used for development of methodology in the program. Some of the component fragilities are site-specific also, but most would be usable for other sites as well

  9. Analysis of rockburst and rockfall accidents in relation to class of stope support, regional support, energy of seismic events and mining layout

    CSIR Research Space (South Africa)

    Cichowicz, A

    1994-01-01

    Full Text Available This report discusses the assessment of safety risk and the analysis of Falls Of Ground (FOG) in mines due to seismic events and mining layout during the period of 1991-1992 on a single mine. The multivariate analysis was used to obtain a...

  10. Improved seismic risk estimation for Bucharest, based on multiple hazard scenarios, analytical methods and new techniques

    Science.gov (United States)

    Toma-Danila, Dragos; Florinela Manea, Elena; Ortanza Cioflan, Carmen

    2014-05-01

    a very local-dependent hazard. Also, for major earthquakes, nonlinear effects need to be considered. This problem is treated accordingly, by using recent microzonation studies, together with real data recorded at 4 events with Mw≥6. Different ground motion prediction equations are also analyzed, and improvement of them is investigated. For the buildings and population damage assessment, two open-source software are used and compared: SELENA and ELER. The damage probability for buildings is obtained through capacity-spectrum based methods. The spectral content is used for spectral acceleration at 0.2, 0.3 and 1 seconds. As the level of analysis (6 sectors for all the city) has not the best resolution with respect to the Bucharest hazard scenarios defined, we propose a procedure on how to divide the data into smaller units, taking into consideration the construction code (4 periods) and material. This approach relies on free data available from real estate agencies web-sites. The study provides an insight view on the seismic risk analysis for Bucharest and an improvement of the real-time emergency system. Most important, the system is also evaluated through real data and relevant scenarios. State-of-the art GIS maps are also presented, both for seismic hazard and risk.

  11. Post-seismic velocity changes following the 2010 Mw 7.1 Darfield earthquake, New Zealand, revealed by ambient seismic field analysis

    Science.gov (United States)

    Heckels, R. EG; Savage, M. K.; Townend, J.

    2018-05-01

    Quantifying seismic velocity changes following large earthquakes can provide insights into fault healing and reloading processes. This study presents temporal velocity changes detected following the 2010 September Mw 7.1 Darfield event in Canterbury, New Zealand. We use continuous waveform data from several temporary seismic networks lying on and surrounding the Greendale Fault, with a maximum interstation distance of 156 km. Nine-component, day-long Green's functions were computed for frequencies between 0.1 and 1.0 Hz for continuous seismic records from immediately after the 2010 September 04 earthquake until 2011 January 10. Using the moving-window cross-spectral method, seismic velocity changes were calculated. Over the study period, an increase in seismic velocity of 0.14 ± 0.04 per cent was determined near the Greendale Fault, providing a new constraint on post-seismic relaxation rates in the region. A depth analysis further showed that velocity changes were confined to the uppermost 5 km of the subsurface. We attribute the observed changes to post-seismic relaxation via crack healing of the Greendale Fault and throughout the surrounding region.

  12. Alternative methods for the seismic analysis of piping systems

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This document is a review of 12 methods and criteria for the seismic analysis of piping systems. Each of the twelve chapters in this document cover the important technical aspects of a given method. The technical aspects presented are those the Subcommittee on Dynamic Stress Criteria believe important to the application of the method, and should not be considered as a positive or negative endorsement for any of the methods. There are many variables in an analysis of a piping system that can influence the selection of the analysis method and criteria to be applied. These variable include system configuration, technical issues, precedent, licensing considerations, and regulatory acceptance. They must all be considered in selecting the appropriate seismic analysis method and criteria. This is relevant for nuclear power plants

  13. Seismic design and analysis of nuclear fuel cycle facilities in France

    International Nuclear Information System (INIS)

    Sollogoub, P.

    2001-01-01

    Methodology for seismic design of nuclear fuel facilities and power plants in France is described. After the description of regulatory and normative texts for seismic design, different elements are examined: definition of ground motion, analysis methods, new trends, reevaluation and specificity of Fuel Cycle Facilities. R/D developments are explicated in each part. Their final objective are to better quantify the margins of each step which, in relation with safety analysis,lead to balanced design, analysis and retrofit rules. (author)

  14. Signal-to-noise ratio application to seismic marker analysis and fracture detection

    Science.gov (United States)

    Xu, Hui-Qun; Gui, Zhi-Xian

    2014-03-01

    Seismic data with high signal-to-noise ratios (SNRs) are useful in reservoir exploration. To obtain high SNR seismic data, significant effort is required to achieve noise attenuation in seismic data processing, which is costly in materials, and human and financial resources. We introduce a method for improving the SNR of seismic data. The SNR is calculated by using the frequency domain method. Furthermore, we optimize and discuss the critical parameters and calculation procedure. We applied the proposed method on real data and found that the SNR is high in the seismic marker and low in the fracture zone. Consequently, this can be used to extract detailed information about fracture zones that are inferred by structural analysis but not observed in conventional seismic data.

  15. Fast multifrequency focal beam analysis for 3D seismic acquisition geometry

    NARCIS (Netherlands)

    Wei, W.; Fu, L.; Blacquiere, G.

    2012-01-01

    A method for the efficient computation of multifrequency focal beams for 3D seismic acquisition geometry analysis has been developed. By computing them for all the frequency components of seismic data, single-frequency focal beams can be extended to multifrequency focal beams. However, this

  16. A new seismic station in Romania the Bucovina seismic array

    International Nuclear Information System (INIS)

    Grigore, Adrian; Grecu, Bogdan; Ionescu, Constantin; Ghica, Daniela; Popa, Mihaela; Rizescu, Mihaela

    2002-01-01

    Recently, a new seismic monitoring station, the Bucovina Seismic Array, has been established in the northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics, Romania. The array consists of 10 seismic sensors (9 short-period and one broad band) located in boreholes and distributed in a 5 x 5 km area. On July 24, 2002 the official Opening Ceremony of Bucovina Seismic Array took place in the area near the city of Campulung Moldovenesc in the presence of Romanian Prime Minister, Adrian Nastase. Starting with this date, the new seismic monitoring system became fully operational by continuous recording and transmitting data in real-time to the National Data Center of Romania, in Bucharest and to the National Data Center of USA, in Florida. Bucovina Seismic Array, added to the present Seismic Network, will provide much better seismic monitoring coverage of Romania's territory, on-scale recording for weak-to-strong events, and will contribute to advanced seismological studies on seismic hazard and risk, local effects and microzonation, seismic source physics, Earth structure. (authors)

  17. Seismic Data Gathering and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    Three recent earthquakes in the last seven years have exceeded their design basis earthquake values (so it is implied that damage to SSC’s should have occurred). These seismic events were recorded at North Anna (August 2011, detailed information provided in [Virginia Electric and Power Company Memo]), Fukushima Daichii and Daini (March 2011 [TEPCO 1]), and Kaswazaki-Kariwa (2007, [TEPCO 2]). However, seismic walk downs at some of these plants indicate that very little damage occurred to safety class systems and components due to the seismic motion. This report presents seismic data gathered for two of the three events mentioned above and recommends a path for using that data for two purposes. One purpose is to determine what margins exist in current industry standard seismic soil-structure interaction (SSI) tools. The second purpose is the use the data to validated seismic site response tools and SSI tools. The gathered data represents free field soil and in-structure acceleration time histories data. Gathered data also includes elastic and dynamic soil properties and structural drawings. Gathering data and comparing with existing models has potential to identify areas of uncertainty that should be removed from current seismic analysis and SPRA approaches. Removing uncertainty (to the extent possible) from SPRA’s will allow NPP owners to make decisions on where to reduce risk. Once a realistic understanding of seismic response is established for a nuclear power plant (NPP) then decisions on needed protective measures, such as SI, can be made.

  18. Seismic fragility evaluation of unreinforced masonry walls

    International Nuclear Information System (INIS)

    Park, Y.J.; Hofmayer, C.H.; Reich, M.; Lee, S.K.

    1991-01-01

    A practical analysis scheme to evaluate the seismic fragility of unreinforced masonry walls which are used at various places in older reactor facilities is presented. Among the several failure modes for such walls, the out-of-plane bending failure is considered to be a major risk contributor in seismic PRA studies. In order to evaluate this failure mode, the use of an equivalent linear approximation method is examined based on comparisons with available test data and nonlinear time history analyses. (author)

  19. Ethical Implications of Seismic Risk Communication in Istanbul - Insights from a Transdisciplinary, Film-based Science Communication Workshop

    Science.gov (United States)

    Ickert, Johanna; Stewart, Iain S.

    2016-04-01

    For more than a decade, social science studies indicate that there is little or no correlation between the provision of scientific information about geohazards and risks and the adaptive changes in individual or community behaviour that would reduce risk. Bridging that gap to effectively convey hazard science 'the last mile' to those communities at risk raises a number of ethical issues about the role and responsibilities of geoscientists as communicators. Those issues emerge from a methodological shift away from the dominant interpretation of seismic risk communication as a transfer of scientific facts to "the public", towards more inclusive transdisciplinary communication strategies that incorporate peer-role models, adopt social network-based strategies and directly engage with communities in motivating preparedness actions. With this methodological shift comes ethical dilemmas. What are the target-groups that should be prioritised? What are the professional expectations and levels of personal engagement required of geo-communicators? How able and willing are geoscientists to include other forms of knowledge (e.g. from local communities or other disciplines)? What media formats can reconcile argumentative, informational "matters of fact" with sociocultural and psychological "matters of concern"? How should scientists react to political controversies related to risk mitigation and its communication? In the context of these ethical concerns, many geoscientist struggle to switch from conventional communication modes in which they are the technical 'experts' to more community-centered, participatory modes of public engagement. We examine this research question through a case study on seismic risk communication challenges in Istanbul, a megacity with one of the highest seismic vulnerabilities in the world. Currently, there are few formal mechanisms to facilitate interchange between academic geoscientists and the general public in Istanbul. In order to reduce the city

  20. Seismic analysis of liquid metal reactor piping systems

    International Nuclear Information System (INIS)

    Wang, C.Y.

    1987-01-01

    To safely assess the adequacy of the LMR piping, a three-dimensional piping code, SHAPS, has been developed at Argonne National Laboratory. This code was initially intended for calculating hydrodynamic-wave propagation in a complex piping network. It has salient features for treating fluid transients of fluid-structure interactions for piping with in-line components. The code also provides excellent structural capabilities of computing stresses arising from internal pressurization and 3-D flexural motion of the piping system. As part of the development effort, the SHAPS code has been further augmented recently by introducing the capabilities of calculating piping response subjected to seismic excitations. This paper describes the finite-element numerical algorithm and its applications to LMR piping under seismic excitations. A time-history analysis technique using the implicit temporal integration scheme is addressed. A 3-D pipe element is formulated which has eight degrees of freedom per node (three displacements, three rotations, one membrane displacement, and one bending rotation) to account for the hoop, flexural, rotational, and torsional modes of the piping system. Both geometric and material nonlinearities are considered. This algorithm is unconditionally stable and is particularly suited for the seismic analysis

  1. Seismic Analysis of Concrete Dam by Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Rozaina Ismail

    2017-01-01

    Full Text Available This paper reports a brief study on linear seismic analysis of Sg. Kinta Concrete Dam. The analysis was conducted in order to determine the performance and behaviour of the dam under seismic excitation. The dam was modelled as two-dimensional and developed based on the design drawing that is obtained from Angkasa Consulting Services Sdn. Bhd. The seismic analysis of the dam is conducted using finite element analysis software package LUSAS 14.3 and the dam has been analyse as a plain stress problem with a linear consideration. A set of historic data, with E1 Centro earthquake acceleration of about 0.50g is used as an earthquake excitation. The natural frequency and mode shape up to fifth mode of the dam has been obtained from the analysis to show the differences of the stress and deformation between each mode. The maximum horizontal and vertical stress of Sg. Kinta dam was found and the distribution of them was discussed in form of contours. The deformation of the dam were also been discussed by comparing the maximum displacement for each mode shaped.

  2. Performance-based seismic assessment of vulnerability of dam using time history analysis

    Directory of Open Access Journals (Sweden)

    Elmrabet Oumnia

    2018-01-01

    Full Text Available The current performance-based seismic assessment procedure can be computationally intensive as it requires many time history analyses (THA each requiring time intensive post-processing of results. Time history analysis is a part of structural analysis and is the calculation of the response of a structure to any earthquake. It is one of the main processes of structural design in regions where earthquakes are prevalent. The objective of this study is to evaluate the seismic performance of embankment dam located on the Oued RHISS in the Province of AL HOCEIMA using the THA method. To monitor structural behavior, the seismic vulnerability of structure is evaluated under real earthquake records with considering the soil-structure-fluide interaction. In this study, a simple assistant program is developed for implementing earthquake analyses of structure with ANSYS, ground acceleration–time history data are used for seismic analysis and dynamic numerical simulations were conducted to study and identify the total response of the soil-structure system.

  3. Design response spectra-compliant real and synthetic GMS for seismic analysis of seismically isolated nuclear reactor containment building

    Directory of Open Access Journals (Sweden)

    Ahmer Ali

    2017-06-01

    Full Text Available Due to the severe impacts of recent earthquakes, the use of seismic isolation is paramount for the safety of nuclear structures. The diversity observed in seismic events demands ongoing research to analyze the devastating attributes involved, and hence to enhance the sustainability of base-isolated nuclear power plants. This study reports the seismic performance of a seismically-isolated nuclear reactor containment building (NRCB under strong short-period ground motions (SPGMs and long-period ground motions (LPGMs. The United States Nuclear Regulatory Commission-based design response spectrum for the seismic design of nuclear power plants is stipulated as the reference spectrum for ground motion selection. Within the period range(s of interest, the spectral matching of selected records with the target spectrum is ensured using the spectral-compatibility approach. NRC-compliant SPGMs and LPGMs from the mega-thrust Tohoku earthquake are used to obtain the structural response of the base-isolated NRCB. To account for the lack of earthquakes in low-to-moderate seismicity zones and the gap in the artificial synthesis of long-period records, wavelet-decomposition based autoregressive moving average modeling for artificial generation of real ground motions is performed. Based on analysis results from real and simulated SPGMs versus LPGMs, the performance of NRCBs is discussed with suggestions for future research and seismic provisions.

  4. Design response spectra-compliant real and synthetic GMS for seismic analysis of seismically isolated nuclear reactor containment building

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmer [ENVICO Consultants Co. Ltd., Seoul (Korea, Republic of); Abu-Hayah, Nadin; Kim, Doo Kie [Civil and Environmental Engineering, Kunsan National University, Gunsan (Korea, Republic of); Cho, Sung Gook [Innose Tech Co., Ltd., Incheon (Korea, Republic of)

    2017-06-15

    Due to the severe impacts of recent earthquakes, the use of seismic isolation is paramount for the safety of nuclear structures. The diversity observed in seismic events demands ongoing research to analyze the devastating attributes involved, and hence to enhance the sustainability of base-isolated nuclear power plants. This study reports the seismic performance of a seismically-isolated nuclear reactor containment building (NRCB) under strong short-period ground motions (SPGMs) and long-period ground motions (LPGMs). The United States Nuclear Regulatory Commission-based design response spectrum for the seismic design of nuclear power plants is stipulated as the reference spectrum for ground motion selection. Within the period range(s) of interest, the spectral matching of selected records with the target spectrum is ensured using the spectral-compatibility approach. NRC-compliant SPGMs and LPGMs from the mega-thrust Tohoku earthquake are used to obtain the structural response of the base-isolated NRCB. To account for the lack of earthquakes in low-to-moderate seismicity zones and the gap in the artificial synthesis of long-period records, wavelet-decomposition based autoregressive moving average modeling for artificial generation of real ground motions is performed. Based on analysis results from real and simulated SPGMs versus LPGMs, the performance of NRCBs is discussed with suggestions for future research and seismic provisions.

  5. Seismic analysis of a reactor building with eccentric layout

    International Nuclear Information System (INIS)

    Itoh, T.; Deng, D.Z.F.; Lui, K.

    1987-01-01

    Conventional design for a reactor building in a high seismic area has adopted an essentially concentric layout in response to fear of excessive torsional effect due to horizontal seismic load on an eccentric plant. This concentric layout requirement generally results in an inflexible arrangement of the plant facilities and thus increases the plant volume. This study is performed to investigate the effect of eccentricity on the overall seismic structural response and to provide technical information in this regard to substantiate the volume reduction of the overall power plant. The plant layout is evolved from the Bechtel standard plan of a PWR plant by integrating the reactor building and the auxiliary building into a combined building supported on a common basemat. This plant layout is optimized for volume utilization and to reduce the length of piping systems. The mass centers at various elevations of the combined building do not coincide with the rigidity center (RC) of the respective floor and the geometric center of the basemat, thus creating an eccentric response of the building in a seismic environment. Therefore, the torsional effects of the structure have to be taken into account in the seismic analysis

  6. Seismic Response Analysis of Concrete Lining Structure in Large Underground Powerhouse

    Directory of Open Access Journals (Sweden)

    Xiaowei Wang

    2017-01-01

    Full Text Available Based on the dynamic damage constitutive model of concrete material and seismic rock-lining structure interaction analysis method, the seismic response of lining structure in large underground powerhouse is studied in this paper. In order to describe strain rate dependence and fatigue damage of concrete material under cyclic loading, a dynamic constitutive model for concrete lining considering tension and shear anisotropic damage is presented, and the evolution equations of damage variables are derived. The proposed model is of simple form and can be programmed into finite element procedure easily. In order to describe seismic interaction characteristics of the surrounding rock and lining, an explicit dynamic contact analysis method considering bond and damage characteristics of contact face between the surrounding rock and lining is proposed, and this method can integrate directly without iteration. The proposed method is applied to seismic stability calculation of Yingxiuwan Underground Powerhouse, results reveal that the amplitude and duration of input seismic wave determine the damage degree of lining structure, the damage zone of lining structure is mainly distributed in its arch, and the contact face damage has great influence on the stability of the lining structure.

  7. Seismic analysis of a large pool-type LMR [liquid metal reactor

    International Nuclear Information System (INIS)

    Wang, C.Y.; Gvildys, J.

    1989-01-01

    This paper describes the seismic study of a 450-MWe liquid metal reactor (LMR) under 0.3-g SSE ground excitation. Two calculations were performed using the new design configuration. They deal with the seismic response of the reactor vessel, the guard vessel and support skirt, respectively. In both calculations, the stress and displacement fields at important locations of those components are investigated. Assessments are also made on the elastic and inelastic structural capabilities for other beyond-design basis seismic loads. Results of the reactor vessel analysis reveal that the maximum equivalent stress is only about half of the material yield stress. For the guard vessel and support skirt, the stress level is very small. Regarding the analysis if inelastic structural capability, solutions of the Newmark-Hall ductility modification method show that the reactor vessel can withstand seismics with ground ZPAs ranging from 1.015 to 1.31 g, which corresponds to 3.37 to 4.37 times the basic 0.3-g SSE. Thus, the reactor vessel and guard vessel are strong enough to resist seismic loads. 4 refs., 10 figs., 5 tabs

  8. Seismic analysis of freestanding fuel racks

    International Nuclear Information System (INIS)

    Gilmore, C.B.

    1982-01-01

    This paper presents a nonlinear transient dynamic time-history analysis of freestanding spent fuel storage racks subjected to seismic excitation. This type of storage rack is structurally unrestrained and submerged in water in the spent fuel pool of a nuclear power complex, holds (spent) fuel assemblies which have been removed from the reactor core. Nonlinearities in the fuel rack system include impact between the fuel assembly and surrounding cell due to clearances between them, friction due to sliding between the fuel rack support structure and spent fuel pool floor, and the lift-off of the fuel rack support structure from the spent fuel pool floor. The analysis of the fuel rack system includes impacting due to gap closures, energy losses due to impacting bodies, Coulomb damping between sliding surfaces, and hydrodynamic mass effects. Acceleration time history excitation development is discussed. Modeling considerations, such as the initial status of nonlinear elements, number of mode shapes to include in the analysis, modal damping, and integration time-step size are presented. The response of the fuel rack subjected to two-dimensional seismic excitation is analyzed by the modal superposition method, which has resulted in significant computer cost savings when compared to that of direct integration

  9. Analysis of seismic waves and strong ground motion

    International Nuclear Information System (INIS)

    Simpson, I.C.; Sutton, R.

    1976-10-01

    A number of Western USA earthquake acceleration-time histories concerning events of magnitude less than 6 are considered and their Fourier spectra calculated. An analysis of some of the simpler types of seismic wave is given in order to consider the generation of a spatially dependent acceleration-time history suitable for input into a soil-structure program of analysis. Such an acceleration-time history is required by a comprehensive analysis of soil-structure interaction since the conventionally assumed model of vertically propagating seismic waves, which give rise to three spatially independent ground motions, can lead to over-conservative estimates of the building response in the high frequency range. The possible application is discussed of a given component of a recorded acceleration-time history to the base of structure under the assumption of surface Rayleigh waves or obliquely incident P and SV bulk waves. (author)

  10. Seismic analysis of ITER fourth PF (Poloidal Field Coil) feeder

    International Nuclear Information System (INIS)

    Liu, Sumei; Chen, Wei; Song, Yuntao; Ni, Xiaojun; Wang, Zhongwei; Chen, Yonghua; Gong, Chenyu

    2014-01-01

    The ITER feeder systems connect the ITER magnet systems located inside the main cryostat to the cryo-plant, power-supply and control system interfaces outside the cryostat. The main purpose of the feeders is to convey the cryogenic supply and electrical power to the coils as well as house the instrumentation wiring. The PF busbar which carries 52 kA current will suffer from high Lorentz force due to the background magnetic field inspired by the coils and the self-field between every pair of busbars. Except their mechanical strength and thermal insulation performance must be achieved, the dynamic mechanism on PF structure should be assessed. This paper presents the simulation and seismic analysis on ITER 4th PF feeder including the Coil Terminal Box and S-bend Box (CTB and SBB), the Cryostat Feed-through (CFT), the In-Cryostat-Feeder (ICF), especially for the ground supports and main outer-tube firstly. This analysis aims to study seismic resistance on system design under local seismograms with floor response spectrum, the structural response vibration mode and response duration results of displacement, membrane stress, and bending stress on structure under different directions actuating signals were obtained by using the single-seismic spectrum analysis and Dead Weight analysis respectively. Based on the simulative and analytical results, the system seismic resistance and the integrity of the support structure in the 4th PF feeder have been studied and the detail design confirmed

  11. Lower bound earthquake magnitude for probabilistic seismic hazard evaluation

    International Nuclear Information System (INIS)

    McCann, M.W. Jr.; Reed, J.W.

    1990-01-01

    This paper presents the results of a study that develops an engineering and seismological basis for selecting a lower-bound magnitude (LBM) for use in seismic hazard assessment. As part of a seismic hazard analysis the range of earthquake magnitudes that are included in the assessment of the probability of exceedance of ground motion must be defined. The upper-bound magnitude is established by earth science experts based on their interpretation of the maximum size of earthquakes that can be generated by a seismic source. The lower-bound or smallest earthquake that is considered in the analysis must also be specified. The LBM limits the earthquakes that are considered in assessing the probability that specified ground motion levels are exceeded. In the past there has not been a direct consideration of the appropriate LBM value that should be used in a seismic hazard assessment. This study specifically looks at the selection of a LBM for use in seismic hazard analyses that are input to the evaluation/design of nuclear power plants (NPPs). Topics addressed in the evaluation of a LBM are earthquake experience data at heavy industrial facilities, engineering characteristics of ground motions associated with small-magnitude earthquakes, probabilistic seismic risk assessments (seismic PRAs), and seismic margin evaluations. The results of this study and the recommendations concerning a LBM for use in seismic hazard assessments are discussed. (orig.)

  12. Probabilistic risk assessment of earthquakes at the Rocky Flats Plant and subsequent upgrade to reduce risk

    International Nuclear Information System (INIS)

    Day, S.A.

    1989-01-01

    An analysis to determine the risk associated with earthquakes at the Rocky Flats Plant was performed. Seismic analyses and structural evaluations were used to postulate building and equipment damage and radiological releases to the environment from various magnitudes of earthquakes. Dispersion modeling and dose assessment to the public were then calculated. The frequency of occurrence of various magnitudes of earthquakes were determined from the Department of Energy natural Phenomena Hazards Modeling Project. Risk to the public was probabilistically assessed for each magnitude of earthquake and for overall seismic risk. Based on the results of this Probabilistic Risk Assessment and a cost/benefit analysis, seismic upgrades are being implemented for several plutonium-handling facilities for the purpose of risk reduction

  13. Seismic structural response analysis for multiple support excitation

    International Nuclear Information System (INIS)

    Shaw, D.E.

    1975-01-01

    In the seismic analysis of nuclear power plant equipment such as piping systems situations often arise in which piping systems span between adjacent structures or between different elevations in the same structure. Owing to the differences in the seismic time history response of different structures or different elevations of the same structure, the input support motion will differ for different supports. The concept of a frequency dependent participation factor and rotational response spectra accounting for phase differences between support excitations is developed by using classical equations of motion to formulate the seismic response of a structure subjected to multiple support excitation. The essence of the method lies in describing the seismic excitation of a multiply excited structure in terms of translational and rotational spectra used at every support and a frequency dependent spatial distribution function derived from the phase relationships of the different support time histories. In this manner it is shown that frequency dependent participation factors can be derived from the frequency dependent distribution functions. Examples are shown and discussed relative to closed form solutions and the state-of-the-art techniques presently being used for the solution of problems of multiply excited structures

  14. Application of the SSMRP methodology to the seismic risk at the Zion Nuclear Power Plant

    International Nuclear Information System (INIS)

    Bohn, M.P.; Shieh, L.C.; Wells, J.E.

    1983-11-01

    The Seismic Safety Margins Research Program (SSMRP) has the goal of developing a fully coupled analysis procedure for estimating the risk of an earthquake-induced radioactive release from a commercial nuclear power plant. The risk analysis included a detailed seismological evaluation of the region around Zion, Illinois, which provided the earthquake-hazard function and a randomized set of 180 time histories (having peak ground acceleration values up to 1.8 g). These time histories were used as input for dynamic structural response calculations for four different Zion buildings. Detailed finite-element models of the buildings were used. Calculated time histories at piping support points were then used to determine moments throughout critical piping systems. Twenty separate piping models were analyzed. Finally, the responses of piping and safety system components within the buildings were combined with probabilistic failure criteria and event-tree/fault-tree models of the plant safety systems to produce an estimate of the frequency of core melt and radioactive release due to earthquakes

  15. Burar seismic station: evaluation of seismic performance

    International Nuclear Information System (INIS)

    Ghica, Daniela; Popa, Mihaela

    2005-01-01

    A new seismic monitoring system, the Bucovina Seismic Array (BURAR), has been established since July 2002, in the Northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics (NIEP), Romania. The small-aperture array consists of 10 seismic sensors (9 vertical short-period and one three-component broad band) located in boreholes and distributed in a 5 x 5 km 2 area. At present, the seismic data are continuously recorded by the BURAR and transmitted in real-time to the Romanian National Data Center in Bucharest and National Data Center of the USA, in Florida. Based on the BURAR seismic information gathered at the National Data Center, NIEP (ROM N DC), in the August 2002 - December 2004 time interval, analysis and statistical assessments were performed. Following the preliminary processing of the data, several observations on the global performance of the BURAR system were emphasized. Data investigation showed an excellent efficiency of the BURAR system particularly in detecting teleseismic and regional events. Also, a statistical analysis for the BURAR detection capability of the local Vrancea events was performed in terms of depth and magnitude for the year 2004. The high signal detection capability of the BURAR resulted, generally, in improving the location solutions for the Vrancea seismic events. The location solution accuracy is enhanced when adding BURAR recordings, especially in the case of low magnitude events (recorded by few stations). The location accuracy is increased, both in terms of constraining hypocenter depth and epicentral coordinates. Our analysis certifies the importance of the BURAR system in NIEP efforts to elaborate seismic bulletins. Furthermore, the specific procedures for array data processing (beam forming, f-k analysis) increase significantly the signal-to-noise ratio by summing up the coherent signals from the array components, and ensure a better accuracy

  16. Seismic analysis of the mirror fusion test facility building

    International Nuclear Information System (INIS)

    Coats, D.W.

    1978-01-01

    This report describes a seismic analysis of the present Mirror Fusion Test Facility (MFTF) building at the Lawrence Livermore Laboratory. The analysis was conducted to evaluate how the structure would withstand the postulated design-basis earthquake (DBE). We discuss the methods of analysis used and results obtained. Also presented are a detailed description of the building, brief discussions of site geology, seismicity, and soil conditions, the approach used to postulate the DBE, and two methods for incorporating the effects of ductility. Floor spectra for the 2nd, 3rd, and 4th floors developed for preliminary equipment design are also included. The results of the analysis, based on best-estimate equipment loadings, indicate additional bracing and upgrading of connection details are required for the structure to survive the postulated design-basis earthquake. Specific recommendations are made

  17. Seismic isolation - efficient procedure for seismic response assessement

    International Nuclear Information System (INIS)

    Zamfir, M. A.; Androne, M.

    2016-01-01

    The aim of this analysis is to reduce the dynamic response of a structure. The seismic isolation solution must take into consideration the specific site ground motion. In this paper will be presented results obtained by applying the seismic isolation method. Based on the obtained results, important conclusions can be outlined: the seismic isolation device has the ability to reduce seismic acceleration of the seismic isolated structure to values that no longer present a danger to people and environment; the seismic isolation solution is limiting devices deformations to safety values for ensuring structural integrity and stability of the entire system; the effective seismic energy dissipation and with no side effects both for the seismic isolated building and for the devices used, and the return to the initial position before earthquake occurence are obtained with acceptable permanent displacement. (authors)

  18. Theoretical seismic analysis of butterfly valve for nuclear power plant

    International Nuclear Information System (INIS)

    Han, Sang Uk; Ahn, Jun Tae; Han, Seung Ho; Lee, Kyung Chul

    2012-01-01

    Valves are one of the most important components of a pipeline system in a nuclear power plant, and it is important to ensure their structural safety under seismic loads. A crucial aspect of structural safety verification is the seismic qualification, and therefore, an optimal shape design and experimental seismic qualification is necessary in case the configuration of the valve parts needs to be modified and their performance needs to be improved. Recently, intensive numerical analyses have been preformed before the experimental verification in order to determine the appropriate design variables that satisfy the performance requirements under seismic loads. In this study, static and dynamic numerical structural analyses of a 200A butterfly valve for a nuclear power plant were performed according to the KEPIC MFA. The result of static analysis considering an equivalent static load under SSE condition gave an applied stress of 135MPa. In addition, the result of dynamic analysis gave an applied stress of 183MPa, where the CQC method using response spectrums was taken into account. These values are under the allowable strength of the materials used for manufacturing the butterfly valve, and therefore, its structural safety satisfies the requirements of KEPIC MFA

  19. Theoretical seismic analysis of butterfly valve for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Uk; Ahn, Jun Tae; Han, Seung Ho [Donga Univ., Busan (Korea, Republic of); Lee, Kyung Chul [Dukwon Valve Co., Ltd., Busan (Korea, Republic of)

    2012-09-15

    Valves are one of the most important components of a pipeline system in a nuclear power plant, and it is important to ensure their structural safety under seismic loads. A crucial aspect of structural safety verification is the seismic qualification, and therefore, an optimal shape design and experimental seismic qualification is necessary in case the configuration of the valve parts needs to be modified and their performance needs to be improved. Recently, intensive numerical analyses have been preformed before the experimental verification in order to determine the appropriate design variables that satisfy the performance requirements under seismic loads. In this study, static and dynamic numerical structural analyses of a 200A butterfly valve for a nuclear power plant were performed according to the KEPIC MFA. The result of static analysis considering an equivalent static load under SSE condition gave an applied stress of 135MPa. In addition, the result of dynamic analysis gave an applied stress of 183MPa, where the CQC method using response spectrums was taken into account. These values are under the allowable strength of the materials used for manufacturing the butterfly valve, and therefore, its structural safety satisfies the requirements of KEPIC MFA.

  20. Seismic fragility evaluation of unreinforced masonry walls

    International Nuclear Information System (INIS)

    Park, Y.J.; Hofmayer, C.H.; Reich, M.; Lee, S.K.

    1991-01-01

    A practical analysis scheme to evaluate the seismic fragility of unreinforced masonry walls which are used to various places in older reactor facilities is presented. Among the several failure modes for such walls, the out-of-plane bending failure is considered to be a major risk contributor in seismic PRA studies. In order to evaluate this failure mode, the use of an equivalent linear approximation method is examined based on comparisons with available test data and nonlinear time history analyses. 6 refs., 4 figs., 3 tabs

  1. Seismic hazard assessment based on the Unified Scaling Law for Earthquakes: the Greater Caucasus

    Science.gov (United States)

    Nekrasova, A.; Kossobokov, V. G.

    2015-12-01

    Losses from natural disasters continue to increase mainly due to poor understanding by majority of scientific community, decision makers and public, the three components of Risk, i.e., Hazard, Exposure, and Vulnerability. Contemporary Science is responsible for not coping with challenging changes of Exposures and their Vulnerability inflicted by growing population, its concentration, etc., which result in a steady increase of Losses from Natural Hazards. Scientists owe to Society for lack of knowledge, education, and communication. In fact, Contemporary Science can do a better job in disclosing Natural Hazards, assessing Risks, and delivering such knowledge in advance catastrophic events. We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on the Unified Scaling Law for Earthquakes (USLE), i.e. log N(M,L) = A - B•(M-6) + C•log L, where N(M,L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L. The parameters A, B, and C of USLE are used to estimate, first, the expected maximum magnitude in a time interval at a seismically prone cell of a uniform grid that cover the region of interest, and then the corresponding expected ground shaking parameters including macro-seismic intensity. After a rigorous testing against the available seismic evidences in the past (e.g., the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks (e.g., those based on the density of exposed population). The methodology of seismic hazard and risks assessment based on USLE is illustrated by application to the seismic region of Greater Caucasus.

  2. Seismic Noise Analysis and Reduction through Utilization of Collocated Seismic and Atmospheric Sensors at the GRO Chile Seismic Network

    Science.gov (United States)

    Farrell, M. E.; Russo, R. M.

    2013-12-01

    The installation of Earthscope Transportable Array-style geophysical observatories in Chile expands open data seismic recording capabilities in the southern hemisphere by nearly 30%, and has nearly tripled the number of seismic stations providing freely-available data in southern South America. Through the use of collocated seismic and atmospheric sensors at these stations we are able to analyze how local atmospheric conditions generate seismic noise, which can degrade data in seismic frequency bands at stations in the ';roaring forties' (S latitudes). Seismic vaults that are climate-controlled and insulated from the local environment are now employed throughout the world in an attempt to isolate seismometers from as many noise sources as possible. However, this is an expensive solution that is neither practical nor possible for all seismic deployments; and also, the increasing number and scope of temporary seismic deployments has resulted in the collection and archiving of terabytes of seismic data that is affected to some degree by natural seismic noise sources such as wind and atmospheric pressure changes. Changing air pressure can result in a depression and subsequent rebound of Earth's surface - which generates low frequency noise in seismic frequency bands - and even moderate winds can apply enough force to ground-coupled structures or to the surface above the seismometers themselves, resulting in significant noise. The 10 stations of the permanent Geophysical Reporting Observatories (GRO Chile), jointly installed during 2011-12 by IRIS and the Chilean Servicio Sismológico, include instrumentation in addition to the standard three seismic components. These stations, spaced approximately 300 km apart along the length of the country, continuously record a variety of atmospheric data including infrasound, air pressure, wind speed, and wind direction. The collocated seismic and atmospheric sensors at each station allow us to analyze both datasets together, to

  3. OpenQuake, a platform for collaborative seismic hazard and risk assessment

    Science.gov (United States)

    Henshaw, Paul; Burton, Christopher; Butler, Lars; Crowley, Helen; Danciu, Laurentiu; Nastasi, Matteo; Monelli, Damiano; Pagani, Marco; Panzeri, Luigi; Simionato, Michele; Silva, Vitor; Vallarelli, Giuseppe; Weatherill, Graeme; Wyss, Ben

    2013-04-01

    Sharing of data and risk information, best practices, and approaches across the globe is key to assessing risk more effectively. Through global projects, open-source IT development and collaborations with more than 10 regions, leading experts are collaboratively developing unique global datasets, best practice, tools and models for global seismic hazard and risk assessment, within the context of the Global Earthquake Model (GEM). Guided by the needs and experiences of governments, companies and international organisations, all contributions are being integrated into OpenQuake: a web-based platform that - together with other resources - will become accessible in 2014. With OpenQuake, stakeholders worldwide will be able to calculate, visualize and investigate earthquake hazard and risk, capture new data and share findings for joint learning. The platform is envisaged as a collaborative hub for earthquake risk assessment, used at global and local scales, around which an active network of users has formed. OpenQuake will comprise both online and offline tools, many of which can also be used independently. One of the first steps in OpenQuake development was the creation of open-source software for advanced seismic hazard and risk calculations at any scale, the OpenQuake Engine. Although in continuous development, a command-line version of the software is already being test-driven and used by hundreds worldwide; from non-profits in Central Asia, seismologists in sub-Saharan Africa and companies in South Asia to the European seismic hazard harmonization programme (SHARE). In addition, several technical trainings were organized with scientists from different regions of the world (sub-Saharan Africa, Central Asia, Asia-Pacific) to introduce the engine and other OpenQuake tools to the community, something that will continue to happen over the coming years. Other tools that are being developed of direct interest to the hazard community are: • OpenQuake Modeller; fundamental

  4. Analysis of the seismicity of Southeastern Sicily: a proposed tectonic interpretation

    Directory of Open Access Journals (Sweden)

    M. S. Barbano

    2000-06-01

    Full Text Available Southeastern Sicily is one of the Italian regions with high seismic risk and is characterised by the occurrence in the past of large destructive events (MS = 6.4-7.3 over a territory which is densely urbanised today. The main earthquakes were analysed and some minor damaging shocks reviewed to investigate the main seismogenic features of the region. The comparison between the pattern of seismicity and evidence of Quaternary tectonics allowed us to propose a first tentative, tectonic interpretation of the earthquakes. On the whole, the seismicity of SE Sicily seems distributed along regional fault systems which have had a role in the recent geodynamic evolution of the area. The Malta escarpment, the only structure whose late Quaternary-recent activity is currently known, appears the most probable source for earthquakes with about 7 magnitude. Although no evidence of tectonics subsequent to the middle Pleistocene is available for them, the Scicli line and the NE-SW fault system delimiting the northern sector of the Hyblean plateau seem seismically active with events with maximum magnitude of 5.2 and 6.4, respectively.

  5. Seismic analysis, evaluation and upgrade design for a DOE exhaust stack building

    International Nuclear Information System (INIS)

    Malik, L.E.; Maryak, M.E.

    1991-01-01

    An exhaust stack building of a nuclear reactor facility with complex structural configuration has been analyzed and evaluated and retrofitted for seismic forces. The building was built in the 1950's and had not been designed to resist seismic forces. A rigorous analysis and evaluation program was implemented to minimize costly retrofits required to upgrade the building to resist high seismic forces. Seismic evaluations were performed for the building in its as-is configuration, and as modified for several upgrade schemes. Soil-structure-interaction, basemat flexibility and the influence of the nearby reactor building were considered in rigorous seismic analyses. These analyses and evaluations enabled limited upgrades to qualify the stack building for the seismic forces. Some of the major conclusions of this study are: (1) a phased approach of seismic analyses, utilizing simplified models to evaluate practicable upgrade schemes, and, then incorporating the most suitable scheme in a rigorous model to obtain design forces for upgrades, is an efficient and cost-effective approach for seismic qualification of nuclear facilities to higher seismic criteria; and, (2) finalizing the upgrade of a major nuclear facility is an iterative process, which continues throughout the construction of the upgrades

  6. Seismic Margin Assessment for Research Reactor using Fragility based Fault Tree Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kwag, Shinyoung; Oh, Jinho; Lee, Jong-Min; Ryu, Jeong-Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The research reactor has been often subjected to external hazards during the design lifetime. Especially, a seismic event can be one of significant threats to the failure of structure system of the research reactor. This failure is possibly extended to the direct core damage of the reactor. For this purpose, the fault tree for structural system failure leading to the core damage under an earthquake accident is developed. The failure probabilities of basic events are evaluated as fragility curves of log-normal distributions. Finally, the plant-level seismic margin is investigated by the fault tree analysis combining with fragility data and the critical path is identified. The plant-level probabilistic seismic margin assessment using the fragility based fault tree analysis was performed for quantifying the safety of research reactor to a seismic hazard. For this, the fault tree for structural system failure leading to the core damage of the reactor under a seismic accident was developed. The failure probabilities of basic events were evaluated as fragility curves of log-normal distributions.

  7. Seismic margin assessment of spanish nuclear power plants: a perspective from industry and regulators

    International Nuclear Information System (INIS)

    Garcia-Monge, Juan; Beltran, Francisco; Sanchez-Cabanero, Jose G.

    2001-01-01

    The worldwide experience with probabilistic safety analysis (PSA) of nuclear power plants shows that the risk derived from earthquakes can be a significant contributor to core damage frequency in some instances. As a consequence, no severe accident safety assessment can be considered complete without giving, due consideration to seismic risk. This fact has been recognized by some regulators. in particular, by the U.S. Nuclear Regulatory Commission (NRC), who has included seismic risk assessment in its severe accident policy. The NRC severe accident policy was adopted by the Spanish nuclear regulator. the Consejo de Seguridad Nuclear (CSN). As a result. all plants in Spain were asked to perform a seismic risk analysis according to Supplements No. 4 and 5 of Generic Letter 88-20 and NUREG-1407, which included the containment failure analysis. At present in Spain there arc nine operating reactors at seven sites: six Westinghouse-PWR, two GE-BWR and one Siemens/KW U-PWR. The vintages are very different: the oldest plant started commercial operation in 1968 and the most recent, in 1988. In this framework, the Spanish Owners Group (SOG) proposed to CSN in 1994 to carry out the seismic risk analysis of the plants using seismic margin methodologies. This kind of methods requires, as a starting point, the definition of a seismic margin earthquake (SNIE), also called review level earthquake (RLL). For this purpose, tile SOG sponsored a general Probabilistic Seismic Hazard Analysis (PSHA) for the seven Spanish sites. The results of this PSHA were used by the SOG to define tile RLE and the scope of the study for each plant (binning of plants). The proposal was submitted to the CSN for evaluation. The CSN evaluation was based on the NRC practical experience and was helped by the technical advise of US Lawrence Livermore National Laboratory. The review showed that the uncertainties on seismic hazard had not been fully captured and that it would have been justified to consider a

  8. Seismic response analysis for a deeply embedded nuclear power plant

    International Nuclear Information System (INIS)

    Chen, W.W.H.; Chatterjee, M.; Day, S.M.

    1979-01-01

    One of the important aspect of the aseimic design of nuclear power plants is the evaluation of the seismic soil-structure interaction effect due to design earthquakes. The soil-structure interaction effect can initiate rocking and result in different soil motions compared to the free field motions, thus significantly affecting the structural response. Two methods are generally used to solve the seismic soil-structure interaction problems: the direct finite element method (FLUSH) and the substructure or impedance approach. This paper presents the results of the horizontal seismic soil-structure interaction analysis using the impedance aproach and the direct finite element method for a deeply embedded nuclear power plant. (orig.)

  9. Strategy for seismic upgrading of chemical plant taking productivity as criterion of judgment

    International Nuclear Information System (INIS)

    Oshima, M.; Kase, T.; Yashiro, H.; Fukushima, S.

    2005-01-01

    Seismic upgrading and modification of existing chemical plant facilities have been performed by means of a procedure of the Seismic Design Code and Guidelines of High-pressure Gas Facilities in Japan. Main purpose of this seismic design code is to ensure public safety at seismic events. From the viewpoints of seismic risk of corporate management, CSR (Corporate Social Responsibility) and productivity of the plants are also important for seismic assessment. In this paper, authors proposed strategy for seismic assessment to select appropriate pre-earthquake upgrading and modification considering productivity of plants based on fault tree analysis. This assessment will enable to select weak damage modes and to allocate countermeasure cost optimally to the selected damage modes. (authors)

  10. Seismic Safety Margins Research Program: Phase II program plan (FY 83-FY 84)

    International Nuclear Information System (INIS)

    Bohn, M.P.; Bernreuter, D.L.; Cover, L.E.; Johnson, J.J.; Shieh, L.C.; Shukla, S.N.; Wells, J.E.

    1982-01-01

    The Seismic Safety Margins Research Program (SSMRP) is an NRC-funded, multiyear program conducted by Lawrence Livermore National Laboratory (LLNL). Its goal is to develop a complete, fully coupled analysis procedure (including methods and computer codes) for estimating the risk of an earthquake-caused radioactive release from a commercial nuclear power plant. The analysis procedure is based upon a state-of-the-art evaluation of the current seismic analysis and design process and explicitly includes the uncertainties inherent in such a process. The results will be used to improve seismic licensing requirements for nuclear power plants. As currently planned, the SSMRP will be completed in September, 1984. This document presents the program plan for work to be done during the remainder of the program. In Phase I of the SSMRP, the necessary tools (both computer codes and data bases) for performing a detailed seismic risk analysis were identified and developed. Demonstration calculations were performed on the Zion Nuclear Power Plant. In the remainder of the program (Phase II) work will be concentrated on developing a simplified SSMRP methodology for routine probabilistic risk assessments, quantitative validation of the tools developed and application of the simplified methodology to a Boiling Water Reactor. (The Zion plant is a pressurized water reactor.) In addition, considerable effort will be devoted to making the codes and data bases easily accessible to the public

  11. A Bimodal Hybrid Model for Time-Dependent Probabilistic Seismic Hazard Analysis

    Science.gov (United States)

    Yaghmaei-Sabegh, Saman; Shoaeifar, Nasser; Shoaeifar, Parva

    2018-03-01

    The evaluation of evidence provided by geological studies and historical catalogs indicates that in some seismic regions and faults, multiple large earthquakes occur in cluster. Then, the occurrences of large earthquakes confront with quiescence and only the small-to-moderate earthquakes take place. Clustering of large earthquakes is the most distinguishable departure from the assumption of constant hazard of random occurrence of earthquakes in conventional seismic hazard analysis. In the present study, a time-dependent recurrence model is proposed to consider a series of large earthquakes that occurs in clusters. The model is flexible enough to better reflect the quasi-periodic behavior of large earthquakes with long-term clustering, which can be used in time-dependent probabilistic seismic hazard analysis with engineering purposes. In this model, the time-dependent hazard results are estimated by a hazard function which comprises three parts. A decreasing hazard of last large earthquake cluster and an increasing hazard of the next large earthquake cluster, along with a constant hazard of random occurrence of small-to-moderate earthquakes. In the final part of the paper, the time-dependent seismic hazard of the New Madrid Seismic Zone at different time intervals has been calculated for illustrative purpose.

  12. Analysis of the LaSalle Unit 2 nuclear power plant: Risk Methods Integration and Evaluation Program (RMIEP)

    International Nuclear Information System (INIS)

    Wells, J.E.; Lappa, D.A.; Bernreuter, D.L.; Chen, J.C.; Chuang, T.Y.; Johnson, J.J.; Campbell, R.D.; Hashimoto, P.S.; Maslenikov, O.R.; Tiong, L.W.; Ravindra, M.K.; Kincaid, R.H.; Sues, R.H.; Putcha, C.S.

    1993-11-01

    This report describes the methodology used and the results obtained from the application of a simplified seismic risk methodology to the LaSalle County Nuclear Generating Station Unit 2. This study is part of the Level I analysis being performed by the Risk Methods Integration and Evaluation Program (RMIEP). Using the RMIEP developed event and fault trees, the analysis resulted in a seismically induced core damage frequency point estimate of 6.OE-7/yr. This result, combined with the component importance analysis, indicated that system failures were dominated by random events. The dominant components included diesel generator failures (failure to swing, failure to start, failure to run after started), and condensate storage tank

  13. Proceedings of third Indo-German workshop and theme meeting on seismic safety of structures, risk assessment and disaster mitigation

    International Nuclear Information System (INIS)

    Reddy, G.R.; Parulekar, Y.M.

    2007-01-01

    This Indo-German workshop focuses and emphasises the current research and development activities in both the countries. Themes of this meeting are Earthquake Hazard and Vulnerability Assessment, Risk Assessment Techniques, Seismic Risk to Mega Cities, Testing and Evaluation of Structures and Components, Base Isolation and other Control Techniques, Seismic Strengthening of Structures, Design Practices and Specifications, Remote Sensing and GIS Applications, Structural Materials and Composites, Containment and Other Special Structures. Papers relevant to INIS are indexed separately

  14. Observational studies to mitigate seismic risks in mines: a new Japanese-South African collaborative research project

    CSIR Research Space (South Africa)

    Durrheim, RJ

    2010-10-01

    Full Text Available and High Stress Mining, 6-8 October 2010, Santiago CHILE 1 Observational studies to mitigate seismic risks in mines: a new Japanese - South African collaborative research project R.J. Durrheim SATREPS*, CSIR Centre for Mining Innovation.... 3. To upgrade the South African national seismic network. The project is carried out under the auspices of the SATREPS (Science and Technology Research Partnership for Sustainable Development) program "Countermeasures towards Global Issues through...

  15. Seismic hazards: New trends in analysis using geologic data

    International Nuclear Information System (INIS)

    Schwartz, D.P.; Coppersmith, K.J.

    1986-01-01

    In the late 1960s and early 1970s, largely in response to expansion of nuclear power plant siting and issuance of a code of federal regullations by the Nuclear Regulatory Commission referred to as Appendix A-10CFR100, the need to characterize the earthquake potential of individual faults for seismic design took on greater importance. Appendix A established deterministic procedures for assessing the seismic hazard at nuclear power plant sites. Bonilla and Buchanan, using data from historical suface-faulting earthquakes, developed a set of statistical correlations relating earthquake magnitude to surface rupture length and to surface displacement. These relationships have been refined and updated along with the relationship between fault area and magnitude and seismic moment and moment magnitude have served as the basis for selecting maximum earthquakes in a wide variety of design situations. In the paper presented, the authors discuss new trends in seismic hazard analysis using geologic data, with special emphasis on fault-zone segmentation and recurrence models and the way in which they provide a basis for evaluating long-term earthquake potential

  16. Seismic analysis of a containment vessel

    International Nuclear Information System (INIS)

    Toledo, E.M.; Jospin, R.J.; Loula, A.F.D.

    1987-01-01

    A seismic analysis of a nuclear power plant containment vessel is presented. Usual loads in this kind of analysis like SSE, DBE and SSB loadings are considered. With the response spectra, previously obtained, for the above mentioned loadings one uses the response spectrum techniques in order to obtain estimatives for the maximum values of the stresses. Some considerations about the problem and the approcah used herein, are initially described. Next, the analysed structure geometry and some results, compared with those obtained by using computer code ANSYS are shown. (Author) [pt

  17. Structural Identification And Seismic Analysis Of An Existing Masonry Building

    International Nuclear Information System (INIS)

    Del Monte, Emanuele; Galano, Luciano; Ortolani, Barbara; Vignoli, Andrea

    2008-01-01

    The paper presents the diagnostic investigation and the seismic analysis performed on an ancient masonry building in Florence. The building has historical interest and is subjected to conservative restrictions. The investigation involves a preliminary phase concerning the research of the historic documents and a second phase of execution of in situ and laboratory tests to detect the mechanical characteristics of the masonry. This investigation was conceived in order to obtain the 'LC2 Knowledge Level' and to perform the non-linear pushover analysis according to the new Italian Standards for seismic upgrading of existing masonry buildings

  18. Seismic Safety Margins Research Program (Phase I). Project VII. Systems analysis specification of computational approach

    International Nuclear Information System (INIS)

    Wall, I.B.; Kaul, M.K.; Post, R.I.; Tagart, S.W. Jr.; Vinson, T.J.

    1979-02-01

    An initial specification is presented of a computation approach for a probabilistic risk assessment model for use in the Seismic Safety Margin Research Program. This model encompasses the whole seismic calculational chain from seismic input through soil-structure interaction, transfer functions to the probability of component failure, integration of these failures into a system model and thereby estimate the probability of a release of radioactive material to the environment. It is intended that the primary use of this model will be in sensitivity studies to assess the potential conservatism of different modeling elements in the chain and to provide guidance on priorities for research in seismic design of nuclear power plants

  19. Seismic analysis for safety related structures of 900MWe PWR NPP

    International Nuclear Information System (INIS)

    Liu Wei

    2002-01-01

    Nuclear Power Plant aseismic design becomes more and more important in China due to the fact that China is a country where earthquakes occur frequently and most of plants arc unavoidably located in seismic regions. Therefore, Chinese nuclear safety authority and organizations have worked out a series of regulations and codes related to NPP anti-seismic design taking account of local conditions. The author presents here an example of structural anti-seismic design of 90GM We PWR NPP which is comprised of: ground motion input, including the principles for ground motion determination and time history generation; soil and upper-structure modelling, presenting modeling procedures and typical models of safety related buildings such as Reactor Building, Nuclear Auxiliary Building and Fuel Building; soil-structure interaction analysis; and in-structure response analysis and floor response spectrum generation. With this example, the author intends to give an overview of Chinese practice in NPP structure anti-seismic design such as the main procedures to be followed and the codes and regulations to be respected. (author)

  20. A seismic analysis of nuclear power plant components subjected to multi-excitations of earthquakes

    International Nuclear Information System (INIS)

    Ichiki, T.; Matsumoto, T.; Gunyasu, K.

    1977-01-01

    In this analysis, the modal analysis methods are used to determine the seismic responses of structural systems instead of the direct integration method. These results have been compared with some kinds of other analytical methods, and investigated the accuracy of numerical results of these analysis, applying to such components as Reactor Pressure Vessel and Reactor Internals of an actual plant. The results of this method of analysis are summarized as follows: (1) one of the seismic analysis methods concerning systems subjected to multi-excitations of earthquakes has been presented to the conference of JSME. Although the analytical theory presented to that conference is correct, it has a serious problem about the accuracy of numerical results. This computer program and theory cannot be used practically due to the time necessary to calculate. However, the method described in this paper overcomes those serious problems stated above and has no problem about the computer time and precision. So, it is possible to apply this method to the seismic design of an actual nuclear power plant practically. (2) The feed back effects of the seismic responses of Reactor Internals to Reactor Building are considered so small that we can separate the model of Reactor Internals from Reactor Building. (3) The results of seismic response of Reactor Internals are fairly consistent with those obtained from the model coupled with Reactor Building. (4) This analysis method can be extended to the model of Reactor Internals subjected to more than two random excitations of earthquakes. (5) It is possible that this analysis method is also applied to the seismic analysis of such three-dimensional systems as piping systems subjected to multi-excitations of earthquakes

  1. Proposed Risk-Informed Seismic Hazard Periodic Reevaluation Methodology for Complying with DOE Order 420.1C

    Energy Technology Data Exchange (ETDEWEB)

    Kammerer, Annie [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    Department of Energy (DOE) nuclear facilities must comply with DOE Order 420.1C Facility Safety, which requires that all such facilities review their natural phenomena hazards (NPH) assessments no less frequently than every ten years. The Order points the reader to Standard DOE-STD-1020-2012. In addition to providing a discussion of the applicable evaluation criteria, the Standard references other documents, including ANSI/ANS-2.29-2008 and NUREG-2117. These documents provide supporting criteria and approaches for evaluating the need to update an existing probabilistic seismic hazard analysis (PSHA). All of the documents are consistent at a high level regarding the general conceptual criteria that should be considered. However, none of the documents provides step-by-step detailed guidance on the required or recommended approach for evaluating the significance of new information and determining whether or not an existing PSHA should be updated. Further, all of the conceptual approaches and criteria given in these documents deal with changes that may have occurred in the knowledge base that might impact the inputs to the PSHA, the calculated hazard itself, or the technical basis for the hazard inputs. Given that the DOE Order is aimed at achieving and assuring the safety of nuclear facilities—which is a function not only of the level of the seismic hazard but also the capacity of the facility to withstand vibratory ground motions—the inclusion of risk information in the evaluation process would appear to be both prudent and in line with the objectives of the Order. The purpose of this white paper is to describe a risk-informed methodology for evaluating the need for an update of an existing PSHA consistent with the DOE Order. While the development of the proposed methodology was undertaken as a result of assessments for specific SDC-3 facilities at Idaho National Laboratory (INL), and it is expected that the application at INL will provide a demonstration of the

  2. Proposed Risk-Informed Seismic Hazard Periodic Reevaluation Methodology for Complying with DOE Order 420.1C

    Energy Technology Data Exchange (ETDEWEB)

    Kammerer, Annie [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    Department of Energy (DOE) nuclear facilities must comply with DOE Order 420.1C Facility Safety, which requires that all such facilities review their natural phenomena hazards (NPH) assessments no less frequently than every ten years. The Order points the reader to Standard DOE-STD-1020-2012. In addition to providing a discussion of the applicable evaluation criteria, the Standard references other documents, including ANSI/ANS-2.29-2008 and NUREG-2117. These documents provide supporting criteria and approaches for evaluating the need to update an existing probabilistic seismic hazard analysis (PSHA). All of the documents are consistent at a high level regarding the general conceptual criteria that should be considered. However, none of the documents provides step-by-step detailed guidance on the required or recommended approach for evaluating the significance of new information and determining whether or not an existing PSHA should be updated. Further, all of the conceptual approaches and criteria given in these documents deal with changes that may have occurred in the knowledge base that might impact the inputs to the PSHA, the calculated hazard itself, or the technical basis for the hazard inputs. Given that the DOE Order is aimed at achieving and assuring the safety of nuclear facilities—which is a function not only of the level of the seismic hazard but also the capacity of the facility to withstand vibratory ground motions—the inclusion of risk information in the evaluation process would appear to be both prudent and in line with the objectives of the Order. The purpose of this white paper is to describe a risk-informed methodology for evaluating the need for an update of an existing PSHA consistent with the DOE Order. While the development of the proposed methodology was undertaken as a result of assessments for specific SDC-3 facilities at Idaho National Laboratory (INL), and it is expected that the application at INL will provide a demonstration of the

  3. Risks posed by large seismic events in the gold mining districts of South Africa

    CSIR Research Space (South Africa)

    Durrheim, RJ

    2011-01-01

    Full Text Available buildings are considered vulnerable to damage by large seismic events, posing safety and financial risks. It is recommended that an earthquake engineer inspect the building stock and review the content and enforcement of building codes. Appropriate training...

  4. Seismic analysis, evaluation and upgrade design for a nuclear facility exhaust stack building

    International Nuclear Information System (INIS)

    Malik, L.E.; Kabir, A.F.

    1991-01-01

    This paper reports on an exhaust stack building of a nuclear reactor facility with complex structural configuration that has been analyzed and evaluated for seismic forces. This building was built in the 1950's and had not been designed to resist seismic forces. A very rigorous analysis and evaluation program was implemented to minimize the costly retrofits required to upgrade the building to resist high seismic forces. The seismic evaluations were performed for the building in its as-is configuration, and as modified for several upgrade schemes. Soil-structure-interaction, base mat flexibility and the influence of the nearby reactor building have been considered in the seismic analyses. The rigorous analyses and evaluation enabled limited upgrades to qualify the stack building for the seismic forces

  5. Establishing seismic design criteria to achieve an acceptable seismic margin

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1997-01-01

    In order to develop a risk based seismic design criteria the following four issues must be addressed: (1) What target annual probability of seismic induced unacceptable performance is acceptable? (2). What minimum seismic margin is acceptable? (3) Given the decisions made under Issues 1 and 2, at what annual frequency of exceedance should the Safe Shutdown Earthquake ground motion be defined? (4) What seismic design criteria should be established to reasonably achieve the seismic margin defined under Issue 2? The first issue is purely a policy decision and is not addressed in this paper. Each of the other three issues are addressed. Issues 2 and 3 are integrally tied together so that a very large number of possible combinations of responses to these two issues can be used to achieve the target goal defined under Issue 1. Section 2 lays out a combined approach to these two issues and presents three potentially attractive combined resolutions of these two issues which reasonably achieves the target goal. The remainder of the paper discusses an approach which can be used to develop seismic design criteria aimed at achieving the desired seismic margin defined in resolution of Issue 2. Suggestions for revising existing seismic design criteria to more consistently achieve the desired seismic margin are presented

  6. German seismic regulations

    International Nuclear Information System (INIS)

    Danisch, Ruediger

    2002-01-01

    Rules and regulations for seismic design in Germany cover the following: seismic design of conventional buildings; and seismic design of nuclear facilities. Safety criteria for NPPs, accident guidelines, and guidelines for PWRs as well as safety standards are cited. Safety standards concerned with NPPs seismic design include basic principles, soil analysis, design of building structures, design of mechanical and electrical components, seismic instrumentation, and measures to be undertaken after the earthquake

  7. Numerical Simulation Analysis of Seismic of Frame Structure on Hill Terrain

    Directory of Open Access Journals (Sweden)

    Weng Weisu

    2017-01-01

    Full Text Available In recent year, Wenchuan,Ya’an,Yushu and other areas in china occur a series of high earthquake, however areas of earthquake is similar as mountainous terrain, building structure of seismic increasingly aroused our concern, and the research that hill topography affected building structure seismic in shallow mountain. The research content mainly includes: through modelling was built by the ANSYS software, the cooperative effects of a ten layer of frame structure- hill system were calculation. First, simple comparative dynamic characteristics analysis of soil - structure interaction and the rigid foundation assumption conditions; Second, put Hill-Soil-Structure Interaction(referred to as HSSI and Soil - Structure - Interaction(referred to as SSI further analysis of the dynamic response, including: including structural modal analysis (vibration mode, cycle, the time history analysis (such as displacement, internal force and acceleration and so on. Through Hill-Soil-Structure Interaction research, taking each factor in consideration, giving structure seismic key technology measures about shallow mountain to provide reference for such structure theory research.

  8. Seismic hazard assessment of the Province of Murcia (SE Spain): analysis of source contribution to hazard

    Science.gov (United States)

    García-Mayordomo, J.; Gaspar-Escribano, J. M.; Benito, B.

    2007-10-01

    A probabilistic seismic hazard assessment of the Province of Murcia in terms of peak ground acceleration (PGA) and spectral accelerations [SA( T)] is presented in this paper. In contrast to most of the previous studies in the region, which were performed for PGA making use of intensity-to-PGA relationships, hazard is here calculated in terms of magnitude and using European spectral ground-motion models. Moreover, we have considered the most important faults in the region as specific seismic sources, and also comprehensively reviewed the earthquake catalogue. Hazard calculations are performed following the Probabilistic Seismic Hazard Assessment (PSHA) methodology using a logic tree, which accounts for three different seismic source zonings and three different ground-motion models. Hazard maps in terms of PGA and SA(0.1, 0.2, 0.5, 1.0 and 2.0 s) and coefficient of variation (COV) for the 475-year return period are shown. Subsequent analysis is focused on three sites of the province, namely, the cities of Murcia, Lorca and Cartagena, which are important industrial and tourism centres. Results at these sites have been analysed to evaluate the influence of the different input options. The most important factor affecting the results is the choice of the attenuation relationship, whereas the influence of the selected seismic source zonings appears strongly site dependant. Finally, we have performed an analysis of source contribution to hazard at each of these cities to provide preliminary guidance in devising specific risk scenarios. We have found that local source zones control the hazard for PGA and SA( T ≤ 1.0 s), although contribution from specific fault sources and long-distance north Algerian sources becomes significant from SA(0.5 s) onwards.

  9. Time-lapse seismic analysis of the North Sea Fulmar Field

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, David H.; McKenny, Robert S.; Burkhart, Tucker D.

    1998-12-31

    Time-lapse seismic analysis has been applied to two 3-D seismic surveys acquired over the central North Sea Fulmar field in a pre-production survey shot in 1977, reprocessed in 1987, and a survey in 1992. The Upper Jurassic reservoirs in the field have been under production since 1982. Differences in averaged impedance between the 1977 and 1992 surveys clearly show the effects of water influx and pressure decline. The changes observed in the seismic data are overall consistent with predictions obtained from a full-field, history-matched simulation. Differences in details may suggest areas of bypassed oil. Dta quality is not sufficient to serve as the sole basis for drilling decisions. 1 ref., 6 figs.

  10. Seismic retrofitting of Apsara reactor building

    International Nuclear Information System (INIS)

    Reddy, G.R.; Parulekar, Y.M.; Sharma, A.; Rao, K.N.; Narasimhan, Rajiv; Srinivas, K.; Basha, S.M.; Thomas, V.S.; Soma Kumar, K.

    2006-01-01

    Seismic analysis of Apsara Reactor building was carried out and was found not meeting the current seismic requirements. Due to the building not qualifying for seismic loads, a retrofit scheme using elasto-plastic dampers is proposed. Following activities have been performed in this direction: Carried out detailed seismic analysis of Apsara reactor building structure incorporating proposed seismic retrofit. Demonstrating the capability of the retrofitted structure to with stand the earth quake level for Trombay site as per the current standards by analysis and by model studies. Implementation of seismic retrofit program. This paper presents the details of above aspects related to Seismic analysis and retrofitting of Apsara reactor building. (author)

  11. Seismic risk maps of Switzerland

    International Nuclear Information System (INIS)

    Saegesser, R.; Rast, B.; Merz, H.

    1977-01-01

    Seismic Risk Maps of Switzerland have been developed under the auspices of the Swiss Federal Division on Nuclear Safety. They are primarily destined for the use of owners of future nuclear power plants. The results will be mandatory for these future sites. The results will be shown as contourmaps of equal intensities for average return periods of 500, 1 000, 10 000... years. This general form will not restrict the use of the results to nuclear power plants only, rather allows their applicability to any site or installation of public interest (such as r.a. waste deposits, hydropower plants, etc.). This follows the recommendations of the UNESCO World Conference (Paris, February 1976). In the study MSK 64 INTENSITY was chosen. The detailed scale allowed a precise handling of historical data and separates the results from continuously changing state of the art correlations to acceleration and other input motion parameters. The method used is the probabilistic theory developed by C.A. Cornell and others at MIT in the late 1960's with the program in the version of the US Geological Survey by R. McGuire. (Auth.)

  12. Seismic facies analysis from pre-stack data using self-organizing maps

    International Nuclear Information System (INIS)

    Kourki, Meysam; Ali Riahi, Mohammad

    2014-01-01

    In facies analysis, seismic data are clustered in different groups. Each group represents subsurface points with similar physical properties. Different groups can be related to differences in lithology, physical properties of rocks and fluid changes in the rocks. The supervised and unsupervised data clustering are known as two types of clustering architecture. In supervised clustering, the number of clusters is predefined, while in unsupervised clustering, a collection of patterns partitions into groups without predefined clusters. In this study, the pre-stack data clustering is used for seismic facies analysis. In this way, a horizon was selected from pre-stack data, followed by sorting of data using offset. A trace associated with each CDP is constructed, for which the first and second samples are related to the first and second offsets, respectively. The created trace is called consolidated trace which is characteristic of subsurface points. These consolidated traces are clustered by using self-organizing maps (SOM). In proposed pre-stack seismic data clustering, points with similar physical properties are placed in one cluster. Seismic data associated with hydrocarbon reservoirs have very different characteristics that are easily recognized. The efficiency of the proposed method was tested on both synthetic and real seismic data. The results showed that the algorithm improves the data classification and the points of different properties are noticeable in final maps. (paper)

  13. Safety goals for seismic and tsunami risks: Lessons learned from the Fukushima Daiichi disaster

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Genn, E-mail: sajig@bd5.so-net.ne.jp

    2014-12-15

    tsunami water leaked through the truck entrance shutters and louver windows for the Diesel Generators’ air intakes. In view of the difficulties in predicting natural events when establishing the design basis for nuclear facilities, a drastic reappraisal of the safety design approach is essential when considering risks and uncertainties. The author proposes a new probabilistic seismic and tsunami safety goals be developed on the basis of lessons learned from the Fukushima disaster which would fortify the vulnerable systems thereby reducing seismic and tsunami risks as low as practical. The safety goal should also be used to enable stakeholders to find an answer to the question of ‘how safe is safe enough’. Through the development of the safety goals it is demonstrated that the risks of tsunami hazards are by far the largest risk to nuclear facilities in Japan due to its high recurrence period in certain regions of the country. It is essential to guard against tsunami-induced flooding and the need for more robust emergency power supply systems as well as special provisions for the disposal of hydrogen gas in the event of severe accidents.

  14. Safety goals for seismic and tsunami risks: Lessons learned from the Fukushima Daiichi disaster

    International Nuclear Information System (INIS)

    Saji, Genn

    2014-01-01

    water leaked through the truck entrance shutters and louver windows for the Diesel Generators’ air intakes. In view of the difficulties in predicting natural events when establishing the design basis for nuclear facilities, a drastic reappraisal of the safety design approach is essential when considering risks and uncertainties. The author proposes a new probabilistic seismic and tsunami safety goals be developed on the basis of lessons learned from the Fukushima disaster which would fortify the vulnerable systems thereby reducing seismic and tsunami risks as low as practical. The safety goal should also be used to enable stakeholders to find an answer to the question of ‘how safe is safe enough’. Through the development of the safety goals it is demonstrated that the risks of tsunami hazards are by far the largest risk to nuclear facilities in Japan due to its high recurrence period in certain regions of the country. It is essential to guard against tsunami-induced flooding and the need for more robust emergency power supply systems as well as special provisions for the disposal of hydrogen gas in the event of severe accidents

  15. Promoting seismic retrofit implementation through "nudge": using warranty as a driver.

    Science.gov (United States)

    Fujimi, Toshio; Tatano, Hirokazu

    2013-10-01

    This article proposes a new type of warranty policy that applies the "nudge" concept developed by Thaler and Sunstein to encourage homeowners in Japan to implement seismic retrofitting. Homeowner adaptation to natural disasters through loss reduction measures is known to be inadequate. To encourage proactive risk management, the "nudge" approach capitalizes on how choice architecture can influence human decision-making tendencies. For example, people tend to place more value on a warranty for consumer goods than on actuarial value. This article proposes a "warranty for seismic retrofitting" as a "nudge" policy that gives homeowners the incentive to adopt loss reduction measures. Under such a contract, the government guarantees all repair costs in the event of earthquake damage to the house if the homeowner implements seismic retrofitting. To estimate the degree to which a warranty will increase the perceived value of seismic retrofitting, we use field survey data from 1,200 homeowners. Our results show that a warranty increases the perceived value of seismic retrofitting by an average of 33%, and an approximate cost-benefit analysis indicates that such a warranty can be more economically efficient than an ex ante subsidy. Furthermore, we address the failure of the standard expected utility model to explain homeowners' decisions based on warranty evaluation, and explore the significant influence of ambiguity aversion on the efficacy of seismic retrofitting and nonanalytical factors such as feelings or trust. © 2013 Society for Risk Analysis.

  16. Seismic design ampersand analysis considerations for high level nuclear waste repositories

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1993-01-01

    A high level nuclear waste repository, like the one at Nevada's Yucca Mountain that is being investigated for site suitability, will have some unique seismic design and analysis considerations. These are discussed, and a design philosophy that can rationally account for the unique performance objectives of such facilities is presented. A case is made for the use of DOE's performance goal-based seismic design and evaluation methodology that is based on a hybrid open-quotes deterministicclose quotes and open-quotes probabilisticclose quotes concept. How and to what extent this methodology should be modified to adopt it for a potential site like Yucca Mountain is also outlined. Finally, the issue of designing for seismic fault rupture is discussed briefly, and the desirability of using the proposed seismic design philosophy in fault rupture evaluation is described

  17. Seismic design and analysis considerations for high level nuclear waste repositories

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1993-01-01

    A high level nuclear waste repository, like the one at Nevada's Yucca Mountain that is being investigated for site suitability, will have some unique seismic design and analysis considerations. These are discussed, and a design philosophy that can rationally account for the unique performance objectives of such facilities is presented. A case is made for the use of DOE's performance goal-based seismic design and evaluation methodology that is based on a hybrid ''deterministic'' and ''probabilistic'' concept. How and to what extent this methodology should be modified to adopt it for a potential site like Yucca Mountain is also outlined. Finally, the issue of designing for seismic fault rupture is discussed briefly, and the desirability of using the proposed seismic design philosophy in fault rupture evaluation is described

  18. What is the seismic risk of mine flooding?

    CSIR Research Space (South Africa)

    Goldbach, O

    2010-09-01

    Full Text Available of reservoirs and the injection of fluids into rocks at depth. Fluid-induced seismicity has been observed to occur in oil-well stimulation (Parotidis et al., 2004; Gibbs et al., 1973; Raleigh et al., 1976), where high-pressure water is pumped into a... stimulation well in an oil field in order to increase the oil yield of a nearby production well. Reservoir-induced seismicity is another example where the filling of newly constructed dams has resulted in the onset of seismicity around the dam as water...

  19. Seismic and hydroacoustic analysis relevant to MH370

    Energy Technology Data Exchange (ETDEWEB)

    Stead, Richard J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-03

    The vicinity of the Indian Ocean is searched for open and readily available seismic and/or hydroacoustic stations that might have recorded a possible impact of MH370 with the ocean surface. Only three stations are identified: the IMS hydrophone arrays H01 and H08, and the Geoscope seismic station AIS. Analysis of the data from these stations shows an interesting arrival on H01 that has some interference from an Antarctic ice event, large amplitude repeating signals at H08 that obscure any possible arrivals, and large amplitude chaotic noise at AIS precludes any analysis at higher frequencies of interest. The results are therefore rather inconclusive but may point to a more southerly impact location within the overall Indian Ocean search region. The results would be more useful if they can be combined with any other data that are not readily available.

  20. Seismic Fortification Analysis of the Guoduo Gravity Dam in Tibet, China

    Directory of Open Access Journals (Sweden)

    Peng Lin

    2015-01-01

    Full Text Available The primary aim of this research was to analyze the seismic performance of the Guoduo gravity dam. A nonlinear FEM method was implemented to study the deformation, stress, and overall stability of dam under both static and dynamic loading conditions, including both normal and overloading conditions. A dam seismic failure risk control method is proposed based on the cracking mechanism induced by the dynamic load to ensure dam safety and stability. Numerical simulation revealed that (1 under normal static and dynamic loading the symmetry of the displacement distributions is good, showing that the dam abutments and riverbed foundation have good overall stiffness. The stress distribution is a safe one for operation under both normal water loading and seismic loading. (2 Attention should be paid to the reinforcement design of outlets of the diversion dam monoliths, and enhance the capability of sustaining that tensile stress of dam monoliths. (3 The shape of the dam profile has a significant effect on the dynamic response of the dam. (4 By employing the “overload safety factor method,” the overall seismic fortification is as follows: K1=1.5, K2= 2~3, and K3= 3~4.

  1. Seismic hazard analysis for the NTS spent reactor fuel test site

    International Nuclear Information System (INIS)

    Campbell, K.W.

    1980-01-01

    An experiment is being directed at the Nevada Test Site to test the feasibility for storage of spent fuel from nuclear reactors in geologic media. As part of this project, an analysis of the earthquake hazard was prepared. This report presents the results of this seismic hazard assessment. Two distinct components of the seismic hazard were addressed: vibratory ground motion and surface displacement

  2. Maturity of nearby faults influences seismic hazard from hydraulic fracturing

    Science.gov (United States)

    Kozłowska, Maria; Brudzinski, Michael R.; Friberg, Paul; Skoumal, Robert J.; Baxter, Nicholas D.; Currie, Brian S.

    2018-02-01

    Understanding the causes of human-induced earthquakes is paramount to reducing societal risk. We investigated five cases of seismicity associated with hydraulic fracturing (HF) in Ohio since 2013 that, because of their isolation from other injection activities, provide an ideal setting for studying the relations between high-pressure injection and earthquakes. Our analysis revealed two distinct groups: (i) deeper earthquakes in the Precambrian basement, with larger magnitudes (M > 2), b-values 1.5, and few post–shut-in earthquakes. Based on geologic history, laboratory experiments, and fault modeling, we interpret the deep seismicity as slip on more mature faults in older crystalline rocks and the shallow seismicity as slip on immature faults in younger sedimentary rocks. This suggests that HF inducing deeper seismicity may pose higher seismic hazards. Wells inducing deeper seismicity produced more water than wells with shallow seismicity, indicating more extensive hydrologic connections outside the target formation, consistent with pore pressure diffusion influencing seismicity. However, for both groups, the 2 to 3 h between onset of HF and seismicity is too short for typical fluid pressure diffusion rates across distances of ˜1 km and argues for poroelastic stress transfer also having a primary influence on seismicity.

  3. Maturity of nearby faults influences seismic hazard from hydraulic fracturing.

    Science.gov (United States)

    Kozłowska, Maria; Brudzinski, Michael R; Friberg, Paul; Skoumal, Robert J; Baxter, Nicholas D; Currie, Brian S

    2018-02-20

    Understanding the causes of human-induced earthquakes is paramount to reducing societal risk. We investigated five cases of seismicity associated with hydraulic fracturing (HF) in Ohio since 2013 that, because of their isolation from other injection activities, provide an ideal setting for studying the relations between high-pressure injection and earthquakes. Our analysis revealed two distinct groups: ( i ) deeper earthquakes in the Precambrian basement, with larger magnitudes (M > 2), b-values 1.5, and few post-shut-in earthquakes. Based on geologic history, laboratory experiments, and fault modeling, we interpret the deep seismicity as slip on more mature faults in older crystalline rocks and the shallow seismicity as slip on immature faults in younger sedimentary rocks. This suggests that HF inducing deeper seismicity may pose higher seismic hazards. Wells inducing deeper seismicity produced more water than wells with shallow seismicity, indicating more extensive hydrologic connections outside the target formation, consistent with pore pressure diffusion influencing seismicity. However, for both groups, the 2 to 3 h between onset of HF and seismicity is too short for typical fluid pressure diffusion rates across distances of ∼1 km and argues for poroelastic stress transfer also having a primary influence on seismicity.

  4. SeismicWaveTool: Continuous and discrete wavelet analysis and filtering for multichannel seismic data

    Science.gov (United States)

    Galiana-Merino, J. J.; Rosa-Herranz, J. L.; Rosa-Cintas, S.; Martinez-Espla, J. J.

    2013-01-01

    A MATLAB-based computer code has been developed for the simultaneous wavelet analysis and filtering of multichannel seismic data. The considered time-frequency transforms include the continuous wavelet transform, the discrete wavelet transform and the discrete wavelet packet transform. The developed approaches provide a fast and precise time-frequency examination of the seismograms at different frequency bands. Moreover, filtering methods for noise, transients or even baseline removal, are implemented. The primary motivation is to support seismologists with a user-friendly and fast program for the wavelet analysis, providing practical and understandable results. Program summaryProgram title: SeismicWaveTool Catalogue identifier: AENG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 611072 No. of bytes in distributed program, including test data, etc.: 14688355 Distribution format: tar.gz Programming language: MATLAB (MathWorks Inc.) version 7.8.0.347 (R2009a) or higher. Wavelet Toolbox is required. Computer: Developed on a MacBook Pro. Tested on Mac and PC. No computer-specific optimization was performed. Operating system: Any supporting MATLAB (MathWorks Inc.) v7.8.0.347 (R2009a) or higher. Tested on Mac OS X 10.6.8, Windows XP and Vista. Classification: 13. Nature of problem: Numerous research works have developed a great number of free or commercial wavelet based software, which provide specific solutions for the analysis of seismic data. On the other hand, standard toolboxes, packages or libraries, such as the MathWorks' Wavelet Toolbox for MATLAB, offer command line functions and interfaces for the wavelet analysis of one-component signals. Thus, software usually is focused on very specific problems

  5. Experience of a Brazilian A/E in seismic analysis of nuclear structures components

    International Nuclear Information System (INIS)

    Venancio Filho, F.; Leal, M.R.L.V.; Bevilacqua, L.

    1980-01-01

    The experience of Promon Engenharia S.A., a Brazilian A/E which participated in the civil and mechanical engineering projects of the first Nuclear Power Plant in Brazil, is presented. In these projects the aspects of input for seismic analysis, seismic analysis in nuclear structures founded on piles, dynamic analysis for airplane crash, and piping analysis had to be faced for the first time in the country. The solution of these problems and some case examples are presented. (Author) [pt

  6. Are seismic hazard assessment errors and earthquake surprises unavoidable?

    Science.gov (United States)

    Kossobokov, Vladimir

    2013-04-01

    demonstrated and sufficient justification of hazard assessment protocols; (b) a more complete learning of the actual range of earthquake hazards to local communities and populations, and (c) a more ethically responsible control over how seismic hazard and seismic risk is implemented to protect public safety. It follows that the international project GEM is on the wrong track, if it continues to base seismic risk estimates on the standard method to assess seismic hazard. The situation is not hopeless and could be improved dramatically due to available geological, geomorphologic, seismic, and tectonic evidences and data combined with deterministic pattern recognition methodologies, specifically, when intending to PREDICT PREDICTABLE, but not the exact size, site, date, and probability of a target event. Understanding the complexity of non-linear dynamics of hierarchically organized systems of blocks-and-faults has led already to methodologies of neo-deterministic seismic hazard analysis and intermediate-term middle- to narrow-range earthquake prediction algorithms tested in real-time applications over the last decades. It proves that Contemporary Science can do a better job in disclosing Natural Hazards, assessing Risks, and delivering such info in advance extreme catastrophes, which are LOW PROBABILITY EVENTS THAT HAPPEN WITH CERTAINTY. Geoscientists must initiate shifting the minds of community from pessimistic disbelieve to optimistic challenging issues of neo-deterministic Hazard Predictability.

  7. Seismic analysis for translational failure of landfills with retaining walls.

    Science.gov (United States)

    Feng, Shi-Jin; Gao, Li-Ya

    2010-11-01

    In the seismic impact zone, seismic force can be a major triggering mechanism for translational failures of landfills. The scope of this paper is to develop a three-part wedge method for seismic analysis of translational failures of landfills with retaining walls. The approximate solution of the factor of safety can be calculated. Unlike previous conventional limit equilibrium methods, the new method is capable of revealing the effects of both the solid waste shear strength and the retaining wall on the translational failures of landfills during earthquake. Parameter studies of the developed method show that the factor of safety decreases with the increase of the seismic coefficient, while it increases quickly with the increase of the minimum friction angle beneath waste mass for various horizontal seismic coefficients. Increasing the minimum friction angle beneath the waste mass appears to be more effective than any other parameters for increasing the factor of safety under the considered condition. Thus, selecting liner materials with higher friction angle will considerably reduce the potential for translational failures of landfills during earthquake. The factor of safety gradually increases with the increase of the height of retaining wall for various horizontal seismic coefficients. A higher retaining wall is beneficial to the seismic stability of the landfill. Simply ignoring the retaining wall will lead to serious underestimation of the factor of safety. Besides, the approximate solution of the yield acceleration coefficient of the landfill is also presented based on the calculated method. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Seismic Response Analysis of Assembled Reactor Vessel Internals

    International Nuclear Information System (INIS)

    Je, Sang-Yun; Chang, Yoon-Suk; Kang, Sung-Sik

    2015-01-01

    RVIs (Reactor Vessel Internals) perform important safe-related functions such as upholding the nuclear fuel assembly as well as providing the coolant passage of the reactor core and supporting the control rod drive mechanism. Therefore, the components including RVIs have to be designed and constructed taking into account the structural integrity under various accident scenarios. The reliable seismic analysis is essentially demanded to maintain the safe-related functions of RVIs. In this study, a modal analysis was performed based on the previous researches to examine values of frequencies, mode shapes and participation factors. Subsequently, the structural integrity respecting to the earthquake was evaluated through a response spectrum analysis by using the output variables of modal analysis. In this study, the structural integrity of the assembled RVIs was carried out against the seismic event via the modal and response spectrum analyses. Even though 287MPa of the maximum stress value occurred at the connected region between UGS and CSA, which was lower than its allowable value. At present, fluid-structure interaction effects are being examined for further realistic simulation, which will be reported in the near future

  9. Tourism sector preparedness in zones with a high seismic risk: Case study of the Capital Region of Japan

    Science.gov (United States)

    Lihui, W.; Wang, D.

    2017-12-01

    Japan is a country highly vulnerable to natural disasters, especially earthquakes. Tourism, as a strategic industry in Japan, is especially vulnerable to destructive earthquake disasters owing to the characteristics of vulnerability, sensitivity and substitutability. Here we aim to provide theoretical understanding of the perception and responses of tourism managers towards damaging disasters in tourism destinations with high seismic risks. We conducted surveys among the mangers of tourism businesses in the capital area of Japan in 2014 and applied structural equation modeling techniques to empirically test the proposed model with four latent variables, which are risk perception, threat knowledge, disaster preparedness and earthquake preparedness. Our results show that threat knowledge affects risk perception and disaster preparedness positively. In addition, disaster preparedness positively affects earthquake preparedness. However, the proposed paths from risk perception to disaster preparedness, risk perception to earthquake preparedness, and threat knowledge to earthquake preparedness were not statistically significant. Our results may provide references for policymakers in promoting crisis planning in tourism destination with high seismic risks.

  10. CORSSA: Community Online Resource for Statistical Seismicity Analysis

    Science.gov (United States)

    Zechar, J. D.; Hardebeck, J. L.; Michael, A. J.; Naylor, M.; Steacy, S.; Wiemer, S.; Zhuang, J.

    2011-12-01

    Statistical seismology is critical to the understanding of seismicity, the evaluation of proposed earthquake prediction and forecasting methods, and the assessment of seismic hazard. Unfortunately, despite its importance to seismology-especially to those aspects with great impact on public policy-statistical seismology is mostly ignored in the education of seismologists, and there is no central repository for the existing open-source software tools. To remedy these deficiencies, and with the broader goal to enhance the quality of statistical seismology research, we have begun building the Community Online Resource for Statistical Seismicity Analysis (CORSSA, www.corssa.org). We anticipate that the users of CORSSA will range from beginning graduate students to experienced researchers. More than 20 scientists from around the world met for a week in Zurich in May 2010 to kick-start the creation of CORSSA: the format and initial table of contents were defined; a governing structure was organized; and workshop participants began drafting articles. CORSSA materials are organized with respect to six themes, each will contain between four and eight articles. CORSSA now includes seven articles with an additional six in draft form along with forums for discussion, a glossary, and news about upcoming meetings, special issues, and recent papers. Each article is peer-reviewed and presents a balanced discussion, including illustrative examples and code snippets. Topics in the initial set of articles include: introductions to both CORSSA and statistical seismology, basic statistical tests and their role in seismology; understanding seismicity catalogs and their problems; basic techniques for modeling seismicity; and methods for testing earthquake predictability hypotheses. We have also begun curating a collection of statistical seismology software packages.

  11. Application of mass-spring model in seismic analysis of liquid storage tank

    International Nuclear Information System (INIS)

    Liu Jiayi; Bai Xinran; Li Xiaoxuan

    2013-01-01

    There are many tanks for storing liquid in nuclear power plant. When seismic analysis is performed, swaying of liquid may change the mechanical parameters of those tanks, such as the center of mass and the moment of inertia, etc., so the load due to swaying of liquid can't be neglected. Mass-spring model is a simplified model to calculate the dynamic pressure of liquid in tank under earthquake, which is derived by the theory of Housner and given in the specification of seismic analysis of Safety-Related Nuclear Structures and Commentary-4-98 (ASCE-4-98 for short hereinafter). According to the theory of Housner and ASCE-4-98, the mass-spring 3-D FEM model for storage tank and liquid in it was established, by which the force of stored liquid acted on liquid storage tank in nuclear power plant under horizontal seismic load was calculated. The calculated frequency of liquid swaying and effect of liquid convection on storage tank were compared with those calculated by simplified formula. It is shown that the results of 3-D FEM model are reasonable and reliable. Further more, it is more direct and convenient compared with description in ASCE-4-98 when the mass-spring model is applied to 3-D FEM model for seismic analysis, from which the displacement and stress distributions of the plate-shell elements or the 3-D solid finite elements can be obtained directly from the seismic input model. (authors)

  12. Seismic analysis of structures by simulation

    International Nuclear Information System (INIS)

    Sundararajan, C.; Gangadharan, A.C.

    1977-01-01

    The paper presents a state-of-the-art survey, and recommendations for future work in the area of stochastic seismic analysis by Monte Carlo simulation. First the Monte Carlo simulation procedure is described, with special emphasis on a 'unified approach' for the digital generation of artificial earthquake motions. Next, the advantages and disadvantages of the method over the power spectral method are discussed; and finally, an efficient 'Hybrid Monte Carlo-Power Spectral Method' is developed. The Monte Carlo simulation procedure consists of the following tasks: (1) Digital generation of artificial earthquake motions, (2) Response analysis of the structure to a number of sample motions, and (3) statistical analysis of the structural responses

  13. Seismic analysis of structures by simulation

    International Nuclear Information System (INIS)

    Sundararajan, C.; Gangadharan, A.C.

    1977-01-01

    The paper presents a state-of-the-art survey, and recommendations for future work in the area of stochastic seismic analysis by Monte Carlo simulation. First the Monte Carlo simulation procedure is described with special emphasis on a 'unified approach' for the digital generation of anificial earthquake motions. Next, the advantages and disadvantages of the method over the power spectral method are discussed; and finally, an efficient 'Hybrid Monte Carlo-Power Spectral Method' is developed. The Monte Carlo simulation procedure consists of the following tasks: (1) Digital generation of artificial earthquake motions, (2) Response analysis of the structure to a number of sample motions, and (3) Statistical analysis of the structural responses. (Auth.)

  14. SHEAT: a computer code for probabilistic seismic hazard analysis, user's manual

    International Nuclear Information System (INIS)

    Ebisawa, Katsumi; Kondo, Masaaki; Abe, Kiyoharu; Tanaka, Toshiaki; Takani, Michio.

    1994-08-01

    The SHEAT code developed at Japan Atomic Energy Research Institute is for probabilistic seismic hazard analysis which is one of the tasks needed for seismic Probabilistic Safety Assessment (PSA) of a nuclear power plant. Seismic hazard is defined as an annual exceedance frequency of occurrence of earthquake ground motions at various levels of intensity at a given site. With the SHEAT code, seismic hazard is calculated by the following two steps: (1) Modeling of earthquake generation around a site. Future earthquake generation (locations, magnitudes and frequencies of postulated earthquakes) is modelled based on the historical earthquake records, active fault data and expert judgement. (2) Calculation of probabilistic seismic hazard at the site. An earthquake ground motion is calculated for each postulated earthquake using an attenuation model taking into account its standard deviation. Then the seismic hazard at the site is calculated by summing the frequencies of ground motions by all the earthquakes. This document is the user's manual of the SHEAT code. It includes: (1) Outlines of the code, which include overall concept, logical process, code structure, data file used and special characteristics of the code, (2) Functions of subprograms and analytical models in them, (3) Guidance of input and output data, and (4) Sample run results. The code has widely been used at JAERI to analyze seismic hazard at various nuclear power plant sites in japan. (author)

  15. Seismic and wind vulnerability assessment for the GAR-13 global risk assessment

    OpenAIRE

    Yamín Lacouture, Luis Eduardo; Hurtado Chaparro, Alvaro Ivan; Barbat Barbat, Horia Alejandro; Cardona Arboleda, Omar Dario

    2014-01-01

    A general methodology to evaluate vulnerability functions suitable for a probabilistic global risk assessment is proposed. The methodology is partially based in the methodological approach of the Multi-hazard Loss Estimation Methodology (Hazus) developed by the Federal Emergency Management Agency (FEMA). The vulnerability assessment process considers the resolution, information and limitations established for both the hazard and exposure models adopted. Seismic and wind vulnerability function...

  16. Prioritization of information using decision support systems for seismic risk in Bucharest city

    Science.gov (United States)

    Armas, Iuliana; Gheorghe, Diana

    2014-05-01

    Nowadays, because of the ever increasing volume of information, policymakers are faced with decision making problems. Achieving an objective and suitable decision making may become a challenge. In such situations decision support systems (DSS) have been developed. DSS can assist in the decision making process, offering support on how a decision should be made, rather than what decision should be made (Simon, 1979). This in turn potentially involves a huge number of stakeholders and criteria. Regarding seismic risk, Bucharest City is highly vulnerable (Mandrescu et al., 2007). The aim of this study is to implement a spatial decision support system in order to secure a suitable shelter in case of an earthquake occurrence in the historical centre of Bucharest City. In case of a seismic risk, a shelter is essential for sheltering people who lost their homes or whose homes are in danger of collapsing while people at risk receive first aid in the post-disaster phase. For the present study, the SMCE Module for ILWIS 3.4 was used. The methodology included structuring the problem by creating a decision tree, standardizing and weighting of the criteria. The results showed that the most suitable buildings are Tania Hotel, Hanul lui Manuc, The National Bank of Romania, The Romanian Commercial Bank and The National History Museum.

  17. Seismic fragility test of a 6-inch diameter pipe system

    International Nuclear Information System (INIS)

    Chen, W.P.; Onesto, A.T.; DeVita, V.

    1987-02-01

    This report contains the test results and assessments of seismic fragility tests performed on a 6-inch diameter piping system. The test was funded by the US Nuclear Regulatory Commission (NRC) and conducted by ETEC. The objective of the test was to investigate the ability of a representative nuclear piping system to withstand high level dynamic seismic and other loadings. Levels of loadings achieved during seismic testing were 20 to 30 times larger than normal elastic design evaluations to ASME Level D limits would permit. Based on failure data obtained during seismic and other dynamic testing, it was concluded that nuclear piping systems are inherently able to withstand much larger dynamic seismic loadings than permitted by current design practice criteria or predicted by the probabilistic risk assessment (PRA) methods and several proposed nonlinear methods of failure analysis

  18. Cluster Computing For Real Time Seismic Array Analysis.

    Science.gov (United States)

    Martini, M.; Giudicepietro, F.

    A seismic array is an instrument composed by a dense distribution of seismic sen- sors that allow to measure the directional properties of the wavefield (slowness or wavenumber vector) radiated by a seismic source. Over the last years arrays have been widely used in different fields of seismological researches. In particular they are applied in the investigation of seismic sources on volcanoes where they can be suc- cessfully used for studying the volcanic microtremor and long period events which are critical for getting information on the volcanic systems evolution. For this reason arrays could be usefully employed for the volcanoes monitoring, however the huge amount of data produced by this type of instruments and the processing techniques which are quite time consuming limited their potentiality for this application. In order to favor a direct application of arrays techniques to continuous volcano monitoring we designed and built a small PC cluster able to near real time computing the kinematics properties of the wavefield (slowness or wavenumber vector) produced by local seis- mic source. The cluster is composed of 8 Intel Pentium-III bi-processors PC working at 550 MHz, and has 4 Gigabytes of RAM memory. It runs under Linux operating system. The developed analysis software package is based on the Multiple SIgnal Classification (MUSIC) algorithm and is written in Fortran. The message-passing part is based upon the LAM programming environment package, an open-source imple- mentation of the Message Passing Interface (MPI). The developed software system includes modules devote to receiving date by internet and graphical applications for the continuous displaying of the processing results. The system has been tested with a data set collected during a seismic experiment conducted on Etna in 1999 when two dense seismic arrays have been deployed on the northeast and the southeast flanks of this volcano. A real time continuous acquisition system has been simulated by

  19. Uncertainty analysis of depth predictions from seismic reflection data using Bayesian statistics

    Science.gov (United States)

    Michelioudakis, Dimitrios G.; Hobbs, Richard W.; Caiado, Camila C. S.

    2018-03-01

    Estimating the depths of target horizons from seismic reflection data is an important task in exploration geophysics. To constrain these depths we need a reliable and accurate velocity model. Here, we build an optimum 2D seismic reflection data processing flow focused on pre - stack deghosting filters and velocity model building and apply Bayesian methods, including Gaussian process emulation and Bayesian History Matching (BHM), to estimate the uncertainties of the depths of key horizons near the borehole DSDP-258 located in the Mentelle Basin, south west of Australia, and compare the results with the drilled core from that well. Following this strategy, the tie between the modelled and observed depths from DSDP-258 core was in accordance with the ± 2σ posterior credibility intervals and predictions for depths to key horizons were made for the two new drill sites, adjacent the existing borehole of the area. The probabilistic analysis allowed us to generate multiple realizations of pre-stack depth migrated images, these can be directly used to better constrain interpretation and identify potential risk at drill sites. The method will be applied to constrain the drilling targets for the upcoming International Ocean Discovery Program (IODP), leg 369.

  20. Seismic fragility of reinforced concrete structures and components for application to nuclear facilities

    International Nuclear Information System (INIS)

    Gergely, P.

    1984-09-01

    The failure and fragility analyses of reinforced concrete structures and elements in nuclear reactor facilities within the Seismic Safety Margins Research Program (SSMRP) at the Lawrence Livermore National Laboratory are evaluated. Uncertainties in material modeling, behavior of low shear walls, and seismic risk assessment for nonlinear response receive special attention. Problems with ductility-based spectral deamplification and prediction of the stiffness of reinforced concrete walls at low stress levels are examined. It is recommended to use relatively low damping values in connection with ductility-based response reductions. The study of static nonlinear force-deflection curves is advocated for better nonlinear dynamic response predictions. Several details of the seismic risk analysis of the Zion plant are also evaluated. 73 references

  1. Seismic PSA method for multiple nuclear power plants in a site

    Energy Technology Data Exchange (ETDEWEB)

    Hakata, Tadakuni [Nuclear Safety Commission, Tokyo (Japan)

    2007-07-15

    The maximum number of nuclear power plants in a site is eight and about 50% of power plants are built in sites with three or more plants in the world. Such nuclear sites have potential risks of simultaneous multiple plant damages especially at external events. Seismic probabilistic safety assessment method (Level-1 PSA) for multi-unit sites with up to 9 units has been developed. The models include Fault-tree linked Monte Carlo computation, taking into consideration multivariate correlations of components and systems from partial to complete, inside and across units. The models were programmed as a computer program CORAL reef. Sample analysis and sensitivity studies were performed to verify the models and algorithms and to understand some of risk insights and risk metrics, such as site core damage frequency (CDF per site-year) for multiple reactor plants. This study will contribute to realistic state of art seismic PSA, taking consideration of multiple reactor power plants, and to enhancement of seismic safety. (author)

  2. Assessment of Seismic Vulnerability of Reinforced Concrete Frame buildings

    Directory of Open Access Journals (Sweden)

    Fatiha Cherifi

    2018-01-01

    Full Text Available The seismic activity remains strong in the north of Algeria since no less than 30 earthquakes per month are recorded. The large number of structures built before the introduction of the seismic standards represents a high seismic risk. Analysis of damage suffered during the last earthquakes highlighted the vulnerability of the existing structures. In this study the seismic behavior of the existing buildings in Tizi-Ouzou city, located in the north of Algeria, is investigated. To make this assessment, a database was created following a building inventory based on a set of technical folders and field visits. The listed buildings have been classified into different typologies. Only reinforced concrete frame buildings are considered in this paper. The approach adopted to estimate structures damage is based on four main steps: 1 construction of capacity curves using static nonlinear method “push-over”, 2 estimate of seismic hazard, 3 determination of performance points, and finally 4 deduction of damage levels.

  3. Accuracy of three-dimensional seismic ground response analysis in time domain using nonlinear numerical simulations

    Science.gov (United States)

    Liang, Fayun; Chen, Haibing; Huang, Maosong

    2017-07-01

    To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.

  4. Stochastic seismic floor response analysis method for various damping systems

    International Nuclear Information System (INIS)

    Kitada, Y.; Hattori, K.; Ogata, M.; Kanda, J.

    1991-01-01

    A study using the stochastic seismic response analysis method which is applicable for the estimation of floor response spectra is carried out. It is pointed out as a shortcoming in this stochastic seismic response analysis method, that the method tends to overestimate floor response spectra for low damping systems, e.g. 1% of the critical damping ratio. An investigation on the cause of the shortcoming is carried out and a number of improvements in this method were also made to the original method by taking correlation of successive peaks in a response time history into account. The application of the improved method to a typical BWR reactor building is carried out. The resultant floor response spectra are compared with those obtained by deterministic time history analysis. Floor response spectra estimated by the improved method consistently cover the response spectra obtained by the time history analysis for various damping ratios. (orig.)

  5. Single Point Vulnerability Analysis of Automatic Seismic Trip System

    International Nuclear Information System (INIS)

    Oh, Seo Bin; Chung, Soon Il; Lee, Yong Suk; Choi, Byung Pil

    2016-01-01

    Single Point Vulnerability (SPV) analysis is a process used to identify individual equipment whose failure alone will result in a reactor trip, turbine generator failure, or power reduction of more than 50%. Automatic Seismic Trip System (ASTS) is a newly installed system to ensure the safety of plant when earthquake occurs. Since this system directly shuts down the reactor, the failure or malfunction of its system component can cause a reactor trip more frequently than other systems. Therefore, an SPV analysis of ASTS is necessary to maintain its essential performance. To analyze SPV for ASTS, failure mode and effect analysis (FMEA) and fault tree analysis (FTA) was performed. In this study, FMEA and FTA methods were performed to select SPV equipment of ASTS. D/O, D/I, A/I card, seismic sensor, and trip relay had an effect on the reactor trip but their single failure will not cause reactor trip. In conclusion, ASTS is excluded as SPV. These results can be utilized as the basis data for ways to enhance facility reliability such as design modification and improvement of preventive maintenance procedure

  6. Single Point Vulnerability Analysis of Automatic Seismic Trip System

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seo Bin; Chung, Soon Il; Lee, Yong Suk [FNC Technology Co., Yongin (Korea, Republic of); Choi, Byung Pil [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    Single Point Vulnerability (SPV) analysis is a process used to identify individual equipment whose failure alone will result in a reactor trip, turbine generator failure, or power reduction of more than 50%. Automatic Seismic Trip System (ASTS) is a newly installed system to ensure the safety of plant when earthquake occurs. Since this system directly shuts down the reactor, the failure or malfunction of its system component can cause a reactor trip more frequently than other systems. Therefore, an SPV analysis of ASTS is necessary to maintain its essential performance. To analyze SPV for ASTS, failure mode and effect analysis (FMEA) and fault tree analysis (FTA) was performed. In this study, FMEA and FTA methods were performed to select SPV equipment of ASTS. D/O, D/I, A/I card, seismic sensor, and trip relay had an effect on the reactor trip but their single failure will not cause reactor trip. In conclusion, ASTS is excluded as SPV. These results can be utilized as the basis data for ways to enhance facility reliability such as design modification and improvement of preventive maintenance procedure.

  7. Design and analysis of fractional order seismic transducer for displacement and acceleration measurements

    Science.gov (United States)

    Veeraian, Parthasarathi; Gandhi, Uma; Mangalanathan, Umapathy

    2018-04-01

    Seismic transducers are widely used for measurement of displacement, velocity, and acceleration. This paper presents the design of seismic transducer in the fractional domain for the measurement of displacement and acceleration. The fractional order transfer function for seismic displacement and acceleration transducer are derived using Grünwald-Letnikov derivative. Frequency response analysis of fractional order seismic displacement transducer (FOSDT) and fractional order seismic acceleration transducer (FOSAT) are carried out for different damping ratio with the different fractional order, and the maximum dynamic measurement range is identified. The results demonstrate that fractional order seismic transducer has increased dynamic measurement range and less phase distortion as compared to the conventional seismic transducer even with a lower damping ratio. Time response of FOSDT and FOSAT are derived analytically in terms of Mittag-Leffler function, the effect of fractional behavior in the time domain is evaluated from the impulse and step response. The fractional order system is found to have significantly reduced overshoot as compared to the conventional transducer. The fractional order seismic transducer design proposed in this paper is illustrated with a design example for FOSDT and FOSAT. Finally, an electrical equivalent of FOSDT and FOSAT is considered, and its frequency response is found to be in close agreement with the proposed fractional order seismic transducer.

  8. The seismic fragility analysis for multi-story steel structure in CANDU nuclear power plant

    International Nuclear Information System (INIS)

    Hwang, K.H.; Lee, B.S.; Kang, S-K.

    1996-01-01

    The Wolsong Unit 2 is a CANDU-6 type plant and is being constructed in the Wolsong site, where Design Basis Earthquake (DBE) was determined to be 0.2g. A seismic PSA for Wolsong Unit 2 is being performed as one of the conditions for the Construction Permit. One of the issues in the seismic PSA is the availability of the seismically non-qualified systems, which are located in the Turbine Building(T/B). Thus, the seismic fragility analysis for the T/B was performed to estimate the operability of the systems. The design seismic loads for the building were based on a ground response spectrum scaled down from the DBE to horizontal peak ground acceleration (pga) of 0.05g. The seismic fragility analysis for the building was performed using a factor of the safety method. It is estimated that the most critical failure is that of masonry walls and its High Confidence and Low Probability of Failure (HCLPF) capacity is 0.13g. The critical failure mode of the structure is identified to be tensile yielding failure of grip angle, and its HCLPF capacity is 0.34g. (author)

  9. User's manual for seismic analysis code 'SONATINA-2V'

    International Nuclear Information System (INIS)

    Hanawa, Satoshi; Iyoku, Tatsuo

    2001-08-01

    The seismic analysis code, SONATINA-2V, has been developed to analyze the behavior of the HTTR core graphite components under seismic excitation. The SONATINA-2V code is a two-dimensional computer program capable of analyzing the vertical arrangement of the HTTR graphite components, such as fuel blocks, replaceable reflector blocks, permanent reflector blocks, as well as their restraint structures. In the analytical model, each block is treated as rigid body and is restrained by dowel pins which restrict relative horizontal movement but allow vertical and rocking motions between upper and lower blocks. Moreover, the SONATINA-2V code is capable of analyzing the core vibration behavior under both simultaneous excitations of vertical and horizontal directions. The SONATINA-2V code is composed of the main program, pri-processor for making the input data to SONATINA-2V and post-processor for data processing and making the graphics from analytical results. Though the SONATINA-2V code was developed in order to work in the MSP computer system of Japan Atomic Energy Research Institute (JAERI), the computer system was abolished with the technical progress of computer. Therefore, improvement of this analysis code was carried out in order to operate the code under the UNIX machine, SR8000 computer system, of the JAERI. The users manual for seismic analysis code, SONATINA-2V, including pri- and post-processor is given in the present report. (author)

  10. Anisotropic analysis for seismic sensitivity of groundwater monitoring wells

    Science.gov (United States)

    Pan, Y.; Hsu, K.

    2011-12-01

    Taiwan is located at the boundaries of Eurasian Plate and the Philippine Sea Plate. The movement of plate causes crustal uplift and lateral deformation to lead frequent earthquakes in the vicinity of Taiwan. The change of groundwater level trigged by earthquake has been observed and studied in Taiwan for many years. The change of groundwater may appear in oscillation and step changes. The former is caused by seismic waves. The latter is caused by the volumetric strain and reflects the strain status. Since the setting of groundwater monitoring well is easier and cheaper than the setting of strain gauge, the groundwater measurement may be used as a indication of stress. This research proposes the concept of seismic sensitivity of groundwater monitoring well and apply to DonHer station in Taiwan. Geostatistical method is used to analysis the anisotropy of seismic sensitivity. GIS is used to map the sensitive area of the existing groundwater monitoring well.

  11. Urban Vulnerability Assessment to Seismic Hazard through Spatial Multi-Criteria Analysis. Case Study: the Bucharest Municipality/Romania

    Science.gov (United States)

    Armas, Iuliana; Dumitrascu, Silvia; Bostenaru, Maria

    2010-05-01

    In the context of an explosive increase in value of the damage caused by natural disasters, an alarming challenge in the third millennium is the rapid growth of urban population in vulnerable areas. Cities are, by definition, very fragile socio-ecological systems with a high level of vulnerability when it comes to environmental changes and that are responsible for important transformations of the space, determining dysfunctions shown in the state of the natural variables (Parker and Mitchell, 1995, The OFDA/CRED International Disaster Database). A contributing factor is the demographic dynamic that affects urban areas. The aim of this study is to estimate the overall vulnerability of the urban area of Bucharest in the context of the seismic hazard, by using environmental, socio-economic, and physical measurable variables in the framework of a spatial multi-criteria analysis. For this approach the capital city of Romania was chosen based on its high vulnerability due to the explosive urban development and the advanced state of degradation of the buildings (most of the building stock being built between 1940 and 1977). Combining these attributes with the seismic hazard induced by the Vrancea source, Bucharest was ranked as the 10th capital city worldwide in the terms of seismic risk. Over 40 years of experience in the natural risk field shows that the only directly accessible way to reduce the natural risk is by reducing the vulnerability of the space (Adger et al., 2001, Turner et al., 2003; UN/ISDR, 2004, Dayton-Johnson, 2004, Kasperson et al., 2005; Birkmann, 2006 etc.). In effect, reducing the vulnerability of urban spaces would imply lower costs produced by natural disasters. By applying the SMCA method, the result reveals a circular pattern, signaling as hot spots the Bucharest historic centre (located on a river terrace and with aged building stock) and peripheral areas (isolated from the emergency centers and defined by precarious social and economic

  12. Analysis of seismic effects on reinforced concrete structures

    International Nuclear Information System (INIS)

    Tai, A.A.

    1981-12-01

    An important bibliographical research was undertaken in order to make the best possible analysis of the dynamic behaviour of materials and of structural components. This research work was completed by the study of the structures tested on a seismic table. The results obtained from this preliminary study, particularly those concerning the modification in the rigidity of reinforced concrete structures under alternate and seismic loading, enabled a calculation method (called ''equivalent static'') to be drawn up for analyzing the behaviour of reinforced concrete structures in earthquakes. This method takes into account the non-linearity of the behaviour of materials, in particular. The earthquake responses that were obtained by this method on gantries tested on a vibrating table, tally very satisfactorily with the test figures [fr

  13. Seismic response analysis of column supported natural draught cooling tower shells

    International Nuclear Information System (INIS)

    Ramanjaneyulu, K.; Gopalakrishnan, S.; Appa Rao, T.V.S.R.

    2003-01-01

    Natural draught cooling towers (NDCTs) belong to the category of large civil engineering structures and are commonly used in nuclear or thermal power plants. Detailed dynamic analysis has to be carried out for design of cooling towers subjected to seismic excitation, considering the flexibility of the columns. Finite ring element formulations for dynamic analysis of cooling tower shell subjected to seismic excitation are presented in this paper. The geometry of a typical tall natural draught cooling tower is considered in this study for carrying out investigations. Transient response of the hyperbolic cooling tower shell subjected to earthquake loading has been analysed by direct time integration using acceleration-time history of North-South component of El-Centro earthquake. Parametric studies have also been carried out to study the influence of flexibility of column supports and damping on the seismic response of cooling tower shell and the results are discussed in the paper. (author)

  14. Nonlinear seismic analysis of reinforced concrete framed structures considering joint distortion

    International Nuclear Information System (INIS)

    Sharma, Akanshu; Reddy, G.R.; Vaze, K.K.; Eligehausen, Rolf; Hofmann, J.

    2012-01-01

    Seismic behavior of a reinforced concrete framed structure can be assessed with various analytical tools that may broadly be classified as linear elastic procedures and non-linear or inelastic analysis procedures. Since the reinforced concrete structures generally go in the inelastic range due to seismic loading, it can be easily said that the inelastic procedures would predict the performance of the structures in a much better and realistic way than the linear elastic procedures. However, at the same time, the inelastic procedures are computationally much more demanding. Thus, a good balance between accuracy and computational effort is often sought for. To assess the seismic behaviour of reinforced concrete framed structures, various experimental procedures can be used. Pushover tests that consist of loading the structure monotonically till failure can be conducted on large scale structures and give information about the load carrying and deformational capacity of the structure along with sequence of failure modes but only in one direction. Static cyclic tests, where inertia effects are not included give the above mentioned information for to and fro loading direction along with the information on energy consumption. Shake table tests, which are closest to the real life earthquake tests provide almost all the information required to understand the seismic behaviour but the scale of such tests are usually limited by the capacity of the shaking table facility. In this work, practically usable and sufficiently accurate models are reported to realistically model the inelastic response of the structures. A new model to consider the inelastic behaviour of the joints of poorly detailed structures is developed and presented. A practical hysteretic rule based on the extension of Pivot hysteretic model is developed for members and beam-column joints and the same is also reported. The analytical models are validated against the experimental results using pushover analysis

  15. Treating Uncertainties in A Nuclear Seismic Probabilistic Risk Assessment by Means of the Distemper-Safer Theory of Evidence

    International Nuclear Information System (INIS)

    Lo, Chungkung; Pedroni, N.; Zio, E.

    2014-01-01

    The analyses carried out within the Seismic Probabilistic Risk Assessments (SPRAs) of Nuclear Power Plants (NPPs) are affected by significant aleatory and epistemic uncertainties. These uncertainties have to be represented and quantified coherently with the data, information and knowledge available, to provide reasonable assurance that related decisions can be taken robustly and with confidence. The amount of data, information and knowledge available for seismic risk assessment is typically limited, so that the analysis must strongly rely on expert judgments. In this paper, a Dempster-Shafer Theory (DST) framework for handling uncertainties in NPP SPRAs is proposed and applied to an example case study. The main contributions of this paper are two: (i) applying the complete DST framework to SPRA models, showing how to build the Dempster-Shafer structures of the uncertainty parameters based on industry generic data, and (ii) embedding Bayesian updating based on plant specific data into the framework. The results of the application to a case study show that the approach is feasible and effective in (i) describing and jointly propagating aleatory and epistemic uncertainties in SPRA models and (ii) providing 'conservative' bounds on the safety quantities of interest (i. e. Core Damage Frequency, CDF) that reflect the (limited) state of knowledge of the experts about the system of interest

  16. Treating Uncertainties in A Nuclear Seismic Probabilistic Risk Assessment by Means of the Distemper-Safer Theory of Evidence

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Chungkung [Chair on Systems Science and the Energetic Challenge, Paris (France); Pedroni, N.; Zio, E. [Politecnico di Milano, Milano (Italy)

    2014-02-15

    The analyses carried out within the Seismic Probabilistic Risk Assessments (SPRAs) of Nuclear Power Plants (NPPs) are affected by significant aleatory and epistemic uncertainties. These uncertainties have to be represented and quantified coherently with the data, information and knowledge available, to provide reasonable assurance that related decisions can be taken robustly and with confidence. The amount of data, information and knowledge available for seismic risk assessment is typically limited, so that the analysis must strongly rely on expert judgments. In this paper, a Dempster-Shafer Theory (DST) framework for handling uncertainties in NPP SPRAs is proposed and applied to an example case study. The main contributions of this paper are two: (i) applying the complete DST framework to SPRA models, showing how to build the Dempster-Shafer structures of the uncertainty parameters based on industry generic data, and (ii) embedding Bayesian updating based on plant specific data into the framework. The results of the application to a case study show that the approach is feasible and effective in (i) describing and jointly propagating aleatory and epistemic uncertainties in SPRA models and (ii) providing 'conservative' bounds on the safety quantities of interest (i. e. Core Damage Frequency, CDF) that reflect the (limited) state of knowledge of the experts about the system of interest.

  17. Seismic qualification of equipment

    International Nuclear Information System (INIS)

    Heidebrecht, A.C.; Tso, W.K.

    1983-03-01

    This report describes the results of an investigation into the seismic qualification of equipment located in CANDU nuclear power plants. It is particularly concerned with the evaluation of current seismic qualification requirements, the development of a suitable methodology for the seismic qualification of safety systems, and the evaluation of seismic qualification analysis and testing procedures

  18. Probabilistic seismic hazard analysis - lessons learned: A regulator's perspective

    International Nuclear Information System (INIS)

    Reiter, L.

    1990-01-01

    Probabilistic seismic hazard analysis is a powerful, rational and attractive tool for decision-making. It is capable of absorbing and integrating a wide range of information and judgement and their associated uncertainties into a flexible framework that permits the application of societal goals and priorities. Unfortunately, its highly integrative nature can obscure those elements which drive the results, its highly quantitative nature can lead to false impressions of accuracy, and its open embrace of uncertainty can make decision-making difficult. Addressing these problems can only help to increase its use and make it more palatable to those who need to assess seismic hazard and utilize the results. (orig.)

  19. Seismic analysis for the supporting member of the Westinghouse AP1000 steam generator

    International Nuclear Information System (INIS)

    Xu Yu; Huang Mei; Tian Li; Hou Zhousen

    2012-01-01

    In this paper, the seismic performance analysis for the Supporting member of is carried out under the combined loads, including dead weight, earthquake loads, by using response spectrum analysis method in ANSYS. The stress qualification is also carried out based on ASME-Ⅲ-NF code. The results show that the stress of the Supporting member meets the seismic requirements for equipment, and the deformation of structure is within the allowable limits. (authors)

  20. Seismic analysis of reactor exhaust-air Filter Compartment

    International Nuclear Information System (INIS)

    Gong, C.; Funderburk, E.L.; Jerrel, J.W.; Vashi, K.M.

    1991-01-01

    This paper presents the results of a scoping analysis for assessment of seismic adequacy of a Filter Compartments (FC) that is part of an Airborne Activity Confinement System (AACS) in K, L, and P Reactors at the Savannah River Site (SRS). For an expeditious assessment and to increase the possibility of showing the adequacy of the FC, the finite element model incorporated certain conceptual reinforcing modifications suggested by a previous study. The model also set the vertical displacements at zero at the interface between the FC and the rail dolly, upon which the FC rests by gravity. In addition, the rail-dolly was assumed to be rigid and rigidly attached to the rails. The analysis was performed using the dynamic modal superposition response spectra capability of the ABAQUS computer code. Certain modelling approximations and linearized representation of boundary conditions were employed for utilization of the code and the selected analysis capability. The analysis results showed that the FC stresses and deformations were within the yield limit and that the structural integrity of the FC and the operability of the filters can be preserved as required for the defined seismic event consistent with the linearization assumptions, modelling simplifications, and incorporation of the conceptual reinforcing modifications. However, the rail-dolly rigidity, the FC hold-down to the rails must be ensured for this scoping analysis to be valid. 2 refs

  1. Seismic Response Analysis and Design of Structure with Base Isolation

    International Nuclear Information System (INIS)

    Rosko, Peter

    2010-01-01

    The paper reports the study on seismic response and energy distribution of a multi-story civil structure. The nonlinear analysis used the 2003 Bam earthquake acceleration record as the excitation input to the structural model. The displacement response was analyzed in time domain and in frequency domain. The displacement and its derivatives result energy components. The energy distribution in each story provides useful information for the structural upgrade with help of added devices. The objective is the structural displacement response minimization. The application of the structural seismic response research is presented in base-isolation example.

  2. Seismic response analysis of the deep saturated soil deposits in Shanghai

    Science.gov (United States)

    Huang, Yu; Ye, Weimin; Chen, Zhuchang

    2009-01-01

    The quaternary deposits in Shanghai are horizontal soil layers of thickness up to about 280 m in the urban area with an annual groundwater table between 0.5 and 0.7 m from the surface. The characteristics of deep saturated deposits may have important influences upon seismic response of the ground in Shanghai. Based on the Biot theory for porous media, the water-saturated soil deposits are modeled as a two-phase porous system consisting of solid and fluid phases, in this paper. A nonlinear constitutive model for predicting the seismic response of the ground is developed to describe the dynamic characters of the deep-saturated soil deposits in Shanghai. Subsequently, the seismic response of a typical site with 280 m deep soil layers, which is subjected to four base excitations (El Centro, Taft, Sunan, and Tangshan earthquakes), is analyzed in terms of an effective stress-based finite element method with the proposed constitutive model. Special emphasis is given to the computed results of accelerations, excess pore-water pressures, and settlements during the seismic excitations. It has been found that the analysis can capture fundamental aspects of the ground response and produce preliminary results for seismic assessment.

  3. Dynamic insertion analysis of control rods of BWR under seismic excitation

    International Nuclear Information System (INIS)

    Nakagawa, Masaki; Koide, Yuichi; Fukushi, Naoki; Ishigaki, Hirokuni; Okumura, Kazue

    2007-01-01

    The dynamic insertion characteristics of the control rods for the boiling water reactors under the seismic excitation are investigated using non-linear analytical models. The control rod insertion capability is one of the most important items for the safety of nuclear power plants under the seismic events. Predicting the control rod insertion behavior during the earthquake is important in the course of the control rod seismic design. We developed the analytical models using the finite element method (FEM). The effect of the interaction force between the control rod and the fuel assemblies is considered in the non-linear analysis. This interaction force courses the resistance force to the control rod during its insertion behavior. The validity of analytical methods was confirmed by comparing the analytical results with the experimental ones. Using the analytical models, the effects of input seismic motion and structural parameters of the control rods and the fuel assemblies, such as the thickness of the channel box, on the insertion time are investigated. These analytical methods can predict insertion time of the control rod, and are useful for the seismic design of the control rod assemblies. (author)

  4. Integrated system for seismic evaluations

    International Nuclear Information System (INIS)

    Xu, J.; Philippacopoulos, A.J.; Miller, C.A.; Costantino, C.J.; Graves, H.

    1989-01-01

    This paper describes the various features of the Seismic Module of the CARES system (Computer Analysis for Rapid Evaluation of Structures). This system was developed by Brookhaven National Laboratory (BNL) for the US Nuclear Regulatory Commission to perform rapid evaluations of structural behavior and capability of nuclear power plant facilities. The CARES is structured in a modular format. Each module performs a specific type of analysis i.e., static or dynamic, linear or nonlinear, etc. This paper describes the features of the Seismic Module in particular. The development of the Seismic Module of the CARES system is based on an approach which incorporates all major aspects of seismic analysis currently employed by the industry into an integrated system that allows for carrying out interactively computations of structural response to seismic motions. The code operates on a PC computer system and has multi-graphics capabilities. It has been designed with user friendly features and it allows for interactive manipulation of various analysis phases during the seismic design process. The capabilities of the seismic module include (a) generation of artificial time histories compatible with given design ground response spectra, (b) development of Power Spectral Density (PSD) functions associated with the seismic input, (c) deconvolution analysis using vertically propagating shear waves through a given soil profile, and (d) development of in-structure response spectra or corresponding PSD's. It should be pointed out that these types of analyses can also be performed individually by using available computer codes such as FLUSH, SAP, etc. The uniqueness of the CARES, however, lies on its ability to perform all required phases of the seismic analysis in an integrated manner. 5 refs., 6 figs

  5. Bedload transport from spectral analysis of seismic noise near rivers

    Science.gov (United States)

    Hsu, L.; Finnegan, N. J.; Brodsky, E. E.

    2010-12-01

    Channel change in rivers is driven by bedload sediment transport. However, the nonlinear nature of sediment transport combined with the difficulty of making direct observations in rivers at flood hinder prediction of the timing and magnitude of bedload movement. Recent studies have shown that spectral analysis of seismic noise from seismometers near rivers illustrate a correlation between the relative amplitude of high frequency (>1 Hz) seismic noise and conditions for bedload transport, presumably from the energy transferred from clast collisions with the channel. However, a previous study in the Himalayas did not contain extensive bedload transport or discharge measurements, and the correspondence of seismic noise with proxy variables such as regional hydrologic and meteorologic data was not exact. A more complete understanding of the relationship between bedload transport and seismic noise would be valuable for extending the spatial and temporal extent of bedload data. To explore the direct relationship between bedload transport and seismic noise, we examine data from several seismic stations near the Trinity River in California, where the fluvial morphodynamics and bedload rating curves have been studied extensively. We compare the relative amplitude of the ambient seismic noise with records of water discharge and sediment transport. We also examine the noise at hourly, daily, and seasonal timescales to determine other possible sources of noise. We report the influence of variables such as local river slope, adjacent geology, anthropogenic noise, and distance from the river. The results illustrate the feasibility of using existing seismic arrays to sense radiated energy from processes of bedload transport. In addition, the results can be used to design future seismic array campaigns to optimize information about bedload transport. This technique provides great spatial and temporal coverage, and can be performed where direct bedload measurements are difficult or

  6. Atlas of Wenchuan-Earthquake Geohazards : Analysis of co-seismic and post-seismic Geohazards in the area affected by the 2008 Wenchuan Earthquake

    NARCIS (Netherlands)

    Tang, Chuan; van Westen, C.J.

    2018-01-01

    This atlas provides basic information and overviews of the occurrence of co-seismic landslides, the subsequent rainstorm-induced debris flows, and the methods used for hazard and risk assessment in the Wenchuan-earthquake affected area. The atlas pages are illustrated with maps, photos and graphs,

  7. Seismic analysis of spent nuclear fuel storage racks

    International Nuclear Information System (INIS)

    Shah, S.J.; Biddle, J.R.; Bennett, S.M.; Schechter, C.B.; Harstead, G.A.; Marquet, F.

    1996-01-01

    In many nuclear power plants, existing storage racks are being replaced with high-density racks to accommodate the increasing inventory of spent fuel. In the hypothetical design considered here, the high-density arrangement of fuel assemblies, or consolidated fuel canisters, is accomplished through the use of borated stainless steel (BSS) plates acting as neutron absorbers. No structural benefit from the BSS is assumed. This paper describes the methods used to perform seismic analysis of high density spent fuel storage racks. The sensitivity of important parameters such as the effect of variation of coefficients of friction between the rack legs and the pool floor and fuel loading conditions (consolidated and unconsolidated) are also discussed in the paper. Results of this study are presented. The high-density fuel racks are simply supported by the pool floor with no structural connections to adjacent racks or to the pool walls or floor. Therefore, the racks are free standing and may slide and tip. Several time history, nonlinear, seismic analyses are required to account for variations in the coefficient of friction, rack loading configuration, and the type of the seismic event. This paper presents several of the mathematical models usually used. Friction cannot be precisely predicted, so a range of friction coefficients is assumed. The range assumed for the analysis is 0.2 to 0.8. A detailed model representing a single rack is used to evaluate the 3-D loading effects. This model is a controlling case for the stress analysis. A 2-D multi-rack model representing a row of racks between the spent fuel pool walls is used to evaluate the change in gaps between racks. The racks are normally analyzed for the fuel loading conditions of consolidated, full, empty, and half-loaded with fuel assemblies

  8. Application of thermodynamics-based rate-dependent constitutive models of concrete in the seismic analysis of concrete dams

    Directory of Open Access Journals (Sweden)

    Leng Fei

    2008-09-01

    Full Text Available This paper discusses the seismic analysis of concrete dams with consideration of material nonlinearity. Based on a consistent rate-dependent model and two thermodynamics-based models, two thermodynamics-based rate-dependent constitutive models were developed with consideration of the influence of the strain rate. They can describe the dynamic behavior of concrete and be applied to nonlinear seismic analysis of concrete dams taking into account the rate sensitivity of concrete. With the two models, a nonlinear analysis of the seismic response of the Koyna Gravity Dam and the Dagangshan Arch Dam was conducted. The results were compared with those of a linear elastic model and two rate-independent thermodynamics-based constitutive models, and the influences of constitutive models and strain rate on the seismic response of concrete dams were discussed. It can be concluded from the analysis that, during seismic response, the tensile stress is the control stress in the design and seismic safety evaluation of concrete dams. In different models, the plastic strain and plastic strain rate of concrete dams show a similar distribution. When the influence of the strain rate is considered, the maximum plastic strain and plastic strain rate decrease.

  9. Performances of the UNDERground SEISmic array for the analysis of seismicity in Central Italy

    Directory of Open Access Journals (Sweden)

    R. Scarpa

    2006-06-01

    Full Text Available This paper presents the first results from the operation of a dense seismic array deployed in the underground Physics Laboratories at Gran Sasso (Central Italy. The array consists of 13 short-period, three-component seismometers with an aperture of about 550 m and average sensor spacing of 90 m. The reduced sensor spacing, joined to the spatially-white character of the background noise allows for quick and reliable detection of coherent wavefront arrivals even under very poor SNR conditions. We apply high-resolution frequency-slowness and polarization analyses to a set of 27 earthquakes recorded between November, 2002, and September, 2003, at epicentral distances spanning the 20-140 km interval. We locate these events using inversion of P- and S-wave backazimuths and S-P delay times, and compare the results with data from the Centralized National Seismic Network catalog. For the case of S-wave, the discrepancies among the two set of locations never exceed 10 km; the largest errors are instead observed for the case of P-waves. This observation may be due to the fact that the small array aperture does not allow for robust assessment of waves propagating at high apparent velocities. This information is discussed with special reference to the directions of future studies aimed at elucidating the location of seismogenetic structures in Central Italy from extended analysis of the micro-seismicity.

  10. An alternative approach to probabilistic seismic hazard analysis in the Aegean region using Monte Carlo simulation

    Science.gov (United States)

    Weatherill, Graeme; Burton, Paul W.

    2010-09-01

    The Aegean is the most seismically active and tectonically complex region in Europe. Damaging earthquakes have occurred here throughout recorded history, often resulting in considerable loss of life. The Monte Carlo method of probabilistic seismic hazard analysis (PSHA) is used to determine the level of ground motion likely to be exceeded in a given time period. Multiple random simulations of seismicity are generated to calculate, directly, the ground motion for a given site. Within the seismic hazard analysis we explore the impact of different seismic source models, incorporating both uniform zones and distributed seismicity. A new, simplified, seismic source model, derived from seismotectonic interpretation, is presented for the Aegean region. This is combined into the epistemic uncertainty analysis alongside existing source models for the region, and models derived by a K-means cluster analysis approach. Seismic source models derived using the K-means approach offer a degree of objectivity and reproducibility into the otherwise subjective approach of delineating seismic sources using expert judgment. Similar review and analysis is undertaken for the selection of peak ground acceleration (PGA) attenuation models, incorporating into the epistemic analysis Greek-specific models, European models and a Next Generation Attenuation model. Hazard maps for PGA on a "rock" site with a 10% probability of being exceeded in 50 years are produced and different source and attenuation models are compared. These indicate that Greek-specific attenuation models, with their smaller aleatory variability terms, produce lower PGA hazard, whilst recent European models and Next Generation Attenuation (NGA) model produce similar results. The Monte Carlo method is extended further to assimilate epistemic uncertainty into the hazard calculation, thus integrating across several appropriate source and PGA attenuation models. Site condition and fault-type are also integrated into the hazard

  11. From Seismic Scenarios to Earthquake Risk Assessment: A Case Study for Iquique, Chile.

    Science.gov (United States)

    Aguirre, P.; Fortuno, C.; Martin, J. C. D. L. L.; Vasquez, J.

    2015-12-01

    Iquique is a strategic city and economic center in northern Chile, and is located in a large seismic gap where a megathrust earthquake and tsunami is expected. Although it was hit by a Mw 8.2 earthquake on April 1st 2014, which caused moderate damage, geophysical evidence still suggests that there is potential for a larger event, so a thorough risk assessment is key to understand the physical, social, and economic effects of such potential event, and devise appropriate mitigation plans. Hence, Iquique has been selected as a prime study case for the implementation of a risk assessment platform in Chile. Our study integrates research on three main elements of risk calculations: hazard evaluation, exposure model, and physical vulnerabilities. To characterize the hazard field, a set of synthetic seismic scenarios have been developed based on plate interlocking and the residual slip potential that results from subtracting the slip occurred during the April 1st 2014 rupture fault mechanism, obtained using InSAR+GPS inversion. Additional scenarios were developed based of the fault rupture model of the Maule 2010 Mw 8.8 earthquake and on the local plate locking models in northern Chile. These rupture models define a collection of possible realizations of earthquake geometries parameterized in terms of critical variables like slip magnitude, rise time, mean propagation velocity, directivity, and other, which are propagated to obtain a hazard map for Iquique (e.g. PGA, PGV, PDG). Furthermore, a large body of public and local data was used to construct a detailed exposure model for Iquique, including aggregated building count, demographics, essential facilities, and lifelines. This model together with the PGA maps for the April 1st 2014 earthquake are used to calibrate HAZUS outputs against observed damage, and adjust the fragility curves of physical systems according to more detailed analyses of typical Chilean building types and their structural properties, plus historical

  12. Dynamics of the Oso-Steelhead landslide from broadband seismic analysis

    Science.gov (United States)

    Hibert, C.; Stark, C. P.; Ekström, G.

    2015-06-01

    We carry out a combined analysis of the short- and long-period seismic signals generated by the devastating Oso-Steelhead landslide that occurred on 22 March 2014. The seismic records show that the Oso-Steelhead landslide was not a single slope failure, but a succession of multiple failures distinguished by two major collapses that occurred approximately 3 min apart. The first generated long-period surface waves that were recorded at several proximal stations. We invert these long-period signals for the forces acting at the source, and obtain estimates of the first failure runout and kinematics, as well as its mass after calibration against the mass-centre displacement estimated from remote-sensing imagery. Short-period analysis of both events suggests that the source dynamics of the second event is more complex than the first. No distinct long-period surface waves were recorded for the second failure, which prevents inversion for its source parameters. However, by comparing the seismic energy of the short-period waves generated by both events we are able to estimate the volume of the second. Our analysis suggests that the volume of the second failure is about 15-30% of the total landslide volume, giving a total volume mobilized by the two events between 7 × 106 and 10 × 106 m3, in agreement with estimates from ground observations and lidar mapping.

  13. Uncertainty analysis in seismic tomography

    Science.gov (United States)

    Owoc, Bartosz; Majdański, Mariusz

    2017-04-01

    Velocity field from seismic travel time tomography depends on several factors like regularization, inversion path, model parameterization etc. The result also strongly depends on an initial velocity model and precision of travel times picking. In this research we test dependence on starting model in layered tomography and compare it with effect of picking precision. Moreover, in our analysis for manual travel times picking the uncertainty distribution is asymmetric. This effect is shifting the results toward faster velocities. For calculation we are using JIVE3D travel time tomographic code. We used data from geo-engineering and industrial scale investigations, which were collected by our team from IG PAS.

  14. SHAKING TABLE TEST AND EFFECTIVE STRESS ANALYSIS ON SEISMIC PERFORMANCE WITH SEISMIC ISOLATION RUBBER TO THE INTERMEDIATE PART OF PILE FOUNDATION IN LIQUEFACTION

    Science.gov (United States)

    Uno, Kunihiko; Otsuka, Hisanori; Mitou, Masaaki

    The pile foundation is heavily damaged at the boundary division of the ground types, liquefied ground and non-liquefied ground, during an earthquake and there is a possibility of the collapse of the piles. In this study, we conduct a shaking table test and effective stress analysis of the influence of soil liquefaction and the seismic inertial force exerted on the pile foundation. When the intermediate part of the pile, there is at the boundary division, is subjected to section force, this part increases in size as compared to the pile head in certain instances. Further, we develop a seismic resistance method for a pile foundation in liquefaction using seismic isolation rubber and it is shown the middle part seismic isolation system is very effective.

  15. Observational studies in South African mines to mitigate seismic risks: a mid-project progress report

    CSIR Research Space (South Africa)

    Durrheim, RJ

    2013-10-01

    Full Text Available such as Japan. A 5-year collaborative project entitled "Observational studies in South African mines to mitigate seismic risks" was launched in 2010 to address these risks, drawing on over a century of South African and Japanese research experience... network in the mining districts. Figure 1. Schematic illustration of the research design. Jpn - Japanese researchers; CSIR - Council for Scientific and Industrial Research; CGS - Council for Geoscience The knowledge gained during the course...

  16. Seismic analysis of long tunnels: A review of simplified and unified methods

    Directory of Open Access Journals (Sweden)

    Haitao Yu

    2017-06-01

    Full Text Available Seismic analysis of long tunnels is important for safety evaluation of the tunnel structure during earthquakes. Simplified models of long tunnels are commonly adopted in seismic design by practitioners, in which the tunnel is usually assumed as a beam supported by the ground. These models can be conveniently used to obtain the overall response of the tunnel structure subjected to seismic loading. However, simplified methods are limited due to the assumptions that need to be made to reach the solution, e.g. shield tunnels are assembled with segments and bolts to form a lining ring and such structural details may not be included in the simplified model. In most cases, the design will require a numerical method that does not have the shortcomings of the analytical solutions, as it can consider the structural details, non-linear behavior, etc. Furthermore, long tunnels have significant length and pass through different strata. All of these would require large-scale seismic analysis of long tunnels with three-dimensional models, which is difficult due to the lack of available computing power. This paper introduces two types of methods for seismic analysis of long tunnels, namely simplified and unified methods. Several models, including the mass-spring-beam model, and the beam-spring model and its analytical solution are presented as examples of the simplified method. The unified method is based on a multiscale framework for long tunnels, with coarse and refined finite element meshes, or with the discrete element method and the finite difference method to compute the overall seismic response of the tunnel while including detailed dynamic response at positions of potential damage or of interest. A bridging scale term is introduced in the framework so that compatibility of dynamic behavior between the macro- and meso-scale subdomains is enforced. Examples are presented to demonstrate the applicability of the simplified and the unified methods.

  17. Seismic analysis and structure capacity evaluation of the Belene nuclear power plant

    International Nuclear Information System (INIS)

    Johnson, J.J.; Hashimoto, P.S.; Campbell, R.D.; Baltus, R.S.

    1993-01-01

    The seismic analysis and structure capacity evaluation of the Belene Nuclear Power Plant, a two-unit WWER 1000, was performed. The principal objective of the study was to review the major aspects of the seismic design including ground motion specification, foundation concept and materials, and the Unit I main reactor building structure response and capacity. The main reactor building structure /foundation/soil were modeled and analyzed by a substructure approach to soil-structure interaction (SSI) analysis. The elements of the substructure approach, implemented in the family of computer programs CLASSI, are: Specification of the free-field ground motion; Modeling the soil profile; SSI parameters; Modeling the structure; SSI-response analyses. Each of these aspects is discussed. The Belene Unit 1 main reactor building structure was evaluated to verify the seismic design with respect to current western criteria. The structural capacity evaluation included criteria development, element load distribution analysis, structural element selection, and structural element capacity evaluation. Equipment and commodity design criteria were similarly reviewed and evaluated. Methodology results and recommendations are presented. (author)

  18. Implementation guidelines for seismic PSA

    International Nuclear Information System (INIS)

    Coman, Ovidiu; Samaddar, Sujit; Hibino, Kenta; )

    2014-01-01

    The presentation was devoted to development of guidelines for implementation of a seismic PSA. If successful, these guidelines can close an important gap. ASME/ANS PRA standards and the related IAEA Safety Guide (IAEA NS-G-2.13) describe capability requirements for seismic PSA in order to support risk-informed applications. However, practical guidance on how to meet these requirements is limited. Such guidelines could significantly contribute to improving risk-informed safety demonstration, safety management and decision making. Extensions of this effort to further PSA areas, particularly to PSA for other external hazards, can enhance risk-informed applications

  19. HANFORD DOUBLE-SHELL TANK THERMAL and SEISMIC PROJECT. DYTRAN ANALYSIS OF SEISMICALLY INDUCED FLUID-STRUCTURE INTERACTION IN A HANFORD DOUBLE-SHELL PRIMARY TANK

    International Nuclear Information System (INIS)

    MACKEY, T.C.

    2006-01-01

    M and D Professional Services, Inc. (M and D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS'. The global model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but has more limited capabilities for fluid-structure interaction analysis. The purpose of this study is to demonstrate the capabilities and investigate the limitations of the finite element code MSC.Dytranz for performing a dynamic fluid-structure interaction analysis of the primary tank and contained waste. To this end, the Dytran solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions to similar problems, and to the results from ANSYS simulations. Both rigid tank and flexible tank configurations were analyzed with Dytran. The response parameters of interest that are evaluated in this study are the total hydrodynamic reaction forces, the impulsive and convective mode frequencies, the waste pressures, and slosh

  20. Building an educational seismic network in Romanian schools

    Science.gov (United States)

    Zaharia, Bogdan; Tataru, Dragos; Grecu, Bogdan; Ionescu, Constantin; Bican-Brisan, Nicoleta; Neagoe, Cristian

    2014-05-01

    Understanding the earthquake phenomena and their effects is an important step toward the education of population and aims to raise the awareness about the earthquake risk and possible mitigation actions. In this sense, The Romanian Educational Seismic Network project represents an efficient communication tool, allowing teaching and learning about the earthquakes and seismic wave impact through experimental practices and educational activities. The seismic network consist of nine SEP seismometers installed in high-schools from the most important seismic areas (Vrancea, Banat, Făgăraş, Dobrogea), vulnerable cities (Bucharest, Iasi) or high populated places (Cluj, Sibiu, Timisoara, Zalău) and is coordinated by the National Institute of Earth Physics from Bucharest. Once installed, the seismic network is the starting point of activities for students through an e-learning platform. Some objectives are aimed: - To train students and teachers how to make analysis and interpretation of seismological data; - To make science more interesting for students; - To improve the participation rates in physical sciences for students; - To raise awareness of geoscience as a scientific discipline for pre-university students; - To promote the installation and effective use of educational seismographs and seismic data; - To reinforce and develop relationships between participating schools and research institutes; - To create an earthquake database this will be used by students and teachers for educational purposes. Different types of practical activities using educational seismometer, designed by researchers for students, are described in educational materials and in the web platform project. Also we encourage the teachers from the participating schools to share their experiences and produce new didactic tools for the classroom. This collaborative work could illustrate the conjugated efforts of researchers and teachers for a better education and awareness of the risk culture

  1. Temblor, an app focused on your seismic risk and how to reduce it

    Science.gov (United States)

    Stein, R. S.; Sevilgen, V.; Sevilgen, S.; Kim, A.; Madden, E.

    2015-12-01

    Half of the world's population lives near active faults, and so could suffer earthquake damage. Most do not know they are at risk; many of the rest do too little, too late. So, Temblor is intended to enable everyone in the United States, and eventually the world, to learn their seismic hazard, to determine what most ensures their safety, and to determine the risk reduction measures in their best financial interest. In our free web and mobile app, and Chrome extension for real estate websites, Temblor estimates the likelihood of seismic shaking from all quakes at their occurrence rates, and the consequences of the shaking for home damage. The app then shows how the damage or its costs could be decreased by buying or renting a seismically safer home, securing fragile objects inside your home, retrofitting an older home, or buying earthquake insurance. Temblor uses public data from the USGS in the U.S., SHARE in Europe, and the GEAR model (Bird et al, in press, BSSA) for the globe. Through publicly available modeling methods, the hazard data is combined with public data on homes (construction date and square footage) to make risk calculations. This means that Temblor's results are independently reproducible. The app makes many simplifying assumptions, but users can provide additional information on their site and home for refined estimates. Temblor also lets one see active faults and recent quakes on the screen as they drive through an area. Because fear tends to trigger either panic or denial, Temblor seeks to make the world of earthquakes more fascinating than frightening. We are neither scaring nor soothing people, but rather talking straight. Through maps, globes, push notifications, family connections, and costs and benefit estimates, Temblor emphasizes the personal, local, realtime, and most importantly, rational. Temblor's goal is to distill scientific and engineering information into lucid, trusted, and ideally actionable guidance to renters, home owners, and

  2. Seismic margin analysis for Kashiwazaki Kariwa ABWR plant considering the Niigataken Chuetsu-oki earthquake

    International Nuclear Information System (INIS)

    Matsuo, Toshihiro; Nagasawa, Kazuyuki; Kawamura, Shinichi; Ueki, Takashi; Higuchi, Tomokazu; Sakaki, Isao

    2009-01-01

    Seismic Margin Analysis (SMA) study was conducted for Kashiwazaki Kariwa (KK) ABWR representative plant (unit 6). Considering that the installation behaved in a safe manner during and after the Niigataken Chuetsu-oki (NCO) Earthquake which significantly exceeded the level of the seismic input taken into account in the design of the plant, the study to find out how much margin the ABWR plant had toward the same seismic motion was conducted. In this study fragility analyses were conducted for SSCs that were included in the accident sequences and that were considered to have relatively small margin taking EPRI margin analysis method into consideration. In order to calculate plant level seismic margin Min-Max method was adopted. As the result of this study, the plant level High Confidence Low Probability of Failure (HCLPF) acceleration for unit 6 was calculated more than tripled NCO earthquake motion. (author)

  3. Further assessment of seismic hazard/risk in the Bushveld Complex platinum mines and the implication for regional and local support design.

    CSIR Research Space (South Africa)

    Brink, AVZ

    2002-03-01

    Full Text Available Final Project Report Further assessment of seismic hazard/risk in the Bushveld Complex platinum mines and the implication for regional and local support design. A.v.Z Brink, M.K.C. Roberts, S.M Spottiswoode Research Agency: CSIR: Division of Mining... on the VCR. An industry workshop on local support requirements in areas of higher seismic risk resulted in the specification of support requirements. A maximum design parameter for yielding support in terms of the ground motion velocity is 1 m...

  4. Object Classification Based on Analysis of Spectral Characteristics of Seismic Signal Envelopes

    Science.gov (United States)

    Morozov, Yu. V.; Spektor, A. A.

    2017-11-01

    A method for classifying moving objects having a seismic effect on the ground surface is proposed which is based on statistical analysis of the envelopes of received signals. The values of the components of the amplitude spectrum of the envelopes obtained applying Hilbert and Fourier transforms are used as classification criteria. Examples illustrating the statistical properties of spectra and the operation of the seismic classifier are given for an ensemble of objects of four classes (person, group of people, large animal, vehicle). It is shown that the computational procedures for processing seismic signals are quite simple and can therefore be used in real-time systems with modest requirements for computational resources.

  5. Education and Raising Awareness of Seismic Risk in the Black Sea Basin

    Science.gov (United States)

    Florin Balan, Stefan; Alcaz, Vasile; Trifonova, Petya; Uker, Nalan; Tataru, Dragos

    2014-05-01

    The Project "Black Sea Earthquake Safety Net(work)" ESNET has the intention to educate and raise awareness of seismic risk in the Black Sea Basin in four countries: Moldova, Romania, Bulgaria and Turkey. The project is financed through "The Black Sea Basin Joint Operational Programme", an EU operational programmes under European Neighborhood & Partnership Instrument (ENPI). The programme is financed by ENPI. The participation of Turkey is financed by Instrument for Pre-accession Assistance. It is implemented during the period 2007 - 2013. The project wants to contribute to the prevention of natural disasters generated by earthquakes in Black Sea Basin by developing a joint monitoring and intervention concept. All the countries involved in the project have their own studies, strategies, prevention and intervention systems in case of earthquakes, but until now there has not been an integrated approach so far in the Black Sea Basin. Given the cross-border character of seismic activity, it is necessary to have a cross-border approach on prevention, monitoring and intervention in case of earthquakes. Main objectives : 1. The assessment of the disaster potential, with accent on the seismic risk degree and the earthquakes effects in the intervention area. For achieving the main objective is to have an accurate and up-to-date assessment of the potential of disasters provoked by earthquakes in the project area/regions. This assessment will be carried out at national level and will be used in designing the common concept/approach for dealing with earthquakes at regional level, thus ensuring the cross-border character of the objective. 2.To develop an integrated seismic monitoring and intervention concept. This integrated concept, built on the basis of the previous objective, will have a cross-border relevance and is at the core of the action. The monitoring and intervention in case of earthquakes will be coordinated among the participating countries based on this, thus a

  6. Summary report of seismic PSA of BWR model plant

    International Nuclear Information System (INIS)

    1999-05-01

    This report presents a seismic PSA (Probabilistic Safety Assessment) methodology developed at the Japan Atomic Energy Research Institute (JAERI) for evaluating risks of nuclear power plants (NPPs) and the results from an application of the methodology to a BWR plant in Japan, which is termed Model Plant'. The seismic PSA procedures developed at JAERI are to evaluate core damage frequency (CDF) and have the following four steps: (1) evaluation of seismic hazard, (2) evaluation of realistic response, (3) evaluation of component capacities and failure probabilities, and (4) evaluation of conditional probability of system failure and CDF. Although these procedures are based on the methodologies established and used in the United States, they include several unique features: (1) seismic hazard analysis is performed with use of available knowledge and database on seismological conditions in Japan; (2) response evaluation is performed with a response factor method which is cost effective and associated uncertainties can be reduced with use of modern methods of design calculations; (3) capacity evaluation is performed with use of test results available in Japan in combination with design information and generic capacity data in the U.S.A.; (4) systems reliability analysis, performed with use of the computer code SECOM-2 developed at JAERI, includes identification of dominant accident sequences, importance analysis of components and systems as well as the CDF evaluation with consideration of the effect of correlation of failures by a newly developed method based on the Monte Carlo method. The effect of correlation has been recognized as an important issue in seismic PSAs. The procedures was used to perform a seismic PSA of a 1100 MWe BWR plant. Results are shown as well as the insights derived and future research needs identified in this seismic PSA. (J.P.N.)

  7. Uncertainty analysis of depth predictions from seismic reflection data using Bayesian statistics

    Science.gov (United States)

    Michelioudakis, Dimitrios G.; Hobbs, Richard W.; Caiado, Camila C. S.

    2018-06-01

    Estimating the depths of target horizons from seismic reflection data is an important task in exploration geophysics. To constrain these depths we need a reliable and accurate velocity model. Here, we build an optimum 2-D seismic reflection data processing flow focused on pre-stack deghosting filters and velocity model building and apply Bayesian methods, including Gaussian process emulation and Bayesian History Matching, to estimate the uncertainties of the depths of key horizons near the Deep Sea Drilling Project (DSDP) borehole 258 (DSDP-258) located in the Mentelle Basin, southwest of Australia, and compare the results with the drilled core from that well. Following this strategy, the tie between the modelled and observed depths from DSDP-258 core was in accordance with the ±2σ posterior credibility intervals and predictions for depths to key horizons were made for the two new drill sites, adjacent to the existing borehole of the area. The probabilistic analysis allowed us to generate multiple realizations of pre-stack depth migrated images, these can be directly used to better constrain interpretation and identify potential risk at drill sites. The method will be applied to constrain the drilling targets for the upcoming International Ocean Discovery Program, leg 369.

  8. Model Solutions for Performance-Based Seismic Analysis of an Anchored Sheet Pile Quay Wall

    NARCIS (Netherlands)

    Habets, C.J.W.; Peters, D.J.; de Gijt, J.G.; Metrikine, A.; Jonkman, S.N.

    2016-01-01

    Conventional seismic designs of quay walls in ports are mostly based on pseudo-static analysis. A more advanced alternative is the Performance-Based Design (PBD) method, which evaluates permanent deformations and amounts of (repairable) damage under seismic loading. The aim of this study is to

  9. Seismic analysis of the mirror fusion test facility shielding vault

    International Nuclear Information System (INIS)

    Gabrielsen, B.L.; Tsai, K.

    1981-04-01

    This report presents a seismic analysis of the vault in Building 431 at Lawrence Livermore National Laboratory which houses the mirror Fusion Test Facility. The shielding vault structure is approximately 120 ft long by 80 ft wide and is constructed of concrete blocks approximately 7 x 7 x 7 ft. The north and south walls are approximately 53 ft high and the east wall is approximately 29 ft high. These walls are supported on a monolithic concrete foundation that surrounds a 21-ft deep open pit. Since the 53-ft walls appeared to present the greatest seismic problem they were the first investigated

  10. Model Solutions for Performance-Based Seismic Analysis of an Anchored Sheet Pile Quay Wall

    OpenAIRE

    C. J. W. Habets; D. J. Peters; J. G. de Gijt; A. V. Metrikine; S. N. Jonkman

    2016-01-01

    Conventional seismic designs of quay walls in ports are mostly based on pseudo-static analysis. A more advanced alternative is the Performance-Based Design (PBD) method, which evaluates permanent deformations and amounts of (repairable) damage under seismic loading. The aim of this study is to investigate the suitability of this method for anchored sheet pile quay walls that were not purposely designed for seismic loads. A research methodology is developed in which pseudo-static, permanent-di...

  11. Analysis of Seismic Soil-Structure Interaction for a Nuclear Power Plant (HTR-10

    Directory of Open Access Journals (Sweden)

    Xiaoxin Wang

    2017-01-01

    Full Text Available The response of nuclear power plants (NPPs to seismic events is affected by soil-structure interactions (SSI. In the present paper, a finite element (FE model with transmitting boundaries is used to analyse the SSI effect on the response of NPP buildings subjected to vertically incident seismic excitation. Analysis parameters that affect the accuracy of the calculations, including the dimension of the domain and artificial boundary types, are investigated through a set of models. A numerical SSI analysis for the 10 MW High Temperature Gas Cooled Test Reactor (HTR-10 under seismic excitation was carried out using the developed model. The floor response spectra (FRS produced by the SSI analysis are compared with a fixed-base model to investigate the SSI effect on the dynamic response of the reactor building. The results show that the FRS at foundation level are reduced and those at higher floor levels are altered significantly when taking SSI into account. The peak frequencies of the FRS are reduced due to the SSI, whereas the acceleration at high floor levels is increased at a certain frequency range. The seismic response of the primary system components, however, is reduced by the analysed SSI for the HTR-10 on the current soil site.

  12. Integrated system for seismic evaluations

    International Nuclear Information System (INIS)

    Xu, J.; Philippacopoulos, A.J.; Miller, C.A.; Costantino, C.J.; Graves, H.

    1989-01-01

    This paper describes the various features of the seismic module of the CARES system (computer analysis for rapid evaluation of structures). This system was developed to perform rapid evaluations of structural behavior and capability of nuclear power plant facilities. The CARES is structural in a modular format. Each module performs a specific type of analysis i.e., static or dynamic, linear or nonlinear, etc. This paper describes the features of the seismic module in particular. The development of the seismic modules of the CARES system is based on an approach which incorporates major aspects of seismic analysis currently employed by the industry into an integrated system that allows for carrying out interactively computations of structural response to seismic motions. The code operates on a PC computer system and has multi-graphics capabilities

  13. Simulation-based seismic loss estimation of seaport transportation system

    International Nuclear Information System (INIS)

    Ung Jin Na; Shinozuka, Masanobu

    2009-01-01

    Seaport transportation system is one of the major lifeline systems in modern society and its reliable operation is crucial for the well-being of the public. However, past experiences showed that earthquake damage to port components can severely disrupt terminal operation, and thus negatively impact on the regional economy. The main purpose of this study is to provide a methodology for estimating the effects of the earthquake on the performance of the operation system of a container terminal in seaports. To evaluate the economic loss of damaged system, an analytical framework is developed by integrating simulation models for terminal operation and fragility curves of port components in the context of seismic risk analysis. For this purpose, computerized simulation model is developed and verified with actual terminal operation records. Based on the analytical procedure to assess the seismic performance of the terminal, system fragility curves are also developed. This simulation-based loss estimation methodology can be used not only for estimating the seismically induced revenue loss but also serve as a decision-making tool to select specific seismic retrofit technique on the basis of benefit-cost analysis

  14. Seismic hazard estimation based on the distributed seismicity in northern China

    Science.gov (United States)

    Yang, Yong; Shi, Bao-Ping; Sun, Liang

    2008-03-01

    In this paper, we have proposed an alternative seismic hazard modeling by using distributed seismicites. The distributed seismicity model does not need delineation of seismic source zones, and simplify the methodology of probabilistic seismic hazard analysis. Based on the devastating earthquake catalogue, we established three seismicity model, derived the distribution of a-value in northern China by using Gaussian smoothing function, and calculated peak ground acceleration distributions for this area with 2%, 5% and 10% probability of exceedance in a 50-year period by using three attenuation models, respectively. In general, the peak ground motion distribution patterns are consistent with current seismic hazard map of China, but in some specific seismic zones which include Shanxi Province and Shijiazhuang areas, our results indicated a little bit higher peak ground motions and zonation characters which are in agreement with seismicity distribution patterns in these areas. The hazard curves have been developed for Beijing, Tianjin, Taiyuan, Tangshan, and Ji’nan, the metropolitan cities in the northern China. The results showed that Tangshan, Taiyuan, Beijing has a higher seismic hazard than that of other cities mentioned above.

  15. Seismic Response Analysis and Test of 1/8 Scale Model for a Spent Fuel Storage Cask

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Han; Park, C. G.; Koo, G. H.; Seo, G. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yeom, S. H. [Chungnam Univ., Daejeon (Korea, Republic of); Choi, B. I.; Cho, Y. D. [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2005-07-15

    The seismic response tests of a spent fuel dry storage cask model of 1/8 scale are performed for an typical 1940 El-centro and Kobe earthquakes. This report firstly focuses on the data generation by seismic response tests of a free standing storage cask model to check the overturing possibility of a storage cask and the slipping displacement on concrete slab bed. The variations in seismic load magnitude and cask/bed interface friction are considered in tests. The test results show that the model gives an overturning response for an extreme condition only. A FEM model is built for the test model of 1/8 scale spent fuel dry storage cask using available 3D contact conditions in ABAQUS/Explicit. Input load for this analysis is El-centro earthquake, and the friction coefficients are obtained from the test result. Penalty and kinematic contact methods of ABAQUS are used for a mechanical contact formulation. The analysis methods was verified with the rocking angle obtained by seismic response tests. The kinematic contact method with an adequate normal contact stiffness showed a good agreement with tests. Based on the established analysis method for 1/8 scale model, the seismic response analyses of a full scale model are performed for design and beyond design seismic loads.

  16. SSI sensitivity studies and model improvements for the US NRC Seismic Safety Margins Research Program. Rev. 1

    International Nuclear Information System (INIS)

    Johnson, J.J.; Maslenikov, O.R.; Benda, B.J.

    1984-10-01

    The Seismic Safety Margins Research Program (SSMRP) is a US NRC-funded program conducted by Lawrence Livermore National Laboratory. Its goal is to develop a complete fully coupled analysis procedure for estimating the risk of an earthquake-induced radioactive release from a commercial nuclear power plant. In Phase II of the SSMRP, the methodology was applied to the Zion nuclear power plant. Three topics in the SSI analysis of Zion were investigated and reported here - flexible foundation modeling, structure-to-structure interaction, and basemat uplift. The results of these investigations were incorporated in the SSMRP seismic risk analysis. 14 references, 51 figures, 13 tables

  17. TREATING UNCERTAINTIES IN A NUCLEAR SEISMIC PROBABILISTIC RISK ASSESSMENT BY MEANS OF THE DEMPSTER-SHAFER THEORY OF EVIDENCE

    Directory of Open Access Journals (Sweden)

    CHUNG-KUNG LO

    2014-02-01

    Full Text Available The analyses carried out within the Seismic Probabilistic Risk Assessments (SPRAs of Nuclear Power Plants (NPPs are affected by significant aleatory and epistemic uncertainties. These uncertainties have to be represented and quantified coherently with the data, information and knowledge available, to provide reasonable assurance that related decisions can be taken robustly and with confidence. The amount of data, information and knowledge available for seismic risk assessment is typically limited, so that the analysis must strongly rely on expert judgments. In this paper, a Dempster-Shafer Theory (DST framework for handling uncertainties in NPP SPRAs is proposed and applied to an example case study. The main contributions of this paper are two: (i applying the complete DST framework to SPRA models, showing how to build the Dempster-Shafer structures of the uncertainty parameters based on industry generic data, and (ii embedding Bayesian updating based on plant specific data into the framework. The results of the application to a case study show that the approach is feasible and effective in (i describing and jointly propagating aleatory and epistemic uncertainties in SPRA models and (ii providing ‘conservative’ bounds on the safety quantities of interest (i.e. Core Damage Frequency, CDF that reflect the (limited state of knowledge of the experts about the system of interest.

  18. Real-time risk assessment in seismic early warning and rapid response: a feasibility study in Bishkek (Kyrgyzstan)

    Science.gov (United States)

    Picozzi, M.; Bindi, D.; Pittore, M.; Kieling, K.; Parolai, S.

    2013-04-01

    Earthquake early warning systems (EEWS) are considered to be an effective, pragmatic, and viable tool for seismic risk reduction in cities. While standard EEWS approaches focus on the real-time estimation of an earthquake's location and magnitude, innovative developments in EEWS include the capacity for the rapid assessment of damage. Clearly, for all public authorities that are engaged in coordinating emergency activities during and soon after earthquakes, real-time information about the potential damage distribution within a city is invaluable. In this work, we present a first attempt to design an early warning and rapid response procedure for real-time risk assessment. In particular, the procedure uses typical real-time information (i.e., P-wave arrival times and early waveforms) derived from a regional seismic network for locating and evaluating the size of an earthquake, information which in turn is exploited for extracting a risk map representing the potential distribution of damage from a dataset of predicted scenarios compiled for the target city. A feasibility study of the procedure is presented for the city of Bishkek, the capital of Kyrgyzstan, which is surrounded by the Kyrgyz seismic network by mimicking the ground motion associated with two historical events that occurred close to Bishkek, namely the 1911 Kemin ( M = 8.2; ±0.2) and the 1885 Belovodsk ( M = 6.9; ±0.5) earthquakes. Various methodologies from previous studies were considered when planning the implementation of the early warning and rapid response procedure for real-time risk assessment: the Satriano et al. (Bull Seismol Soc Am 98(3):1482-1494, 2008) approach to real-time earthquake location; the Caprio et al. (Geophys Res Lett 38:L02301, 2011) approach for estimating moment magnitude in real time; the EXSIM method for ground motion simulation (Motazedian and Atkinson, Bull Seismol Soc Am 95:995-1010, 2005); the Sokolov (Earthquake Spectra 161: 679-694, 2002) approach for estimating

  19. The analysis of historical seismograms: an important tool for seismic hazard assessment. Case histories from French and Italian earthquakes

    International Nuclear Information System (INIS)

    Pino, N.A.

    2011-01-01

    Seismic hazard assessment relies on the knowledge of the source characteristics of past earthquakes. Unfortunately, seismic waveform analysis, representing the most powerful tool for the investigation of earthquake source parameters, is only possible for events occurred in the last 100-120 years, i.e., since seismographs with known response function were developed. Nevertheless, during this time significant earthquakes have been recorded by such instruments and today, also thanks to technological progress, these data can be recovered and analysed by means of modern techniques. In this paper, aiming at giving a general sketch of possible analyses and attainable results in historical seismogram studies, I briefly describe the major difficulties in processing the original waveforms and present a review of the results that I obtained from previous seismogram analysis of selected significant historical earthquakes occurred during the first decades of the 20. century, including (A) the December 28, 1908, Messina straits (southern Italy), (B) the June 11, 1909, Lambesc (southern France) - both of which are the strongest ever recorded instrumentally in their respective countries - and (C) the July 13, 1930, Irpinia (southern Italy) events. For these earthquakes, the major achievements are represented by the assessment of the seismic moment (A, B, C), the geometry and kinematics of faulting (B, C), the fault length and an approximate slip distribution (A, C). The source characteristics of the studied events have also been interpreted in the frame of the tectonic environment active in the respective region of interest. In spite of the difficulties inherent to the investigation of old seismic data, these results demonstrate the invaluable and irreplaceable role of historical seismogram analysis in defining the local seismo-genic potential and, ultimately, for assessing the seismic hazard. The retrieved information is crucial in areas where important civil engineering works

  20. BNL NONLINEAR PRE TEST SEISMIC ANALYSIS FOR THE NUPEC ULTIMATE STRENGTH PIPING TEST PROGRAM

    International Nuclear Information System (INIS)

    DEGRASSI, G.; HOFMAYER, C.; MURPHY, C.; SUZUKI, K.; NAMITA, Y.

    2003-01-01

    The Nuclear Power Engineering Corporation (NUPEC) of Japan has been conducting a multi-year research program to investigate the behavior of nuclear power plant piping systems under large seismic loads. The objectives of the program are: to develop a better understanding of the elasto-plastic response and ultimate strength of nuclear piping; to ascertain the seismic safety margin of current piping design codes; and to assess new piping code allowable stress rules. Under this program, NUPEC has performed a large-scale seismic proving test of a representative nuclear power plant piping system. In support of the proving test, a series of materials tests, static and dynamic piping component tests, and seismic tests of simplified piping systems have also been performed. As part of collaborative efforts between the United States and Japan on seismic issues, the US Nuclear Regulatory Commission (USNRC) and its contractor, the Brookhaven National Laboratory (BNL), are participating in this research program by performing pre-test and post-test analyses, and by evaluating the significance of the program results with regard to safety margins. This paper describes BNL's pre-test analysis to predict the elasto-plastic response for one of NUPEC's simplified piping system seismic tests. The capability to simulate the anticipated ratcheting response of the system was of particular interest. Analyses were performed using classical bilinear and multilinear kinematic hardening models as well as a nonlinear kinematic hardening model. Comparisons of analysis results for each plasticity model against test results for a static cycling elbow component test and for a simplified piping system seismic test are presented in the paper

  1. Integrating population dynamics into mapping human exposure to seismic hazard

    Directory of Open Access Journals (Sweden)

    S. Freire

    2012-11-01

    Full Text Available Disaster risk is not fully characterized without taking into account vulnerability and population exposure. Assessment of earthquake risk in urban areas would benefit from considering the variation of population distribution at more detailed spatial and temporal scales, and from a more explicit integration of this improved demographic data with existing seismic hazard maps. In the present work, "intelligent" dasymetric mapping is used to model population dynamics at high spatial resolution in order to benefit the analysis of spatio-temporal exposure to earthquake hazard in a metropolitan area. These night- and daytime-specific population densities are then classified and combined with seismic intensity levels to derive new spatially-explicit four-class-composite maps of human exposure. The presented approach enables a more thorough assessment of population exposure to earthquake hazard. Results show that there are significantly more people potentially at risk in the daytime period, demonstrating the shifting nature of population exposure in the daily cycle and the need to move beyond conventional residence-based demographic data sources to improve risk analyses. The proposed fine-scale maps of human exposure to seismic intensity are mainly aimed at benefiting visualization and communication of earthquake risk, but can be valuable in all phases of the disaster management process where knowledge of population densities is relevant for decision-making.

  2. Seismic analysis of the safety related piping and PCLS of the WWER-440 NPP

    International Nuclear Information System (INIS)

    Berkovski, A.M.; Kostarev, V.V.; Schukin, A.J.; Boiadjiev, Z.; Kostov, M.

    2001-01-01

    This paper presents the results of seismic analysis of Safety Related Piping Systems of the typical WWER-440 NPP. The methodology of this analysis is based on WANO Terms of Reference and ASME BPVC. The different possibilities for seismic upgrading of Primary Coolant Loop System (PCLS) were considered. The first one is increasing of hydraulic snubber units and the second way is installation of limited number of High Viscous Dampers (HVD). (author)

  3. Application on technique of joint time-frequency analysis of seismic signal's first arrival estimation

    International Nuclear Information System (INIS)

    Xu Chaoyang; Liu Junmin; Fan Yanfang; Ji Guohua

    2008-01-01

    Joint time-frequency analysis is conducted to construct one joint density function of time and frequency. It can open out one signal's frequency components and their evolvements. It is the new evolvement of Fourier analysis. In this paper, according to the characteristic of seismic signal's noise, one estimation method of seismic signal's first arrival based on triple correlation of joint time-frequency spectrum is introduced, and the results of experiment and conclusion are presented. (authors)

  4. Assessment of NPP safety taking into account seismic and engineering-geological factors

    International Nuclear Information System (INIS)

    Yakovlev, E.A.

    1990-01-01

    Consideration is given to the problem of probabilistic analysis of NPP safety with account of risk of destructive effect of earthquakes and the danger of accidental geological processes (diapirism, karst etc.) under NPP operation. It is shown that account of seismic and engineering-geological (engineering-seismological) risk factors in probabilistic analysis of safety enables to perform anticipatory analysis of behaviour of principle plant objects and to improve safety of their operation by revealing the most unstable elements of geotechnical system forming the main contribution to the total NPP risk

  5. Seismic history of the Maltese islands and considerations on seismic risk

    Directory of Open Access Journals (Sweden)

    P. Galea

    2007-06-01

    Full Text Available A historical catalogue of felt earthquakes in the Maltese islands has been compiled dating back to 1530. Although no fatalities were officially recorded during this time as a direct consequence of earthquake effects, serious damage to buildings occurred several times. In the catalogue time period, the islands experienced EMS-98 intensity VII-VIII once (11 January 1693 and intensity VII, or VI-VII five times. The northern segment of the Hyblean-Malta plateau is the source region which appears to pose the greatest threat, although large Greek events and lower magnitude Sicily Channel events also produced damage. Estimates of return periods for intensity ?V are presented, and it is shown that expected peak ground accelerations justify the implementation of, at least, minimum anti-seismic provisions. The rapid and continual increase in the local building stock on the densely-populated islands warrants the implementation of an appropriate seismic building code to be enforced.

  6. Seismic analysis of a nonlinear airlock system

    International Nuclear Information System (INIS)

    Huang, S.N.

    1983-01-01

    The containment equipment airlock door of the Fast Flux Test Facility utilizes screw-type actuators as a push-pull mechanism for closing and opening operations. Special design features were used to protect these actuators from pressure differential loading. These made the door behave as a nonlinear system during a seismic event. Seismic analyses, utilizing the time history method, were conducted to determine the seismic loads on these scew-type actuators. Several sizes of actuators were examined. Procedures for determining the final optimum design are discussed in detail

  7. A New Seismic Hazard Model for Mainland China

    Science.gov (United States)

    Rong, Y.; Xu, X.; Chen, G.; Cheng, J.; Magistrale, H.; Shen, Z. K.

    2017-12-01

    We are developing a new seismic hazard model for Mainland China by integrating historical earthquake catalogs, geological faults, geodetic GPS data, and geology maps. To build the model, we construct an Mw-based homogeneous historical earthquake catalog spanning from 780 B.C. to present, create fault models from active fault data, and derive a strain rate model based on the most complete GPS measurements and a new strain derivation algorithm. We divide China and the surrounding regions into about 20 large seismic source zones. For each zone, a tapered Gutenberg-Richter (TGR) magnitude-frequency distribution is used to model the seismic activity rates. The a- and b-values of the TGR distribution are calculated using observed earthquake data, while the corner magnitude is constrained independently using the seismic moment rate inferred from the geodetically-based strain rate model. Small and medium sized earthquakes are distributed within the source zones following the location and magnitude patterns of historical earthquakes. Some of the larger earthquakes are distributed onto active faults, based on their geological characteristics such as slip rate, fault length, down-dip width, and various paleoseismic data. The remaining larger earthquakes are then placed into the background. A new set of magnitude-rupture scaling relationships is developed based on earthquake data from China and vicinity. We evaluate and select appropriate ground motion prediction equations by comparing them with observed ground motion data and performing residual analysis. To implement the modeling workflow, we develop a tool that builds upon the functionalities of GEM's Hazard Modeler's Toolkit. The GEM OpenQuake software is used to calculate seismic hazard at various ground motion periods and various return periods. To account for site amplification, we construct a site condition map based on geology. The resulting new seismic hazard maps can be used for seismic risk analysis and management.

  8. Seismic hazard assessment of Iran

    Directory of Open Access Journals (Sweden)

    M. Ghafory-Ashtiany

    1999-06-01

    Full Text Available The development of the new seismic hazard map of Iran is based on probabilistic seismic hazard computation using the historical earthquakes data, geology, tectonics, fault activity and seismic source models in Iran. These maps have been prepared to indicate the earthquake hazard of Iran in the form of iso-acceleration contour lines, and seismic hazard zoning, by using current probabilistic procedures. They display the probabilistic estimates of Peak Ground Acceleration (PGA for the return periods of 75 and 475 years. The maps have been divided into intervals of 0.25 degrees in both latitudinal and longitudinal directions to calculate the peak ground acceleration values at each grid point and draw the seismic hazard curves. The results presented in this study will provide the basis for the preparation of seismic risk maps, the estimation of earthquake insurance premiums, and the preliminary site evaluation of critical facilities.

  9. Two-dimensional horizontal model seismic test and analysis for HTGR core

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Honma, Toshiaki.

    1988-05-01

    The resistance against earthquakes of high-temperature gas-cooled reactor (HTGR) core with block-type fuels is not fully ascertained yet. Seismic studies must be made if such a reactor plant is to be installed in areas with frequent earthquakes. The paper presented the test results of seismic behavior of a half scale two-dimensional horizontal slice core model and analysis. The following is a summary of the more important results. (1) When the core is subjected to the single axis excitation and simultaneous two-axis excitations to the core across-corners, it has elliptical motion. The core stays lumped motion at the low excitation frequencies. (2) When the load is placed on side fixed reflector blocks from outside to the core center, the core displacement and reflector impact reaction force decrease. (3) The maximum displacement occurs at simultaneous two-axis excitations. The maximum displacement occurs at the single axis excitation to the core across-flats. (4) The results of two-dimensional horizontal slice core model was compared with the results of two-dimensional vertical one. It is clarified that the seismic response of actual core can be predicted from the results of two-dimensional vertical slice core model. (5) The maximum reflector impact reaction force for seismic waves was below 60 percent of that for sinusoidal waves. (6) Vibration behavior and impact response are in good agreement between test and analysis. (author)

  10. Interactive web visualization tools to the results interpretation of a seismic risk study aimed at the emergency levels definition

    Science.gov (United States)

    Rivas-Medina, A.; Gutierrez, V.; Gaspar-Escribano, J. M.; Benito, B.

    2009-04-01

    Results of a seismic risk assessment study are often applied and interpreted by users unspecialised on the topic or lacking a scientific background. In this context, the availability of tools that help translating essentially scientific contents to broader audiences (such as decision makers or civil defence officials) as well as representing and managing results in a user-friendly fashion, are on indubitable value. On of such tools is the visualization tool VISOR-RISNA, a web tool developed within the RISNA project (financed by the Emergency Agency of Navarre, Spain) for regional seismic risk assessment of Navarre and the subsequent development of emergency plans. The RISNA study included seismic hazard evaluation, geotechnical characterization of soils, incorporation of site effects to expected ground motions, vulnerability distribution assessment and estimation of expected damage distributions for a 10% probability of exceedance in 50 years. The main goal of RISNA was the identification of higher risk area where focusing detailed, local-scale risk studies in the future and the corresponding urban emergency plans. A geographic information system was used to combine different information layers, generate tables of results and represent maps with partial and final results. The visualization tool VISOR-RISNA is intended to facilitate the interpretation and representation of the collection of results, with the ultimate purpose of defining actuation plans. A number of criteria for defining actuation priorities are proposed in this work. They are based on combinations of risk parameters resulting from the risk study (such as expected ground motion and damage and exposed population), as determined by risk assessment specialists. Although the values that these parameters take are a result of the risk study, their distribution in several classes depends on the intervals defined by decision takers or civil defense officials. These criteria provide a ranking of

  11. Evaluation of methods for seismic analysis of nuclear fuel reprocessing and fabrication facilities

    International Nuclear Information System (INIS)

    Arthur, D.F.; Dong, R.G.; Murray, R.C.; Nelson, T.A.; Smith, P.D.; Wight, L.H.

    1978-01-01

    Methods of seismic analysis for critical structures and equipment in nuclear fuel reprocessing plants (NFRPs) and mixed oxide fuel fabrication plants (MOFFPs) are evaluated. The purpose of this series of reports is to provide the NRC with a technical basis for assessing seismic analysis methods and for writing regulatory guides in which methods ensuring the safe design of nuclear fuel cycle facilities are recommended. The present report evaluates methods of analyzing buried pipes and wells, sloshing effects in large pools, earth dams, multiply supported equipment, pile foundations, and soil-structure interactions

  12. Data analysis for seismic motion characteristics

    International Nuclear Information System (INIS)

    Ishimaru, Tsuneari; Kohriya, Yorihide

    2002-10-01

    This data analysis is aimed at studying the characteristics of amplification of acceleration amplitude from deep underground to the surface, and is one of several continuous studies on the effects of earthquake motion. Seismic wave records were observed via a center array located in Shibata-cho, Miyagi Prefecture, which is part of the Kumagai-Gumi Array System for Strong Earthquake Motion (KASSEM) located on the Pacific coast in Miyagi and Fukushima Prefectures. Using acceleration waves obtained from earthquake observations, the amplification ratios of maximum acceleration amplitude and of root mean square acceleration amplitude which were based on the deepest observation point were estimated. Comparison between the seismic motion amplification characteristics of this study were made with the analyzed data at the Kamaishi-Mine (Kamaishi Miyagi Prefecture). The obtained results are as follows. The amplification ratios estimated from maximum acceleration amplitude and root mean square acceleration amplitude are almost constant in soft rock formations. However, amplification ratios at the surface in diluvium and alluvium are about three to four times larger than the ratios in soft rock formations. The amplification ratios estimated from root mean square acceleration amplitude are less dispersed than the ratios estimated from maximum acceleration amplitude. Comparing the results of this analysis with the results obtained at the Kamaishi-Mine, despite the difference in the rock types and the geologic formations at the observation points, there is a tendency for the amplification ratios at both points to be relatively small in the rock foundation and gradually increase toward the ground surface. (author)

  13. Site-specific seismic probabilistic tsunami hazard analysis: performances and potential applications

    Science.gov (United States)

    Tonini, Roberto; Volpe, Manuela; Lorito, Stefano; Selva, Jacopo; Orefice, Simone; Graziani, Laura; Brizuela, Beatriz; Smedile, Alessandra; Romano, Fabrizio; De Martini, Paolo Marco; Maramai, Alessandra; Piatanesi, Alessio; Pantosti, Daniela

    2017-04-01

    Seismic Probabilistic Tsunami Hazard Analysis (SPTHA) provides probabilities to exceed different thresholds of tsunami hazard intensity, at a specific site or region and in a given time span, for tsunamis caused by seismic sources. Results obtained by SPTHA (i.e., probabilistic hazard curves and inundation maps) represent a very important input to risk analyses and land use planning. However, the large variability of source parameters implies the definition of a huge number of potential tsunami scenarios, whose omission could lead to a biased analysis. Moreover, tsunami propagation from source to target requires the use of very expensive numerical simulations. At regional scale, the computational cost can be reduced using assumptions on the tsunami modeling (i.e., neglecting non-linear effects, using coarse topo-bathymetric meshes, empirically extrapolating maximum wave heights on the coast). On the other hand, moving to local scale, a much higher resolution is required and such assumptions drop out, since detailed inundation maps require significantly greater computational resources. In this work we apply a multi-step method to perform a site-specific SPTHA which can be summarized in the following steps: i) to perform a regional hazard assessment to account for both the aleatory and epistemic uncertainties of the seismic source, by combining the use of an event tree and an ensemble modeling technique; ii) to apply a filtering procedure which use a cluster analysis to define a significantly reduced number of representative scenarios contributing to the hazard of a specific target site; iii) to perform high resolution numerical simulations only for these representative scenarios and for a subset of near field sources placed in very shallow waters and/or whose coseismic displacements induce ground uplift or subsidence at the target. The method is applied to three target areas in the Mediterranean located around the cities of Milazzo (Italy), Thessaloniki (Greece) and

  14. Goals and activities of the JICA technical cooperation project on reduction of seismic risk in Romania

    International Nuclear Information System (INIS)

    Vacareanu, R.; Kato, H.

    2007-01-01

    Japan International Cooperation Agency (JICA) Technical Cooperation Project on Reduction of Seismic Risk for Buildings and Structures started in Romania on October 1, 2002. The aim of the Project is to strengthen the capacity of earthquake disaster related activities in Romania. The Project approval is the result of four years of intensive efforts made by professionals from Technical University of Civil Engineering Bucharest (UTCB), Ministry of Transport, Constructions and Tourism (MTCT), Romania, National Building Research Institute (INCERC) Bucharest, JICA, Building Research Institute (BRI), Tsukuba, and National Institute for Land, Infrastructure and Management (NILIM), Tsukuba, Japan. The duration of the Project is five years. The implementing agency is the National Center for Seismic Risk Reduction (NCSRR) as a public institution of national interest under MTCT. The activities are carried out by NCSRR in partnership with UTCB and INCERC. During the Project period, 29 young Romanian engineers were trained in Japan, 7 Japanese experts and 37 Japanese experts worked for long-term and short-term, respectively in Romania. Equipment for seismic instrumentation, dynamic characterization of soil and structural testing rising up approximately to 260 million yens (i.e. 2.17 million USD) were donated by JICA to Romania, through NCSRR. The total cost of the Project is roughly 7 million USD. The paper describes the main activities and results of the Project until the JICA Final Evaluation Mission (March 2007). (authors)

  15. U.S. Nuclear Regulatory Commission seismic regulations, research, and emerging trends

    International Nuclear Information System (INIS)

    Chokshi, N.C.; Shao, L.C.; Apostolakis, G.

    1997-01-01

    Historically in the United States, seismic issues have played an important role in determining site suitability and, in some cases, have determined the ultimate fate of power plants. During the late 1960s and early 1970s, a seismic design philosophy evolved as the licensing of the earlier plants was in progress. Concepts such as the Safe Shutdown Earthquake (SSE) and the Operating Basis Earthquake (OBE) emerged and were codified into the federal regulations with the publication in December 1973 of Appendix A, 'Seismic and Geologic Siting Criteria for Nuclear Power Plants,' to 10 CFR Part 100, 'Reactor Site Criteria.' Seismic considerations are also important in siting and design of other fuel cycle and waste facilities. In this paper, a brief overview of the current seismic siting and design regulations are described along with some recent and planned changes based on the past experience, advancement in the state-of-the-art, and research results. In particular, the recently revised siting rule and use of the probabilistic seismic hazard analysis in implementation of the rule will be described in more detail. The paper includes discussion of some recent seismic issues and research activities, including issues related to aging. Some emerging trends are highlighted. In particular, the paper focuses on use of 'expert opinion' in the probabilistic analysis and risk informed regulations and their implications to the seismic design. An additional focus is on international cooperative programs and how to initiate such programs such that better use can be made of limited resources to resolve issues of common interest. (author)

  16. U.S. Nuclear Regulatory Commission seismic regulations, research, and emerging trends

    Energy Technology Data Exchange (ETDEWEB)

    Chokshi, N C; Shao, L C [Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research; Apostolakis, G

    1997-03-01

    Historically in the United States, seismic issues have played an important role in determining site suitability and, in some cases, have determined the ultimate fate of power plants. During the late 1960s and early 1970s, a seismic design philosophy evolved as the licensing of the earlier plants was in progress. Concepts such as the Safe Shutdown Earthquake (SSE) and the Operating Basis Earthquake (OBE) emerged and were codified into the federal regulations with the publication in December 1973 of Appendix A, `Seismic and Geologic Siting Criteria for Nuclear Power Plants,` to 10 CFR Part 100, `Reactor Site Criteria.` Seismic considerations are also important in siting and design of other fuel cycle and waste facilities. In this paper, a brief overview of the current seismic siting and design regulations are described along with some recent and planned changes based on the past experience, advancement in the state-of-the-art, and research results. In particular, the recently revised siting rule and use of the probabilistic seismic hazard analysis in implementation of the rule will be described in more detail. The paper includes discussion of some recent seismic issues and research activities, including issues related to aging. Some emerging trends are highlighted. In particular, the paper focuses on use of `expert opinion` in the probabilistic analysis and risk informed regulations and their implications to the seismic design. An additional focus is on international cooperative programs and how to initiate such programs such that better use can be made of limited resources to resolve issues of common interest. (author)

  17. Optimal Retrofit Scheme for Highway Network under Seismic Hazards

    Directory of Open Access Journals (Sweden)

    Yongxi Huang

    2014-06-01

    Full Text Available Many older highway bridges in the United States (US are inadequate for seismic loads and could be severely damaged or collapsed in a relatively small earthquake. According to the most recent American Society of Civil Engineers’ infrastructure report card, one-third of the bridges in the US are rated as structurally deficient and many of these structurally deficient bridges are located in seismic zones. To improve this situation, at-risk bridges must be identified and evaluated and effective retrofitting programs should be in place to reduce their seismic vulnerabilities. In this study, a new retrofit strategy decision scheme for highway bridges under seismic hazards is developed and seamlessly integrate the scenario-based seismic analysis of bridges and the traffic network into the proposed optimization modeling framework. A full spectrum of bridge retrofit strategies is considered based on explicit structural assessment for each seismic damage state. As an empirical case study, the proposed retrofit strategy decision scheme is utilized to evaluate the bridge network in one of the active seismic zones in the US, Charleston, South Carolina. The developed modeling framework, on average, will help increase network throughput traffic capacity by 45% with a cost increase of only $15million for the Mw 5.5 event and increase the capacity fourfold with a cost of only $32m for the Mw 7.0 event.

  18. THE USE OF GIS FOR THE APPLICATION OF THE PHENOMENOLOGICAL APPROACH TO THE SEISMIC RISK ANALYSIS: THE CASE OF THE ITALIAN FORTIFIED ARCHITECTURE

    Directory of Open Access Journals (Sweden)

    E. Lenticchia

    2017-05-01

    Full Text Available The present paper proposes the use of GIS for the application of the so-called phenomenological approach to the analysis of the seismic behaviour of historical buildings. This approach is based on the awareness that the different masonry building typologies are characterized by different, recurring vulnerabilities. Thus, the observation and classification of the real damage is seen as the first step for recognizing and classifying these vulnerabilities, in order to plan focused preventive interventions. For these purposes, the GIS has proven to be a powerful instrument to collect and manage this type of information on a large number of cases. This paper specifically focuses on the application of the phenomenological approach to the analysis of the seismic behaviour of fortified buildings, including castles, fortresses, citadels, and all the typical historical constructions characterized by the presence of massive towers and defensive walls. The main earthquakes which struck Italy in the last 40 years (up to the recent Central Italy seismic swarm were taken into consideration and described by means of shake maps. A previously published work has been continued with the addition of new data and some improvements, including a specific symbology for the description of building typologies and conservation status on the maps, the indications of damage levels and the comparison between shake maps in terms of pga and in terms of pseudo-acceleration. The increase in knowledge obtained and the broader frame given by the analysis of the data are here directed to the primary aim of cultural heritage preservation.

  19. The Use of GIS for the Application of the Phenomenological Approach to the Seismic Risk Analysis: the Case of the Italian Fortified Architecture

    Science.gov (United States)

    Lenticchia, E.; Coïsson, E.

    2017-05-01

    The present paper proposes the use of GIS for the application of the so-called phenomenological approach to the analysis of the seismic behaviour of historical buildings. This approach is based on the awareness that the different masonry building typologies are characterized by different, recurring vulnerabilities. Thus, the observation and classification of the real damage is seen as the first step for recognizing and classifying these vulnerabilities, in order to plan focused preventive interventions. For these purposes, the GIS has proven to be a powerful instrument to collect and manage this type of information on a large number of cases. This paper specifically focuses on the application of the phenomenological approach to the analysis of the seismic behaviour of fortified buildings, including castles, fortresses, citadels, and all the typical historical constructions characterized by the presence of massive towers and defensive walls. The main earthquakes which struck Italy in the last 40 years (up to the recent Central Italy seismic swarm) were taken into consideration and described by means of shake maps. A previously published work has been continued with the addition of new data and some improvements, including a specific symbology for the description of building typologies and conservation status on the maps, the indications of damage levels and the comparison between shake maps in terms of pga and in terms of pseudo-acceleration. The increase in knowledge obtained and the broader frame given by the analysis of the data are here directed to the primary aim of cultural heritage preservation.

  20. Seismic dynamic analysis of Heat Exchangers inside of the Auxiliary Buildings in AP1000TM NPP

    International Nuclear Information System (INIS)

    Di Fonzo, M.; Aragon, J.; Moraleda, F.; Palazuelos, M.; San Vicente, J. L.

    2011-01-01

    Seismic dynamic analysis was carried out for the Heat Exchangers (RNS-HR) located inside of the Auxiliary Building in AP 1000 T M NPP. The main function of the RNS-HX is to provide shutdown reactor cooling. These equipment's are safety-related. So the seismic analysis was done using the methodology for Seismic Category I (SCI) structures. The most important topic is that the RNS-HX shall withstand the effects of the Safe Shutdown Earthquake (SSE) and maintain the specified design functions. for the analysis, two finite element models (FEM) were built in order to investigate the structural response of the couple system of building and equipment. The response spectra method was used. The floor response spectra (FRS) at the slab-wall connection were used as input Lateral seismic restrain was necessary to added in order to achieve the natural frequency of 33 Hz. The global structural response was obtained by means of the modal combination method indicated in the Regulatory Guide 1.92.

  1. Worldwide Assessment of the Status of Seismic Zonation, Fourth International Forum on Seismic Zonation, Proceedings

    Science.gov (United States)

    Hays, W.W.

    1994-01-01

    We are pleased to provide you with information developed for the Fourth International Forum on Seismic Zonation which will be convened in two locations year in conjunction two major international meetings. The objectives are: 1) to assess the status of seismic zonation in every country of the world, 2) to evaluate the reasons for advances and new initiatives, and 3) to foster continued cooperation. Seismic zonation is the process that leads to risk reduction and sustainability of new development. It is based on the division of a geographic region into smaller areas or zones on the basis of an integrated assessment of the hazard, built, and policy environments of the region. Seismic zonation depends on hazard mapping performed on national/regional, subregional, and urban (i.e., microzonation) scales depending on the particular application. We gratefully acknowledge the written communications of many professionals who responded to our request for information. Also, we acknowledge the use of information contained in five valuable reports (see directories in the Appendices for information on where to obtain copies of the reports): 1. United Nations, 1990, Cooperative Project for Seismic Risk Reduction in the Mediterranean Region (SEISMED), proceedings, Office of the United Nations Disaster Relief Coordinator, Geneva, Switzerland, 3 vols. (Franco Maranzana -

  2. Methodology for the Seismic risk assessment in segments of fault

    International Nuclear Information System (INIS)

    1997-02-01

    The present study establishes the most adequate methods of Seismic Hazard Assessment for the Iberian Peninsula, in particular for low seismicity areas, through a review of methods used in other countries and its application to a certain area in Spain. In this area the geological context and recent activity of a specific tectonic structure is studied in detail, in order to asses its slip rate, and therefore, its capability of generating earthquakes. In the first stage of this project a review of Seismic Hazard Assessment methods used outside Spain was carried out, as well as, a study of several spanish cases. This stage also comprises a review of the spanish seismic record and a study of the general peninsular neotectonic context, this latter to select a particular fault for the next stage. (Author) 117 refs

  3. Keeping focus on earthquakes at school for seismic risk mitigation of the next generations

    Science.gov (United States)

    Saraò, Angela; Barnaba, Carla; Peruzza, Laura

    2013-04-01

    The knowledge of the seismic history of its own territory, the understanding of physical phenomena in response to an earthquake, the changes in the cultural heritage following a strong earthquake, the learning of actions to be taken during and after an earthquake, are piece of information that contribute to keep focus on the seismic hazard and to implement strategies for seismic risk mitigation. The training of new generations, today more than ever subject to rapid forgetting of past events, becomes therefore a key element to increase the perception that earthquakes happened and can happen at anytime and that mitigation actions are the only means to ensure the safety and to reduce damages and human losses. Since several years our institute (OGS) is involved in activities to raise awareness of education on earthquake. We aim to implement education programs with the goal of addressing a critical approach to seismic hazard reduction, differentiating the types of activities according to the age of the students. However, being such kind of activity unfunded, we can act at now only on a very limited number of schools per year. To be effective, the inclusion of the seismic risk issues in school curricula requires specific time and appropriate approaches when planning activities. For this reason, we involve also the teachers as proponents of activities and we encourage them to keep alive memories and discussion on earthquake in the classes. During the past years we acted mainly in the schools of the Friuli Venezia Giulia area (NE Italy), that is an earthquake prone area struck in 1976 by a destructive seismic event (Ms=6.5). We organized short training courses for teachers, we lectured classes, and we led laboratory activities with students. Indeed, being well known that students enjoy classes more when visual and active learning are joined, we propose a program that is composed by seminars, demonstrations and hands-on activities in the classrooms; for high school students

  4. Overview on seismic evaluation and retrofitting within JICA Technical Cooperation Project on reduction of seismic risk in Romania

    International Nuclear Information System (INIS)

    Seki, M.; Vacareanu, R.; Pavel, M.; Lozinca, E.; Cotofana, D.; Chesca, B.; Georgescu, B.; Kaminosono, T.

    2007-01-01

    The objective of this paper is to give an overview on the seismic evaluation and retrofitting procedures of reinforced concrete buildings within JICA technical cooperation project in Romania. The content of the paper covers a) an outline of the seismic evaluation; history and comparison of Romanian seismic design codes with the Japanese seismic evaluation guidelines, b) an outline of the retrofitting techniques which were transferred from Japan to Romania and structural tests for retrofitting techniques employed in Romania and c) retrofitting details that were used by JICA/NCSRR in the retrofitting design of two vulnerable buildings in Bucharest. The above-mentioned retrofitting projects are now under development of detailed design and therefore, in the near future, refining and improvement of solutions will be performed. (authors)

  5. Seismic cycle and seismic risk of an active faults network: the Corinth rift case (Greece)

    International Nuclear Information System (INIS)

    Boiselet, Aurelien

    2014-01-01

    The Corinth rift (Greece) is one of the regions with the highest strain rates (16 mm/y extension rate) in the Euro-Mediterranean area and as such it has long been identified as a site of major importance for earthquake studies in Europe (20 years of research by the Corinth Rift Laboratory and 4 years of in-depth studies by the ANR-SISCOR project). This enhanced knowledge, acquired in particular, in the western part of the Gulf of Corinth (CRL region), an area about 50 by 40 km 2 , between the city of Patras to the west and the city of Aigion to the east, provides an excellent opportunity to compare fault-based (FB) and classical seismo-tectonic (ST) approaches currently used in seismic hazard assessment studies. An homogeneous earthquake catalogue was thus constructed for the purpose of this study along with a comprehensive database of all relevant geological, geodetic and geophysical information available in the literature and recently collected within the ANR-SISCOR project. The homogenized Mw earthquake catalogue is composed of data from the National Observatory of Athens and from the university of Thessaloniki as well as data acquired through historical and instrumental work performed within the ANR-SISCOR group for the CRL region. A frequency magnitude analysis confirms that seismicity rates are governed by Gutenberg-Richter (GR) statistic for 1.2 =6 earthquakes were computed for the region of study. Time dependent models (Brownian Passage time and Weibull probability distributions) were also explored. The probability (normalized by area) of a M≥6.0 earthquake is found to be greater in the CRL region compared to the eastern part of the Corinth rift. Probability estimates corresponding to the 16. and 84. percentile are also provided, as a means of representing the range of uncertainties in the results. Probability estimates based on the ST-approach are then compared to those based on the FB approach approach. In general ST tends to overestimate probabilities

  6. SEISMIC Analysis of high-rise buildings with composite metal damper

    Directory of Open Access Journals (Sweden)

    Chen Ruixue

    2015-01-01

    Full Text Available This paper mainly studies on the mechanical characteristics and application effect of composite metal damper in the high-rise buildings via the numerical simulation analysis. The research adopts the elastic and elastic-plastic dynamic approach and the displacement time history response and damper energy dissipation capacity and so on of the high-rise building are compared and analyzed before and after installation. The analysis found that the energy dissipation characteristic of metallic dampers is good. High-rise building story drift significantly is reduced and the extent of damage of the walls and coupling beams is decreased, achieved a good energy dissipation effect. Composite metal damper can effectively and economically improve the seismic performance of high-rise buildings, meet the requirement of the 3-level design for seismic resistance. The result has certain reference significance for the application of metallic damper in the high-rise buildings.

  7. Deterministic and probabilistic approach to determine seismic risk of nuclear power plants; a practical example

    International Nuclear Information System (INIS)

    Soriano Pena, A.; Lopez Arroyo, A.; Roesset, J.M.

    1976-01-01

    The probabilistic and deterministic approaches for calculating the seismic risk of nuclear power plants are both applied to a particular case in Southern Spain. The results obtained by both methods, when varying the input data, are presented and some conclusions drawn in relation to the applicability of the methods, their reliability and their sensitivity to change

  8. The Total Risk Analysis of Large Dams under Flood Hazards

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2018-02-01

    Full Text Available Dams and reservoirs are useful systems in water conservancy projects; however, they also pose a high-risk potential for large downstream areas. Flood, as the driving force of dam overtopping, is the main cause of dam failure. Dam floods and their risks are of interest to researchers and managers. In hydraulic engineering, there is a growing tendency to evaluate dam flood risk based on statistical and probabilistic methods that are unsuitable for the situations with rare historical data or low flood probability, so a more reasonable dam flood risk analysis method with fewer application restrictions is needed. Therefore, different from previous studies, this study develops a flood risk analysis method for large dams based on the concept of total risk factor (TRF used initially in dam seismic risk analysis. The proposed method is not affected by the adequacy of historical data or the low probability of flood and is capable of analyzing the dam structure influence, the flood vulnerability of the dam site, and downstream risk as well as estimating the TRF of each dam and assigning corresponding risk classes to each dam. Application to large dams in the Dadu River Basin, Southwestern China, demonstrates that the proposed method provides quick risk estimation and comparison, which can help local management officials perform more detailed dam safety evaluations for useful risk management information.

  9. PSMG switchgear seismic analysis

    International Nuclear Information System (INIS)

    Kuehster, C.J.

    1977-01-01

    LOFT primary coolant system motor generator (PSMG) switchgear boxes were analyzed for sliding and overturning during a seismic event. Boxes are located in TAN-650, Room B-239, with the PSMG generators. Both boxes are sufficiently anchored to the floor

  10. Structure soil structure interaction effects: Seismic analysis of safety related collocated concrete structures

    International Nuclear Information System (INIS)

    Joshi, J.R.

    2000-01-01

    The Process, Purification and Stack Buildings are collocated safety related concrete shear wall structures with plan dimensions in excess of 100 feet. An important aspect of their seismic analysis was the determination of structure soil structure interaction (SSSI) effects, if any. The SSSI analysis of the Process Building, with one other building at a time, was performed with the SASSI computer code for up to 50 frequencies. Each combined model had about 1500 interaction nodes. Results of the SSSI analysis were compared with those from soil structure interaction (SSI) analysis of the individual buildings, done with ABAQUS and SASSI codes, for three parameters: peak accelerations, seismic forces and the in-structure floor response spectra (FRS). The results may be of wider interest due to the model size and the potential applicability to other deep soil layered sites. Results obtained from the ABAQUS analysis were consistently higher, as expected, than those from the SSI and SSSI analyses using the SASSI. The SSSI effect between the Process and Purification Buildings was not significant. The Process and Stack Building results demonstrated that under certain conditions a massive structure can have an observable effect on the seismic response of a smaller and less stiff structure

  11. Nucelar reactor seismic safety analysis techniques

    International Nuclear Information System (INIS)

    Cummings, G.E.; Wells, J.E.; Lewis, L.C.

    1979-04-01

    In order to provide insights into the seismic safety requirements for nuclear power plants, a probabilistic based systems model and computational procedure have been developed. This model and computational procedure will be used to identify where data and modeling uncertainties need to be decreased by studying the effect of these uncertainties on the probability of radioactive release and the probability of failure of various structures, systems, and components. From the estimates of failure and release probabilities and their uncertainties the most sensitive steps in the seismic methodologies can be identified. In addition, the procedure will measure the uncertainty due to random occurrences, e.g. seismic event probabilities, material property variability, etc. The paper discusses the elements of this systems model and computational procedure, the event-tree/fault-tree development, and the statistical techniques to be employed

  12. Statistical analysis of laser-interferometric detector Dylkin-1 data and data on seismic activity

    International Nuclear Information System (INIS)

    Kirillov, R S; Bochkarev, V V; Dulkyn, Academy of Sciences of the Republic of Tatarstan (Russian Federation))" data-affiliation=" (Scientific Center of Gravitational-Wave Research Dulkyn, Academy of Sciences of the Republic of Tatarstan (Russian Federation))" >Skochilov, A F

    2014-01-01

    This work presents statistical analysis of data collected from laser interferometric detector ''Dylkin-1'' and nearby seismic stations. The final goal of Dylkin project consists in creating detector of theoretically predicted gravitational waves produced by binary relativistic astrophysical objects. Currently, works are underway to improve sensitivity of detector by 2-3 orders. The goals of this research were to test isolation of detector from noise caused by seismic waves and to find out whether it is sensitive to variations in the gradient of gravitational potential (acceleration of free fall) caused by free Earth oscillations. Noise isolation has been tested by comparing energy of signals during significant seismic events. Sensitivity to variations in acceleration of free fall has been tested by means of cross-spectral analysis

  13. Fleeing to Fault Zones: Incorporating Syrian Refugees into Earthquake Risk Analysis along the East Anatolian and Dead Sea Rift Fault Zones

    Science.gov (United States)

    Wilson, B.; Paradise, T. R.

    2016-12-01

    The influx of millions of Syrian refugees into Turkey has rapidly changed the population distribution along the Dead Sea Rift and East Anatolian Fault zones. In contrast to other countries in the Middle East where refugees are accommodated in camp environments, the majority of displaced individuals in Turkey are integrated into cities, towns, and villages—placing stress on urban settings and increasing potential exposure to strong shaking. Yet, displaced populations are not traditionally captured in data sources used in earthquake risk analysis or loss estimations. Accordingly, we present a district-level analysis assessing the spatial overlap of earthquake hazards and refugee locations in southeastern Turkey to determine how migration patterns are altering seismic risk in the region. Using migration estimates from the U.S. Humanitarian Information Unit, we create three district-level population scenarios that combine official population statistics, refugee camp populations, and low, median, and high bounds for integrated refugee populations. We perform probabilistic seismic hazard analysis alongside these population scenarios to map spatial variations in seismic risk between 2011 and late 2015. Our results show a significant relative southward increase of seismic risk for this period due to refugee migration. Additionally, we calculate earthquake fatalities for simulated earthquakes using a semi-empirical loss estimation technique to determine degree of under-estimation resulting from forgoing migration data in loss modeling. We find that including refugee populations increased casualties by 11-12% using median population estimates, and upwards of 20% using high population estimates. These results communicate the ongoing importance of placing environmental hazards in their appropriate regional and temporal context which unites physical, political, cultural, and socio-economic landscapes. Keywords: Earthquakes, Hazards, Loss-Estimation, Syrian Crisis, Migration

  14. 3D seismic data de-noising and reconstruction using Multichannel Time Slice Singular Spectrum Analysis

    Science.gov (United States)

    Rekapalli, Rajesh; Tiwari, R. K.; Sen, Mrinal K.; Vedanti, Nimisha

    2017-05-01

    Noises and data gaps complicate the seismic data processing and subsequently cause difficulties in the geological interpretation. We discuss a recent development and application of the Multi-channel Time Slice Singular Spectrum Analysis (MTSSSA) for 3D seismic data de-noising in time domain. In addition, L1 norm based simultaneous data gap filling of 3D seismic data using MTSSSA also discussed. We discriminated the noises from single individual time slices of 3D volumes by analyzing Eigen triplets of the trajectory matrix. We first tested the efficacy of the method on 3D synthetic seismic data contaminated with noise and then applied to the post stack seismic reflection data acquired from the Sleipner CO2 storage site (pre and post CO2 injection) from Norway. Our analysis suggests that the MTSSSA algorithm is efficient to enhance the S/N for better identification of amplitude anomalies along with simultaneous data gap filling. The bright spots identified in the de-noised data indicate upward migration of CO2 towards the top of the Utsira formation. The reflections identified applying MTSSSA to pre and post injection data correlate well with the geology of the Southern Viking Graben (SVG).

  15. LOFT diesel generator ''A'' exhaust stack seismic analysis

    International Nuclear Information System (INIS)

    Blandford, R.K.

    1978-01-01

    A stress analysis of the LOFT Diesel Generator ''A'' Exhaust Stack was performed to determine its reaction to Safe-Shutdown Earthquake loads. The exhaust stack silencer and supporting foundation was found to be inadequate for the postulated seismic accelerations. Lateral support is required to prevent overturning of the silencer pedestal and reinforcement of the 4'' x 0.5'' silencer base straps is necessary. Basic requirements for this additional support are discussed

  16. Final Report: Seismic Hazard Assessment at the PGDP

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhinmeng [KY Geological Survey, Univ of KY

    2007-06-01

    Selecting a level of seismic hazard at the Paducah Gaseous Diffusion Plant for policy considerations and engineering design is not an easy task because it not only depends on seismic hazard, but also on seismic risk and other related environmental, social, and economic issues. Seismic hazard is the main focus. There is no question that there are seismic hazards at the Paducah Gaseous Diffusion Plant because of its proximity to several known seismic zones, particularly the New Madrid Seismic Zone. The issues in estimating seismic hazard are (1) the methods being used and (2) difficulty in characterizing the uncertainties of seismic sources, earthquake occurrence frequencies, and ground-motion attenuation relationships. This report summarizes how input data were derived, which methodologies were used, and what the hazard estimates at the Paducah Gaseous Diffusion Plant are.

  17. Incremental-hinge piping analysis methods for inelastic seismic response prediction

    International Nuclear Information System (INIS)

    Jaquay, K.R.; Castle, W.R.; Larson, J.E.

    1989-01-01

    This paper proposes nonlinear seismic response prediction methods for nuclear piping systems based on simplified plastic hinge analyses. The simplified plastic hinge analyses utilize an incremental series of flat response spectrum loadings and replace yielded components with hinge elements when a predefined hinge moment is reached. These hinge moment values, developed by Rodabaugh, result in inelastic energy dissipation of the same magnitude as observed in seismic tests of piping components. Two definitions of design level equivalent loads are employed: one conservatively based on the peaks of the design acceleration response spectra, the other based on inelastic frequencies determined by the method of Krylov and Bogolyuboff recently extended by Lazzeri to piping. Both definitions account for piping system inelastic energy dissipation using Newmark-Hall inelastic response spectrum reduction factors and the displacement ductility results of the incremental-hinge analysis. Two ratchet-fatigue damage models are used: one developed by Rodabaugh that conservatively correlates Markl static fatigue expressions to seismic tests to failure of piping components; the other developed by Severud that uses the ratchet expression of Bree for elbows and Edmunds and Beer for straights, and defines ratchet-fatigue interaction using Coffin's ductility based fatigue equation. Comparisons of predicted behavior versus experimental results are provided for a high-level seismic test of a segment of a representative nuclear plant piping system. (orig.)

  18. Have recent earthquakes exposed flaws in or misunderstandings of probabilistic seismic hazard analysis?

    Science.gov (United States)

    Hanks, Thomas C.; Beroza, Gregory C.; Toda, Shinji

    2012-01-01

    In a recent Opinion piece in these pages, Stein et al. (2011) offer a remarkable indictment of the methods, models, and results of probabilistic seismic hazard analysis (PSHA). The principal object of their concern is the PSHA map for Japan released by the Japan Headquarters for Earthquake Research Promotion (HERP), which is reproduced by Stein et al. (2011) as their Figure 1 and also here as our Figure 1. It shows the probability of exceedance (also referred to as the “hazard”) of the Japan Meteorological Agency (JMA) intensity 6–lower (JMA 6–) in Japan for the 30-year period beginning in January 2010. JMA 6– is an earthquake-damage intensity measure that is associated with fairly strong ground motion that can be damaging to well-built structures and is potentially destructive to poor construction (HERP, 2005, appendix 5). Reiterating Geller (2011, p. 408), Stein et al. (2011, p. 623) have this to say about Figure 1: The regions assessed as most dangerous are the zones of three hypothetical “scenario earthquakes” (Tokai, Tonankai, and Nankai; see map). However, since 1979, earthquakes that caused 10 or more fatalities in Japan actually occurred in places assigned a relatively low probability. This discrepancy—the latest in a string of negative results for the characteristic model and its cousin the seismic-gap model—strongly suggest that the hazard map and the methods used to produce it are flawed and should be discarded. Given the central role that PSHA now plays in seismic risk analysis, performance-based engineering, and design-basis ground motions, discarding PSHA would have important consequences. We are not persuaded by the arguments of Geller (2011) and Stein et al. (2011) for doing so because important misunderstandings about PSHA seem to have conditioned them. In the quotation above, for example, they have confused important differences between earthquake-occurrence observations and ground-motion hazard calculations.

  19. Seismic forecast using geostatistics

    International Nuclear Information System (INIS)

    Grecu, Valeriu; Mateiciuc, Doru

    2007-01-01

    The main idea of this research direction consists in the special way of constructing a new type of mathematical function as being a correlation between a computed statistical quantity and another physical quantity. This type of function called 'position function' was taken over by the authors of this study in the field of seismology with the hope of solving - at least partially - the difficult problem of seismic forecast. The geostatistic method of analysis focuses on the process of energy accumulation in a given seismic area, completing this analysis by a so-called loading function. This function - in fact a temporal function - describes the process of energy accumulation during a seismic cycle from a given seismic area. It was possible to discover a law of evolution of the seismic cycles that was materialized in a so-called characteristic function. This special function will help us to forecast the magnitude and the occurrence moment of the largest earthquake in the analysed area. Since 2000, the authors have been evolving to a new stage of testing: real - time analysis, in order to verify the quality of the method. There were five large earthquakes forecasts. (authors)

  20. Magma replenishment and volcanic unrest inferred from the analysis of VT micro-seismicity and seismic velocity changes at Piton de la Fournaise Volcano

    Science.gov (United States)

    Brenguier, F.; Rivemale, E.; Clarke, D. S.; Schmid, A.; Got, J.; Battaglia, J.; Taisne, B.; Staudacher, T.; Peltier, A.; Shapiro, N. M.; Tait, S.; Ferrazzini, V.; Di Muro, A.

    2011-12-01

    allow magma to reach the edifice summit. Moreover, we have identified transient seismic velocity changes lasting a few weeks that could be associated with unreported lateral magma intrusions not leading to eruptions. The clustering of pre-eruptive micro-seismicity between mid 1999-2003 shows that seismic events repeat over successive seismic swarms and suggests that the magma pathway is spatially separated from the seismic faults. Also, the inversion for focal mechanisms shows dominant sub-horizontal P-axes indicating that part of the pre-eruptive micro-seismicity is due to the horizontal compressive stress induced by magma injection. Finally, the analysis of long-term GPS data recorded on the edifice flank shows a constant lateral displacement rate of 3.5 cm/year. More work will be needed in order to infer the possible mutual interactions between magma unrest and transport and the large-scale deformation of the edifice flank.

  1. Non-linear analysis of the behaviour of a thin and squat reinforced concrete wall on a seismic table

    International Nuclear Information System (INIS)

    Mazars, J.; Ghavamian, S.; Ile, N.; Reynouard, J.M.

    1998-01-01

    This work concerns the modeling and analysis of the seismic behaviour of a thin reinforced concrete wall using an experiment performed by the NUPEC (Nuclear Power Engineering Corporation) Japanese organisation with the Tadotsu seismic table. The wall with a height/width ratio close to 1, has its extremities stiffened and its base embedded. The wall, loaded on its top with a 122 t weight, is submitted to several seismic levels up to its collapse. A non-linear seismic analysis and different 2-D and 3-D finite elements modeling were used to simulate the behaviour of the structure submitted to a strong dynamic shear. The results presented in this paper belong to the ''Seismic Shear Wall Standard Problem'' benchmark jointly organized the NUPEC and OECD organizations. (J.S.)

  2. SHC, Seismic Hazard Assessment for Eastern US

    International Nuclear Information System (INIS)

    Savy, J.; Davis, B.

    2001-01-01

    1 - Description of program or function: SHC was developed as part of the Eastern United States (EUS) Seismic Hazard Characterization (SHC) Project to design an SHC methodology for the region east of the Rocky Mountains in a form suitable for probabilistic risk assessment and to apply that methodology to 69 site locations, some of them with local soil conditions. The method developed uses expert opinions to obtain the input to the analysis. SHC contains four modules which calculate the seismic hazard at a site located in a region of diffuse seismicity, where the seismicity is modeled by area sources. SHC integrates the opinions of 11 seismicity and five ground-motion experts. The PRDS model generates the discrete probability density function of the distances to the site for the various seismic source zones. These probability distributions are used by the COMAP module to generate the set of all alternative maps and the discrete probability density of the seismic zonation maps for each expert. The third module, ALEAS, uses these maps and their weights to calculate the best estimate and constant percentile hazard distribution resulting from the choice of a given seismicity expert for all ground-motion experts. This module can be used alone to perform a seismic hazard analysis as well as in conjunction with the other modules. The fourth module, COMB, combines the best- estimate and constant-percentile hazard over all seismicity experts, using the set of weights calculated by ALEAS, to produce the final probability distribution of the hazard for the site under consideration so that the hazard analysis can be performed for any location in the EUS. Local geological-site characteristics are incorporated in a generic fashion, and the data are developed in a generic manner. 2 - Method of solution: SHC uses a seismic-source approach utilizing statistical and geological evidence to define geographical regions with homogeneous Poisson activity throughout the zone, described by a

  3. Analysis of the impact of large scale seismic retrofitting strategies through the application of a vulnerability-based approach on traditional masonry buildings

    Science.gov (United States)

    Ferreira, Tiago Miguel; Maio, Rui; Vicente, Romeu

    2017-04-01

    The buildings' capacity to maintain minimum structural safety levels during natural disasters, such as earthquakes, is recognisably one of the aspects that most influence urban resilience. Moreover, the public investment in risk mitigation strategies is fundamental, not only to promote social and urban and resilience, but also to limit consequent material, human and environmental losses. Despite the growing awareness of this issue, there is still a vast number of traditional masonry buildings spread throughout many European old city centres that lacks of adequate seismic resistance, requiring therefore urgent retrofitting interventions in order to both reduce their seismic vulnerability and to cope with the increased seismic requirements of recent code standards. Thus, this paper aims at contributing to mitigate the social and economic impacts of earthquake damage scenarios through the development of vulnerability-based comparative analysis of some of the most popular retrofitting techniques applied after the 1998 Azores earthquake. The influence of each technique individually and globally studied resorting to a seismic vulnerability index methodology integrated into a GIS tool and damage and loss scenarios are constructed and critically discussed. Finally, the economic balance resulting from the implementation of that techniques are also examined.

  4. Requalification analysis of a circular composite slab for seismic load

    International Nuclear Information System (INIS)

    Srinivasan, M.G.; Kot, C.A.

    1993-01-01

    The circular roof slab of an existing facility was analyzed to requalify the structure for supporting a significant seismic load that it was not originally designed for. The slab has a clear span of 66 ft and consists of a 48 in. thick reinforced concrete member and a steel liner plate. Besides a number of smaller penetrations, the slab contains two significant cutouts. The dominant load for the slab came from seismic excitation. It was characterized by a response spectrum with a peak spectral acceleration of 0.72 g in the vertical direction. The first part of the analysis showed that the nature of attachment between the liner plate and the reinforced concrete (RC) slab would justify assuming composite action between the two. A finite clement analysis, with the ANSYS code, was made to investigate the region surrounding the openings. As the reinforcement in the slab was quite inhomogeneous, it was necessary to determine the stresses in other areas of the slab also. These were obtained with closed form expressions. Finally it is shown that the strength design provisions of the Code Requirements for Nuclear Safety Related Concrete Structures were met by the reinforced concrete slab and the allowable stress provisions of the American National Standard for safety related steel structures in nuclear facilities were met by the liner plate. The composite action between the RC slab and the liner plate provides for the additional strength required to support the enhanced seismic load. The issues that complicated the analysis of this nontypical structure, i.e., composite action and nonlinear stiffness of RC sections, are discussed. It was possible to circumvent the difficulties by making conservative and simplifying assumptions. If design codes incorporate guidelines on practical methods for dynamic analysis of RC structures, some of the unneeded conservatism could be eliminated in future designs

  5. Armenian nuclear power plant: US NRC assistance programme for seismic upgrade and safety analysis

    International Nuclear Information System (INIS)

    Simos, N.; Perkins, K.; Jo, J.; Carew, J.; Ramsey, J.

    2003-01-01

    This paper summarizes the U.S. Nuclear Regulatory Commission's (US NRC) technical support program activities associated with the Armenian Nuclear Power Plant (ANPP) safety upgrade. The US NRC program, integrated within the overall IAEA-led initiative for safety re-evaluation of the WWER plants, has as its main thrust the technical support to the Armenian Nuclear Regulatory Authority (ANRA) through close collaboration with the scientific staff at Brookhaven National Laboratory (BNL). Several major technical areas of support to ANRA form the basis of the NRC program. These include the seismic re-evaluation and upgrade of the ANPP, safety evaluation of critical systems, and the generation of the Safety Analysis Report (SAR). Specifically, the seismic re-evaluation of the ANPP is part of a broader activity that involves the re-assessment of the seismic hazard at the site, the identification of the Safe Shutdown Equipment at the plant and the evaluation of their seismic capacity, the detailed modeling and analysis of the critical facilities at ANPP, and the generation of the Floor Response Spectra (FRS). Based on the new spectra that incorporate all new findings (hazard, site soil, structure, etc.), the overall capacity of the main structures and the seismic capacity of the critical systems are being re-evaluated. In addition, analyses of critical safe shutdown systems and safe shutdown processes are being performed to ensure both the capabilities of the operating systems and the enhancement of safety due to system upgrades. At present, one of the principal goals of the US NRC's regulatory assistance activities with ANRA is enhancing ANRA's regulatory oversight of high-priority safety issues (both generic and plant-specific) associated with operation of the ANPP. As such, assisting ANRA in understanding and assessing plant-specific seismic and other safety issues associated with the ANPP is a high priority given the ANPP's being located in a seismically active area

  6. Optimal organization of structural analysis and site inspection for the seismic requalification of Paks NPP

    International Nuclear Information System (INIS)

    Contri, P.

    1996-01-01

    The analysis described in this report deals with a numerical procedure aimed for the assessment of a methodology for the optimal organization of data collection, in the context of seismic requalification of structures and components of existing nuclear power plants. The presented procedure has quite a general application and an example was chosen for the Paks NPP where seismic requalification is in progress. The assessment was carried out in reference to the following main tasks: structure and soil data analysis; numerical model generation; deterministic dynamic analysis description; reliability analysis framework discussion; transfer function calculation via response surface approach; and the sensitivity evaluation

  7. Subsystem response analysis for the Seismic Safety Margins Research Program

    International Nuclear Information System (INIS)

    Chuang, T.Y.

    1981-01-01

    A review of the state-of-the-art of seismic qualification methods of subsystem has been completed. This task assesses the accuracy of seismic analysis techniques to predict dynamic response, and also identifies and quantifies sources of random and modeling undertainty in subsystem response determination. The subsystem has been classified as two categories according to the nature of support: multiply supported subsystems (e.g., piping systems) and singly supported subsystems (e.g., pumps, turbines, electrical control panels, etc.). The mutliply supported piping systems are analyzed by multisupport input time history method. The input motions are the responses of major structures. The dynamic models of the subsystems identified by the event/fault tree are created. The responses calculated by multisupport input time history method are consistent with the fragility parameters. These responses are also coordinated with the event/fault tree description. The subsystem responses are then evaluated against the fragility curves of components and systems and incorporated in the event/fault tree analysis. (orig./HP)

  8. Simplified seismic analysis applied to structures systems and components with limited radioactive inventories

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1989-01-01

    This paper presents a review of the current status of simplified methods of seismic design and analysis applicable to nuclear facility structures, systems and components important to public health and safety. In particular, the International Atomic Energy Agency, IAEA TEC DOC 348 procedure for structures and the Bounding Spectra Concept for equipment as being developed by Seismic Qualification Utility Group and the Electric Power Research Institute will be discussed in some detail

  9. DARHT Multi-intelligence Seismic and Acoustic Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Garrison Nicole [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Van Buren, Kendra Lu [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hemez, Francois M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-21

    The purpose of this report is to document the analysis of seismic and acoustic data collected at the Dual-Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory for robust, multi-intelligence decision making. The data utilized herein is obtained from two tri-axial seismic sensors and three acoustic sensors, resulting in a total of nine data channels. The goal of this analysis is to develop a generalized, automated framework to determine internal operations at DARHT using informative features extracted from measurements collected external of the facility. Our framework involves four components: (1) feature extraction, (2) data fusion, (3) classification, and finally (4) robustness analysis. Two approaches are taken for extracting features from the data. The first of these, generic feature extraction, involves extraction of statistical features from the nine data channels. The second approach, event detection, identifies specific events relevant to traffic entering and leaving the facility as well as explosive activities at DARHT and nearby explosive testing sites. Event detection is completed using a two stage method, first utilizing signatures in the frequency domain to identify outliers and second extracting short duration events of interest among these outliers by evaluating residuals of an autoregressive exogenous time series model. Features extracted from each data set are then fused to perform analysis with a multi-intelligence paradigm, where information from multiple data sets are combined to generate more information than available through analysis of each independently. The fused feature set is used to train a statistical classifier and predict the state of operations to inform a decision maker. We demonstrate this classification using both generic statistical features and event detection and provide a comparison of the two methods. Finally, the concept of decision robustness is presented through a preliminary analysis where

  10. Revision of the AESJ Standard for Seismic Probabilistic Risk Assessment (PRA). Updating requirements based on the lessons learned from the Fukushima Dai-ichi NPP Accidents (3). Fragility evaluation and outline of the updated points

    International Nuclear Information System (INIS)

    Yamaguchi, Akira; Nakamura, Susumu; Mihara, Yoshinori

    2014-01-01

    Lessons learned from Great East Japan earthquake and other new findings had been accumulated on the fragility evaluation of buildings and components. And also new analysis and evaluation method had been proposed with the advancement of recent analysis and evaluation technology. These were reflected in revision of the AESJ Standard for Seismic Probabilistic Risk Assessment (PRA). Scope of the fragility evaluation were extended to all equipment on the site, severe accident management equipment including portable equipment and earthquake concomitant incident (such as tsunami) countermeasure equipment. This article described outlines of updating points of the fragility evaluation of the AESJ Standard for Seismic PRA; (1) requirements for seismic induced other risk evaluations such as fire, inundation and tsunami, (2) simulation technology based on recent findings such as three dimensional responses of buildings / structures and its effect on equipment, (3) requirements of the fragility evaluation for various failure mode of several equipment such as severe accident management equipment, fine failure mode of buildings / structures, failures of equipment related with earthquake concomitant incidents (embankment and seawall) and spent fuel pool, and (4) requirements for the fragility evaluation of aftershocks and soil deformation due to fault displacement. (T. Tanaka)

  11. Sources of Error and the Statistical Formulation of M S: m b Seismic Event Screening Analysis

    Science.gov (United States)

    Anderson, D. N.; Patton, H. J.; Taylor, S. R.; Bonner, J. L.; Selby, N. D.

    2014-03-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT), a global ban on nuclear explosions, is currently in a ratification phase. Under the CTBT, an International Monitoring System (IMS) of seismic, hydroacoustic, infrasonic and radionuclide sensors is operational, and the data from the IMS is analysed by the International Data Centre (IDC). The IDC provides CTBT signatories basic seismic event parameters and a screening analysis indicating whether an event exhibits explosion characteristics (for example, shallow depth). An important component of the screening analysis is a statistical test of the null hypothesis H 0: explosion characteristics using empirical measurements of seismic energy (magnitudes). The established magnitude used for event size is the body-wave magnitude (denoted m b) computed from the initial segment of a seismic waveform. IDC screening analysis is applied to events with m b greater than 3.5. The Rayleigh wave magnitude (denoted M S) is a measure of later arriving surface wave energy. Magnitudes are measurements of seismic energy that include adjustments (physical correction model) for path and distance effects between event and station. Relative to m b, earthquakes generally have a larger M S magnitude than explosions. This article proposes a hypothesis test (screening analysis) using M S and m b that expressly accounts for physical correction model inadequacy in the standard error of the test statistic. With this hypothesis test formulation, the 2009 Democratic Peoples Republic of Korea announced nuclear weapon test fails to reject the null hypothesis H 0: explosion characteristics.

  12. 6C polarization analysis - seismic direction finding in coherent noise, automated event identification, and wavefield separation

    Science.gov (United States)

    Schmelzbach, C.; Sollberger, D.; Greenhalgh, S.; Van Renterghem, C.; Robertsson, J. O. A.

    2017-12-01

    Polarization analysis of standard three-component (3C) seismic data is an established tool to determine the propagation directions of seismic waves recorded by a single station. A major limitation of seismic direction finding methods using 3C recordings, however, is that a correct propagation-direction determination is only possible if the wave mode is known. Furthermore, 3C polarization analysis techniques break down in the presence of coherent noise (i.e., when more than one event is present in the analysis time window). Recent advances in sensor technology (e.g., fibre-optical, magnetohydrodynamic angular rate sensors, and ring laser gyroscopes) have made it possible to accurately measure all three components of rotational ground motion exhibited by seismic waves, in addition to the conventionally recorded three components of translational motion. Here, we present an extension of the theory of single station 3C polarization analysis to six-component (6C) recordings of collocated translational and rotational ground motions. We demonstrate that the information contained in rotation measurements can help to overcome some of the main limitations of standard 3C seismic direction finding, such as handling multiple arrivals simultaneously. We show that the 6C polarisation of elastic waves measured at the Earth's free surface does not only depend on the seismic wave type and propagation direction, but also on the local P- and S-wave velocities just beneath the recording station. Using an adaptation of the multiple signal classification algorithm (MUSIC), we demonstrate how seismic events can univocally be identified and characterized in terms of their wave type. Furthermore, we show how the local velocities can be inferred from single-station 6C data, in addition to the direction angles (inclination and azimuth) of seismic arrivals. A major benefit of our proposed 6C method is that it also allows the accurate recovery of the wave type, propagation directions, and phase

  13. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SUMMARY OF COMBINED THERMAL AND OPERATING LOADS WITH SEISMIC ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; DEIBLER JE; RINKER MW; JOHNSON KI; ABATT FG; KARRI NK; PILLI SP; STOOPS KL

    2009-01-15

    This report summarizes the results of the Double-Shell Tank Thermal and Operating Loads Analysis (TaLA) combined with the Seismic Analysis. This combined analysis provides a thorough, defensible, and documented analysis that will become a part of the overall analysis of record for the Hanford double-shell tanks (DSTs). The bases of the analytical work presented herein are two ANSYS{reg_sign} finite element models that were developed to represent a bounding-case tank. The TaLA model includes the effects of temperature on material properties, creep, concrete cracking, and various waste and annulus pressure-loading conditions. The seismic model considers the interaction of the tanks with the surrounding soil including a range of soil properties, and the effects of the waste contents during a seismic event. The structural evaluations completed with the representative tank models do not reveal any structural deficiencies with the integrity of the DSTs. The analyses represent 60 years of use, which extends well beyond the current date. In addition, the temperature loads imposed on the model are significantly more severe than any service to date or proposed for the future. Bounding material properties were also selected to provide the most severe combinations. While the focus of the analyses was a bounding-case tank, it was necessary during various evaluations to conduct tank-specific analyses. The primary tank buckling evaluation was carried out on a tank-specific basis because of the sensitivity to waste height, specific gravity, tank wall thickness, and primary tank vapor space vacuum limit. For this analysis, the occurrence of maximum tank vacuum was classified as a service level C, emergency load condition. The only area of potential concern in the analysis was with the buckling evaluation of the AP tank, which showed the current limit on demand of l2-inch water gauge vacuum to exceed the allowable of 10.4 inches. This determination was based on analysis at the

  14. Geomechanics-Based Stochastic Analysis of Injection- Induced Seismicity

    Energy Technology Data Exchange (ETDEWEB)

    Ghassemi, Ahmad [Univ. of Oklahoma, Norman, OK (United States)

    2017-08-21

    The production of geothermal energy from dry and low permeability reservoirs is achieved by water circulation in natural and/or man-made fractures, and is referred to as enhanced or engineered geothermal systems (EGS). Often, the permeable zones have to be created by stimulation, a process which involves fracture initiation and/or activation of discontinuities such as faults and joints due to pore pressure and the in-situ stress perturbations. The stimulation of a rock mass is often accompanied by multiple microseismic events. Micro-seismic events associated with rock failure in shear, and shear slip on new or pre-existing fracture planes and possibly their propagations. The microseismic signals contain information about the sources of energy that can be used for understanding the hydraulic fracturing process and the created reservoir properties. Detection and interpretation of microseismic events is useful for estimating the stimulated zone, created reservoir permeability and fracture growth, and geometry of the geological structures and the in-situ stress state. The process commonly is referred to as seismicity-based reservoir characterization (SBRC). Although, progress has been made by scientific & geothermal communities for quantitative and qualitative analysis of reservoir stimulation using SBRC several key questions remain unresolved in the analysis of micro-seismicity namely, variation of seismic activity with injection rate, delayed micro-seismicity, and the relation of stimulated zone to the injected volume and its rate, and the resulting reservoir permeability. In addition, the current approach to SBRC does not consider the full range of relevant poroelastic and thermoelastic phenomena and neglects the uncertainty in rock properties and in-situ stress in the data inversion process. The objective of this research and technology developments was to develop a 3D SBRC model that addresses these shortcomings by taking into account hydro

  15. Post-seismic relaxation from geodetic and seismic data

    Directory of Open Access Journals (Sweden)

    Mikhail V. Rodkin

    2017-01-01

    Full Text Available We have examined the aftershock sequence and the post-seismic deformation process of the Parkfield earthquake (2004, M = 6, California, USA source area using GPS data. This event was chosen because of the possibility of joint analysis of data from the rather dense local GPS network (from SOPAC Internet archive and of the availability of the rather detailed aftershock sequence data (http://www.ncedc.org/ncedc/catalog-search.html. The relaxation process of post-seismic deformation prolongs about the same 400 days as the seismic aftershock process does. Thus, the aftershock process and the relaxation process in deformation could be the different sides of the same process. It should be noted that the ratio of the released seismic energy and of the GPS obtained deformation is quite different for the main shock and for the aftershock stage. The ratio of the released seismic energy to the deformation value decreases essentially for the post-shock process. The similar change in the seismic energy/deformation value ratio is valid in a few other strong earthquakes. Thus, this decrease seems typical of aftershock sequences testifying for decrease of ratio of elastic to inelastic deformation in the process of post-shock relaxation when the source area appears to be mostly fractured after the main shock occurs, but the healing process had no yet sufficient time to develop.

  16. Seismic texture classification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vinther, R.

    1997-12-31

    The seismic texture classification method, is a seismic attribute that can both recognize the general reflectivity styles and locate variations from these. The seismic texture classification performs a statistic analysis for the seismic section (or volume) aiming at describing the reflectivity. Based on a set of reference reflectivities the seismic textures are classified. The result of the seismic texture classification is a display of seismic texture categories showing both the styles of reflectivity from the reference set and interpolations and extrapolations from these. The display is interpreted as statistical variations in the seismic data. The seismic texture classification is applied to seismic sections and volumes from the Danish North Sea representing both horizontal stratifications and salt diapers. The attribute succeeded in recognizing both general structure of successions and variations from these. Also, the seismic texture classification is not only able to display variations in prospective areas (1-7 sec. TWT) but can also be applied to deep seismic sections. The seismic texture classification is tested on a deep reflection seismic section (13-18 sec. TWT) from the Baltic Sea. Applied to this section the seismic texture classification succeeded in locating the Moho, which could not be located using conventional interpretation tools. The seismic texture classification is a seismic attribute which can display general reflectivity styles and deviations from these and enhance variations not found by conventional interpretation tools. (LN)

  17. Nonlinear seismic analysis of a thick-walled concrete canyon structure

    International Nuclear Information System (INIS)

    Winkel, B.V.; Wagenblast, G.R.

    1989-01-01

    Conventional linear seismic analyses of a thick-walled lightly reinforced concrete structure were found to grossly underestimate its seismic capacity. Reasonable estimates of the seismic capacity were obtained by performing approximate nonlinear spectrum analyses along with static collapse evaluations. A nonlinear time history analyses is planned as the final verification of seismic adequacy

  18. Risk-Informed Selection of Steel Connections for Seismic Zones

    Directory of Open Access Journals (Sweden)

    De León-Escobedo D.

    2011-04-01

    Full Text Available The findings about the fragile behavior of steel welded connections after the Northridge 1994 earthquake, specially for frames designed to withstand lateral force, has brought an amount of new attention to the design and safety issues of the welded connections for structures located on seismic zones. In México, practitioners and designers are wondering about the seismic effectiveness of the several kinds of connections as used in steel structures. A decision must be made to balance the safety required with the costs incurred after exceeding the serviceability limit state. Structural reliability techniques provide the proper framework to include the inherent uncertainties into the design process. Registered motions after the 1985 Mexico City earthquake are properly scaled according to the seismic hazard curve for soft soil in Mexico City. Earthquake occurrence is modeled as a Poisson process and the expected life-cycle cost is taken as the decision criteria. Parametric analyses allow the identification of dominant variables and ranges where one option is more recommendable than the other one. The proposed formulation may support designers and builders for the decision making process about the selection of the convenient connection type for the seismic zones with soft soil in Mexico City.

  19. Theoretical models for crustal displacement assessment and monitoring in Vrancea-Focsani seismic zone by integrated remote sensing and local geophysical data for seismic prognosis

    International Nuclear Information System (INIS)

    Zoran, Maria; Ciobanu, Mircea; Mitrea, Marius Gabriel; Talianu, Camelia; Cotarlan, Costel; Mateciuc, Doru; Radulescu, Florin; Biter Mircea

    2002-01-01

    considered as an intermediate step between the material response of the Earth surface to seismic activity due to its physical properties and geological understanding of the regional lithology, structure and stratigraphy, interpreting the data is essential for analysis of seismic areas.The quantitative data sets are transformed into plots or are exhibited as images, figures or diagrams. The seismic response is given as a Green function and path integral over D in terms of material density, compressibility and attenuation. D is the domain of all paths traversed by the ray from shot point s to the receiver point r, and θ(x,s,r) is the angle at x between the rays connecting x to s and r. Complete knowledge of these parameters and nature of the seismic activity could reproduce the seismic section synthetically. Our model suggests three ways to reduce the size of a data set for seismic section analysis for automatic interpretation. The evaluation of seismic sections may be considered a two-step process: processing the data and interpreting the new image. Location and dip of faults, sense of motion along them and boundaries all based in seismic facies, amplitude data, frequency, reflection geometry as well as the degree of continuity can be identified. c) Multifractal analysis which is applied to tectonic faults lineaments. The expert knowledge for the interpretation of the lineaments was used against algorithms and other automatic methods in order to increase the qualitative accuracy of the methods for refined lineament map extraction. The proposed theoretical multifractal analysis examined and classified landcover and every lineament based on different sets of predefined criteria. The classification system consists of four classes: active faults (potentially capable to trigger an earthquake), possible active fault, inactive fault and lineaments. For risk degree evaluation it is very useful to draw up a map of lineaments, select tectonic blocks of various sizes and separate these

  20. Analysis of the relationship between water level fluctuation and seismicity in the Three Gorges Reservoir (China

    Directory of Open Access Journals (Sweden)

    Lifen Zhang

    2017-03-01

    Full Text Available The Three Gorges Reservoir is a good site for the further researches on reservoir induced seismicity due to decades' seismic monitoring. After the first water impounding in 2003, seismic activity becomes more frequent than that before water impoundment. In order to quantitatively study, the relationship between the water level fluctuation and earthquakes in TGR, we introduced statistical methods to attain the goal. First of all, we relocated the earthquakes in TGR region with double difference method and divided the earthquakes into 5 clusters with clustering analysis method. Secondly, to examine the impacts of water level fluctuation in different water filling stages on the seismic activity in the 5 clusters, a series of statistical analyses are applied. Pearson correlation results show that only the 175 m water level fluctuation has significantly positive impacts on the seismic activity in clusters Ⅰ, Ⅱ, Ⅲ and Ⅴ with correlation coefficients of 0.44, 0.38, 0.66 and 0.63. Cross-correlation analysis demonstrates that 0, 1, 0 and 0 month time delay separately for the clusters Ⅰ, Ⅱ, Ⅲ and Ⅴ exists. It illustrated the influences of the water loading and pore pressure diffusion on induced earthquakes. Cointegration tests and impulse response analysis denoted that the 175 m water level only had long term and significant effects just on the seismic events in the intersection region of the Fairy Mount Fault and Nine-brook Fault. One standard deviation shock to 175 m water level increased the seismic activity in cluster Ⅴ for the first 3 months, and then the negative influence was shown. After 7 months, the negative impulse response becomes stable. The long-term effect of the 175 m water impoundment also proved the important role of pore pressure diffusion in RIS with time.