WorldWideScience

Sample records for seismic records wave-arrival

  1. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume V S-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (V), all S-wave measurements are presented that were performed in Borehole C4996 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

  2. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume VI S-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (VI), all S-wave measurements are presented that were performed in Borehole C4997 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

  3. The incorporation of fault zone head wave and direct wave secondary arrival times and arrival polarizations into seismic tomography: Application to the Parkfield, California area

    Science.gov (United States)

    Bennington, N. L.; Thurber, C. H.; Peng, Z.; Zhao, P.

    2012-12-01

    We present a 3D P-wave velocity (Vp) model of the Parkfield region that utilizes existing P-wave arrival time data, including fault zone head waves (FZHW), plus new data from direct wave secondary arrivals (DWSA). The first-arrival and DWSA travel times are obtained as the global and local minimum travel time paths, respectively. The inclusion of DWSA results in as much as a 10% increase in the across-fault velocity contrast for the Vp model at Parkfield relative to Thurber et al. (2006). Viewed along strike, three pronounced velocity contrast regions are observed: a pair of strong positive velocity contrasts (SW fast), one NW of the 1966 Parkfield hypocenter and the other SE of the 2004 Parkfield hypocenter, and a strong negative velocity contrast (NE fast) between the two hypocenters. The negative velocity contrast partially to entirely encompasses peak coseismic slip estimated in several slip models for the 2004 earthquake, suggesting that the negative velocity contrast played a part in defining the rupture patch of the 2004 Parkfield earthquake. We expand on this work by modifying our seismic tomography algorithm to incorporate arrival polarizations (azimuths). Synthetic tests will be presented to demonstrate the improvements in velocity structure when arrival polarizations are incorporated. These tests will compare the synthetic model recovered when FZHW/DWSA arrivals as well as existing P-wave arrival time data are inverted to that recovered with the same dataset with the inclusion of arrival polarizations. We plan to extend this work to carry out a full scale seismic tomography/relocation inversion at Parkfield, CA utilizing arrival polarizations from all first-P arrivals, and FZHW/DWSA arrivals as well as existing P-wave arrival time data. This effort requires the determination of polarization data for all P-waves and FZHW's at Parkfield. To this end, we use changes in the arrival azimuth from fault normal to source-receiver direction to identify FZHW and

  4. Algorithm Indicating Moment of P-Wave Arrival Based on Second-Moment Characteristic

    Directory of Open Access Journals (Sweden)

    Jakub Sokolowski

    2016-01-01

    Full Text Available The moment of P-wave arrival can provide us with many information about the nature of a seismic event. Without adequate knowledge regarding the onset moment, many properties of the events related to location, polarization of P-wave, and so forth are impossible to receive. In order to save time required to indicate P-wave arrival moment manually, one can benefit from automatic picking algorithms. In this paper two algorithms based on a method finding a regime switch point are applied to seismic event data in order to find P-wave arrival time. The algorithms are based on signals transformed via a basic transform rather than on raw recordings. They involve partitioning the transformed signal into two separate series and fitting logarithm function to the first subset (which corresponds to pure noise and therefore it is considered stationary, exponent or power function to the second subset (which corresponds to nonstationary seismic event, and finding the point at which these functions best fit the statistic in terms of sum of squared errors. Effectiveness of the algorithms is tested on seismic data acquired from O/ZG “Rudna” underground copper ore mine with moments of P-wave arrival initially picked by broadly known STA/LTA algorithm and then corrected by seismic station specialists. The results of proposed algorithms are compared to those obtained using STA/LTA.

  5. Seismic rotation waves: basic elements of theory and recording

    Directory of Open Access Journals (Sweden)

    P. Palangio

    2003-06-01

    Full Text Available Returning to the old problem of observed rotation effects, we present the recording system and basic elements of the theory related to the rotation fi eld and its association with seismic waves. There can be many different causes leading to observed/recorded rotation effects; we can group them as follows: generation of micro-displacement motion due to asymmetry of source processes and/or due to interaction between seismic body/surface waves and medium structure; interaction between incident seismic waves and objects situated on the ground surface. New recording techniques and advanced theory of deformation in media with defects and internal (e.g., granular structure make it possible to focus our attention on the fi rst group, related to microdisplacement motion recording, which includes both rotation and twist motions. Surface rotations and twists caused directly by the action of emerging seismic waves on some objects situated on the ground surface are considered here only in the historical aspects of the problem. We present some examples of experimental results related to recording of rotation and twist components at the Ojcow Observatory, Poland, and L'Aquila Observatory, Italy, and we discuss some prospects for further research.

  6. Automated Processing Workflow for Ambient Seismic Recordings

    Science.gov (United States)

    Girard, A. J.; Shragge, J.

    2017-12-01

    Structural imaging using body-wave energy present in ambient seismic data remains a challenging task, largely because these wave modes are commonly much weaker than surface wave energy. In a number of situations body-wave energy has been extracted successfully; however, (nearly) all successful body-wave extraction and imaging approaches have focused on cross-correlation processing. While this is useful for interferometric purposes, it can also lead to the inclusion of unwanted noise events that dominate the resulting stack, leaving body-wave energy overpowered by the coherent noise. Conversely, wave-equation imaging can be applied directly on non-correlated ambient data that has been preprocessed to mitigate unwanted energy (i.e., surface waves, burst-like and electromechanical noise) to enhance body-wave arrivals. Following this approach, though, requires a significant preprocessing effort on often Terabytes of ambient seismic data, which is expensive and requires automation to be a feasible approach. In this work we outline an automated processing workflow designed to optimize body wave energy from an ambient seismic data set acquired on a large-N array at a mine site near Lalor Lake, Manitoba, Canada. We show that processing ambient seismic data in the recording domain, rather than the cross-correlation domain, allows us to mitigate energy that is inappropriate for body-wave imaging. We first develop a method for window selection that automatically identifies and removes data contaminated by coherent high-energy bursts. We then apply time- and frequency-domain debursting techniques to mitigate the effects of remaining strong amplitude and/or monochromatic energy without severely degrading the overall waveforms. After each processing step we implement a QC check to investigate improvements in the convergence rates - and the emergence of reflection events - in the cross-correlation plus stack waveforms over hour-long windows. Overall, the QC analyses suggest that

  7. Air-coupled seismic waves at long range from Apollo launchings.

    Science.gov (United States)

    Donn, W. L.; Dalins, I.; Mccarty, V.; Ewing, M.; Kaschak , G.

    1971-01-01

    Microphones and seismographs were co-located in arrays on Skidaway Island, Georgia, for the launchings of Apollo 13 and 14, 374 km to the south. Simultaneous acoustic and seismic waves were recorded for both events at times appropriate to the arrival of the acoustic waves from the source. The acoustic signal is relatively broadband compared to the nearly monochromatic seismic signal; the seismic signal is much more continuous than the more pulse-like acoustic signal; ground loading from the pressure variations of the acoustic waves is shown to be too small to account for the seismic waves; and the measured phase velocities of both acoustic and seismic waves across the local instrument arrays differ by less than 6 per cent and possibly 3 per cent if experimental error is included. It is concluded that the seismic waves are generated by resonant coupling to the acoustic waves along some 10 km of path on Skidaway Island.

  8. An analysis of the first-arrival times picked on the DSS and wide-angle seismic section recorded in Italy since 1968

    Directory of Open Access Journals (Sweden)

    R. Tondi

    2004-06-01

    Full Text Available We performed an analysis of refraction data recorded in Italy since 1968 in the frame of the numerous deep seismic sounding and wide-angle reflection/refraction projects. The aims of this study are to construct a parametric database including the recording geometric information relative to each profile, the phase pickings and the results of some kinematic analyses performed on the data, and to define a reference 1D velocity model for the Italian territory from all the available refraction data. As concerns the first goal, for each seismic section we picked the P-wave first-arrival-times, evaluated the uncertainties of the arrival-times pickings and determined from each travel time-offset curve the 1D velocity model. The study was performed on 419 seismic sections. Picking was carried out manually by an algorithm which includes the computation of three picking functions and the picking- error estimation. For each of the travel time-offset curves a 1D velocity model has been calculated. Actually, the 1D velocity-depth functions were estimated in three different ways which assume: a constant velocitygradient model, a varying velocity-gradient model and a layered model. As regards the second objective of this work, a mean 1D velocity model for the Italian crust was defined and compared with those used for earthquake hypocentre locations and seismic tomographic studies by different institutions operating in the Italian area, to assess the significance of the model obtained. This model can be used in future works as input for a next joint tomographic inversion of active and passive seismic data.

  9. Investigations of the low frequency seismic waves recorded at near-regional distances from the Non-Proliferation Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Patton, H.J. [Lawrence Livermore National Lab., CA (United States)

    1994-12-31

    Seismic waves recorded at near-regional distances are used to characterize the source of the Non-Proliferation Experiment (NPE) and three selected nuclear explosions detonated in N-tunnel on Rainier Mesa. For periods longer than 5 sec, the signal-to-noise ratio is poor on most recordings of the NPE. A seismogram-stacking method is used in order to reduce background noise in coherent arrivals of Rayleigh waves. This method requires equalization of path dispersion and attenuation, which is accomplished in this study with empirical Green`s functions. The stacked, equalized Rayleigh-wave spectra are inverted, along with the spectral amplitudes of Lg waves with periods of 2-5 sec, for estimates of the seismic moment tensor. The NPE isotropic moment is 1.6 x 10{sup 14} Nt-m. The inferred static level of the reduced displacement potential is 825 m{sup 3}, which is about two times smaller than the estimate from free-field data recorded within 1 km of the NPE. Moment tensors of the NPE and nuclear explosions are asymmetric, describing prolate ellipsoids of rotation with the long axis in the vertical direction. The asymmetries are among the largest for explosions on Pahute and Rainier Mesa. The non-isotropic component is a compensated linear vector dipole (CLVD), which may represent driven block motions occurring within a conical volume of material extending from the shot point (apex) to the free surface. The CLVD source can help explain some observations of scalloping in the spectra of Lg waves and Lg spectral ratios. Seismic radiation from the NPE is virtually indistinguishable from that of nearby nuclear explosions for frequencies below 1 Hz.

  10. Application of super-virtual seismic refraction interferometry to enhance first arrivals: A case study from Saudi Arabia

    KAUST Repository

    Alshuhail, Abdulrahman Abdullatif Abdulrahman

    2012-01-01

    Complex near-surface anomalies are one of the main onshore challenges facing seismic data processors. Refraction tomography is becoming a common technology to estimate an accurate near-surface velocity model. This process involves picking the first arrivals of refracted waves. One of the main challenges with refraction tomography is the low signal-to-noise ratio characterizing the first-break waveform arrivals, especially for the far-offset receivers. This is especially evident in data recorded using reflection acquisition geometry. This low signal-to-noise ratio is caused by signal attenuation due to geometrical spreading of the seismic wavefield, near-surface-generated noise, and amplitude absorption. Super-virtual refraction interferometry improves the quality of the first-break picks by enhancing the amplitude of the refracted waves and attenuating the amplitude of the random noise.

  11. Automatic pickup of arrival time of channel wave based on multi-channel constraints

    Science.gov (United States)

    Wang, Bao-Li

    2018-03-01

    Accurately detecting the arrival time of a channel wave in a coal seam is very important for in-seam seismic data processing. The arrival time greatly affects the accuracy of the channel wave inversion and the computed tomography (CT) result. However, because the signal-to-noise ratio of in-seam seismic data is reduced by the long wavelength and strong frequency dispersion, accurately timing the arrival of channel waves is extremely difficult. For this purpose, we propose a method that automatically picks up the arrival time of channel waves based on multi-channel constraints. We first estimate the Jaccard similarity coefficient of two ray paths, then apply it as a weight coefficient for stacking the multichannel dispersion spectra. The reasonableness and effectiveness of the proposed method is verified in an actual data application. Most importantly, the method increases the degree of automation and the pickup precision of the channel-wave arrival time.

  12. Seismic interferometry of railroad induced ground motions: body and surface wave imaging

    Science.gov (United States)

    Quiros, Diego A.; Brown, Larry D.; Kim, Doyeon

    2016-04-01

    Seismic interferometry applied to 120 hr of railroad traffic recorded by an array of vertical component seismographs along a railway within the Rio Grande rift has recovered surface and body waves characteristic of the geology beneath the railway. Linear and hyperbolic arrivals are retrieved that agree with surface (Rayleigh), direct and reflected P waves observed by nearby conventional seismic surveys. Train-generated Rayleigh waves span a range of frequencies significantly higher than those recovered from typical ambient noise interferometry studies. Direct P-wave arrivals have apparent velocities appropriate for the shallow geology of the survey area. Significant reflected P-wave energy is also present at relatively large offsets. A common midpoint stack produces a reflection image consistent with nearby conventional reflection data. We suggest that for sources at the free surface (e.g. trains) increasing the aperture of the array to record wide angle reflections, in addition to longer recording intervals, might allow the recovery of deeper geological structure from railroad traffic. Frequency-wavenumber analyses of these recordings indicate that the train source is symmetrical (i.e. approaching and receding) and that deeper refracted energy is present although not evident in the time-offset domain. These results confirm that train-generated vibrations represent a practical source of high-resolution subsurface information, with particular relevance to geotechnical and environmental applications.

  13. Automatic picking of direct P, S seismic phases and fault zone head waves

    Science.gov (United States)

    Ross, Z. E.; Ben-Zion, Y.

    2014-10-01

    We develop a set of algorithms for automatic detection and picking of direct P and S waves, as well as fault zone head waves (FZHW), generated by earthquakes on faults that separate different lithologies and recorded by local seismic networks. The S-wave picks are performed using polarization analysis and related filters to remove P-wave energy from the seismograms, and utilize STA/LTA and kurtosis detectors in tandem to lock on the phase arrival. The early portions of P waveforms are processed with STA/LTA, kurtosis and skewness detectors for possible first-arriving FZHW. Identification and picking of direct P and FZHW is performed by a multistage algorithm that accounts for basic characteristics (motion polarities, time difference, sharpness and amplitudes) of the two phases. The algorithm is shown to perform well on synthetic seismograms produced by a model with a velocity contrast across the fault, and observed data generated by earthquakes along the Parkfield section of the San Andreas fault and the Hayward fault. The developed techniques can be used for systematic processing of large seismic waveform data sets recorded near major faults.

  14. Analysis of seismic waves crossing the Santa Clara Valley using the three-component MUSIQUE array algorithm

    Science.gov (United States)

    Hobiger, Manuel; Cornou, Cécile; Bard, Pierre-Yves; Le Bihan, Nicolas; Imperatori, Walter

    2016-10-01

    We introduce the MUSIQUE algorithm and apply it to seismic wavefield recordings in California. The algorithm is designed to analyse seismic signals recorded by arrays of three-component seismic sensors. It is based on the MUSIC and the quaternion-MUSIC algorithms. In a first step, the MUSIC algorithm is applied in order to estimate the backazimuth and velocity of incident seismic waves and to discriminate between Love and possible Rayleigh waves. In a second step, the polarization parameters of possible Rayleigh waves are analysed using quaternion-MUSIC, distinguishing retrograde and prograde Rayleigh waves and determining their ellipticity. In this study, we apply the MUSIQUE algorithm to seismic wavefield recordings of the San Jose Dense Seismic Array. This array has been installed in 1999 in the Evergreen Basin, a sedimentary basin in the Eastern Santa Clara Valley. The analysis includes 22 regional earthquakes with epicentres between 40 and 600 km distant from the array and covering different backazimuths with respect to the array. The azimuthal distribution and the energy partition of the different surface wave types are analysed. Love waves dominate the wavefield for the vast majority of the events. For close events in the north, the wavefield is dominated by the first harmonic mode of Love waves, for farther events, the fundamental mode dominates. The energy distribution is different for earthquakes occurring northwest and southeast of the array. In both cases, the waves crossing the array are mostly arriving from the respective hemicycle. However, scattered Love waves arriving from the south can be seen for all earthquakes. Combining the information of all events, it is possible to retrieve the Love wave dispersion curves of the fundamental and the first harmonic mode. The particle motion of the fundamental mode of Rayleigh waves is retrograde and for the first harmonic mode, it is prograde. For both modes, we can also retrieve dispersion and ellipticity

  15. Recordings from the deepest borehole in the New Madrid Seismic Zone

    Science.gov (United States)

    Wang, Z.; Woolery, E.W.

    2006-01-01

    The recordings at the deepest vertical strong-motion array (VSAS) from three small events, the 21 October 2004 Tiptonville, Tennessee, earthquake; the 10 February 2005 Arkansas earthquake; and the 2 June 2005 Ridgely, Tennessee, earthquake show some interesting wave-propagation phenomena through the soils: the S-wave is attenuated from 260 m to 30 m depth and amplified from 30 m to the surface. The S-wave arrival times from the three events yielded different shear-wave velocity estimates for the soils. These different estimates may be the result of different incident angles of the S-waves due to different epicentral distances. The epicentral distances are about 22 km, 110 km, and 47 km for the Tiptonville, Arkansas, and Ridgely earthquakes, respectively. These recordings show the usefulness of the borehole strong-motion array. The vertical strong-motion arrays operated by the University of Kentucky have started to accumulate recordings that will provide a database for scientists and engineers to study the effects of the near-surface soils on the strong ground motion in the New Madrid Seismic Zone. More information about the Kentucky Seismic and Strong-Motion Network can be found at www.uky.edu/KGS/geologichazards. The digital recordings are available at ftp://kgsweb.uky.edu.

  16. Shear wave velocity versus quality factor: results from seismic noise recordings

    Science.gov (United States)

    Boxberger, Tobias; Pilz, Marco; Parolai, Stefano

    2017-08-01

    The assessment of the shear wave velocity (vs) and shear wave quality factor (Qs) for the shallow structure below a site is necessary to characterize its site response. In the past, methods based on the analysis of seismic noise have been shown to be very efficient for providing a sufficiently accurate estimation of the vs versus depth at reasonable costs for engineering seismology purposes. In addition, a slight modification of the same method has proved to be able to provide realistic Qs versus depth estimates. In this study, data sets of seismic noise recorded by microarrays of seismic stations in different geological environments of Europe and Central Asia are used to calculate both vs and Qs versus depth profiles. Analogous to the generally adopted approach in seismic hazard assessment for mapping the average shear wave velocity in the uppermost 30 m (vs30) as a proxy of the site response, this approach was also applied to the quality factor within the uppermost 30 m (Qs30). A slightly inverse correlation between both parameters is found based on a methodological consistent determination for different sites. Consequently, a combined assessment of vs and Qs by seismic noise analysis has the potential to provide a more comprehensive description of the geological structure below a site.

  17. Extraction of Pn seismic signals from air-gun shots recorded by the Cascadia Amphibious seismic experiment

    Science.gov (United States)

    Rathnayaka, S.; Gao, H.

    2017-12-01

    The goal of this study is to extract Pn (head wave) seismic waveforms recorded by both offshore and onshore (broadband and short period) seismic stations and evaluate the data quality. Two offshore active-source seismic experiments, MGL 1211 and MGL 1212, were conducted from 13th June to 24th July 2012, during the first year deployment of the Cascadia Initiative Amphibious Array. In total, we choose 110 ocean bottom seismometers and 209 inland stations that are located along the entire Cascadia subduction zone. We first remove the instrument response, and then explore the potential frequency ranges and the diurnal effect. We make the common receiver gathering for each seismic station and filter the seismic waveforms at multiple frequency bands, ranging from 3-5 Hz, 5-10 Hz, 10-20 Hz, to 20-40 Hz, respectively. To quantitatively evaluate the data quality, we calculate the signal-to-noise ratio (SNR) of the waveforms for usable stations that record clear Pn arrivals at multiple frequency bands. Our results show that most offshore stations located at deep water (>1.5 km) record clear air-gun shot signals at frequencies higher than 3 Hz and up to 550 km away from the source. For most stations located on the shallow continental shelf, the seismic recordings appear much noisier at all the frequencies compared to stations at deep water. Three general trends are observed for the SNR distribution; First, the SNR ratio increases from lower to higher frequency bands; Second, the ratio decreases with the increasing source-to-receiver distance; And third, the ratio increases from shallow to deep water. We also observe a rough negative relationship of the signal-to-noise ratio with the thickness of the marine sediment. Only 5 inland stations record clear air-gun shot arrivals up to 200 km away from the source. More detailed data quality analysis with more results will also be present.

  18. A Two-Radius Circular Array Method: Extracting Independent Information on Phase Velocities of Love Waves From Microtremor Records From a Simple Seismic Array

    Science.gov (United States)

    Tada, T.; Cho, I.; Shinozaki, Y.

    2005-12-01

    We have invented a Two-Radius (TR) circular array method of microtremor exploration, an algorithm that enables to estimate phase velocities of Love waves by analyzing horizontal-component records of microtremors that are obtained with an array of seismic sensors placed around circumferences of two different radii. The data recording may be done either simultaneously around the two circles or in two separate sessions with sensors distributed around each circle. Both Rayleigh and Love waves are present in the horizontal components of microtremors, but in the data processing of our TR method, all information on the Rayleigh waves ends up cancelled out, and information on the Love waves alone are left to be analyzed. Also, unlike the popularly used frequency-wavenumber spectral (F-K) method, our TR method does not resolve individual plane-wave components arriving from different directions and analyze their "vector" phase velocities, but instead directly evaluates their "scalar" phase velocities --- phase velocities that contain no information on the arrival direction of waves --- through a mathematical procedure which involves azimuthal averaging. The latter feature leads us to expect that, with our TR method, it is possible to conduct phase velocity analysis with smaller numbers of sensors, with higher stability, and up to longer-wavelength ranges than with the F-K method. With a view to investigating the capabilities and limitations of our TR method in practical implementation to real data, we have deployed circular seismic arrays of different sizes at a test site in Japan where the underground structure is well documented through geophysical exploration. Ten seismic sensors were placed equidistantly around two circumferences, five around each circle, with varying combinations of radii ranging from several meters to several tens of meters, and simultaneous records of microtremors around circles of two different radii were analyzed with our TR method to produce

  19. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume IV S-Wave Measurements in Borehole C4993 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    In this volume (IV), all S-wave measurements are presented that were performed in Borehole C4993 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. S-wave measurements were performed over the depth range of 370 to 1300 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1200 ft, depth intervals of 20 ft were used. Shear (S) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition, a second average shear wave record was recorded by reversing the polarity of the motion of the T-Rex base plate. In this sense, all the signals recorded in the field were averaged signals. In all cases, the base plate was moving perpendicular to a radial line between the base plate and the borehole which is in and out of the plane of the figure shown in Figure 1.1. The definition of “in-line”, “cross-line”, “forward”, and “reversed” directions in items 2 and 3 of Section 2 was based on the moving direction of the base plate. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4993, and a 3-D geophone from the University of Texas (UT) was embedded near the borehole at about 1.5 ft below the ground surface. The Redpath geophone and the UT geophone were properly aligned so that one of the horizontal components in each geophone was aligned with the direction of horizontal shaking of the T-Rex base plate. This volume is organized into 12 sections as follows. Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vs Profile at Borehole C4993

  20. Regional seismic-wave propagation from the M5.8 23 August 2011, Mineral, Virginia, earthquake

    Science.gov (United States)

    Pollitz, Fred; Mooney, Walter D.

    2015-01-01

    The M5.8 23 August 2011 Mineral, Virginia, earthquake was felt over nearly the entire eastern United States and was recorded by a wide array of seismic broadband instruments. The earthquake occurred ~200 km southeast of the boundary between two distinct geologic belts, the Piedmont and Blue Ridge terranes to the southeast and the Valley and Ridge Province to the northwest. At a dominant period of 3 s, coherent postcritical P-wave (i.e., direct longitudinal waves trapped in the crustal waveguide) arrivals persist to a much greater distance for propagation paths toward the northwest quadrant than toward other directions; this is probably related to the relatively high crustal thickness beneath and west of the Appalachian Mountains. The seismic surface-wave arrivals comprise two distinct classes: those with weakly dispersed Rayleigh waves and those with strongly dispersed Rayleigh waves. We attribute the character of Rayleigh wave arrivals in the first class to wave propagation through a predominantly crystalline crust (Blue Ridge Mountains and Piedmont terranes) with a relatively thin veneer of sedimentary rock, whereas the temporal extent of the Rayleigh wave arrivals in the second class are well explained as the effect of the thick sedimentary cover of the Valley and Ridge Province and adjacent Appalachian Plateau province to its northwest. Broadband surface-wave ground velocity is amplified along both north-northwest and northeast azimuths from the Mineral, Virginia, source. The former may arise from lateral focusing effects arising from locally thick sedimentary cover in the Appalachian Basin, and the latter may result from directivity effects due to a northeast rupture propagation along the finite fault plane.

  1. Anatomy of the high-frequency ambient seismic wave field at the TCDP borehole

    Science.gov (United States)

    Hillers, G.; Campillo, M.; Lin, Y.-Y.; Ma, K.-F.; Roux, P.

    2012-06-01

    The Taiwan Chelungpu-fault Drilling Project (TCDP) installed a vertical seismic array between 950 and 1270 m depth in an active thrust fault environment. In this paper we analyze continuous noise records of the TCDP array between 1 and 16 Hz. We apply multiple array processing and noise correlation techniques to study the noise source process, properties of the propagation medium, and the ambient seismic wave field. Diurnal amplitude and slowness patterns suggest that noise is generated by cultural activity. The vicinity of the recording site to the excitation region, indicated by a narrow azimuthal distribution of propagation directions, leads to a predominant ballistic propagation regime. This is evident from the compatibility of the data with an incident plane wave model, polarized direct arrivals of noise correlation functions, and the asymmetric arrival shape. Evidence for contributions from scattering comes from equilibrated earthquake coda energy ratios, the frequency dependent randomization of propagation directions, and the existence of correlation coda waves. We conclude that the ballistic and scattered propagation regime coexist, where the first regime dominates the records, but the second is weaker yet not negligible. Consequently, the wave field is not equipartitioned. Correlation signal-to-noise ratios indicate a frequency dependent noise intensity. Iterations of the correlation procedure enhance the signature of the scattered regime. Discrepancies between phase velocities estimated from correlation functions and in-situ measurements are associated with the array geometry and its relative orientation to the predominant energy flux. The stability of correlation functions suggests their applicability in future monitoring efforts.

  2. Coherent Waves in Seismic Researches

    Science.gov (United States)

    Emanov, A.; Seleznev, V. S.

    2013-05-01

    Development of digital processing algorithms of seismic wave fields for the purpose of useful event picking to study environment and other objects is the basis for the establishment of new seismic techniques. In the submitted paper a fundamental property of seismic wave field coherence is used. The authors extended conception of coherence types of observed wave fields and devised a technique of coherent component selection from observed wave field. Time coherence and space coherence are widely known. In this paper conception "parameter coherence" has been added. The parameter by which wave field is coherent can be the most manifold. The reason is that the wave field is a multivariate process described by a set of parameters. Coherence in the first place means independence of linear connection in wave field of parameter. In seismic wave fields, recorded in confined space, in building-blocks and stratified mediums time coherent standing waves are formed. In prospecting seismology at observation systems with multiple overlapping head waves are coherent by parallel correlation course or, in other words, by one measurement on generalized plane of observation system. For detail prospecting seismology at observation systems with multiple overlapping on basis of coherence property by one measurement of area algorithms have been developed, permitting seismic records to be converted to head wave time sections which have neither reflected nor other types of waves. Conversion in time section is executed on any specified observation base. Energy storage of head waves relative to noise on basis of multiplicity of observation system is realized within area of head wave recording. Conversion on base below the area of wave tracking is performed with lack of signal/noise ratio relative to maximum of this ratio, fit to observation system. Construction of head wave time section and dynamic plots a basis of automatic processing have been developed, similar to CDP procedure in method of

  3. Seismic prediction ahead of tunnel construction using Rayleigh-waves

    OpenAIRE

    Jetschny, Stefan; De Nil, Denise; Bohlen, Thomas

    2008-01-01

    To increase safety and efficiency of tunnel constructions, online seismic exploration ahead of a tunnel can become a valuable tool. We developed a new forward looking seismic imaging technique e.g. to determine weak and water bearing zones ahead of the constructions. Our approach is based on the excitation and registration of tunnel surface-waves. These waves are excited at the tunnel face behind the cutter head of a tunnel boring machine and travel into drilling direction. Arriving at the fr...

  4. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume I P-Wave Measurements in Borehole C4993 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-07-06

    In this volume (I), all P-wave measurements are presented that were performed in Borehole C4993 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 370 to 1400 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1200 ft, depth intervals of 20 ft were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4993, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4993, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  5. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume III P-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    In this volume (III), all P-wave measurements are presented that were performed in Borehole C4997 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 390 to 1220 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 40 ft (later relocated to 27.5 ft due to visibility in borehole after rain) in Borehole C4997, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4997, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  6. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume II P-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-07-06

    In this volume (II), all P-wave measurements are presented that were performed in Borehole C4996 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 360 to 1400 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1180 ft, depth intervals of 20 ft were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4996, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4996, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  7. 6C polarization analysis - seismic direction finding in coherent noise, automated event identification, and wavefield separation

    Science.gov (United States)

    Schmelzbach, C.; Sollberger, D.; Greenhalgh, S.; Van Renterghem, C.; Robertsson, J. O. A.

    2017-12-01

    Polarization analysis of standard three-component (3C) seismic data is an established tool to determine the propagation directions of seismic waves recorded by a single station. A major limitation of seismic direction finding methods using 3C recordings, however, is that a correct propagation-direction determination is only possible if the wave mode is known. Furthermore, 3C polarization analysis techniques break down in the presence of coherent noise (i.e., when more than one event is present in the analysis time window). Recent advances in sensor technology (e.g., fibre-optical, magnetohydrodynamic angular rate sensors, and ring laser gyroscopes) have made it possible to accurately measure all three components of rotational ground motion exhibited by seismic waves, in addition to the conventionally recorded three components of translational motion. Here, we present an extension of the theory of single station 3C polarization analysis to six-component (6C) recordings of collocated translational and rotational ground motions. We demonstrate that the information contained in rotation measurements can help to overcome some of the main limitations of standard 3C seismic direction finding, such as handling multiple arrivals simultaneously. We show that the 6C polarisation of elastic waves measured at the Earth's free surface does not only depend on the seismic wave type and propagation direction, but also on the local P- and S-wave velocities just beneath the recording station. Using an adaptation of the multiple signal classification algorithm (MUSIC), we demonstrate how seismic events can univocally be identified and characterized in terms of their wave type. Furthermore, we show how the local velocities can be inferred from single-station 6C data, in addition to the direction angles (inclination and azimuth) of seismic arrivals. A major benefit of our proposed 6C method is that it also allows the accurate recovery of the wave type, propagation directions, and phase

  8. Triggered Seismicity in Utah from the November 3, 2002, Denali Fault Earthquake

    Science.gov (United States)

    Pankow, K. L.; Nava, S. J.; Pechmann, J. C.; Arabasz, W. J.

    2002-12-01

    Coincident with the arrival of the surface waves from the November 3, 2002, Mw 7.9 Denali Fault, Alaska earthquake (DFE), the University of Utah Seismograph Stations (UUSS) regional seismic network detected a marked increase in seismicity along the Intermountain Seismic Belt (ISB) in central and north-central Utah. The number of earthquakes per day in Utah located automatically by the UUSS's Earthworm system in the week following the DFE was approximately double the long-term average during the preceding nine months. From these preliminary data, the increased seismicity appears to be characterized by small magnitude events (M = 3.2) and concentrated in five distinct spatial clusters within the ISB between 38.75°and 42.0° N. The first of these earthquakes was an M 2.2 event located ~20 km east of Salt Lake City, Utah, which occurred during the arrival of the Love waves from the DFE. The increase in Utah earthquake activity at the time of the arrival of the surface waves from the DFE suggests that these surface waves triggered earthquakes in Utah at distances of more than 3,000 km from the source. We estimated the peak dynamic shear stress caused by these surface waves from measurements of their peak vector velocities at 43 recording sites: 37 strong-motion stations of the Advanced National Seismic System and six broadband stations. (The records from six other broadband instruments in the region of interest were clipped.) The estimated peak stresses ranged from 1.2 bars to 3.5 bars with a mean of 2.3 bars, and generally occurred during the arrival of Love waves of ~15 sec period. These peak dynamic shear stress estimates are comparable to those obtained from recordings of the 1992 Mw 7.3 Landers, California, earthquake in regions where the Landers earthquake triggered increased seismicity. We plan to present more complete analyses of UUSS seismic network data, further testing our hypothesis that the DFE remotely triggered seismicity in Utah. This hypothesis is

  9. Detecting P and S-wave of Mt. Rinjani seismic based on a locally stationary autoregressive (LSAR) model

    Science.gov (United States)

    Nurhaida, Subanar, Abdurakhman, Abadi, Agus Maman

    2017-08-01

    Seismic data is usually modelled using autoregressive processes. The aim of this paper is to find the arrival times of the seismic waves of Mt. Rinjani in Indonesia. Kitagawa algorithm's is used to detect the seismic P and S-wave. Householder transformation used in the algorithm made it effectively finding the number of change points and parameters of the autoregressive models. The results show that the use of Box-Cox transformation on the variable selection level makes the algorithm works well in detecting the change points. Furthermore, when the basic span of the subinterval is set 200 seconds and the maximum AR order is 20, there are 8 change points which occur at 1601, 2001, 7401, 7601,7801, 8001, 8201 and 9601. Finally, The P and S-wave arrival times are detected at time 1671 and 2045 respectively using a precise detection algorithm.

  10. A Full-Wave Seismic Tomography for the Crustal Structure in the Metropolitan Beijing Region

    Science.gov (United States)

    Sun, A.; Zhao, L.; Chen, Q.

    2008-12-01

    The greater Beijing metropolitan region is located in an old cratonic block in northeast China with complex geology and several large historic earthquakes, such as the Sanhe-Pinggu earthquake (~M8.0) in 1679, the Xingtai earthquake (M7.2) in 1966, and the Tangshan earthquake (M7.8) in 1976. To enhance our understanding of the crustal structure and the seismotectonics under this region, we conduct a full-wave three-dimensional (3D) tomographic study of this region using the waveforms recorded by the newly established Beijing metropolitan digital seismic network. Since the Beijing network was put into operation in October 2001, there have been 89 local earthquakes of magnitude 3.0 and above. From these, we selected 23 events of magnitude 3.2 and above and obtained their waveform records at 50 stations within our area of interest. The types of instruments at these stations include broadband, short-period and very broadband. First-motion focal mechanisms were determined for these events. We used a regional 3D model obtained by seismic reflection surveys as the reference model and calculated the synthetic seismograms by the finite-difference method. In this first attempt at finite- frequency tomography for the Beijing region, we focus on the variation of the P-wave speed using the first- arriving P waves. We measure the frequency-dependent traveltime anomalies of the P waves by the cross- correlation between observed and synthetic P waveforms within several discrete frequency bands between 20-sec and 5-sec periods. The sensitivity or Frechet kernels of these measurements for the perturbations in P-wave speed were computed by the same finite-difference method. We will present the preliminary result in our full-wave seismic tomography for the Beijing region.

  11. Epicenter Location of Regional Seismic Events Using Love Wave and Rayleigh Wave Ambient Seismic Noise Green's Functions

    Science.gov (United States)

    Levshin, A. L.; Barmin, M. P.; Moschetti, M. P.; Mendoza, C.; Ritzwoller, M. H.

    2011-12-01

    We describe a novel method to locate regional seismic events based on exploiting Empirical Green's Functions (EGF) that are produced from ambient seismic noise. Elastic EGFs between pairs of seismic stations are determined by cross-correlating long time-series of ambient noise recorded at the two stations. The EGFs principally contain Rayleigh waves on the vertical-vertical cross-correlations and Love waves on the transverse-transverse cross-correlations. Earlier work (Barmin et al., "Epicentral location based on Rayleigh wave empirical Green's functions from ambient seismic noise", Geophys. J. Int., 2011) showed that group time delays observed on Rayleigh wave EGFs can be exploited to locate to within about 1 km moderate sized earthquakes using USArray Transportable Array (TA) stations. The principal advantage of the method is that the ambient noise EGFs are affected by lateral variations in structure similarly to the earthquake signals, so the location is largely unbiased by 3-D structure. However, locations based on Rayleigh waves alone may be biased by more than 1 km if the earthquake depth is unknown but lies between 2 km and 7 km. This presentation is motivated by the fact that group time delays for Love waves are much less affected by earthquake depth than Rayleigh waves; thus exploitation of Love wave EGFs may reduce location bias caused by uncertainty in event depth. The advantage of Love waves to locate seismic events, however, is mitigated by the fact that Love wave EGFs have a smaller SNR than Rayleigh waves. Here, we test the use of Love and Rayleigh wave EGFs between 5- and 15-sec period to locate seismic events based on the USArray TA in the western US. We focus on locating aftershocks of the 2008 M 6.0 Wells earthquake, mining blasts in Wyoming and Montana, and small earthquakes near Norman, OK and Dallas, TX, some of which may be triggered by hydrofracking or injection wells.

  12. Seismic excitation by space shuttles

    Science.gov (United States)

    Kanamori, H.; Mori, J.; Sturtevant, B.; Anderson, D.L.; Heaton, T.

    1992-01-01

    Shock waves generated by the space shuttles Columbia (August 13, 1989), Atlantis (April 11, 1991) and Discovery (September 18, 1991) on their return to Edwards Air Force Base, California, were recorded by TERRAscope (Caltech's broadband seismic network), the Caltech-U.S.G.S Southern California Seismic Network (SCSN), and the University of Southern California (USC) Los Angeles Basin Seismic Network. The spatial pattern of the arrival times exhibits hyperbolic shock fronts from which the path, velocity and altitude of the space shuttle could be determined. The shock wave was acoustically coupled to the ground, converted to a seismic wave, and recorded clearly at the broadband TERRAscope stations. The acoustic coupling occurred very differently depending on the conditions of the Earth's surface surrounding the station. For a seismic station located on hard bedrock, the shock wave (N wave) was clearly recorded with little distortion. Aside from the N wave, very little acoustic coupling of the shock wave energy to the ground occurred at these sites. The observed N wave record was used to estimate the overpressure of the shock wave accurately; a pressure change of 0.5 to 2.2 mbars was obtained. For a seismic station located close to the ocean or soft sedimentary basins, a significant amount of shock wave energy was transferred to the ground through acoustic coupling of the shock wave and the oceanic Rayleigh wave. A distinct topography such as a mountain range was found effective to couple the shock wave energy to the ground. Shock wave energy was also coupled to the ground very effectively through large man made structures such as high rise buildings and offshore oil drilling platforms. For the space shuttle Columbia, in particular, a distinct pulse having a period of about 2 to 3 seconds was observed, 12.5 s before the shock wave, with a broadband seismograph in Pasadena. This pulse was probably excited by the high rise buildings in downtown Los Angeles which were

  13. Incorporating fault zone head wave and direct wave secondary arrival times into seismic tomography: Application at Parkfield, California

    Science.gov (United States)

    Bennington, Ninfa L.; Thurber, Clifford; Peng, Zhigang; Zhang, Haijiang; Zhao, Peng

    2013-03-01

    We present a three-dimensional (3D) P wave velocity (Vp) model of the Parkfield region that utilizes existing P wave arrival time data, including fault zone head waves (FZHWs), and data from direct wave secondary arrivals (DWSAs). The first-arrival and DWSA travel times are obtained as the global- and local-minimum travel time paths, respectively. The inclusion of FZHWs and DWSAs results in as much as a 5% and a 10% increase in the across-fault velocity contrast, respectively, for the Vp model at Parkfield relative to that of Thurber et al. [2006]. Viewed along strike, three pronounced velocity contrast regions are observed: a pair of strong positive velocity contrasts (SW fast), one NW of the 1966 Parkfield earthquake hypocenter and the other SE of the 2004 Parkfield earthquake hypocenter, and a strong negative velocity contrast (NE fast) between the two hypocenters. The negative velocity contrast partially to entirely encompasses peak coseismic slip estimated in several slip models for the 2004 earthquake, suggesting that the negative velocity contrast played a part in defining the rupture patch of the 2004 Parkfield earthquake. Following Ampuero and Ben-Zion (2008), the pattern of velocity contrasts is consistent with the observed bilateral rupture propagation for the 2004 Parkfield earthquake. Although the velocity contrasts also suggest bilateral rupture propagation for the 1966 Parkfield earthquake, the fault is creeping to the NW here, i.e., exhibiting velocity-strengthening behavior. Thus, it is not surprising that rupture propagated only SE during this event.

  14. Composition and variation of noise recorded at the Yellowknife Seismic Array, 1991-2007

    Science.gov (United States)

    Koper, K.D.; De Foy, B.; Benz, H.

    2009-01-01

    We analyze seismic noise recorded on the 18 short-period, vertical component seismometers of the Yellowknife Seismic Array (YKA). YKA has an aperture of 23 km and is sited on cratonic lithosphere in an area with low cultural noise. These properties make it ideal for studying natural seismic noise at periods of 1-3 s. We calculated frequency-wave number spectra in this band for over 6,000 time windows that were extracted once per day for 17 years (1991-2007). Slowness analysis reveals a rich variety of seismic phases originating from distinct source regions: Rg waves from the Great Slave Lake; Lg waves from the Atlantic, Pacific, and Arctic Oceans; and teleseismic P waves from the north Pacific and equatorial mid-Atlantic regions. The surface wave energy is generated along coastlines, while the body wave energy is generated at least in part in deep-water, pelagic regions. Surface waves tend to dominate at the longer periods and, just as in earthquake seismograms, Lg is the most prominent arrival. Although the periods we study are slightly shorter than the classic double-frequency microseismic band of 4-10 s, the noise at YKA has clear seasonal behavior that is consistent with the ocean wave climate in the Northern Hemisphere. The temporal variation of most of the noise sources can be well fit using just two Fourier components: yearly and biyearly terms that combine to give a fast rise in microseismic power from mid-June through mid-October, followed by a gradual decline. The exception is the Rg energy from the Great Slave Lake, which shows a sharp drop in noise power over a 2-week period in November as the lake freezes. The L g noise from the east has a small but statistically significant positive slope, perhaps implying increased ocean wave activity in the North Atlantic over the last 17 years. Copyright 2009 by the American Geophysical Union.

  15. Measurement Of Compressional-Wave Seismic Velocities In 29 Wells At The Hanford Site

    International Nuclear Information System (INIS)

    Peterson, S.W.

    2010-01-01

    Check shot seismic velocity surveys were collected in 100 B/C, 200 East, 200-PO-1 Operational Unit (OU), and the Gable Gap areas in order to provide time-depth correlation information to aid the interpretation of existing seismic reflection data acquired at the Hanford Site (Figure 1). This report details results from 5 wells surveyed in fiscal year (FY) 2008, 7 wells in FY 2009, and 17 wells in FY 2010 and provides summary compressional-wave seismic velocity information to help guide future seismic survey design as well as improve current interpretations of the seismic data (SSC 1979/1980; SGW-39675; SGW-43746). Augmenting the check shot database are four surveys acquired in 2007 in support of the Bechtel National, Inc. Waste Treatment Plant construction design (PNNL-16559, PNNL-16652), and check shot surveys in three wells to support seismic testing in the 200 West Area (Waddell et al., 1999). Additional sonic logging was conducted during the late 1970s and early 1980s as part of the Basalt Waste Isolation Program (BWIP) (SSC 1979/1980) and check shot/sonic surveys as part of the safety report for the Skagit/Hanford Nuclear project (RDH/10-AMCP-0164). Check shot surveys are used to obtain an in situ measure of compressional-wave seismic velocity for sediment and rock in the vicinity of the well point, and provide the seismic-wave travel time to geologic horizons of interest. The check shot method deploys a downhole seismic receiver (geophone) to record the arrival of seismic waves generated by a source at the ground surface. The travel time of the first arriving seismic-wave is determined and used to create a time-depth function to correlate encountered geologic intervals with the seismic data. This critical tie with the underlying geology improves the interpretation of seismic reflection profile information. Fieldwork for this investigation was conducted by in house staff during the weeks of September 22, 2008 for 5 wells in the 200 East Area (Figure 2); June 1

  16. Study of the rates of dissemination of elastic waves with diffraction transformation of seismic recordings. [USSR

    Energy Technology Data Exchange (ETDEWEB)

    Telegin, A.N.; Bulatov, M.G.

    1982-01-01

    An algorithm is proposed for determining effective velocities in the process of diffraction transformation of seismic waves. It is based on summation with conjugate recordings. Results of the study of velocities are indicated in materials of Sakhalin. A difference is noted in the procedures for computing effective velocities in the OGT method and diffraction transformation.

  17. Ambient seismic noise tomography for exploration seismology at Valhall

    Science.gov (United States)

    de Ridder, S. A.

    2011-12-01

    Permanent ocean-bottom cables installed at the Valhall field can repeatedly record high quality active seismic surveys. But in the absence of active seismic shooting, passive data can be recorded and streamed to the platform in real time. Here I studied 29 hours of data using seismic interferometry. I generate omni-directional Scholte-wave virtual-sources at frequencies considered very-low in the exploration seismology community (0.4-1.75 Hz). Scholte-wave group arrival times are inverted using both eikonal tomography and straight-ray tomography. The top 100 m near-surface at Valhall contains buried channels about 100 m wide that have been imaged with active seismic. Images obtained by ASNT using eikonal tomography or straight-ray tomography both contain anomalies that match these channels. When continuous recordings are made in real-time, tomography images of the shallow subsurface can be formed or updated on a daily basis, forming a very low cost near-surface monitoring system using seismic noise.

  18. Investigation of Seismic Waves from Non-Natural Sources: A Case Study for Building Collapse and Surface Explosion

    Science.gov (United States)

    Houng, S.; Hong, T.

    2013-12-01

    The nature and excitation mechanism of incidents or non-natural events have been widely investigated using seismological techniques. With introduction of dense seismic networks, small-sized non-natural events such as building collapse and chemical explosions are well recorded. Two representative non-natural seismic sources are investigated. A 5-story building in South Korea, Sampoong department store, was collapsed in June 25, 1995, causing casualty of 1445. This accident is known to be the second deadliest non-terror-related building collapse in the world. The event was well recorded by a local station in ~ 9 km away. P and S waves were recorded weak, while monotonic Rayleigh waves were observed well. The origin time is determined using surface-wave arrival time. The magnitude of event is determined to be 1.2, which coincides with a theoretical estimate based on the mass and volume of building. Synthetic waveforms are modeled for various combinations of velocity structures and source time functions, which allow us to constrain the process of building collapse. It appears that the building was collapsed once within a couple of seconds. We also investigate a M2.1 chemical explosion at a fertilizer plant in Texas on April 18, 2013. It was reported that more than one hundred people were dead or injured by the explosion. Seismic waveforms for nearby stations are collected from Incorporated Research Institution of Seismology (IRIS). The event was well recorded at stations in ~500 km away from the source. Strong acoustic signals were observed at stations in a certain great-circle direction. This observation suggests preferential propagation of acoustic waves depending on atmospheric environment. Waveform cross-correlation, spectral analysis and waveform modeling are applied to understand the source physics. We discuss the nature of source and source excitation mechanism.

  19. A seismic recording device

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, R; Kind, A G; Thompson, S R

    1983-06-08

    A method and a device for noting the moment of an explosion on a seismic recording is proposed, in which the moment of the explosion is recorded as a result of a break in an electrical circuit under the effects of the explosive charge used to excite the seismic waves. The electrical circuit being broken is connected to the same energy source as the electric detonator which initiates the explosion, which is attached to a high frequency, alternating current source, where the circuit being broken is either the primary or the secondary winding of a transformer, through which the electric detonator is switched in to the source. The moment the circuit is broken is determined from the ceasation of current in the circuit or by the sharp rise in voltage in the broken sector. The method makes it possible to more precisely fix the moment of the break than the existing methods. When insulated copper wires are used the recording of the time occurs 100 microseconds after the explosion.

  20. Coupling Hydrodynamic and Wave Propagation Codes for Modeling of Seismic Waves recorded at the SPE Test.

    Science.gov (United States)

    Larmat, C. S.; Rougier, E.; Delorey, A.; Steedman, D. W.; Bradley, C. R.

    2016-12-01

    The goal of the Source Physics Experiment (SPE) is to bring empirical and theoretical advances to the problem of detection and identification of underground nuclear explosions. For this, the SPE program includes a strong modeling effort based on first principles calculations with the challenge to capture both the source and near-source processes and those taking place later in time as seismic waves propagate within complex 3D geologic environments. In this paper, we report on results of modeling that uses hydrodynamic simulation codes (Abaqus and CASH) coupled with a 3D full waveform propagation code, SPECFEM3D. For modeling the near source region, we employ a fully-coupled Euler-Lagrange (CEL) modeling capability with a new continuum-based visco-plastic fracture model for simulation of damage processes, called AZ_Frac. These capabilities produce high-fidelity models of various factors believed to be key in the generation of seismic waves: the explosion dynamics, a weak grout-filled borehole, the surrounding jointed rock, and damage creation and deformations happening around the source and the free surface. SPECFEM3D, based on the Spectral Element Method (SEM) is a direct numerical method for full wave modeling with mathematical accuracy. The coupling interface consists of a series of grid points of the SEM mesh situated inside of the hydrodynamic code's domain. Displacement time series at these points are computed using output data from CASH or Abaqus (by interpolation if needed) and fed into the time marching scheme of SPECFEM3D. We will present validation tests with the Sharpe's model and comparisons of waveforms modeled with Rg waves (2-8Hz) that were recorded up to 2 km for SPE. We especially show effects of the local topography, velocity structure and spallation. Our models predict smaller amplitudes of Rg waves for the first five SPE shots compared to pure elastic models such as Denny &Johnson (1991).

  1. Global propagation of cyclone-induced seismic wave from the Atlantic detected by the high-sensitivity accelerometers of Hi-net, Japan

    Science.gov (United States)

    Matsuzawa, T.; Obara, K.; Maeda, T.

    2008-12-01

    A nationwide seismic network in Japan detected long period microtremors from the northern Atlantic region. It is reported that a cyclone generate ocean swells which excite microtremors. If the microtremors have sufficient intensity, the seismic waves propagate far from the source. Such propagation was sometimes observed at the high-sensitivity accelerometers of Hi-net, NIED. In this study, a migration of the source location with a cyclone is estimated by an array analysis technique, combining broadband seismic data of another array. In the middle of March 2007, anomalous seismic waves were continuously arrived from the north direction in Japan. Such waves were automatically detected by the array analysis of Hi-net data. The automated analysis also shows that the seismic wave is originated far from Japan because the propagation is well approximated to plane waves rather than cylindrical waves. The waves are especially predominant at the period of around 20 s. In addition, from a semblance analysis, apparent velocity is estimated to 3.4--3.6 km/s and 3.8--4.0 km/s in radial and transverse components, respectively. This suggests that the observed waves are composed both of Rayleigh and Love waves. To discuss the more accurate direction and the temporal change, we apply a multiple signal classification (MUSIC) method to the data of high-sensitivity accelerometers. The arrival direction rotated to several degrees clockwise from the azimuth of -15 degrees. In addition, we analyze broadband seismic data of the Graefenberg-array (GRF array) in Germany, and also obtain an evident rotation of the arrival direction from - 40 to -5 degrees. The result of array analysis suggests that the source of seismic wave moves to the north direction at the North Sea and the Norwegian Sea. The location of the source is estimated as the intersections of the expected ray paths from two arrays. To calculate a ray path, we assumed the Rayleigh wave velocity at the period of 35 s. The shooting

  2. Low Velocity Seismic Waves Produced by Stick-Slip Processes During the Drainage of Two Supraglacial Lakes in Greenland

    Science.gov (United States)

    Kenyon, P. M.; Orantes, E. J.; Grynewize, S.; Tedesco, M.

    2016-12-01

    The drainage of supraglacial lakes over the Greenland ice sheet has been shown to have a significant impact on ice dynamics and subglacial hydrology. As supraglacial lakes drain, they produce seismic waves that can be detected on both local and regional scales. Studying such waves and the originating phenomena has the potential to advance our understanding of the subglacial processes involved. Here we present the results of an analysis of high frequency seismic waves generated during the drainage of two supraglacial lakes in southwestern Greenland. The two lakes drained by contrasting mechanisms. One (Lake Half Moon) drained slowly by overflow into an existing moulin. Here GPS data, recorded during the drainage, show an increase in ice sheet velocity that begins well before the time of maximum lake depth. The other lake (Lake Ponting) drained suddenly by hydrofracture through the lake bed. In this case, the GPS data show an increase in velocity that is essentially simultaneous with the maximum lake depth. In both cases, vertical component seismograms were obtained from the Greenland Ice Sheet Monitoring Network (GLISN) for several hours before and after the lake drainage. Arrival times were picked manually, using the criterion that an arrival must have a minimum amplitude of twice the noise level. The arrivals were then plotted on graphs of time versus distance from the lake in question. Several linear trends are visible on each graph. The velocities calculated from the slopes of these trends are unexpectedly low. We suggest that one explanation for this might be that the waves are traveling in a layer of till at the base of the ice sheet, that forms a low velocity channel. When compared with GPS and lake depth data, the origin times of the waves coincide with the velocity increase in both cases. Therefore, we conclude that the waves are being generated by stick-slip processes involving the slippage of the ice sheet on an underlying layer of till.

  3. The Measurement and Interpretation of Surface Wave Group Arrival Times

    Science.gov (United States)

    Masters, G.; Kane, D.; Morrow, J.; Zhou, Y.; Tromp, J.

    2005-12-01

    We have recently developed an efficient technique for measuring the relative group arrival times of surface waves by using cross-correlation and cluster analysis of waveform envelope functions. Applying the analysis to minor arc Love and Rayleigh waves in the frequency band 7 to 35 mHz for all events over magnitude 5.5 results in a dataset of over 200,000 measurements at each frequency for long period Rayleigh waves (frequency less than 25 mHz) and about 100,000 measurements at the shorter periods. Analysis of transverse components results in about half as many Love wave measurements. Simple ray theory inversions of the relative arrival times for apparent group velocity produce maps which are accurate representations of the data (often over 90% variance reduction of the relative arrival times) and which show features strongly correlated with tectonics and crustal thickness. The apparent group velocity variations can be extremely large: 30% velocity variations for 20 mHz Rayleigh waves and 40% variations for 30 mHz Rayleigh waves and can have abrupt lateral changes. This raises the concern that non-ray theory effects could be important. Indeed, a recent analysis by Dahlen and Zhou (personal communication) suggests that the group arrival times should be a functions of both the group velocity AND the phase velocity. The simplest way to test the interpretation of the measurements is to perform the analysis on synthetic seismograms computed for a realistic model of the Earth. Here, we use the SEM with a model which incorporates realistic crust and mantle structure. We are currently computing synthetics for a suite of roughly 1000 events recorded globally that extend to a period of 18 seconds. We shall present the results of applying both ray-based and finite frequency inversions to the synthetic data as well as evaluating the effects of off path propagation at short periods using surface wave ray tracing.

  4. Pn-waves Travel-time Anomaly beneath Taiwan from Dense Seismic Array Observations and its Possible Tectonic Implications

    Science.gov (United States)

    Lin, Y. Y.; Huang, B. S.; Ma, K. F.; Hsieh, M. C.

    2015-12-01

    We investigated travel times of Pn waves, which are of great important for understanding the Moho structure in Taiwan region. Although several high quality tomographic studies had been carried out, observations of Pn waves are still the most comprehensive way to elucidate the Moho structure. Mapping the Moho structure of Taiwan had been a challenging due to the small spatial dimension of Taiwan island with two subduction systems. To decipher the tectonic structure and understanding of earthquake hazard, the island of Taiwan have been implemented by several high density seismic stations, including 71 short-period stations of Central Weather Bureau Seismic Network (CWBSN) and 42 broardband stations of Broadband Array in Taiwan for Seismology (BATS). High quality seismic records of these stations would be used to identify precise Pn-wave arrival times. After station-elevation correction, we measure the difference between the observed and theoretical Pn arrivals from the IASPI 91 model for each station. For correcting uncertainties of earthquake location and origin time, we estimate relative Pn anomaly, ΔtPn , between each station and a reference station. The pattern of ΔtPn reflects the depth anomaly of Moho beneath Taiwan. In general, Pn waves are commonly observed from shallow earthquake at epicentral distance larger than 120 km. We search the global catalog since 2005 and the criteria are M > 5.5, focal depth 150 km. The 12 medium earthquakes from north Luzon are considered for analysis. We choose a station, TWKB, in the most southern point of Taiwan as the reference station due to that all events are from the south. The results indicate obvious different patterns of ΔtPn from different back-azimuths. The ΔtPn pattern of the events in the first group from the south south-east indicates that the Pn arrivals delay suddenly when the Pn waves pass through the Central Range, suggesting the Moho becomes deep rapidly. However, we cannot recognize the same pattern when

  5. Multi-hole seismic modeling in 3-D space and cross-hole seismic tomography analysis for boulder detection

    Science.gov (United States)

    Cheng, Fei; Liu, Jiangping; Wang, Jing; Zong, Yuquan; Yu, Mingyu

    2016-11-01

    A boulder stone, a common geological feature in south China, is referred to the remnant of a granite body which has been unevenly weathered. Undetected boulders could adversely impact the schedule and safety of subway construction when using tunnel boring machine (TBM) method. Therefore, boulder detection has always been a key issue demanded to be solved before the construction. Nowadays, cross-hole seismic tomography is a high resolution technique capable of boulder detection, however, the method can only solve for velocity in a 2-D slice between two wells, and the size and central position of the boulder are generally difficult to be accurately obtained. In this paper, the authors conduct a multi-hole wave field simulation and characteristic analysis of a boulder model based on the 3-D elastic wave staggered-grid finite difference theory, and also a 2-D imaging analysis based on first arrival travel time. The results indicate that (1) full wave field records could be obtained from multi-hole seismic wave simulations. Simulation results describe that the seismic wave propagation pattern in cross-hole high-velocity spherical geological bodies is more detailed and can serve as a basis for the wave field analysis. (2) When a cross-hole seismic section cuts through the boulder, the proposed method provides satisfactory cross-hole tomography results; however, when the section is closely positioned to the boulder, such high-velocity object in the 3-D space would impact on the surrounding wave field. The received diffracted wave interferes with the primary wave and in consequence the picked first arrival travel time is not derived from the profile, which results in a false appearance of high-velocity geology features. Finally, the results of 2-D analysis in 3-D modeling space are comparatively analyzed with the physical model test vis-a-vis the effect of high velocity body on the seismic tomographic measurements.

  6. The Texcoco Seismic Array: Analysis of the Seismic Movement in the Deep Sediments of Mexico Basin.

    Science.gov (United States)

    Flores-Estrella, H.; Cardenas-Soto, M.; Lomnitz, C.

    2007-05-01

    The seismic movement in the Lake Zone of the Mexico Basin is characterized by long durations and late energy arrivals; many efforts have been made to find the origin of these late waves. In 1997 the Texcoco Seismic Array (TXC) was installed in the former Lake of Texcoco, in the northeastern part of Mexico Basin. It is a natural reserve formed by the same lacustrine clays of the Lake Zone in Mexico City, however we consider TXC as a virgin site as there are no buildings near, and there is almost no human activity. We analyzed 7 earthquakes recorded at TXC in two instrumental arrays, to identify late energy arrivals near the fundamental period and we also analyzed these pulses with F-K method to estimate the phase velocity and its origin.

  7. Compressional seismic waves recorded during underground nuclear explosion tests in HOGGAR

    International Nuclear Information System (INIS)

    Ferrieux, Henri

    1970-01-01

    The seismic measurement device was the following: - a movable apparatus in the shot area, - at larger distances, two stations at permanent places. The radial compression wave is examined from the beginning of the pseudo-elastical behaviour of the medium to a distance of fifty kilometers. The amplitude laws evolution is conformed to the theory predictions. The shots energy and the observation distance influence on the amplitude spectra of the compression waves, is studied. (author)

  8. Compressional seismic waves recorded during underground nuclear explosion tests in HOGGAR

    Energy Technology Data Exchange (ETDEWEB)

    Ferrieux, Henri [Commissariat a l' Energie Atomique, Centre d' Etudes de Bruyeres-le-Chatel (France)

    1970-05-15

    The seismic measurement device was the following: - a movable apparatus in the shot area, - at larger distances, two stations at permanent places. The radial compression wave is examined from the beginning of the pseudo-elastical behaviour of the medium to a distance of fifty kilometers. The amplitude laws evolution is conformed to the theory predictions. The shots energy and the observation distance influence on the amplitude spectra of the compression waves, is studied. (author)

  9. Seismic Interferometry of Gulf of Mexico Basin Opening (GUMBO) Data: Extraction of Body and Surface Waves with a Mixed-Mode Array

    Science.gov (United States)

    Thangraj, J. S.; Quiros, D.; Pulliam, J.

    2017-12-01

    The Gulf of Mexico (GoM) is a relative small oceanic basin that formed by rifting between the continental blocks of North America and Yucatan in the Middle to Late Jurassic. Following the breakup, seafloor spreading continued until the Early Cretaceous. Since then, subsidence and sedimentation have shaped the GoM margin that we see today. To better understand the opening of the GoM, a long-offset (307 km) seismic refraction line was acquired in 2010. The transect was located on the northwest GoM margin, and consisted of several types of instruments. This mixed-mode array combined 31 ocean bottom seismographs (OBS), 412 high-frequency instruments (4.5 Hz geophones with RefTek 125A "Texan" digitizers) and 12 broadband stations. The R/V Iron Cat provided the airgun source used in the refraction experiment. The airgun generated 2028 shots in a period of 2.5 days which were recorded by the entire array. The airgun-generated seismic energy was clearly visible on the OBS recordings, however its amplitude was too low to be discerned on most of the onshore stations. In fact, this energy was only visible on Texan stations 1-50 (station 1 is located at the coast), extending 18 km inland, limiting the extend of the velocity model that can be obtained. Here, we apply seismic interferometry techniques to the 2.5 days of continuous data recorded by the Texan array with the goal of extending the spatial range for which the airgun-generated seismic energy can be observed. Preliminary results show that by treating the 2.5 days of continuously recorded airgun data as ambient noise, and applying time-domain cross-correlation, we can observe energy propagating 50 to 70 km inland with apparent velocities of 1800 - 2200 ms-1. These velocities agree with the compressional seismic velocity for the top 5 km of sediments under the GoM obtained from the OBS records, suggesting that we are observing compressional energy in the virtual source gathers (VSG). We also observe arrivals in the VSG

  10. A method for detecting crack wave arrival time and crack localization in a tunnel by using moving window technique

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Chul; Park, Tae Jin [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Source localization in a dispersive medium has been carried out based on the time-of-arrival-differences (TOADs) method: a triangulation method and a circle intersection technique. Recent signal processing advances have led to calculation TOAD using a joint time-frequency analysis of the signal, where a short-time Fourier transform(STFT) and wavelet transform can be included as popular algorithms. The time-frequency analysis method is able to provide various information and more reliable results such as seismic-attenuation estimation, dispersive characteristics, a wave mode analysis, and temporal energy distribution of signals compared with previous methods. These algorithms, however, have their own limitations for signal processing. In this paper, the effective use of proposed algorithm in detecting crack wave arrival time and source localization in rock masses suggest that the evaluation and real-time monitoring on the intensity of damages related to the tunnels or other underground facilities is possible. Calculation of variances resulted from moving windows as a function of their size differentiates the signature from noise and from crack signal, which lead us to determine the crack wave arrival time. Then, the source localization is determined to be where the variance of crack wave velocities from real and virtual crack localization becomes a minimum. To validate our algorithm, we have performed experiments at the tunnel, which resulted in successful determination of the wave arrival time and crack localization.

  11. Analysis of seismic waves and strong ground motion

    International Nuclear Information System (INIS)

    Simpson, I.C.; Sutton, R.

    1976-10-01

    A number of Western USA earthquake acceleration-time histories concerning events of magnitude less than 6 are considered and their Fourier spectra calculated. An analysis of some of the simpler types of seismic wave is given in order to consider the generation of a spatially dependent acceleration-time history suitable for input into a soil-structure program of analysis. Such an acceleration-time history is required by a comprehensive analysis of soil-structure interaction since the conventionally assumed model of vertically propagating seismic waves, which give rise to three spatially independent ground motions, can lead to over-conservative estimates of the building response in the high frequency range. The possible application is discussed of a given component of a recorded acceleration-time history to the base of structure under the assumption of surface Rayleigh waves or obliquely incident P and SV bulk waves. (author)

  12. DEFORMATION WAVES AS A TRIGGER MECHANISM OF SEISMIC ACTIVITY IN SEISMIC ZONES OF THE CONTINENTAL LITHOSPHERE

    Directory of Open Access Journals (Sweden)

    S. I. Sherman

    2013-01-01

    Full Text Available Deformation waves as a trigger mechanism of seismic activity and migration of earthquake foci have been under discussion by researchers in seismology and geodynamics for over 50 years. Four sections of this article present available principal data on impacts of wave processes on seismicity and new data. The first section reviews analytical and experimental studies aimed at identification of relationships between wave processes in the lithosphere and seismic activity manifested as space-and-time migration of individual earthquake foci or clusters of earthquakes. It is concluded that with a systematic approach, instead of using a variety of terms to denote waves that trigger seismic process in the lithosphere, it is reasonable to apply the concise definition of ‘deformation waves’, which is most often used in fact.The second section contains a description of deformation waves considered as the trigger mechanism of seismic activity. It is concluded that a variety of methods are applied to identify deformation waves, and such methods are based on various research methods and concepts that naturally differ in sensitivity concerning detection of waves and/or impact of the waves on seismic process. Epicenters of strong earthquakes are grouped into specific linear or arc-shaped systems, which common criterion is the same time interval of the occurrence of events under analysis. On site the systems compose zones with similar time sequences, which correspond to the physical notion of moving waves (Fig. 9. Periods of manifestation of such waves are estimated as millions of years, and a direct consideration of the presence of waves and wave parameters is highly challenging. In the current state-of-the-art, geodynamics and seismology cannot provide any other solution yet.The third section presents a solution considering record of deformation waves in the lithosphere. With account of the fact that all the earthquakes with М≥3.0 are associated with

  13. Automatic Processing and Interpretation of Long Records of Endogenous Micro-Seismicity: the Case of the Super-Sauze Soft-Rock Landslide.

    Science.gov (United States)

    Provost, F.; Malet, J. P.; Hibert, C.; Doubre, C.

    2017-12-01

    The Super-Sauze landslide is a clay-rich landslide located the Southern French Alps. The landslide exhibits a complex pattern of deformation: a large number of rockfalls are observed in the 100 m height main scarp while the deformation of the upper part of the accumulated material is mainly affected by material shearing along stable in-situ crests. Several fissures are locally observed. The shallowest layer of the accumulated material tends to behave in a brittle manner but may undergo fluidization and/or rapid acceleration. Previous studies have demonstrated the presence of a rich endogenous micro-seismicity associated to the deformation of the landslide. However, the lack of long-term seismic records and suitable processing chains prevented a full interpretation of the links between the external forcings, the deformation and the recorded seismic signals. Since 2013, two permanent seismic arrays are installed in the upper part of the landslide. We here present the methodology adopted to process this dataset. The processing chain consists of a set of automated methods for automatic and robust detection, classification and location of the recorded seismicity. Thousands of events are detected and further automatically classified. The classification method is based on the description of the signal through attributes (e.g. waveform, spectral content properties). These attributes are used as inputs to classify the signal using a Random Forest machine-learning algorithm in four classes: endogenous micro-quakes, rockfalls, regional earthquakes and natural/anthropogenic noises. The endogenous landslide sources (i.e. micro-quake and rockfall) are further located. The location method is adapted to the type of event. The micro-quakes are located with a 3D velocity model derived from a seismic tomography campaign and an optimization of the first arrival picking with the inter-trace correlation of the P-wave arrivals. The rockfalls are located by optimizing the inter

  14. Constraints on seismic anisotropy beneath the Appalachian Mountains from Love-to-Rayleigh wave scattering

    Science.gov (United States)

    Servali, A.; Long, M. D.; Benoit, M.

    2017-12-01

    The eastern margin of North America has been affected by a series of mountain building and rifting events that have likely shaped the deep structure of the lithosphere. Observations of seismic anisotropy can provide insight into lithospheric deformation associated with these past tectonic events, as well as into present-day patterns of mantle flow beneath the passive margin. Previous work on SKS splitting beneath eastern North America has revealed fast splitting directions parallel to the strike of the Appalachian orogen in the central and southern Appalachians. A major challenge to the interpretation of SKS splitting measurements, however, is the lack of vertical resolution; isolating anisotropic structures at different depths is therefore difficult. Complementary constraints on the depth distribution of anisotropy can be provided by surface waves. In this study, we analyze the scattering of Love wave energy to Rayleigh waves, which is generated via sharp lateral gradients in anisotropic structure along the ray path. The scattered phases, known as quasi-Love (QL) waves, exhibit amplitude behavior that depend on the strength of the anisotropic contrast as well as the angle between the propagation azimuth and the anisotropic symmetry axis. We analyze data collected by the dense MAGIC seismic array across the central Appalachians. We examine teleseismic earthquakes of magnitude 6.7 and greater over a range of backazimuths, and isolate surface waves at periods between 100 and 500 seconds. We compare the data to synthetic seismograms generated by the Princeton Global ShakeMovie initiative to identify anomalous QL arrivals. We find evidence significant QL arrivals at MAGIC stations, with amplitudes depending on propagation azimuth and station location. Preliminary results are consistent with a sharp lateral gradient in seismic anisotropy across the Appalachian Mountains in the depth range between 100-200 km.

  15. Seismic velocity distribution in the vicinity of a mine tunnel at Thabazimbi, South Africa

    CSIR Research Space (South Africa)

    Wright, C

    2000-07-01

    Full Text Available Analysis of the refracted arrivals on a seismic reflection profile recorded along the wall of a tunnel at an iron mine near Thabazimbi, South Africa, shows variations in P-wave velocity in dolomite away from the de-stressed zone that vary between 4...

  16. Strong SH-to-Love wave scattering off the Southern California Continental Borderland

    Science.gov (United States)

    Yu, Chunquan; Zhan, Zhongwen; Hauksson, Egill; Cochran, Elizabeth S.

    2017-01-01

    Seismic scattering is commonly observed and results from wave propagation in heterogeneous medium. Yet, deterministic characterization of scatterers associated with lateral heterogeneities remains challenging. In this study, we analyze broadband waveforms recorded by the Southern California Seismic Network and observe strongly scattered Love waves following the arrival of teleseismic SH wave. These scattered Love waves travel approximately in the same (azimuthal) direction as the incident SH wave at a dominant period of ~10 s but at an apparent velocity of ~3.6 km/s as compared to the ~11 km/s for the SH wave. Back-projection suggests that this strong scattering is associated with pronounced bathymetric relief in the Southern California Continental Borderland, in particular the Patton Escarpment. Finite-difference simulations using a simplified 2-D bathymetric and crustal model are able to predict the arrival times and amplitudes of major scatterers. The modeling suggests a relatively low shear wave velocity in the Continental Borderland.

  17. Horizontal Acoustic Barriers for Protection from Seismic Waves

    Directory of Open Access Journals (Sweden)

    Sergey V. Kuznetsov

    2011-01-01

    Full Text Available The basic idea of a seismic barrier is to protect an area occupied by a building or a group of buildings from seismic waves. Depending on nature of seismic waves that are most probable in a specific region, different kinds of seismic barriers can be suggested. Herein, we consider a kind of a seismic barrier that represents a relatively thin surface layer that prevents surface seismic waves from propagating. The ideas for these barriers are based on one Chadwick's result concerning nonpropagation condition for Rayleigh waves in a clamped half-space, and Love's theorem that describes condition of nonexistence for Love waves. The numerical simulations reveal that to be effective the length of the horizontal barriers should be comparable to the typical wavelength.

  18. Coherent Seismic Arrivals in the P Wave Coda of the 2012 Mw 7.2 Sumatra Earthquake: Water Reverberations or an Early Aftershock?

    Science.gov (United States)

    Fan, Wenyuan; Shearer, Peter M.

    2018-04-01

    Teleseismic records of the 2012 Mw 7.2 Sumatra earthquake contain prominent phases in the P wave train, arriving about 50 to 100 s after the direct P arrival. Azimuthal variations in these arrivals, together with back-projection analysis, led Fan and Shearer (https://doi.org/10.1002/2016GL067785) to conclude that they originated from early aftershock(s), located ˜150 km northeast of the mainshock and landward of the trench. However, recently, Yue et al. (https://doi.org/10.1002/2017GL073254) argued that the anomalous arrivals are more likely water reverberations from the mainshock, based mostly on empirical Green's function analysis of a M6 earthquake near the mainshock and a water phase synthetic test. Here we present detailed back-projection and waveform analyses of three M6 earthquakes within 100 km of the Mw 7.2 earthquake, including the empirical Green's function event analyzed in Yue et al. (https://doi.org/10.1002/2017GL073254). In addition, we examine the waveforms of three M5.5 reverse-faulting earthquakes close to the inferred early aftershock location in Fan and Shearer (https://doi.org/10.1002/2016GL067785). These results suggest that the reverberatory character of the anomalous arrivals in the mainshock coda is consistent with water reverberations, but the origin of this energy is more likely an early aftershock rather than delayed and displaced water reverberations from the mainshock.

  19. Seismic trapped modes in the oroville and san andreas fault zones.

    Science.gov (United States)

    Li, Y G; Leary, P; Aki, K; Malin, P

    1990-08-17

    Three-component borehole seismic profiling of the recently active Oroville, California, normal fault and microearthquake event recording with a near-fault three-component borehole seismometer on the San Andreas fault at Parkfield, California, have shown numerous instances of pronounced dispersive wave trains following the shear wave arrivals. These wave trains are interpreted as fault zone-trapped seismic modes. Parkfield earthquakes exciting trapped modes have been located as deep as 10 kilometers, as shallow as 4 kilometers, and extend 12 kilometers along the fault on either side of the recording station. Selected Oroville and Parkfield wave forms are modeled as the fundamental and first higher trapped SH modes of a narrow low-velocity layer at the fault. Modeling results suggest that the Oroville fault zone is 18 meters wide at depth and has a shear wave velocity of 1 kilometer per second, whereas at Parkfield, the fault gouge is 100 to 150 meters wide and has a shear wave velocity of 1.1 to 1.8 kilometers per second. These low-velocity layers are probably the rupture planes on which earthquakes occur.

  20. Induced Electromagnetic Field by Seismic Waves in Stratified Media in Earth's Magnetic Field

    Science.gov (United States)

    Yamazaki, K.

    2017-12-01

    Seismic waves accompany electromagnetic (EM) variations because Earth's crust involves a variety of EM properties such as finite electrical conductivity and ion contents. If we can catch the EM variations just after the earthquake rupture, we will know the occurrence of earthquake before the arrival of seismic waves at observation point. However, quantitative aspects of EM variations arising from seismic waves have not sufficiently understood. Together with observational works, theoretical works have been made to simulate EM variations arising from seismic waves. The generation mechanisms of EM variations include electrokinetic effect (Pride, 1994), motional induction (Gao et al., 2014), piezo-electric effect (Ogawa and Utada, 2000), piezo-magnetic effect (Yamazaki, 2016), etc. It is widely accepted that the electrokinetic effect is the dominant mechanism. Theoretical calculation of EM variations assuming the electrokinetic effect roughly explains the observed EM variations accompanying with earthquake ground motions (e.g. Gao et al. 2016). However, there are a significant disagreement between observed and predicted EM variations. In the present study, I focus on the motional induction mechanism that possibly explain some parts of EM variations accompanying with seismic waves. A theoretical work on EM variations arising from the motional induction has been presented by Gao et al. (2014), but their work assumed uniform full-space medium. In contrast, the present work assumes stratified media which correctly incorporate the effect of the ground surface. I apply a calculating method developed in seismology (e.g. Kennett, 2013) and in EM studies (Haartsen and Pride, 1997), and derive a set of expressions describing the spatial-temporal variations of the EM field after the onset of rupture. The derived formula is used to calculate EM variations for actual earthquakes to compare the theoretical prediction to observed EM variations.

  1. Wave-equation dispersion inversion of surface waves recorded on irregular topography

    KAUST Repository

    Li, Jing; Schuster, Gerard T.; Lin, Fan-Chi; Alam, Amir

    2017-01-01

    Significant topographic variations will strongly influence the amplitudes and phases of propagating surface waves. Such effects should be taken into account, otherwise the S-velocity model inverted from the Rayleigh dispersion curves will contain significant inaccuracies. We now show that the recently developed wave-equation dispersion inversion (WD) method naturally takes into account the effects of topography to give accurate S-velocity tomograms. Application of topographic WD to demonstrates that WD can accurately invert dispersion curves from seismic data recorded over variable topography. We also apply this method to field data recorded on the crest of mountainous terrain and find with higher resolution than the standard WD tomogram.

  2. Wave-equation dispersion inversion of surface waves recorded on irregular topography

    KAUST Repository

    Li, Jing

    2017-08-17

    Significant topographic variations will strongly influence the amplitudes and phases of propagating surface waves. Such effects should be taken into account, otherwise the S-velocity model inverted from the Rayleigh dispersion curves will contain significant inaccuracies. We now show that the recently developed wave-equation dispersion inversion (WD) method naturally takes into account the effects of topography to give accurate S-velocity tomograms. Application of topographic WD to demonstrates that WD can accurately invert dispersion curves from seismic data recorded over variable topography. We also apply this method to field data recorded on the crest of mountainous terrain and find with higher resolution than the standard WD tomogram.

  3. Using Tectonic Tremor to Constrain Seismic-wave Attenuation in Cascadia

    Science.gov (United States)

    Littel, G.; Thomas, A.; Baltay, A.

    2017-12-01

    In addition to fast, seismic slip, many subduction zones also host slow, largely aseismic slip, accompanied by a weak seismic signal known as tectonic tremor. Tremor is a small amplitude, low-frequency seismic signal that originates at the plate interface, down-dip of where large earthquakes typically occur. The Cascadia subduction zone has not seen a large megathrust earthquake since 1700, yet its recurrence interval of 350-500 years motivates heightened interest in understanding the seismic hazard of the region. Of great importance is to understand the degree to which waves are attenuated as they leave the plate interface and travel towards populated regions of interest. Ground motion prediction equations (GMPEs) relate ground motion to a number of parameters, including earthquake magnitude, depth, style of faulting, and anelastic attenuation, and are typically determined empirically from earthquake ground motion recordings. In Cascadia, however, earthquakes of the moderate size typically used to constrain GMPEs occur relatively infrequently compared to tectonic tremor events, which, in contrast, occur periodically approximately every 10-19 months. Studies have shown that the abundant tectonic tremor in Cascadia, despite its small amplitudes, can be used to constrain seismic wave attenuation in GMPEs. Here we quantify seismic wave attenuation and determine its spatial variations in Cascadia by performing an inversion using tremor ground motion amplitudes, taken as peak ground acceleration (PGA) and peak ground velocity (PGV) from 1 min window waveforms of each individual tremor event. We estimate the anelastic attenuation parameter for varying regional sections along the Cascadia margin. Changes in seismic-wave attenuation along the Cascadia Subduction Zone could result in significantly different ground motions in the event of a very large earthquake, hence quantifying attenuation may help to better estimate the severity of shaking in densely populated

  4. AIMBAT: A Python/Matplotlib Tool for Measuring Teleseismic Arrival Times

    Science.gov (United States)

    Lou, X.; van der Lee, S.; Lloyd, S.

    2013-12-01

    Python is an open-source, platform-independent, and object-oriented scripting language. It became more popular in the seismologist community since the appearance of ObsPy (Beyreuther et al. 2010, Megies et al. 2011), which provides a powerful framework for seismic data access and processing. This study introduces a new Python-based tool named AIMBAT (Automated and Interactive Measurement of Body-wave Arrival Times) for measuring teleseismic body-wave arrival times on large-scale seismic event data (Lou et al. 2013). Compared to ObsPy, AIMBAT is a lighter tool that is more focused on a particular aspect of seismic data processing. It originates from the widely used MCCC (Multi-Channel Cross-Correlation) method developed by VanDecar and Crosson (1990). On top of the original MCCC procedure, AIMBAT is automated in initial phase picking and is interactive in quality control. The core cross-correlation function is implemented in Fortran to boost up performance in addition to Python. The GUI (graphical user interface) of AIMBAT depends on Matplotlib's GUI-neutral widgets and event-handling API. A number of sorting and (de)selecting options are designed to facilitate the quality control of seismograms. By using AIMBAT, both relative and absolute teleseismic body-wave arrival times are measured. AIMBAT significantly improves efficiency and quality of the measurements. User interaction is needed only to pick the target phase arrival and to set a time window on the array stack. The package is easy to install and use, open-source, and is publicly available. Graphical user interface of AIMBAT.

  5. 3D P and S Wave Velocity Structure and Tremor Locations in the Parkfield Region

    Science.gov (United States)

    Zeng, X.; Thurber, C. H.; Shelly, D. R.; Bennington, N. L.; Cochran, E. S.; Harrington, R. M.

    2014-12-01

    We have assembled a new dataset to refine the 3D seismic velocity model in the Parkfield region. The S arrivals from 184 earthquakes recorded by the Parkfield Experiment to Record MIcroseismicity and Tremor array (PERMIT) during 2010-2011 were picked by a new S wave picker, which is based on machine learning. 74 blasts have been assigned to four quarries, whose locations were identified with Google Earth. About 1000 P and S wave arrivals from these blasts at permanent seismic network were also incorporated. Low frequency earthquakes (LFEs) occurring within non-volcanic tremor (NVT) are valuable for improving the precision of NVT location and the seismic velocity model at greater depths. Based on previous work (Shelley and Hardebeck, 2010), waveforms of hundreds of LFEs in same family were stacked to improve signal qualify. In a previous study (McClement et al., 2013), stacked traces of more than 30 LFE families at the Parkfileld Array Seismic Observatory (PASO) have been picked. We expanded our work to include LFEs recorded by the PERMIT array. The time-frequency Phase Weight Stacking (tf-PWS) method was introduced to improve the stack quality, as direct stacking does not produce clear S-wave arrivals on the PERMIT stations. This technique uses the coherence of the instantaneous phase among the stacked signals to enhance the signal-to-noise ratio (SNR) of the stack. We found that it is extremely effective for picking LFE arrivals (Thurber et al., 2014). More than 500 P and about 1000 S arrivals from 58 LFE families were picked at the PERMIT and PASO arrays. Since the depths of LFEs are much deeper than earthquakes, we are able to extend model resolution to lower crustal depths. Both P and S wave velocity structure have been obtained with the tomoDD method. The result suggests that there is a low velocity zone (LVZ) in the lower crust and the location of the LVZ is consistent with the high conductivity zone beneath the southern segment of the Rinconada fault that

  6. Slowness Anomalies of PKP Phases Recorded at the Seismic Array in Eielson, Alaska (ILAR)

    Science.gov (United States)

    Koper, K. D.; Parker, V.

    2005-12-01

    The Eielson, Alaska seismic array (ILAR) is well situated to record PKPDF waves from earthquakes occurring in the South Sandwich Islands (SSI) region. Such ray paths are nearly aligned with Earth's rotation axis and are useful for constraining models of inner core anisotropy. The many previous studies of PKPDF waves traversing the SSI-Alaska corridor generally find waves that arrive several seconds faster than expected, with highly attenuated and often complicated shapes. Simple radially or cylindrically symmetric Earth models cannot explain these observations, and it may be the case that mantle heterogeneities are biasing the SSI-Alaska PKPDF waves. In this study, we take advantage of the small aperture of ILAR to make independent measurements of differential PKPDF-PKPBC travel times and differential PKPDF-PKPBC horizontal slowness vectors for 37 SSI earthquakes that occurred from 1996-2004. Anomalies in slowness (ray parameter and backazimuth) of a phase reflect heterogeneous Earth structure in a manner complementary to travel time anomalies. At a reference distance of 152°, we find a mean differential travel time residual of 3.1 ± 0.1~s, a mean differential ray parameter of 2.9±0.2~s/deg, and that PKPDF waves arrive from a backazimuth rotated approximately 10° counterclockwise relative to corresponding PKPBC waves. Joint modeling of the differential travel times and differential ray parameters indicates that (1) lower mantle heterogeneities are not responsible for the properties of PKPDF from SSI-ILAR, (2) the lower several hundred kilometers of the outer core has a slightly lower velocity, and/or velocity gradient, than current reference models, and (3) there is a strong, radial velocity gradient within the inner core at a radius of 600-900~km. However, the differential slowness anomalies cannot be fully explained by variations in deep Earth structure, implying that local site effects at ILAR are somewhat different for PKPDF and PKPBC phases.

  7. Performances of the UNDERground SEISmic array for the analysis of seismicity in Central Italy

    Directory of Open Access Journals (Sweden)

    R. Scarpa

    2006-06-01

    Full Text Available This paper presents the first results from the operation of a dense seismic array deployed in the underground Physics Laboratories at Gran Sasso (Central Italy. The array consists of 13 short-period, three-component seismometers with an aperture of about 550 m and average sensor spacing of 90 m. The reduced sensor spacing, joined to the spatially-white character of the background noise allows for quick and reliable detection of coherent wavefront arrivals even under very poor SNR conditions. We apply high-resolution frequency-slowness and polarization analyses to a set of 27 earthquakes recorded between November, 2002, and September, 2003, at epicentral distances spanning the 20-140 km interval. We locate these events using inversion of P- and S-wave backazimuths and S-P delay times, and compare the results with data from the Centralized National Seismic Network catalog. For the case of S-wave, the discrepancies among the two set of locations never exceed 10 km; the largest errors are instead observed for the case of P-waves. This observation may be due to the fact that the small array aperture does not allow for robust assessment of waves propagating at high apparent velocities. This information is discussed with special reference to the directions of future studies aimed at elucidating the location of seismogenetic structures in Central Italy from extended analysis of the micro-seismicity.

  8. Site response assessment using borehole seismic records

    Energy Technology Data Exchange (ETDEWEB)

    Park, Donghee; Chang, Chunjoong; Choi, Weonhack [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. The Korea Meteorological Administration (KMA) and the Korea Institute of Geology and Mining (KIGAM) have installed and are operating borehole seismometers at a depth of 70∼100 meters for the precise determination of epicenters. Also, Korea Hydro and Nuclear Power Co., Ltd. (KHNP) has installed and is operating 2 borehole seismic stations near Weolseong area to observe at a depth of 140 meters seismic activities connected to fault activity. KHNP plans to operate in the second half of 2014 a borehole seismic station for depths less than 300 and 600 meters in order to study the seismic response characteristics in deep strata. As a basic study for analyzing ground motion response characteristics at depths of about 300 to 600 meters in connection with the deep geological disposal of spent nuclear fuel, the present study examined the background noise response characteristics of the borehole seismic station operated by KHNP. In order to analyze the depth-dependent impact of seismic waves at deeper depths than in Korea, seismic data collected by Japan's KIK-net seismic stations were used and the seismic wave characteristics analyzed by size and depth. In order to analyze the borehole seismic observation data from the seismic station operated by KHNP, this study analyzed the background noise characteristics by using a probability density function.

  9. Site response assessment using borehole seismic records

    International Nuclear Information System (INIS)

    Park, Donghee; Chang, Chunjoong; Choi, Weonhack

    2014-01-01

    In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. The Korea Meteorological Administration (KMA) and the Korea Institute of Geology and Mining (KIGAM) have installed and are operating borehole seismometers at a depth of 70∼100 meters for the precise determination of epicenters. Also, Korea Hydro and Nuclear Power Co., Ltd. (KHNP) has installed and is operating 2 borehole seismic stations near Weolseong area to observe at a depth of 140 meters seismic activities connected to fault activity. KHNP plans to operate in the second half of 2014 a borehole seismic station for depths less than 300 and 600 meters in order to study the seismic response characteristics in deep strata. As a basic study for analyzing ground motion response characteristics at depths of about 300 to 600 meters in connection with the deep geological disposal of spent nuclear fuel, the present study examined the background noise response characteristics of the borehole seismic station operated by KHNP. In order to analyze the depth-dependent impact of seismic waves at deeper depths than in Korea, seismic data collected by Japan's KIK-net seismic stations were used and the seismic wave characteristics analyzed by size and depth. In order to analyze the borehole seismic observation data from the seismic station operated by KHNP, this study analyzed the background noise characteristics by using a probability density function

  10. Location of long-period events below Kilauea Volcano using seismic amplitudes and accurate relative relocation

    Science.gov (United States)

    Battaglia, J.; Got, J.-L.; Okubo, P.

    2003-01-01

    We present methods for improving the location of long-period (LP) events, deep and shallow, recorded below Kilauea Volcano by the permanent seismic network. LP events might be of particular interest to understanding eruptive processes as their source mechanism is assumed to directly involve fluid transport. However, it is usually difficult or impossible to locate their source using traditional arrival time methods because of emergent wave arrivals. At Kilauea, similar LP waveform signatures suggest the existence of LP multiplets. The waveform similarity suggests spatially close sources, while catalog solutions using arrival time estimates are widely scattered beneath Kilauea's summit caldera. In order to improve estimates of absolute LP location, we use the distribution of seismic amplitudes corrected for station site effects. The decay of the amplitude as a function of hypocentral distance is used for inferring LP location. In a second stage, we use the similarity of the events to calculate their relative positions. The analysis of the entire LP seismicity recorded between January 1997 and December 1999 suggests that a very large part of the LP event population, both deep and shallow, is generated by a small number of compact sources. Deep events are systematically composed of a weak high-frequency onset followed by a low-frequency wave train. Aligning the low-frequency wave trains does not lead to aligning the onsets indicating the two parts of the signal are dissociated. This observation favors an interpretation in terms of triggering and resonance of a magmatic conduit. Instead of defining fault planes, the precise relocation of similar LP events, based on the alignment of the high-energy low-frequency wave trains, defines limited size volumes. Copyright 2003 by the American Geophysical Union.

  11. Observations of short period seismic scattered waves by small seismic arrays

    Directory of Open Access Journals (Sweden)

    M. Simini

    1997-06-01

    Full Text Available The most recent observations of well correlated seismic phases in the high frequency coda of local earthquakes recorded throughout the world are reported. In particular the main results, obtained on two active volcanoes, Teide and Deception, using small array are described. The ZLC (Zero Lag Cross-correlation method and polarization analysis have been applied to the data in order to distinguish the main phases in the recorded seismograms and their azimuths and apparent velocities. The results obtained at the Teide volcano demonstrate that the uncorrelated part of the seismograms may be produced by multiple scattering from randomly distributed heterogeneity, while the well correlated part, showing SH type polarization or the possible presence of Rayleigh surface waves, may be generated by single scattering by strong scatterers. At the Deception Volcano strong scattering, strongly focused in a precise direction, is deduced from the data. In that case, all the coda radiation is composed of surface waves.

  12. Investigation of sinkhole areas in Germany using 2D shear wave reflection seismics and zero-offset VSP

    Science.gov (United States)

    Tschache, Saskia; Wadas, Sonja; Polom, Ulrich; Krawczyk, Charlotte M.

    2017-04-01

    Sinkholes pose a serious geohazard for humans and infrastructure in populated areas. The Junior Research Group Subrosion within the Leibniz Institute for Applied Geophysics and the joint project SIMULTAN work on the multi-scale investigation of subrosion processes in the subsurface, which cause natural sinkholes. In two case studies in sinkhole areas of Thuringia in Germany, we applied 2D shear wave reflection seismics using SH-waves with the aim to detect suitable parameters for the characterisation of critical zones. This method has the potential to image near-surface collapse and faulting structures in improved resolution compared to P-wave surveys resulting from the shorter wavelength of shear waves. Additionally, the shear wave velocity field derived by NMO velocity analysis is a basis to calculate further physical parameters, as e.g. the dynamic shear modulus. In both investigation areas, vertical seismic profiles (VSP) were acquired by generating P- and SH-waves (6 component VSP) directly next to a borehole equipped with a 3C downhole sensor. They provide shear and compressional wave velocity profiles, which are used to improve the 2D shear wave velocity field from surface seismics, to perform a depth calibration of the seismic image and to calculate the Vp/Vs ratio. The signals in the VSP data are analysed with respect to changes in polarisation and attenuation with depth and/or azimuth. The VSP data reveal low shear wave velocities of 200-300 m/s in rock layers known to be heavily affected by subrosion and confirm the low velocities calculated from the surface seismic data. A discrepancy of the shear wave velocities is observed in other intervals probably due to unsymmetrical travel paths in the surface seismics. In some VSP data dominant conversion of the direct SH-wave to P-wave is observed that is assumed to be caused by an increased presence of cavities. A potential fault distorting the vertical travel paths was detected by abnormal P-wave first

  13. Locating Microseism Sources Using Spurious Arrivals in Intercontinental Noise Correlations

    Science.gov (United States)

    Retailleau, Lise; Boué, Pierre; Stehly, Laurent; Campillo, Michel

    2017-10-01

    The accuracy of Green's functions retrieved from seismic noise correlations in the microseism frequency band is limited by the uneven distribution of microseism sources at the surface of the Earth. As a result, correlation functions are often biased as compared to the expected Green's functions, and they can include spurious arrivals. These spurious arrivals are seismic arrivals that are visible on the correlation and do not belong to the theoretical impulse response. In this article, we propose to use Rayleigh wave spurious arrivals detected on correlation functions computed between European and United States seismic stations to locate microseism sources in the Atlantic Ocean. We perform a slant stack on a time distance gather of correlations obtained from an array of stations that comprises a regional deployment and a distant station. The arrival times and the apparent slowness of the spurious arrivals lead to the location of their source, which is obtained through a grid search procedure. We discuss improvements in the location through this methodology as compared to classical back projection of microseism energy. This method is interesting because it only requires an array and a distant station on each side of an ocean, conditions that can be met relatively easily.

  14. Local amplification of seismic waves from the Denali earthquake and damaging seiches in Lake Union, Seattle, Washington

    Science.gov (United States)

    Barberopoulou, A.; Qamar, A.; Pratt, T.L.; Creager, K.C.; Steele, W.P.

    2004-01-01

    The Mw7.9 Denali, Alaska earthquake of 3 November, 2002, caused minor damage to at least 20 houseboats in Seattle, Washington by initiating water waves in Lake Union. These water waves were likely initiated during the large amplitude seismic surface waves from this earthquake. Maps of spectral amplification recorded during the Denali earthquake on the Pacific Northwest Seismic Network (PNSN) strong-motion instruments show substantially increased shear and surface wave amplitudes coincident with the Seattle sedimentary basin. Because Lake Union is situated on the Seattle basin, the size of the water waves may have been increased by local amplification of the seismic waves by the basin. Complete hazard assessments require understanding the causes of these water waves during future earthquakes. Copyright 2004 by the American Geophysical Union.

  15. Automatic detection of P- and S-wave arrival times: new strategies based on the modified fractal method and basic matching pursuit.

    Science.gov (United States)

    Chi Durán, R. K.; Comte, D.; Diaz, M. A.; Silva, J. F.

    2017-12-01

    In this work, new strategies for automatic identification of P- and S-wave arrival times from digital recorded local seismograms are proposed and analyzed. The database of arrival times previously identified by a human reader was compared with automatic identification techniques based on the Fourier transformation in reduced time (spectrograms), fractal analysis, and the basic matching pursuit algorithm. The first two techniques were used to identify the P-wave arrival times, while the third was used for the identification of the S-wave. For validation, the results were compared with the short-time average over long-time average (STA/LTA) of Rietbrock et al., Geophys Res Lett 39(8), (2012) for the database of aftershocks of the 2010 Maule Mw = 8.8 earthquake. The identifiers proposed in this work exhibit good results that outperform the STA/LTA identifier in many scenarios. The average difference from the reference picks (times obtained by the human reader) in P- and S-wave arrival times is 1 s.

  16. Refinements to the method of epicentral location based on surface waves from ambient seismic noise: introducing Love waves

    Science.gov (United States)

    Levshin, Anatoli L.; Barmin, Mikhail P.; Moschetti, Morgan P.; Mendoza, Carlos; Ritzwoller, Michael H.

    2012-01-01

    The purpose of this study is to develop and test a modification to a previous method of regional seismic event location based on Empirical Green’s Functions (EGFs) produced from ambient seismic noise. Elastic EGFs between pairs of seismic stations are determined by cross-correlating long ambient noise time-series recorded at the two stations. The EGFs principally contain Rayleigh- and Love-wave energy on the vertical and transverse components, respectively, and we utilize these signals between about 5 and 12 s period. The previous method, based exclusively on Rayleigh waves, may yield biased epicentral locations for certain event types with hypocentral depths between 2 and 5 km. Here we present theoretical arguments that show how Love waves can be introduced to reduce or potentially eliminate the bias. We also present applications of Rayleigh- and Love-wave EGFs to locate 10 reference events in the western United States. The separate Rayleigh and Love epicentral locations and the joint locations using a combination of the two waves agree to within 1 km distance, on average, but confidence ellipses are smallest when both types of waves are used.

  17. Seismic wave propagation in granular media

    Science.gov (United States)

    Tancredi, Gonzalo; López, Francisco; Gallot, Thomas; Ginares, Alejandro; Ortega, Henry; Sanchís, Johnny; Agriela, Adrián; Weatherley, Dion

    2016-10-01

    Asteroids and small bodies of the Solar System are thought to be agglomerates of irregular boulders, therefore cataloged as granular media. It is a consensus that many asteroids might be considered as rubble or gravel piles.Impacts on their surface could produce seismic waves which propagate in the interior of these bodies, thus causing modifications in the internal distribution of rocks and ejections of particles and dust, resulting in a cometary-type comma.We present experimental and numerical results on the study of propagation of impact-induced seismic waves in granular media, with special focus on behavior changes by increasing compression.For the experiment, we use an acrylic box filled with granular materials such as sand, gravel and glass spheres. Pressure inside the box is controlled by a movable side wall and measured with sensors. Impacts are created on the upper face of the box through a hole, ranging from free-falling spheres to gunshots. We put high-speed cameras outside the box to record the impact as well as piezoelectic sensors and accelerometers placed at several depths in the granular material to detect the seismic wave.Numerical simulations are performed with ESyS-Particle, a software that implements the Discrete Element Method. The experimental setting is reproduced in the numerical simulations using both individual spherical particles and agglomerates of spherical particles shaped as irregular boulders, according to rock models obtained with a 3D scanner. The numerical experiments also reproduces the force loading on one of the wall to vary the pressure inside the box.We are interested in the velocity, attenuation and energy transmission of the waves. These quantities are measured in the experiments and in the simulations. We study the dependance of these three parameters with characteristics like: impact speed, properties of the target material and the pressure in the media.These results are relevant to understand the outcomes of impacts in

  18. Rayleigh wave tomography in North-China from ambient seismic noise

    OpenAIRE

    Fang, Lihua

    2010-01-01

    2008/2009 The theory and methodology of ambient noise tomography has been studied and applied to North-China successfully. Continuous vertical-component seismograms, spanning the period from January 1, 2007 to February 28, 2008 recorded by 190 broadband stations and 10 very broadband stations, have been used. The cross correlation technique has been applied to ambient noise data recorded by North-China Seismic Array for each station pairs of the array. Rayleigh wave group ve...

  19. Detection capability of the IMS seismic network based on ambient seismic noise measurements

    Science.gov (United States)

    Gaebler, Peter J.; Ceranna, Lars

    2016-04-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection threshold can be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  20. San andreas fault zone head waves near parkfield, california.

    Science.gov (United States)

    Ben-Zion, Y; Malin, P

    1991-03-29

    Microearthquake seismograms from the borehole seismic network on the San Andreas fault near Parkfield, California, provide three lines of evidence that first P arrivals are "head" waves refracted along the cross-fault material contrast. First, the travel time difference between these arrivals and secondary phases identified as direct P waves scales linearly with the source-receiver distance. Second, these arrivals have the emergent wave character associated in theory and practice with refracted head waves instead of the sharp first breaks associated with direct P arrivals. Third, the first motion polarities of the emergent arrivals are reversed from those of the direct P waves as predicted by the theory of fault zone head waves for slip on the San Andreas fault. The presence of fault zone head waves in local seismic network data may help account for scatter in earthquake locations and source mechanisms. The fault zone head waves indicate that the velocity contrast across the San Andreas fault near Parkfield is approximately 4 percent. Further studies of these waves may provide a way of assessing changes in the physical state of the fault system.

  1. Seismic wave generator

    International Nuclear Information System (INIS)

    Devaure, Bernard.

    1982-01-01

    This invention concerns a device for simulating earth tremors. This device includes a seismic wave generator formed of a cylinder, one end of which is closed by one of the walls of a cell containing a soil, the other end being closed by a wall on which are fixed pyrotechnic devices generating shock waves inside the cylinder. These waves are transmitted from the cylinder to the cell through openings made in the cell wall. This device also includes a mechanical device acting as low-pass filter, located inside the cylinder and close to the cell wall [fr

  2. Seismic anisotropy in the upper mantle beneath the MAGIC array, mid-Atlantic Appalachians: Constraints from SKS splitting and quasi-Love wave propagation

    Science.gov (United States)

    Aragon, J. C.; Long, M. D.; Benoit, M. H.; Servali, A.

    2016-12-01

    North America's eastern passive continental margin has been modified by several cycles of supercontinent assembly. Its complex surface geology and distinct topography provide evidence of these events, while also raising questions about the extent of deformation in the continental crust, lithosphere, and mantle during past episodes of rifting and mountain building. The Mid-Atlantic Geophysical Integrative Collaboration (MAGIC) is an EarthScope and GeoPRISMS-funded project that involves a collaborative effort among seismologists, geodynamicists, and geomorphologists. One component of the project is a broadband seismic array consisting of 28 instruments in a linear path from coastal Virginia to western Ohio, which operated between October 2013 and October 2016. A key science question addressed by the MAGIC project is the geometry of past lithospheric deformation and present-day mantle flow beneath the Appalachians, which can be probed using observations of seismic anisotropy Here we present observations of SKS splitting and quasi-Love wave arrivals from stations of the MAGIC array, which together constrain seismic anisotropy in the upper mantle. SKS splitting along the array reveals distinct regions of upper mantle anisotropy, with stations in and to the west of the range exhibiting fast directions parallel to the strike of the mountains. In contrast, weak splitting and null SKS arrivals dominate eastern stations in the coastal plain. Documented Love-to-Rayleigh wave scattering for surface waves originating the magnitude 8.3 Illapel, Chile earthquakes in September 2015 provides complementary constraints on anisotropy. These quasi-Love wave arrivals suggest a pronounced change in upper mantle anisotropy at the eastern edge of present-day Appalachian topography. Together, these observations increase our understanding of the extent of lithospheric deformation beneath North America associated with Appalachian orogenesis, as well as the pattern of present-day mantle flow

  3. The record of iceberg roll generated waves from sediments and seismics

    Science.gov (United States)

    Rosser, N. J.; Szczucinski, W.; Strzelecki, M.; Long, A. J.; Norman, E. C.; Dunning, S.; Drewniak, M.

    2013-12-01

    Iceberg-roll tsunamis in coastal settings have been observed to generate significant local waves, that hold potential to be recorded in coastal depositional records. Capturing the past magnitude and frequency of such events remains challenging, hindered by a lack of a good understanding of the nature, recurrence and scale of iceberg rolls, and more specifically those rolls that generate waves. Here we consider the sedimentary evidence for iceberg rolls in West Central Greenland, based upon survey of depositional environments in a range of open and confined coastal environments. We examine both an open 80 km fjord setting, and a series of confined ice-marginal beaches. We combine a detailed interpretation of sediment deposits from shore-normal transects with wider-scale high-resolution terrestrial laser scanning of sediments. Our sites - Vaigat, which separates Disko Island from the Nussuaq Peninsular, and the northern shore of Icefjord - both have a recent history of tsunamis, triggered variously by large rock avalanches, landslides and iceberg rolls. Icebergs in Vaigat and Icefjord are observed to undergo frequent failure and roll, generating - where circumstances permit - nearshore waves of meter-scale. To obtain a more detailed understanding of the likely recurrence of such iceberg roll waves and to consider their influence upon the preserved sedimentary record, we undertook an intensive 2-month monitoring campaign during sea-ice free conditions in summer 2013 to determine the patterns in the location, magnitude, frequency and timing of iceberg roll waves. Innovatively, using microseismic monitoring combined with time-lapse photography and weather monitoring, we derive a first-order model of the occurrence of iceberg roll waves. We then use this to inform our interpretation of deposits in these two environments, and consider the presence and absence of records of iceberg roll deposits in such settings. The study was funded by Polish National Science Centre grant

  4. Earthquakes from peninsular India : data from the Gauribidanur seismic array

    International Nuclear Information System (INIS)

    Gangrade, B.K.; Prasad, A.G.V.; Sharma, R.D.

    1987-01-01

    Arrival times of the P and S wave signals recorded at the Gauribidanur seismic array from earthquakes in the neighbouring areas in peninsular India have been analysed to estimate their locations (latitudes and longitudes of the epicenters), magnitudes and origin times. Considering typical inaccuracies in the observed data, uncertainties in the estimated epicentral parameters have been illustrated. Using a crustal model, which has been specifically derived for the region around the array, expected arrival times of these signals at other important seismic stations (Kodaikanal, Hyderabad, Poona, New Delhi and Shillong) have been computed for identifying events at these stations in order to determine accurate arrival times at these stations. Due to a higher signal detection capability of the Gauribidanur array, the number of events given in this catalogue is much greater than that detected by these stations. The M S magnitude estimates of events detected at the Hyderabad station have been used to obtain a magnitude scale for Gauribidanur. Origin times, epicentral locations and magnitudes of these events are listed in this report. 10 refs., 3 figures, 3 tables. (author)

  5. Application on technique of joint time-frequency analysis of seismic signal's first arrival estimation

    International Nuclear Information System (INIS)

    Xu Chaoyang; Liu Junmin; Fan Yanfang; Ji Guohua

    2008-01-01

    Joint time-frequency analysis is conducted to construct one joint density function of time and frequency. It can open out one signal's frequency components and their evolvements. It is the new evolvement of Fourier analysis. In this paper, according to the characteristic of seismic signal's noise, one estimation method of seismic signal's first arrival based on triple correlation of joint time-frequency spectrum is introduced, and the results of experiment and conclusion are presented. (authors)

  6. The results of the Seismic Alert System of Mexico SASMEX, during the earthquakes of 7 and 19 of September 2017

    Science.gov (United States)

    Espinosa Aranda, J. M., Sr.; Cuellar Martinez, A.

    2017-12-01

    The Seismic Alert System of Mexico, SASMEX began in 1991, is integrated by the seismic alert system of Mexico City and the seismic alert system of Oaxaca. SASMEX has 97 seismic sensors which are distributed in the seismic regions of the Pacific coast and the South of the Trans-Mexican Volcanic Belt of states of Jalisco, Colima, Michoacán, Guerrero, Oaxaca and Puebla. The alert dissemination covers the cities of: Acapulco, Chilpancingo, Morelia, Puebla, Oaxaca, Toluca and Mexico City, reaching the earthquake warnings to more than 25 millions of people. SASMEX has detected correctly more than 5600 earthquakes and warned 156. Mexico City has different alert dissemination systems like several Radio and Tv commercial broadcasters, dedicated radio receivers, EAS-SAME-SARMEX radio receivers and more tha 6700 public loud speakers. The other cities have only some of those systems. The Mw 8.2 Chiapas earthquake on September 7, despite the epicentral distance far of the first seismic detections (more than 180 km) and the low amplitudes of the P waves, the earthquake warning time gave more than 90 seconds to Mexico City before the arrivals of S waves with minor damages to the city in contrast with high damages in towns in the coast. This earthquake offered an opportunity to show the developments and lacks to reduce the risk, such as the need to increase the seismic detection coverage and the earthquake warning dissemination in towns with high seismic vulnerability. The Mw 7.1 Morelos earthquake on September 19 caused thousands of damages and hundreds of deaths and injuries in Mexico City, this earthquake is the second with the most damages after the Mw 8.1 Michoacán earthquake of September 19 on 1985. The earthquake early warning gave 11 seconds after the arrivals of S waves, however the activation occurred few seconds after the P waves arrives to Mexico City, and due to the seismic focus was near to the city, the P waves were felt for the people. The Accelerographic Network

  7. Improving seismic crustal models in the Corinth Gulf, Greece and estimating source depth using PL-waves

    Science.gov (United States)

    Vackář, Jiří; Zahradník, Jiří

    2013-04-01

    A recent shallow earthquake in the Corinth Gulf, Greece (Mw 5.3, January 18, 2010; Sokos et al., Tectonophysics 2012) generated unusual long-period waves (periods > 5 seconds), well recorded at several near-regional stations between the P - and S-wave arrival. The 5-second period, being significantly longer than the source duration, indicates a structural effect. The wave is similar to PL-wave or Pnl-wave, but with shorter periods and observed in much closer distances (ranging from 30 to 200 km). For theoretical description of the observed wave, structural model is required. No existing regional crustal model generates that wave, so we need to find another model, better in terms of the PL-wave existence and strength. We find such models by full waveform inversion using the subset of stations with strong PL-wave. The Discrete Wavenumber method (Bouchon, 1981; Coutant 1989) is used for forward problem and the Neighborhood Algorithm (Sambridge, 1999) for stochastic search (more details in poster by V. Plicka and J. Zahradník). We obtain a suite of models well fitting synthetic seismograms and use some of these models to evaluate dependence of the studied waves on receiver distance and azimuth as well as dependence on source depth. We compare real and synthetic dispersion curves (derived from synthetic seismograms) as an independent validation of found model and discuss limitations of using dispersion curves for these cases. We also relocated the event in the new model. Then we calculate the wavefield by two other methods: modal summation and ray theory to better understand the nature of the PL-wave. Finally, we discuss agreement of found models with published crustal models in the region. The full waveform inversion for structural parameters seems to be powerful tool for improving seismic source modeling in cases we do not have accurate structure model of studied area. We also show that the PL-wave strength has a potential to precise the earthquake depth

  8. Compressive and Shear Wave Velocity Profiles using Seismic Refraction Technique

    International Nuclear Information System (INIS)

    Aziman, M; Hazreek, Z A M; Azhar, A T S; Haimi, D S

    2016-01-01

    Seismic refraction measurement is one of the geophysics exploration techniques to determine soil profile. Meanwhile, the borehole technique is an established way to identify the changes of soil layer based on number of blows penetrating the soil. Both techniques are commonly adopted for subsurface investigation. The seismic refraction test is a non-destructive and relatively fast assessment compared to borehole technique. The soil velocities of compressive wave and shear wave derived from the seismic refraction measurements can be directly utilised to calculate soil parameters such as soil modulus and Poisson’s ratio. This study investigates the seismic refraction techniques to obtain compressive and shear wave velocity profile. Using the vertical and horizontal geophones as well as vertical and horizontal strike directions of the transient seismic source, the propagation of compressive wave and shear wave can be examined, respectively. The study was conducted at Sejagung Sri Medan. The seismic velocity profile was obtained at a depth of 20 m. The velocity of the shear wave is about half of the velocity of the compression wave. The soil profiles of compressive and shear wave velocities were verified using the borehole data and showed good agreement with the borehole data. (paper)

  9. Seismic wave interaction with underground cavities

    Science.gov (United States)

    Schneider, Felix M.; Esterhazy, Sofi; Perugia, Ilaria; Bokelmann, Götz

    2016-04-01

    Realization of the future Comprehensive Nuclear Test Ban Treaty (CTBT) will require ensuring its compliance, making the CTBT a prime example of forensic seismology. Following indications of a nuclear explosion obtained on the basis of the (IMS) monitoring network further evidence needs to be sought at the location of the suspicious event. For such an On-Site Inspection (OSI) at a possible nuclear test site the treaty lists several techniques that can be carried out by the inspection team, including aftershock monitoring and the conduction of active seismic surveys. While those techniques are already well established, a third group of methods labeled as "resonance seismometry" is less well defined and needs further elaboration. A prime structural target that is expected to be present as a remnant of an underground nuclear explosion is a cavity at the location and depth the bomb was fired. Originally "resonance seismometry" referred to resonant seismic emission of the cavity within the medium that could be stimulated by an incident seismic wave of the right frequency and observed as peaks in the spectrum of seismic stations in the vicinity of the cavity. However, it is not yet clear which are the conditions for which resonant emissions of the cavity could be observed. In order to define distance-, frequency- and amplitude ranges at which resonant emissions could be observed we study the interaction of seismic waves with underground cavities. As a generic model for possible resonances we use a spherical acoustic cavity in an elastic full-space. To solve the forward problem for the full elastic wave field around acoustic spherical inclusions, we implemented an analytical solution (Korneev, 1993). This yields the possibility of generating scattering cross-sections, amplitude spectrums and synthetic seismograms for plane incident waves. Here, we focus on the questions whether or not we can expect resonant responses in the wave field scattered from the cavity. We show

  10. Acoustic and Shear-Wave Velocities in Hydrate-Bearing Sediments Offshore Southwestern Taiwan: Tomography, Converted Waves Analysis and Reverse-Time Migration of OBS Records

    Directory of Open Access Journals (Sweden)

    Philippe Schnurle

    2006-01-01

    Full Text Available A 2.5-D combined seismic reflection and refraction survey has been conducted in the accretionary complex offshore of southwestern Taiwan where BSRs (Bottom Simulating Reflectors are highly concentrated and geochemical signals for the presence of gas hydrate are strong. In this study, we perform velocity analysis of the 6 4-component OBS (Ocean-Bottom Seismometer records along the southernmost transect of this seismic experiment. We utilize 3 independent methods in order to accurately determine the acoustic and shear-wave velocities of the sediments: 1-D Root Mean Square (RMS analysis of the P-P and P-S reflected events on individual datumed components, 2-D inversion of the P-P and P-S reflected and refracted events along the in-line transect, and 3-D acoustic inversion of the first arrivals. The principal sources of bias in the determination of the velocities are the 3-dimentional nature of the topography and the complexity of the underlying structures. The three methods result in consistent velocity profiles. Rapid lateral and vertical variations of the velocities are observed. We then investigate the large scale gas hydrate content through rock physic modeling: at the vertical of each OBS, shear-waves velocities are utilized to estimate the water-filled porosities, and the acoustic velocities predicted for a set of gas hydrate, quartz and clay contents are compared to the observed profiles.

  11. A local adaptive method for the numerical approximation in seismic wave modelling

    Directory of Open Access Journals (Sweden)

    Galuzzi Bruno G.

    2017-12-01

    Full Text Available We propose a new numerical approach for the solution of the 2D acoustic wave equation to model the predicted data in the field of active-source seismic inverse problems. This method consists in using an explicit finite difference technique with an adaptive order of approximation of the spatial derivatives that takes into account the local velocity at the grid nodes. Testing our method to simulate the recorded seismograms in a marine seismic acquisition, we found that the low computational time and the low approximation error of the proposed approach make it suitable in the context of seismic inversion problems.

  12. Response to long-period seismic waves recorded by broadband seismometer and pore pressure sensor at IODP Site C0002, Nankai Trough

    Science.gov (United States)

    Kitada, K.; Araki, E.; Kimura, T.; Saffer, D. M.

    2013-12-01

    Long term in situ monitoring of seismic activity, slow slip event, and pore fluid behavior around mega earthquake zone is important for understanding the processes of earthquake generation and strain accumulation. In order to characterize the response to long-period seismic waves, we compared waveforms and hydroseismograms recorded by broadband seismometer and pore pressure transducers, respectively, which were installed at IODP Site C0002 in the Nankai Trough Kumano Basin. The borehole monitoring system sensor array at Site C0002 is designed to collect multiparameter observations covering a dynamic range of events, including local microearthquakes, low frequency earthquakes, and large-scale earthquakes similar to the Tonankai earthquake. The suite of sensors for the downhole portion of the observatory includes a broadband seismometer (CMG3TBD, Guralp Systems Ltd.) with sampling rate of 100Hz at the depth of 907mbsf, and four pressure ports connected to pressure gauges located at 948mbsf, 917mbsf, 766mbsf, and at the seafloor. The sampling rate of the data logger was set to 1Hz after successful connection to the DONET seafloor cable network for real-time monitoring on 24 Jan 2013. Since then, we processed 12 earthquakes between a moment magnitude of 6.5 to 8.3. In addition to the comparison of long-period surface waves waveform and pressure data, we compared the records with theoretical strain seismograms. The latter were calculated by normal mode summation using the earth model PREM of Dziewonski and Anderson (1981). A Butterworth bandpass filter was applied to the records with cut-off frequencies of 0.003 and 0.1 Hz. Our initial results indicate that the hydroseismograms correspond well with the vertical rather than the horizontal (radial and transverse) components in seismic data. The observed hydroseismogram have a good correlation with the predicted volumetric strain seismogram, especially for the Okhotsk (2013/05/24 14:17UT, Mw8.3, 632km depth), the Chishima

  13. A seismic refraction experiment in 2000 on the Mizuho Plateau, East Antarctica (JARE-41 -Outline of observations-

    Directory of Open Access Journals (Sweden)

    Hiroki Miyamachi

    2001-03-01

    Full Text Available A seismic refraction experiment was successfully conducted along the S17-Z20 profile on the Mizuho route, in East Antarctica, in the austral summer season of 1999-2000 (JARE-41. One hundred sixty seismic stations were temporarily installed along the profile about 180km long and five large shots with dynamite of about 600kg were fired. In addition, two shots with charge sizes of 250kg and 25kg were arranged along the profile. The obtained seismic records show the clear onsets of the first arrivals in a distance range of less than 100km from each large shot. In particular, seismic waves traveling through the ice sheet and the dispersed surface waves are distinctly observed. Some later phases are also detected. The first travel time data obtained show that a P-wave velocity in the ice sheet is 3.6-3.8km/s and an apparent velocity in the rock basement just beneath the ice sheet is almost 6.2km/s. This report describes the basic outline of the experiment and the seismic data obtained.

  14. Early arrival waveform inversion of shallow seismic land data

    KAUST Repository

    Hanafy, Sherif M.

    2013-09-22

    We estimate the near-surface velocity distribution over Wadi Qudaid in Saudi Arabia by applying early arrival waveform inversion (EWI) to shallow seismic land data collected with source-receiver offsets no longer than 232 m. The main purpose is to characterize the shallow subsurface for its water storage and reuse potential. To enhance the accuracy of EWI, we extracted a natural source wavelet from the data, and also corrected for the attenuation effects with an estimated factor Q. Results suggest that, compared to traveltime tomography, EWI can generate a highly resolved velocity tomogram from shallow seismic data. The more accurate EWI tomogram can make an economically important difference in assessing the storage potential of this wadi; in this case we find an increase of 18% of storage potential in the EWI tomogram relative to the traveltime tomogram. This approach suggests that FWI might be a more accurate means for economically characterizing the water storage potential for wadis’ throughout the world.

  15. Modelling guided waves in the Alaskan-Aleutian subduction zone

    Science.gov (United States)

    Coulson, Sophie; Garth, Thomas; Reitbrock, Andreas

    2016-04-01

    Subduction zone guided wave arrivals from intermediate depth earthquakes (70-300 km depth) have a huge potential to tell us about the velocity structure of the subducting oceanic crust as it dehydrates at these depths. We see guided waves as the oceanic crust has a slower seismic velocity than the surrounding material, and so high frequency energy is retained and delayed in the crustal material. Lower frequency energy is not retained in this crustal waveguide and so travels at faster velocities of the surrounding material. This gives a unique observation at the surface with low frequency energy arriving before the higher frequencies. We constrain this guided wave dispersion by comparing the waveforms recorded in real subduction zones with simulated waveforms, produced using finite difference full waveform modelling techniques. This method has been used to show that hydrated minerals in the oceanic crust persist to much greater depths than accepted thermal petrological subduction zone models would suggest in Northern Japan (Garth & Rietbrock, 2014a), and South America (Garth & Rietbrock, in prep). These observations also suggest that the subducting oceanic mantle may be highly hydrated at intermediate depth by dipping normal faults (Garth & Rietbrock 2014b). We use this guided wave analysis technique to constrain the velocity structure of the down going ~45 Ma Pacific plate beneath Alaska. Dispersion analysis is primarily carried out on guided wave arrivals recorded on the Alaskan regional seismic network. Earthquake locations from global earthquake catalogues (ISC and PDE) and regional earthquake locations from the AEIC (Alaskan Earthquake Information Centre) catalogue are used to constrain the slab geometry and to identify potentially dispersive events. Dispersed arrivals are seen at stations close to the trench, with high frequency (>2 Hz) arrivals delayed by 2 - 4 seconds. This dispersion is analysed to constrain the velocity and width of the proposed waveguide

  16. Numerical simulation of seismic wave propagation from land-excited large volume air-gun source

    Science.gov (United States)

    Cao, W.; Zhang, W.

    2017-12-01

    The land-excited large volume air-gun source can be used to study regional underground structures and to detect temporal velocity changes. The air-gun source is characterized by rich low frequency energy (from bubble oscillation, 2-8Hz) and high repeatability. It can be excited in rivers, reservoirs or man-made pool. Numerical simulation of the seismic wave propagation from the air-gun source helps to understand the energy partitioning and characteristics of the waveform records at stations. However, the effective energy recorded at a distance station is from the process of bubble oscillation, which can not be approximated by a single point source. We propose a method to simulate the seismic wave propagation from the land-excited large volume air-gun source by finite difference method. The process can be divided into three parts: bubble oscillation and source coupling, solid-fluid coupling and the propagation in the solid medium. For the first part, the wavelet of the bubble oscillation can be simulated by bubble model. We use wave injection method combining the bubble wavelet with elastic wave equation to achieve the source coupling. Then, the solid-fluid boundary condition is implemented along the water bottom. And the last part is the seismic wave propagation in the solid medium, which can be readily implemented by the finite difference method. Our method can get accuracy waveform of land-excited large volume air-gun source. Based on the above forward modeling technology, we analysis the effect of the excited P wave and the energy of converted S wave due to different water shapes. We study two land-excited large volume air-gun fields, one is Binchuan in Yunnan, and the other is Hutubi in Xinjiang. The station in Binchuan, Yunnan is located in a large irregular reservoir, the waveform records have a clear S wave. Nevertheless, the station in Hutubi, Xinjiang is located in a small man-made pool, the waveform records have very weak S wave. Better understanding of

  17. Demonstration of improved seismic source inversion method of tele-seismic body wave

    Science.gov (United States)

    Yagi, Y.; Okuwaki, R.

    2017-12-01

    Seismic rupture inversion of tele-seismic body wave has been widely applied to studies of large earthquakes. In general, tele-seismic body wave contains information of overall rupture process of large earthquake, while the tele-seismic body wave is inappropriate for analyzing a detailed rupture process of M6 7 class earthquake. Recently, the quality and quantity of tele-seismic data and the inversion method has been greatly improved. Improved data and method enable us to study a detailed rupture process of M6 7 class earthquake even if we use only tele-seismic body wave. In this study, we demonstrate the ability of the improved data and method through analyses of the 2016 Rieti, Italy earthquake (Mw 6.2) and the 2016 Kumamoto, Japan earthquake (Mw 7.0) that have been well investigated by using the InSAR data set and the field observations. We assumed the rupture occurring on a single fault plane model inferred from the moment tensor solutions and the aftershock distribution. We constructed spatiotemporal discretized slip-rate functions with patches arranged as closely as possible. We performed inversions using several fault models and found that the spatiotemporal location of large slip-rate area was robust. In the 2016 Kumamoto, Japan earthquake, the slip-rate distribution shows that the rupture propagated to southwest during the first 5 s. At 5 s after the origin time, the main rupture started to propagate toward northeast. First episode and second episode correspond to rupture propagation along the Hinagu fault and the Futagawa fault, respectively. In the 2016 Rieti, Italy earthquake, the slip-rate distribution shows that the rupture propagated to up-dip direction during the first 2 s, and then rupture propagated toward northwest. From both analyses, we propose that the spatiotemporal slip-rate distribution estimated by improved inversion method of tele-seismic body wave has enough information to study a detailed rupture process of M6 7 class earthquake.

  18. Time-dependent seismic tomography

    Science.gov (United States)

    Julian, B.R.; Foulger, G.R.

    2010-01-01

    Of methods for measuring temporal changes in seismic-wave speeds in the Earth, seismic tomography is among those that offer the highest spatial resolution. 3-D tomographic methods are commonly applied in this context by inverting seismic wave arrival time data sets from different epochs independently and assuming that differences in the derived structures represent real temporal variations. This assumption is dangerous because the results of independent inversions would differ even if the structure in the Earth did not change, due to observational errors and differences in the seismic ray distributions. The latter effect may be especially severe when data sets include earthquake swarms or aftershock sequences, and may produce the appearance of correlation between structural changes and seismicity when the wave speeds are actually temporally invariant. A better approach, which makes it possible to assess what changes are truly required by the data, is to invert multiple data sets simultaneously, minimizing the difference between models for different epochs as well as the rms arrival-time residuals. This problem leads, in the case of two epochs, to a system of normal equations whose order is twice as great as for a single epoch. The direct solution of this system would require twice as much memory and four times as much computational effort as would independent inversions. We present an algorithm, tomo4d, that takes advantage of the structure and sparseness of the system to obtain the solution with essentially no more effort than independent inversions require. No claim to original US government works Journal compilation ?? 2010 RAS.

  19. Experiments on seismic metamaterials: molding surface waves.

    Science.gov (United States)

    Brûlé, S; Javelaud, E H; Enoch, S; Guenneau, S

    2014-04-04

    Materials engineered at the micro- and nanometer scales have had a tremendous and lasting impact in photonics and phononics. At much larger scales, natural soils civil engineered at decimeter to meter scales may interact with seismic waves when the global properties of the medium are modified, or alternatively thanks to a seismic metamaterial constituted of a mesh of vertical empty inclusions bored in the initial soil. Here, we show the experimental results of a seismic test carried out using seismic waves generated by a monochromatic vibrocompaction probe. Measurements of the particles' velocities show a modification of the seismic energy distribution in the presence of the metamaterial in agreement with numerical simulations using an approximate plate model. For complex natural materials such as soils, this large-scale experiment was needed to show the practical feasibility of seismic metamaterials and to stress their importance for applications in civil engineering. We anticipate this experiment to be a starting point for smart devices for anthropic and natural vibrations.

  20. Seismic characterization of the Chelyabinsk meteor's terminal explosion

    Science.gov (United States)

    González, Álvaro; Heimann, Sebastian; Wang, Rongjiang; Cesca, Simone; Dahm, Torsten

    2014-05-01

    between the peak meteor brightness and the powerful shock wave arrival. The calculated atmospheric travel time of the shock wave from the preferred airburst source to the factory site would be ~88 seconds. Thus, this video validates our most likely location for the terminal explosion. Finally, our best estimate of the equivalent moment magnitude of the airburst is 3.60. This value implies that the Chelyabinsk meteor is the second largest ever seismically recorded, only surpassed by the 1908 Tunguska event. *** Publication: *** Sebastian Heimann, Álvaro González, Rongjiang Wang, Simone Cesca & Torsten Dahm (2013): Seismic characterization of the Chelyabinsk meteor's terminal explosion. Seismological Research Letters, 84, 1021-1025.

  1. Weak localization of seismic waves

    International Nuclear Information System (INIS)

    Larose, E.; Margerin, L.; Tiggelen, B.A. van; Campillo, M.

    2004-01-01

    We report the observation of weak localization of seismic waves in a natural environment. It emerges as a doubling of the seismic energy around the source within a spot of the width of a wavelength, which is several tens of meters in our case. The characteristic time for its onset is the scattering mean-free time that quantifies the internal heterogeneity

  2. Nonlinear acoustic/seismic waves in earthquake processes

    International Nuclear Information System (INIS)

    Johnson, Paul A.

    2012-01-01

    Nonlinear dynamics induced by seismic sources and seismic waves are common in Earth. Observations range from seismic strong ground motion (the most damaging aspect of earthquakes), intense near-source effects, and distant nonlinear effects from the source that have important consequences. The distant effects include dynamic earthquake triggering—one of the most fascinating topics in seismology today—which may be elastically nonlinearly driven. Dynamic earthquake triggering is the phenomenon whereby seismic waves generated from one earthquake trigger slip events on a nearby or distant fault. Dynamic triggering may take place at distances thousands of kilometers from the triggering earthquake, and includes triggering of the entire spectrum of slip behaviors currently identified. These include triggered earthquakes and triggered slow, silent-slip during which little seismic energy is radiated. It appears that the elasticity of the fault gouge—the granular material located between the fault blocks—is key to the triggering phenomenon.

  3. High Resolution Vertical Seismic Profile from the Chicxulub IODP/ICDP Expedition 364 Borehole: Wave Speeds and Seismic Reflectivity.

    Science.gov (United States)

    Nixon, C.; Kofman, R.; Schmitt, D. R.; Lofi, J.; Gulick, S. P. S.; Christeson, G. L.; Saustrup, S., Sr.; Morgan, J. V.

    2017-12-01

    We acquired a closely-spaced vertical seismic profile (VSP) in the Chicxulub K-Pg Impact Crater drilling program borehole to calibrate the existing surface seismic profiles and provide complementary measurements of in situ seismic wave speeds. Downhole seismic records were obtained at spacings ranging from 1.25 m to 5 m along the borehole from 47.5 m to 1325 mwsf (meters wireline below sea floor) (Fig 1a) using a Sercel SlimwaveTM geophone chain (University of Alberta). The seismic source was a 30/30ci Sercel Mini GI airgun (University of Texas), fired a minimum of 5 times per station. Seismic data processing used a combination of a commercial processing package (Schlumberger's VISTA) and MatlabTM codes. The VSP displays detailed reflectivity (Fig. 1a) with the strongest reflection seen at 600 mwsf (280 ms one-way time), geologically corresponding to the sharp contact between the post-impact sediments and the target peak ring rock, thus confirming the pre-drilling interpretations of the seismic profiles. A two-way time trace extracted from the separated up-going wavefield matches the major reflection both in travel time and character. In the granitic rocks that form the peak ring of the Chicxulub impact crater, we observe P-wave velocities of 4000-4500 m/s which are significantly less than the expected values of granitoids ( 6000 m/s) (Fig. 1b). The VSP measured wave speeds are confirmed against downhole sonic logging and in laboratory velocimetry measurements; these data provide additional evidence that the crustal material displaced by the impact experienced a significant amount of damage. Samples and data provided by IODP. Samples can be requested at http://web.iodp.tamu.edu/sdrm after 19 October 2017. Expedition 364 was jointly funded by ECORD, ICDP, and IODP with contributions and logistical support from the Yucatan State Government and UNAM. The downhole seismic chain and wireline system is funded by grants to DRS from the Canada Foundation for Innovation and

  4. 3-component beamforming analysis of ambient seismic noise field for Love and Rayleigh wave source directions

    Science.gov (United States)

    Juretzek, Carina; Hadziioannou, Céline

    2014-05-01

    Our knowledge about common and different origins of Love and Rayleigh waves observed in the microseism band of the ambient seismic noise field is still limited, including the understanding of source locations and source mechanisms. Multi-component array methods are suitable to address this issue. In this work we use a 3-component beamforming algorithm to obtain source directions and polarization states of the ambient seismic noise field within the primary and secondary microseism bands recorded at the Gräfenberg array in southern Germany. The method allows to distinguish between different polarized waves present in the seismic noise field and estimates Love and Rayleigh wave source directions and their seasonal variations using one year of array data. We find mainly coinciding directions for the strongest acting sources of both wave types at the primary microseism and different source directions at the secondary microseism.

  5. Forward and adjoint spectral-element simulations of seismic wave propagation using hardware accelerators

    Science.gov (United States)

    Peter, Daniel; Videau, Brice; Pouget, Kevin; Komatitsch, Dimitri

    2015-04-01

    Improving the resolution of tomographic images is crucial to answer important questions on the nature of Earth's subsurface structure and internal processes. Seismic tomography is the most prominent approach where seismic signals from ground-motion records are used to infer physical properties of internal structures such as compressional- and shear-wave speeds, anisotropy and attenuation. Recent advances in regional- and global-scale seismic inversions move towards full-waveform inversions which require accurate simulations of seismic wave propagation in complex 3D media, providing access to the full 3D seismic wavefields. However, these numerical simulations are computationally very expensive and need high-performance computing (HPC) facilities for further improving the current state of knowledge. During recent years, many-core architectures such as graphics processing units (GPUs) have been added to available large HPC systems. Such GPU-accelerated computing together with advances in multi-core central processing units (CPUs) can greatly accelerate scientific applications. There are mainly two possible choices of language support for GPU cards, the CUDA programming environment and OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted mainly by AMD graphic cards. In order to employ such hardware accelerators for seismic wave propagation simulations, we incorporated a code generation tool BOAST into an existing spectral-element code package SPECFEM3D_GLOBE. This allows us to use meta-programming of computational kernels and generate optimized source code for both CUDA and OpenCL languages, running simulations on either CUDA or OpenCL hardware accelerators. We show here applications of forward and adjoint seismic wave propagation on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.

  6. Factors influencing seismic wave attenuation in the lithosphere in continental rift zones

    Directory of Open Access Journals (Sweden)

    А. А. Dobrynina

    2017-01-01

    Full Text Available Attenuation of seismic waves in the crust and the upper mantle has been studied in three global rift systems: the Baikal rift system (Eurasia, the North Tanzanian divergence zone (Africa and the Basin and Range Province (North America. Using the records of direct and coda waves of regional earthquakes, the single scattering theory [Aki, Chouet, 1975], the hybrid model from [Zeng, 1991] and the approach described in [Wennerberg, 1993], we estimated the seismic quality factor (QC, frequency parameter (n, attenuation coefficient (δ, and total attenuation (QT. In addition, we evaluated the contributions of two components into total attenuation: intrinsic attenuation (Qi, and scattering attenuation (Qsc. Values of QC are strongly dependent on the frequency within the range of 0.2–16 Hz, as well as on the length of the coda processing window. The observed increase of QC with larger lengths of the coda processing window can be interpreted as a decrease in attenuation with increasing depth. Having compared the depth variations in the attenuation coefficient (δ and the frequency (n with the velocity structures of the studied regions, we conclude that seismic wave attenuation changes at the velocity boundaries in the medium. Moreover, the comparison results show that the estimated variations in the attenuation parameters with increasing depth are considerably dependent on utilized velocity models of the medium. Lateral variations in attenuation of seismic waves correlate with the geological and geophysical characteristics of the regions, and attenuation is primarily dependent on the regional seismic activity and regional heat flow. The geological inhomogeneities of the medium and the age of crust consolidation are secondary factors. Our estimations of intrinsic attenuation (Qi and scattering attenuation (Qsc show that in all the three studied regions, intrinsic attenuation is the major contributor to total attenuation. Our study shows that the

  7. Anatomy of the high-frequency ambient seismic wave field at the TCDP borehole.

    OpenAIRE

    Hillers , Gregor; Campillo , Michel; Lin , Y.-Y.; Ma , K.F.; Roux , Philippe

    2012-01-01

    International audience; The Taiwan Chelungpu-fault Drilling Project (TCDP) installed a vertical seismic array between 950 and 1270 m depth in an active thrust fault environment. In this paper we analyze continuous noise records of the TCDP array between 1 and 16 Hz. We apply multiple array processing and noise correlation techniques to study the noise source process, properties of the propagation medium, and the ambient seismic wave field. Diurnal amplitude and slowness patterns suggest that ...

  8. Multichannel analysis of surface-waves and integration of downhole acoustic televiewer imaging, ultrasonic Vs and Vp, and vertical seismic profiling in an NEHRP-standard classification, South of Concordia, Kansas, USA

    Science.gov (United States)

    Raef, Abdelmoneam; Gad, Sabreen; Tucker-Kulesza, Stacey

    2015-10-01

    Seismic site characteristics, as pertaining to earthquake hazard reduction, are a function of the subsurface elastic moduli and the geologic structures. This study explores how multiscale (surface, downhole, and laboratory) datasets can be utilized to improve "constrained" average Vs30 (shear-wave velocity to a 30-meter depth). We integrate borehole, surface and laboratory measurements for a seismic site classification based on the standards of the National Earthquake Hazard Reduction Program (NEHRP). The seismic shear-wave velocity (Vs30) was derived from a geophysical inversion workflow that utilized multichannel analysis of surface-waves (MASW) and downhole acoustic televiewer imaging (DATI). P-wave and S-wave velocities, based on laboratory measurements of arrival times of ultrasonic-frequency signals, supported the workflow by enabling us to calculate Poisson's ratio, which was incorporated in building an initial model for the geophysical inversion of MASW. Extraction of core samples from two boreholes provided lithology and thickness calibration of the amplitudes of the acoustic televiewer imaging for each layer. The MASW inversion, for calculating Vs sections, was constrained with both ultrasonic laboratory measurements (from first arrivals of Vs and Vp waveforms at simulated in situ overburden stress conditions) and the downhole acoustic televiewer (DATV) amplitude logs. The Vs30 calculations enabled categorizing the studied site as NEHRP-class "C" - very dense soil and soft rock. Unlike shallow fractured carbonates in the studied area, S-wave and P-wave velocities at ultrasonic frequency for the deeper intact shale core-samples from two boreholes were in better agreement with the corresponding velocities from both a zero-offset vertical seismic profiling (VSP) and inversion of Rayleigh-wave velocity dispersion curves.

  9. 75 FR 13293 - Agency Information Collection Activities: Arrival and Departure Record

    Science.gov (United States)

    2010-03-19

    ..., Carriers, Government Agencies, and the Travel and Tourism Industry I-94 (Arrival and Departure Record... DEPARTMENT OF HOMELAND SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Arrival and Departure Record AGENCY: U.S. Customs and Border Protection, Department of Homeland...

  10. The Global Detection Capability of the IMS Seismic Network in 2013 Inferred from Ambient Seismic Noise Measurements

    Science.gov (United States)

    Gaebler, P. J.; Ceranna, L.

    2016-12-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection thresholdcan be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  11. Ray-tracing traveltime tomography versus wave-equation traveltime inversion for near-surface seismic land data

    KAUST Repository

    Fu, Lei

    2017-05-11

    Full-waveform inversion of land seismic data tends to get stuck in a local minimum associated with the waveform misfit function. This problem can be partly mitigated by using an initial velocity model that is close to the true velocity model. This initial starting model can be obtained by inverting traveltimes with ray-tracing traveltime tomography (RT) or wave-equation traveltime (WT) inversion. We have found that WT can provide a more accurate tomogram than RT by inverting the first-arrival traveltimes, and empirical tests suggest that RT is more sensitive to the additive noise in the input data than WT. We present two examples of applying WT and RT to land seismic data acquired in western Saudi Arabia. One of the seismic experiments investigated the water-table depth, and the other one attempted to detect the location of a buried fault. The seismic land data were inverted by WT and RT to generate the P-velocity tomograms, from which we can clearly identify the water table depth along the seismic survey line in the first example and the fault location in the second example.

  12. Borehole Volumetric Strainmeter Calibration From a Nearby Seismic Broadband Array at Etna Volcano

    Science.gov (United States)

    Currenti, G.; Zuccarello, L.; Bonaccorso, A.; Sicali, A.

    2017-10-01

    Strainmeter and broadband seismic signals have been analyzed jointly with the aim of calibrating a borehole strainmeter at Etna volcano by using a seismo-geodetic technique. Our results reveal a good coherence between the dynamic strains estimated from seismometer data and strains recorded by a dilatometer in a low-frequency range [0.03-0.06 Hz] at the arrival of teleseismic waves. This significant coherence enabled estimating the calibration coefficient and making a comparison with calibration results derived from other methods. In particular, we verified that the proposed approach provides a calibration coefficient that matches the results obtained from the comparison of the recorded strain both with theoretical strain tides and with normal-mode synthetic straingrams. The approach presented here has the advantage of exploiting recorded seismic data, avoiding the use of computed strain from theoretical models.

  13. Seismic Wave Propagation in Layered Viscoelastic Media

    Science.gov (United States)

    Borcherdt, R. D.

    2008-12-01

    Advances in the general theory of wave propagation in layered viscoelastic media reveal new insights regarding seismic waves in the Earth. For example, the theory predicts: 1) P and S waves are predominantly inhomogeneous in a layered anelastic Earth with seismic travel times, particle-motion orbits, energy speeds, Q, and amplitude characteristics that vary with angle of incidence and hence, travel path through the layers, 2) two types of shear waves exist, one with linear and the other with elliptical particle motions each with different absorption coefficients, and 3) surface waves with amplitude and particle motion characteristics not predicted by elasticity, such as Rayleigh-Type waves with tilted elliptical particle motion orbits and Love-Type waves with superimposed sinusoidal amplitude dependencies that decay exponentially with depth. The general theory provides closed-form analytic solutions for body waves, reflection-refraction problems, response of multiple layers, and surface wave problems valid for any material with a viscoelastic response, including the infinite number of models, derivable from various configurations of springs and dashpots, such as elastic, Voight, Maxwell, and Standard Linear. The theory provides solutions independent of the amount of intrinsic absorption and explicit analytic expressions for physical characteristics of body waves in low-loss media such as the deep Earth. The results explain laboratory and seismic observations, such as travel-time and wide-angle reflection amplitude anomalies, not explained by elasticity or one dimensional Q models. They have important implications for some forward modeling and inverse problems. Theoretical advances and corresponding numerical results as recently compiled (Borcherdt, 2008, Viscoelastic Waves in Layered Media, Cambridge University Press) will be reviewed.

  14. Localization of small arms fire using acoustic measurements of muzzle blast and/or ballistic shock wave arrivals.

    Science.gov (United States)

    Lo, Kam W; Ferguson, Brian G

    2012-11-01

    The accurate localization of small arms fire using fixed acoustic sensors is considered. First, the conventional wavefront-curvature passive ranging method, which requires only differential time-of-arrival (DTOA) measurements of the muzzle blast wave to estimate the source position, is modified to account for sensor positions that are not strictly collinear (bowed array). Second, an existing single-sensor-node ballistic model-based localization method, which requires both DTOA and differential angle-of-arrival (DAOA) measurements of the muzzle blast wave and ballistic shock wave, is improved by replacing the basic external ballistics model (which describes the bullet's deceleration along its trajectory) with a more rigorous model and replacing the look-up table ranging procedure with a nonlinear (or polynomial) equation-based ranging procedure. Third, a new multiple-sensor-node ballistic model-based localization method, which requires only DTOA measurements of the ballistic shock wave to localize the point of fire, is formulated. The first method is applicable to situations when only the muzzle blast wave is received, whereas the third method applies when only the ballistic shock wave is received. The effectiveness of each of these methods is verified using an extensive set of real data recorded during a 7 day field experiment.

  15. Seismic monitoring leveraging existing telecom infrastructure at the SDASA: Active, passive, and ambient-noise analysis

    KAUST Repository

    Martin, Eileen R.

    2017-11-28

    We analyze active and passive seismic data recorded by the Stanford distributed acoustic sensing array (SDASA) located in conduits under the Stanford University campus. For the active data we used low-energy sources (betsy gun and sledge hammer) and recorded data using both the DAS array and 98 three-component nodes deployed along a 2D line. The joint analysis of shot profiles extracted from the two data sets shows that some surface waves and refracted events are consistently recorded by the DAS array. In areas where geophone coupling was suboptimal because of surface obstructions, DAS recordings are more coherent. In contrast, surface waves are more reliably recorded by the geophones than the DAS array. Because of the noisy environment and weak sources, neither data set shows clear reflections. We demonstrate the repeatability of DAS recordings of local earthquakes by comparing two weak events (magnitude 0.95 and 1.34) with epicenters 100 m apart that occurred only one minute from each other. Analyzing another local, and slightly stronger, earthquake (magnitude 2.0) we show how the kinematics of both the P-arrival and S-arrival can be measured from the DAS data. Interferometric analysis of passive data shows that reliable virtual-source responses can be extracted from the DAS data. We observe Rayleigh waves when correlating aligned receivers, and Love waves when correlating receivers belonging to segments of the array parallel to each other. Dispersion analysis of the virtual sources shows the expected decrease in surface-wave velocity with increasing frequency.

  16. Seismic monitoring leveraging existing telecom infrastructure at the SDASA: Active, passive, and ambient-noise analysis

    KAUST Repository

    Martin, Eileen R.; Castillo, Chris M.; Cole, Steve; Sawasdee, Paphop Stock; Yuan, Siyuan; Clapp, Robert; Karrenbach, Martin; Biondi, Biondo L.

    2017-01-01

    We analyze active and passive seismic data recorded by the Stanford distributed acoustic sensing array (SDASA) located in conduits under the Stanford University campus. For the active data we used low-energy sources (betsy gun and sledge hammer) and recorded data using both the DAS array and 98 three-component nodes deployed along a 2D line. The joint analysis of shot profiles extracted from the two data sets shows that some surface waves and refracted events are consistently recorded by the DAS array. In areas where geophone coupling was suboptimal because of surface obstructions, DAS recordings are more coherent. In contrast, surface waves are more reliably recorded by the geophones than the DAS array. Because of the noisy environment and weak sources, neither data set shows clear reflections. We demonstrate the repeatability of DAS recordings of local earthquakes by comparing two weak events (magnitude 0.95 and 1.34) with epicenters 100 m apart that occurred only one minute from each other. Analyzing another local, and slightly stronger, earthquake (magnitude 2.0) we show how the kinematics of both the P-arrival and S-arrival can be measured from the DAS data. Interferometric analysis of passive data shows that reliable virtual-source responses can be extracted from the DAS data. We observe Rayleigh waves when correlating aligned receivers, and Love waves when correlating receivers belonging to segments of the array parallel to each other. Dispersion analysis of the virtual sources shows the expected decrease in surface-wave velocity with increasing frequency.

  17. The Investigation of a Sinkhole Area in Germany by Near-Surface Active Seismic Tomography

    Science.gov (United States)

    Tschache, S.; Becker, D.; Wadas, S. H.; Polom, U.; Krawczyk, C. M.

    2017-12-01

    In November 2010, a 30 m wide and 17 m deep sinkhole occurred in a residential area of Schmalkalden, Germany, which fortunately did not harm humans, but led to damage of buildings and property. Subsequent geoscientific investigations showed that the collapse was naturally caused by the subrosion of sulfates in a depth of about 80 m. In 2012, an early warning system was established including 3C borehole geophones deployed in 50 m depth around the backfilled sinkhole. During the acquisition of two shallow 2D shear wave seismic profiles, the signals generated by a micro-vibrator at the surface were additionally recorded by the four borehole geophones of the early warning system and a VSP probe in a fifth borehole. The travel time analysis of the direct arrivals enhanced the understanding of wave propagation in the area. Seismic velocity anomalies were detected and related to structural seismic images of the 2D profiles. Due to the promising first results, the experiment was further extended by distributing vibration points throughout the whole area around the sinkhole. This time, micro-vibrators for P- and S-wave generation were used. The signals were recorded by the borehole geophones and temporary installed seismometers at surface positions close to the boreholes. The travel times and signal attenuations are evaluated to detect potential instable zones. Furthermore, array analyses are performed. The first results reveal features in the active tomography datasets consistent with structures observed in the 2D seismic images. The advantages of the presented method are the low effort and good repeatability due to the permanently installed borehole geophones. It has the potential to determine P-wave and S-wave velocities in 3D. It supports the interpretation of established investigation methods as 2D surface seismics and VSP. In our further research we propose to evaluate the suitability of the method for the time lapse monitoring of changes in the seismic wave

  18. Plateau subduction, intraslab seismicity, and the Denali (Alaska) volcanic gap

    Science.gov (United States)

    Chuang, Lindsay Yuling; Bostock, Michael; Wech, Aaron; Plourde, Alexandre

    2018-01-01

    Tectonic tremors in Alaska (USA) are associated with subduction of the Yakutat plateau, but their origins are unclear due to lack of depth constraints. We have processed tremor recordings to extract low-frequency earthquakes (LFEs), and generated a set of six LFE waveform templates via iterative network matched filtering and stacking. The timing of impulsive P (compressional) wave and S (shear) wave arrivals on template waveforms places LFEs at 40–58 km depth, near the upper envelope of intraslab seismicity and immediately updip of increased levels of intraslab seismicity. S waves at near-epicentral distances display polarities consistent with shear slip on the plate boundary. We compare characteristics of LFEs, seismicity, and tectonic structures in central Alaska with those in warm subduction zones, and propose a new model for the region’s unusual intraslab seismicity and the enigmatic Denali volcanic gap (i.e., an area of no volcanism where expected). We argue that fluids in the Yakutat plate are confined to its upper crust, and that shallow subduction leads to hydromechanical conditions at the slab interface in central Alaska akin to those in warm subduction zones where similar LFEs and tremor occur. These conditions lead to fluid expulsion at shallow depths, explaining strike-parallel alignment of tremor occurrence with the Denali volcanic gap. Moreover, the lack of double seismic zone and restriction of deep intraslab seismicity to a persistent low-velocity zone are simple consequences of anhydrous conditions prevailing in the lower crust and upper mantle of the Yakutat plate.

  19. Guided Seismic Waves: Possible Diagnostics for Hot Plumes in the Mantle

    Science.gov (United States)

    Evans, J. R.; Julian, B. R.; Foulger, G. R.

    2005-12-01

    Seismic waves potentially provide by far the highest resolution view of the three-dimensional structure of the mantle, and the hope of detecting wave-speed anomalies caused by hot or compositionally buoyant mantle plumes has been a major incentive to the development of tomographic seismic techniques. Seismic tomography is limited, however, by the uneven geographical distribution of earthquakes and seismometers, which can produce artificial tomographic wave-speed anomalies that are difficult to distinguish from real structures in the mantle. An alternate approach may be possible, because hot plumes and possibly some compositional upwellings would have low seismic-wave speeds and would act as efficient waveguides over great depth ranges in the mantle. Plume-guided waves would be little affected by bends or other geometric complexities in the waveguides (analogously to French horns and fiber-optic cables), and their dispersion would make them distinctive on seismograms and would provide information on the size and structure of the waveguide. The main unanswered question is whether guided waves in plumes could be excited sufficiently to be observable. Earthquakes do not occur in the deep mantle, but at least two other possible sources of excitation can be imagined: (1) shallow earthquakes at or near plume-fed hotspots; and (2) coupling of plume-guided waves to seismic body waves near the bottom of the mantle. In the first case, downward-traveling guided waves transformed to seismic body waves at the bottom of the waveguide would have to be detected at teleseismic distances. In the second case, upward-traveling guided waves generated by teleseismic body waves would be detected on seismometers at hotspots. Qualitative reasoning based on considerations of reciprocity suggests that the signals in these two situations should be similar in size and appearance. The focusing of seismic core phases at caustics would amplify plume waves excited by either mechanism (1) or (2) at

  20. Continuous recording of seismic signals in Alpine permafrost

    Science.gov (United States)

    Hausmann, H.; Krainer, K.; Staudinger, M.; Brückl, E.

    2009-04-01

    Over the past years various geophysical methods were applied to study the internal structure and the temporal variation of permafrost whereof seismic is of importance. For most seismic investigations in Alpine permafrost 24-channel equipment in combination with long data and trigger cables is used. Due to the harsh environment source and geophone layouts are often limited to 2D profiles. With prospect for future 3D-layouts we introduce an alternative of seismic equipment that can be used for several applications in Alpine permafrost. This study is focussed on controlled and natural source seismic experiments in Alpine permafrost using continuous data recording. With recent data from an ongoing project ("Permafrost in Austria") we will highlight the potential of the used seismic equipment for three applications: (a) seismic permafrost mapping of unconsolidated sediments, (b) seismic tomography in rock mass, and (c) passive seismic monitoring of rock falls. Single recording units (REFTEK 130, 6 channels) are used to continuously record the waveforms of both the seismic signals and a trigger signal. The combination of a small number of recording units with different types of geophones or a trigger allow numerous applications in Alpine permafrost with regard to a high efficiency and flexible seismic layouts (2D, 3D, 4D). The efficiency of the light and robust seismic equipment is achieved by the simple acquisition and the flexible and fast deployment of the (omni-directional) geophones. Further advantages are short (data and trigger) cables and the prevention of trigger errors. The processing of the data is aided by 'Seismon' which is an open source software project based on Matlab® and MySQL (see SM1.0). For active-source experiments automatic stacking of the seismic signals is implemented. For passive data a program for automatic detection of events (e.g. rock falls) is available which allows event localization. In summer 2008 the seismic equipment was used for the

  1. Traveling Wave Resonance and Simplified Analysis Method for Long-Span Symmetrical Cable-Stayed Bridges under Seismic Traveling Wave Excitation

    Directory of Open Access Journals (Sweden)

    Zhong-ye Tian

    2014-01-01

    Full Text Available The seismic responses of a long-span cable-stayed bridge under uniform excitation and traveling wave excitation in the longitudinal direction are, respectively, computed. The numerical results show that the bridge’s peak seismic responses vary significantly as the apparent wave velocity decreases. Therefore, the traveling wave effect must be considered in the seismic design of long-span bridges. The bridge’s peak seismic responses do not vary monotonously with the apparent wave velocity due to the traveling wave resonance. A new traveling wave excitation method that can simplify the multisupport excitation process into a two-support excitation process is developed.

  2. Sub-basalt Imaging of Hydrocarbon-Bearing Mesozoic Sediments Using Ray-Trace Inversion of First-Arrival Seismic Data and Elastic Finite-Difference Full-Wave Modeling Along Sinor-Valod Profile of Deccan Syneclise, India

    Science.gov (United States)

    Talukdar, Karabi; Behera, Laxmidhar

    2018-03-01

    Imaging below the basalt for hydrocarbon exploration is a global problem because of poor penetration and significant loss of seismic energy due to scattering, attenuation, absorption and mode-conversion when the seismic waves encounter a highly heterogeneous and rugose basalt layer. The conventional (short offset) seismic data acquisition, processing and modeling techniques adopted by the oil industry generally fails to image hydrocarbon-bearing sub-trappean Mesozoic sediments hidden below the basalt and is considered as a serious problem for hydrocarbon exploration in the world. To overcome this difficulty of sub-basalt imaging, we have generated dense synthetic seismic data with the help of elastic finite-difference full-wave modeling using staggered-grid scheme for the model derived from ray-trace inversion using sparse wide-angle seismic data acquired along Sinor-Valod profile in the Deccan Volcanic Province of India. The full-wave synthetic seismic data generated have been processed and imaged using conventional seismic data processing technique with Kirchhoff pre-stack time and depth migrations. The seismic image obtained correlates with all the structural features of the model obtained through ray-trace inversion of wide-angle seismic data, validating the effectiveness of robust elastic finite-difference full-wave modeling approach for imaging below thick basalts. Using the full-wave modeling also allows us to decipher small-scale heterogeneities imposed in the model as a measure of the rugose basalt interfaces, which could not be dealt with ray-trace inversion. Furthermore, we were able to accurately image thin low-velocity hydrocarbon-bearing Mesozoic sediments sandwiched between and hidden below two thick sequences of high-velocity basalt layers lying above the basement.

  3. Investigation on the real-time prediction of ground motions using seismic records observed in deep boreholes

    Science.gov (United States)

    Miyakoshi, H.; Tsuno, S.

    2013-12-01

    The present method of the EEW system installed in the railway field of Japan predicts seismic ground motions based on the estimated earthquake information about epicentral distances and magnitudes using initial P-waves observed on the surface. In the case of local earthquakes beneath the Tokyo Metropolitan Area, however, a method to directly predict seismic ground motions using P-waves observed in deep boreholes could issue EEWs more simply and surely. Besides, a method to predict seismic ground motions, using S-waves observed in deep boreholes and S-wave velocity structures beneath seismic stations, could show planar distributions of ground motions for train operation control areas in the aftermath of earthquakes. This information is available to decide areas in which the emergency inspection of railway structures should be performed. To develop those two methods, we investigated relationships between peak amplitudes on the surface and those in deep boreholes, using seismic records of KiK-net stations in the Kanto Basin. In this study, we used earthquake accelerograms observed in boreholes whose depths are deeper than the top face of Pre-Neogene basement and those on the surface at 12 seismic stations of KiK-net. We selected 243 local earthquakes whose epicenters are located around the Kanto Region. Those JMA magnitudes are in the range from 4.5 to 7.0. We picked the on-set of P-waves and S-waves using a vertical component and two horizontal components, respectively. Peak amplitudes of P-waves and S-waves were obtained using vertical components and vector sums of two horizontal components, respectively. We estimated parameters which represent site amplification factors beneath seismic stations, using peak amplitudes of S-waves observed in the deep borehole and those on the surface, to minimize the residuals between calculations by the theoretical equation and observations. Correlation coefficients between calculations and observations are high values in the range

  4. A Hammer-Impact, Aluminum, Shear-Wave Seismic Source

    Science.gov (United States)

    Haines, Seth

    2007-01-01

    Near-surface seismic surveys often employ hammer impacts to create seismic energy. Shear-wave surveys using horizontally polarized waves require horizontal hammer impacts against a rigid object (the source) that is coupled to the ground surface. I have designed, built, and tested a source made out of aluminum and equipped with spikes to improve coupling. The source is effective in a variety of settings, and it is relatively simple and inexpensive to build.

  5. Seismic wave triggering of nonvolcanic tremor, episodic tremor and slip, and earthquakes on Vancouver Island

    Science.gov (United States)

    Rubinstein, Justin L.; Gomberg, Joan; Vidale, John E.; Wech, Aaron G.; Kao, Honn; Creager, Kenneth C.; Rogers, Garry

    2009-02-01

    We explore the physical conditions that enable triggering of nonvolcanic tremor and earthquakes by considering local seismic activity on Vancouver Island, British Columbia during and immediately after the arrival of large-amplitude seismic waves from 30 teleseismic and 17 regional or local earthquakes. We identify tremor triggered by four of the teleseismic earthquakes. The close temporal and spatial proximity of triggered tremor to ambient tremor and aseismic slip indicates that when a fault is close to or undergoing failure, it is particularly susceptible to triggering of further events. The amplitude of the triggering waves also influences the likelihood of triggering both tremor and earthquakes such that large amplitude waves triggered tremor in the absence of detectable aseismic slip or ambient tremor. Tremor and energy radiated from regional/local earthquakes share the same frequency passband so that tremor cannot be identified during these smaller, more frequent events. We confidently identify triggered local earthquakes following only one teleseism, that with the largest amplitude, and four regional or local events that generated vigorous aftershock sequences in their immediate vicinity. Earthquakes tend to be triggered in regions different from tremor and with high ambient seismicity rates. We also note an interesting possible correlation between large teleseismic events and episodic tremor and slip (ETS) episodes, whereby ETS events that are "late" and have built up more stress than normal are susceptible to triggering by the slight nudge of the shaking from a large, distant event, while ETS events that are "early" or "on time" are not.

  6. Shear wave profiles from surface wave inversion: the impact of uncertainty on seismic site response analysis

    International Nuclear Information System (INIS)

    Boaga, J; Vignoli, G; Cassiani, G

    2011-01-01

    Inversion is a critical step in all geophysical techniques, and is generally fraught with ill-posedness. In the case of seismic surface wave studies, the inverse problem can lead to different equivalent subsoil models and consequently to different local seismic response analyses. This can have a large impact on an earthquake engineering design. In this paper, we discuss the consequences of non-uniqueness of surface wave inversion on seismic responses, with both numerical and experimental data. Our goal is to evaluate the consequences on common seismic response analysis in the case of different impedance contrast conditions. We verify the implications of inversion uncertainty, and consequently of data information content, on realistic local site responses. A stochastic process is used to generate a set of 1D shear wave velocity profiles from several specific subsurface models. All these profiles are characterized as being equivalent, i.e. their responses, in terms of a dispersion curve, are compatible with the uncertainty in the same surface wave data. The generated 1D shear velocity models are then subjected to a conventional one-dimensional seismic ground response analysis using a realistic input motion. While recent analyses claim that the consequences of surface wave inversion uncertainties are very limited, our test points out that a relationship exists between inversion confidence and seismic responses in different subsoils. In the case of regular and relatively smooth increase of shear wave velocities with depth, as is usual in sedimentary plains, our results show that the choice of a specific model among equivalent solutions strongly influences the seismic response. On the other hand, when the shallow subsoil is characterized by a strong impedance contrast (thus revealing a characteristic soil resonance period), as is common in the presence of a shallow bedrock, equivalent solutions provide practically the same seismic amplification, especially in the

  7. Analysis of induced seismicity at The Geysers geothermal field, California

    Science.gov (United States)

    Emolo, A.; Maercklin, N.; Matrullo, E.; Orefice, A.; Amoroso, O.; Convertito, V.; Sharma, N.; Zollo, A.

    2012-12-01

    Fluid injection, steam extraction, and reservoir stimulation in geothermal systems lead to induced seismicity. While in rare cases induced events may be large enough to pose a hazard, on the other hand the microseismicity provides information on the extent and the space-time varying properties of the reservoir. Therefore, microseismic monitoring is important, both for mitigation of unwanted effects of industrial operations and for continuous assessment of reservoir conditions. Here we analyze induced seismicity at The Geysers geothermal field in California, a vapor-dominated field with the top of the main steam reservoir some 1-3 km below the surface. Commercial exploitation began in the 1960s, and the seismicity increased with increasing field development. We focus our analyses on induced seismicity recorded between August 2007 and October 2011. Our calibrated waveform database contains some 15000 events with magnitudes between 1.0 and 4.5 and recorded by the LBNL Geysers/Calpine surface seismic network. We associated all data with events from the NCEDC earthquake catalog and re-picked first arrival times. Using selected events with at least 20 high-quality P-wave picks, we determined a minimum 1-D velocity model using VELEST. A well-constrained P-velocity model shows a sharp velocity increase at 1-2 km depth (from 3 to 5 km/s) and then a gradient-like trend down to about 5 km depth, where velocities reach values of 6-7 km/s. The station corrections show coherent, relatively high, positive travel time delays in the NW zone, thus indicating a strong lateral variation of the P-wave velocities. We determined an average Vp-to-Vs ratio of 1.67, which is consistent with estimates from other authors for the same time period. The events have been relocated in the new model using a non-linear probabilistic methods. The seismicity appears spatially diffused in a 15x10 km2 area elongated in NW-SE direction, and earthquake depths range between 0 and 6 km. As in previous

  8. Polarized seismic and solitary waves run-up at the sea bed

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, L. C.C.; Zainal, A. A.; Faisal, S. Y. [Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia); Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia)

    2012-09-26

    The polarization effects in hydrodynamics are studied. Hydrodynamic equation for the nonlinear wave is used along with the polarized solitary waves and seismic waves act as initial waves. The model is then solved by Fourier spectral and Runge-Kutta 4 methods, and the surface plot is drawn. The output demonstrates the inundation behaviors. Consequently, the polarized seismic waves along with the polarized solitary waves tend to generate dissimilar inundation which is more disastrous.

  9. Characterizing the Seismic Ocean Bottom Environment of the Bransfield Strait

    Science.gov (United States)

    Washington, B.; Lekic, V.; Schmerr, N. C.

    2017-12-01

    Ocean bottom seismometers record ground motions that result from earthquakes, anthropogenic sound sources (e.g. propellers, air gun sources, etc.), ocean waves and currents, biological activity, as well as surface processes on the sea and coastal land. Over a two-week span in April, 2001 - the Austral late fall -ten stations arranged in eleven lines were deployed beneath the Bransfield Strait along the Antarctica Peninsula to passively record data before and after an active source seismic survey. The goal of this study is to understand ocean bottom seismicity, identify centers of seismic activity and characterize possible glaciological mechanisms of icequakes and tremors. The instruments were sampled at 200Hz, allowing signals of ice-quakes, small earthquakes, and other high frequency sources to be detected and located. By visualizing the data as spectrograms, we identify and document ground vibrations excited by local earthquakes, whale songs, and those potentially due to surface processes, such as the cracking and movement of icebergs or ice shelves, including possible harmonic tremors from the ice or the volcanic arc nearby. Using relative timing of P-wave arrivals, we locate the hypocenters of nearby earthquakes and icequakes, and present frequency-dependent polarization analysis of their waveforms. Marine mammal sounds were detected in a substantial part of the overall acoustic environment-late March and Early April are the best months to hear whales such as humpback, sperm and orca communicating amongst each other because they are drawn to the cold, nutrient-rich Antarctic waters. We detect whales communicating for several hours in the dataset. Other extensively recorded sources resemble harmonic tremors, and we also identify signals possibly associated with waves set up on the notoriously stormy seas.

  10. WAVE EQUATION DATUMING TO CORRECT TOPOGRAPHY EFFECT ON FOOTHILL SEISMIC DATA

    Directory of Open Access Journals (Sweden)

    Montes Vides Luis Alfredo

    2005-08-01

    Full Text Available The current seismic processing applies Static Corrections to overcome the effects associated to rough topography, based in the assumption that velocity in near surface is lower than in the substratum, which force going up rays travel near to vertical. However, when the velocity contrast between these layers is not large enough, the trajectory of the up going rays deviate from vertical raveling the reflectors erroneously. A better alternative to correct this is to continue the wave field to a datum, because it does not assume vertical ray trajectory and solves the acoustic wave equation to extrapolate sources and receivers. The Kirchhoff approach was tested in synthetic shots continuing their wave field to a datum and finally it was applied instead of Static Corrections in real data acquired in foothill zones. First shot and receiver gathers were downward continued to the base of weathering layer and later upward continued to a final flat datum. Comparing the obtained results we observed that continuation approach provides a noticeable enhancement of reflectors in seismic records, displaying a better continuity of the reflectors and an increment in frequency content.

  11. E3D, 3-D Elastic Seismic Wave Propagation Code

    International Nuclear Information System (INIS)

    Larsen, S.; Harris, D.; Schultz, C.; Maddix, D.; Bakowsky, T.; Bent, L.

    2004-01-01

    1 - Description of program or function: E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output. 2 - Methods: The software simulates wave propagation by solving the elasto-dynamic formulation of the full wave equation on a staggered grid. The solution scheme is 4-order accurate in space, 2-order accurate in time

  12. Shallow reflection seismic soundings in bedrock at Lavia

    International Nuclear Information System (INIS)

    Okko, Olli

    1988-03-01

    The well-studied granitic block at Lavia was one of the test sites of a shallow seismic development project. A portable digital seismograph and high frequency geophones were rented fro the field period. A sledge hamme and a drop weight were tested as wave sources. The sounding was carried out on outcropped area in order to record high frequency reflections from known subhorizontal fracture zones as shallow as 30 m. Large amplitude surface waves hide most of the shallow reflections, recognizable only on few traces in the data. The data processing carried out did not reveal the geometry of these reflectors. Events arriving after the ground roll were analyzed in 2-folded CDP-sections. The continuous reflective horizons in them correspond to lithological changes and fracture zones located deeper than 200 m in the bedrock

  13. The use of multiwavelets for uncertainty estimation in seismic surface wave dispersion.

    Energy Technology Data Exchange (ETDEWEB)

    Poppeliers, Christian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    This report describes a new single-station analysis method to estimate the dispersion and uncer- tainty of seismic surface waves using the multiwavelet transform. Typically, when estimating the dispersion of a surface wave using only a single seismic station, the seismogram is decomposed into a series of narrow-band realizations using a bank of narrow-band filters. By then enveloping and normalizing the filtered seismograms and identifying the maximum power as a function of frequency, the group velocity can be estimated if the source-receiver distance is known. However, using the filter bank method, there is no robust way to estimate uncertainty. In this report, I in- troduce a new method of estimating the group velocity that includes an estimate of uncertainty. The method is similar to the conventional filter bank method, but uses a class of functions, called Slepian wavelets, to compute a series of wavelet transforms of the data. Each wavelet transform is mathematically similar to a filter bank, however, the time-frequency tradeoff is optimized. By taking multiple wavelet transforms, I form a population of dispersion estimates from which stan- dard statistical methods can be used to estimate uncertainty. I demonstrate the utility of this new method by applying it to synthetic data as well as ambient-noise surface-wave cross-correlelograms recorded by the University of Nevada Seismic Network.

  14. A Study on distinguishing seismic waves caused by natural earthquakes and underground nuclear explosion within North Korean Context

    Science.gov (United States)

    Premlet, B.; Sabu, S.; Kamarudheen, R.; Subair, S.

    2017-12-01

    Since the first nuclear test on 15 July 1945 , there have been over 2,051 other weapon tests around the world . The waveforms of a natural earthquake which generates strong S waves and an underground explosion which is dominated by P waves were distinguished from the analysis of data corresponding to a 2005 M5.0 Earthquake and a 2016 North Korean nuclear test , both at similar distances from seismometer . Further differences between the seismograms were evaluated and successfully distinguished between the origins of the elastic waves through the data using Moment Tensor Solution using stations BJT , HIA and INCN . North Korea has developed a nuclear fuel cycle capability and has both plutonium and enriched uranium programs at Pyongyang . Seismic recordings of vertical ground motion at Global Seismographic Network station IC.MDJ of the 4 seismic events at Punggye-ri , North Korea , which occurred on the 9th of October 2006 , 25th of May 2009, 12th of February 2013 and on the 6th of January and 9th of September , 2016 were examined and the P waves of these seismic waves , which show very similar wave form , were inspected and compared to the seismic data of the latest underground nuclear test on the 3rd of September 2017 at 03:30 UTC at the same site which is many times more powerful than the previous tests . The country , which is the only nation to have tested nuclear weapons in this millennium , has successfully prevented the release of radioactive isotopes and hampered data collection but further studies were done using acoustic data which was analysed from sonograms of the 4 North Korean tests at station MDJ. The latest explosion data from 3rd September was also compared to 42 presumed underground explosions which occurred in China , India , the U.S.S.R , Iran , Turkey and recorded at Arkansas Seismic Network.

  15. Assessment of dynamic material properties of intact rocks using seismic wave attenuation: an experimental study.

    Science.gov (United States)

    Wanniarachchi, W A M; Ranjith, P G; Perera, M S A; Rathnaweera, T D; Lyu, Q; Mahanta, B

    2017-10-01

    The mechanical properties of any substance are essential facts to understand its behaviour and make the maximum use of the particular substance. Rocks are indeed an important substance, as they are of significant use in the energy industry, specifically for fossil fuels and geothermal energy. Attenuation of seismic waves is a non-destructive technique to investigate mechanical properties of reservoir rocks under different conditions. The attenuation characteristics of five different rock types, siltstone, shale, Australian sandstone, Indian sandstone and granite, were investigated in the laboratory using ultrasonic and acoustic emission instruments in a frequency range of 0.1-1 MHz. The pulse transmission technique and spectral ratios were used to calculate the attenuation coefficient ( α ) and quality factor ( Q ) values for the five selected rock types for both primary ( P ) and secondary ( S ) waves, relative to the reference steel sample. For all the rock types, the attenuation coefficient was linearly proportional to the frequency of both the P and S waves. Interestingly, the attenuation coefficient of granite is more than 22% higher than that of siltstone, sandstone and shale for both P and S waves. The P and S wave velocities were calculated based on their recorded travel time, and these velocities were then used to calculate the dynamic mechanical properties including elastic modulus ( E ), bulk modulus ( K ), shear modulus ( µ ) and Poisson's ratio ( ν ). The P and S wave velocities for the selected rock types varied in the ranges of 2.43-4.61 km s -1 and 1.43-2.41 km h -1 , respectively. Furthermore, it was observed that the P wave velocity was always greater than the S wave velocity, and this confirmed the first arrival of P waves to the sensor. According to the experimental results, the dynamic E value is generally higher than the static E value obtained by unconfined compressive strength tests.

  16. Sub-crustal seismic activity beneath Klyuchevskoy Volcano

    Science.gov (United States)

    Carr, M. J.; Droznina, S.; Levin, V. L.; Senyukov, S.

    2013-12-01

    Seismic activity is extremely vigorous beneath the Klyuchevskoy Volcanic Group (KVG). The unique aspect is the distribution in depth. In addition to upper-crustal seismicity, earthquakes take place at depths in excess of 20 km. Similar observations are known in other volcanic regions, however the KVG is unique in both the number of earthquakes and that they occur continuously. Most other instances of deep seismicity beneath volcanoes appear to be episodic or transient. Digital recording of seismic signals started at the KVG in early 2000s.The dense local network reliably locates earthquakes as small as ML~1. We selected records of 20 earthquakes located at depths over 20 km. Selection was based on the quality of the routine locations and the visual clarity of the records. Arrivals of P and S waves were re-picked, and hypocentral parameters re-established. Newl locations fell within the ranges outlined by historical seismicity, confirming the existence of two distinct seismically active regions. A shallower zone is at ~20 km depth, and all hypocenters are to the northeast of KVG, in a region between KVG and Shiveluch volcano. A deeper zone is at ~30 km, and all hypocenters cluster directly beneath the edifice of the Kyuchevskoy volcano. Examination of individual records shows that earthquakes in both zones are tectonic, with well-defined P and S waves - another distinction of the deep seismicity beneath KVG. While the upper seismic zone is unquestionably within the crust, the provenance of the deeper earthquakes is enigmatic. The crustal structure beneath KVG is highly complex, with no agreed-upon definition of the crust-mantle boundary. Rather, a range of values, from under 30 to over 40 km, exists in the literature. Similarly, a range of velocity structures has been reported. Teleseismic receiver functions (RFs) provide a way to position the earthquakes with respect to the crust-mantle boundary. We compare the differential travel times of S and P waves from deep

  17. Interface waves propagating along tensile fractures in dolomite

    International Nuclear Information System (INIS)

    Roy, S.; Pyrak-Nolte, L.J.

    1995-01-01

    Elastic interface waves have been observed in induced tensile fractures in dolomite rock cores. Multiscaling wavelet analysis distinguishes the interface wave from bulk shear waves, quantifies the interface wave spectral content, and determines the arrival time of peak energy. The dominant seismic energy is concentrated in the slow interface wave, with little or no detectable energy in the fast wave. As stress across the fracture increases, the slow interface wave velocity increases, and the frequency of the spectral peak shifts to higher frequencies. The shear dynamic specific stiffness of the fracture was calculated from the peak energy arrival time as a function of stress. 13 refs., 5 figs., 1 tab

  18. Simulating Seismic Wave Propagation in Viscoelastic Media with an Irregular Free Surface

    Science.gov (United States)

    Liu, Xiaobo; Chen, Jingyi; Zhao, Zhencong; Lan, Haiqiang; Liu, Fuping

    2018-05-01

    In seismic numerical simulations of wave propagation, it is very important for us to consider surface topography and attenuation, which both have large effects (e.g., wave diffractions, conversion, amplitude/phase change) on seismic imaging and inversion. An irregular free surface provides significant information for interpreting the characteristics of seismic wave propagation in areas with rugged or rapidly varying topography, and viscoelastic media are a better representation of the earth's properties than acoustic/elastic media. In this study, we develop an approach for seismic wavefield simulation in 2D viscoelastic isotropic media with an irregular free surface. Based on the boundary-conforming grid method, the 2D time-domain second-order viscoelastic isotropic equations and irregular free surface boundary conditions are transferred from a Cartesian coordinate system to a curvilinear coordinate system. Finite difference operators with second-order accuracy are applied to discretize the viscoelastic wave equations and the irregular free surface in the curvilinear coordinate system. In addition, we select the convolutional perfectly matched layer boundary condition in order to effectively suppress artificial reflections from the edges of the model. The snapshot and seismogram results from numerical tests show that our algorithm successfully simulates seismic wavefields (e.g., P-wave, Rayleigh wave and converted waves) in viscoelastic isotropic media with an irregular free surface.

  19. Seismic Wave Propagation in Icy Ocean Worlds

    Science.gov (United States)

    Stähler, Simon C.; Panning, Mark P.; Vance, Steven D.; Lorenz, Ralph D.; van Driel, Martin; Nissen-Meyer, Tarje; Kedar, Sharon

    2018-01-01

    Seismology was developed on Earth and shaped our model of the Earth's interior over the twentieth century. With the exception of the Philae lander, all in situ extraterrestrial seismological effort to date was limited to other terrestrial planets. All have in common a rigid crust above a solid mantle. The coming years may see the installation of seismometers on Europa, Titan, and Enceladus, so it is necessary to adapt seismological concepts to the setting of worlds with global oceans covered in ice. Here we use waveform analyses to identify and classify wave types, developing a lexicon for icy ocean world seismology intended to be useful to both seismologists and planetary scientists. We use results from spectral-element simulations of broadband seismic wavefields to adapt seismological concepts to icy ocean worlds. We present a concise naming scheme for seismic waves and an overview of the features of the seismic wavefield on Europa, Titan, Ganymede, and Enceladus. In close connection with geophysical interior models, we analyze simulated seismic measurements of Europa and Titan that might be used to constrain geochemical parameters governing the habitability of a sub-ice ocean.

  20. Seismic surface-wave tomography of waste sites. 1998 annual progress report

    International Nuclear Information System (INIS)

    Long, T.L.

    1998-01-01

    'The objective of the Seismic Surface Wave Tomography of Waste Sites is to develop a robust technique for field acquisition and analysis of surface wave data for the interpretation of shallow structures, such as those associated with the burial of wastes. The analysis technique is to be developed and tested on an existing set of seismic data covering the K-901 burial site at the East Tennessee Technology Park. Also, a portable prototype for a field acquisition system will be designed and developed to obtain additional data for analysis and testing of the technique. The portable analysis system will display an image representing the shear-wave velocity structure. The image would be developed in the field from successive data samples. As of May 1998, the author established compatibility with computer programs at Georgia Tech and computed a preliminary singular value decomposition solution for the K-901 data. The analysis included modeling of surface wave dispersion and analysis of velocity structure. The analysis demonstrated that the authors needed additional field data to verify the conclusions and provide independent confirmation of velocity structure. The K-901 site data were obtained with 8 Hz geophones. The frequencies below 8 Hz are strongly attenuated in such recording instruments and are difficult to analyze. In particular, group velocities can have multiple answers for a given frequency. Consequently, without a record of the low-frequency energy, the authors found it difficult to identify the portion of the dispersion curve responsible for the seismogram. In particular, it was difficult to determine if the reverse dispersion observed in the frequencies above 8 Hz was caused by a low velocity layer or caused by observing only the frequencies above the group velocity minimum. In either model, synthetic seismograms can be made to match the observed data for the higher frequencies. The contract for the proposed work was completed in December. The field work was

  1. An innovative method for automatic determination of time of arrival for Lamb waves excited by impact events

    Science.gov (United States)

    Zhu, Junxiao; Parvasi, Seyed Mohammad; Ho, Siu Chun Michael; Patil, Devendra; Ge, Maochen; Li, Hongnan; Song, Gangbing

    2017-05-01

    Lamb waves have great potential as a diagnostic tool in the application of structural health monitoring. Propagation properties of Lamb waves are affected by the state of the structure that the waves are traveling upon. Thus Lamb waves can carry information about the structure as they travel across a structure. However, the dispersive, multimodal and attenuation characteristics of Lamb waves make it difficult to determine the time of arrival of Lamb waves. To deal with these characteristics, an innovative method to automatically determine the time of arrival for impact-induced Lamb waves without human intervention is proposed in this paper. Lead zirconate titanate sensors mounted on the surface of an aluminum plate were used to measure the Lamb waves excited by an impact. The time of arrival was determined based on wavelet decomposition, Hilbert transform and statistics (Grubbs’ test and maximum likelihood estimation). Both of numerical analysis and physical measurements have verified the accuracy of this method for impacts on an aluminum plate.

  2. Relocating San Miguel Volcanic Seismic Events for Receiver Functions and Tomographic Models

    Science.gov (United States)

    Patlan, E.; Velasco, A. A.; Konter, J.

    2009-12-01

    The San Miguel volcano lies near the city of San Miguel, El Salvador (13.43N and -88.26W). San Miguel volcano, an active stratovolcano, presents a significant natural hazard for the city of San Miguel. Furthermore, the internal state and activity of volcanoes remains an important component to understanding volcanic hazard. The main technology for addressing volcanic hazards and processes is through the analysis of data collected from the deployment of seismic sensors that record ground motion. Six UTEP seismic stations were deployed around San Miguel volcano from 2007-2008 to define the magma chamber and assess the seismic and volcanic hazard. We utilize these data to develop images of the earth structure beneath the volcano, studying the volcanic processes by identifying different sources, and investigating the role of earthquakes and faults in controlling the volcanic processes. We will calculate receiver functions to determine the thickness of San Miguel volcano internal structure, within the Caribbean plate. Crustal thicknesses will be modeled using calculated receiver functions from both theoretical and hand-picked P-wave arrivals. We will use this information derived from receiver functions, along with P-wave delay times, to map the location of the magma chamber.

  3. Seismic waves at the epicenter's antipode

    International Nuclear Information System (INIS)

    Rial, J.A.; Cormier, V.F.

    1980-01-01

    The antipodal region (178 0 0 ) of a seismic wave source is investigated in detail and shown to provide a new set of remarkable data to use in the exploration of the earth's interior. Body and surface waves converge individually at antipodal distances after having sampled laterally the totality of the planet. The waves are focused and strongly amplified up to 1 order of magnitude with respect to the normal phase recorded 2 0 or more away. The delicate interference patterns thus formed yield information on departures from lateral homogeneity and sphericity of the core and mantle, the structure of the inner core, global dissipation characteristics of the upper mantle, and provide strong constraints on earth models. Seismograms have been synthesized that closely reproduce the phases P/sub diff/, PKIKP, PKIIKP, PKP(BC), PKP, and PP observed at World-Wide Standard Seismographic Network long-period instruments located within 5 0 from the antipode of the New Zealand Inangahua earthquake of May 23, 1968. Preliminary results indicate that the lower mantle and upper core are laterally homogeneous as seen by 15-s waves, but the core-mantle boundary region is probably laterally inhomogeneous. The inner core--outer core boundary appears to be a sharp transition with a P wave velocity jump of the order of 0.8 km/s. The resolution of the long-period data is poor, but the potential richness of the method when better data sets are available strongly motivated the investigation. Suggested future lines of research using antipodal observations include monitoring of inner core phases, study of focal processes of large earthquakes, and the exploration of planetary interiors

  4. Coupled seismic and electromagnetic wave propagation

    NARCIS (Netherlands)

    Schakel, M.D.

    2011-01-01

    Coupled seismic and electromagnetic wave propagation is studied theoretically and experimentally. This coupling arises because of the electrochemical double layer, which exists along the solid-grain/fluid-electrolyte boundaries of porous media. Within the double layer, charge is redistributed,

  5. S-wave triggering of tremor beneath the Parkfield, California, section of the San Andreas fault by the 2011 Tohoku, Japan earthquake: observations and theory

    Science.gov (United States)

    Hill, David P.; Peng, Zhigang; Shelly, David R.; Aiken, Chastity

    2013-01-01

    The dynamic stresses that are associated with the energetic seismic waves generated by the Mw 9.0 Tohoku earthquake off the northeast coast of Japan triggered bursts of tectonic tremor beneath the Parkfield section of the San Andreas fault (SAF) at an epicentral distance of ∼8200  km. The onset of tremor begins midway through the ∼100‐s‐period S‐wave arrival, with a minor burst coinciding with the SHSH arrival, as recorded on the nearby broadband seismic station PKD. A more pronounced burst coincides with the Love arrival, followed by a series of impulsive tremor bursts apparently modulated by the 20‐ to 30‐s‐period Rayleigh wave. The triggered tremor was located at depths between 20 and 30 km beneath the surface trace of the fault, with the burst coincident with the S wave centered beneath the fault 30 km northwest of Parkfield. Most of the subsequent activity, including the tremor coincident with the SHSH arrival, was concentrated beneath a stretch of the fault extending from 10 to 40 km southeast of Parkfield. The seismic waves from the Tohoku epicenter form a horizontal incidence angle of ∼14°, with respect to the local strike of the SAF. Computed peak dynamic Coulomb stresses on the fault at tremor depths are in the 0.7–10 kPa range. The apparent modulation of tremor bursts by the small, strike‐parallel Rayleigh‐wave stresses (∼0.7  kPa) is likely enabled by pore pressure variations driven by the Rayleigh‐wave dilatational stress. These results are consistent with the strike‐parallel dynamic stresses (δτs) associated with the S, SHSH, and surface‐wave phases triggering small increments of dextral slip on the fault with a low friction (μ∼0.2). The vertical dynamic stresses δτd do not trigger tremor with vertical or oblique slip under this simple Coulomb failure model.

  6. Spectral-element Seismic Wave Propagation on CUDA/OpenCL Hardware Accelerators

    Science.gov (United States)

    Peter, D. B.; Videau, B.; Pouget, K.; Komatitsch, D.

    2015-12-01

    Seismic wave propagation codes are essential tools to investigate a variety of wave phenomena in the Earth. Furthermore, they can now be used for seismic full-waveform inversions in regional- and global-scale adjoint tomography. Although these seismic wave propagation solvers are crucial ingredients to improve the resolution of tomographic images to answer important questions about the nature of Earth's internal processes and subsurface structure, their practical application is often limited due to high computational costs. They thus need high-performance computing (HPC) facilities to improving the current state of knowledge. At present, numerous large HPC systems embed many-core architectures such as graphics processing units (GPUs) to enhance numerical performance. Such hardware accelerators can be programmed using either the CUDA programming environment or the OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted by additional hardware accelerators, like e.g. AMD graphic cards, ARM-based processors as well as Intel Xeon Phi coprocessors. For seismic wave propagation simulations using the open-source spectral-element code package SPECFEM3D_GLOBE, we incorporated an automatic source-to-source code generation tool (BOAST) which allows us to use meta-programming of all computational kernels for forward and adjoint runs. Using our BOAST kernels, we generate optimized source code for both CUDA and OpenCL languages within the source code package. Thus, seismic wave simulations are able now to fully utilize CUDA and OpenCL hardware accelerators. We show benchmarks of forward seismic wave propagation simulations using SPECFEM3D_GLOBE on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.

  7. Performance of an island seismic station for recording T-phases

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, J. A., LLNL

    1998-05-01

    As part of the International Monitoring System (IMS) a worldwide hydroacoustic network consisting of 6 hydrophone and 5 island seismic stations has been planned which will monitor for underwater or low altitude atmospheric explosions. Data from this network is to be integrated with other IMS networks monitoring the Comprehensive Nuclear Test-Ban Treaty. The seismic (T-phase) stations are significantly less sensitive than hydrophones to ocean borne acoustic waves. T-phase signal strength at seismic stations depends on the amplitude of the signal in the water column, the hydroacoustic-seismic conversion efficiency, and loss on the seismic portion of the path through the island. In order to understand how these factors influence the performance of T-phase stations seismic and hydroacoustic data are examined from instruments currently deployed on or around Ascension Island in the South Atlantic Ocean. T-phase recordings for the last 3 years have been collected from the GSN seismic station ASCN on Ascension Island. Surrounding the island are 5 hydrophones which are part of the U.S. Air Force Missile Impact Locating System (MILS). Data from this system have been obtained for some of the events observed at ASCN. Four of the hydrophones are located within 30 km of the coast while the fifth instrument is 100 km to the south. Amplitude spectral estimates of the signal-to-noise levels (SNL) are computed and generally peak between 3 and 8 Hz for both the seismometer and hydrophone data. The seismic SNL generally decays to 1 between 10 and 15 Hz while the hydrophone SNL is still large well above 20 Hz. The ratios of the hydrophone-to-seismometer SNL, at their peak in energy, range between 10 and 100 (20-40 dB) unless a hydrophone is partially blocked by the Ascension Island landmass.

  8. Design and development of digital seismic amplifier recorder

    Energy Technology Data Exchange (ETDEWEB)

    Samsidar, Siti Alaa; Afuar, Waldy; Handayani, Gunawan, E-mail: gunawanhandayani@gmail.com [Department of Physics, ITB (Indonesia)

    2015-04-16

    A digital seismic recording is a recording technique of seismic data in digital systems. This method is more convenient because it is more accurate than other methods of seismic recorders. To improve the quality of the results of seismic measurements, the signal needs to be amplified to obtain better subsurface images. The purpose of this study is to improve the accuracy of measurement by amplifying the input signal. We use seismic sensors/geophones with a frequency of 4.5 Hz. The signal is amplified by means of 12 units of non-inverting amplifier. The non-inverting amplifier using IC 741 with the resistor values 1KΩ and 1MΩ. The amplification results were 1,000 times. The results of signal amplification converted into digital by using the Analog Digital Converter (ADC). Quantitative analysis in this study was performed using the software Lab VIEW 8.6. The Lab VIEW 8.6 program was used to control the ADC. The results of qualitative analysis showed that the seismic conditioning can produce a large output, so that the data obtained is better than conventional data. This application can be used for geophysical methods that have low input voltage such as microtremor application.

  9. Seismic signal in Olkiluoto. Preliminary comparison of underground and surface recordings

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2015-02-01

    Seismic hazard studies in Finland relate to nuclear power plant sites on the Earth's surface. The impact of seismic waves is different on structures on the surface than underground. The purpose of this study is to approximate how ground motions recorded in the ONKALO compare with those on the surface above the ONKALO. Broadband seismometers were installed on the surface and at the depth of 400 m inside the ONKALO in November 2013. The operation time of the seismometers was about nine months. The analysed signals included background noise, teleseismic earthquakes, regional earthquake, local explosions and explosions from the ONKALO site. The studies in Olkiluoto demonstrated that, in general, there is a de-amplification of ground motions in the ONKALO relative to those on the surface, or there is no significant difference between the recordings. The result is likely associated with the type of the seismic source and the relatively shallow depth (400 m) of the underground station. Observed relative amplification related only to nearfield events: the recorded velocity amplitudes on the surface were 2 - 10 times larger than underground. One opposite relation was found in the study: the vertical component of the velocity amplitude of a regional earthquake seems to be about three times larger in ONKALO than on the surface between frequencies 50 Hz and 80 Hz. Definite conclusions concerning amplification or de-amplification cannot be based on the result of this study. In practice, any set of recordings cannot give a comprehensive description of the possible variations, like how the wavefield reflected from the surface interacts with the wavefield coming towards the surface. Numerical modeling is suggested for further studies of this subject. (orig.)

  10. Seismic waves and earthquakes in a global monolithic model

    Science.gov (United States)

    Roubíček, Tomáš

    2018-03-01

    The philosophy that a single "monolithic" model can "asymptotically" replace and couple in a simple elegant way several specialized models relevant on various Earth layers is presented and, in special situations, also rigorously justified. In particular, global seismicity and tectonics is coupled to capture, e.g., (here by a simplified model) ruptures of lithospheric faults generating seismic waves which then propagate through the solid-like mantle and inner core both as shear (S) or pressure (P) waves, while S-waves are suppressed in the fluidic outer core and also in the oceans. The "monolithic-type" models have the capacity to describe all the mentioned features globally in a unified way together with corresponding interfacial conditions implicitly involved, only when scaling its parameters appropriately in different Earth's layers. Coupling of seismic waves with seismic sources due to tectonic events is thus an automatic side effect. The global ansatz is here based, rather for an illustration, only on a relatively simple Jeffreys' viscoelastic damageable material at small strains whose various scaling (limits) can lead to Boger's viscoelastic fluid or even to purely elastic (inviscid) fluid. Self-induced gravity field, Coriolis, centrifugal, and tidal forces are counted in our global model, as well. The rigorous mathematical analysis as far as the existence of solutions, convergence of the mentioned scalings, and energy conservation is briefly presented.

  11. Lowrank seismic-wave extrapolation on a staggered grid

    KAUST Repository

    Fang, Gang

    2014-05-01

    © 2014 Society of Exploration Geophysicists. We evaluated a new spectral method and a new finite-difference (FD) method for seismic-wave extrapolation in time. Using staggered temporal and spatial grids, we derived a wave-extrapolation operator using a lowrank decomposition for a first-order system of wave equations and designed the corresponding FD scheme. The proposed methods extend previously proposed lowrank and lowrank FD wave extrapolation methods from the cases of constant density to those of variable density. Dispersion analysis demonstrated that the proposed methods have high accuracy for a wide wavenumber range and significantly reduce the numerical dispersion. The method of manufactured solutions coupled with mesh refinement was used to verify each method and to compare numerical errors. Tests on 2D synthetic examples demonstrated that the proposed method is highly accurate and stable. The proposed methods can be used for seismic modeling or reverse-time migration.

  12. Lowrank seismic-wave extrapolation on a staggered grid

    KAUST Repository

    Fang, Gang; Fomel, Sergey; Du, Qizhen; Hu, Jingwei

    2014-01-01

    © 2014 Society of Exploration Geophysicists. We evaluated a new spectral method and a new finite-difference (FD) method for seismic-wave extrapolation in time. Using staggered temporal and spatial grids, we derived a wave-extrapolation operator using a lowrank decomposition for a first-order system of wave equations and designed the corresponding FD scheme. The proposed methods extend previously proposed lowrank and lowrank FD wave extrapolation methods from the cases of constant density to those of variable density. Dispersion analysis demonstrated that the proposed methods have high accuracy for a wide wavenumber range and significantly reduce the numerical dispersion. The method of manufactured solutions coupled with mesh refinement was used to verify each method and to compare numerical errors. Tests on 2D synthetic examples demonstrated that the proposed method is highly accurate and stable. The proposed methods can be used for seismic modeling or reverse-time migration.

  13. Seismic Evidence for Possible Slab Melting from Strong Scattering Waves

    Directory of Open Access Journals (Sweden)

    Cheng-Horng Lin

    2011-01-01

    Full Text Available Slab melting in young and hot subduction zones has been studied using geochemical observations and thermal modelling, but there are few data from seismic studies to confirm slab melting. Also the detailed geometry in the deep part of the melting slab is often ambiguous in that the intraslab earthquakes within the Wadati-Benioff zone are only limited to shallower depths. To improve our understanding of both the seismic features and geometry found in a young and hot subducted slab, I analyzed anomalous moonquake-like seismograms that were generated by an intermediate-depth earthquake recorded in central Japan. For this study, possible reflected (or scattered sources were examined using detailed analyses of particle motions and a grid search for travel-time differences between the direct and later P-waves. The results show that using strong seismic scattering, slab melting is likely occurring in the deeper, flexing part of the subducted Philippine Sea plate. Because the subducted Philippine Sea plate in central Japan is young and therefore hot, partial melting might have taken place to produce abundant melting spots in the subducted slab. Melting spots, identified as ¡§bright spots,¡¨ could efficiently reflect or scatter seismic energy and generate many later phases with large amplitudes.

  14. Short-Period Surface Wave Based Seismic Event Relocation

    Science.gov (United States)

    White-Gaynor, A.; Cleveland, M.; Nyblade, A.; Kintner, J. A.; Homman, K.; Ammon, C. J.

    2017-12-01

    Accurate and precise seismic event locations are essential for a broad range of geophysical investigations. Superior location accuracy generally requires calibration with ground truth information, but superb relative location precision is often achievable independently. In explosion seismology, low-yield explosion monitoring relies on near-source observations, which results in a limited number of observations that challenges our ability to estimate any locations. Incorporating more distant observations means relying on data with lower signal-to-noise ratios. For small, shallow events, the short-period (roughly 1/2 to 8 s period) fundamental-mode and higher-mode Rayleigh waves (including Rg) are often the most stable and visible portion of the waveform at local distances. Cleveland and Ammon [2013] have shown that teleseismic surface waves are valuable observations for constructing precise, relative event relocations. We extend the teleseismic surface wave relocation method, and apply them to near-source distances using Rg observations from the Bighorn Arche Seismic Experiment (BASE) and the Earth Scope USArray Transportable Array (TA) seismic stations. Specifically, we present relocation results using short-period fundamental- and higher-mode Rayleigh waves (Rg) in a double-difference relative event relocation for 45 delay-fired mine blasts and 21 borehole chemical explosions. Our preliminary efforts are to explore the sensitivity of the short-period surface waves to local geologic structure, source depth, explosion magnitude (yield), and explosion characteristics (single-shot vs. distributed source, etc.). Our results show that Rg and the first few higher-mode Rayleigh wave observations can be used to constrain the relative locations of shallow low-yield events.

  15. Formulation de la tomographie des temps de première arrivée à partir d'une méthode de gradient : un pas vers une tomographie interactive

    OpenAIRE

    Taillandier , Cédric

    2008-01-01

    First arrival traveltime tomography aims at inferring a seismic wave propagation velocity model from first arrival traveltimes picked on seismograms. The velocity model inferred can be used directly to perform a structural interpretation of the subsurface or as an initial model for another seismic imaging method. This technique can be applied at different scales from geotechnical studies to seismology through oil exploration. The geophysicist know-how plays an important role in the difficult ...

  16. A modified symplectic PRK scheme for seismic wave modeling

    Science.gov (United States)

    Liu, Shaolin; Yang, Dinghui; Ma, Jian

    2017-02-01

    A new scheme for the temporal discretization of the seismic wave equation is constructed based on symplectic geometric theory and a modified strategy. The ordinary differential equation in terms of time, which is obtained after spatial discretization via the spectral-element method, is transformed into a Hamiltonian system. A symplectic partitioned Runge-Kutta (PRK) scheme is used to solve the Hamiltonian system. A term related to the multiplication of the spatial discretization operator with the seismic wave velocity vector is added into the symplectic PRK scheme to create a modified symplectic PRK scheme. The symplectic coefficients of the new scheme are determined via Taylor series expansion. The positive coefficients of the scheme indicate that its long-term computational capability is more powerful than that of conventional symplectic schemes. An exhaustive theoretical analysis reveals that the new scheme is highly stable and has low numerical dispersion. The results of three numerical experiments demonstrate the high efficiency of this method for seismic wave modeling.

  17. Application of Seismic Array Processing to Tsunami Early Warning

    Science.gov (United States)

    An, C.; Meng, L.

    2015-12-01

    Tsunami wave predictions of the current tsunami warning systems rely on accurate earthquake source inversions of wave height data. They are of limited effectiveness for the near-field areas since the tsunami waves arrive before data are collected. Recent seismic and tsunami disasters have revealed the need for early warning to protect near-source coastal populations. In this work we developed the basis for a tsunami warning system based on rapid earthquake source characterisation through regional seismic array back-projections. We explored rapid earthquake source imaging using onshore dense seismic arrays located at regional distances on the order of 1000 km, which provides faster source images than conventional teleseismic back-projections. We implement this method in a simulated real-time environment, and analysed the 2011 Tohoku earthquake rupture with two clusters of Hi-net stations in Kyushu and Northern Hokkaido, and the 2014 Iquique event with the Earthscope USArray Transportable Array. The results yield reasonable estimates of rupture area, which is approximated by an ellipse and leads to the construction of simple slip models based on empirical scaling of the rupture area, seismic moment and average slip. The slip model is then used as the input of the tsunami simulation package COMCOT to predict the tsunami waves. In the example of the Tohoku event, the earthquake source model can be acquired within 6 minutes from the start of rupture and the simulation of tsunami waves takes less than 2 min, which could facilitate a timely tsunami warning. The predicted arrival time and wave amplitude reasonably fit observations. Based on this method, we propose to develop an automatic warning mechanism that provides rapid near-field warning for areas of high tsunami risk. The initial focus will be Japan, Pacific Northwest and Alaska, where dense seismic networks with the capability of real-time data telemetry and open data accessibility, such as the Japanese HiNet (>800

  18. Pipe Wall Thinning Evaluation through the Arrival Time Delay of A0 Lamb Wave Using Magnetostrictive Patch Transducers

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seung Hyun; Kwon, Hyu Sang; Ahn, Bong Young; Lee, Seung Seok [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2008-12-15

    Guided wave technology is advantageous for fast inspection of pipe wall thinning since the guided wave propagates long distance. In this investigation, the method to evaluate gradual wall thinning in a pipe based on the arrival time delay with magnetostrictive patch transducers is presented. Low frequency A0 Lamb waves were generated and measured by the present transducer and it was applied to arrival time delay measurement experiments on a test pipe having gradual wall thinnings artificially manufactured. From experiments, consistent results that wall thinning increases the arrival time delay of A0 waves were obtained. Consequently, the feasibility of the magnetostrictive patch transducers to evaluate wall thinning was verified

  19. Pipe Wall Thinning Evaluation through the Arrival Time Delay of A0 Lamb Wave Using Magnetostrictive Patch Transducers

    International Nuclear Information System (INIS)

    Cho, Seung Hyun; Kwon, Hyu Sang; Ahn, Bong Young; Lee, Seung Seok

    2008-01-01

    Guided wave technology is advantageous for fast inspection of pipe wall thinning since the guided wave propagates long distance. In this investigation, the method to evaluate gradual wall thinning in a pipe based on the arrival time delay with magnetostrictive patch transducers is presented. Low frequency A0 Lamb waves were generated and measured by the present transducer and it was applied to arrival time delay measurement experiments on a test pipe having gradual wall thinnings artificially manufactured. From experiments, consistent results that wall thinning increases the arrival time delay of A0 waves were obtained. Consequently, the feasibility of the magnetostrictive patch transducers to evaluate wall thinning was verified

  20. FINOSEIS: A new approach to offshore-building foundation soil analysis using high resolution reflection seismic and Scholte-wave dispersion analysis

    Science.gov (United States)

    Wilken, Dennis; Wölz, Susanne; Müller, Christof; Rabbel, Wolfgang

    2009-05-01

    As part of the FINOSEIS project we present the development of new seismic acquisition and inversion concepts for offshore-building foundation soil analysis. FINOSEIS is a subproject of the FINO3 project, which is aimed at the construction of an offshore research platform based in 28 m water depth, hosting eight research projects dealing with offshore wind energy topics. Our investigations focus on the determination of seismic parameters and structural information of the building plot of FINO3. We infer the shear-wave velocity structure by exploiting the dispersive properties of Scholte-waves and use high resolution 2.5D reflection seismic acquisition to determine seismic stratigraphy in three dimensions. Our work is motivated regarding possible hazards to offshore foundations such as wind parks and the FINO3 platform itself, e.g. permanent mechanical load by wind- and wave-forces possibly leading to an impairment of the soil. We conducted a pre-investigation of the site of the future platform in order to help finding a suitable foundation soil by improving common site investigation methods. In May 2006 we did a survey covering an area of 2 km square employing high resolution 2.5D reflection seismic. Along three 2 km airgun profiles Scholte-waves were recorded with Ocean-Bottom-Seismometers. Spectral analysis of these led to pseudo-2D shear-wave velocity models along the profiles. The reflection seismic area is characterized by glacial stratigraphy and diffractions documented within the penetration range of 30 m. With respect to the topography of the identified horizons as well as to the distribution of diffracting objects, a suitable foundation area for the platform was suggested. The results of the Scholte-wave experiment provide valuable information for further inversion models as well as for the dimensioning of further measurements. We also implemented an inversion strategy using the particle swarm optimization method. The inverted layers of shear-wave velocity

  1. Characteristic Seismic Waves Associated with Cryosphere Dynamics in Eastern Dronning Maud Land, East Antarctica

    Directory of Open Access Journals (Sweden)

    Masaki Kanao

    2012-01-01

    Full Text Available Several kinds of natural source signals are recorded by seismic exploration stations on the continental ice sheet in Eastern Dronning Maud Land, East Antarctica, during 2002 austral summer. They include not only tectonic earthquakes, but also ice-related phenomena possibly involving recent global climate change. The recorded signals are classified into (1 teleseismic events, (2 local ice quakes, and (3 unidentified events (X-phases. The teleseismic waves show the high signal-to-noise ratio in spite of the small magnitude of the event; this indicates that it is highly feasible to study not only the local shallow structure but also the deep structure of the earth by using teleseismic events. Frequency spectra of the all waveforms represent discordances along the observation seismic profile. The abrupt change of topography in the valley along the seismic profile might cause both the anomalous frequency content and travel times. Finally, an origin of the X-phases is speculated as the intraplate earthquakes or possibly large ice-quakes (glacial earthquakes around Antarctica, involving global warming appeared in polar region.

  2. Making the most of CZ seismics: Improving shallow critical zone characterization using surface-wave analysis

    Science.gov (United States)

    Pasquet, S.; Wang, W.; Holbrook, W. S.; Bodet, L.; Carr, B.; Flinchum, B. A.

    2017-12-01

    Estimating porosity and saturation in the shallow subsurface over large lateral scales is vitally important for understanding the development and evolution of the Critical Zone (CZ). Because elastic properties (P- and S-wave velocities) are particularly sensitive to porosity and saturation, seismic methods (in combination with petrophysical models) are effective tools for mapping CZ architecture and processes. While many studies employ P-wave refraction methods, fewer use the surface waves that are typically also recorded in those same surveys. Here we show the value of exploiting surface waves to extract supplementary shear-wave velocity (Vs) information in the CZ. We use a new, user-friendly, open-source MATLAB-based package (SWIP) to invert surface-wave data and estimate lateral variations of Vs in the CZ. Results from synthetics show that this approach enables the resolution of physical property variations in the upper 10-15 m below the surface with lateral scales of about 5 m - a vast improvement compared to P-wave tomography alone. A field example at a Yellowstone hydrothermal system also demonstrates the benefits of including Vs in the petrophysical models to estimate not only porosity but also saturation, thus highlighting subsurface gas pathways. In light of these results, we strongly suggest that surface-wave analysis should become a standard approach in CZ seismic surveys.

  3. Passive monitoring of a sea dike during a tidal cycle using sea waves as a seismic noise source

    Science.gov (United States)

    Joubert, Anaëlle; Feuvre, Mathieu Le; Cote, Philippe

    2018-05-01

    Over the past decade, ambient seismic noise has been used successfully to monitor various geological objects with high accuracy. Recently, it has been shown that surface seismic waves propagating within a sea dike body can be retrieved from the cross-correlation of ambient seismic noise generated by sea waves. We use sea wave impacts to monitor the response of a sea dike during a tidal cycle using empirical Green's functions. These are obtained either by cross-correlation or deconvolution, from signals recorded by sensors installed linearly on the crest of a dike. Our analysis is based on delay and spectral amplitude measurements performed on reconstructed surface waves propagating along the array. We show that localized variations of velocity and attenuation are correlated with changes in water level as a probable consequence of water infiltration inside the structure. Sea dike monitoring is of critical importance for safety and economic reasons, as internal erosion is generally only detected at late stages by visual observations. The method proposed here may provide a solution for detecting structural weaknesses, monitoring progressive internal erosion, and delineating areas of interest for further geotechnical studies, in view to understanding the erosion mechanisms involved.

  4. Shear-wave polarization analysis of the seismic swarm following the July 9th 1998 Faial (Azores) earthquake

    Science.gov (United States)

    Dias, N. A.; Matias, L.; Tellez, J.; Senos, L.; Gaspar, J. L.

    2003-04-01

    The Azores Islands, located at a tectonic triple Junction, geodynamically are a highly active place. The seismicity in this region occurs mainly in the form of two types of seismic swarms with tectonic and/or volcanic origins, lasting from hours to years. In some cases the swarm follows a main stronger shock, while in others the more energetic event occurs sometime after the beginning of the swarm. In order to understand the complex phenomena of this region, a multidisciplinary approach is needed, involving geophysical, geological and geochemical studies such as the one being carried under the MASHA project (POCTI/CTA/39158/2001), On July 9th 1998 an Mw=6.2 earthquake stroked the island of Faial, in the central group of the Azores archipelago, followed by a seismic swarm still active today. We will present some preliminary results of the shear-wave polarization analysis of a selected dataset of events of this swarm. These correspond to the 112 best- constrained events, record during the first 2 weeks by the seismic network deployed on the 3 islands surrounding the area of the main shock. The objective was to analyse the behaviour of the S wave polarization and the eventual relationship with the presence of seismic anisotropy under the seismic stations, and to correlate this with the regional structure and origin of the Azores plateau. Two main tectonic features are observable on the islands, one primarily orientated SE-NW and the other crossing it roughly with the WNW-ESE direction. The polarization direction observed in the majority of the seismic stations is not stable, varying from SE-NW to WSW-ENE, and showing also the presence in same cases of shear-wave splitting, indicating the presence of anisotropy. Part of the polarization seems to be coherent with the direction of the local tectonic features, but its instability suggest a more complex seismic anisotropy than that proposed by the model EDA of Crampin. Furthermore, the dataset revealed some limitations to

  5. Seismic waves travel-time curve, basing on the results of signal detection from chemical explosions detonated at Semipalatinsk Test Site

    International Nuclear Information System (INIS)

    Mikhajlova, N.N.; Aristova, I.L.; Germanova, T.I.

    2001-01-01

    A large amount of digital seismic data from the permanent and temporary seismic stations was acquired in the result of detonation of large chemical explosions at Semipalatinsk Test Site. All the records were collected, systematized and processed, and databases were created. Travel-time curves for regional Pn, Pg, Sn and Lg waves were created and compared with the ones used in routine earthquake processing practice. (author)

  6. 3-D velocity structure of upper crust beneath NW Bohemia/Vogtland

    DEFF Research Database (Denmark)

    Mousavi, S. S.; Korn, M.; Bauer, K.

    seismic experiments like Celebration 2000 and quarry blasts. Seismic Handler was applied for picking P and S wave arrival times. Before travel time inversion, we selected 399 events which were recorded by 9 or more stations and azimuthal gapsimultaneous inversion of P and S wave...

  7. Fluid-structure interaction dynamic simulation of spring-loaded pressure relief valves under seismic wave

    Science.gov (United States)

    Lv, Dongwei; Zhang, Jian; Yu, Xinhai

    2018-05-01

    In this paper, a fluid-structure interaction dynamic simulation method of spring-loaded pressure relief valve was established. The dynamic performances of the fluid regions and the stress and strain of the structure regions were calculated at the same time by accurately setting up the contact pairs between the solid parts and the coupling surfaces between the fluid regions and the structure regions. A two way fluid-structure interaction dynamic simulation of a simplified pressure relief valve model was carried out. The influence of vertical sinusoidal seismic waves on the performance of the pressure relief valve was preliminarily investigated by loading sine waves. Under vertical seismic waves, the pressure relief valve will flutter, and the reseating pressure was affected by the amplitude and frequency of the seismic waves. This simulation method of the pressure relief valve under vertical seismic waves can provide effective means for investigating the seismic performances of the valves, and make up for the shortcomings of the experiment.

  8. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Wardaya, P. D., E-mail: pongga.wardaya@utp.edu.my; Noh, K. A. B. M., E-mail: pongga.wardaya@utp.edu.my; Yusoff, W. I. B. W., E-mail: pongga.wardaya@utp.edu.my [Petroleum Geosciences Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Ridha, S. [Petroleum Engineering Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Nurhandoko, B. E. B. [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Dept. of Physics, Institute of Technology Bandung, Bandung, Indonesia and Rock Fluid Imaging Lab, Bandung (Indonesia)

    2014-09-25

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic

  9. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    International Nuclear Information System (INIS)

    Wardaya, P. D.; Noh, K. A. B. M.; Yusoff, W. I. B. W.; Ridha, S.; Nurhandoko, B. E. B.

    2014-01-01

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave

  10. Comparison of seismic sources for shallow seismic: sledgehammer and pyrotechnics

    Directory of Open Access Journals (Sweden)

    Brom Aleksander

    2015-10-01

    Full Text Available The pyrotechnic materials are one of the types of the explosives materials which produce thermal, luminous or sound effects, gas, smoke and their combination as a result of a self-sustaining chemical reaction. Therefore, pyrotechnics can be used as a seismic source that is designed to release accumulated energy in a form of seismic wave recorded by tremor sensors (geophones after its passage through the rock mass. The aim of this paper was to determine the utility of pyrotechnics for shallow seismic engineering. The work presented comparing the conventional method of seismic wave excitation for seismic refraction method like plate and hammer and activating of firecrackers on the surface. The energy released by various sources and frequency spectra was compared for the two types of sources. The obtained results did not determine which sources gave the better results but showed very interesting aspects of using pyrotechnics in seismic measurements for example the use of pyrotechnic materials in MASW.

  11. Link Between the Seismic Events and the Different Seismic Precursor Phenomena

    Directory of Open Access Journals (Sweden)

    Mirela GHEORGHITA

    2009-12-01

    Full Text Available This article presents an analysis of the earthquake prediction methods, highlighting mainly the VLF and LF electromagnetic waves seismic precursors’ monitoring method and the correlation among these in order to obtain a more precise result. It is well known the fact that there are lots of links between the seismic events occurrence and different phenomena that predict their occurrence, such as theelectromagnetic field, Earth movement, gaseous content of radon and hydrogen within the soil, or within the underground waters. This paper aims to demonstrate the close link between the seismic events and the electromagnetic wave propagation anomalies, which are recorded before the advent of an earthquake.

  12. Development of seismic tomography software for hybrid supercomputers

    Science.gov (United States)

    Nikitin, Alexandr; Serdyukov, Alexandr; Duchkov, Anton

    2015-04-01

    Seismic tomography is a technique used for computing velocity model of geologic structure from first arrival travel times of seismic waves. The technique is used in processing of regional and global seismic data, in seismic exploration for prospecting and exploration of mineral and hydrocarbon deposits, and in seismic engineering for monitoring the condition of engineering structures and the surrounding host medium. As a consequence of development of seismic monitoring systems and increasing volume of seismic data, there is a growing need for new, more effective computational algorithms for use in seismic tomography applications with improved performance, accuracy and resolution. To achieve this goal, it is necessary to use modern high performance computing systems, such as supercomputers with hybrid architecture that use not only CPUs, but also accelerators and co-processors for computation. The goal of this research is the development of parallel seismic tomography algorithms and software package for such systems, to be used in processing of large volumes of seismic data (hundreds of gigabytes and more). These algorithms and software package will be optimized for the most common computing devices used in modern hybrid supercomputers, such as Intel Xeon CPUs, NVIDIA Tesla accelerators and Intel Xeon Phi co-processors. In this work, the following general scheme of seismic tomography is utilized. Using the eikonal equation solver, arrival times of seismic waves are computed based on assumed velocity model of geologic structure being analyzed. In order to solve the linearized inverse problem, tomographic matrix is computed that connects model adjustments with travel time residuals, and the resulting system of linear equations is regularized and solved to adjust the model. The effectiveness of parallel implementations of existing algorithms on target architectures is considered. During the first stage of this work, algorithms were developed for execution on

  13. A Centerless Circular Array Method: Extracting Maximal Information on Phase Velocities of Rayleigh Waves From Microtremor Records From a Simple Seismic Array

    Science.gov (United States)

    Cho, I.; Tada, T.; Shinozaki, Y.

    2005-12-01

    We have developed a Centerless Circular Array (CCA) method of microtremor exploration, an algorithm that enables to estimate phase velocities of Rayleigh waves by analyzing vertical-component records of microtremors that are obtained with an array of three or five seismic sensors placed around a circumference. Our CCA method shows a remarkably high performance in long-wavelength ranges because, unlike the frequency-wavenumber spectral method, our method does not resolve individual plane-wave components in the process of identifying phase velocities. Theoretical considerations predict that the resolving power of our CCA method in long-wavelength ranges depends upon the SN ratio, or the ratio of power of the propagating components to that of the non-propagating components (incoherent noise) contained in the records from the seismic array. The applicability of our CCA method to small-sized arrays on the order of several meters in radius has already been confirmed in our earlier work (Cho et al., 2004). We have deployed circular seismic arrays of different sizes at test sites in Japan where the underground structure is well documented through geophysical exploration, and have applied our CCA method to microtremor records to estimate phase velocities of Rayleigh waves. The estimates were then checked against "model" phase velocities that are derived from theoretical calculations. For arrays of 5, 25, 300 and 600 meters in radii, the estimated and model phase velocities demonstrated fine agreement within a broad wavelength range extending from a little larger than 3r (r: the array radius) up to at least 40r, 14r, 42r and 9r, respectively. This demonstrates the applicability of our CCA method to arrays on the order of several to several hundreds of meters in radii, and also illustrates, in a typical way, the markedly high performance of our CCA method in long-wavelength ranges. We have also invented a mathematical model that enables to evaluate the SN ratio in a given

  14. Rayleigh wave tomography of the British Isles from ambient seismic noise

    Science.gov (United States)

    Nicolson, Heather; Curtis, Andrew; Baptie, Brian

    2014-08-01

    We present the first Rayleigh wave group speed maps of the British Isles constructed from ambient seismic noise. The maps also constitute the first surface wave tomography study of the crust under the British Isles at a relatively high resolution. We computed interferometric, interstation Rayleigh waves from vertical component records of ambient seismic noise recorded on 63 broad-band and short-period stations across the UK and Ireland. Group velocity measurements were made from the resulting surface wave dispersion curves between 5 and 25 s using a multiple phase-matched filter method. Uncertainties in the group velocities were computed by calculating the standard deviation of four dispersion curves constructed by stacking a random selection of daily cross-correlations. Where an uncertainty could not be obtained for a ray path using this method, we estimated it as a function of the interreceiver distance. Group velocity maps were computed for 5-25-s period using the Fast Marching forward solution of the eikonal equation and iterative, linearized inversion. At short and intermediate periods, the maps show remarkable agreement with the major geological features of the British Isles including: terrane boundaries in Scotland; regions of late Palaeozoic basement uplift; areas of exposed late Proterozoic/early Palaeozoic rocks in southwest Scotland, northern England and northwest Wales and, sedimentary basins formed during the Mesozoic such as the Irish Sea Basin, the Chester Basin, the Worcester Graben and the Wessex Basin. The maps also show a consistent low-velocity anomaly in the region of the Midlands Platform, a Proterozoic crustal block in the English Midlands. At longer periods, which are sensitive velocities in the lower crustal/upper mantle, the maps suggest that the depth of Moho beneath the British Isles decreases towards the north and west. Areas of fast velocity in the lower crust also coincide with areas thought to be associated with underplating of the

  15. Influence of apparent wave velocity on seismic performance of a super-long-span triple-tower suspension bridge

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2015-06-01

    Full Text Available As one of the main characteristics of seismic waves, apparent wave velocity has great influence on seismic responses of long-span suspension bridges. Understanding these influences is important for seismic design. In this article, the critical issues concerning the traveling wave effect analysis are first reviewed. Taizhou Bridge, the longest triple-tower suspension bridge in the world, is then taken as an example for this investigation. A three-dimensional finite element model of the bridge is established in ABAQUS, and the LANCZOS eigenvalue solver is employed to calculate the structural dynamic characteristics. Traveling wave effect on seismic responses of these long-span triple-tower suspension bridges is investigated. Envelopes of seismic shear force and moment in the longitudinal direction along the three towers, relative displacements between the towers and the girder, and reaction forces at the bottoms of the three towers under different apparent wave velocities are calculated and presented in detail. The results show that the effect of apparent wave velocity on the seismic responses of triple-tower suspension bridge fluctuates when the velocity is lower than 2000 m/s, and the effects turn stable when the velocity becomes larger. In addition, the effects of traveling wave are closely related to spectral characteristics and propagation direction of the seismic wave, and seismic responses of components closer to the source are relatively larger. Therefore, reliable estimation of the seismic input and apparent wave velocity according to the characteristics of the bridge site are significant for accurate prediction of seismic responses. This study provides critical reference for seismic analysis and design of long-span triple-tower suspension bridges.

  16. Non-periodic homogenization of 3-D elastic media for the seismic wave equation

    Science.gov (United States)

    Cupillard, Paul; Capdeville, Yann

    2018-05-01

    Because seismic waves have a limited frequency spectrum, the velocity structure of the Earth that can be extracted from seismic records has a limited resolution. As a consequence, one obtains smooth images from waveform inversion, although the Earth holds discontinuities and small scales of various natures. Within the last decade, the non-periodic homogenization method shed light on how seismic waves interact with small geological heterogeneities and `see' upscaled properties. This theory enables us to compute long-wave equivalent density and elastic coefficients of any media, with no constraint on the size, the shape and the contrast of the heterogeneities. In particular, the homogenization leads to the apparent, structure-induced anisotropy. In this paper, we implement this method in 3-D and show 3-D tests for the very first time. The non-periodic homogenization relies on an asymptotic expansion of the displacement and the stress involved in the elastic wave equation. Limiting ourselves to the order 0, we show that the practical computation of an upscaled elastic tensor basically requires (i) to solve an elastostatic problem and (ii) to low-pass filter the strain and the stress associated with the obtained solution. The elastostatic problem consists in finding the displacements due to local unit strains acting in all directions within the medium to upscale. This is solved using a parallel, highly optimized finite-element code. As for the filtering, we rely on the finite-element quadrature to perform the convolution in the space domain. We end up with an efficient numerical tool that we apply on various 3-D models to test the accuracy and the benefit of the homogenization. In the case of a finely layered model, our method agrees with results derived from Backus. In a more challenging model composed by a million of small cubes, waveforms computed in the homogenized medium fit reference waveforms very well. Both direct phases and complex diffracted waves are

  17. Array processing for seismic surface waves

    Energy Technology Data Exchange (ETDEWEB)

    Marano, S.

    2013-07-01

    This dissertation submitted to the Swiss Federal Institute of Technology ETH in Zurich takes a look at the analysis of surface wave properties which allows geophysicists to gain insight into the structure of the subsoil, thus avoiding more expensive invasive techniques such as borehole drilling. This thesis aims at improving signal processing techniques for the analysis of surface waves in various directions. One main contribution of this work is the development of a method for the analysis of seismic surface waves. The method also deals with the simultaneous presence of multiple waves. Several computational approaches to minimize costs are presented and compared. Finally, numerical experiments that verify the effectiveness of the proposed cost function and resulting array geometry designs are presented. These lead to greatly improved estimation performance in comparison to arbitrary array geometries.

  18. Array processing for seismic surface waves

    International Nuclear Information System (INIS)

    Marano, S.

    2013-01-01

    This dissertation submitted to the Swiss Federal Institute of Technology ETH in Zurich takes a look at the analysis of surface wave properties which allows geophysicists to gain insight into the structure of the subsoil, thus avoiding more expensive invasive techniques such as borehole drilling. This thesis aims at improving signal processing techniques for the analysis of surface waves in various directions. One main contribution of this work is the development of a method for the analysis of seismic surface waves. The method also deals with the simultaneous presence of multiple waves. Several computational approaches to minimize costs are presented and compared. Finally, numerical experiments that verify the effectiveness of the proposed cost function and resulting array geometry designs are presented. These lead to greatly improved estimation performance in comparison to arbitrary array geometries

  19. AECB workshop on seismic hazard assessment in Southern Ontario. Recorded proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    A workshop on seismic hazard assessment in southern Ontario was conducted on June 19-21, 1995. The purpose of the workshop was to review available geological and seismological data which could affect earthquake occurrence in southern Ontario and to develop a consensus on approaches that should be adopted for characterization of seismic hazard. The workshop was structured in technical sessions to focus presentations and discussions on four technical issues relevant to seismic hazard in southern Ontario, as follows: The importance of geological and geophysical observations for the determination of seismic sources; Methods and approaches which may be adopted for determining seismic sources based on integrated interpretations of geological and seismological information. Methods and data which should be used for characterizing the seismicity parameters of seismic sources. Methods for assessment of vibratory ground motion hazard. This document presents transcripts from recordings made of the presentations and discussion from the workshop. It will be noted, in some sections of the document, that the record is incomplete. This is due in part to recording equipment malfunction and in part due to the poor quality of recording obtained for certain periods.

  20. AECB workshop on seismic hazard assessment in Southern Ontario. Recorded proceedings

    International Nuclear Information System (INIS)

    1995-01-01

    A workshop on seismic hazard assessment in southern Ontario was conducted on June 19-21, 1995. The purpose of the workshop was to review available geological and seismological data which could affect earthquake occurrence in southern Ontario and to develop a consensus on approaches that should be adopted for characterization of seismic hazard. The workshop was structured in technical sessions to focus presentations and discussions on four technical issues relevant to seismic hazard in southern Ontario, as follows: The importance of geological and geophysical observations for the determination of seismic sources; Methods and approaches which may be adopted for determining seismic sources based on integrated interpretations of geological and seismological information. Methods and data which should be used for characterizing the seismicity parameters of seismic sources. Methods for assessment of vibratory ground motion hazard. This document presents transcripts from recordings made of the presentations and discussion from the workshop. It will be noted, in some sections of the document, that the record is incomplete. This is due in part to recording equipment malfunction and in part due to the poor quality of recording obtained for certain periods

  1. 2D seismic tomography of Somma- Vesuvius. Description of the experiment and preliminary results.

    Directory of Open Access Journals (Sweden)

    G. Milano

    1996-06-01

    Full Text Available A multidisciplinary project for the investigation of Mt. Vesuvius Structure was started in 1993. The core of the project is represented by a high resolution seismic tomography study by using controlled and natura1 sources. The main research objective is to investigate the feeding system of the vo1cano and to retrieve details of the upper crustal structure in the area. A first 2D using seismic experiment was performed in May 1994, with the aim of studing the feasibility of lIsing tomographic techniques for exploring the vo1cano interiors. Particularly, this experiment was designed to obtain information on the optimal sources-receivers configuration and on the depth extension of the volume sampled by shot-generated seismic waves. 66 three-component seismic stations and 16 single-component analogue instruments were installed by several Italian and French groups to record signals generated by three on-land, underground explosions. Sources and geophones were deployed along a 30-km NW-SE profile passing through the volcano crater. Receivers were placed at an average spacing of 250 m in the middle of the recording line and at 500 m outside. The arrival time data base was complemented by first P and S readings of micro earthquakes which occurred in the recent past within the volcano. The first arrival data set was preliminary used to determine the shallow structure of the volcano by applying Thurber's (1983 tomographic inversion technique. This analysis shows evidence for a high-velocity body which extends vertically from about 400 m below the crater down to at least 3000 m and for a shallow 300-500 m thick low-velocity cover which borders the edifice. Data from the distant shot show evidence for arrivals of deep reflected/converted phases and provide information on the deeper structure under the volcano. The results from the interpretation of 2D data are used for planning a 3D tomographic survey which will be cauied out in 1996.

  2. Determination of P – wave arrival time of acoustic events

    Directory of Open Access Journals (Sweden)

    Matěj Petružálek

    2010-10-01

    Full Text Available The new approach to the P-wave arrival time determination based on acoustic emission data from loading experiments is tested.The algorithm used in this paper is built on the STA/LTA function computed by a convolution that speeds up the computation processvery much. The picking process makes use of shifting of temporary onset until certain conditions are fulfill and as a main decisioncriterion on the threshold exceeding of the STA/LTA derivation function is used. The P-wave onset time is determined in a selectedinterval that corresponds to the theoretical propagation of elastic wave in the rock sample. Results obtained by our algorithm werecorrelated with data acquired manually and a high order statistic software as well.

  3. Burar seismic station: evaluation of seismic performance

    International Nuclear Information System (INIS)

    Ghica, Daniela; Popa, Mihaela

    2005-01-01

    of the arrival times picking and phase characterization. The data collected and recorded by the BURAR monitoring seismic station are an important source of information regarding local seismicity (mainly in the northern and western part of the Romanian territory). Source or path effects are better detected as well. (authors)

  4. Rayleigh Wave Group Velocity Tomography from Microseisms in the Acambay Graben

    Science.gov (United States)

    Valderrama Membrillo, S.; Aguirre, J.; Zuñiga-Davila, R.; Iglesias, A.

    2017-12-01

    The Acambay graben is one of the most outstanding structures of the Trans-Mexican Volcanic Belt. The Acambay graben has a length of 80km and 15 to 18 km wide and reaches a maximum height of 400 m in its central part. We obtained the group velocity seismic tomography for the Acamaby graben for three different frequencies (f = 0.1, 0.2 and 0.3 Hz). The graben was divided into 6x6 km cells for the tomography and covered a total area of 1008 km2. Seismic noise data from 10 broadband seismic stations near the Acambay graben were used to extract the surface wave arrival-times between all station pairs. The Green's function was recovered in each stations pair by cross-correlation technique. This technique was applied to seismic recordings collected on the vertical component of 10 broadband stations for a continuous recording period of 5 months. Data processing consisted of removing instrumental response, mean, and trend. After that, we applied time domain normalization, a spectral whitening and applied band-pas filtering of 0.1 to 1 Hz. There are shallow studies of the Acambay graben. But little is known of the distribution of deep graben structures. This study estimated the surface wave velocity deep structure. The structures at the frequency 0.3 Hz indicate a lower depth than the remaining frequencies. The result for this frequency show consistencies with previous studies of gravimetry and resistivity, also defines the fault system of Temascalcingo.

  5. Acoustic signature of thunder from seismic records

    Science.gov (United States)

    Kappus, Mary E.; Vernon, Frank L.

    1991-06-01

    Thunder, the sound wave through the air associated with lightning, transfers sufficient energy to the ground to trigger seismometers set to record regional earthquakes. The acoustic signature recorded on seismometers, in the form of ground velocity as a function of time, contains the same type features as pressure variations recorded with microphones in air. At a seismic station in Kislovodsk, USSR, a nearly direct lightning strike caused electronic failure of borehole instruments while leaving a brief impulsive acoustic signature on the surface instruments. The peak frequency of 25-55 Hz is consistent with previously published values for cloud-to-ground lightning strikes, but spectra from this station are contaminated by very strong wind noise in this band. A thunderstorm near a similar station in Karasu triggered more than a dozen records of individual lightning strikes during a 2-hour period. The spectra for these events are fairly broadband, with peaks at low frequencies, varying from 6 to 13 Hz. The spectra were all computed by multitaper analysis, which deals appropriately with the nonstationary thunder signal. These independent measurements of low-frequency peaks corroborate the occasional occurrences in traditional microphone records, but a theory concerning the physical mechanism to account for them is still in question. Examined separately, the individual claps in each record have similar frequency distributions, discounting a need for multiple mechanisms to explain different phases of the thunder sequence. Particle motion, determined from polarization analysis of the three-component records, is predominantly vertical downward, with smaller horizontal components indicative of the direction to the lightning bolt. In three of the records the azimuth to the lightning bolt changes with time, confirming a significant horizontal component to the lightning channel itself.

  6. Local Seismicity Recorded by ChilePEPPER: Implications for Dynamic Accretionary Prism Response and Long-term Prism Evolution

    Science.gov (United States)

    de Moor, A.; Trehu, A. M.; Tryon, M. D.

    2015-12-01

    To investigate the dynamic response of the outer accretionary wedge updip from the patch of greatest slip during the Mw8.8 2010 Maule earthquake, 10 Ocean Bottom Seismometers (OBS) were deployed from May 2012 to March 2013 in a small array with an inter-instrument spacing of ~12 km . Nine instruments were recovered, with 4 recording data on 3 intermediate-band 3-component seismometers and a differential pressure gauge and 5 recording data from absolute pressure gauges. [note: All instruments were also equipped with a fluid flow meter sensitive to flow rates as low as 0.0001 cm/yr in or out of the sediments. However, no flow signal was detected.] Here we present hypocenters for 569 local events that have S-P times less than 17 seconds (i.e. within ~125 km of the array) using hand-picked arrival times and a 1D velocity model derived from a 2D seismic refraction profile through the region (Moscoso et al 2011, EPSL). We analyze the distribution of seismicity in the context of published slip models, ChilePEPPER high-resolution seismic reflection data, critical taper analysis done by Cubas et al 2013 (EPSL), and offshore gravity data. The data show distinct segmentation within the outer prism. The northern section of the study area is characterized by a lack of seismicity, accretion of nearly all incoming sediment and a prism at critical taper. In contrast, abundant seismicity, significant sediment underthrusting at the deformation front and a prism below critical taper angle characterize the southern part of the study area. Both coseismic slip and post-rupture local seismicity can be related to density anomalies within the upper plate as revealed by free air gravity data corrected for the effects of bathymetry and the subducting plate. [ChilePEPPER - Project Evaluating Prism Post-Earthquake Response

  7. Fast Estimation of Epicentral Distance and Magnitude from a Single Three Component Seismic Station Using Machine Learning Techniques

    Science.gov (United States)

    Ochoa Gutierrez, L. H.; Niño, L. F.; Vargas-Jimenez, C. A.

    2013-05-01

    To minimize adverse effects originated by high magnitude earthquakes, early warning has become a powerful tool to anticipate a seismic wave arrival to an specific location, bringing opportune information to people and government agencies to initiate a fast response. To do this, a very fast and accurate characterization of the event must be done but this process is often made using seismograms recorded in at least four stations where processing time is usually greater than the wave arrival time to the interest area, mainly in seismological coarse networks. A faster process can be done if only one three component seismic station, the closest unsaturated station with respect to the epicenter, is used. Here, we present a Support Vector Regression algorithm which calculates Magnitude and Epicentral Distance using only five seconds of signal since P wave onset. This algorithm was trained with 36 records of historical earthquakes, where the input included regression parameters of an exponential function estimated by least squares, of the waveform envelope and the maximum value of the observed waveform for each component in a single station. A ten-fold Cross Validation was applied for a Normalized Polynomial Kernel obtaining the mean absolute error for different exponents and complexity parameters. The Magnitude could be estimated with 0.16 units of mean absolute error and the distance with an error of 7.5 km for distances within 60 to 120 km. This kind of algorithm is easy to implement in hardware and can be used directly in the field seismological sensor to make the broadcast of estimations of these values possible to generate fast decisions at seismological control centers, increasing the possibility of having an effective reaction.

  8. Upper mantle seismic velocity anomaly beneath southern Taiwan as revealed by teleseismic relative arrival times

    Science.gov (United States)

    Chen, Po-Fei; Huang, Bor-Shouh; Chiao, Ling-Yun

    2011-01-01

    Probing the lateral heterogeneity of the upper mantle seismic velocity structure beneath southern and central Taiwan is critical to understanding the local tectonics and orogeny. A linear broadband array that transects southern Taiwan, together with carefully selected teleseismic sources with the right azimuth provides useful constraints. They are capable of differentiating the lateral heterogeneity along the profile with systematic coverage of ray paths. We implement a scheme based on the genetic algorithm to simultaneously determine the relative delayed times of the teleseismic first arrivals of array data. The resulting patterns of the delayed times systematically vary as a function of the incident angle. Ray tracing attributes the observed variations to a high velocity anomaly dipping east in the mantle beneath the southeast of Taiwan. Combining the ray tracing analysis and a pseudo-spectral method to solve the 2-D wave propagations, we determine the extent of the anomaly that best fits the observations via the forward grid search. The east-dipping fast anomaly in the upper mantle beneath the southeast of Taiwan agrees with the results from several previous studies and indicates that the nature of the local ongoing arc-continent collision is likely characterized by the thin-skinned style.

  9. A seismic refraction and wide-angle reflection exploration in 2002 on the Mizuho Plateau, East Antarctica-Outline of observations (JARE-43-

    Directory of Open Access Journals (Sweden)

    Hiroki Miyamachi

    2003-03-01

    Full Text Available A seismic refraction and wide-angle reflection exploration was successfully conducted along a profile crossing the JARE-41 seismic profile on the Mizuho Plateau, in East Antarctica, in the austral summer season of 2001-2002 (JARE-43. One hundred sixty-one seismic stations were temporarily installed along a profile about 151 km long and seven large shots with about 700 kg of dynamite were fired. In addition, one shot with charge size of 20 kg was also arranged along the profile. The obtained seismic records show the clear onsets of the first arrivals at distances of less than 100 km from each large shot. In particular, seismic waves traveling through the ice sheet and dispersed surface waves were clearly observed. Some later reflection phases were also detected. The obtained first travel time data show that the ice sheet is a two-layered structure consisting of an upper layer with a P wave velocity of 2.7-2.9 km/s and a lower layer of 3.7-3.9 km/s. The thickness of the upper layer is estimated to be about 36-45 m. The apparent velocity in the basement rock just beneath the ice sheet is 6.1-6.2 km/s in the central and southern parts of the profile and almost 5.9 km/s in the northern part. This report describes basic outlines of the exploration and the obtained seismic data.

  10. Locating scatterers while drilling using seismic noise due to tunnel boring machine

    Science.gov (United States)

    Harmankaya, U.; Kaslilar, A.; Wapenaar, K.; Draganov, D.

    2018-05-01

    Unexpected geological structures can cause safety and economic risks during underground excavation. Therefore, predicting possible geological threats while drilling a tunnel is important for operational safety and for preventing expensive standstills. Subsurface information for tunneling is provided by exploratory wells and by surface geological and geophysical investigations, which are limited by location and resolution, respectively. For detailed information about the structures ahead of the tunnel face, geophysical methods are applied during the tunnel-drilling activity. We present a method inspired by seismic interferometry and ambient-noise correlation that can be used for detecting scatterers, such as boulders and cavities, ahead of a tunnel while drilling. A similar method has been proposed for active-source seismic data and validated using laboratory and field data. Here, we propose to utilize the seismic noise generated by a Tunnel Boring Machine (TBM), and recorded at the surface. We explain our method at the hand of data from finite-difference modelling of noise-source wave propagation in a medium where scatterers are present. Using the modelled noise records, we apply cross-correlation to obtain correlation gathers. After isolating the scattered arrivals in these gathers, we cross-correlate again and invert for the correlated traveltime to locate scatterers. We show the potential of the method for locating the scatterers while drilling using noise records due to TBM.

  11. Multiple Seismic Array Observations for Tracing Deep Tremor Activity in Western Shikoku, Japan

    Science.gov (United States)

    Takeda, T.; Matsuzawa, T.; Shiomi, K.; Obara, K.

    2011-12-01

    Deep non-volcanic tremors become very active during episodic slow-slip events in western Japan and Cascadia. The episodic tremor and slow-slip events in western Shikoku, Japan, occur at a typical interval of 6 months. Recently, it has been reported that tremor migration activity is complex and shows different migrating directions depending on time scales (Ghosh et al., 2010). Such characteristics of tremor are important to understand the mechanism of tremor and the relationship between tremor and SSEs. However it is difficult to determine the location of tremors with high accuracy because tremors show faint signals and make the identification of P/S-wave arrivals difficult. Seismic array analysis is useful to evaluate tremor activity, especially to estimate the arrival direction of seismic energy (e.g. Ueno et al., 2010, Ghosh et al., 2010), as it can distinguish multiple tremor sources occurring simultaneously. Here, we have conducted seismic array observation and analyzed seismic data during tremor activity by applying the MUSIC method to trace tremor location and its migration in western Shikoku. We have installed five seismic arrays in western Shikoku since January 2011. One of the arrays contains 30 stations with 3-component seismometers with a natural frequency of 2 Hz (Type-L array). The array aperture size is 2 km and the mean interval between stations is approximately 200 m. Each of the other arrays (Type-S array) contains 9 seismic stations with the same type of seismometers of the Type-L array, and is deployed surrounding the Type-L array. The small array aperture size is 800 m and its mean station interval is approximately 150 m. All array stations have recorded continuous waveform data at a sampling of 200Hz. In May 2011, an episodic tremor and a short-term slip event occurred for the first time during the observation period. We could retrieve the array seismic data during the whole tremor episode. The analysis of data from the type-L array confirms

  12. Cancellation of spurious arrivals in Green's function extraction and the generalized optical theorem

    Science.gov (United States)

    Snieder, R.; Van Wijk, K.; Haney, M.; Calvert, R.

    2008-01-01

    The extraction of the Green's function by cross correlation of waves recorded at two receivers nowadays finds much application. We show that for an arbitrary small scatterer, the cross terms of scattered waves give an unphysical wave with an arrival time that is independent of the source position. This constitutes an apparent inconsistency because theory predicts that such spurious arrivals do not arise, after integration over a complete source aperture. This puzzling inconsistency can be resolved for an arbitrary scatterer by integrating the contribution of all sources in the stationary phase approximation to show that the stationary phase contributions to the source integral cancel the spurious arrival by virtue of the generalized optical theorem. This work constitutes an alternative derivation of this theorem. When the source aperture is incomplete, the spurious arrival is not canceled and could be misinterpreted to be part of the Green's function. We give an example of how spurious arrivals provide information about the medium complementary to that given by the direct and scattered waves; the spurious waves can thus potentially be used to better constrain the medium. ?? 2008 The American Physical Society.

  13. MIGRATION OF SEISMIC AND VOLCANIC ACTIVITY AS DISPLAY OF WAVE GEODYNAMIC PROCESS

    Directory of Open Access Journals (Sweden)

    Alexander V. Vikulin

    2012-01-01

    Full Text Available Publications about the earthquake foci migration have been reviewed. An important result of such studies is establishment of wave nature of seismic activity migration that is manifested by two types of rotational waves; such waves are responsible for interaction between earthquakes foci and propagate with different velocities. Waves determining long-range interaction of earthquake foci are classified as Type 1; their limiting velocities range from 1 to 10 cm/s. Waves determining short-range interaction of foreshocks and aftershocks of individual earthquakes are classified as Type 2; their velocities range from 1 to 10 km/s. According to the classification described in [Bykov, 2005], these two types of migration waves correspond to slow and fast tectonic waves. The most complete data on earthquakes (for a period over 4.1 million of years and volcanic eruptions (for 12 thousand years of the planet are consolidated in a unified systematic format and analyzed by methods developed by the authors. For the Pacific margin, Alpine-Himalayan belt and the Mid-Atlantic Ridge, which are the three most active zones of the Earth, new patterns of spatial and temporal distribution of seismic and volcanic activity are revealed; they correspond to Type 1 of rotational waves. The wave nature of the migration of seismic and volcanic activity is confirmed. A new approach to solving problems of geodynamics is proposed with application of the data on migration of seismic and volcanic activity, which are consolidated in this study, in combination with data on velocities of movement of tectonic plate boundaries. This approach is based on the concept of integration of seismic, volcanic and tectonic processes that develop in the block geomedium and interact with each other through rotating waves with a symmetric stress tensor. The data obtained in this study give grounds to suggest that a geodynamic value, that is mechanically analogous to an impulse

  14. Seismic prediction ahead of tunnel constructions

    Science.gov (United States)

    Jetschny, S.; Bohlen, T.; Nil, D. D.; Giese, R.

    2007-12-01

    To increase safety and efficiency of tunnel constructions, online seismic exploration ahead of a tunnel can become a valuable tool. Within the \\it OnSite project founded by the BMBF (German Ministry of Education and Research) within \\it GeoTechnologien a new forward looking seismic imaging technique is developed to e.g. determine weak and water bearing zones ahead of the constructions. Our approach is based on the excitation and registration of \\it tunnel surface waves. These waves are excited at the tunnel face behind the cutter head of a tunnel boring machine and travel into drilling direction. Arriving at the front face they generate body waves (mainly S-waves) propagating further ahead. Reflected S-waves are back- converted into tunnel surface waves. For a theoretical description of the conversion process and for finding optimal acquisition geometries it is of importance to study the propagation characteristics of tunnel surface waves. 3D seismic finite difference modeling and analytic solutions of the wave equation in cylindric coordinates revealed that at higher frequencies, i.e. if the tunnel diameter is significantly larger than the wavelength of S-waves, these surface waves can be regarded as Rayleigh-waves circulating the tunnel. For smaller frequencies, i.e. when the S-wavelength approaches the tunnel diameter, the propagation characteristics of these surface waves are then similar to S- waves. Field measurements performed by the GeoForschungsZentrum Potsdam, Germany at the Gotthard Base Tunnel (Switzerland) show both effects, i.e. the propagation of Rayleigh- and body-wave like waves along the tunnel. To enhance our understanding of the excitation and propagation characteristics of tunnel surface waves the transition of Rayleigh to tube-waves waves is investigated both analytically and by numerical simulations.

  15. High-resolution seismic data regularization and wavefield separation

    Science.gov (United States)

    Cao, Aimin; Stump, Brian; DeShon, Heather

    2018-04-01

    We present a new algorithm, non-equispaced fast antileakage Fourier transform (NFALFT), for irregularly sampled seismic data regularization. Synthetic tests from 1-D to 5-D show that the algorithm may efficiently remove leaked energy in the frequency wavenumber domain, and its corresponding regularization process is accurate and fast. Taking advantage of the NFALFT algorithm, we suggest a new method (wavefield separation) for the detection of the Earth's inner core shear wave with irregularly distributed seismic arrays or networks. All interfering seismic phases that propagate along the minor arc are removed from the time window around the PKJKP arrival. The NFALFT algorithm is developed for seismic data, but may also be used for other irregularly sampled temporal or spatial data processing.

  16. Methods for use in detecting seismic waves in a borehole

    Science.gov (United States)

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2007-02-20

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  17. Precise seismic-wave velocity atop Earth's core: No evidence for outer-core stratification

    Science.gov (United States)

    Alexandrakis, Catherine; Eaton, David W.

    2010-05-01

    Earth's outer core is composed of liquid Fe and Ni alloyed with a ˜10% fraction of light elements such as O, S, or Si. Secular cooling and compositional buoyancy drive vigorous convection that sustains the geodynamo, but critical details of light-element composition and thermal regime remain uncertain. Seismic velocities can provide important observational constraints on these parameters, but global reference models such as Preliminary Reference Earth Model ( PREM), IASP91 and AK135 exhibit significant discrepancies in the outermost ˜200 km of the core. Here, we apply an Empirical Transfer Function method to obtain precise arrival times for SmKS waves, a whispering-gallery mode that propagates near the underside of the core-mantle boundary. Models that fit our data are all characterized by seismic velocities and depth gradients in the outermost 200 km of the core that correspond best with PREM. This similarity to PREM, which has a smooth velocity profile that satisfies the adiabatic Adams and Williamson equation, argues against the presence of an anomalous layer of light material near the top of the core as suggested in some previous studies. A new model, AE09, is proposed as a slight modification to PREM for use as a reference model of the outermost core.

  18. Finite-Frequency Seismic Tomography of Body Waves and Surface Waves from Ambient Seismic Noise: Crustal and Mantle Structure Beneath Eastern Eurasia

    National Research Council Canada - National Science Library

    Ren, Yong; Zhang, Wei; Yang, Ting; Shen, Yang; Yang, Xiaoping

    2008-01-01

    To improve seismic calibration for nuclear explosion monitoring, we use 3D sensitivity kernels of finite-frequency body and surface waves to develop models of the crustal and mantle structures beneath eastern Eurasia...

  19. SeismoDome: Sonic and visual representation of earthquakes and seismic waves in the planetarium

    Science.gov (United States)

    Holtzman, B. K.; Candler, J.; Repetto, D.; Pratt, M. J.; Paté, A.; Turk, M.; Gualtieri, L.; Peter, D. B.; Trakinski, V.; Ebel, D. S. S.; Gossmann, J.; Lem, N.

    2017-12-01

    Since 2014, we have produced four "Seismodome" public programs in the Hayden Planetarium at the American Museum of Natural History in New York City. To teach the general public about the dynamics of the Earth, we use a range of seismic data (seismicity catalogs, surface and body wave fields, ambient noise, free oscillations) to generate movies and sounds conveying aspects of the physics of earthquakes and seismic waves. The narrative aims to stretch people's sense of time and scale, starting with 2 billion years of convection, then zooming in seismicity over days to twenty years at different length scales, to hours of global seismic wave propagation, all compressed to minute long movies. To optimize the experience in the planetarium, the 180-degree fisheye screen corresponds directly to the surface of the Earth, such that the audience is inside the planet. The program consists of three main elements (1) Using sonified and animated seismicity catalogs, comparison of several years of earthquakes on different plate boundaries conveys the dramatic differences in their dynamics and the nature of great and "normal" earthquakes. (2) Animations of USArray data (based on "Ground Motion Visualizations" methods from IRIS but in 3D, with added sound) convey the basic observations of seismic wave fields, with which we raise questions about what they tell us about earthquake physics and the Earth's interior structure. (3) Movies of spectral element simulations of global seismic wave fields synchronized with sonified natural data push these questions further, especially when viewed from the interior of the planet. Other elements include (4) sounds of the global ambient noise field coupled to movies of mean ocean wave height (related to the noise source) and (5) three months of free oscillations / normal modes ringing after the Tohoku earthquake. We use and develop a wide range of sonification and animation methods, written mostly in python. Flat-screen versions of these movies

  20. Upper mantle seismic structure beneath southwest Africa from finite-frequency P- and S-wave tomography

    DEFF Research Database (Denmark)

    Soliman, Mohammad Youssof Ahmad; Yuan, Xiaohui; Tilmann, Frederik

    2015-01-01

    We present a 3D high-resolution seismic model of the southwestern Africa region from teleseismic tomographic inversion of the P- and S- wave data recorded by the amphibious WALPASS network. We used 40 temporary stations in southwestern Africa with records for a period of 2 years (the OBS operated...... for 1 year), between November 2010 and November 2012. The array covers a surface area of approximately 600 by 1200 km and is located at the intersection of the Walvis Ridge, the continental margin of northern Namibia, and extends into the Congo craton. Major questions that need to be understood......, probably related to surficial suture zones and the presence of fertile material. A shallower depth extent of the lithospheric plate of ∼100 km was observed beneath the ocean, consistent with plate-cooling models. In addition to tomographic images, the seismic anisotropy measurements within the upper mantle...

  1. A linear motor as seismic horizontal vibrator

    NARCIS (Netherlands)

    Drijkoningen, G.; Veltman, A.; Hendrix, W.H.A.; Brouwer, J.; Hemstede, A.

    2006-01-01

    In this paper we propose to use the concept of linear synchronous motors to act as a seismic shear-wave vibratory source. We show that a linear motor, even with a design that is not focussed on application of seismic surveying, gives seismic records that are convincing and comparable with an

  2. Seismic Imaging of the Source Physics Experiment Site with the Large-N Seismic Array

    Science.gov (United States)

    Chen, T.; Snelson, C. M.; Mellors, R. J.

    2017-12-01

    The Source Physics Experiment (SPE) consists of a series of chemical explosions at the Nevada National Security Site. The goal of SPE is to understand seismic wave generation and propagation from these explosions. To achieve this goal, we need an accurate geophysical model of the SPE site. A Large-N seismic array that was deployed at the SPE site during one of the chemical explosions (SPE-5) helps us construct high-resolution local geophysical model. The Large-N seismic array consists of 996 geophones, and covers an area of approximately 2 × 2.5 km. The array is located in the northern end of the Yucca Flat basin, at a transition from Climax Stock (granite) to Yucca Flat (alluvium). In addition to the SPE-5 explosion, the Large-N array also recorded 53 weight drops. Using the Large-N seismic array recordings, we perform body wave and surface wave velocity analysis, and obtain 3D seismic imaging of the SPE site for the top crust of approximately 1 km. The imaging results show clear variation of geophysical parameter with local geological structures, including heterogeneous weathering layer and various rock types. The results of this work are being incorporated in the larger 3D modeling effort of the SPE program to validate the predictive models developed for the site.

  3. P-wave and surface wave survey for permafrost analysis in alpine regions

    Science.gov (United States)

    Godio, A.; Socco, L. V.; Garofalo, F.; Arato, A.; Théodule, A.

    2012-04-01

    of seismic data involved the tomographic interpretation of traveltime P-wave first arrivals by considering the continuous refraction of the ray-paths. Several surface-wave dispersion curves were extracted in f-k domain along the seismic line and then inverted through a laterally constrained inversion algorithm to obtain a pseudo-2D section of S-wave velocity. Georadar investigation (about 2 km of georadar lines in the first site) confirmed the presence both of fine and coarse sediments in the uppermost layer; the seismic data allowed the moraines to be characterized down to 20-25 meters of depth. At the elevation of 2700 m asl, we observed a general decrease of the P-wave traveltimes collected in November, when the near surface layer was in frozen condition, respect to the data acquired in June. The frozen layer is responsible of the inversion of P-wave velocity with depth; the higher velocity layer (frozen) cannot be detected in the tomographic interpretation of refraction tomographic of the P-wave arrivals. Compressional wave velocity ranges from 700 m/s on the uppermost part, to 2000-2500 m/s in the internal part of the sediments reaching values higher than 5000 m/s at depth about 20 m. The analysis of surface wave permitted to estimate a slight increase from summer to winter of the S-wave velocity, in the depth range between 0 to 5 m.

  4. Joint inversion of seismic and gravity data for imaging seismic velocity structure of the crust and upper mantle beneath Utah, United States

    Science.gov (United States)

    Syracuse, E. M.; Zhang, H.; Maceira, M.

    2017-10-01

    We present a method for using any combination of body wave arrival time measurements, surface wave dispersion observations, and gravity data to simultaneously invert for three-dimensional P- and S-wave velocity models. The simultaneous use of disparate data types takes advantage of the differing sensitivities of each data type, resulting in a comprehensive and higher resolution three-dimensional geophysical model. In a case study for Utah, we combine body wave first arrivals mainly from the USArray Transportable Array, Rayleigh wave group and phase velocity dispersion data, and Bouguer gravity anomalies to invert for crustal and upper mantle structure of the region. Results show clear delineations, visible in both P- and S-wave velocities, between the three main tectonic provinces in the region. Without the inclusion of the surface wave and gravity constraints, these delineations are less clear, particularly for S-wave velocities. Indeed, checkerboard tests confirm that the inclusion of the additional datasets dramatically improves S-wave velocity recovery, with more subtle improvements to P-wave velocity recovery, demonstrating the strength of the method in successfully recovering seismic velocity structure from multiple types of constraints.

  5. Models for seismic wave propagation in periodically layered porous media

    NARCIS (Netherlands)

    Kudarova, A.; Van Dalen, K.N.; Drijkoningen, G.G.

    2014-01-01

    Several models are discussed for seismic wave propagation in periodically layered poroelastic media where layers represent mesoscopic-scale heterogeneities that are larger than the pore and grain sizes but smaller than the wavelength. The layers behave according to Biot’s theory. Wave propagation

  6. Seismic demand evaluation based on actual earthquake records

    International Nuclear Information System (INIS)

    Jhaveri, D.P.; Czarnecki, R.M.; Kassawara, R.P.; Singh, A.

    1990-01-01

    Seismic input in the form of floor response spectra (FRS) are needed in seismic design and evaluation of equipment in nuclear power plants (NPPs). These are typically determined by analytical procedures using mathematical models of NPP structures and are known to be very conservative. Recorded earthquake data, in the form of acceleration response spectra computed from the recorded acceleration time histories, have been collected from NPP structures located in seismically active areas. Statistics of the ratios, or amplification factors, between the FRS at typical floors and the acceleration response spectra at the basemat or in the freefield, are obtained for typical NPP structures. These amplification factors are typically in terms of the peak spectral and zero period values, as well as a function of frequency. The average + 1σ values of these ratios, for those cases where enough data are available, are proposed to be used as limits to analytically calculated FRS, or for construction of simplified FRS for determining seismic input or demand in equipment qualification. (orig.)

  7. Assessment of seismic wave effects on soil-structure interaction

    International Nuclear Information System (INIS)

    Bernreuter, D.L.

    1977-01-01

    One of the most common hypotheses made for soil-structure interaction analyses is that the earthquake input motion is identical at all points beneath the structure. Several papers have recently shown that this assumption may be overly conservative and that the effect of wave passage is extremely important. These studies typically employ a relatively simple model, namely, the basemat is represented by a rectangular rigid foundation resting on top of the soil and connected to the soil by a continuously distributed set of soil springs. The seismic input is applied at the base of the soil springs and is assumed to be traveling at a constant wave velocity across the site. It ispossible to improve on the soil/structure model by use of finite element methods; however, little is known about how to model the input seismic energy and typically a simple travelling wave is used. In this paper, the author examines the available data to determine: (i) the appropriate wave velocity to use, and (ii) if the currently availble analytic models are adequate. (Auth.)

  8. Automatic Event Detection and Picking of P, S Seismic Phases for Earthquake Early Warning: A Case Study of the 2008 Wenchuan Earthquake

    Science.gov (United States)

    WANG, Z.; Zhao, B.

    2015-12-01

    We develop an automatic seismic phase arrival detection and picking algorithm for the impending earthquakes occurred with diverse focal mechanisms and depths. The polarization analysis of the three-component seismograms is utilized to distinguish between P and S waves through a sliding time window. When applying the short term average/long term average (STA/LTA) method to the polarized data, we also construct a new characteristics function that can sensitively reflect the changes of signals' amplitude and frequency, providing a better detection for the phase arrival. Then an improved combination method of the higher order statistics and the Akaike information criteria (AIC) picker is applied to the refined signal to lock on the arrival time with a higher degree of accuracy. We test our techniques to the aftershocks of the Ms8.0 Wenchuan earthquake, where hundreds of three-component acceleration records with magnitudes of 4.0 to 6.4 are treated. In comparison to the analyst picks, the results of the proposed detection algorithms are shown to perform well and can be applied from a single instrument within a network of stations for the large seismic events in the Earthquake Early Warning System (EEWS).

  9. Weight factors in diffraction transformation of seismic recordings

    Energy Technology Data Exchange (ETDEWEB)

    Bulatov, M.G.; Lyevyy, N.V.; Telegin, A.N.

    1980-01-01

    In diffraction transformation of seismic recordings made using amplitude regulators, there is a distortion of the dynamics of the result-producing depth log. To eliminate distortions, it is suggested that weight factors be used. A formula is given for computing the factors, and the effectiveness of their use is confirmed using test and production seismic materials.

  10. The imprint of crustal density heterogeneities on regional seismic wave propagation

    NARCIS (Netherlands)

    Plonka, A.I.; Blom, N.A.; Fichtner, A.

    2016-01-01

    Density heterogeneities are the source of mass transport in the Earth. However, the 3-D density structure remains poorly constrained because travel times of seismic waves are only weakly sensitive to density. Inspired by recent developments in seismic waveform tomography, we investigate whether the

  11. Seismic Interferometry of Cultural Noise: Body Waves Extracted from Auto and Train Traffic

    Science.gov (United States)

    Quiros, D. A.; Brown, L. D.; Kim, D.

    2014-12-01

    Here we report results of two experiments designed to evaluate the utility of anthropogenic noise as a source for generating body waves via interferometry. In particular we address the suggestion that traffic noise might prove effective at producing P and S waves at frequencies and amplitudes appropriate for crustal scale refraction and reflection imaging. The first experiment recorded routine traffic for about 10 days along a straight stretch of a rural highway between the towns of Elmira and Ithaca in upstate New York. The array was deployed along the highway using two different spacings: an inner segment with Δx ~ 25 m, bracketed between flanking segments with Δx ~ 100 m. In addition to strong surface waves, direct and reflected P waves were clearly apparent on most of the virtual shot gathers. These P-waves match the velocities of P-waves recorded from a conventional, small scale refraction survey carried out at the same site with a shotgun source and an engineering seismograph. The second experiment was located in the Rio Grande rift near Belen New Mexico, where relatively isolated train traffic was recorded for about 6 days parallel to a busy section of the BNRF railway that bisects New Mexico. Interferometric processing of the data produced virtual shot gathers with strong surface waves, as expected, but also linear arrivals that exhibit apparent velocities similar to those reported for the shallow Tertiary-Quaternary alluvium based on the original COCORP vibroseis surveys nearby. However the virtual shot gathers derived from the train sources are more complex that those obtained from the auto noise, which we suspect is due to the extended length of the train source relative to the spread length. Both experiments confirm that cultural noise can be used for subsurface imaging, though the cost effectiveness of this approach depends, among other factors, upon the total length of recording time needed to probe to depths of interest. They are both sources that

  12. Statistical distributions of earthquakes and related non-linear features in seismic waves

    International Nuclear Information System (INIS)

    Apostol, B.-F.

    2006-01-01

    A few basic facts in the science of the earthquakes are briefly reviewed. An accumulation, or growth, model is put forward for the focal mechanisms and the critical focal zone of the earthquakes, which relates the earthquake average recurrence time to the released seismic energy. The temporal statistical distribution for average recurrence time is introduced for earthquakes, and, on this basis, the Omori-type distribution in energy is derived, as well as the distribution in magnitude, by making use of the semi-empirical Gutenberg-Richter law relating seismic energy to earthquake magnitude. On geometric grounds, the accumulation model suggests the value r = 1/3 for the Omori parameter in the power-law of energy distribution, which leads to β = 1,17 for the coefficient in the Gutenberg-Richter recurrence law, in fair agreement with the statistical analysis of the empirical data. Making use of this value, the empirical Bath's law is discussed for the average magnitude of the aftershocks (which is 1.2 less than the magnitude of the main seismic shock), by assuming that the aftershocks are relaxation events of the seismic zone. The time distribution of the earthquakes with a fixed average recurrence time is also derived, the earthquake occurrence prediction is discussed by means of the average recurrence time and the seismicity rate, and application of this discussion to the seismic region Vrancea, Romania, is outlined. Finally, a special effect of non-linear behaviour of the seismic waves is discussed, by describing an exact solution derived recently for the elastic waves equation with cubic anharmonicities, its relevance, and its connection to the approximate quasi-plane waves picture. The properties of the seismic activity accompanying a main seismic shock, both like foreshocks and aftershocks, are relegated to forthcoming publications. (author)

  13. Seismically observed seiching in the Panama Canal

    Science.gov (United States)

    McNamara, D.E.; Ringler, A.T.; Hutt, C.R.; Gee, L.S.

    2011-01-01

    A large portion of the seismic noise spectrum is dominated by water wave energy coupled into the solid Earth. Distinct mechanisms of water wave induced ground motions are distinguished by their spectral content. For example, cultural noise is generally Panama Canal there is an additional source of long-period noise generated by standing water waves, seiches, induced by disturbances such as passing ships and wind pressure. We compare seismic waveforms to water level records and relate these observations to changes in local tilt and gravity due to an oscillating seiche. The methods and observations discussed in this paper provide a first step toward quantifying the impact of water inundation as recorded by seismometers. This type of quantified understanding of water inundation will help in future estimates of similar phenomena such as the seismic observations of tsunami impact. Copyright 2011 by the American Geophysical Union.

  14. Shear-wave velocity of marine sediments offshore Taiwan using ambient seismic noise

    Science.gov (United States)

    Lin, Yu-Tse; Lin, Jing-Yi; Kuo-Chen, Hao; Yeh, Yi-Chin; Cheng, Win-Bin

    2017-04-01

    Seismic ambient noise technology has many advantages over the traditional two-station method. The most important one is that noise is happening all the time and it can be widely and evenly distributed. Thus, the Green's Function of any station pair can be obtained through the data cross-correlation process. Many related studies have been performed to estimate the velocity structures based on the inland area. Only a few studies were reported for the marine area due to the relatively shorter recording time of ocean bottom seismometers (OBS) deployment and the high cost of the marine experiment. However, the understanding about the shear-wave velocity (Vs) of the marine sediments is very crucial for the hazard assessment related to submarine landslides, particularly with the growing of submarine resources exploration. In this study, we applied the ambient noise technique to four OBS seismic networks located offshore Taiwan in the aim of getting more information about the noise sources and having the preliminary estimation for the Vs of the marine sediments. Two of the seismic networks were deployed in the NE part of Taiwan, near the Ryukyu subduction system, whereas the others were in the SW area, on the continental margin rich in gas hydrate. Generally, ambient seismic noise could be associated with wind, ocean waves, rock fracturing and anthropogenic activity. In the southwestern Taiwan, the cross-correlation function obtained from two seismic networks indicate similar direction, suggestion that the source from the south part of the network could be the origin of the noise. However, the two networks in the northeastern Taiwan show various source direction, which could be caused by the abrupt change of bathymetry or the volcanic degassing effect frequently observed by the marine geophysical method in the area. The Vs determined from the dispersion curve shows a relatively higher value for the networks in the Okinawa Trough (OT) off NE Taiwan than that in the

  15. Body-wave seismic interferometry applied to earthquake- and storm-induced wavefield

    NARCIS (Netherlands)

    Ruigrok, E.N.

    2012-01-01

    Seismology is the study of the vibration of the Earth. Seismologists pay much attention to the main source of Earth vibration: earthquakes. But also other seismic sources, like mining blasts, ocean storms and windmills, are studied. All these sources induce seismic waves, which can eventually be

  16. Extension of Seismic Scanning Tunneling Macroscope to Elastic Waves

    KAUST Repository

    Tarhini, Ahmad; Guo, Bowen; Dutta, Gaurav; Schuster, Gerard T.

    2017-01-01

    The theory for the seismic scanning tunneling macroscope is extended from acoustic body waves to elastic body-wave propagation. We show that, similar to the acoustic case, near-field superresolution imaging from elastic body waves results from the O(1/R) term, where R is the distance between the source and near-field scatterer. The higher-order contributions R−n for n>1 are cancelled in the near-field region for a point source with normal stress.

  17. Extension of Seismic Scanning Tunneling Macroscope to Elastic Waves

    KAUST Repository

    Tarhini, Ahmad

    2017-11-06

    The theory for the seismic scanning tunneling macroscope is extended from acoustic body waves to elastic body-wave propagation. We show that, similar to the acoustic case, near-field superresolution imaging from elastic body waves results from the O(1/R) term, where R is the distance between the source and near-field scatterer. The higher-order contributions R−n for n>1 are cancelled in the near-field region for a point source with normal stress.

  18. Automatic first-arrival picking based on extended super-virtual interferometry with quality control procedure

    Science.gov (United States)

    An, Shengpei; Hu, Tianyue; Liu, Yimou; Peng, Gengxin; Liang, Xianghao

    2017-12-01

    Static correction is a crucial step of seismic data processing for onshore play, which frequently has a complex near-surface condition. The effectiveness of the static correction depends on an accurate determination of first-arrival traveltimes. However, it is difficult to accurately auto-pick the first arrivals for data with low signal-to-noise ratios (SNR), especially for those measured in the area of the complex near-surface. The technique of the super-virtual interferometry (SVI) has the potential to enhance the SNR of first arrivals. In this paper, we develop the extended SVI with (1) the application of the reverse correlation to improve the capability of SNR enhancement at near-offset, and (2) the usage of the multi-domain method to partially overcome the limitation of current method, given insufficient available source-receiver combinations. Compared to the standard SVI, the SNR enhancement of the extended SVI can be up to 40%. In addition, we propose a quality control procedure, which is based on the statistical characteristics of multichannel recordings of first arrivals. It can auto-correct the mispicks, which might be spurious events generated by the SVI. This procedure is very robust, highly automatic and it can accommodate large data in batches. Finally, we develop one automatic first-arrival picking method to combine the extended SVI and the quality control procedure. Both the synthetic and the field data examples demonstrate that the proposed method is able to accurately auto-pick first arrivals in seismic traces with low SNR. The quality of the stacked seismic sections obtained from this method is much better than those obtained from an auto-picking method, which is commonly employed by the commercial software.

  19. Spiral-shaped piezoelectric sensors for Lamb waves direction of arrival (DoA) estimation

    Science.gov (United States)

    De Marchi, L.; Testoni, N.; Marzani, A.

    2018-04-01

    A novel strategy to design piezoelectric sensors suited for direction of arrival (DoA) estimation of incoming Lamb waves is presented in this work. The designed sensor is composed by two piezoelectric patches (P1, P2) bonded on the structure to be inspected. In particular, by exploiting the Radon transform, the proposed procedure computes the shape of P2 given the shape of P1 so that the difference in time of arrival (DToA) of the Lamb waves at the two patches is linearly related to the DoA while being agnostic of the waveguide dispersion curves. With a dedicated processing procedure, the waveforms acquired from the two electrodes and digitized can be used to retrieve the DoA information. Numerical and experimental results show that DoA estimation performed by means of the proposed shaped transducers is extremely robust.

  20. Seismic wave extrapolation using lowrank symbol approximation

    KAUST Repository

    Fomel, Sergey

    2012-04-30

    We consider the problem of constructing a wave extrapolation operator in a variable and possibly anisotropic medium. Our construction involves Fourier transforms in space combined with the help of a lowrank approximation of the space-wavenumber wave-propagator matrix. A lowrank approximation implies selecting a small set of representative spatial locations and a small set of representative wavenumbers. We present a mathematical derivation of this method, a description of the lowrank approximation algorithm and numerical examples that confirm the validity of the proposed approach. Wave extrapolation using lowrank approximation can be applied to seismic imaging by reverse-time migration in 3D heterogeneous isotropic or anisotropic media. © 2012 European Association of Geoscientists & Engineers.

  1. 2D and 3D numerical modeling of seismic waves from explosion sources

    International Nuclear Information System (INIS)

    McLaughlin, K.L.; Stevens, J.L.; Barker, T.G.; Shkoller, B.; Day, S.M.

    1993-01-01

    Over the last decade, nonlinear and linear 2D axisymmetric finite difference codes have been used in conjunction with far-field seismic Green's functions to simulate seismic waves from a variety of sources. In this paper we briefly review some of the results and conclusions that have resulted from numerical simulations and explosion modeling in support of treaty verification research at S-CUBED in the last decade. We then describe in more detail the results from two recent projects. Our goal is to provide a flavor for the kinds of problems that can be examined with numerical methods for modeling excitation of seismic waves from explosions. Two classes of problems have been addressed; nonlinear and linear near-source interactions. In both classes of problems displacements and tractions are saved on a closed surface in the linear region and the representation theorem is used to propagate the seismic waves to the far-field

  2. Data-based diffraction kernels for surface waves from convolution and correlation processes through active seismic interferometry

    Science.gov (United States)

    Chmiel, Malgorzata; Roux, Philippe; Herrmann, Philippe; Rondeleux, Baptiste; Wathelet, Marc

    2018-05-01

    We investigated the construction of diffraction kernels for surface waves using two-point convolution and/or correlation from land active seismic data recorded in the context of exploration geophysics. The high density of controlled sources and receivers, combined with the application of the reciprocity principle, allows us to retrieve two-dimensional phase-oscillation diffraction kernels (DKs) of surface waves between any two source or receiver points in the medium at each frequency (up to 15 Hz, at least). These DKs are purely data-based as no model calculations and no synthetic data are needed. They naturally emerge from the interference patterns of the recorded wavefields projected on the dense array of sources and/or receivers. The DKs are used to obtain multi-mode dispersion relations of Rayleigh waves, from which near-surface shear velocity can be extracted. Using convolution versus correlation with a grid of active sources is an important step in understanding the physics of the retrieval of surface wave Green's functions. This provides the foundation for future studies based on noise sources or active sources with a sparse spatial distribution.

  3. ARRIVAL TIME DIFFERENCES BETWEEN GRAVITATIONAL WAVES AND ELECTROMAGNETIC SIGNALS DUE TO GRAVITATIONAL LENSING

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryuichi [Faculty of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561 (Japan)

    2017-01-20

    In this study we demonstrate that general relativity predicts arrival time differences between gravitational wave (GW) and electromagnetic (EM) signals caused by the wave effects in gravitational lensing. The GW signals can arrive earlier than the EM signals in some cases if the GW/EM signals have passed through a lens, even if both signals were emitted simultaneously by a source. GW wavelengths are much larger than EM wavelengths; therefore, the propagation of the GWs does not follow the laws of geometrical optics, including the Shapiro time delay, if the lens mass is less than approximately 10{sup 5} M {sub ⊙}( f /Hz){sup −1}, where f is the GW frequency. The arrival time difference can reach ∼0.1 s ( f /Hz){sup −1} if the signals have passed by a lens of mass ∼8000 M {sub ⊙}( f /Hz){sup −1} with the impact parameter smaller than the Einstein radius; therefore, it is more prominent for lower GW frequencies. For example, when a distant supermassive black hole binary (SMBHB) in a galactic center is lensed by an intervening galaxy, the time lag becomes of the order of 10 days. Future pulsar timing arrays including the Square Kilometre Array and X-ray detectors may detect several time lags by measuring the orbital phase differences between the GW/EM signals in the SMBHBs. Gravitational lensing imprints a characteristic modulation on a chirp waveform; therefore, we can deduce whether a measured arrival time lag arises from intrinsic source properties or gravitational lensing. Determination of arrival time differences would be extremely useful in multimessenger observations and tests of general relativity.

  4. An application of multiscale early arrival waveform inversion to shallow seismic data

    KAUST Repository

    Yu, Han; Hanafy, Sherif M.

    2014-01-01

    We estimate the near surface velocity distribution by applying multiscale early arrival waveform inversion (MEWI) to shallow seismic land data. This data set is collected at Wadi Qudaid in western Saudi Arabia with the purpose of characterizing the shallow subsurface for its water storage and reuse potential. To enhance the accuracy of MEWI, we correct for the attenuation effects with an estimated factor Q, and also extract a natural source wavelet from the data. We then applied MEWI to invert the processed data for tomograms on different scales starting from a traveltime tomogram as our initial velocity model. Results suggest that, compared to traveltime tomography, MEWI can generate a more highly resolved velocity tomogram from shallow seismic data by inverting its low-frequency components on coarse grids and its high-frequency components on fine grids. The estimated water table in the MEWI tomogram is generally consistent with, but 9% deeper than, the traveltime tomogram, showing that the water storage in this wadi might be less than expected from the traveltime tomogram. We believe that the more accurate MEWI tomogram will make an economically important difference in assessing the storage potential of this wadi and wadis throughout the world. © 2014 European Association of Geoscientists & Engineers.

  5. Feasibility of seismic alert systems in India

    International Nuclear Information System (INIS)

    Chauhan, P.K.S.; Pandey, Y.

    2012-01-01

    Natural disasters like flood, earthquakes and cyclones are very frequent in India since historical times. As far as the casualties are concerned, globally earthquakes are second in the list after the flood. The loss of property due to these earthquakes is huge and enormous. In the light of the present knowledge base, earthquake prediction is far from being a reality. An early earthquake warning has potential to save the precious human lives. In the present day scenario seismic instrumentation and telecommunication permits the implementation of seismic alert system (SAS) based on the real-time measurement of ground motions near the source. SAS is capable of providing a warning of several seconds before the arrival of destructive seismic waves caused by a large earthquake. SAS is successfully operational in many countries of the world. In a country, like India where earthquakes are taking heavy toll on the human lives and property, seismic alert system may prove to be very important step in natural hazard mitigation strategy. In this paper, an attempt has been made to compute the available alarm time before the destructive earthquake waves reaches to the cities like Delhi, Lucknow, Patna and Kolkata taking Himalaya as the source and feasibility of seismic alert system in Indian scenario. (author)

  6. Localization of short-range acoustic and seismic wideband sources: Algorithms and experiments

    Science.gov (United States)

    Stafsudd, J. Z.; Asgari, S.; Hudson, R.; Yao, K.; Taciroglu, E.

    2008-04-01

    We consider the determination of the location (source localization) of a disturbance source which emits acoustic and/or seismic signals. We devise an enhanced approximate maximum-likelihood (AML) algorithm to process data collected at acoustic sensors (microphones) belonging to an array of, non-collocated but otherwise identical, sensors. The approximate maximum-likelihood algorithm exploits the time-delay-of-arrival of acoustic signals at different sensors, and yields the source location. For processing the seismic signals, we investigate two distinct algorithms, both of which process data collected at a single measurement station comprising a triaxial accelerometer, to determine direction-of-arrival. The direction-of-arrivals determined at each sensor station are then combined using a weighted least-squares approach for source localization. The first of the direction-of-arrival estimation algorithms is based on the spectral decomposition of the covariance matrix, while the second is based on surface wave analysis. Both of the seismic source localization algorithms have their roots in seismology; and covariance matrix analysis had been successfully employed in applications where the source and the sensors (array) are typically separated by planetary distances (i.e., hundreds to thousands of kilometers). Here, we focus on very-short distances (e.g., less than one hundred meters) instead, with an outlook to applications in multi-modal surveillance, including target detection, tracking, and zone intrusion. We demonstrate the utility of the aforementioned algorithms through a series of open-field tests wherein we successfully localize wideband acoustic and/or seismic sources. We also investigate a basic strategy for fusion of results yielded by acoustic and seismic arrays.

  7. Infrasound and Seismic Recordings of Rocket Launches from Kennedy Space Center, 2016-2017

    Science.gov (United States)

    McNutt, S. R.; Thompson, G.; Brown, R. G.; Braunmiller, J.; Farrell, A. K.; Mehta, C.

    2017-12-01

    We installed a temporary 3-station seismic-infrasound network at Kennedy Space Center (KSC) in February 2016 to test sensor calibrations and train students in field deployment and data acquisitions techniques. Each station featured a single broadband 3-component seismometer and a 3-element infrasound array. In May 2016 the network was scaled back to a single station due to other projects competing for equipment. To date 8 rocket launches have been recorded by the infrasound array, as well as 2 static tests, 1 aborted launch and 1 rocket explosion (see next abstract). Of the rocket launches recorded 4 were SpaceX Falcon-9, 2 were ULA Atlas-5 and 2 were ULA Delta-IV. A question we attempt to answer is whether the rocket engine type and launch trajectory can be estimated with appropriate travel-time, amplitude-ratio and spectral techniques. For example, there is a clear Doppler shift in seismic and infrasound spectrograms from all launches, with lower frequencies occurring later in the recorded signal as the rocket accelerates away from the array. Another question of interest is whether there are relationships between jet noise frequency, thrust and/or nozzle velocity. Infrasound data may help answer these questions. We are now in the process of deploying a permanent seismic and infrasound array at the Astronaut Beach House. 10 more rocket launches are schedule before AGU. NASA is also conducting a series of 33 sonic booms over KSC beginning on Aug 21st. Launches and other events at KSC have provided rich sources of signals that are useful to characterize and gain insight into physical processes and wave generation from man-made sources.

  8. Seismic surface wave tomography of waste sites. 1997 annual progress report

    International Nuclear Information System (INIS)

    Long, T.L.

    1997-01-01

    'The objective of the Seismic Surface Wave Tomography of Waste Sites is to develop a robust technique for field acquisition and analysis of surface wave data for the interpretation of shallow structures, such as those associated with the burial of wastes. The analysis technique is to be developed and tested on an existing set of seismic data covering the K-901 burial site at the East Tennessee Technology Park. Also, a portable prototype for a field acquisition system will be designed and developed to obtain additional data for analysis and testing of the technique. The K-901 data have been examined and a preliminary Single Valued Decomposition inversion has been obtained. The preliminary data indicates a need for additional seismic data to ground-truth the inversion. The originally proposed gravity data acquisition has been dropped because sufficient gravity data are now available for a preliminary analysis and because the seismic data are considered more critical to the interpretation. The proposed prototype for the portable acquisition and analysis system was developed during the first year and will be used in part of the acquisition of additional seismic data.'

  9. Analysis of Wave Fields induced by Offshore Pile Driving

    Science.gov (United States)

    Ruhnau, M.; Heitmann, K.; Lippert, T.; Lippert, S.; von Estorff, O.

    2015-12-01

    Impact pile driving is the common technique to install foundations for offshore wind turbines. With each hammer strike the steel pile - often exceeding 6 m in diameter and 80 m in length - radiates energy into the surrounding water and soil, until reaching its targeted penetration depth. Several European authorities introduced limitations regarding hydroacoustic emissions during the construction process to protect marine wildlife. Satisfying these regulations made the development and application of sound mitigation systems (e.g. bubble curtains or insulation screens) inevitable, which are commonly installed within the water column surrounding the pile or even the complete construction site. Last years' advances have led to a point, where the seismic energy tunneling the sound mitigation systems through the soil and radiating back towards the water column gains importance, as it confines the maximum achievable sound mitigation. From an engineering point of view, the challenge of deciding on an effective noise mitigation layout arises, which especially requires a good understanding of the soil-dependent wave field. From a geophysical point of view, the pile acts like a very unique line source, generating a characteristic wave field dominated by inclined wave fronts, diving as well as head waves. Monitoring the seismic arrivals while the pile penetration steadily increases enables to perform quasi-vertical seismic profiling. This work is based on datasets that have been collected within the frame of three comprehensive offshore measurement campaigns during pile driving and demonstrates the potential of seismic arrivals induced by pile driving for further soil characterization.

  10. Application of weighted early-arrival waveform inversion to shallow land data

    KAUST Repository

    Yu, Han

    2014-03-01

    Seismic imaging of deep land targets is usually difficult since the near-surface velocities are not accurately estimated. Recent studies have shown that inverting traces weighted by the energy of the early-arrivals can improve the accuracy of estimating shallow velocities. In this work, it is explained by showing that the associated misfit gradient function tends to be sensitive to the kinetics of wave propagation and insensitive to the dynamics. A synthetic example verifies the theoretical predictions and shows that the effects of noise and unpredicted amplitude variations in the inversion are reduced using this weighted early arrival waveform inversion (WEWI). We also apply this method to a 2D land data set for estimating the near-surface velocity distribution. The reverse time migration images suggest that, compared to the tomogram inverted directly from the early arrival waveforms, the WEWI tomogram provides a more convincing velocity model and more focused reflections in the deeper part of the image. © 2014 Elsevier B.V.

  11. Spectral element modelling of seismic wave propagation in visco-elastoplastic media including excess-pore pressure development

    Science.gov (United States)

    Oral, Elif; Gélis, Céline; Bonilla, Luis Fabián; Delavaud, Elise

    2017-12-01

    Numerical modelling of seismic wave propagation, considering soil nonlinearity, has become a major topic in seismic hazard studies when strong shaking is involved under particular soil conditions. Indeed, when strong ground motion propagates in saturated soils, pore pressure is another important parameter to take into account when successive phases of contractive and dilatant soil behaviour are expected. Here, we model 1-D seismic wave propagation in linear and nonlinear media using the spectral element numerical method. The study uses a three-component (3C) nonlinear rheology and includes pore-pressure excess. The 1-D-3C model is used to study the 1987 Superstition Hills earthquake (ML 6.6), which was recorded at the Wildlife Refuge Liquefaction Array, USA. The data of this event present strong soil nonlinearity involving pore-pressure effects. The ground motion is numerically modelled for different assumptions on soil rheology and input motion (1C versus 3C), using the recorded borehole signals as input motion. The computed acceleration-time histories show low-frequency amplification and strong high-frequency damping due to the development of pore pressure in one of the soil layers. Furthermore, the soil is found to be more nonlinear and more dilatant under triaxial loading compared to the classical 1C analysis, and significant differences in surface displacements are observed between the 1C and 3C approaches. This study contributes to identify and understand the dominant phenomena occurring in superficial layers, depending on local soil properties and input motions, conditions relevant for site-specific studies.

  12. A two-dimensional hybrid method for modeling seismic waves propagation in laterally-varying anisotropic media and its application to central Tibet

    Science.gov (United States)

    Zhao, L.; Wen, L.

    2009-12-01

    The shear wave splitting measurements provide important information on mantle flow, deformation and mineralogy. They are now routinely made using the method developed by Silver and Chan (1994). More and more dense regional observations also begin to reveal sharp spatial variations of seismic anisotropy which could not be explained by simplified horizontal homogeneous anisotropic structures. To better constrain the mantle anisotropy beneath those regions, we developed a two-dimensional hybrid method for simulating seismic wave propagation in laterally-varying anisotropic media [Zhao et al., 2008]. In this presentation, we apply the method to study anisotropic structures beneath central Tibet by waveform modeling the teleseismic SKS phases recorded in the International Deep Profiling of Tibet and the Himalayas project (INDEPTH) III. Using data from two events that were selected such that the stations and sources can be approximated as a two-dimensional profile, we derived an optimal model for the anisotropic structures of the upper mantle beneath the study region: a 50-70 km thick anisotropic layer with a fast direction trending N95°E beneath the Qiangtang block, a 150 km thick and 60 km wide anisotropic segment with an axis trending N95°E beneath the northernmost Lhasa block, and a ~30 km wide transition zone in between within which the fast direction trends N45°E and the depth extent of anisotropy decreases northward sharply. Synthetic waveform modeling further suggests that an anisotropic model with a horizontal symmetry axis can explain the observations better than that with a dipping symmetry, and a low velocity zone possibly underlies or mixes with the anisotropic structures in the northern portion of the region. The optimal model yields synthetic seismograms that are in good agreement with the observations in both amplitudes and relative arrival times of SKS phases. Synthetic tests also indicate that different elastic constants, source parameters and depth

  13. Thermal-hydraulic behaviors of vapor-liquid interface due to arrival of a pressure wave

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Akira; Fujii, Yoshifumi; Matsuzaki, Mitsuo [Tokyo Institute of Technology (Japan)

    1995-09-01

    In the vapor explosion, a pressure wave (shock wave) plays a fundamental role for triggering, propagation and enhancement of the explosion. Energy of the explosion is related to the magnitude of heat transfer rate from hot liquid to cold volatile one. This is related to an increasing rate of interface area and to an amount of transient heat flux between the liquids. In this study, the characteristics of transient heat transfer and behaviors of vapor film both on the platinum tube and on the hot melt tin drop, under same boundary conditions have been investigated. It is considered that there exists a fundamental mechanism of the explosion in the initial expansion process of the hot liquid drop immediately after arrival of pressure wave. The growth rate of the vapor film is much faster on the hot liquid than that on the solid surface. Two kinds of roughness were observed, one due to the Taylor instability, by rapid growth of the explosion bubble, and another, nucleation sites were observed at the vapor-liquid interface. Based on detailed observation of early stage interface behaviors after arrival of a pressure wave, the thermal fragmentation mechanism is proposed.

  14. Rotational motions from the 2016, Central Italy seismic sequence, as observed by an underground ring laser gyroscope

    Science.gov (United States)

    Simonelli, Andreino; Belfi, Jacopo; Beverini, Nicolò; Di Virgilio, Angela; Maccioni, Enrico; De Luca, Gaetano; Saccorotti, Gilberto; Wassermann, Joachim; Igel, Heiner

    2017-04-01

    We present analyses of rotational and translational ground motions from earthquakes recorded during October-November, 2016, in association with the Central Italy seismic-sequence. We use co-located measurements of the vertical ground rotation rate from a large ring laser gyroscope (RLG), and the three components of ground velocity from a broadband seismometer. Both instruments are positioned in a deep underground environment, within the Gran Sasso National Laboratories (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN). We collected dozen of events spanning the 3.5-5.9 Magnitude range, and epicentral distances between 40 km and 80 km. This data set constitutes an unprecedented observation of the vertical rotational motions associated with an intense seismic sequence at local distance. In theory - assuming plane wave propagation - the ratio between the vertical rotation rate and the transverse acceleration permits, in a single station approach, the estimation of apparent phase velocity in the case of SH arrivals or real phase velocity in the case of Love surface waves. This is a standard approach for the analysis of earthquakes at teleseismic distances, and the results reported by the literature are compatible with the expected phase velocities from the PREM model. Here we extend the application of the same approach to local events, thus exploring higher frequency ranges and larger rotation rate amplitudes. We use a novel approach to joint rotation/acceleration analysis based on the continuous wavelet transform (CWT). Wavelet coherence (WTC) is used as a filter for identifying those regions of the time-period plane where the rotation rate and transverse acceleration signals exhibit significant coherence. This allows retrieving estimates of phase velocities over the period range spanned by correlated arrivals. Coherency among ground rotation and translation is also observed throughout the coda of the P-wave arrival, an observation which is interpreted in

  15. Virtual Seismic Observation (VSO) with Sparsity-Promotion Inversion

    Science.gov (United States)

    Tiezhao, B.; Ning, J.; Jianwei, M.

    2017-12-01

    Large station interval leads to low resolution images, sometimes prevents people from obtaining images in concerned regions. Sparsity-promotion inversion, a useful method to recover missing data in industrial field acquisition, can be lent to interpolate seismic data on none-sampled sites, forming Virtual Seismic Observation (VSO). Traditional sparsity-promotion inversion suffers when coming up with large time difference in adjacent sites, which we concern most and use shift method to improve it. The procedure of the interpolation is that we first employ low-pass filter to get long wavelength waveform data and shift the waveforms of the same wave in different seismograms to nearly same arrival time. Then we use wavelet-transform-based sparsity-promotion inversion to interpolate waveform data on none-sampled sites and filling a phase in each missing trace. Finally, we shift back the waveforms to their original arrival times. We call our method FSIS (Filtering, Shift, Interpolation, Shift) interpolation. By this way, we can insert different virtually observed seismic phases into none-sampled sites and get dense seismic observation data. For testing our method, we randomly hide the real data in a site and use the rest to interpolate the observation on that site, using direct interpolation or FSIS method. Compared with directly interpolated data, interpolated data with FSIS can keep amplitude better. Results also show that the arrival times and waveforms of those VSOs well express the real data, which convince us that our method to form VSOs are applicable. In this way, we can provide needed data for some advanced seismic technique like RTM to illuminate shallow structures.

  16. High-resolution seismic wave propagation using local time stepping

    KAUST Repository

    Peter, Daniel; Rietmann, Max; Galvez, Percy; Ampuero, Jean Paul

    2017-01-01

    High-resolution seismic wave simulations often require local refinements in numerical meshes to accurately capture e.g. steep topography or complex fault geometry. Together with explicit time schemes, this dramatically reduces the global time step

  17. Automatic identification of fault zone head waves and direct P waves and its application in the Parkfield section of the San Andreas Fault, California

    Science.gov (United States)

    Li, Zefeng; Peng, Zhigang

    2016-06-01

    Fault zone head waves (FZHWs) are observed along major strike-slip faults and can provide high-resolution imaging of fault interface properties at seismogenic depth. In this paper, we present a new method to automatically detect FZHWs and pick direct P waves secondary arrivals (DWSAs). The algorithm identifies FZHWs by computing the amplitude ratios between the potential FZHWs and DSWAs. The polarities, polarizations and characteristic periods of FZHWs and DSWAs are then used to refine the picks or evaluate the pick quality. We apply the method to the Parkfield section of the San Andreas Fault where FZHWs have been identified before by manual picks. We compare results from automatically and manually picked arrivals and find general agreement between them. The obtained velocity contrast at Parkfield is generally 5-10 per cent near Middle Mountain while it decreases below 5 per cent near Gold Hill. We also find many FZHWs recorded by the stations within 1 km of the background seismicity (i.e. the Southwest Fracture Zone) that have not been reported before. These FZHWs could be generated within a relatively wide low velocity zone sandwiched between the fast Salinian block on the southwest side and the slow Franciscan Mélange on the northeast side. Station FROB on the southwest (fast) side also recorded a small portion of weak precursory signals before sharp P waves. However, the polarities of weak signals are consistent with the right-lateral strike-slip mechanisms, suggesting that they are unlikely genuine FZHW signals.

  18. Subduction zone guided waves in Northern Chile

    Science.gov (United States)

    Garth, Thomas; Rietbrock, Andreas

    2016-04-01

    Guided wave dispersion is observed in subduction zones as high frequency energy is retained and delayed by low velocity structure in the subducting slab, while lower frequency energy is able to travel at the faster velocities associated with the surrounding mantle material. As subduction zone guided waves spend longer interacting with the low velocity structure of the slab than any other seismic phase, they have a unique capability to resolve these low velocity structures. In Northern Chile, guided wave arrivals are clearly observed on two stations in the Chilean fore-arc on permanent stations of the IPOC network. High frequency (> 5 Hz) P-wave arrivals are delayed by approximately 2 seconds compared to the low frequency (young subducting lithosphere also has the potential to carry much larger amounts of water to the mantle than has previously been appreciated.

  19. Depth Discrimination Using Rg-to-Sg Spectral Amplitude Ratios for Seismic Events in Utah Recorded at Local Distances

    Energy Technology Data Exchange (ETDEWEB)

    Tibi, Rigobert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Koper, Keith D. [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Geology and Geophysics; Pankow, Kristine L. [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Geology and Geophysics; Young, Christopher J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-03-20

    Short-period fundamental-mode Rayleigh waves (Rg) are commonly observed on seismograms of anthropogenic seismic events and shallow, naturally occurring tectonic earthquakes (TEs) recorded at local distances. In the Utah region, strong Rg waves traveling with an average group velocity of about 1.8 km/s are observed at ~1 Hz on waveforms from shallow events ( depth<10 km ) recorded at distances up to about 150 km. At these distances, Sg waves, which are direct shear waves traveling in the upper crust, are generally the dominant signals for TEs. Here in this study, we leverage the well-known notion that Rg amplitude decreases dramatically with increasing event depth to propose a new depth discriminant based on Rg-to-Sg spectral amplitude ratios. The approach is successfully used to discriminate shallow events (both earthquakes and anthropogenic events) from deeper TEs in the Utah region recorded at local distances ( <150 km ) by the University of Utah Seismographic Stations (UUSS) regional seismic network. Using Mood’s median test, we obtained probabilities of nearly zero that the median Rg-to-Sg spectral amplitude ratios are the same between shallow events on the one hand (including both shallow TEs and anthropogenic events), and deeper earthquakes on the other, suggesting that there is a statistically significant difference in the estimated Rg-to-Sg ratios between the two populations. We also observed consistent disparities between the different types of shallow events (e.g., mining blasts vs. mining-induced earthquakes), implying that it may be possible to separate the subpopulations that make up this group. Lastly, this suggests that using local distance Rg-to-Sg spectral amplitude ratios one can not only discriminate shallow events from deeper events but may also be able to discriminate among different populations of shallow events.

  20. Interferometric seismic imaging around the active Lalor mine in the Flin Flon greenstone belt, Canada

    Science.gov (United States)

    Roots, Eric; Calvert, Andrew J.; Craven, Jim

    2017-10-01

    Seismic interferometry, which recovers the impulse response of the Earth by cross-correlation of ambient noise recorded at sets of two receivers, has found several applications, including the generation of virtual shot gathers for use in seismic reflection processing. To evaluate the effectiveness of this passive recording technique in mineral exploration in a hard-rock environment, 336 receivers recorded 300 h of ambient noise over the volcanogenic massive sulphide deposit of the recently discovered Lalor mine in the Canadian Flin Flon greenstone belt. A novel time-domain beamforming algorithm was developed to search for individual source locations, demonstrating that the vast majority of noise originated from the mine and ventilation shafts of the Lalor mine. The results of the beamforming were utilized in conjunction with frequency-wavenumber filtering to remove undesirable, mostly monochromatic surface wave noise originating from nearby sources. Virtual shot gathers were generated along three receiver lines, each of which was processed as a separate 2-D reflection line. Two of the resulting unmigrated reflection profiles are compared against coincident dipmoveout-stacked data from a larger, coincident 3-D dynamite seismic survey that was also acquired over the Lalor mine in 2013. Using knowledge of the local geology derived from numerous boreholes, coherent events recovered in the passive reflection profiles are inferred to be either spurious arrivals or real reflections, some of which can be interpreted in terms of geological contacts, indicating the future potential of passive recording surveys in hard rock settings.

  1. Shallow shear-wave reflection seismics in the tsunami struck Krueng Aceh River Basin, Sumatra

    Directory of Open Access Journals (Sweden)

    U. Polom

    2008-01-01

    Full Text Available As part of the project "Management of Georisk" (MANGEONAD of the Federal Institute for Geosciences and Natural Resources (BGR, Hanover, high resolution shallow shear-wave reflection seismics was applied in the Indonesian province Nanggroe Aceh Darussalam, North Sumatra in cooperation with the Government of Indonesia, local counterparts, and the Leibniz Institute for Applied Geosciences, Hanover. The investigations were expected to support classification of earthquake site effects for the reconstruction of buildings and infrastructure as well as for groundwater exploration. The study focussed on the city of Banda Aceh and the surroundings of Aceh Besar. The shear-wave seismic surveys were done parallel to standard geoengineering investigations like cone penetrometer tests to support subsequent site specific statistical calibration. They were also partly supplemented by shallow p-wave seismics for the identification of (a elastic subsurface parameters and (b zones with abundance of groundwater. Evaluation of seismic site effects based on shallow reflection seismics has in fact been found to be a highly useful method in Aceh province. In particular, use of a vibratory seismic source was essential for successful application of shear-wave seismics in the city of Banda Aceh and in areas with compacted ground like on farm tracks in the surroundings, presenting mostly agricultural land use areas. We thus were able to explore the mechanical stiffness of the subsurface down to 100 m depth, occasionally even deeper, with remarkably high resolution. The results were transferred into geotechnical site classification in terms of the International Building Code (IBC, 2003. The seismic images give also insights into the history of the basin sedimentation processes of the Krueng Aceh River delta, which is relevant for the exploration of new areas for construction of safe foundations of buildings and for identification of fresh water aquifers in the tsunami

  2. Numerical modeling of landslides and generated seismic waves: The Bingham Canyon Mine landslides

    Science.gov (United States)

    Miallot, H.; Mangeney, A.; Capdeville, Y.; Hibert, C.

    2016-12-01

    Landslides are important natural hazards and key erosion processes. They create long period surface waves that can be recorded by regional and global seismic networks. The seismic signals are generated by acceleration/deceleration of the mass sliding over the topography. They consist in a unique and powerful tool to detect, characterize and quantify the landslide dynamics. We investigate here the processes at work during the two massive landslides that struck the Bingham Canyon Mine on the 10th April 2013. We carry a combined analysis of the generated seismic signals and the landslide processes computed with a 3D modeling on a complex topography. Forces computed by broadband seismic waveform inversion are used to constrain the study and particularly the force-source and the bulk dynamic. The source time function are obtained by a 3D model (Shaltop) where rheological parameters can be adjusted. We first investigate the influence of the initial shape of the sliding mass which strongly affects the whole landslide dynamic. We also see that the initial shape of the source mass of the first landslide constrains pretty well the second landslide source mass. We then investigate the effect of a rheological parameter, the frictional angle, that strongly influences the resulted computed seismic source function. We test here numerous friction laws as the frictional Coulomb law and a velocity-weakening friction law. Our results show that the force waveform fitting the observed data is highly variable depending on these different choices.

  3. Data processing of natural and induced events recorded at the seismic station Ostrava-Kr¨¢sn¨¦ Pole (OKC

    Directory of Open Access Journals (Sweden)

    Nov¨¢k Josef

    2001-09-01

    Full Text Available The operation of the seismic station Ostrava-Kr¨¢sn¨¦ Pole (OKC (¦Õ = 49.8352¡ãN; ¦Ë = 18.1422¡ãE which is situated at present in an experimental gallery nearby the Ostrava planetarium started in the year 1983 being equiped initially by analogue instrumentation. Modernization of instrumentation at the station was aimed at the installation of a new digital data acquisition system and the respective software packages for data interpretation and transmission.Data acquisition system VISTEC is based on PC which enables continuous recording of three- component short-period and medium-period systems with the sampling frequency of 20 Hz. The basic advantage of the OS Linux adopted allows remote access (telnet and the possibility of the recorded data transmission (ftp. Possible troubles in the seismic station operation can be quickly detected (even automatically and all recorded data are with minimum delay on disposal. The use of the remote access makes possible also to change the parameters of measuring set-up. The standard form of output data allows the application of standard software packages for visualisation and evaluation. There are on disposal following formates: GSE2/CM6, GSE2/INT and MiniSEED. The output data sets can be compressed by a special procedure. For interactive interpretation od digital seismic data, software package EVENT developed in the Geophysical Institute AS CR and package WAVE developed in the Institute of Geonics AS CR are used.Experimental operation of digital seismographs at the station OKC confirmed justification of its incorporation into the seismic stations of the Czech national seismological network (CNSN. Based on the preliminary analysis of digital data it proved that following groups of seismic events are recorded: earthquakes, induced seismic events from Polish copper and coal mines, induced seismic events from the Ostrava-Karvin¨¢ Coal Basin, quarry blasts and weak regional seismic events of the

  4. Induced Seismicity Monitoring System

    Science.gov (United States)

    Taylor, S. R.; Jarpe, S.; Harben, P.

    2014-12-01

    There are many seismological aspects associated with monitoring of permanent storage of carbon dioxide (CO2) in geologic formations. Many of these include monitoring underground gas migration through detailed tomographic studies of rock properties, integrity of the cap rock and micro seismicity with time. These types of studies require expensive deployments of surface and borehole sensors in the vicinity of the CO2 injection wells. Another problem that may exist in CO2 sequestration fields is the potential for damaging induced seismicity associated with fluid injection into the geologic reservoir. Seismic hazard monitoring in CO2 sequestration fields requires a seismic network over a spatially larger region possibly having stations in remote settings. Expensive observatory-grade seismic systems are not necessary for seismic hazard deployments or small-scale tomographic studies. Hazard monitoring requires accurate location of induced seismicity to magnitude levels only slightly less than that which can be felt at the surface (e.g. magnitude 1), and the frequencies of interest for tomographic analysis are ~1 Hz and greater. We have developed a seismo/acoustic smart sensor system that can achieve the goals necessary for induced seismicity monitoring in CO2 sequestration fields. The unit is inexpensive, lightweight, easy to deploy, can operate remotely under harsh conditions and features 9 channels of recording (currently 3C 4.5 Hz geophone, MEMS accelerometer and microphone). An on-board processor allows for satellite transmission of parameter data to a processing center. Continuous or event-detected data is kept on two removable flash SD cards of up to 64+ Gbytes each. If available, data can be transmitted via cell phone modem or picked up via site visits. Low-power consumption allows for autonomous operation using only a 10 watt solar panel and a gel-cell battery. The system has been successfully tested for long-term (> 6 months) remote operations over a wide range

  5. 41 CFR 301-11.10 - Am I required to record departure/arrival dates and times on my travel claim?

    Science.gov (United States)

    2010-07-01

    ... departure/arrival dates and times on my travel claim? 301-11.10 Section 301-11.10 Public Contracts and... dates and times on my travel claim? You must record the date of departure from, and arrival at, the... visited. You do not have to record departure/arrival times, but you must annotate your travel claim when...

  6. 3-D seismic velocity and attenuation structures in the geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)

    2013-09-09

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  7. Investigation of optimal seismic design methodology for piping systems supported by elasto-plastic dampers. Part. 2. Applicability for seismic waves with various frequency characteristics

    International Nuclear Information System (INIS)

    Ito, Tomohiro; Michiue, Masashi; Fujita, Katsuhisa

    2010-01-01

    In this study, the applicability of a previously developed optimal seismic design methodology, which can consider the structural integrity of not only piping systems but also elasto-plastic supporting devices, is studied for seismic waves with various frequency characteristics. This methodology employs a genetic algorithm and can search the optimal conditions such as the supporting location and the capacity and stiffness of the supporting devices. Here, a lead extrusion damper is treated as a typical elasto-plastic damper. Numerical simulations are performed using a simple piping system model. As a result, it is shown that the proposed optimal seismic design methodology is applicable to the seismic design of piping systems subjected to seismic waves with various frequency characteristics. The mechanism of optimization is also clarified. (author)

  8. High frequency seismic signal generated by landslides on complex topographies: from point source to spatially distributed sources

    Science.gov (United States)

    Mangeney, A.; Kuehnert, J.; Capdeville, Y.; Durand, V.; Stutzmann, E.; Kone, E. H.; Sethi, S.

    2017-12-01

    During their flow along the topography, landslides generate seismic waves in a wide frequency range. These so called landquakes can be recorded at very large distances (a few hundreds of km for large landslides). The recorded signals depend on the landslide seismic source and the seismic wave propagation. If the wave propagation is well understood, the seismic signals can be inverted for the seismic source and thus can be used to get information on the landslide properties and dynamics. Analysis and modeling of long period seismic signals (10-150s) have helped in this way to discriminate between different landslide scenarios and to constrain rheological parameters (e.g. Favreau et al., 2010). This was possible as topography poorly affects wave propagation at these long periods and the landslide seismic source can be approximated as a point source. In the near-field and at higher frequencies (> 1 Hz) the spatial extent of the source has to be taken into account and the influence of the topography on the recorded seismic signal should be quantified in order to extract information on the landslide properties and dynamics. The characteristic signature of distributed sources and varying topographies is studied as a function of frequency and recording distance.The time dependent spatial distribution of the forces applied to the ground by the landslide are obtained using granular flow numerical modeling on 3D topography. The generated seismic waves are simulated using the spectral element method. The simulated seismic signal is compared to observed seismic data from rockfalls at the Dolomieu Crater of Piton de la Fournaise (La Réunion).Favreau, P., Mangeney, A., Lucas, A., Crosta, G., and Bouchut, F. (2010). Numerical modeling of landquakes. Geophysical Research Letters, 37(15):1-5.

  9. Sensitivity of seismic design parameters to input variables

    International Nuclear Information System (INIS)

    Wium, D.J.W.

    1987-01-01

    The probabilistic method introduced by Cornell (1968) has been used to a large extent for this purpose. Due to its probabilistic approach, this technique provides a sound basis for studying the influence of the dominant parameters in such a model. Although the Southern African region is not well known for its seismicity, a number of events in the recent past has focussed the attention on some seismically active areas where special attention may be needed in defining the correct design parameters. The relatively sparse historical seismic data has been used to develop a mathematical model which represents this region. This paper briefly discusses this model, and uses it as a basis for evaluating the influence of the uncertainty in each of the principal parameters, being the seismicity of the region, the attenuation of seismic waves after an event, and models that can be used to arrive at engineering design values. (orig./HP)

  10. Impact of wind on ambient noise recorded by the "13 BB star" seismic array in northern Poland

    Science.gov (United States)

    Lepore, Simone; Markowicz, Krzysztof; Grad, Marek

    2016-04-01

    Seismic interferometry and beam forming techniques were applied to ambient noise recorded during January 2014 at the "13 BB star" array, composed of thirteen seismic stations located in northern Poland, with the aim of evaluating the azimuth of noise sources and the velocities of surface waves. After normalizing the raw recordings in time and frequency domain, the spectral characteristics of the ambient noise were studied to choose a frequency band suitable for the waves' retrieval. To get the velocity of surface waves by seismic interferometry, the crosscorrelation between all station pairs was analysed for the vertical and horizontal components in the 0.05-0.1 Hz, 0.1-1 Hz and 1 10 Hz frequency bands. For each pair, the crosscorrelation was applied to one hour recordings extracted from the ambient noise. The obtained traces were calculated for a complete day, and then summed together: the daily results were stacked for the whole January 2014. In the lowest frequency range, most of the energy is located around the 3.0 km/s line, meaning that the surface waves coming from the uppermost mantle will be retrieved. The intermediate frequency range shows most of the energy between the 2.0 km/s and 1.5 km/s lines: consequently, surface waves originating from the crust will be retrieved. In the highest frequency range, the surface waves are barely visible on the crosscorrelation traces, implying that the associated energy is strongly attenuated. The azimuth variation associated to the noise field was evaluated by means of the beam forming method, using the data from the whole array for all the three components. To that, the beam power was estimated in a small range of frequencies every day for the whole month. For each day, one hour long results of beam forming applications were stacked together. To avoid aliasing and near field effects, the minimum frequency was set at 0.05 Hz and the maximum to 0.1 Hz. In this frequency band, the amplitude maximum was sought

  11. Seismic wave propagation in non-homogeneous elastic media by boundary elements

    CERN Document Server

    Manolis, George D; Rangelov, Tsviatko V; Wuttke, Frank

    2017-01-01

    This book focuses on the mathematical potential and computational efficiency of the Boundary Element Method (BEM) for modeling seismic wave propagation in either continuous or discrete inhomogeneous elastic/viscoelastic, isotropic/anisotropic media containing multiple cavities, cracks, inclusions and surface topography. BEM models may take into account the entire seismic wave path from the seismic source through the geological deposits all the way up to the local site under consideration. The general presentation of the theoretical basis of elastodynamics for inhomogeneous and heterogeneous continua in the first part is followed by the analytical derivation of fundamental solutions and Green's functions for the governing field equations by the usage of Fourier and Radon transforms. The numerical implementation of the BEM is for antiplane in the second part as well as for plane strain boundary value problems in the third part. Verification studies and parametric analysis appear throughout the book, as do both ...

  12. Combined effects of traveling seismic waves and soil nonlinearity on nuclear power plant response

    International Nuclear Information System (INIS)

    Lee, T.H.; Charman, C.M.

    1981-01-01

    The effects of ground motion nonuniformity on the seismic input have been actively studied in recent years by considering the passage of traveling seismic waves. These studies gave rise to a new class of soil-structure interaction problems in which the seismic input is modified as a result of the spatial variations of ground motion. The phenomena were usually studied by using the elastic half-space simulation or discrete spring-models for modeling the soil medium. Finite element methods were also used recently on a limited scope. Results obtained from these investigations are often manifested by an attenuation of translational excitation along with an addition of rotational ground motion input. The decrease in structural response resulting from the input loss in the translational component was often insignificant since the response reduction tends to be offset by the effects from rotational input. The traveling wave effects have, so far, been investigated within the framework of linear theory with soil nonlinearity ignored. Conversely, the incorporation of soil nonlinearity in soil-structure interaction analyses has been done without including wave effect. Seismic analyses considering the hysteretic behavior of soil have been performed using highly idealized models for steady-state solution. More elaborate nonlinear seismic models deal with only the strain-dependent soil modulus rather than the transient unloading-reloading type of hysteretic characteristics of soil under a time-function input of earthquake trace. Apparently, the traveling wave effect and soil nonlinearity have been separately treated in the past. The purpose of this paper is to demonstrate that these two major effects can be combined in one model such that the influence of wave passage is reflected through the hysteretic behavior of soil particles, and thereby achieving significant reduction in seismic loads. (orig./RW)

  13. Model Based Beamforming and Bayesian Inversion Signal Processing Methods for Seismic Localization of Underground Source

    DEFF Research Database (Denmark)

    Oh, Geok Lian

    properties such as the elastic wave speeds and soil densities. One processing method is casting the estimation problem into an inverse problem to solve for the unknown material parameters. The forward model for the seismic signals used in the literatures include ray tracing methods that consider only...... density values of the discretized ground medium, which leads to time-consuming computations and instability behaviour of the inversion process. In addition, the geophysics inverse problem is generally ill-posed due to non-exact forward model that introduces errors. The Bayesian inversion method through...... the first arrivals of the reflected compressional P-waves from the subsurface structures, or 3D elastic wave models that model all the seismic wave components. The ray tracing forward model formulation is linear, whereas the full 3D elastic wave model leads to a nonlinear inversion problem. In this Ph...

  14. Seismic tomography with P and S data reveals lateral variations in the rigidity of slabs

    NARCIS (Netherlands)

    Widiyantoro, S.; Kennett, B.L.N.; Hilst, R.D. van der

    1999-01-01

    Regional seismic tomography of the northwest Pacific island arcs using P- and S-wave arrival time data with similar path coverage reveals an oceanic lithospheric slab deflected in the mantle transition zone beneath the Izu Bonin region in good agreement with the results of earlier tomographic and

  15. Preliminary consideration on the seismic actions recorded during the 2016 Central Italy seismic sequence

    Science.gov (United States)

    Carlo Ponzo, Felice; Ditommaso, Rocco; Nigro, Antonella; Nigro, Domenico S.; Iacovino, Chiara

    2017-04-01

    After the Mw 6.0 mainshock of August 24, 2016 at 03.36 a.m. (local time), with the epicenter located between the towns of Accumoli (province of Rieti), Amatrice (province of Rieti) and Arquata del Tronto (province of Ascoli Piceno), several activities were started in order to perform some preliminary evaluations on the characteristics of the recent seismic sequence in the areas affected by the earthquake. Ambient vibration acquisitions have been performed using two three-directional velocimetric synchronized stations, with a natural frequency equal to 0.5Hz and a digitizer resolution of equal to 24bit. The activities are continuing after the events of the seismic sequence of October 26 and October 30, 2016. In this paper, in order to compare recorded and code provision values in terms of peak (PGA, PGV and PGD), spectral and integral (Housner Intensity) seismic parameters, several preliminary analyses have been performed on accelerometric time-histories acquired by three near fault station of the RAN (Italian Accelerometric Network): Amatrice station (station code AMT), Norcia station (station code NRC) and Castelsantangelo sul Nera station (station code CNE). Several comparisons between the elastic response spectra derived from accelerometric recordings and the elastic demand spectra provided by the Italian seismic code (NTC 2008) have been performed. Preliminary results retrieved from these analyses highlight several apparent difference between experimental data and conventional code provision. Then, the ongoing seismic sequence appears compatible with the historical seismicity in terms of integral parameters, but not in terms of peak and spectral values. It seems appropriate to reconsider the necessity to revise the simplified design approach based on the conventional spectral values. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and

  16. Wave passage effects on the seismic response of a maglev vehicle moving on multi-span guideway

    Directory of Open Access Journals (Sweden)

    J. D. Yau

    Full Text Available As a seismic wave travels along the separate supports of an extended structure, the structure is subjected to multiple-support excitation due to seismic wave propagation. Considering the seismic wave passage effect, this paper describes seismic analysis of a maglev vehicle moving on a multiply supported gudieway. The guideway system is modeled as a series of simple beams and the vehicle as a four degrees-of-freedom (DOFs rigid bar equipped with multiple onboard PI+LQR hybrid controllers. The controller is used to regulate control voltage for tuning both magnetic forces of uplift levitation and lateral guidance in the maglev system. Numerical studies show that as a maglev vehicle is equipped with more supported magnets then they can provide more control gains for tuning the guidance forces of the moving vehicle, and mitigate seismic-induced lateral vibration of a maglev vehicle running a guideway.

  17. Groundwater exploration in a Quaternary sediment body by shear-wave reflection seismics

    Science.gov (United States)

    Pirrung, M.; Polom, U.; Krawczyk, C. M.

    2008-12-01

    The detailed investigation of a shallow aquifer structure is the prerequisite for choosing a proper well location for groundwater exploration drilling for human drinking water supply and subsequent managing of the aquifer system. In the case of shallow aquifers of some 10 m in depth, this task is still a challenge for high-resolution geophysical methods, especially in populated areas. In areas of paved surfaces, shallow shear-wave reflection seismics is advantageous compared to conventional P-wave seismic methods. The sediment body of the Alfbach valley within the Vulkaneifel region in Germany, partly covered by the village Gillenfeld, was estimated to have a maximum thickness of nearly 60 m. It lies on top of a complicated basement structure, constituted by an incorporated lava flow near the basement. For the positioning of new well locations, a combination of a SH-wave land streamer receiver system and a small, wheelbarrow-mounted SH-wave source was used for the seismic investigations. This equipment can be easily applied also in residential areas without notable trouble for the inhabitants. The results of the 2.5D profiling show a clear image of the sediment body down to the bedrock with high resolution. Along a 1 km seismic profile, the sediment thickness varies between 20 to more than 60 m in the centre of the valley. The reflection behaviour from the bedrock surface corroborates the hypothesis of a basement structure with distinct topography, including strong dipping events from the flanks of the valley and strong diffractions from subsurface discontinuities. The reflection seismic imaging leads to an estimation of the former shape of the valley and a reconstruction of the flow conditions at the beginning of the sedimentation process.

  18. Methods and apparatus for use in detecting seismic waves in a borehole

    Science.gov (United States)

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2006-05-23

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  19. Mars Internal Structure: Seismic Predictions for Core Phase Arrivals in Anticipation of the InSight Mission

    Science.gov (United States)

    Weber, R. C.; Banerdt, W. B.; Lognonne, P. H.; Hempel, S.; Panning, M. P.; Schmerr, N. C.; Garcia, R.; Shiro, B.; Gudkova, T.

    2016-12-01

    We present a methodology to constrain the seismic structure of the Martian core in preparation for the return of data from the InSight mission. Expected amplitudes for marsquakes assuming a medium seismicity model support the likely observation of core reflections of P and S energy for events with magnitude greater than MW 4.5. For the mission duration, we would expect to record on the order of 10 events of at least this magnitude. Our method predicts the ray density of core reflected (PcP, ScS) and transmitted (PKP, SKS) phases for various core sizes with core-mantle boundary depths between 1650 and 2100 km. Ray density is defined as the fraction of rays in a small source-receiver interval normalized by the total number of rays over a great circle slice through the planet. The ray density of a given phase is scaled by predicted amplitudes calculated considering attenuation, geometric spreading and reflection/transmission coefficients at discontinuities along the ray path. Maximum PcP/ScS amplitudes are expected at epicentral distances of 40-100 degrees. Thus, if present, strong seismicity in the Hellas and Tharsis region may facilitate core detection. For events with MW above 4.5, ScS and SKS signals are expected to lie above the lander noise, but PcP and PKP signals may barely be visible. The resolution of these phases can be improved by applying stacking techniques to account for expected background noise, scattering, and interfering seismic phases. These techniques were successfully applied to Apollo seismograms to infer the radial structure of the lunar core. Even if source depth and location have large uncertainties during a single-station mission to Mars, different phases can be distinguished by their slownesses. Prior to the summation of the traces of individual events, signals are aligned to a reference phase, e.g. the PcP onset assuming various core radii. A maximum in signal coherency corresponds to the best fitting core radius. In the case of lunar

  20. Characterization of tsunamigenic earthquake in Java region based on seismic wave calculation

    Energy Technology Data Exchange (ETDEWEB)

    Pribadi, Sugeng, E-mail: sugengpribadimsc@gmail.com [Badan Meteorologi Klimatologi Geofisika, Jl Angkasa I No. 2 Jakarta (Indonesia); Afnimar,; Puspito, Nanang T.; Ibrahim, Gunawan [Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    This study is to characterize the source mechanism of tsunamigenic earthquake based on seismic wave calculation. The source parameter used are the ratio (Θ) between the radiated seismic energy (E) and seismic moment (M{sub o}), moment magnitude (M{sub W}), rupture duration (T{sub o}) and focal mechanism. These determine the types of tsunamigenic earthquake and tsunami earthquake. We calculate the formula using the teleseismic wave signal processing with the initial phase of P wave with bandpass filter 0.001 Hz to 5 Hz. The amount of station is 84 broadband seismometer with far distance of 30° to 90°. The 2 June 1994 Banyuwangi earthquake with M{sub W}=7.8 and the 17 July 2006 Pangandaran earthquake with M{sub W}=7.7 include the criteria as a tsunami earthquake which distributed about ratio Θ=−6.1, long rupture duration To>100 s and high tsunami H>7 m. The 2 September 2009 Tasikmalaya earthquake with M{sub W}=7.2, Θ=−5.1 and To=27 s which characterized as a small tsunamigenic earthquake.

  1. Characterization of tsunamigenic earthquake in Java region based on seismic wave calculation

    International Nuclear Information System (INIS)

    Pribadi, Sugeng; Afnimar,; Puspito, Nanang T.; Ibrahim, Gunawan

    2014-01-01

    This study is to characterize the source mechanism of tsunamigenic earthquake based on seismic wave calculation. The source parameter used are the ratio (Θ) between the radiated seismic energy (E) and seismic moment (M o ), moment magnitude (M W ), rupture duration (T o ) and focal mechanism. These determine the types of tsunamigenic earthquake and tsunami earthquake. We calculate the formula using the teleseismic wave signal processing with the initial phase of P wave with bandpass filter 0.001 Hz to 5 Hz. The amount of station is 84 broadband seismometer with far distance of 30° to 90°. The 2 June 1994 Banyuwangi earthquake with M W =7.8 and the 17 July 2006 Pangandaran earthquake with M W =7.7 include the criteria as a tsunami earthquake which distributed about ratio Θ=−6.1, long rupture duration To>100 s and high tsunami H>7 m. The 2 September 2009 Tasikmalaya earthquake with M W =7.2, Θ=−5.1 and To=27 s which characterized as a small tsunamigenic earthquake

  2. Seismic processing using Parallel 3D FMM

    OpenAIRE

    Borlaug, Idar

    2007-01-01

    This thesis develops and tests 3D Fast Marching Method (FMM) algorithm and apply these to seismic simulations. The FMM is a general method for monotonically advancing fronts, originally developed by Sethian. It calculates the first arrival time for an advancing front or wave. FMM methods are used for a variety of applications including, fatigue cracks in materials, lymph node segmentation in CT images, computing skeletons and centerlines in 3D objects and for finding salt formations in seismi...

  3. Teaching hands-on geophysics: examples from the Rū seismic network in New Zealand

    International Nuclear Information System (INIS)

    Van Wijk, Kasper; Simpson, Jonathan; Adam, Ludmila

    2017-01-01

    Education in physics and geosciences can be effectively illustrated by the analysis of earthquakes and the subsequent propagation of seismic waves in the Earth. Educational seismology has matured to a level where both the hard- and software are robust and user friendly. This has resulted in successful implementation of educational networks around the world. Seismic data recorded by students are of such quality that these can be used in classic earthquake location exercises, for example. But even ocean waves weakly coupled into the Earth’s crust can now be recorded on educational seismometers. These signals are not just noise, but form the basis of more recent developments in seismology, such as seismic interferometry, where seismic waves generated by ocean waves—instead of earthquakes—can be used to infer information about the Earth’s interior. Here, we introduce an earthquake location exercise and an analysis of ambient seismic noise, and present examples. Data are provided, and all needed software is freely available. (review)

  4. Characterizing Micro- and Macro-Scale Seismicity from Bayou Corne, Louisiana

    Science.gov (United States)

    Baig, A. M.; Urbancic, T.; Karimi, S.

    2013-12-01

    The initiation of felt seismicity in Bayou Corne, Louisiana, coupled with other phenomena detected by residents on the nearby housing development, prompted a call to install a broadband seismic network to monitor subsurface deformation. The initial deployment was in place to characterize the deformation contemporaneous with the formation of a sinkhole located in close proximity to a salt dome. Seismic events generated during this period followed a swarm-like behaviour with moment magnitudes culminating around Mw2.5. However, the seismic data recorded during this sequence suffer from poor signal to noise, onsets that are very difficult to pick, and the presence of a significant amount of energy arriving later in the waveforms. Efforts to understand the complexity in these waveforms are ongoing, and involve invoking the complexities inherent in recording in a highly attenuating swamp overlying a complex three-dimensional structure with the strong material property contrast of the salt dome. In order to understand the event character, as well as to locally lower the completeness threshold of the sequence, a downhole array of 15 Hz sensors was deployed in a newly drilled well around the salt dome. Although the deployment lasted a little over a month in duration, over 1000 events were detected down to moment magnitude -Mw3. Waveform quality tended to be excellent, with very distinct P and S wave arrivals observable across the array for most events. The highest magnitude events were seen as well on the surface network and allowed for the opportunity to observe the complexities introduced by the site effects, while overcoming the saturation effects on the higher-frequency downhole geophones. This hybrid downhole and surface array illustrates how a full picture of subsurface deformation is only made possible by combining the high-frequency downhole instrumentation to see the microseismicity complemented with a broadband array to accurately characterize the source

  5. Application of Rudoe’s Formula in Long Seismic Surface Wave Paths Determination

    Directory of Open Access Journals (Sweden)

    Jorge L. de Souza

    2005-12-01

    Full Text Available An algorithm to compute accurate distances over grid cells crossed by seismic surface wave paths by Rudoe’s formula is proposed. The intersection coordinates between paths and the geodetic grid are also computed, which data are exhibited in an azimuthal equidistant projection to check the results. GRS-80 is the adopted ellipsoidal Earth model. The algorithm computes the intermediate intersections, from both forward and reciprocal normal sections given by Rudoe’s method, which separation may be greater than the cell size. It was tested on a data set including 3,269 source-station paths, which seismic events were recorded at 23 IRIS stations. The epicentral distances range from 1,634 km to 16,400 km, which the grid spreads over 149°E x 21°W, and 50°N x 90°S. The results show that the estimated intersections accuracy depends on the path azimuth and latitude, which influence may be significative for very long distances as in teleseismic applications, which argues for the algorithm application.

  6. Extending RTM Imaging With a Focus on Head Waves

    Science.gov (United States)

    Holicki, Max; Drijkoningen, Guy

    2016-04-01

    Conventional industry seismic imaging predominantly focuses on pre-critical reflections, muting post-critical arrivals in the process. This standard approach neglects a lot of information present in the recorded wave field. This negligence has been partially remedied with the inclusion of head waves in more advanced imaging techniques, like Full Waveform Inversion (FWI). We would like to see post-critical information leave the realm of labour-intensive travel-time picking and tomographic inversion towards full migration to improve subsurface imaging and parameter estimation. We present a novel seismic imaging approach aimed at exploiting post-critical information, using the constant travel path for head-waves between shots. To this end, we propose to generalize conventional Reverse Time Migration (RTM) to scenarios where the sources for the forward and backward propagated wave-fields are not coinciding. RTM functions on the principle that backward propagated receiver data, due to a source at some locations, must overlap with the forward propagated source wave field, from the same source location, at subsurface scatterers. Where the wave-fields overlap in the subsurface there is a peak at the zero-lag cross-correlation, and this peak is used for the imaging. For the inclusion of head waves, we propose to relax the condition of coincident sources. This means that wave-fields, from non-coincident-sources, will not overlap properly in the subsurface anymore. We can make the wave-fields overlap in the subsurface again, by time shifting either the forward or backward propagated wave-fields until the wave-fields overlap. This is the same as imaging at non-zero cross-correlation lags, where the lag is the travel time difference between the two wave-fields for a given event. This allows us to steer which arrivals we would like to use for imaging. In the simplest case we could use Eikonal travel-times to generate our migration image, or we exclusively image the subsurface

  7. Improved surface?wave retrieval from ambient seismic noise by multi?dimensional deconvolution

    NARCIS (Netherlands)

    Wapenaar, C.P.A.; Ruigrok, E.N.; Van der Neut, J.R.; Draganov, D.S.

    2011-01-01

    The methodology of surface?wave retrieval from ambient seismic noise by crosscorrelation relies on the assumption that the noise field is equipartitioned. Deviations from equipartitioning degrade the accuracy of the retrieved surface?wave Green's function. A point?spread function, derived from the

  8. High-resolution surface wave tomography of the European crust and uppermost mantle from ambient seismic noise

    Science.gov (United States)

    Lu, Yang; Stehly, Laurent; Paul, Anne; AlpArray Working Group

    2018-05-01

    Taking advantage of the large number of seismic stations installed in Europe, in particular in the greater Alpine region with the AlpArray experiment, we derive a new high-resolution 3-D shear-wave velocity model of the European crust and uppermost mantle from ambient noise tomography. The correlation of up to four years of continuous vertical-component seismic recordings from 1293 broadband stations (10° W-35° E, 30° N-75° N) provides Rayleigh wave group velocity dispersion data in the period band 5-150 s at more than 0.8 million virtual source-receiver pairs. Two-dimensional Rayleigh wave group velocity maps are estimated using adaptive parameterization to accommodate the strong heterogeneity of path coverage. A probabilistic 3-D shear-wave velocity model, including probability densities for the depth of layer boundaries and S-wave velocity values, is obtained by non-linear Bayesian inversion. A weighted average of the probabilistic model is then used as starting model for the linear inversion step, providing the final Vs model. The resulting S-wave velocity model and Moho depth are validated by comparison with previous geophysical studies. Although surface-wave tomography is weakly sensitive to layer boundaries, vertical cross-sections through our Vs model and the associated probability of presence of interfaces display striking similarities with reference controlled-source (CSS) and receiver-function sections across the Alpine belt. Our model even provides new structural information such as a ˜8 km Moho jump along the CSS ECORS-CROP profile that was not imaged by reflection data due to poor penetration across a heterogeneous upper crust. Our probabilistic and final shear wave velocity models have the potential to become new reference models of the European crust, both for crustal structure probing and geophysical studies including waveform modeling or full waveform inversion.

  9. Value of shear wave arrival time contour display in shear wave elastography for breast masses diagnosis.

    Science.gov (United States)

    Zhou, Bang-Guo; Wang, Dan; Ren, Wei-Wei; Li, Xiao-Long; He, Ya-Ping; Liu, Bo-Ji; Wang, Qiao; Chen, Shi-Gao; Alizad, Azra; Xu, Hui-Xiong

    2017-08-01

    To evaluate the diagnostic performance of shear wave arrival time contour (SWATC) display for the diagnosis of breast lesions and to identify factors associated with the quality of shear wave propagation (QSWP) in breast lesions. This study included 277 pathologically confirmed breast lesions. Conventional B-mode ultrasound characteristics and shear wave elastography parameters were computed. Using the SWATC display, the QSWP of each lesion was assigned to a two-point scale: score 1 (low quality) and score 2 (high quality). Binary logistic regression analysis was performed to identify factors associated with QSWP. The area under the receiver operating characteristic curve (AUROC) for QSWP to differentiate benign from malignant lesions was 0.913, with a sensitivity of 91.9%, a specificity of 90.7%, a positive predictive value (PPV) of 74.0%, and a negative predictive value (NPV) of 97.5%. Compared with using the standard deviation of shear wave speed (SWS SD ) alone, SWS SD combined with QSWP increased the sensitivity from 75.8% to 93.5%, but decreased the specificity from 95.8% to 89.3% (P breast lesions.

  10. MASW Seismic Method in Brebu Landslide Area, Romania

    Science.gov (United States)

    Mihai, Marinescu; Paul, Cristea; Cristian, Marunteanu; Matei, Mezincescu

    2017-12-01

    This paper is focused on assessing the possibility of enhancing the geotechnical information in perimeters with landslides, especially through applications of the Multichannel Analysis of Surface Waves (MASW) method. The technology enables the determination of the phase velocities of Rayleigh waves and, recursively, the evaluation of shear wave velocities (Vs) related to depth. Finally, using longitudinal wave velocities (Vp), derived from the seismic refraction measurements, in situ dynamic elastic properties in a shallow section can be obtained. The investigation was carried out in the Brebu landslide (3-5 m depth of bedrock), located on the southern flank of the Slanic Syncline (110 km North of Bucharest) and included a drilling program and geotechnical laboratory observations. The seismic refraction records (seismic sources placed at the centre, ends and outside of the geophone spread) have been undertaken on two lines, 23 m and 46 m long respectively) approximately perpendicular to the downslope direction of the landslide and on different local morpho-structures. A Geode Geometrics seismograph was set for 1 ms sampling rate and pulse summations in real-time for five blows. Twenty-four vertical Geometrics SpaceTech geophones (14 Hz resonance frequency) were disposed at 1 m spacing. The seismic source was represented by the impact of an 8kg weight sledge hammer on a metal plate. Regarding seismic data processing, the distinctive feature is related to performing more detailed analyses of MASW records. The proposed procedure consists of the spread split in groups with fewer receivers and several interval-geophones superposed. 2D Fourier analysis, f-k (frequency-wave number) spectrum, for each of these groups assures the information continuity and, all the more, accuracy to pick out the amplitude maximums of the f-k spectra. Finally, combining both values VS (calculated from 2D spectral analyses of Rayleigh waves) and VP (obtained from seismic refraction records

  11. Full wave field recording of the vertical strain at SAFOD from local, regional and teleseismic earthquakes

    Science.gov (United States)

    Ellsworth, W. L.; Karrenbach, M. H.; Zumberge, M. A.

    2017-12-01

    The main borehole at the San Andreas Fault Observatory at Depth (SAFOD) contains optical fibers cemented in place in between casing strings from the surface to just below the top of the basement. The fibers are under tension of approximately 1 N and are housed in a 0.9 mm diameter stainless steel tube. Earth strain is transmitted to the fiber by frictional contact with the tube wall. One fiber has been in use as a vertical strainmeter since 2005, measuring the total strain between 9 and 740 m by laser interferometry. In June 2017 we attached an OptaSense Distributed Acoustic Sensing (DAS) system, model ODH3.1, to a second fiber that terminates at 864 m depth. The DAS laser interrogator measures the strain over a gauge length with a set spacing between gauge intervals. For this experiment we set the gauge length to 10 m with 1 m spacing between gauges. Including the surface run of the fiber, this gives us 936 channels measuring the vertical strain at a sample interval of 0.4 msec (2500 samples/s). Continuous recording of the string produces approximately 1 TB/day. During one month of data collection, we recorded local, regional and teleseismic earthquakes. With this recording geometry, the DAS system captures the full vertical wavefield between the basement interface and free surface, revealing direct, converted and refracted waves. Both P- and S- strain waves are clearly visible in the data, even for 10 km deep earthquakes located almost directly below the well (see figure). The incident and surface reflected wavefields can be separated by frequency-wavenumber filtering due to the large-aperture and fine spatial and temporal sampling. Up- and downgoing strain waves illuminate the subsurface within the sensor array's depth range. Accurate arrival time determinations of the initial arrival phase are possible due to consistent wave forms recorded at 1 m spatial intervals that can be used for fine-scale shallow velocity model estimation.

  12. Modeling of high‐frequency seismic‐wave scattering and propagation using radiative transfer theory

    Science.gov (United States)

    Zeng, Yuehua

    2017-01-01

    This is a study of the nonisotropic scattering process based on radiative transfer theory and its application to the observation of the M 4.3 aftershock recording of the 2008 Wells earthquake sequence in Nevada. Given a wide range of recording distances from 29 to 320 km, the data provide a unique opportunity to discriminate scattering models based on their distance‐dependent behaviors. First, we develop a stable numerical procedure to simulate nonisotropic scattering waves based on the 3D nonisotropic scattering theory proposed by Sato (1995). By applying the simulation method to the inversion of M 4.3 Wells aftershock recordings, we find that a nonisotropic scattering model, dominated by forward scattering, provides the best fit to the observed high‐frequency direct S waves and S‐wave coda velocity envelopes. The scattering process is governed by a Gaussian autocorrelation function, suggesting a Gaussian random heterogeneous structure for the Nevada crust. The model successfully explains the common decay of seismic coda independent of source–station locations as a result of energy leaking from multiple strong forward scattering, instead of backscattering governed by the diffusion solution at large lapse times. The model also explains the pulse‐broadening effect in the high‐frequency direct and early arriving S waves, as other studies have found, and could be very important to applications of high‐frequency wave simulation in which scattering has a strong effect. We also find that regardless of its physical implications, the isotropic scattering model provides the same effective scattering coefficient and intrinsic attenuation estimates as the forward scattering model, suggesting that the isotropic scattering model is still a viable tool for the study of seismic scattering and intrinsic attenuation coefficients in the Earth.

  13. Seismic Structure of Perth Basin (Australia) and surroundings from Passive Seismic Deployments

    Science.gov (United States)

    Issa, N.; Saygin, E.; Lumley, D. E.; Hoskin, T. E.

    2016-12-01

    We image the subsurface structure of Perth Basin, Western Australia and surroundings by using ambient seismic noise data from 14 seismic stations recently deployed by University of Western Australia (UWA) and other available permanent stations from Geoscience Australia seismic network and the Australian Seismometers in Schools program. Each of these 14 UWA seismic stations comprises a broadband sensor and a high fidelity 3-component 10 Hz geophone, recording in tandem at 250 Hz and 1000 Hz. The other stations used in this study are equipped with short period and broadband sensors. In addition, one shallow borehole station is operated with eight 3 component geophones at depths of between 2 and 44 m. The network is deployed to characterize natural seismicity in the basin and to try and identify any microseismic activity across Darling Fault Zone (DFZ), bounding the basin to the east. The DFZ stretches to approximately 1000 km north-south in Western Australia, and is one of the longest fault zones on the earth with a limited number of detected earthquakes. We use seismic noise cross- and auto-correlation methods to map seismic velocity perturbations across the basin and the transition from DFZ to the basin. Retrieved Green's functions are stable and show clear dispersed waveforms. Travel times of the surface wave Green's functions from noise cross-correlations are inverted with a two-step probabilistic framework to map the absolute shear wave velocities as a function of depth. The single station auto-correlations from the seismic noise yields P wave reflectivity under each station, marking the major discontinuities. Resulting images show the shear velocity perturbations across the region. We also quantify the variation of ambient seismic noise at different depths in the near surface using the geophones in the shallow borehole array.

  14. Seismic Waveform Inversion : Bump functional, parameterization analysis and imaging ahead of a tunnel-boring machine

    NARCIS (Netherlands)

    Pisupati, P.B.

    2017-01-01

    During a seismic experiment, mechanical waves are usually generated by various manmade sources. These waves propagate in the subsurface and are recorded at receivers. Modern seismic exploration methods analyze them to infer the mechanical properties of the subsurface; this is commonly referred as

  15. Detection of sinkholes or anomalies using full seismic wave fields.

    Science.gov (United States)

    2013-04-01

    This research presents an application of two-dimensional (2-D) time-domain waveform tomography for detection of embedded sinkholes and anomalies. The measured seismic surface wave fields were inverted using a full waveform inversion (FWI) technique, ...

  16. P-wave velocity structure beneath the northern Antarctic Peninsula

    Science.gov (United States)

    Park, Y.; Kim, K.; Jin, Y.

    2010-12-01

    We have imaged tomographically the tree-dimensional velocity structure of the upper mantle beneath the northern Antarctic Peninsula using teleseismic P waves. The data came from the seven land stations of the Seismic Experiment in Patagonia and Antarctica (SEPA) campaigned during 1997-1999, a permanent IRIS/GSN station (PMSA), and 3 seismic stations installed at scientific bases, Esperanza (ESPZ), Jubany (JUBA), and King Sejong (KSJ), in South Shetland Islands. All of the seismic stations are located in coast area, and the signal to noise ratios (SNR) are very low. The P-wave model was inverted from 95 earthquakes resulting in 347 ray paths with P- and PKP-wave arrivals. The inverted model shows a strong low velocity anmaly beneath the Bransfield Strait, and a fast anomaly beneath the South Shetland Islands. The low velocity anomaly beneath the Bransfield might be due to a back arc extension, and the fast velocity anomaly beneath the South Shetland Islands could indicates the cold subducted slab.

  17. Seismic velocity variation along the Izu-Bonin arc estaimated from traveltime tomography using OBS data

    Science.gov (United States)

    Obana, K.; Tamura, Y.; Takahashi, T.; Kodaira, S.

    2014-12-01

    The Izu-Bonin (Ogasawara) arc is an intra-oceanic island arc along the convergent plate boundary between the subducting Pacific and overriding Philippine Sea plates. Recent active seismic studies in the Izu-Bonin arc reveal significant along-arc variations in crustal structure [Kodaira et al., 2007]. The thickness of the arc crust shows a remarkable change between thicker Izu (~30 km) and thinner Bonin (~10 km) arcs. In addition to this, several geological and geophysical contrasts, such as seafloor topography and chemical composition of volcanic rocks, between Izu and Bonin arc have been reported [e.g., Yuasa 1992]. We have conducted earthquake observations using ocean bottom seismographs (OBSs) to reveal seismic velocity structure of the crust and mantle wedge in the Izu-Bonin arc and to investigate origin of the along-arc structure variations. We deployed 40 short-period OBSs in Izu and Bonin area in 2006 and 2009, respectively. The OBS data were processed with seismic data recorded at routine seismic stations on Hachijo-jima, Aoga-shima, and Chichi-jima operated by National Research Institute for Earth Science and Disaster Prevention (NIED). More than 5000 earthquakes were observed during about three-months observation period in each experiment. We conducted three-dimensional seismic tomography using manually picked P- and S-wave arrival time data. The obtained image shows a different seismic velocity structures in the mantle beneath the volcanic front between Izu and Bonin arcs. Low P-wave velocity anomalies in the mantle beneath the volcanic front in the Izu arc are limited at depths deeper than those in the Bonin arc. On the other hand, P-wave velocity in the low velocity anomalies beneath volcanic front in the Bonin arc is slower than that in the Izu arc. These large-scale along-arc structure variations in the mantle could relate to the geological and geophysical contrasts between Izu and Bonin arcs.

  18. Assessment of seismic wave effects on soil-structure interaction

    International Nuclear Information System (INIS)

    Bernreuter, D.L.

    1977-03-01

    It is normally assumed in the seismic analysis of structures that the free-field motion which is used as input is the same for all points on a given level beneath the foundation mat. This represents a simplification, as not all particles of soil describe the same motion simultaneously. As the foundation mat of the structure is rigid in the horizontal direction, it will tend to average the ground motion. Abandoning the assumption of the uniformity of the input motion may lead to a reduction of the translational motion which a foundation mat will experience, as the displacement components will cancel each other to a certain extent. This is of considerable interest for the design of nuclear power plants which are very stiff, large structures. To investigate these effects, the extremely complex phenomenon of the passage of a seismic wave has to be simplified considerably. It is the purpose of this paper to determine if wave passage effects can be determined from the simplified analyses currently used

  19. Multiple attenuation to reflection seismic data using Radon filter and Wave Equation Multiple Rejection (WEMR) method

    Energy Technology Data Exchange (ETDEWEB)

    Erlangga, Mokhammad Puput [Geophysical Engineering, Institut Teknologi Bandung, Ganesha Street no.10 Basic Science B Buliding fl.2-3 Bandung, 40132, West Java Indonesia puput.erlangga@gmail.com (Indonesia)

    2015-04-16

    Separation between signal and noise, incoherent or coherent, is important in seismic data processing. Although we have processed the seismic data, the coherent noise is still mixing with the primary signal. Multiple reflections are a kind of coherent noise. In this research, we processed seismic data to attenuate multiple reflections in the both synthetic and real seismic data of Mentawai. There are several methods to attenuate multiple reflection, one of them is Radon filter method that discriminates between primary reflection and multiple reflection in the τ-p domain based on move out difference between primary reflection and multiple reflection. However, in case where the move out difference is too small, the Radon filter method is not enough to attenuate the multiple reflections. The Radon filter also produces the artifacts on the gathers data. Except the Radon filter method, we also use the Wave Equation Multiple Elimination (WEMR) method to attenuate the long period multiple reflection. The WEMR method can attenuate the long period multiple reflection based on wave equation inversion. Refer to the inversion of wave equation and the magnitude of the seismic wave amplitude that observed on the free surface, we get the water bottom reflectivity which is used to eliminate the multiple reflections. The WEMR method does not depend on the move out difference to attenuate the long period multiple reflection. Therefore, the WEMR method can be applied to the seismic data which has small move out difference as the Mentawai seismic data. The small move out difference on the Mentawai seismic data is caused by the restrictiveness of far offset, which is only 705 meter. We compared the real free multiple stacking data after processing with Radon filter and WEMR process. The conclusion is the WEMR method can more attenuate the long period multiple reflection than the Radon filter method on the real (Mentawai) seismic data.

  20. Azimuthal filter to attenuate ground roll noise in the F-kx-ky domain for land 3D-3C seismic data with uneven acquisition geometry

    Science.gov (United States)

    Arevalo-Lopez, H. S.; Levin, S. A.

    2016-12-01

    The vertical component of seismic wave reflections is contaminated by surface noise such as ground roll and secondary scattering from near surface inhomogeneities. A common method for attenuating these, unfortunately often aliased, arrivals is via velocity filtering and/or multichannel stacking. 3D-3C acquisition technology provides two additional sources of information about the surface wave noise that we exploit here: (1) areal receiver coverage, and (2) a pair of horizontal components recorded at the same location as the vertical component. Areal coverage allows us to segregate arrivals at each individual receiver or group of receivers by direction. The horizontal components, having much less compressional reflection body wave energy than the vertical component, provide a template of where to focus our energies on attenuating the surface wave arrivals. (In the simplest setting, the vertical component is a scaled 90 degree phase rotated version of the radial horizontal arrival, a potential third possible lever we have not yet tried to integrate.) The key to our approach is to use the magnitude of the horizontal components to outline a data-adaptive "velocity" filter region in the w-Kx-Ky domain. The big advantage for us is that even in the presence of uneven receiver geometries, the filter automatically tracks through aliasing without manual sculpting and a priori velocity and dispersion estimation. The method was applied to an aliased synthetic dataset based on a five layer earth model which also included shallow scatterers to simulate near-surface inhomogeneities and successfully removed both the ground roll and scatterers from the vertical component (Figure 1).

  1. Three-dimensional P velocity structure in Beijing area

    Science.gov (United States)

    Yu, Xiang-Wei; Chen, Yun-Tai; Wang, Pei-De

    2003-01-01

    A detail three-dimensional P wave velocity structure of Beijing, Tianjin and Tangshan area (BTT area) was determined by inverting local earthquake data. In total 16 048 P wave first arrival times from 16048 shallow and mid-depth crustal earthquakes, which occurred in and around the BTT area from 1992 to 1999 were used. The first arrival times are recorded by Northern China United Telemetry Seismic Network and Yanqing-Huailai Digital Seismic Network. Hypocentral parameters of 1 132 earthquakes with magnitude M L=1.7 6.2 and the three-dimensional P wave velocity structure were obtained simultaneously. The inversion result reveals the complicated lateral heterogeneity of P wave velocity structure around BTT area. The tomographic images obtained are also found to explain other seismological observations well.

  2. Parallel 3D Simulation of Seismic Wave Propagation in the Structure of Nobi Plain, Central Japan

    Science.gov (United States)

    Kotani, A.; Furumura, T.; Hirahara, K.

    2003-12-01

    We performed large-scale parallel simulations of the seismic wave propagation to understand the complex wave behavior in the 3D basin structure of the Nobi Plain, which is one of the high population cities in central Japan. In this area, many large earthquakes occurred in the past, such as the 1891 Nobi earthquake (M8.0), the 1944 Tonankai earthquake (M7.9) and the 1945 Mikawa earthquake (M6.8). In order to mitigate the potential disasters for future earthquakes, 3D subsurface structure of Nobi Plain has recently been investigated by local governments. We referred to this model together with bouguer anomaly data to construct a detail 3D basin structure model for Nobi plain, and conducted computer simulations of ground motions. We first evaluated the ground motions for two small earthquakes (M4~5); one occurred just beneath the basin edge at west, and the other occurred at south. The ground motions from these earthquakes were well recorded by the strong motion networks; K-net, Kik-net, and seismic intensity instruments operated by local governments. We compare the observed seismograms with simulations to validate the 3D model. For the 3D simulation we sliced the 3D model into a number of layers to assign to many processors for concurrent computing. The equation of motions are solved using a high order (32nd) staggered-grid FDM in horizontal directions, and a conventional (4th-order) FDM in vertical direction with the MPI inter-processor communications between neighbor region. The simulation model is 128km by 128km by 43km, which is discritized at variable grid size of 62.5-125m in horizontal directions and of 31.25-62.5m in vertical direction. We assigned a minimum shear wave velocity is Vs=0.4km/s, at the top of the sedimentary basin. The seismic sources for the small events are approximated by double-couple point source and we simulate the seismic wave propagation at maximum frequency of 2Hz. We used the Earth Simulator (JAMSTEC, Yokohama Inst) to conduct such

  3. Basin amplification of seismic waves in the city of Pahrump, Nevada.

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, Robert E.

    2005-07-01

    Sedimentary basins can increase the magnitude and extend the duration of seismic shaking. This potential for seismic amplification is investigated for Pahrump Valley, Nevada-California. The Pahrump Valley is located approximately 50 km northwest of Las Vegas and 75 km south of the Nevada Test Site. Gravity data suggest that the city of Pahrump sits atop a narrow, approximately 5 km deep sub-basin within the valley. The seismic amplification, or ''site effect'', was investigated using a combination of in situ velocity modeling and comparison of the waveforms and spectra of weak ground motion recorded in the city of Pahrump, Nevada, and those recorded in the nearby mountains. Resulting spectral ratios indicate seismic amplification factors of 3-6 over the deepest portion of Pahrump Valley. This amplification predominantly occurs at 2-2.5 Hz. Amplification over the deep sub-basin is lower than amplification at the sub-basin edge, location of the John Blume and Associates PAHA seismic station, which recorded many underground nuclear tests at the Nevada Test Site. A comprehensive analysis of basin amplification for the city of Pahrump should include 3-D basin modeling, due to the extreme basement topography of the Pahrump Valley.

  4. Comparison of shear-wave velocity measurements by crosshole, downhole and seismic cone penetration test methods

    Energy Technology Data Exchange (ETDEWEB)

    Suthaker, N.; Tweedie, R. [Thurber Engineering Ltd., Edmonton, AB (Canada)

    2009-07-01

    Shear wave velocity measurements are an integral part of geotechnical studies for major structures and are an important tool in their design for site specific conditions such as site-specific earthquake response. This paper reported on a study in which shear wave velocities were measured at a proposed petrochemical plant site near Edmonton, Alberta. The proposed site is underlain by lacustrine clay, glacial till and upper Cretaceous clay shale and sandstone bedrock. The most commonly used methods for determining shear wave velocity include crosshole seismic tests, downhole seismic tests, and seismic cone penetration tests (SCPT). This paper presented the results of all 3 methods used in this study and provided a comparison of the various test methods and their limitations. The crosshole test results demonstrated a common trend of increasing shear wave velocity with depth to about 15 m, below which the velocities remained relatively constant. An anomaly was noted at one site, where the shear wave velocity was reduced at a zone corresponding to clay till containing stiff high plastic clay layers. The field study demonstrated that reasonable agreement in shear wave velocity measurements can be made using crosshole, downhole and seismic tests in the same soil conditions. The National Building Code states that the shear wave velocity is the fundamental method for determining site classification, thus emphasizing the importance of obtaining shear wave velocity measurements for site classification. It was concluded that an SCPT program can be incorporated into the field program without much increase in cost and can be supplemented by downhole or crosshole techniques. 5 refs., 2 tabs., 10 figs.

  5. Location of the Green Canyon (Offshore Southern Louisiana) Seismic Event of February 10, 2006

    Science.gov (United States)

    Dewey, James W.; Dellinger, Joseph A.

    2008-01-01

    We calculated an epicenter for the Offshore Southern Louisiana seismic event of February 10, 2006 (the 'Green Canyon event') that was adopted as the preferred epicenter for the event by the USGS/NEIC. The event is held at a focal depth of 5 km; the focal depth could not be reliably calculated but was most likely between 1 km and 15 km beneath sea level. The epicenter was calculated with a radially symmetric global Earth model similar to that routinely used at the USGS/NEIC for all earthquakes worldwide. The location was calculated using P-waves recorded by seismographic stations from which the USGS/NEIC routinely obtains seismological data, plus data from two seismic exploration arrays, the Atlantis ocean-bottom node array, operated by BP in partnership with BHP Billiton Limited, and the CGG Green Canyon phase VIII multi-client towed-streamer survey. The preferred epicenter is approximately 26 km north of an epicenter earlier published by the USGS/NEIC, which was obtained without benefit of the seismic exploration arrays. We estimate that the preferred epicenter is accurate to within 15 km. We selected the preferred epicenter from a suite of trial calculations that attempted to fit arrival times of seismic energy associated with the Green Canyon event and that explored the effect of errors in the velocity model used to calculate the preferred epicenter. The various trials were helpful in confirming the approximate correctness of the preferred epicenter and in assessing the accuracy of the preferred epicenter, but none of the trial calculations, including that of the preferred epicenter, was able to reconcile arrival-time observations and assumed velocity model as well as is typical for the vast majority of earthquakes in and near the continental United States. We believe that remaining misfits between the preferred solution and the observations reflect errors in interpreted arrival times of emergent seismic phases that are due partly to a temporally extended source

  6. A Shear-Wave Seismic System to Look Ahead of a Tunnel Boring Machine

    NARCIS (Netherlands)

    Bharadwaj, Pawan; Drijkoningen, G.G.; Mulder, W.A.; Tscharner, Thomas; Jenneskens, Rob

    2016-01-01

    The Earth’s properties, composition and structure ahead of a tunnel boring machine (TBM) should be mapped for hazard assessment during excavation. We study the use of seismic-exploration techniques for this purpose. We focus on a seismic system for soft soils, where shear waves are better and easier

  7. The Non-Proliferation Experiment recorded at the Pinedale Seismic Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Carr, D.B. [Sandia National Laboratories, Albuquerque, NM (United States)

    1994-12-31

    The Non-Proliferation Experiment was recorded by five different seismic stations operated by Sandia National Laboratories at the Pinedale Seismic Research Facility, approximately 7.6{degrees} from the Nevada Test Site. Two stations are different versions of the Deployable Seismic Verification System developed by the Department of Energy to provide seismic data to verify compliance with a Comprehensive Test Ban Treaty. Vault and borehole versions of the Designated Seismic Stations also recorded the event. The final station is test instrumentation located at depths of 10, 40 and 1200 feet. Although the event is seen clearly at all the stations, there are variations in the raw data due to the different bandwidths and depths of deployment. One Deployable Seismic Verification System has been operating at Pinedale for over three years and in that time recorded 14 nuclear explosions and 4 earthquakes from the Nevada Test Site, along with numerous other western U.S. earthquakes. Several discriminants based on the work by Taylor et al. (1989) have been applied to this data. First the discriminants were tested by comparing the explosions only to the 4 earthquakes located on the Test Site. Only one discriminant, log(L{sub g}/P{sub g}), did not show clear separation between the earthquakes and nuclear explosions. When other western U.S. events are included, only the M{sub b} vs. M{sub s} discriminant separated the event. In all cases where discrimination was possible, the Non-Proliferation Experiment was indistinguishable from a nuclear explosion.

  8. Investigating Deep-Marine Sediment Waves in the Northern Gulf of Mexico Using 3D Seismic Data

    Science.gov (United States)

    Wang, Z.; Gani, M. R.

    2016-12-01

    Deep-water depositional elements have been studied for decades using outcrop, flume tank, sidescan sonar, and seismic data. Even though they have been well recognized by researchers, the improvements in the quality of 3D seismic data with increasingly larger dimension allow detailed analysis of deep-water depositional elements with new insights. This study focuses on the deep-marine sediment waves in the northern Gulf of Mexico. By interpreting a 3D seismic dataset covering 635 km2 at Mississippi Canyon and Viosca Knoll areas, large sediment waves, generated by sediment gravity flows, were mapped and analyzed with various seismic attributes. A succession of sediment waves, approximately 100 m in thickness, is observed on the marine slope that tapers out at the toe of the slope. The individual sediment wave exhibits up to 500 m in wavelength and up to 20 m in height. The wave crests oriented northeast-southwest are broadly aligned parallel to the regional slope-strike, indicating their sediment gravity flow origin. The crestlines are straight or slightly sinuous, with sinuosity increasing downslope. Their anti-dune patterns likely imply the presence of supercritical flows. The sediment waves have a retrogradational stacking pattern. Seismic amplitude maps of each sediment wave revealed that after depositing the majority of sheet-like sands on the upper slope, sediment gravity flows started to form large sediment waves on the lower slope. The steep and narrow upcurrent flanks of the sediment waves always display higher amplitudes than the gentle and wide downcurrent flanks, indicating that the sands were likely preferentially trapped along the upcurrent flanks, whereas the muds spread along the downcurrent flanks. The formation of sediment waves likely requires a moderate sand-mud ratio, as suggested by these observations: (1) absence of sediment waves on the upper slope where the sands were mainly deposited as unconfined sheets with a high sand-mud ratio; (2

  9. Explosion-produced ground motion: technical summary with respect to seismic hazards

    Energy Technology Data Exchange (ETDEWEB)

    Rodean, Howard C [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    perfectly elastic but anelastic. If an underground explosion is spherical and the surrounding medium is homogeneous and isotropic, only compressional or P waves are generated. This is an idealization; both P and shear or S waves are produced, with P waves being predominant. The interaction of these waves with the inhomogeneities within the earth and the free surface of the earth produce additional reflected and refracted P and S waves, plus Rayleigh (or R) and Love (or L) waves that travel along the surface. As a consequence, the surface ground motion at a location where seismic damage is of concern is a complex mixture of several types of waves: some are generated in the vicinity of the explosion, and others at various points along different propagation paths. They arrive at different times because of different propagation velocities and transmission paths. In addition, the surface or receiver response to these waves is a function of local geology; e. g., the least severe motion occurs on hard rock. The problem of seismic motion pertinent to property damage is therefore very complicated because the damage-producing part of the wave train does not appear to be the first arrival but some subsequent portion. There may be some valid correlations between damage (i.e., architectural like cracked plaster as well as structural) and measured values of frequency-dependent displacement, velocity, and acceleration; but it is not known which waves are associated with these measurements. Therefore, the prediction of ground motion for seismic damage assessment is, at present, based on extrapolation of past experience and not upon calculations from the first principles of mechanics. This does not mean that these calculations are not of value in damage prediction. However, correlation between theoretical calculations and experimental measurements of ground motion will probably be on a statistical basis because it generally will be impractical to determine all pertinent details of the

  10. Explosion-produced ground motion: technical summary with respect to seismic hazards

    International Nuclear Information System (INIS)

    Rodean, Howard C.

    1970-01-01

    perfectly elastic but anelastic. If an underground explosion is spherical and the surrounding medium is homogeneous and isotropic, only compressional or P waves are generated. This is an idealization; both P and shear or S waves are produced, with P waves being predominant. The interaction of these waves with the inhomogeneities within the earth and the free surface of the earth produce additional reflected and refracted P and S waves, plus Rayleigh (or R) and Love (or L) waves that travel along the surface. As a consequence, the surface ground motion at a location where seismic damage is of concern is a complex mixture of several types of waves: some are generated in the vicinity of the explosion, and others at various points along different propagation paths. They arrive at different times because of different propagation velocities and transmission paths. In addition, the surface or receiver response to these waves is a function of local geology; e. g., the least severe motion occurs on hard rock. The problem of seismic motion pertinent to property damage is therefore very complicated because the damage-producing part of the wave train does not appear to be the first arrival but some subsequent portion. There may be some valid correlations between damage (i.e., architectural like cracked plaster as well as structural) and measured values of frequency-dependent displacement, velocity, and acceleration; but it is not known which waves are associated with these measurements. Therefore, the prediction of ground motion for seismic damage assessment is, at present, based on extrapolation of past experience and not upon calculations from the first principles of mechanics. This does not mean that these calculations are not of value in damage prediction. However, correlation between theoretical calculations and experimental measurements of ground motion will probably be on a statistical basis because it generally will be impractical to determine all pertinent details of the

  11. United States Geological Survey (USGS) FM cassette seismic-refraction recording system

    International Nuclear Information System (INIS)

    Murphy, J.M.

    1988-01-01

    In this two chapter report, instrumentation used to collect seismic data is described. This data acquisition system has two parts: (1) portable anolog seismic recorders and related ''hand-held-testers'' (HHT) and (2) portable digitizing units. During the anolog recording process, ground motion is sensed by a 2-Hz vertical-component seismometer. The voltage output from the seismometer is split without amplification and sent to three parallel amplifier circuit boards. Each circuit board amplifiers the seismic signal in three stages and then frequency modulates the signal. Amplification at the last two stages can be set by the user. An internal precision clock signal is also frequency modulated. The three data carrier frequencies, the clock carrier frequency, and a tape-speed compensation carrier frequency are summed and recorded on a recorded on a cassette tape. During the digitizing process, the cassette tapes are played back and the signals are demultiplexed and demodulated. An anolog-to-digital converter converts the signals to digital data which are stored on 8-inch floppy disks. 7 refs., 19 figs., 6 tabs

  12. Seismic Symphonies

    Science.gov (United States)

    Strinna, Elisa; Ferrari, Graziano

    2015-04-01

    The project started in 2008 as a sound installation, a collaboration between an artist, a barrel organ builder and a seismologist. The work differs from other attempts of sound transposition of seismic records. In this case seismic frequencies are not converted automatically into the "sound of the earthquake." However, it has been studied a musical translation system that, based on the organ tonal scale, generates a totally unexpected sequence of sounds which is intended to evoke the emotions aroused by the earthquake. The symphonies proposed in the project have somewhat peculiar origins: they in fact come to life from the translation of graphic tracks into a sound track. The graphic tracks in question are made up by copies of seismograms recorded during some earthquakes that have taken place around the world. Seismograms are translated into music by a sculpture-instrument, half a seismograph and half a barrel organ. The organ plays through holes practiced on paper. Adapting the documents to the instrument score, holes have been drilled on the waves' peaks. The organ covers about three tonal scales, starting from heavy and deep sounds it reaches up to high and jarring notes. The translation of the seismic records is based on a criterion that does match the highest sounds to larger amplitudes with lower ones to minors. Translating the seismogram in the organ score, the larger the amplitude of recorded waves, the more the seismogram covers the full tonal scale played by the barrel organ and the notes arouse an intense emotional response in the listener. Elisa Strinna's Seismic Symphonies installation becomes an unprecedented tool for emotional involvement, through which can be revived the memory of the greatest disasters of over a century of seismic history of the Earth. A bridge between art and science. Seismic Symphonies is also a symbolic inversion: the instrument of the organ is most commonly used in churches, and its sounds are derived from the heavens and

  13. Acoustic multipath arrivals in the horizontal plane due to approaching nonlinear internal waves.

    Science.gov (United States)

    Badiey, Mohsen; Katsnelson, Boris G; Lin, Ying-Tsong; Lynch, James F

    2011-04-01

    Simultaneous measurements of acoustic wave transmissions and a nonlinear internal wave packet approaching an along-shelf acoustic path during the Shallow Water 2006 experiment are reported. The incoming internal wave packet acts as a moving frontal layer reflecting (or refracting) sound in the horizontal plane. Received acoustic signals are filtered into acoustic normal mode arrivals. It is shown that a horizontal multipath interference is produced. This has previously been called a horizontal Lloyd's mirror. The interference between the direct path and the refracted path depends on the mode number and frequency of the acoustic signal. A mechanism for the multipath interference is shown. Preliminary modeling results of this dynamic interaction using vertical modes and horizontal parabolic equation models are in good agreement with the observed data.

  14. The seismic signatures of the 2009 Shiaolin landslide in Taiwan

    Directory of Open Access Journals (Sweden)

    Z. Feng

    2011-05-01

    Full Text Available The Shiaolin landslide occurred on 9 August 2009 after Typhoon Morakot struck Taiwan, claiming over 400 lives. The seismic signals produced by the landslide were recorded by broadband seismic stations in Taiwan. The time-frequency spectra for these signals were obtained by the Hilbert-Huang transform (HHT and were analyzed to obtain the seismic characteristics of the landslide. Empirical mode decomposition (EMD was applied to differentiate weak surface-wave signals from noise and to estimate the surface-wave velocities in the region. The surface-wave velocities were estimated using the fifth intrinsic mode function (IMF 5 obtained from the EMD. The spectra of the earthquake data were compared. The main frequency content of the seismic waves caused by the Shiaolin landslide were in the range of 0.5 to 1.5 Hz. This frequency range is smaller than the frequency ranges of other earthquakes. The spectral analysis of surface waves (SASW method is suggested for characterizing the shear-wave velocities of the strata in the region.

  15. Seismic, satellite, and site observations of internal solitary waves in the NE South China Sea.

    Science.gov (United States)

    Tang, Qunshu; Wang, Caixia; Wang, Dongxiao; Pawlowicz, Rich

    2014-06-20

    Internal solitary waves (ISWs) in the NE South China Sea (SCS) are tidally generated at the Luzon Strait. Their propagation, evolution, and dissipation processes involve numerous issues still poorly understood. Here, a novel method of seismic oceanography capable of capturing oceanic finescale structures is used to study ISWs in the slope region of the NE SCS. Near-simultaneous observations of two ISWs were acquired using seismic and satellite imaging, and water column measurements. The vertical and horizontal length scales of the seismic observed ISWs are around 50 m and 1-2 km, respectively. Wave phase speeds calculated from seismic observations, satellite images, and water column data are consistent with each other. Observed waveforms and vertical velocities also correspond well with those estimated using KdV theory. These results suggest that the seismic method, a new option to oceanographers, can be further applied to resolve other important issues related to ISWs.

  16. Improvement of a picking algorithm real-time P-wave detection by kurtosis

    Science.gov (United States)

    Ishida, H.; Yamada, M.

    2016-12-01

    Earthquake early warning (EEW) requires fast and accurate P-wave detection. The current EEW system in Japan uses the STA/LTAalgorithm (Allen, 1978) to detect P-wave arrival.However, some stations did not trigger during the 2011 Great Tohoku Earthquake due to the emergent onset. In addition, accuracy of the P-wave detection is very important: on August 1, 2016, the EEW issued a false alarm with M9 in Tokyo region due to a thunder noise.To solve these problems, we use a P-wave detection method using kurtosis statistics. It detects the change of statistic distribution of the waveform amplitude. This method was recently developed (Saragiotis et al., 2002) and used for off-line analysis such as making seismic catalogs. To apply this method for EEW, we need to remove an acausal calculation and enable a real-time processing. Here, we propose a real-time P-wave detection method using kurtosis statistics with a noise filter.To avoid false triggering by a noise, we incorporated a simple filter to classify seismic signal and noise. Following Kong et al. (2016), we used the interquartilerange and zero cross rate for the classification. The interquartile range is an amplitude measure that is equal to the middle 50% of amplitude in a certain time window. The zero cross rate is a simple frequency measure that counts the number of times that the signal crosses baseline zero. A discriminant function including these measures was constructed by the linear discriminant analysis.To test this kurtosis method, we used strong motion records for 62 earthquakes between April, 2005 and July, 2015, which recorded the seismic intensity greater equal to 6 lower in the JMA intensity scale. The records with hypocentral distance picks. It shows that the median error is 0.13 sec and 0.035 sec for STA/LTA and kurtosis method. The kurtosis method tends to be more sensitive to small changes in amplitude.Our approach will contribute to improve the accuracy of source location determination of

  17. Dynamic characteristics of background seismic noise according to records of nuclear monitoring seismic stations in Kazakstan

    International Nuclear Information System (INIS)

    Belyashova, N.N.; Sinyova, Z.I.; Komarov, I.I.; Mikhailova, N.N.

    1998-01-01

    The seismic stations of Kazakstan, included into nuclear monitoring network (see fig.1) are equipped with broad hand seismometers; seismic data are recorded in digital format. All this allows to investigate spectral and time characteristics of seismic background noise in very large frequency diapason (more than 3-5 orders), for all three components of oscillation vector. The spectral density of background seismic noise for vertical and both horizontal components (fig.2) was calculated for all of the observation points. The regular features of structure of noise spectra, inherent for all of the studied observation points, as well as some features, specific for studied places were found. The curves of spectral noise density were compared with global noise model, determined by the data of Global Seismological Network (GSN)

  18. Relative abundance of PcP energy in explosion seismic signals from Eastern Kazakh and South Western Russia recorded at Eskdalemuir, Yellowknife and Gauribidanur arrays

    International Nuclear Information System (INIS)

    Basu, T.K.; Arora, S.K.

    1991-01-01

    In this study further evidence of relative abundance of PcP (core reflected P) energy in explosion seismic records is gathered. It is based on the analysis of temporal and spectral characteristics of P and PcP digital seismograms of twenty-three underground nuclear explosions in Eastern Kazakh and Southern Russia recorded at Eskdalemuir (EKA) and Yellowkinfe (YKA) arrays. The results are compared with those obtained earlier using Gauribidanur array (GBA) data. It is found that seismic sources in Southwestern Russia give consistently large values of the PcP identifier when both EKA and YKA data are used thus corroborating authors' earlier finding with regard to this Soviet region of typical Q-structure inferred from GBA data. As regards relative levels of PcP energy in explosion generated seismic waves, it is found to be substantially large at GBA, moderate at YKA and least at EKA. (author). 8 figs., 3 tabs

  19. Mechanical Strain Measurement from Coda Wave Interferometry

    Science.gov (United States)

    Azzola, J.; Schmittbuhl, J.; Zigone, D.; Masson, F.; Magnenet, V.

    2017-12-01

    Coda Wave Interferometry (CWI) aims at tracking small changes in solid materials like rocks where elastic waves are diffusing. They are intensively sampling the medium, making the technique much more sensitive than those relying on direct wave arrivals. Application of CWI to ambient seismic noise has found a large range of applications over the past years like for multiscale imaging but also for monitoring complex structures such as regional faults or reservoirs (Lehujeur et al., 2015). Physically, observed changes are typically interpreted as small variations of seismic velocities. However, this interpretation remains questionable. Here, a specific focus is put on the influence of the elastic deformation of the medium on CWI measurements. The goal of the present work is to show from a direct numerical and experimental modeling that deformation signal also exists in CWI measurements which might provide new outcomes for the technique.For this purpose, we model seismic wave propagation within a diffusive medium using a spectral element approach (SPECFEM2D) during an elastic deformation of the medium. The mechanical behavior is obtained from a finite element approach (Code ASTER) keeping the mesh grid of the sample constant during the whole procedure to limit numerical artifacts. The CWI of the late wave arrivals in the synthetic seismograms is performed using both a stretching technique in the time domain and a frequency cross-correlation method. Both show that the elastic deformation of the scatters is fully correlated with time shifts of the CWI differently from an acoustoelastic effect. As an illustration, the modeled sample is chosen as an effective medium aiming to mechanically and acoustically reproduce a typical granitic reservoir rock.Our numerical approach is compared to experimental results where multi-scattering of an acoustic wave through a perforated loaded Au4G (Dural) plate is performed at laboratory scale. Experimental and numerical results of the

  20. Using Distant Sources in Local Seismic Tomography

    Science.gov (United States)

    Julian, Bruce; Foulgr, Gillian

    2014-05-01

    Seismic tomography methods such as the 'ACH' method of Aki, Christoffersson & Husebye (1976, 1977) are subject to significant bias caused by the unknown wave-speed structure outside the study volume, whose effects are mathematically of the same order as the local-structure effects being studied. Computational experiments using whole-mantle wave-speed models show that the effects are also of comparable numerical magnitude (Masson & Trampert, 1997). Failure to correct for these effects will significantly corrupt computed local structures. This bias can be greatly reduced by solving for additional parameters defining the shapes, orientations, and arrival times of the incident wavefronts. The procedure is exactly analogous to solving for hypocentral locations in local-earthquake tomography. For planar incident wavefronts, each event adds three free parameters and the forward problem is surprisingly simple: The first-order change in the theoretical arrival time at observation point B resulting from perturbations in the incident-wave time t0 and slowness vector s is δtB ≡ δt0 + δs · rA = δtA, the change in the time of the plane wave at the point A where the un-perturbed ray enters the study volume (Julian and Foulger, submitted). This consequence of Fermat's principle apparently has not previously been recognized. In addition to eliminating the biasing effect of structure outside the study volume, this formalism enables us to combine data from local and distant events in studies of local structure, significantly improving resolution of deeper structure, particularly in places such as volcanic and geothermal areas where seismicity is confined to shallow depths. Many published models that were derived using ACH and similar methods probably contain significant artifacts and are in need of re-evaluation.

  1. The Formation of Laurentia: Evidence from Shear Wave Splitting and Seismic Tomography

    Science.gov (United States)

    Liddell, M. V.; Bastow, I. D.; Rawlinson, N.; Darbyshire, F. A.; Gilligan, A.

    2017-12-01

    The northern Hudson Bay region of Canada comprises several Archean cratonic nuclei, assembled by Paleoproterozoic orogenies including the 1.8 Ga Trans-Hudson Orogen (THO) and Rinkian-Nagssugtoqidian Orogen (NO). Questions remain about how similar in scale and nature these orogens were compared to modern orogens like the Himalayas. Also in question is whether the thick Laurentian cratonic root below Hudson Bay is stratified, with a seismically-fast Archean core underlain by a lower, younger, thermal layer. We investigate these problems via shear-wave splitting and teleseismic tomography using up to 25 years of data from 65 broadband seismic stations across northern Hudson Bay. The results of the complementary studies comprise the most comprehensive study to date of mantle seismic velocity and anisotropy in northern Laurentia. Splitting parameter patterns are used to interpret multiple layers, lithospheric boundaries, dipping anisotropy, and deformation zone limits for the THO and NO. Source-side waveguide effects from Japan and the Aleutian trench are observed despite the tomographic data being exclusively relative arrival time. Mitigating steps to ensure data quality are explained and enforced. In the Hudson Strait, anisotropic fast directions (φ) generally parallel the THO, which appears in tomographic images as a strong low velocity feature relative to the neighbouring Archean cratons. Several islands in northern Hudson Bay show short length-scale changes in φ coincident with strong velocity contrasts. These are interpreted as distinct lithospheric blocks with unique deformational histories, and point to a complex, rather than simple 2-plate, collisional history for the THO. Strong evidence is presented for multiple anisotropic layers beneath Archean zones, consistent with the episodic development model of cratonic keels (e.g., Yuan & Romanowicz 2010). We show via both tomographic inversion models and SKS splitting patterns that southern Baffin Island was

  2. Missile impacts as sources of seismic energy on the moon

    Science.gov (United States)

    Latham, G.V.; McDonald, W.G.; Moore, H.J.

    1970-01-01

    Seismic signals recorded from impacts of missiles at the White Sands Missile Range are radically different from the signal recorded from the Apollo 12 lunar module impact. This implies that lunar structure to depths of at least 10 to 20 kilometers is quite different from the typical structure of the earth's crust. Results obtained from this study can be used to predict seismic wave amplitudes from future man-made lunar impacts. Seismic energy and crater dimensions from impacts are compared with measurements from chemical explosions.

  3. INFLUENCE OF THE SPATIAL ARRANGEMENT OF SEISMIC DETECTORS ON THE ACCURACY OF EARTHQUAKE HYPOCENTRE DETERMINATION

    Directory of Open Access Journals (Sweden)

    T. G. Aslanov

    2016-01-01

    Full Text Available Objectives. To determine the coordinates of the seismic focus of an earthquake with a minimum margin of error with the use of an optimal selection of seismic sensors. Method. Seismic wave velocity data, relying on the time discrepancies between the registering of seismic waves on the seismic sensor and the defined error in determining the time difference, were used to identify errors in the location of an earthquake's hypocenter depending on the respective positions of three seismic sensors. Discrepancies between data containing an error and those without it used to determine two hypocenters provide information about the hypocenter locating error. An analysis of the influence of the respective arrangements of the seismic sensors and the earthquake epicentre on the accuracy of determination of epicentre coordinates was carried out. Results. It is established that, in order to improve the accuracy of epicenter and hypocenter earthquake coordinate determination, it is preferable to use different combinations of seismic sensors. The present recommendations are based on the desire to reduce errors in determining the earthquake source coordinates. Due to earthquake epicenter distance determination errors found in different seismic sensors both with increasing and decreasing distance, the hypocenter coordinate determining error has been found to depend on the respective arrangement of seismic sensors and on the earthquake source's geographical location. In order to determine the dependence of the source coordinate determining error on the relative position of three seismic sensors, the third seismic sensor was displaced on a horizontal plane at the location centered at the coordinate of the origin. Conclusion. When selecting seismic sensors it is essential that one of them be located perpendicular to the center of the segment formed by the other two seismic sensors. The probability of a multidirectional error of measurement at the moment of arrival of

  4. A New Moonquake Catalog from Apollo 17 Seismic Data II: Lunar Surface Gravimeter: Implications of Expanding the Passive Seismic Array

    Science.gov (United States)

    Phillips, D.; Dimech, J. L.; Weber, R. C.

    2017-12-01

    Apollo 17's Lunar Surface Gravimeter (LSG) was deployed on the Moon in 1972, and was originally intended to detect gravitational waves as a confirmation of Einstein's general theory of relativity. Due to a design problem, the instrument did not function as intended. However, remotely-issued reconfiguration commands permitted the instrument to act effectively as a passive seismometer. LSG recorded continuously until Sept. 1977, when all surface data recording was terminated. Because the instrument did not meet its primary science objective, little effort was made to archive the data. Most of it was eventually lost, with the exception of data spanning the period March 1976 until Sept. 1977, and a recent investigation demonstrated that LSG data do contain moonquake signals (Kawamura et al., 2015). The addition of useable seismic data at the Apollo 17 site has important implications for event location schemes, which improve with increasing data coverage. All previous seismic event location attempts were limited to the four stations deployed at the Apollo 12, 14, 15, and 16 sites. Apollo 17 extends the functional aperture of the seismic array significantly to the east, permitting more accurate moonquake locations and improved probing of the lunar interior. Using the standard location technique of linearized arrival time inversion through a known velocity model, Kawamura et al. (2015) used moonquake signals detected in the LSG data to refine location estimates for 49 deep moonquake clusters, and constrained new locations for five previously un-located clusters. Recent efforts of the Apollo Lunar Surface Experiments Package Data Recovery Focus Group have recovered some of the previously lost LSG data, spanning the time period April 2, 1975 to June 30, 1975. In this study, we expand Kawamura's analysis to the newly recovered data, which contain over 200 known seismic signals, including deep moonquakes, shallow moonquakes, and meteorite impacts. We have completed initial

  5. Source signature estimation from multimode surface waves via mode-separated virtual real source method

    Science.gov (United States)

    Gao, Lingli; Pan, Yudi

    2018-05-01

    The correct estimation of the seismic source signature is crucial to exploration geophysics. Based on seismic interferometry, the virtual real source (VRS) method provides a model-independent way for source signature estimation. However, when encountering multimode surface waves, which are commonly seen in the shallow seismic survey, strong spurious events appear in seismic interferometric results. These spurious events introduce errors in the virtual-source recordings and reduce the accuracy of the source signature estimated by the VRS method. In order to estimate a correct source signature from multimode surface waves, we propose a mode-separated VRS method. In this method, multimode surface waves are mode separated before seismic interferometry. Virtual-source recordings are then obtained by applying seismic interferometry to each mode individually. Therefore, artefacts caused by cross-mode correlation are excluded in the virtual-source recordings and the estimated source signatures. A synthetic example showed that a correct source signature can be estimated with the proposed method, while strong spurious oscillation occurs in the estimated source signature if we do not apply mode separation first. We also applied the proposed method to a field example, which verified its validity and effectiveness in estimating seismic source signature from shallow seismic shot gathers containing multimode surface waves.

  6. Seismic and hydroacoustic analysis relevant to MH370

    Energy Technology Data Exchange (ETDEWEB)

    Stead, Richard J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-03

    The vicinity of the Indian Ocean is searched for open and readily available seismic and/or hydroacoustic stations that might have recorded a possible impact of MH370 with the ocean surface. Only three stations are identified: the IMS hydrophone arrays H01 and H08, and the Geoscope seismic station AIS. Analysis of the data from these stations shows an interesting arrival on H01 that has some interference from an Antarctic ice event, large amplitude repeating signals at H08 that obscure any possible arrivals, and large amplitude chaotic noise at AIS precludes any analysis at higher frequencies of interest. The results are therefore rather inconclusive but may point to a more southerly impact location within the overall Indian Ocean search region. The results would be more useful if they can be combined with any other data that are not readily available.

  7. Seismic, satellite, and site observations of internal solitary waves in the NE South China Sea

    Science.gov (United States)

    Tang, Qunshu; Wang, Caixia; Wang, Dongxiao; Pawlowicz, Rich

    2014-01-01

    Internal solitary waves (ISWs) in the NE South China Sea (SCS) are tidally generated at the Luzon Strait. Their propagation, evolution, and dissipation processes involve numerous issues still poorly understood. Here, a novel method of seismic oceanography capable of capturing oceanic finescale structures is used to study ISWs in the slope region of the NE SCS. Near-simultaneous observations of two ISWs were acquired using seismic and satellite imaging, and water column measurements. The vertical and horizontal length scales of the seismic observed ISWs are around 50 m and 1–2 km, respectively. Wave phase speeds calculated from seismic observations, satellite images, and water column data are consistent with each other. Observed waveforms and vertical velocities also correspond well with those estimated using KdV theory. These results suggest that the seismic method, a new option to oceanographers, can be further applied to resolve other important issues related to ISWs. PMID:24948180

  8. Analysis of the seismic wavefield in the Moesian Platform (Bucharest area) for hazard assessment purposes

    Science.gov (United States)

    Manea, Elena Florinela; Michel, Clotaire; Hobiger, Manuel; Fäh, Donat; Cioflan, Carmen Ortanza; Radulian, Mircea

    2017-09-01

    During large earthquakes generated at intermediate depth in the Vrancea seismic zone, the ground motion recorded in Bucharest (Romania) is characterized by predominant long periods with strong amplification. Time-frequency analysis highlights the generation of low frequency surface waves (edges of this large sedimentary basin or multipath interference waves (Airy phases of Love and Rayleigh waves), on ground motion. The data from a 35 km diameter array (URS experiment) were used. The array was installed by the National Institute for Earth Physics in cooperation with the Karlsruhe Institute for Technology and operated during 10 months in 2003 and 2004 in the urban area of Bucharest and adjacent zones. The earthquake wavefield recorded by the URS array was analysed using the MUSIQUE technique. This technique analyses the three-component signals of all sensors of a seismic array together. The analysis includes 19 earthquakes with epicentral distances from 100 to 1560 km and with various backazimuths with enough energy at low frequencies (0.1-1 Hz), within the resolution range of the array. For all events, the largest portion of energy is arriving from the source direction and the wavefield is dominated by Love waves. The results of the array analyses clearly indicate a significant scattering corresponding to 2-D or 3-D effects of the Moesian Platform. The azimuthal distribution shows that the scattering comes primarily from the southern and northern edges of the basin. The Airy phase of Love waves was clearly identified as the main contributor in the range of the fundamental frequency of resonance of the basin (0.15-0.25 Hz), with directionality along the backazimuth and its opposite direction. Moreover, two further distinct frequency bands around 0.4 and 0.7 Hz with higher amplitudes were identified. Their complex nature is a combination of the higher modes of Rayleigh waves, Airy phases of Love waves and SH waves. Love and Rayleigh wave dispersion curves were

  9. 3D Seismic Imaging over a Potential Collapse Structure

    Science.gov (United States)

    Gritto, Roland; O'Connell, Daniel; Elobaid Elnaiem, Ali; Mohamed, Fathelrahman; Sadooni, Fadhil

    2016-04-01

    The Middle-East has seen a recent boom in construction including the planning and development of complete new sub-sections of metropolitan areas. Before planning and construction can commence, however, the development areas need to be investigated to determine their suitability for the planned project. Subsurface parameters such as the type of material (soil/rock), thickness of top soil or rock layers, depth and elastic parameters of basement, for example, comprise important information needed before a decision concerning the suitability of the site for construction can be made. A similar problem arises in environmental impact studies, when subsurface parameters are needed to assess the geological heterogeneity of the subsurface. Environmental impact studies are typically required for each construction project, particularly for the scale of the aforementioned building boom in the Middle East. The current study was conducted in Qatar at the location of a future highway interchange to evaluate a suite of 3D seismic techniques in their effectiveness to interrogate the subsurface for the presence of karst-like collapse structures. The survey comprised an area of approximately 10,000 m2 and consisted of 550 source- and 192 receiver locations. The seismic source was an accelerated weight drop while the geophones consisted of 3-component 10 Hz velocity sensors. At present, we analyzed over 100,000 P-wave phase arrivals and performed high-resolution 3-D tomographic imaging of the shallow subsurface. Furthermore, dispersion analysis of recorded surface waves will be performed to obtain S-wave velocity profiles of the subsurface. Both results, in conjunction with density estimates, will be utilized to determine the elastic moduli of the subsurface rock layers.

  10. Joint Inversion of Surface Waves Dispersion and Receiver Function at Cuba Seismic Stations

    International Nuclear Information System (INIS)

    Gonzalez, O'Leary; Moreno, Bladimir; Romanelli, Fabio; Panza, Giuliano F.

    2010-06-01

    Joint inversion of Rayleigh wave group velocity dispersion and receiver functions have been used to estimate the crust and upper mantle structure at eight seismic stations in Cuba. Receiver functions have been computed from teleseismic recordings of earthquakes at epicentral (angular) distances between 30 o and 90 o and Rayleigh wave group velocity dispersion have been taken from a surface-wave tomography study of the Caribbean area. The thickest crust (around 27 km) is found at Cascorro (CCC), Soroa (SOR), Moa (MOA) and Maisi (MAS) stations while the thinnest crust (around 18 km) is found at stations Rio Carpintero (RCC) and Guantanamo Bay (GTBY), in the southeastern of Cuba; this result is in agreement with the southward gradual thinning of the crust revealed by previous studies. The inversion shows a crystalline crust with S-wave velocity between 2.9 km/s and 3.9 km/s and at the crust-mantle transition zone the shear wave velocity varies from 3.9 km/s and 4.3 km/s. The lithospheric thickness varies from 74 km, in the youngest lithosphere, to 200 km in the middle of the Cuban island. Evidences of a subducted slab possibly belonging to the Caribbean plate are present below the stations Las Mercedes (LMG), RCC and GTBY and a thicker slab is present below the SOR station. (author)

  11. Seismic study of soil dynamics at Garner Valley, California

    International Nuclear Information System (INIS)

    Archuleta, R.J.; Seale, S.H.

    1990-01-01

    The Garner Valley downhole array (GVDA) of force-balanced accelerometers was designed to determine the effect that near-surface soil layers have on surface ground motion by measuring in situ seismic waves at various depths. Although there are many laboratory, theoretical and numerical studies that are used to predict the effects that local site geology might have on seismic waves, there are very few direct measurements that can be used to confirm the predictions made by these methods. The effects of local site geology on seismic ground motions are critical for estimating the base motion of structures. The variations in site amplifications at particular periods can range over a factor of 20 or more in comparing amplitude spectra from rock and soil sites, e.g., Mexico City (1985) or San Francisco (1989). The basic phenomenon of nonlinear soil response, and by inference severe attenuation of seismic waves, has rarely been measured although it is commonly observed in laboratory experiments. The basic question is whether or not the local site geology amplifies are attenuates the seismic ground motion. Because the answer depends on the interaction between the local site geology and the amplitude as well as the frequency content of the incoming seismic waves, the in situ measurements must sample the depth variations of the local structure as well as record seismic waves over as wide a range as possible in amplitude and frequency

  12. Advances on the automatic estimation of the P-wave onset time

    Directory of Open Access Journals (Sweden)

    Luz García

    2016-09-01

    Full Text Available This work describes the automatic picking of the P-phase arrivals of the 3*106 seismic registers originated during the TOMO-ETNA experiment. Air-gun shots produced by the vessel “Sarmiento de Gamboa” and contemporary passive seismicity occurring in the island are recorded by a dense network of stations deployed for the experiment. In such scenario, automatic processing is needed given: (i the enormous amount of data, (ii the low Signal-to-Noise ratio of many of the available registers and, (iii the accuracy needed for the velocity tomography resulting from the experiment. A preliminary processing is performed with the records obtained from all stations. Raw data formats from the different types of stations are unified, eliminating defective records and reducing noise through filtering in the band of interest for the phase picking. The Advanced Multiband Picking Algorithm (AMPA is then used to process the big database obtained and determine the travel times of the seismic phases. The approach of AMPA, based on frequency multiband denoising and enhancement of expected arrivals through optimum detectors, is detailed together with its calibration and quality assessment procedure. Examples of its usage for active and passive seismic events are presented.

  13. Linearized inversion frameworks toward high-resolution seismic imaging

    KAUST Repository

    Aldawood, Ali

    2016-09-01

    Seismic exploration utilizes controlled sources, which emit seismic waves that propagate through the earth subsurface and get reflected off subsurface interfaces and scatterers. The reflected and scattered waves are recorded by recording stations installed along the earth surface or down boreholes. Seismic imaging is a powerful tool to map these reflected and scattered energy back to their subsurface scattering or reflection points. Seismic imaging is conventionally based on the single-scattering assumption, where only energy that bounces once off a subsurface scatterer and recorded by a receiver is projected back to its subsurface position. The internally multiply scattered seismic energy is considered as unwanted noise and is usually suppressed or removed from the recorded data. Conventional seismic imaging techniques yield subsurface images that suffer from low spatial resolution, migration artifacts, and acquisition fingerprint due to the limited acquisition aperture, number of sources and receivers, and bandwidth of the source wavelet. Hydrocarbon traps are becoming more challenging and considerable reserves are trapped in stratigraphic and pinch-out traps, which require highly resolved seismic images to delineate them. This thesis focuses on developing and implementing new advanced cost-effective seismic imaging techniques aiming at enhancing the resolution of the migrated images by exploiting the sparseness of the subsurface reflectivity distribution and utilizing the multiples that are usually neglected when imaging seismic data. I first formulate the seismic imaging problem as a Basis pursuit denoise problem, which I solve using an L1-minimization algorithm to obtain the sparsest migrated image corresponding to the recorded data. Imaging multiples may illuminate subsurface zones, which are not easily illuminated by conventional seismic imaging using primary reflections only. I then develop an L2-norm (i.e. least-squares) inversion technique to image

  14. VLP seismicity from resonant modes of acoustic-gravity waves in a conduit-crack system filled with multiphase magma

    Science.gov (United States)

    Liang, C.; Prochnow, B. N.; OReilly, O. J.; Dunham, E. M.; Karlstrom, L.

    2016-12-01

    Oscillation of magma in volcanic conduits connected to cracks (dikes and sills) has been suggested as an explanation for very long period (VLP) seismic signals recorded at active basaltic volcanoes such as. Kilauea, Hawaii, and Erebus, Antarctica. We investigate the VLP seismicity using a linearized model for waves in and associated eigenmodes of a coupled conduit-crack system filled with multiphase magma, an extension of the Karlstrom and Dunham (2016) model for acoustic-gravity waves in volcanic conduits. We find that the long period surface displacement (as recorded on broadband seismometers) is dominated by opening/closing of the crack rather than the deformation of the conduit conduit walls. While the fundamental eigenmode is sensitive to the fluid properties and the geometry of the magma plumbing system, a closer scrutiny of various resonant modes reveals that the surface displacement is often more sensitive to higher modes. Here we present a systematic analysis of various long period acoustic-gravity wave resonant modes of a coupled conduit-crack system that the surface displacement is most sensitive to. We extend our previous work on a quasi-one-dimensional conduit model with inviscid magma to a more general axisymmetric conduit model that properly accounts for viscous boundary layers near the conduit walls, based on the numerical method developed by Prochnow et al. (submitted to Computers and Fluids, 2016). The surface displacement is dominated by either the fundamental or higher eigenmodes, depending on magma properties and the geometry of conduit and crack. An examination of the energetics of these modes reveals the complex interplay of different restoring forces (magma compressibility in the conduit, gravity, and elasticity of the crack) driving the VLP oscillations. Both nonequilibrium bubble growth and resorption and viscosity contribute to the damping of VLP signals. Our models thus provide a means to infer properties of open-vent basaltic volcanoes

  15. Near-surface compressional and shear wave speeds constrained by body-wave polarization analysis

    Science.gov (United States)

    Park, Sunyoung; Ishii, Miaki

    2018-06-01

    A new technique to constrain near-surface seismic structure that relates body-wave polarization direction to the wave speed immediately beneath a seismic station is presented. The P-wave polarization direction is only sensitive to shear wave speed but not to compressional wave speed, while the S-wave polarization direction is sensitive to both wave speeds. The technique is applied to data from the High-Sensitivity Seismograph Network in Japan, and the results show that the wave speed estimates obtained from polarization analysis are compatible with those from borehole measurements. The lateral variations in wave speeds correlate with geological and physical features such as topography and volcanoes. The technique requires minimal computation resources, and can be used on any number of three-component teleseismic recordings, opening opportunities for non-invasive and inexpensive study of the shallowest (˜100 m) crustal structures.

  16. Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents

    Science.gov (United States)

    Hacker, Bradley R.; Abers, Geoffrey A.; Peacock, Simon M.

    2003-01-01

    We present a new compilation of physical properties of minerals relevant to subduction zones and new phase diagrams for mid-ocean ridge basalt, lherzolite, depleted lherzolite, harzburgite, and serpentinite. We use these data to calculate H2O content, density and seismic wave speeds of subduction zone rocks. These calculations provide a new basis for evaluating the subduction factory, including (1) the presence of hydrous phases and the distribution of H2O within a subduction zone; (2) the densification of the subducting slab and resultant effects on measured gravity and slab shape; and (3) the variations in seismic wave speeds resulting from thermal and metamorphic processes at depth. In considering specific examples, we find that for ocean basins worldwide the lower oceanic crust is partially hydrated (measurements. Subducted hydrous crust in cold slabs can persist to several gigapascals at seismic velocities that are several percent slower than the surrounding mantle. Seismic velocities and VP/VS ratios indicate that mantle wedges locally reach 60-80% hydration.

  17. Advanced analysis of complex seismic waveforms to characterize the subsurface Earth structure

    Science.gov (United States)

    Jia, Tianxia

    2011-12-01

    This thesis includes three major parts, (1) Body wave analysis of mantle structure under the Calabria slab, (2) Spatial Average Coherency (SPAC) analysis of microtremor to characterize the subsurface structure in urban areas, and (3) Surface wave dispersion inversion for shear wave velocity structure. Although these three projects apply different techniques and investigate different parts of the Earth, their aims are the same, which is to better understand and characterize the subsurface Earth structure by analyzing complex seismic waveforms that are recorded on the Earth surface. My first project is body wave analysis of mantle structure under the Calabria slab. Its aim is to better understand the subduction structure of the Calabria slab by analyzing seismograms generated by natural earthquakes. The rollback and subduction of the Calabrian Arc beneath the southern Tyrrhenian Sea is a case study of slab morphology and slab-mantle interactions at short spatial scale. I analyzed the seismograms traversing the Calabrian slab and upper mantle wedge under the southern Tyrrhenian Sea through body wave dispersion, scattering and attenuation, which are recorded during the PASSCAL CAT/SCAN experiment. Compressional body waves exhibit dispersion correlating with slab paths, which is high-frequency components arrivals being delayed relative to low-frequency components. Body wave scattering and attenuation are also spatially correlated with slab paths. I used this correlation to estimate the positions of slab boundaries, and further suggested that the observed spatial variation in near-slab attenuation could be ascribed to mantle flow patterns around the slab. My second project is Spatial Average Coherency (SPAC) analysis of microtremors for subsurface structure characterization. Shear-wave velocity (Vs) information in soil and rock has been recognized as a critical parameter for site-specific ground motion prediction study, which is highly necessary for urban areas located

  18. Seismic waves in 3-D: from mantle asymmetries to reliable seismic hazard assessment

    Science.gov (United States)

    Panza, Giuliano F.; Romanelli, Fabio

    2014-10-01

    A global cross-section of the Earth parallel to the tectonic equator (TE) path, the great circle representing the equator of net lithosphere rotation, shows a difference in shear wave velocities between the western and eastern flanks of the three major oceanic rift basins. The low-velocity layer in the upper asthenosphere, at a depth range of 120 to 200 km, is assumed to represent the decoupling between the lithosphere and the underlying mantle. Along the TE-perturbed (TE-pert) path, a ubiquitous LVZ, about 1,000-km-wide and 100-km-thick, occurs in the asthenosphere. The existence of the TE-pert is a necessary prerequisite for the existence of a continuous global flow within the Earth. Ground-shaking scenarios were constructed using a scenario-based method for seismic hazard analysis (NDSHA), using realistic and duly validated synthetic time series, and generating a data bank of several thousands of seismograms that account for source, propagation, and site effects. Accordingly, with basic self-organized criticality concepts, NDSHA permits the integration of available information provided by the most updated seismological, geological, geophysical, and geotechnical databases for the site of interest, as well as advanced physical modeling techniques, to provide a reliable and robust background for the development of a design basis for cultural heritage and civil infrastructures. Estimates of seismic hazard obtained using the NDSHA and standard probabilistic approaches are compared for the Italian territory, and a case-study is discussed. In order to enable a reliable estimation of the ground motion response to an earthquake, three-dimensional velocity models have to be considered, resulting in a new, very efficient, analytical procedure for computing the broadband seismic wave-field in a 3-D anelastic Earth model.

  19. Investigation of Fault Zones In The Penninic Gneiss Complex of The Swiss Central Alps Using Tomograhic Inversion of The Seismic Wavefield Along Tunnels

    Science.gov (United States)

    Giese, R.; Klose, C.; Otto, P.; Selke, C.; Borm, G.

    Underground seismic investigations have been carried out since March 2000 in the Faido adit of the Gotthard Base Tunnel (Switzerland) and the Piora exploration adit. Both adits cut metamorphic rock formations of the Leventina and Lucomagno Gneiss Complexes. The seismic measurements in the Faido Adit were carried out every 200 m during the excavation work with the Integrated Seismic Imaging System (ISIS) developed by the GeoForschungsZentrum Potsdam in cooperation with Amberg Measuring Technique, Switzerland. This system provides high resolution seismic images via an array of stan- dard anchor rods containing 3D-geophones which can be installed routinely during the excavation process. The seismic source is a repetitive pneumatic impact hammer. For each measurement in the Faido adit, seismic energy was transmitted from 30 to 50 source points distributed along the tunnel wall at intervals of 1.0 to 1.5 m. In the Piora exploration adit a 2D grid of 441 source points distributed along a distance of 147 tunnel meters were measured. In both adits the shots were recorded by arrays of 8 to 16 three - component geophone anchor rods glued into 2 m deep boreholes at intervals of 9 m - 10 m. The total length of all profiles was about 850 m. Seismic sections show first P-wave energy at frequencies up to 2 kHz and S-wave energy up to 1.3 kHz. Reflection energy was observed from distances of up to 350 m for P-waves and 200 m for S-waves. The dominant frequencies of reflective energy were found between 600 and 800 Hz for P-waves and between 200 and 400 Hz for S-waves. The corresponding wave lengths were 8 to 10 m. We used the first arrival times of P- and S- waves to calculate tomographic inversions. The 2D-velocity models for P- and S-waves in the Faido adit revealed a near field of 2 to 3 m from the tunnel surface which is characterized by strong velocity variations: 3000 to 5700 m/s for P-wave velocity (Vp) and 2000 to 3000 m/s for S-wave velocity (Vs). High velocity zones

  20. Spectral-Element Seismic Wave Propagation Codes for both Forward Modeling in Complex Media and Adjoint Tomography

    Science.gov (United States)

    Smith, J. A.; Peter, D. B.; Tromp, J.; Komatitsch, D.; Lefebvre, M. P.

    2015-12-01

    We present both SPECFEM3D_Cartesian and SPECFEM3D_GLOBE open-source codes, representing high-performance numerical wave solvers simulating seismic wave propagation for local-, regional-, and global-scale application. These codes are suitable for both forward propagation in complex media and tomographic imaging. Both solvers compute highly accurate seismic wave fields using the continuous Galerkin spectral-element method on unstructured meshes. Lateral variations in compressional- and shear-wave speeds, density, as well as 3D attenuation Q models, topography and fluid-solid coupling are all readily included in both codes. For global simulations, effects due to rotation, ellipticity, the oceans, 3D crustal models, and self-gravitation are additionally included. Both packages provide forward and adjoint functionality suitable for adjoint tomography on high-performance computing architectures. We highlight the most recent release of the global version which includes improved performance, simultaneous MPI runs, OpenCL and CUDA support via an automatic source-to-source transformation library (BOAST), parallel I/O readers and writers for databases using ADIOS and seismograms using the recently developed Adaptable Seismic Data Format (ASDF) with built-in provenance. This makes our spectral-element solvers current state-of-the-art, open-source community codes for high-performance seismic wave propagation on arbitrarily complex 3D models. Together with these solvers, we provide full-waveform inversion tools to image the Earth's interior at unprecedented resolution.

  1. Seismic Record Processing Program (SRP), Version 1.03

    International Nuclear Information System (INIS)

    Karabalis, D.L.; Cokkinides, G.J.; Rizos, D.C.

    1992-04-01

    The Seismic Record Processing Program (SRP) is an interactive computer code developed for the calculation of artificial earthquake records that comply with the US Nuclear Regulatory Commission Standard Review Plan. The basic objective of SRP is the calculation of artificial seismic time histories that correspond to Design Response Spectra specified in the US Atomic Energy Commission Regulatory Guide 1.60 and/or the Power Spectral Density (PSD) requirements of the NRC Standard Review Plan. However, SRP is a general computer code and can accommodate any arbitrarily specified Target Response Spectra (TRS) or PSD requirements. In addition, among its other futures, SRP performs quadratic baseline correction and calculates correlations factors for a set of up to three earthquake records. This manual is prepared in two parts. The first part describes the methodologies and criteria used while the second is a user's manual. In section 1 of the first part, the techniques used for the adjustment of a given earthquake record to a required TRS family of curves for a set of specified damping ratios are presented. Similarly, in section 2 of the first part, the PSD of an earthquake record is compared to a target PSD and adjusted accordingly. Sections 3 and 4 of the first part deal with the subjects of baseline correction and correlation of earthquake records, respectively. The second part is the user's manual. The user's manual contains a list of the computer hardware requirements, instructions for the program installation, a description of the user generated input files, and a description of all the program menus and commands

  2. The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion

    International Nuclear Information System (INIS)

    Moszo, P.; Kristek, J.; Galis, M.; Pazak, P.; Balazovijech, M.

    2006-01-01

    Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable tool in investigation of the Earth's structure, processes in the Earth, and particularly earthquake phenomena. Among various numerical methods, the finite-difference method is the dominant method in the modeling of earthquake motion. Moreover, it is becoming more important in the seismic exploration and structural modeling. At the same time we are convinced that the best time of the finite-difference method in seismology is in the future. This monograph provides tutorial and detailed introduction to the application of the finite-difference, finite-element, and hybrid finite-difference-finite-element methods to the modeling of seismic wave propagation and earthquake motion. The text does not cover all topics and aspects of the methods. We focus on those to which we have contributed. (Author)

  3. An adaptive Bayesian inversion for upper mantle structure using surface waves and scattered body waves

    Science.gov (United States)

    Eilon, Zachary; Fischer, Karen M.; Dalton, Colleen A.

    2018-04-01

    We present a methodology for 1-D imaging of upper mantle structure using a Bayesian approach that incorporates a novel combination of seismic data types and an adaptive parameterisation based on piecewise discontinuous splines. Our inversion algorithm lays the groundwork for improved seismic velocity models of the lithosphere and asthenosphere by harnessing the recent expansion of large seismic arrays and computational power alongside sophisticated data analysis. Careful processing of P- and S-wave arrivals isolates converted phases generated at velocity gradients between the mid-crust and 300 km depth. This data is allied with ambient noise and earthquake Rayleigh wave phase velocities to obtain detailed VS and VP velocity models. Synthetic tests demonstrate that converted phases are necessary to accurately constrain velocity gradients, and S-p phases are particularly important for resolving mantle structure, while surface waves are necessary for capturing absolute velocities. We apply the method to several stations in the northwest and north-central United States, finding that the imaged structure improves upon existing models by sharpening the vertical resolution of absolute velocity profiles, offering robust uncertainty estimates, and revealing mid-lithospheric velocity gradients indicative of thermochemical cratonic layering. This flexible method holds promise for increasingly detailed understanding of the upper mantle.

  4. Magma intrusion near Volcan Tancítaro: Evidence from seismic analysis

    Science.gov (United States)

    Pinzón, Juan I.; Núñez-Cornú, Francisco J.; Rowe, Charlotte A.

    2017-01-01

    Between May and June 2006, an earthquake swarm occurred near Volcan Tancítaro in Mexico, which was recorded by a temporary seismic deployment known as the MARS network. We located ∼1000 events from this seismic swarm. Previous earthquake swarms in the area were reported in the years 1997, 1999 and 2000. We relocate and analyze the evolution and properties of the 2006 earthquake swarm, employing a waveform cross-correlation-based phase repicking technique. Hypocenters from 911 events were located and divided into eighteen families having a correlation coefficient at or above 0.75. 90% of the earthquakes provide at least sixteen phase picks. We used the single-event location code Hypo71 and the P-wave velocity model used by the Jalisco Seismic and Accelerometer Network to improve hypocenters based on the correlation-adjusted phase arrival times. We relocated 121 earthquakes, which show clearly two clusters, between 9-10 km and 3-4 km depth respectively. The average location error estimates are rate of activity within the first 15 days; a b-value of 1.47; a jug-shaped hypocenter distribution; a shoaling rate of ∼5 km/month within the deeper cluster, and a composite focal mechanism solution indicating largely reverse faulting. These features of the swarm suggest a magmatic source elevating the crustal strain beneath Volcan Tancítaro.

  5. Characteristics of vertical seismic motions and qp-values in sedimentary layers

    International Nuclear Information System (INIS)

    Tohdo, Masanobu; Hatori, Toshiaki; Chiba, Osamu; Takahashi, Katsuya; Takemura, Masayuki; Tanaka, Hideo.

    1995-01-01

    Using seismic records observed in 4 borehole arrays, characteristics of vertical seismic motions in sedimentary layers are investigated. The results are as follows. 1) P-waves having intensive effect to vertical component are propagating within sedimentary layers even after the S-wave onset time (S-wave part). 2) Frequency dependent Q-values for P-waves (Qp) in Tertiary sediment layers obtained from the optimal analyses to spectral ratios have the tendency to be identical with Q-values for S-waves (Qs) with the same wavelength. 3) Observed vertical motions in upper ground can be simulated by the multiple reflection theory of P-waves based on the optimized velocities and Q-values. (author)

  6. SH-wave reflection seismic and VSP as tools for the investigation of sinkhole areas in Germany

    Science.gov (United States)

    Wadas, Sonja; Tschache, Saskia; Polom, Ulrich; Buness, Hermann; Krawczyk, Charlotte M.

    2017-04-01

    Sinkholes can lead to damage of buildings and infrastructure and they can cause life-threatening situations, if they occur in urban areas. The process behind this phenomenon is called subrosion. Subrosion is the underground leaching of soluble rocks, e.g. anhydrite and gypsum, due to the contact with ground- and meteoric water. Depending on the leached material, and especially the dissolution rate, different kinds of subrosion structures evolve in the subsurface. The two end members are collapse and depression structures. For a better understanding of the subrosion processes a detailed characterization of the resulting structures is necessary. In Germany sinkholes are a problem in many areas. In northern Germany salt and in central and southern Germany sulfate and carbonate deposits are affected by subrosion. The study areas described here are located in Thuringia in central Germany and the underground is characterized by soluble Permian deposits. The occurrence of 20 to 50 sinkholes is reported per year. Two regions, Bad Frankenhausen and Schmalkalden, are investigated, showing a leaning church tower and a sinkhole of 30 m diameter and 20 m depth, respectively. In Bad Frankenhausen four P-wave and 16 SH-wave reflection seismic profiles were carried out, supplemented by three zero-offset VSPs. In Schmalkalden five SH-wave reflection seismic profiles and one zero-offset VSP were acquired. The 2-D seismic sections, in particular the SH-wave profiles, showed known and unknown near-surface faults in the vicinity of sinkholes and depressions. For imaging the near-surface ( 2,5, probably indicating unstable areas due to subrosion. We conclude, that SH-wave reflection seismic offer an important tool for the imaging and characterization of near-surface subrosion structures and the identification of unstable zones, especially in combination with P-wave reflection seismic and zero-offset VSP with P- and S-waves. Presumably there is a connection between the presence of large

  7. Mantle wedge structure beneath the Yamato Basin, southern part of the Japan Sea, revealed by long-term seafloor seismic observations

    Science.gov (United States)

    Shinohara, M.; Nakahigashi, K.; Yamashita, Y.; Yamada, T.; Mochizuki, K.; Shiobara, H.

    2016-12-01

    The Japanese Islands are located at subduction zones where Philippine Sea (PHS) plate subducts from the southeast beneath the Eurasian plate and the Pacific plate descends from the east beneath the PHS and Eurasian plates and have a high density of seismic stations. Many seismic tomography studies using land seismic station data were conducted to reveal the seismic structure. These studies discussed the relationship between heterogeneous structures and the release of fluids from the subducting slab, magma generation and movement in the subduction zone. However, regional tomography using the land station data did not have a sufficient resolution to image a deep structure beneath the Japan Sea.To obtain the deep structure, observations of natural earthquakes within the Japan Sea are essential. Therefore, we started the repeating long-term seismic observations using ocean bottom seismometers(OBSs) in the Yamato Basin from 2013 to 2016. We apply travel-time tomography method to the regional earthquake and teleseismic arrival-data recorded by OBSs and land stations. In this presentation, we will report the P and S wave tomographic images down to a depth of 300 km beneath the southern part of the Japan Sea. This study was supported by "Integrated Research Project on Seismic and Tsunami Hazards around the Sea of Japan" conducted by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan.

  8. Results from an onshore/offshore seismic transect of southern Taiwan

    Science.gov (United States)

    McIntosh, K. D.; van Avendonk, H. J.; Wu, F. T.; Okaya, D. A.; Wang, C.

    2010-12-01

    The TAIGER project is a large research program focused on the processes and dynamics of arc-continent collision. As part of the project we recorded marine and onshore-offshore seismic data in summer 2009 using the R/V Langseth, ocean bottom seismometers (OBS) from the U.S. OBS instrument pool and from National Taiwan Ocean University, and land instruments from PASSCAL and Taiwan. Because the region from north of Luzon to northern Taiwan encompasses a multiphase transition from oceanic subduction to arc-continent collision, the TAIGER data sets along with state of the art geodynamic modeling are starting to provide fundamental insights into this complex process. This presentation focuses on initial results of an onshore/offshore seismic transect across southern Taiwan. One of the keys to success in studying the arc-continent collision in Taiwan is to document the crustal structure in the developing collision zone of southern Taiwan. This is where we hope to be able to view the transition from what looks like subduction to the south, to the more complex collision zone to the north. In this area we acquired an ~east-west seismic transect using 4 OBSs west of Taiwan, 40 portable land seismometers crossing the island from near Kaohsiung (W) to near Taitung (E) , and 14 OBSs east of Taiwan. As expected, data quality is extremely variable due to local geology at each station and, for land instruments, the level of cultural noise near each station. In fact, some of the land stations show no usable signals from seismic source pulses either east or west of Taiwan. However, other more fortuitously located instrument show clear arrivals at offsets of up to 280 km. As expected, all the best stations are located in mountainous areas where there is a minimum of unconsolidated material and less cultural noise. The land station data include primarily Pg and Pn arrivals, while the OBS data include a full range of reflected and refracted arrivals. The marine wide-angle data will also

  9. Temporal change in shallow subsurface P- and S-wave velocities and S-wave anisotropy inferred from coda wave interferometry

    Science.gov (United States)

    Yamamoto, M.; Nishida, K.; Takeda, T.

    2012-12-01

    Recent progresses in theoretical and observational researches on seismic interferometry reveal the possibility to detect subtle change in subsurface seismic structure. This high sensitivity of seismic interferometry to the medium properties may thus one of the most important ways to directly observe the time-lapse behavior of shallow crustal structure. Here, using the coda wave interferometry, we show the co-seismic and post-seismic changes in P- and S-wave velocities and S-wave anisotropy associated with the 2011 off the Pacific coast of Tohoku earthquake (M9.0). In this study, we use the acceleration data recorded at KiK-net stations operated by NIED, Japan. Each KiK-net station has a borehole whose typical depth is about 100m, and two three-component accelerometers are installed at the top and bottom of the borehole. To estimate the shallow subsurface P- and S-wave velocities and S-wave anisotropy between two sensors and their temporal change, we select about 1000 earthquakes that occurred between 2004 and 2012, and extract body waves propagating between borehole sensors by computing the cross-correlation functions (CCFs) of 3 x 3 component pairs. We use frequency bands of 2-4, 4-8, 8-16 Hz in our analysis. Each averaged CCF shows clear wave packets traveling between borehole sensors, and their travel times are almost consistent with those of P- and S-waves calculated from the borehole log data. Until the occurrence of the 2011 Tohoku earthquake, the estimated travel time at each station is rather stable with time except for weak seasonal/annual variation. On the other hand, the 2011 Tohoku earthquake and its aftershocks cause sudden decrease in the S-wave velocity at most of the KiK-net stations in eastern Japan. The typical value of S-wave velocity changes, which are measured by the time-stretching method, is about 5-15%. After this co-seismic change, the S-wave velocity gradually recovers with time, and the recovery continues for over one year following the

  10. Spectrum of the seismic-electromagnetic and acoustic waves caused by seismic and volcano activity

    Directory of Open Access Journals (Sweden)

    S. Koshevaya

    2005-01-01

    Full Text Available Modeling of the spectrum of the seismo-electromagnetic and acoustic waves, caused by seismic and volcanic activity, has been done. This spectrum includes the Electromagnetic Emission (EME, due to fracturing piezoelectrics in rocks and the Acoustic Emission (AE, caused by the excitation and the nonlinear passage of acoustic waves through the Earth's crust, the atmosphere, and the ionosphere. The investigated mechanism of the EME uses the model of fracturing and the crack motion. For its analysis, we consider a piezoelectric crystal under mechanical stresses, which cause the uniform crack motion, and, consequently, in the vicinity of the moving crack also cause non-stationary polarization currents. A possible spectrum of EME has been estimated. The underground fractures produce Very Low (VLF and Extremely Low Frequency (ELF acoustic waves, while the acoustic waves at higher frequencies present high losses and, on the Earth's surface, they are quite small and are not registered. The VLF acoustic wave is subject to nonlinearity under passage through the lithosphere that leads to the generation of higher harmonics and also frequency down-conversion, namely, increasing the ELF acoustic component on the Earth's surface. In turn, a nonlinear propagation of ELF acoustic wave in the atmosphere and the ionosphere leads to emerging the ultra low frequency (ULF acousto-gravity waves in the ionosphere and possible local excitation of plasma waves.

  11. Seismic protection

    International Nuclear Information System (INIS)

    Herbert, R.

    1988-01-01

    To ensure that a nuclear reactor or other damage-susceptible installation is, so far as possible, tripped and already shut down before the arrival of an earthquake shock at its location, a ring of monitoring seismic sensors is provided around it, each sensor being spaced from it by a distance (possibly several kilometres) such that (taking into account the seismic-shock propagation velocity through the intervening ground) a shock monitored by the sensor and then advancing to the installation site will arrive there later than a warning signal emitted by the sensor and received at the installation, by an interval sufficient to allow the installation to trip and shut down, or otherwise assume an optimum anti-seismic mode, in response to the warning signal. Extra sensors located in boreholes may define effectively a three-dimensional (hemispherical) sensing boundary rather than a mere two-dimensional ring. (author)

  12. Excitation of seismic waves by a tornado

    Science.gov (United States)

    Valovcin, A.; Tanimoto, T.; Twardzik, C.

    2016-12-01

    Tornadoes are among the most common natural disasters to occur in the United States. Various methods are currently used in tornado forecasting, including surface weather stations, weather balloons and satellite and Doppler radar. These methods work for detecting possible locations of tornadoes and funnel clouds, but knowing when a tornado has touched down still strongly relies on reports from spotters. Studying tornadoes seismically offers an opportunity to know when a tornado has touched down without requiring an eyewitness report. With the installation of Earthscope's Transportable Array (TA), there have been an increased number of tornadoes that have come within close range of seismometers. We have identified seismic signals corresponding to three tornadoes that occurred in 2011 in the central US. These signals were recorded by the TA station closest to each of the tornado tracks. For each tornado, the amplitudes of the seismic signals increase when the storm is in contact with the ground, and continue until the tornado lifts off some time later. This occurs at both high and low frequencies. In this study we will model the seismic signal generated by a tornado at low frequencies (below 0.1 Hz). We will begin by modeling the signal from the Joplin tornado, an EF5 rated tornado which occurred in Missouri on May 22, 2011. By approximating the tornado as a vertical force, we model the generated signal as the tornado moves along its track and changes in strength. By modeling the seismic waveform generated by a tornado, we can better understand the seismic-excitation process. It could also provide a way to quantitatively compare tornadoes. Additional tornadoes to model include the Calumet-El Reno-Piedmont-Guthrie (CEPG) and Chickasa-Blanchard-Newcastle (CBN) tornadoes, both of which occurred on May 24, 2011 in Oklahoma.

  13. The Time-Frequency Signatures of Advanced Seismic Signals Generated by Debris Flows

    Science.gov (United States)

    Chu, C. R.; Huang, C. J.; Lin, C. R.; Wang, C. C.; Kuo, B. Y.; Yin, H. Y.

    2014-12-01

    The seismic monitoring is expected to reveal the process of debris flow from the initial area to alluvial fan, because other field monitoring techniques, such as the video camera and the ultrasonic sensor, are limited by detection range. For this reason, seismic approaches have been used as the detection system of debris flows over the past few decades. The analysis of the signatures of the seismic signals in time and frequency domain can be used to identify the different phases of debris flow. This study dedicates to investigate the different stages of seismic signals due to debris flow, including the advanced signal, the main front, and the decaying tail. Moreover, the characteristics of the advanced signals forward to the approach of main front were discussed for the warning purpose. This study presents a permanent system, composed by two seismometers, deployed along the bank of Ai-Yu-Zi Creek in Nantou County, which is one of the active streams with debris flow in Taiwan. The three axes seismometer with frequency response of 7 sec - 200 Hz was developed by the Institute of Earth Sciences (IES), Academia Sinica for the purpose to detect debris flow. The original idea of replacing the geophone system with the seismometer technique was for catching the advanced signals propagating from the upper reach of the stream before debris flow arrival because of the high sensitivity. Besides, the low frequency seismic waves could be also early detected because of the low attenuation. However, for avoiding other unnecessary ambient vibrations, the sensitivity of seismometer should be lower than the general seismometer for detecting teleseism. Three debris flows with different mean velocities were detected in 2013 and 2014. The typical triangular shape was obviously demonstrated in time series data and the spectrograms of the seismic signals from three events. The frequency analysis showed that enormous debris flow bearing huge boulders would induce low frequency seismic

  14. SIG-VISA: Signal-based Vertically Integrated Seismic Monitoring

    Science.gov (United States)

    Moore, D.; Mayeda, K. M.; Myers, S. C.; Russell, S.

    2013-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software; however, while such detections may constitute a useful summary of station activity, they discard large amounts of information present in the original recorded signal. We present SIG-VISA (Signal-based Vertically Integrated Seismic Analysis), a system for seismic monitoring through Bayesian inference on seismic signals. By directly modeling the recorded signal, our approach incorporates additional information unavailable to detection-based methods, enabling higher sensitivity and more accurate localization using techniques such as waveform matching. SIG-VISA's Bayesian forward model of seismic signal envelopes includes physically-derived models of travel times and source characteristics as well as Gaussian process (kriging) statistical models of signal properties that combine interpolation of historical data with extrapolation of learned physical trends. Applying Bayesian inference, we evaluate the model on earthquakes as well as the 2009 DPRK test event, demonstrating a waveform matching effect as part of the probabilistic inference, along with results on event localization and sensitivity. In particular, we demonstrate increased sensitivity from signal-based modeling, in which the SIGVISA signal model finds statistical evidence for arrivals even at stations for which the IMS station processing failed to register any detection.

  15. Regional P-wave Tomography in the Caribbean Region for Plate Reconstruction

    Science.gov (United States)

    Li, X.; Bedle, H.; Suppe, J.

    2017-12-01

    The complex plate-tectonic interactions around the Caribbean Sea have been studied and interpreted by many researchers, but questions still remain regarding the formation and subduction history of the region. Here we report current progress towards creating a new regional tomographic model, with better lateral and spatial coverage and higher resolution than has been presented previously. This new model will provide improved constraints on the plate-tectonic evolution around the Caribbean Plate. Our three-dimensional velocity model is created using taut spline parameterization. The inversion is computed by the code of VanDecar (1991), which is based on the ray theory method. The seismic data used in this inversion are absolute P wave arrival times from over 700 global earthquakes that were recorded by over 400 near Caribbean stations. There are over 25000 arrival times that were picked and quality checked within frequency band of 0.01 - 0.6 Hz by using a MATLAB GUI-based software named Crazyseismic. The picked seismic delay time data are analyzed and compared with other studies ahead of doing the inversion model, in order to examine the quality of our dataset. From our initial observations of the delay time data, the more equalized the ray azimuth coverage, the smaller the deviation of the observed travel times from the theoretical travel time. Networks around the NE and SE side of the Caribbean Sea generally have better ray coverage, and smaller delay times. Specifically, seismic rays reaching SE Caribbean networks, such as XT network, generally pass through slabs under South American, Central American, Lesser Antilles, Southwest Caribbean, and the North Caribbean transform boundary, which leads to slightly positive average delay times. In contrast, the Puerto Rico network records seismic rays passing through regions that may lack slabs in the upper mantle and show slightly negative or near zero average delay times. These results agree with previous tomographic

  16. Application of the neo-deterministic seismic microzonation procedure in Bulgaria and validation of the seismic input against Eurocode 8

    International Nuclear Information System (INIS)

    Paskaleva, I.; Kouteva, M.; Vaccari, F.; Panza, G.F.

    2008-03-01

    The earthquake record and the Code for design and construction in seismic regions in Bulgaria have shown that the territory of the Republic of Bulgaria is exposed to a high seismic risk due to local shallow and regional strong intermediate-depth seismic sources. The available strong motion database is quite limited, and therefore not representative at all of the real hazard. The application of the neo-deterministic seismic hazard assessment procedure for two main Bulgarian cities has been capable to supply a significant database of synthetic strong motions for the target sites, applicable for earthquake engineering purposes. The main advantage of the applied deterministic procedure is the possibility to take simultaneously and correctly into consideration the contribution to the earthquake ground motion at the target sites of the seismic source and of the seismic wave propagation in the crossed media. We discuss in this study the result of some recent applications of the neo-deterministic seismic microzonation procedure to the cities of Sofia and Russe. The validation of the theoretically modeled seismic input against Eurocode 8 and the few available records at these sites is discussed. (author)

  17. Deep rock damage in the San Andreas Fault revealed by P- and S-type fault-zone-guided waves

    Science.gov (United States)

    Ellsworth, William L.; Malin, Peter E.

    2011-01-01

    Damage to fault-zone rocks during fault slip results in the formation of a channel of low seismic-wave velocities. Within such channels guided seismic waves, denoted by Fg, can propagate. Here we show with core samples, well logs and Fg-waves that such a channel is crossed by the SAFOD (San Andreas Fault Observatory at Depth) borehole at a depth of 2.7 km near Parkfield, California, USA. This laterally extensive channel extends downwards to at least half way through the seismogenic crust, more than about 7 km. The channel supports not only the previously recognized Love-type- (FL) and Rayleigh-type- (FR) guided waves, but also a new fault-guided wave, which we name FF. As recorded 2.7 km underground, FF is normally dispersed, ends in an Airy phase, and arrives between the P- and S-waves. Modelling shows that FF travels as a leaky mode within the core of the fault zone. Combined with the drill core samples, well logs and the two other types of guided waves, FF at SAFOD reveals a zone of profound, deep, rock damage. Originating from damage accumulated over the recent history of fault movement, we suggest it is maintained either by fracturing near the slip surface of earthquakes, such as the 1857 Fort Tejon M 7.9, or is an unexplained part of the fault-creep process known to be active at this site.

  18. Relationships between seismic wave-Speed, density, and electrical conductivity beneath Australia from seismology, mineralogy, and laboratory-based conductivity profiles

    DEFF Research Database (Denmark)

    Khan, A.; Koch, S.; Shankland, T. J.

    2015-01-01

    We present maps of the three-dimensional density (ρ), electrical conductivity (σ), and shear-wave speed (VS) structure of the mantle beneath Australia and surrounding ocean in the depth range of 100–800 km. These maps derived from stochastic inversion of seismic surface-wave dispersion data...... shear-wave speeds, low densities, and high conductivities. This trend appears to continue to depths well below 300 km. The slow-fast shear-wave speed distribution found here is also observed in independent seismic tomographic models of the Australian region, whereas the coupled slow-fast shear......-wave speed, low-high density, and high-low electrical conductivity distribution has not been observed previously. Toward the bottom of the upper mantle at 400 km depth marking the olivine ⃗ wadsleyite transformation (the “410–km” seismic discontinuity), the correlation between VS, ρ, and σ weakens...

  19. Contribution of the Surface and Down-Hole Seismic Networks to the Location of Earthquakes at the Soultz-sous-Forêts Geothermal Site (France)

    Science.gov (United States)

    Kinnaert, X.; Gaucher, E.; Kohl, T.; Achauer, U.

    2018-03-01

    Seismicity induced in geo-reservoirs can be a valuable observation to image fractured reservoirs, to characterize hydrological properties, or to mitigate seismic hazard. However, this requires accurate location of the seismicity, which is nowadays an important seismological task in reservoir engineering. The earthquake location (determination of the hypocentres) depends on the model used to represent the medium in which the seismic waves propagate and on the seismic monitoring network. In this work, location uncertainties and location inaccuracies are modeled to investigate the impact of several parameters on the determination of the hypocentres: the picking uncertainty, the numerical precision of picked arrival times, a velocity perturbation and the seismic network configuration. The method is applied to the geothermal site of Soultz-sous-Forêts, which is located in the Upper Rhine Graben (France) and which was subject to detailed scientific investigations. We focus on a massive water injection performed in the year 2000 to enhance the productivity of the well GPK2 in the granitic basement, at approximately 5 km depth, and which induced more than 7000 earthquakes recorded by down-hole and surface seismic networks. We compare the location errors obtained from the joint or the separate use of the down-hole and surface networks. Besides the quantification of location uncertainties caused by picking uncertainties, the impact of the numerical precision of the picked arrival times as provided in a reference catalogue is investigated. The velocity model is also modified to mimic possible effects of a massive water injection and to evaluate its impact on earthquake hypocentres. It is shown that the use of the down-hole network in addition to the surface network provides smaller location uncertainties but can also lead to larger inaccuracies. Hence, location uncertainties would not be well representative of the location errors and interpretation of the seismicity

  20. Three-dimensional seismic velocity structure of Mauna Loa and Kilauea volcanoes in Hawaii from local seismic tomography

    Science.gov (United States)

    Lin, Guoqing; Shearer, Peter M.; Matoza, Robin S.; Okubo, Paul G.; Amelung, Falk

    2016-01-01

    We present a new three-dimensional seismic velocity model of the crustal and upper mantle structure for Mauna Loa and Kilauea volcanoes in Hawaii. Our model is derived from the first-arrival times of the compressional and shear waves from about 53,000 events on and near the Island of Hawaii between 1992 and 2009 recorded by the Hawaiian Volcano Observatory stations. The Vp model generally agrees with previous studies, showing high-velocity anomalies near the calderas and rift zones and low-velocity anomalies in the fault systems. The most significant difference from previous models is in Vp/Vs structure. The high-Vp and high-Vp/Vs anomalies below Mauna Loa caldera are interpreted as mafic magmatic cumulates. The observed low-Vp and high-Vp/Vs bodies in the Kaoiki seismic zone between 5 and 15 km depth are attributed to the underlying volcaniclastic sediments. The high-Vp and moderate- to low-Vp/Vs anomalies beneath Kilauea caldera can be explained by a combination of different mafic compositions, likely to be olivine-rich gabbro and dunite. The systematically low-Vp and low-Vp/Vs bodies in the southeast flank of Kilauea may be caused by the presence of volatiles. Another difference between this study and previous ones is the improved Vp model resolution in deeper layers, owing to the inclusion of events with large epicentral distances. The new velocity model is used to relocate the seismicity of Mauna Loa and Kilauea for improved absolute locations and ultimately to develop a high-precision earthquake catalog using waveform cross-correlation data.

  1. Studies of earthquakes stress drops, seismic scattering, and dynamic triggering in North America

    Science.gov (United States)

    Escudero Ayala, Christian Rene

    I use the Relative Source Time Function (RSTF) method to determine the source properties of earthquakes within southeastern Alaska-northwestern Canada in a first part of the project, and earthquakes within the Denali fault in a second part. I deconvolve a small event P-arrival signal from a larger event by the following method: select arrivals with a tapered cosine window, fast fourier transform to obtain the spectrum, apply water level deconvolution technique, and bandpass filter before inverse transforming the result to obtain the RSTF. I compare the source processes of earthquakes within the area to determine stress drop differences to determine their relation with the tectonic setting of the earthquakes location. Results show an consistency with previous results, stress drop independent of moment implying self-similarity, correlation of stress drop with tectonic regime, stress drop independent of depth, stress drop depends of focal mechanism where strike-slip present larger stress drops, and decreasing stress drop as function of time. I determine seismic wave attenuation in the central western United States using coda waves. I select approximately 40 moderate earthquakes (magnitude between 5.5 and 6.5) located alocated along the California-Baja California, California-Nevada, Eastern Idaho, Gulf of California, Hebgen Lake, Montana, Nevada, New Mexico, off coast of Northern California, off coast of Oregon, southern California, southern Illinois, Vancouver Island, Washington, and Wyoming regions. These events were recorded by the EarthScope transportable array (TA) network from 2005 to 2009. We obtain the data from the Incorporated Research Institutions for Seismology (IRIS). In this study we implement a method based on the assumption that coda waves are single backscattered waves from randomly distributed heterogeneities to calculate the coda Q. The frequencies studied lie between 1 and 15 Hz. The scattering attenuation is calculated for frequency bands centered

  2. Tectonic implications of seismic activity recorded by the northern Ontario seismograph network

    International Nuclear Information System (INIS)

    Wetmiller, R.J.; Cajka, M.G.

    1989-01-01

    The northern Ontario seismograph network, which has operated under the Canadian Nuclear Fuel Waste Management Program since 1982, has provided valuable data to supplement those recorded by the Canadian national networks on earthquake activity, rockburst activity, the distribution of regional seismic velocities, and the contemporary stress field in northern Ontario. The combined networks recorded the largest earthquake known in northwestern Ontario, M 3.9 near Sioux Lookout on February 11, 1984, and many smaller earthquakes in northeastern Ontario. Focal mechanism solutions of these and older events showed high horizontal stress and thrust faulting to be dominant features of the contemporary tectonics of northern Ontario. The zone of more intense earthquake activity in western Quebec appeared to extend northwestward into the Kapuskasing area of northeastern Ontario, where an area of persistent microearthquake activity had been identified by a seismograph station near Kapuskasing. Controlled explosions of the 1984 Kapuskasing Uplift seismic profile experiment recorded on the northern Ontario seismograph network showed the presence of anomalously high LG velocities in northeastern Ontario (3.65 km/s) that when properly taken into account reduced the mislocation errors of well-recorded seismic events by 50% on average

  3. Tools for educational access to seismic data

    Science.gov (United States)

    Taber, J. J.; Welti, R.; Bravo, T. K.; Hubenthal, M.; Frechette, K.

    2017-12-01

    Student engagement can be increased both by providing easy access to real data, and by addressing newsworthy events such as recent large earthquakes. IRIS EPO has a suite of access and visualization tools that can be used for such engagement, including a set of three tools that allow students to explore global seismicity, use seismic data to determine Earth structure, and view and analyze near-real-time ground motion data in the classroom. These tools are linked to online lessons that are designed for use in middle school through introductory undergraduate classes. The IRIS Earthquake Browser allows discovery of key aspects of plate tectonics, earthquake locations (in pseudo 3D) and seismicity rates and patterns. IEB quickly displays up to 20,000 seismic events over up to 30 years, making it one of the most responsive, practical ways to visualize historical seismicity in a browser. Maps are bookmarkable and preserve state, meaning IEB map links can be shared or worked into a lesson plan. The Global Seismogram Plotter automatically creates visually clear seismic record sections from selected large earthquakes that are tablet-friendly and can also to be printed for use in a classroom without computers. The plots are designed to be appropriate for use with no parameters to set, but users can also modify the plots, such as including a recording station near a chosen location. A guided exercise is provided where students use the record section to discover the diameter of Earth's outer core. Students can pick and compare phase arrival times onscreen which is key to performing the exercise. A companion station map shows station locations and further information and is linked to the record section. jAmaSeis displays seismic data in real-time from either a local instrument and/or from remote seismic stations that stream data using standard seismic data protocols, and can be used in the classroom or as a public display. Users can filter data, fit a seismogram to travel time

  4. Seismic Linear Noise Attenuation with Use of Radial Transform

    Science.gov (United States)

    Szymańska-Małysa, Żaneta

    2018-03-01

    One of the goals of seismic data processing is to attenuate the recorded noise in order to enable correct interpretation of the image. Radial transform has been used as a very effective tool in the attenuation of various types of linear noise, both numerical and real (such as ground roll, direct waves, head waves, guided waves etc). The result of transformation from offset - time (X - T) domain into apparent velocity - time (R - T) domain is frequency separation between reflections and linear events. In this article synthetic and real seismic shot gathers were examined. One example was targeted at far offset area of dataset where reflections and noise had similar apparent velocities and frequency bands. Another example was a result of elastic modelling where linear artefacts were produced. Bandpass filtering and scaling operation executed in radial domain attenuated all discussed types of linear noise very effectively. After noise reduction all further processing steps reveal better results, especially velocity analysis, migration and stacking. In all presented cases signal-to-noise ratio was significantly increased and reflections covered previously by noise were revealed. Power spectra of filtered seismic records preserved real dynamics of reflections.

  5. Brief communication "Seismic and acoustic-gravity signals from the source of the 2004 Indian Ocean Tsunami"

    Directory of Open Access Journals (Sweden)

    A. Raveloson

    2012-02-01

    Full Text Available The great Sumatra-Andaman earthquake of 26 December 2004 caused seismic waves propagating through the solid Earth, tsunami waves propagating through the ocean and infrasound or acoustic-gravity waves propagating through the atmosphere. Since the infrasound wave travels faster than its associated tsunami, it is for warning purposes very intriguing to study the possibility of infrasound generation directly at the earthquake source. Garces et al. (2005 and Le Pichon et al. (2005 emphasized that infrasound was generated by mountainous islands near the epicenter and by tsunami propagation along the continental shelf to the Bay of Bengal. Mikumo et al. (2008 concluded from the analysis of travel times and amplitudes of first arriving acoustic-gravity waves with periods of about 400–700 s that these waves are caused by coseismic motion of the sea surface mainly to the west of the Nicobar islands in the open seas. We reanalyzed the acoustic-gravity waves and corrected the first arrival times of Mikumo et al. (2008 by up to 20 min. We found the source of the first arriving acoustic-gravity wave about 300 km to the north of the US Geological Survey earthquake epicenter. This confirms the result of Mikumo et al. (2008 that sea level changes at the earthquake source cause long period acoustic-gravity waves, which indicate that a tsunami was generated. Therefore, a denser local network of infrasound stations may be helpful for tsunami warnings, not only for very large earthquakes.

  6. Development of a State-Wide 3-D Seismic Tomography Velocity Model for California

    Science.gov (United States)

    Thurber, C. H.; Lin, G.; Zhang, H.; Hauksson, E.; Shearer, P.; Waldhauser, F.; Hardebeck, J.; Brocher, T.

    2007-12-01

    We report on progress towards the development of a state-wide tomographic model of the P-wave velocity for the crust and uppermost mantle of California. The dataset combines first arrival times from earthquakes and quarry blasts recorded on regional network stations and travel times of first arrivals from explosions and airguns recorded on profile receivers and network stations. The principal active-source datasets are Geysers-San Pablo Bay, Imperial Valley, Livermore, W. Mojave, Gilroy-Coyote Lake, Shasta region, Great Valley, Morro Bay, Mono Craters-Long Valley, PACE, S. Sierras, LARSE 1 and 2, Loma Prieta, BASIX, San Francisco Peninsula and Parkfield. Our beta-version model is coarse (uniform 30 km horizontal and variable vertical gridding) but is able to image the principal features in previous separate regional models for northern and southern California, such as the high-velocity subducting Gorda Plate, upper to middle crustal velocity highs beneath the Sierra Nevada and much of the Coast Ranges, the deep low-velocity basins of the Great Valley, Ventura, and Los Angeles, and a high- velocity body in the lower crust underlying the Great Valley. The new state-wide model has improved areal coverage compared to the previous models, and extends to greater depth due to the data at large epicentral distances. We plan a series of steps to improve the model. We are enlarging and calibrating the active-source dataset as we obtain additional picks from investigators and perform quality control analyses on the existing and new picks. We will also be adding data from more quarry blasts, mainly in northern California, following an identification and calibration procedure similar to Lin et al. (2006). Composite event construction (Lin et al., in press) will be carried out for northern California for use in conventional tomography. A major contribution of the state-wide model is the identification of earthquakes yielding arrival times at both the Northern California Seismic

  7. Applications of seismic spatial wavefield gradient and rotation data in exploration seismology

    Science.gov (United States)

    Schmelzbach, C.; Van Renterghem, C.; Sollberger, D.; Häusler, M.; Robertsson, J. O. A.

    2017-12-01

    Seismic spatial wavefield gradient and rotation data have the potential to open up new ways to address long-standing problems in land-seismic exploration such as identifying and separating P-, S-, and surface waves. Gradient-based acquisition and processing techniques could enable replacing large arrays of densely spaced receivers by sparse spatially-compact receiver layouts or even one single multicomponent station with dedicated instruments (e.g., rotational seismometers). Such approaches to maximize the information content of single-station recordings are also of significant interest for seismic measurements at sites with limited access such as boreholes, the sea bottom, and extraterrestrial seismology. Arrays of conventional three-component (3C) geophones enable measuring not only the particle velocity in three dimensions but also estimating their spatial gradients. Because the free-surface condition allows to express vertical derivatives in terms of horizontal derivatives, the full gradient tensor and, hence, curl and divergence of the wavefield can be computed. In total, three particle velocity components, three rotational components, and divergence, result seven-component (7C) seismic data. Combined particle velocity and gradient data can be used to isolate the incident P- or S-waves at the land surface or the sea bottom using filtering techniques based on the elastodynamic representation theorem. Alternatively, as only S-waves exhibit rotational motion, rotational measurements can directly be used to identify S-waves. We discuss the derivations of the gradient-based filters as well as their application to synthetic and field data, demonstrating that rotational data can be of particular interest to S-wave reflection and P-to-S-wave conversion imaging. The concept of array-derived gradient estimation can be extended to source arrays as well. Therefore, source arrays allow us to emulate rotational (curl) and dilatational (divergence) sources. Combined with 7C

  8. Heterogeneous Structure and Seismicity beneath the Tokyo Metropolitan Area

    Science.gov (United States)

    Nakagawa, S.; Kato, A.; Sakai, S.; Nanjo, K.; Panayotopoulos, Y.; Kurashimo, E.; Obara, K.; Kasahara, K.; Aketagawa, T.; Kimura, H.; Hirata, N.

    2010-12-01

    Beneath the Tokyo metropolitan area, the Philippine Sea Plate (PSP) subducts and causes damaged mega-thrust earthquakes. Sato et al. (2005) revealed the geometry of upper surface of PSP, and Hagiwara et al. (2006) estimated the velocity structure beneath Boso peninsula. However, these results are not sufficient for the assessment of the entire picture of the seismic hazards beneath the Tokyo metropolitan area including those due to an intra-slab M7+ earthquake. So, we launched the Special Project for Earthquake Disaster Mitigation in the Tokyo Metropolitan area (Hirata et al., 2009). Proving the more detailed geometry and physical properties (e.g. velocities, densities, attenuation) and stress field within PSP is very important to attain this issue. The core item of this project is a dense seismic array called Metropolitan Seismic Observation network (MeSO-net) for making observations in the metropolitan area (Sakai and Hirata, 2009; Kasahara et al., 2009). We deployed the 249 seismic stations with a spacing of 5 km. Some parts of stations construct 5 linear arrays at interval of 2 km such as Tsukuba-Fujisawa (TF) array, etc. The TF array runs from northeast to southwest through the center of Tokyo. In this study, we applied the tomography method to image the heterogeneous structure under the Tokyo metropolitan area. We selected events from the Japan Meteorological Agency (JMA) unified earthquake list. All data of MeSO-net were edited into event data by the selected JMA unified earthquake list. We picked the P and S wave arrival times. The total number of stations and events are 421 and 1,256, respectively. Then, we applied the double-difference tomography method (Zhang and Thurber, 2003) to this dataset and estimated the fine-scale velocity structure. The grid nodes locate 10 km interval in parallel with the array, 20 km interval in perpendicular to the array; and on depth direction, 5 km interval to a depth of less than 50 km and 10 km interval at a depth of more

  9. An algorithm of local earthquake detection from digital records

    Directory of Open Access Journals (Sweden)

    A. PROZOROV

    1978-06-01

    Full Text Available The problem of automatical detection of earthquake signals in seismograms
    and definition of first arrivals of p and s waves is considered.
    The algorithm is based on the analysis of t(A function which represents
    the time of first appearence of a number of going one after another
    swings of amplitudes greather than A in seismic signals. It allows to explore
    such common features of seismograms of earthquakes as sudden
    first p-arrivals of amplitude greater than general amplitude of noise and
    after the definite interval of time before s-arrival the amplitude of which
    overcomes the amplitude of p-arrival. The method was applied to
    3-channel recods of Friuli aftershocks, ¿'-arrivals were defined correctly
    in all cases; p-arrivals were defined in most cases using strict criteria of
    detection. Any false signals were not detected. All p-arrivals were defined
    using soft criteria of detection but less reliability and two false events
    were obtained.

  10. Studies of infrasound propagation using the USArray seismic network (Invited)

    Science.gov (United States)

    Hedlin, M. A.; Degroot-Hedlin, C. D.; Walker, K. T.

    2010-12-01

    Although there are currently ~ 100 infrasound arrays worldwide, more than ever before, the station density is still insufficient to provide validation for detailed propagation modeling. Much structure in the atmosphere is short-lived and occurs at spatial scales much smaller than the average distance between infrasound stations. Relatively large infrasound signals can be observed on seismic channels due to coupling at the Earth's surface. Recent research, using data from the 70-km spaced 400-station USArray and other seismic network deployments, has shown the value of dense seismic network data for filling in the gaps between infrasound arrays. The dense sampling of the infrasound wavefield has allowed us to observe complete travel-time branches of infrasound signals and shed more light on the nature of infrasound propagation. We present early results from our studies of impulsive atmospheric sources, such as series of UTTR rocket motor detonations in Utah. The Utah blasts have been well recorded by USArray seismic stations and infrasound arrays in Nevada and Washington State. Recordings of seismic signals from a series of six events in 2007 are used to pinpoint the shot times to < 1 second. Variations in the acoustic branches and signal arrival times at the arrays are used to probe variations in atmospheric structure. Although we currently use coupled signals we anticipate studying dense acoustic network recordings as the USArray is currently being upgraded with infrasound microphones. These new sensors will allow us to make semi-continental scale network recordings of infrasound signals free of concerns about how the signals observed on seismic channels were modified when being coupled to seismic.

  11. Objective-function Hybridization in Adjoint Seismic Tomography

    Science.gov (United States)

    Yuan, Y. O.; Bozdag, E.; Simons, F.; Gao, F.

    2016-12-01

    In the realm of seismic tomography, we are at the threshold of a new era of huge seismic datasets. However, how to assimilate as much information as possible from every seismogram is still a challenge. Cross-correlation measurements are generally tailored to some window selection algorithms, such as FLEXWIN (Maggie et al. 2008), to balance amplitude differences between seismic phases. However, these measurements naturally favor maximum picks in selected windows. It is also difficult to select all usable portions of seismograms in an optimum way that lots of information is generally lost, particularly the scattered waves. Instantaneous phase type of misfits extract information from every wiggle without cutting seismograms into small pieces, however, dealing with cycle skips at short periods can be challenging. For this purpose, we introduce a flexible hybrid approach for adjoint seismic tomography, to combine various objective functions. We initially focus on phase measurements and propose using instantaneous phase to take into account relatively small-magnitude scattered waves at long periods while using cross-correlation measurements on FLEXWIN windows to select distinct body-wave arrivals without complicating measurements due to non-linearities at short periods. To better deal with cycle skips and reliably measure instantaneous phases we design a new misfit function that incorporates instantaneous phase information implicitly instead of measuring it explicitly, through using normalized analytic signals. We present in our synthetic experiments how instantaneous phase, cross-correlation and their hybridization affect tomographic results. The combination of two different phase measurements in a hybrid approach constitutes progress towards using "anything and everything" in a data set, addressing data quality and measurement challenges simultaneously. We further extend hybridisation of misfit functions for amplitude measurements such as cross-correlation amplitude

  12. Upper mantle seismic structure beneath southwest Africa from finite-frequency P- and S-wave tomography

    Science.gov (United States)

    Youssof, Mohammad; Yuan, Xiaohui; Tilmann, Frederik; Heit, Benjamin; Weber, Michael; Jokat, Wilfried; Geissler, Wolfram; Laske, Gabi; Eken, Tuna; Lushetile, Bufelo

    2015-04-01

    We present a 3D high-resolution seismic model of the southwestern Africa region from teleseismic tomographic inversion of the P- and S- wave data recorded by the amphibious WALPASS network. We used 40 temporary stations in southwestern Africa with records for a period of 2 years (the OBS operated for 1 year), between November 2010 and November 2012. The array covers a surface area of approximately 600 by 1200 km and is located at the intersection of the Walvis Ridge, the continental margin of northern Namibia, and extends into the Congo craton. Major questions that need to be understood are related to the impact of asthenosphere-lithosphere interaction, (plume-related features), on the continental areas and the evolution of the continent-ocean transition that followed the break-up of Gondwana. This process is supposed to leave its imprint as distinct seismic signature in the upper mantle. Utilizing 3D sensitivity kernels, we invert traveltime residuals to image velocity perturbations in the upper mantle down to 1000 km depth. To test the robustness of our tomographic image we employed various resolution tests which allow us to evaluate the extent of smearing effects and help defining the optimum inversion parameters (i.e., damping and smoothness) used during the regularization of inversion process. Resolution assessment procedure includes also a detailed investigation of the effect of the crustal corrections on the final images, which strongly influenced the resolution for the mantle structures. We present detailed tomographic images of the oceanic and continental lithosphere beneath the study area. The fast lithospheric keel of the Congo Craton reaches a depth of ~250 km. Relatively low velocity perturbations have been imaged within the orogenic Damara Belt down to a depth of ~150 km, probably related to surficial suture zones and the presence of fertile material. A shallower depth extent of the lithospheric plate of ~100 km was observed beneath the ocean

  13. Realistic Modeling of Seismic Wave Ground Motion in Beijing City

    Science.gov (United States)

    Ding, Z.; Romanelli, F.; Chen, Y. T.; Panza, G. F.

    Algorithms for the calculation of synthetic seismograms in laterally heterogeneous anelastic media have been applied to model the ground motion in Beijing City. The synthetic signals are compared with the few available seismic recordings (1998, Zhangbei earthquake) and with the distribution of observed macroseismic intensity (1976, Tangshan earthquake). The synthetic three-component seismograms have been computed for the Xiji area and Beijing City. The numerical results show that the thick Tertiary and Quaternary sediments are responsible for the severe amplification of the seismic ground motion. Such a result is well correlated with the abnormally high macroseismic intensity zone in the Xiji area associated with the 1976 Tangshan earthquake as well as with the ground motion recorded in Beijing city in the wake of the 1998 Zhangbei earthquake.

  14. Realistic modeling of seismic wave ground motion in Beijing City

    International Nuclear Information System (INIS)

    Ding, Z.; Chen, Y.T.; Romanelli, F.; Panza, G.F.

    2002-05-01

    Advanced algorithms for the calculation of synthetic seismograms in laterally heterogeneous anelastic media have been applied to model the ground motion in Beijing City. The synthetic signals are compared with the few available seismic recordings (1998, Zhangbei earthquake) and with the distribution of the observed macroseismic intensity (1976, Tangshan earthquake). The synthetic 3-component seismograms have been computed in the Xiji area and in Beijing town. The numerical results show that the thick Tertiary and Quaternary sediments are responsible of the severe amplification of the seismic ground motion. Such a result is well correlated with the abnormally high macroseismic intensity zone (Xiji area) associated to the 1976 Tangshan earthquake and with the records in Beijing town, associated to the 1998 Zhangbei earthquake. (author)

  15. Incorporating Low-Cost Seismometers into the Central Weather Bureau Seismic Network for Earthquake Early Warning in Taiwan

    Directory of Open Access Journals (Sweden)

    Da-Yi Chen

    2015-01-01

    Full Text Available A dense seismic network can increase Earthquake Early Warning (EEW system capability to estimate earthquake information with higher accuracy. It is also critical for generating fast, robust earthquake alarms before strong-ground shaking hits the target area. However, building a dense seismic network via traditional seismometers is too expensive and may not be practical. Using low-cost Micro-Electro Mechanical System (MEMS accelerometers is a potential solution to quickly deploy a large number of sensors around the monitored region. An EEW system constructed using a dense seismic network with 543 MEMS sensors in Taiwan is presented. The system also incorporates the official seismic network of _ Central Weather Bureau (CWB. The real-time data streams generated by the two networks are integrated using the Earthworm software. This paper illustrates the methods used by the integrated system for estimating earthquake information and evaluates the system performance. We applied the Earthworm picker for the seismograms recorded by the MEMS sensors (Chen et al. 2015 following new picking constraints to accurately detect P-wave arrivals and use a new regression equation for estimating earthquake magnitudes. An off-line test was implemented using 46 earthquakes with magnitudes ranging from ML 4.5 - 6.5 to calibrate the system. The experimental results show that the integrated system has stable source parameter results and issues alarms much faster than the current system run by the CWB seismic network (CWBSN.

  16. Characterization of the Vajont landslide (North-Eastern Italy) by means of reflection and surface wave seismics

    Science.gov (United States)

    Petronio, Lorenzo; Boaga, Jacopo; Cassiani, Giorgio

    2016-05-01

    The mechanisms of the disastrous Vajont rockslide (North-Eastern Italy, October 9, 1963) have been studied in great detail over the past five decades. Nevertheless, the reconstruction of the rockslide dynamics still presents several uncertainties, including those related to the accurate estimation of the actual landslide mass. This work presents the results of a geophysical characterization of the Vajont landslide body in terms of material properties and buried geometry. Both aspects add new information to the existing dataset and will help a better understanding of the rockslide failure mechanisms and dynamics. In addition, some general considerations concerning the intricacies of landslide characterization can be drawn, with due attention to potential pitfalls. The employed techniques are: (i) high resolution P-wave reflection, (ii) high resolution SH-wave reflection, (iii) controlled source surface wave analysis. We adopted as a seismic source a vibrator both for P waves and SH waves, using vertical and horizontal geophones respectively. For the surface wave seismic survey we used a heavy drop-weight source and low frequency receivers. Despite the high noise level caused by the fractured conditions of the large rock body, a common situation in landslide studies, we managed to achieve a satisfying imaging quality of the landslide structure thanks to the large number of active channels, the short receiver interval and the test of appropriate seismic sources. The joint use of different seismic techniques help focus the investigation on the rock mass mechanical properties. Results are in good agreement with the available borehole data, the geological sections and the mechanical properties of the rockmass estimated by other studies. In general the proposed approach is likely to be applicable successfully to similar situations where scattering and other noise sources are a typical bottleneck to geophysical data acquisition on landslide bodies.

  17. Controlled-source seismic interferometry with one way wave fields

    Science.gov (United States)

    van der Neut, J.; Wapenaar, K.; Thorbecke, J. W.

    2008-12-01

    In Seismic Interferometry we generally cross-correlate registrations at two receiver locations and sum over an array of sources to retrieve a Green's function as if one of the receiver locations hosts a (virtual) source and the other receiver location hosts an actual receiver. One application of this concept is to redatum an area of surface sources to a downhole receiver location, without requiring information about the medium between the sources and receivers, thus providing an effective tool for imaging below complex overburden, which is also known as the Virtual Source method. We demonstrate how elastic wavefield decomposition can be effectively combined with controlled-source Seismic Interferometry to generate virtual sources in a downhole receiver array that radiate only down- or upgoing P- or S-waves with receivers sensing only down- or upgoing P- or S- waves. For this purpose we derive exact Green's matrix representations from a reciprocity theorem for decomposed wavefields. Required is the deployment of multi-component sources at the surface and multi- component receivers in a horizontal borehole. The theory is supported with a synthetic elastic model, where redatumed traces are compared with those of a directly modeled reflection response, generated by placing active sources at the virtual source locations and applying elastic wavefield decomposition on both source and receiver side.

  18. Detection of sinkholes or anomalies using full seismic wave fields : phase II.

    Science.gov (United States)

    2016-08-01

    A new 2-D Full Waveform Inversion (FWI) software code was developed to characterize layering and anomalies beneath the ground surface using seismic testing. The software is capable of assessing the shear and compression wave velocities (Vs and Vp) fo...

  19. Seismic fragility analyses of nuclear power plant structures based on the recorded earthquake data in Korea

    International Nuclear Information System (INIS)

    Joe, Yang Hee; Cho, Sung Gook

    2003-01-01

    This paper briefly introduces an improved method for evaluating seismic fragilities of components of nuclear power plants in Korea. Engineering characteristics of small magnitude earthquake spectra recorded in the Korean peninsula during the last several years are also discussed in this paper. For the purpose of evaluating the effects of the recorded earthquake on the seismic fragilities of Korean nuclear power plant structures, several cases of comparative studies have been performed. The study results show that seismic fragility analysis based on the Newmark's spectra in Korea might over-estimate the seismic capacities of Korean facilities. (author)

  20. Seismic Tomography of Siyazan - Shabran Oil and Gas Region Of Azerbaijan by Data of The Seismic Stations

    Science.gov (United States)

    Yetirmishli, Gurban; Guliyev, Ibrahim; Mammadov, Nazim; Kazimova, Sabina; Ismailova, Saida

    2016-04-01

    The main purpose of the research was to build a reliable 3D model of the structure of seismic velocities in the earth crust on the territory of Siyazan-Shabran region of Azerbaijan, using the data of seismic telemetry stations spanning Siyazan-Shabran region (Siyazan, Altiagaj, Pirgulu, Guba, Khinalig, Gusar), including 7 mobile telemetry seismic stations. Interest to the problem of research seismic tomography caused by applied environmental objectives, such as the assessment of geological risks, engineering evaluation (stability and safety of wells), the task of exploration and mining operations. In the study region are being actively developed oil fields, and therefore, there is a risk of technogenic earthquakes. It was performed the calculation of first arrival travel times of P and S waves and the corresponding ray paths. Calculate 1D velocity model which is the initial model as a set of horizontal layers (velocity may be constant or changed linearly with depth on each layer, gaps are possible only at the boundaries between the layers). Have been constructed and analyzed the horizontal sections of the three-dimensional velocity model at different depths of the investigated region. By the empirical method was proposed density model of the sedimentary rocks at depths of 0-8 km.

  1. Self-Assembling Sup-porosity: The Effect On Fluid Flow And Seismic Wave Propagation

    Energy Technology Data Exchange (ETDEWEB)

    Pyrak-Nolte, Laura J. [Purdue University

    2013-04-27

    Fractures and joints in the field often contain debris within the void spaces. Debris originates from many different mechanisms: organic and/or inorganic chemical reactions/mineralization, sediment transport, formation of a fracture, mechanical weathering or combinations of these processes. In many cases, the presence of debris forms a sub-porosity within the fracture void space. This sub-porosity often is composed of material that differs from the fracture walls in mineralogy and morphology. The sub-porosity may partially fill voids that are on the order of hundreds of microns and thereby reduce the local porosity to lengths scales on the order of sub-microns to tens of microns. It is quite clear that a sub-porosity affects fracture porosity, permeability and storativity. What is not known is how the existence/formation of a sub-porosity affects seismic wave propagation and consequently our ability to probe changes in the subsurface caused by the formation or alteration of a sub-porosity. If seismic techniques are to be developed to monitor the injection and containment of phases in sequestration reservoirs or the propping of hydraulically induced fracture to enhance oil & gas production, it is important to understand how a sub-porosity within a fracture affects macroscopic seismic and hydraulic measurements. A sub-porosity will directly affect the interrelationship between the seismic and hydraulic properties of a fracture. This reports contains the results of the three main topics of research that were performed (1) to determine the effect of a sub-porosity composed of spherical grains on seismic wave propagation across fractures, (2) to determine the effect of biofilm growth in pores and between grains on seismic wave propagation in sediment, and (3) to determine the effect of the scale of observation (field-of-view) on monitoring alteration the pore space within a fracture caused by reactive flow. A brief summary of the results for each topic is contained in

  2. Automatic arrival time detection for earthquakes based on Modified Laplacian of Gaussian filter

    Science.gov (United States)

    Saad, Omar M.; Shalaby, Ahmed; Samy, Lotfy; Sayed, Mohammed S.

    2018-04-01

    Precise identification of onset time for an earthquake is imperative in the right figuring of earthquake's location and different parameters that are utilized for building seismic catalogues. P-wave arrival detection of weak events or micro-earthquakes cannot be precisely determined due to background noise. In this paper, we propose a novel approach based on Modified Laplacian of Gaussian (MLoG) filter to detect the onset time even in the presence of very weak signal-to-noise ratios (SNRs). The proposed algorithm utilizes a denoising-filter algorithm to smooth the background noise. In the proposed algorithm, we employ the MLoG mask to filter the seismic data. Afterward, we apply a Dual-threshold comparator to detect the onset time of the event. The results show that the proposed algorithm can detect the onset time for micro-earthquakes accurately, with SNR of -12 dB. The proposed algorithm achieves an onset time picking accuracy of 93% with a standard deviation error of 0.10 s for 407 field seismic waveforms. Also, we compare the results with short and long time average algorithm (STA/LTA) and the Akaike Information Criterion (AIC), and the proposed algorithm outperforms them.

  3. Analysis of debris-flow recordings in an instrumented basin: confirmations and new findings

    Directory of Open Access Journals (Sweden)

    M. Arattano

    2012-03-01

    Full Text Available On 24 August 2006, a debris flow took place in the Moscardo Torrent, a basin of the Eastern Italian Alps instrumented for debris-flow monitoring. The debris flow was recorded by two seismic networks located in the lower part of the basin and on the alluvial fan, respectively. The event was also recorded by a pair of ultrasonic sensors installed on the fan, close to the lower seismic network. The comparison between the different recordings outlines particular features of the August 2006 debris flow, different from that of events recorded in previous years. A typical debris-flow wave was observed at the upper seismic network, with a main front abruptly appearing in the torrent, followed by a gradual decrease of flow height. On the contrary, on the alluvial fan the wave displayed an irregular pattern, with low flow depth and the main peak occurring in the central part of the surge both in the seismic recording and in the hydrographs. Recorded data and field evidences indicate that the surge observed on the alluvial fan was not a debris flow, and probably consisted in a water surge laden with fine to medium-sized sediment. The change in shape and characteristics of the wave can be ascribed to the attenuation of the surge caused by the torrent control works implemented in the lower basin during the last years.

  4. Dynamics of the Oso-Steelhead landslide from broadband seismic analysis

    Science.gov (United States)

    Hibert, C.; Stark, C. P.; Ekström, G.

    2015-06-01

    We carry out a combined analysis of the short- and long-period seismic signals generated by the devastating Oso-Steelhead landslide that occurred on 22 March 2014. The seismic records show that the Oso-Steelhead landslide was not a single slope failure, but a succession of multiple failures distinguished by two major collapses that occurred approximately 3 min apart. The first generated long-period surface waves that were recorded at several proximal stations. We invert these long-period signals for the forces acting at the source, and obtain estimates of the first failure runout and kinematics, as well as its mass after calibration against the mass-centre displacement estimated from remote-sensing imagery. Short-period analysis of both events suggests that the source dynamics of the second event is more complex than the first. No distinct long-period surface waves were recorded for the second failure, which prevents inversion for its source parameters. However, by comparing the seismic energy of the short-period waves generated by both events we are able to estimate the volume of the second. Our analysis suggests that the volume of the second failure is about 15-30% of the total landslide volume, giving a total volume mobilized by the two events between 7 × 106 and 10 × 106 m3, in agreement with estimates from ground observations and lidar mapping.

  5. Applicability of coda wave interferometry technique for measurement of acoustoelastic effect of concrete

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sung Woo [Dept. of Safety Engineering, Pukyong National University, Busan (Korea, Republic of)

    2016-12-15

    In this study, we examined the applicability of coda wave interferometry (CWI) technique, which was developed to characterize seismic waves, to detect and evaluate change in the velocity of ultrasonic waves in concrete due to acoustoelastic effect. Ultrasonic wave measurements and compressive loading tests were conducted on a concrete specimen. The measured wave signals were processed with CWI to detect and evaluate the relative velocity change with respect to the stress state of the specimen. A phase change due to the acoustoelastic effect of concrete was clearly detected in the late-arriving coda wave. This shows that the relative velocity change of ultrasonic waves in concrete due to the acoustoelastic effect can be evaluated successfully and precisely using CWI.

  6. Applicability of coda wave interferometry technique for measurement of acoustoelastic effect of concrete

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Sung Woo [Dept. of of Safety Engineering, Pukyong National University, Busan (Korea, Republic of)

    2014-12-15

    In this study, we examined the applicability of coda wave interferometry (CWI) technique, which was developed to characterize seismic waves, to detect and evaluate change in the velocity of ultrasonic waves in concrete due to acoustoelastic effect. Ultrasonic wave measurements and compressive loading tests were conducted on a concrete specimen. The measured wave signals were processed with CWI to detect and evaluate the relative velocity change with respect to the stress state of the specimen. A phase change due to the acoustoelastic effect of concrete was clearly detected in the late-arriving coda wave. This shows that the relative velocity change of ultrasonic waves in concrete due to the acoustoelastic effect can be evaluated successfully and precisely using CWI.

  7. Long-period ground motions at near-regional distances caused by the PL wave from, inland earthquakes: Observation and numerical simulation of the 2004 Mid-Niigata, Japan, Mw6.6 earthquake

    Science.gov (United States)

    Furumura, T.; Kennett, B. L. N.

    2017-12-01

    We examine the development of large, long-period ground motions at near-regional distances (D=50-200 km) generated by the PL wave from large, shallow inland earthquakes, based on the analysis of strong motion records and finite-difference method (FDM) simulations of seismic wave propagation. PL wave can be represented as leaking modes of the crustal waveguide and are commonly observed at regional distances between 300 to 1000 km as a dispersed, long-period signal with a dominant period of about 20 s. However, observations of recent earthquakes at the dense K-NET and KiK-net strong motion networks in Japan demonstrate the dominance of the PL wave at near-regional (D=50-200 km) distances as, e.g., for the 2004 Mid Niigata, Japan, earthquake (Mw6.6; h=13 km). The observed PL wave signal between P and S wave shows a large, dispersed wave packet with dominant period of about T=4-10 s with amplitude almost comparable to or larger than the later arrival of the S and surface waves. Thus, the early arrivals of the long-period PL wave immediately after P wave can enhance resonance with large-scale constructions such as high-rise buildings and large oil-storage tanks etc. with potential for disaster. Such strong effects often occurred during the 2004 Mid Niigata earthquakes and other large earthquakes which occurred nearby the Kanto (Tokyo) basin. FDM simulation of seismic wave propagation employing realistic 3-D sedimentary structure models demonstrates the process by which the PL wave develops at near-regional distances from shallow, crustal earthquakes by constructive interference of the P wave in the long-period band. The amplitude of the PL wave is very sensitive to low-velocity structure in the near-surface. Lowered velocities help to develop large SV-to-P conversion and weaken the P-to-SV conversion at the free surface. Both effects enhance the multiple P reflections in the crustal waveguide and prevent the leakage of seismic energy into the mantle. However, a very

  8. Rock mass seismic imaging around the ONKALO tunnel, Olkiluoto 2007

    International Nuclear Information System (INIS)

    Cosma, C.; Cozma, M.; Balu, L.; Enescu, N.

    2008-11-01

    Posiva Oy prepares for disposal of spent nuclear fuel in bedrock focusing in Olkiluoto, Eurajoki. This is in accordance of the application filed in 1999, the Decision-in-Principle of the State Council in 2000, and ratification by the Parliament in 2001. Vibrometric Oy has performed a tunnel seismic survey in ONKALO access tunnel on a 100 m line in December 2007. Tunnel length (chainage) was 1720 - 1820 m (vertical depth 170 - 180 m). Measurement applied 120 source positions at 1 m spacing, and on the both ends at 4 m spacing. Electromechanical Vibsist-20 tool was used as the source. Hammer produced 15.36 s sweeps. Signal was recorded with 2-component geophone assemblies, installed in 400 mm long, 45 mm drillholes in the tunnel wall. Sweeps were recorded with Summit II seismograph and decoded to seismic traces. Also percussion drill rig, which is used in drilling the blasting holes in tunnel excavation, was tested from a 100-m distance as a seismic source. Signal is equally good as from actual seismic source, and may be applied later on for production. Obtained seismic results were processed with tomographic reconstruction of the first arrivals to P and S wave refraction tomograms, and to tomograms of Young's modulus and Shear Modulus. The obtained values correspond the typical levels known from Olkiluoto. There are indications of lower velocity near tunnel wall, but resolution is not adequate for further interpretation. Some variation of velocity is detected in the rock mass. Seismic data was also processed with normal reflection profile interpretation and migrated. As a result there was obtained reflection images to a 100-m distance from the tunnel. Several reflecting events were observed in the rock mass. Features making an angle of 30 deg or more with tunnel axis can be imaged from distances of tens of metres. Vertical fractures perpendicular to tunnel can be imaged only near the tunnel. Gently dipping features can be imaged below and above. Images are 2D, i

  9. Applicability of deterministic methods in seismic site effects modeling

    International Nuclear Information System (INIS)

    Cioflan, C.O.; Radulian, M.; Apostol, B.F.; Ciucu, C.

    2005-01-01

    The up-to-date information related to local geological structure in the Bucharest urban area has been integrated in complex analyses of the seismic ground motion simulation using deterministic procedures. The data recorded for the Vrancea intermediate-depth large earthquakes are supplemented with synthetic computations all over the city area. The hybrid method with a double-couple seismic source approximation and a relatively simple regional and local structure models allows a satisfactory reproduction of the strong motion records in the frequency domain (0.05-1)Hz. The new geological information and a deterministic analytical method which combine the modal summation technique, applied to model the seismic wave propagation between the seismic source and the studied sites, with the mode coupling approach used to model the seismic wave propagation through the local sedimentary structure of the target site, allows to extend the modelling to higher frequencies of earthquake engineering interest. The results of these studies (synthetic time histories of the ground motion parameters, absolute and relative response spectra etc) for the last 3 Vrancea strong events (August 31,1986 M w =7.1; May 30,1990 M w = 6.9 and October 27, 2004 M w = 6.0) can complete the strong motion database used for the microzonation purposes. Implications and integration of the deterministic results into the urban planning and disaster management strategies are also discussed. (authors)

  10. Effect of Vertically Propagating Shear Waves on Seismic Behavior of Circular Tunnels

    Directory of Open Access Journals (Sweden)

    Tohid Akhlaghi

    2014-01-01

    Full Text Available Seismic design loads for tunnels are characterized in terms of the deformations imposed on the structure by surrounding ground. The free-field ground deformations due to a seismic event are estimated, and the tunnel is designed to accommodate these deformations. Vertically propagating shear waves are the predominant form of earthquake loading that causes the ovaling deformations of circular tunnels to develop, resulting in a distortion of the cross sectional shape of the tunnel lining. In this paper, seismic behavior of circular tunnels has been investigated due to propagation of shear waves in the vertical direction using quasi-static analytical approaches as well as numerical methods. Analytical approaches are based on the closed-form solutions which compute the forces in the lining due to equivalent static ovaling deformations, while the numerical method carries out dynamic, nonlinear soil-structure interaction analysis. Based on comparisons made, the accuracy and reliability of the analytical solutions are evaluated and discussed. The results show that the axial forces determined using the analytical approaches are in acceptable agreement with numerical analysis results, while the computed bending moments are less comparable and show significant discrepancies. The differences between the analytical approaches are also investigated and addressed.

  11. A seismic study on cracks in crystalline rock

    International Nuclear Information System (INIS)

    Israelsson, H.

    1981-07-01

    This report summarizes results from a field study with in-situ seismic measurements in crystalline rock. It was found that among a few potential seismic techniques the so called cross hole method would probably provide the most powerful capability for detecting cracks and fracture zones. By this method the area between two holes are systematically scanned by seismic raypaths. Seismic signals are generated in one hole by micro explosions and recorded in the other at various combinations of depths. A test sample of scanning data showed a rather dramatic variation of the seismic P-wave velocity (5-6 km/s). Analysis procedures like tomographic imaging was applied to this data set primarily to illustrate the kind of structural mapping such procedures can provide. (Author)

  12. Development of Vertical Cable Seismic System

    Science.gov (United States)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Ishikawa, K.; Tsukahara, H.; Shimura, T.

    2011-12-01

    In 2009, Ministry of Education, Culture, Sports, Science and Technology(MEXT) started the survey system development for Hydrothermal deposit. We proposed the Vertical Cable Seismic (VCS), the reflection seismic survey with vertical cable above seabottom. VCS has the following advantages for hydrothermal deposit survey. (1) VCS is an efficient high-resolution 3D seismic survey in limited area. (2) It achieves high-resolution image because the sensors are closely located to the target. (3) It avoids the coupling problems between sensor and seabottom that cause serious damage of seismic data quality. (4) Because of autonomous recording system on sea floor, various types of marine source are applicable with VCS such as sea-surface source (GI gun etc.) , deep-towed or ocean bottom source. Our first experiment of 2D/3D VCS surveys has been carried out in Lake Biwa, JAPAN, in November 2009. The 2D VCS data processing follows the walk-away VSP, including wave field separation and depth migration. Seismic Interferometry technique is also applied. The results give much clearer image than the conventional surface seismic. Prestack depth migration is applied to 3D data to obtain good quality 3D depth volume. Seismic Interferometry technique is applied to obtain the high resolution image in the very shallow zone. Based on the feasibility study, we have developed the autonomous recording VCS system and carried out the trial experiment in actual ocean at the water depth of about 400m to establish the procedures of deployment/recovery and to examine the VC position or fluctuation at seabottom. The result shows that the VC position is estimated with sufficient accuracy and very little fluctuation is observed. Institute of Industrial Science, the University of Tokyo took the research cruise NT11-02 on JAMSTEC R/V Natsushima in February, 2011. In the cruise NT11-02, JGI carried out the second VCS survey using the autonomous VCS recording system with the deep towed source provided by

  13. Seismic fragility analyses of nuclear power plant structures based on the recorded earthquake data in Korea

    International Nuclear Information System (INIS)

    Cho, Sung Gook; Joe, Yang Hee

    2005-01-01

    By nature, the seismic fragility analysis results will be considerably affected by the statistical data of design information and site-dependent ground motions. The engineering characteristics of small magnitude earthquake spectra recorded in the Korean peninsula during the last several years are analyzed in this paper. An improved method of seismic fragility analysis is evaluated by comparative analyses to verify its efficiency for practical application to nuclear power plant structures. The effects of the recorded earthquake on the seismic fragilities of Korean nuclear power plant structures are also evaluated from the comparative studies. Observing the obtained results, the proposed method is more efficient for the multi-modes structures. The case study results show that seismic fragility analysis based on the Newmark's spectra in Korea might over-estimate the seismic capacities of Korean facilities

  14. Seismic fragility analyses of nuclear power plant structures based on the recorded earthquake data in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung Gook [Department of Civil and Environmental System Engineering, University of Incheon, 177 Dohwa-dong, Nam-gu, Incheon 402-749 (Korea, Republic of)]. E-mail: sgcho@incheon.ac.kr; Joe, Yang Hee [Department of Civil and Environmental System Engineering, University of Incheon, 177 Dohwa-dong, Nam-gu, Incheon 402-749 (Korea, Republic of)

    2005-08-01

    By nature, the seismic fragility analysis results will be considerably affected by the statistical data of design information and site-dependent ground motions. The engineering characteristics of small magnitude earthquake spectra recorded in the Korean peninsula during the last several years are analyzed in this paper. An improved method of seismic fragility analysis is evaluated by comparative analyses to verify its efficiency for practical application to nuclear power plant structures. The effects of the recorded earthquake on the seismic fragilities of Korean nuclear power plant structures are also evaluated from the comparative studies. Observing the obtained results, the proposed method is more efficient for the multi-modes structures. The case study results show that seismic fragility analysis based on the Newmark's spectra in Korea might over-estimate the seismic capacities of Korean facilities.

  15. Non-linear transient behavior during soil liquefaction based on re-evaluation of seismic records

    OpenAIRE

    Kamagata, S.; Takewaki, Izuru

    2015-01-01

    Focusing on soil liquefaction, the seismic records during the Niigata-ken earthquake in 1964, the southern Hyogo prefecture earthquake in 1995 and the 2011 off the Pacific coast of Tohoku earthquake are analyzed by the non-stationary Fourier spectra. The shift of dominant frequency in the seismic record of Kawagishi-cho during the Niigata-ken earthquake is evaluated based on the time-variant property of dominant frequencies. The reduction ratio of the soil stiffness is evaluated from the shif...

  16. A robust absorbing layer method for anisotropic seismic wave modeling

    Energy Technology Data Exchange (ETDEWEB)

    Métivier, L., E-mail: ludovic.metivier@ujf-grenoble.fr [LJK, CNRS, Université de Grenoble, BP 53, 38041 Grenoble Cedex 09 (France); ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France); Brossier, R. [ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France); Labbé, S. [LJK, CNRS, Université de Grenoble, BP 53, 38041 Grenoble Cedex 09 (France); Operto, S. [Géoazur, Université de Nice Sophia-Antipolis, CNRS, IRD, OCA, Villefranche-sur-Mer (France); Virieux, J. [ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France)

    2014-12-15

    When applied to wave propagation modeling in anisotropic media, Perfectly Matched Layers (PML) exhibit instabilities. Incoming waves are amplified instead of being absorbed. Overcoming this difficulty is crucial as in many seismic imaging applications, accounting accurately for the subsurface anisotropy is mandatory. In this study, we present the SMART layer method as an alternative to PML approach. This method is based on the decomposition of the wavefield into components propagating inward and outward the domain of interest. Only outgoing components are damped. We show that for elastic and acoustic wave propagation in Transverse Isotropic media, the SMART layer is unconditionally dissipative: no amplification of the wavefield is possible. The SMART layers are not perfectly matched, therefore less accurate than conventional PML. However, a reasonable increase of the layer size yields an accuracy similar to PML. Finally, we illustrate that the selective damping strategy on which is based the SMART method can prevent the generation of spurious S-waves by embedding the source in a small zone where only S-waves are damped.

  17. A robust absorbing layer method for anisotropic seismic wave modeling

    International Nuclear Information System (INIS)

    Métivier, L.; Brossier, R.; Labbé, S.; Operto, S.; Virieux, J.

    2014-01-01

    When applied to wave propagation modeling in anisotropic media, Perfectly Matched Layers (PML) exhibit instabilities. Incoming waves are amplified instead of being absorbed. Overcoming this difficulty is crucial as in many seismic imaging applications, accounting accurately for the subsurface anisotropy is mandatory. In this study, we present the SMART layer method as an alternative to PML approach. This method is based on the decomposition of the wavefield into components propagating inward and outward the domain of interest. Only outgoing components are damped. We show that for elastic and acoustic wave propagation in Transverse Isotropic media, the SMART layer is unconditionally dissipative: no amplification of the wavefield is possible. The SMART layers are not perfectly matched, therefore less accurate than conventional PML. However, a reasonable increase of the layer size yields an accuracy similar to PML. Finally, we illustrate that the selective damping strategy on which is based the SMART method can prevent the generation of spurious S-waves by embedding the source in a small zone where only S-waves are damped

  18. Deep mantle seismic heterogeneities in Western Pacific subduction zones

    Science.gov (United States)

    Bentham, H. L. M.; Rost, S.

    2012-04-01

    In recent years array seismology has been used extensively to image the small scale (~10 km) structure of the Earth. In the mantle, small scale structure likely represents chemical heterogeneity and is essential in our understanding of mantle convection and especially mantle mixing. As subduction is the main source of introducing crustal material into the Earth's mantle, it is of particular interest to track the transport of subducted crust through the mantle to resolve details of composition and deformation of the crust during the subduction process. Improved knowledge of subduction can help provide constraints on the mechanical mixing process of crustal material into the ambient mantle, as well as constraining mantle composition and convection. This study uses seismic array techniques to map seismic heterogeneities associated with Western Pacific subduction zones, where a variety of slab geometries have been previously observed. We use seismic energy arriving prior to PP, a P-wave underside reflection off the Earth's surface halfway between source and receiver, to probe the mantle for small-scale heterogeneities. PP precursors were analysed at Eielson Array (ILAR), Alaska using the recently developed Toolkit for Out-of-Plane Coherent Arrival Tracking (TOPCAT) algorithm. The approach combines the calculated optimal beampower and an independent semblance (coherency) measure, to improve the signal-to-noise ratio of coherent arrivals. 94 earthquakes with sufficient coherent precursory energy were selected and directivity information of the arrivals (i.e. slowness and backazimuth) was extracted from the data. The scattering locations for 311 out-of-plane precursors were determined by ray-tracing and minimising the slowness, backazimuth and differential travel time misfit. Initial analyses show that deep scattering (>1000 km) occurs beneath the Izu-Bonin subduction zone, suggesting that subducted crust does continue into the lower mantle in this location. Other

  19. Shallow seismic structure of Kunlun fault zone in northern Tibetan Plateau, China: Implications for the 2001 M s8.1 Kunlun earthquake

    Science.gov (United States)

    Wang, Chun-Yong; Mooney, W.D.; Ding, Z.; Yang, J.; Yao, Z.; Lou, H.

    2009-01-01

    The shallow seismic velocity structure of the Kunlun fault zone (KLFZ) was jointly deduced from seismic refraction profiling and the records of trapped waves that were excited by five explosions. The data were collected after the 2001 Kunlun M s8.1 earthquake in the northern Tibetan Plateau. Seismic phases for the in-line record sections (26 records up to a distance of 15 km) along the fault zone were analysed, and 1-D P- and S-wave velocity models of shallow crust within the fault zone were determined by using the seismic refraction method. Sixteen seismic stations were deployed along the off-line profile perpendicular to the fault zone. Fault-zone trapped waves appear clearly on the record sections, which were simulated with a 3-D finite difference algorithm. Quantitative analysis of the correlation coefficients of the synthetic and observed trapped waveforms indicates that the Kunlun fault-zone width is 300 m, and S-wave quality factor Q within the fault zone is 15. Significantly, S-wave velocities within the fault zone are reduced by 30-45 per cent from surrounding rocks to a depth of at least 1-2 km, while P-wave velocities are reduced by 7-20 per cent. A fault-zone with such P- and S-low velocities is an indication of high fluid pressure because Vs is affected more than Vp. The low-velocity and low-Q zone in the KLFZ model is the effect of multiple ruptures along the fault trace of the 2001 M s8.1 Kunlun earthquake. ?? 2009 The Authors Journal compilation ?? 2009 RAS.

  20. Estimation of seismic velocity in the subducting crust of the Pacific slab beneath Hokkaido, northern Japan by using guided waves

    Science.gov (United States)

    Shiina, T.; Nakajima, J.; Toyokuni, G.; Kita, S.; Matsuzawa, T.

    2014-12-01

    A subducting crust contains a large amount of water as a form of hydrous minerals (e.g., Hacker et al., 2003), and the crust plays important roles for water transportation and seismogenesis in subduction zones at intermediate depths (e.g., Kirby et al., 1996; Iwamori, 2007). Therefore, the investigation of seismic structure in the crust is important to understand ongoing physical processes with subduction of oceanic lithosphere. A guided wave which propagates in the subducting crust is recorded in seismograms at Hokkaido, northern Japan (Shiina et al., 2014). Here, we estimated P- and S-wave velocity in the crust with guided waves, and obtained P-wave velocity of 6.6-7.3 km/s and S-wave velocity of 3.6-4.2 km/s at depths of 50-90 km. Moreover, Vp/Vs ratio in the crust is calculated to be 1.80-1.85 in that depth range. The obtained P-wave velocity about 6.6km/s at depths of 50-70 km is consistent with those estimated in Tohoku, northeast Japan (Shiina et al., 2013), and this the P-wave velocity is lower than those expected from models of subducting crustal compositions, such as metamorphosed MORB model (Hacker et al., 2003). In contrast, at greater depths (>80 km), the P-wave velocity marks higher velocity than the case of NE Japan and the velocity is roughly comparable to those of the MORB model. The obtained S-wave velocity distribution also shows characteristics similar to P waves. This regional variation may be caused by a small variation in thermal regime of the Pacific slab beneath the two regions as a result of the normal subduction in Tohoku and oblique subduction in Hokkaido. In addition, the effect of seismic anisotropy in the subducting crust would not be ruled out because rays used in the analysis in Hokkaido propagate mostly in the trench-parallel direction, while those in Tohoku are sufficiently criss-crossed.

  1. Shear-wave velocities beneath the Harrat Rahat volcanic field, Saudi Arabia, using ambient seismic noise analysis

    Science.gov (United States)

    Civilini, F.; Mooney, W.; Savage, M. K.; Townend, J.; Zahran, H. M.

    2017-12-01

    We present seismic shear-velocities for Harrat Rahat, a Cenozoic bimodal alkaline volcanic field in west-central Saudi Arabia, using seismic tomography from natural ambient noise. This project is part of an overall effort by the Saudi Geological Survey and the United States Geological Survey to describe the subsurface structure and assess hazards within the Saudi Arabian shield. Volcanism at Harrat Rahat began approximately 10 Ma, with at least three pulses around 10, 5, and 2 Ma, and at least several pulses in the Quaternary from 1.9 Ma to the present. This area is instrumented by 14 broadband Nanometrics Trillium T120 instruments across an array aperture of approximately 130 kilometers. We used a year of recorded natural ambient noise to determine group and phase velocity surface wave dispersion maps with a 0.1 decimal degree resolution for radial-radial, transverse-transverse, and vertical-vertical components of the empirical Green's function. A grid-search method was used to carry out 1D shear-velocity inversions at each latitude-longitude point and the results were interpolated to produce pseudo-3D shear velocity models. The dispersion maps resolved a zone of slow surface wave velocity south-east of the city of Medina spatially correlated with the 1256 CE eruption. A crustal layer interface at approximately 20 km depth was determined by the inversions for all components, matching the results of prior seismic-refraction studies. Cross-sections of the 3D shear velocity models were compared to gravity measurements obtained in the south-east edge of the field. We found that measurements of low gravity qualitatively correlate with low values of shear-velocity below 20 km along the cross-section profile. We apply these methods to obtain preliminary tomography results on the entire Arabian Shield.

  2. High-resolution 3-D S-wave Tomography of upper crust structures in Yilan Plain from Ambient Seismic Noise

    Science.gov (United States)

    Chen, Kai-Xun; Chen, Po-Fei; Liang, Wen-Tzong; Chen, Li-Wei; Gung, YuanCheng

    2015-04-01

    The Yilan Plain (YP) in NE Taiwan locates on the western YP of the Okinawa Trough and displays high geothermal gradients with abundant hot springs, likely resulting from magmatism associated with the back-arc spreading as attested by the offshore volcanic island (Kueishantao). YP features NS distinctive characteristics that the South YP exhibits thin top sedimentary layer, high on-land seismicity and significant SE movements, relative those of the northern counterpart. A dense network (~2.5 km station interval) of 89 Texan instruments was deployed in Aug. 2014, covering most of the YP and its vicinity. The ray path coverage density of each 0.015 degree cells are greater than 150 km that could provide the robustness assessment of tomographic results. We analyze ambient noise signals to invert a high-resolution 3D S-wave model for shallow velocity structures in and around YP. The aim is to investigate the velocity anomalies corresponding to geothermal resources and the NS geological distinctions aforementioned. We apply the Welch's method to generate empirical Rayleigh wave Green's functions between two stations records of continuous vertical components. The group velocities of thus derived functions are then obtained by the multiple-filter analysis technique measured at the frequency range between 0.25 and 1 Hz. Finally, we implement a wavelet-based multi-scale parameterization technique to construct 3D model of S-wave velocity. Our first month results exhibit low velocity in the plain, corresponding existing sediments, those of whole YP show low velocity offshore YP and those of high-resolution south YP reveal stark velocity contrast across the Sanshin fault. Key words: ambient seismic noises, Welch's method, S-wave, Yilan Plain

  3. Shear-wave velocity-based probabilistic and deterministic assessment of seismic soil liquefaction potential

    Science.gov (United States)

    Kayen, R.; Moss, R.E.S.; Thompson, E.M.; Seed, R.B.; Cetin, K.O.; Der Kiureghian, A.; Tanaka, Y.; Tokimatsu, K.

    2013-01-01

    Shear-wave velocity (Vs) offers a means to determine the seismic resistance of soil to liquefaction by a fundamental soil property. This paper presents the results of an 11-year international project to gather new Vs site data and develop probabilistic correlations for seismic soil liquefaction occurrence. Toward that objective, shear-wave velocity test sites were identified, and measurements made for 301 new liquefaction field case histories in China, Japan, Taiwan, Greece, and the United States over a decade. The majority of these new case histories reoccupy those previously investigated by penetration testing. These new data are combined with previously published case histories to build a global catalog of 422 case histories of Vs liquefaction performance. Bayesian regression and structural reliability methods facilitate a probabilistic treatment of the Vs catalog for performance-based engineering applications. Where possible, uncertainties of the variables comprising both the seismic demand and the soil capacity were estimated and included in the analysis, resulting in greatly reduced overall model uncertainty relative to previous studies. The presented data set and probabilistic analysis also help resolve the ancillary issues of adjustment for soil fines content and magnitude scaling factors.

  4. San Miguel Volcanic Seismic and Structure in Central America: Insight into the Physical Processes of Volcanoes

    Science.gov (United States)

    Patlan, E.; Velasco, A.; Konter, J. G.

    2010-12-01

    The San Miguel volcano lies near the city of San Miguel, El Salvador (13.43N and - 88.26W). San Miguel volcano, an active stratovolcano, presents a significant natural hazard for the city of San Miguel. In general, the internal state and activity of volcanoes remains an important component to understanding volcanic hazard. The main technology for addressing volcanic hazards and processes is through the analysis of data collected from the deployment of seismic sensors that record ground motion. Six UTEP seismic stations were deployed around San Miguel volcano from 2007-2008 to define the magma chamber and assess the seismic and volcanic hazard. We utilize these data to develop images of the earth structure beneath the volcano, studying the volcanic processes by identifying different sources, and investigating the role of earthquakes and faults in controlling the volcanic processes. We initially locate events using automated routines and focus on analyzing local events. We then relocate each seismic event by hand-picking P-wave arrivals, and later refine these picks using waveform cross correlation. Using a double difference earthquake location algorithm (HypoDD), we identify a set of earthquakes that vertically align beneath the edifice of the volcano, suggesting that we have identified a magma conduit feeding the volcano. We also apply a double-difference earthquake tomography approach (tomoDD) to investigate the volcano’s plumbing system. Our preliminary results show the extent of the magma chamber that also aligns with some horizontal seismicity. Overall, this volcano is very active and presents a significant hazard to the region.

  5. Earthquake Source Parameters Inferred from T-Wave Observations

    Science.gov (United States)

    Perrot, J.; Dziak, R.; Lau, T. A.; Matsumoto, H.; Goslin, J.

    2004-12-01

    The seismicity of the North Atlantic Ocean has been recorded by two networks of autonomous hydrophones moored within the SOFAR channel on the flanks of the Mid-Atlantic Ridge (MAR). In February 1999, a consortium of U.S. investigators (NSF and NOAA) deployed a 6-element hydrophone array for long-term monitoring of MAR seismicity between 15o-35oN south of the Azores. In May 2002, an international collaboration of French, Portuguese, and U.S. researchers deployed a 6-element hydrophone array north of the Azores Plateau from 40o-50oN. The northern network (referred to as SIRENA) was recovered in September 2003. The low attenuation properties of the SOFAR channel for earthquake T-wave propagation results in a detection threshold reduction from a magnitude completeness level (Mc) of ˜ 4.7 for MAR events recorded by the land-based seismic networks to Mc=3.0 using hydrophone arrays. Detailed focal depth and mechanism information, however, remain elusive due to the complexities of seismo-acoustic propagation paths. Nonetheless, recent analyses (Dziak, 2001; Park and Odom, 2001) indicate fault parameter information is contained within the T-wave signal packet. We investigate this relationship further by comparing an earthquake's T-wave duration and acoustic energy to seismic magnitude (NEIC) and radiation pattern (for events M>5) from the Harvard moment-tensor catalog. First results show earthquake energy is well represented by the acoustic energy of the T-waves, however T-wave codas are significantly influenced by acoustic propagation effects and do not allow a direct determination of the seismic magnitude of the earthquakes. Second, there appears to be a correlation between T-wave acoustic energy, azimuth from earthquake source to the hydrophone, and the radiation pattern of the earthquake's SH waves. These preliminary results indicate there is a relationship between the T-wave observations and earthquake source parameters, allowing for additional insights into T-wave

  6. Two applications of time reversal mirrors: Seismic radio and seismic radar

    KAUST Repository

    Hanafy, Sherif M.

    2011-07-08

    Two seismic applications of time reversal mirrors (TRMs) are introduced and tested with field experiments. The first one is sending, receiving, and decoding coded messages similar to a radio except seismic waves are used. The second one is, similar to radar surveillance, detecting and tracking a moving object(s) in a remote area, including the determination of the objects speed of movement. Both applications require the prior recording of calibrationGreen’s functions in the area of interest. This reference Green’s function will be used as a codebook to decrypt the coded message in the first application and as a moving sensor for the second application. Field tests show that seismicradar can detect the moving coordinates ( x(t), y(t), z(t)) of a person running through a calibration site. This information also allows for a calculation of his velocity as a function of location. Results with the seismic radio are successful in seismically detecting and decoding coded pulses produced by a hammer. Both seismic radio and radar are highly robust to signals in high noise environments due to the super-stacking property of TRMs.

  7. The high resolution shear wave seismic reflection technique

    International Nuclear Information System (INIS)

    Johnson, W.J.; Clark, J.C.

    1991-04-01

    This report presents the state-of-the-art of the high resolution S-wave reflection technique. Published and unpublished literature has been reviewed and discussions have been held with experts. Result is to confirm that the proposed theoretical and practical basis for identifying aquifer systems using both P- and S-wave reflections is sound. Knowledge of S-wave velocity and P-wave velocity is a powerful tool for assessing the fluid characteristics of subsurface layers. Material properties and lateral changes in material properties such as change from clay to sand, can be inferred from careful dual evaluation of P and S-wave records. The high resolution S-wave reflection technique has seen its greatest application to date as part of geotechnical studies for building foundations in the Far East. Information from this type of study has been evaluated and will be incorporated in field studies. In particular, useful information regarding S-wave sources, noise suppression and recording procedures will be incorporated within the field studies. Case histories indicate that the best type of site for demonstrating the power of the high resolution S-wave technique will be in unconsolidated soil without excessive structural complexities. More complex sites can form the basis for subsequent research after the basic principles of the technique can be established under relatively uncomplicated conditions

  8. Sources of Error and the Statistical Formulation of M S: m b Seismic Event Screening Analysis

    Science.gov (United States)

    Anderson, D. N.; Patton, H. J.; Taylor, S. R.; Bonner, J. L.; Selby, N. D.

    2014-03-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT), a global ban on nuclear explosions, is currently in a ratification phase. Under the CTBT, an International Monitoring System (IMS) of seismic, hydroacoustic, infrasonic and radionuclide sensors is operational, and the data from the IMS is analysed by the International Data Centre (IDC). The IDC provides CTBT signatories basic seismic event parameters and a screening analysis indicating whether an event exhibits explosion characteristics (for example, shallow depth). An important component of the screening analysis is a statistical test of the null hypothesis H 0: explosion characteristics using empirical measurements of seismic energy (magnitudes). The established magnitude used for event size is the body-wave magnitude (denoted m b) computed from the initial segment of a seismic waveform. IDC screening analysis is applied to events with m b greater than 3.5. The Rayleigh wave magnitude (denoted M S) is a measure of later arriving surface wave energy. Magnitudes are measurements of seismic energy that include adjustments (physical correction model) for path and distance effects between event and station. Relative to m b, earthquakes generally have a larger M S magnitude than explosions. This article proposes a hypothesis test (screening analysis) using M S and m b that expressly accounts for physical correction model inadequacy in the standard error of the test statistic. With this hypothesis test formulation, the 2009 Democratic Peoples Republic of Korea announced nuclear weapon test fails to reject the null hypothesis H 0: explosion characteristics.

  9. Finding Trapped Miners by Using a Prototype Seismic Recording System Made from Music-Recording Hardware

    Science.gov (United States)

    Pratt, Thomas L.

    2009-01-01

    The goal of this project was to use off-the-shelf music recording equipment to build and test a prototype seismic system to listen for people trapped in underground chambers (mines, caves, collapsed buildings). Previous workers found that an array of geophones is effective in locating trapped miners; displaying the data graphically, as well as playing it back into an audio device (headphones) at high speeds, was found to be effective for locating underground tapping. The desired system should record the data digitally to allow for further analysis, be capable of displaying the data graphically, allow for rudimentary analysis (bandpass filter, deconvolution), and allow the user to listen to the data at varying speeds. Although existing seismic reflection systems are adequate to record, display and analyze the data, they are relatively expensive and difficult to use and do not have an audio playback option. This makes it difficult for individual mines to have a system waiting on the shelf for an emergency. In contrast, music recording systems, like the one I used to construct the prototype system, can be purchased for about 20 percent of the cost of a seismic reflection system and are designed to be much easier to use. The prototype system makes use of an ~$3,000, 16-channel music recording system made by Presonus, Inc., of Baton Rouge, Louisiana. Other manufacturers make competitive systems that would serve equally well. Connecting the geophones to the recording system required the only custom part of this system - a connector that takes the output from the geophone cable and breaks it into 16 microphone inputs to be connected to the music recording system. The connector took about 1 day of technician time to build, using about $300 in off-the-shelf parts. Comparisons of the music recording system and a standard seismic reflection system (A 24-channel 'Geode' system manufactured by Geometrics, Inc., of San Jose, California) were carried out at two locations. Initial

  10. Introductory Earth science education by near real time animated visualization of seismic wave propagation across Transportable Array of USArray

    Science.gov (United States)

    Attanayake, J.; Ghosh, A.; Amosu, A.

    2010-12-01

    Students of this generation are markedly different from their predecessors because they grow up and learn in a world of visual technology populated by touch screens and smart boards. Recent studies have found that the attention span of university students whose medium of instruction is traditional teaching methods is roughly fifteen minutes and that there is a significant drop in the number of students paying attention over time in a lecture. On the other hand, when carefully segmented and learner-paced, animated visualizations can enhance the learning experience. Therefore, the instructors are faced with the difficult task of designing more complex teaching environments to improve learner productivity. We have developed an animated visualization of earthquake wave propagation across a generic transect of the Transportable Array of the USArray from a magnitude 6.9 event that occurred in the Gulf of California on August 3rd 2009. Despite the fact that the proto-type tool is built in MATLAB - one of the most popular programming environments among the seismology community, the movies can be run as a standalone stream with any built-in media player that supports .avi file format. We infer continuous ground motion along the transect through a projection and interpolation mechanism based on data from stations within 100 km of the transect. In the movies we identify the arrival of surface waves that have high amplitudes. However, over time, although typical Rayleigh type ground motion can be observed, the motion at any given point becomes complex owing to interference of different wave types and different seismic properties of the subsurface. This clearly is different from simple representations of seismic wave propagation in most introductory textbooks. Further, we find a noisy station that shows unusually high amplitude. We refrain from deleting this station in order to demonstrate that in a real world experiment, generally, there will be complexities arising from

  11. Seismic wave propagation in heterogeneous multiphasic media: numerical modelling, sensibility and inversion of poro-elastic parameters

    International Nuclear Information System (INIS)

    Dupuy, B.

    2011-11-01

    Seismic wave propagation in multiphasic porous media have various environmental (natural risks, geotechnics, groundwater pollutions...) and resources (aquifers, oil and gas, CO 2 storage...) issues. When seismic waves are crossing a given material, they are distorted and thus contain information on fluid and solid phases. This work focuses on the characteristics of seismic waves propagating in multiphasic media, from the physical complex description to the parameter characterisation by inversion, including 2D numerical modelling of the wave propagation. The first part consists in the description of the physics of multiphasic media (each phase and their interactions), using several up-scaling methods, in order to obtain an equivalent mesoscale medium defined by seven parameters. Thus, in simple porosity saturated media and in complex media (double porosity, patchy saturation, visco-poro-elasticity), I can compute seismic wave propagation without any approximation. Indeed, I use a frequency-space domain for the numerical method, which allows to consider all the frequency dependent terms. The spatial discretization employs a discontinuous finite elements method (discontinuous Galerkin), which allows to take into account complex interfaces.The computation of the seismic attributes (velocities and attenuations) of complex porous media shows strong variations in respect with the frequency. Waveforms, computed without approximation, are strongly different if we take into account the full description of the medium or an homogenisation by averages. The last part of this work deals with the poro-elastic parameters characterisation by inversion. For this, I develop a two-steps method: the first one consists in a classical inversion (tomography, full waveform inversion) of seismograms data to obtain macro-scale parameters (seismic attributes). The second step allows to recover, from the macro-scale parameters, the poro-elastic micro-scale properties. This down-scaling step

  12. 4D seismic data acquisition method during coal mining

    International Nuclear Information System (INIS)

    Du, Wen-Feng; Peng, Su-Ping

    2014-01-01

    In order to observe overburden media changes caused by mining processing, we take the fully-mechanized working face of the BLT coal mine in Shendong mine district as an example to develop a 4D seismic data acquisition methodology during coal mining. The 4D seismic data acquisition is implemented to collect 3D seismic data four times in different periods, such as before mining, during the mining process and after mining to observe the changes of the overburden layer during coal mining. The seismic data in the research area demonstrates that seismic waves are stronger in energy, higher in frequency and have better continuous reflectors before coal mining. However, all this is reversed after coal mining because the overburden layer has been mined, the seismic energy and frequency decrease, and reflections have more discontinuities. Comparing the records collected in the survey with those from newly mined areas and other records acquired in the same survey with the same geometry and with a long time for settling after mining, it clearly shows that the seismic reflections have stronger amplitudes and are more continuous because the media have recovered by overburden layer compaction after a long time of settling after mining. By 4D seismic acquisition, the original background investigation of the coal layers can be derived from the first records, then the layer structure changes can be monitored through the records of mining action and compaction action after mining. This method has laid the foundation for further research into the variation principles of the overburden layer under modern coal-mining conditions. (paper)

  13. Characteristics of seismic waves from Soviet peaceful nuclear explosions in salt

    Energy Technology Data Exchange (ETDEWEB)

    Adushkin, V.V.; Kaazik, P.B.; Kostyuchenko, V.N.; Kuznetsov, O.P.; Nedoshivin, N.I.; Rubinshtein, K.D.; Sultanov, D.D. [Academy of Sciences, Moscow (Russian Federation). Inst. for Dynamics of the Geospheres

    1995-04-01

    The report is carried out by the Institute for Dynamics of the Geospheres, Russian Academy of Sciences under contract NB280344 with Lawrence Livermore National Laboratory, University of California. The work includes investigation of seismic waves generation and propagation from Soviet peaceful underground nuclear explosions in salt based on the data from temporary and permanent seismic stations. The explosions were conducted at the sites Azgir and Vega within the territory of the Caspian depression of the Russian platform. The data used were obtained in the following conditions of conduction: epicentral distance range from 0 to 60 degrees, yields from 1 to 65 kt and depths of burial from 160 to 1500 m.

  14. Observed seismic and infrasonic signals around the Hakone volcano -Discussion based on a finite-difference calculation-

    Science.gov (United States)

    Wakamatu, S.; Kawakata, H.; Hirano, S.

    2017-12-01

    Observation and analysis of infrasonic waves are important for volcanology because they could be associated with mechanisms of volcanic tremors and earthquakes (Sakai et al., 2000). Around the Hakone volcano area, Japan, infrasonic waves had been observed many times in 2015 (Yukutake et al., 2016, JpGU). In the area, seismometers have been installed more than microphones, so that analysis of seismograms may also contribute to understanding some characteristics of the infrasonic waves. In this study, we focused on the infrasonic waves on July 1, 2015, at the area and discussed their propagation. We analyzed the vertical component of seven seismograms and two infrasound records; instruments for these data have been installed within 5 km from the vent emerged in the June 2015 eruption(HSRI, 2015). We summarized distances of the observation points from the vent and appearance of the signals in the seismograms and the microphone records in Table 1. We confirmed that, when the OWD microphone(Fig1) observed the infrasonic waves, seismometers of the OWD and the KIN surface seismic stations(Fig1) recorded pulse-like signals repeatedly while the other five buried seismometers did not. At the same time, the NNT microphone(Fig1) recorded no more than unclear signals despite the shorter distance to the vent than that of the KIN station. We found that the appearance of pulse-like signals at the KIN seismic station usually 10-11 seconds delay after the appearance at the OWD seismic station. The distance between these two stations is 3.5km, so that the signals in seismograms could represent propagation of the infrasonic waves rather than the seismic waves. If so, however, the infrasound propagation could be influenced by the topography of the area because the signals are unclear in the NNT microphone record.To validate the above interpretation, we simulated the diffraction of the infrasonic waves due to the topography. We executed a 3-D finite-difference calculation by

  15. The Utility of the Extended Images in Ambient Seismic Wavefield Migration

    Science.gov (United States)

    Girard, A. J.; Shragge, J. C.

    2015-12-01

    Active-source 3D seismic migration and migration velocity analysis (MVA) are robust and highly used methods for imaging Earth structure. One class of migration methods uses extended images constructed by incorporating spatial and/or temporal wavefield correlation lags to the imaging conditions. These extended images allow users to directly assess whether images focus better with different parameters, which leads to MVA techniques that are based on the tenets of adjoint-state theory. Under certain conditions (e.g., geographical, cultural or financial), however, active-source methods can prove impractical. Utilizing ambient seismic energy that naturally propagates through the Earth is an alternate method currently used in the scientific community. Thus, an open question is whether extended images are similarly useful for ambient seismic migration processing and verifying subsurface velocity models, and whether one can similarly apply adjoint-state methods to perform ambient migration velocity analysis (AMVA). Herein, we conduct a number of numerical experiments that construct extended images from ambient seismic recordings. We demonstrate that, similar to active-source methods, there is a sensitivity to velocity in ambient seismic recordings in the migrated extended image domain. In synthetic ambient imaging tests with varying degrees of error introduced to the velocity model, the extended images are sensitive to velocity model errors. To determine the extent of this sensitivity, we utilize acoustic wave-equation propagation and cross-correlation-based migration methods to image weak body-wave signals present in the recordings. Importantly, we have also observed scenarios where non-zero correlation lags show signal while zero-lags show none. This may be a valuable missing piece for ambient migration techniques that have yielded largely inconclusive results, and might be an important piece of information for performing AMVA from ambient seismic recordings.

  16. Understanding the seismic wave propagation inside and around an underground cavity from a 3D numerical survey

    Science.gov (United States)

    Esterhazy, Sofi; Schneider, Felix; Perugia, Ilaria; Bokelmann, Götz

    2017-04-01

    Motivated by the need to detect an underground cavity within the procedure of an On-Site-Inspection (OSI) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), which might be caused by a nuclear explosion/weapon testing, we aim to provide a basic numerical study of the wave propagation around and inside such an underground cavity. One method to investigate the geophysical properties of an underground cavity allowed by the Comprehensive Nuclear-test Ban Treaty is referred to as "resonance seismometry" - a resonance method that uses passive or active seismic techniques, relying on seismic cavity vibrations. This method is in fact not yet entirely determined by the Treaty and so far, there are only very few experimental examples that have been suitably documented to build a proper scientific groundwork. This motivates to investigate this problem on a purely numerical level and to simulate these events based on recent advances in numerical modeling of wave propagation problems. Our numerical study includes the full elastic wave field in three dimensions. We consider the effects from an incoming plane wave as well as point source located in the surrounding of the cavity at the surface. While the former can be considered as passive source like a tele-seismic earthquake, the latter represents a man-made explosion or a viborseis as used for/in active seismic techniques. Further we want to demonstrate the specific characteristics of the scattered wave field from a P-waves and S-wave separately. For our simulations in 3D we use the discontinuous Galerkin Spectral Element Code SPEED developed by MOX (The Laboratory for Modeling and Scientific Computing, Department of Mathematics) and DICA (Department of Civil and Environmental Engineering) at the Politecnico di Milano. The computations are carried out on the Vienna Scientific Cluster (VSC). The accurate numerical modeling can facilitate the development of proper analysis techniques to detect the remnants of an

  17. Duration of Tsunami Generation Longer than Duration of Seismic Wave Generation in the 2011 Mw 9.0 Tohoku-Oki Earthquake

    Science.gov (United States)

    Fujihara, S.; Korenaga, M.; Kawaji, K.; Akiyama, S.

    2013-12-01

    We try to compare and evaluate the nature of tsunami generation and seismic wave generation in occurrence of the 2011 Tohoku-Oki earthquake (hereafter, called as TOH11), in terms of two type of moment rate functions, inferred from finite source imaging of tsunami waveforms and seismic waveforms. Since 1970's, the nature of "tsunami earthquakes" has been discussed in many researches (e.g. Kanamori, 1972; Kanamori and Kikuchi, 1993; Kikuchi and Kanamori, 1995; Ide et al., 1993; Satake, 1994) mostly based on analysis of seismic waveform data , in terms of the "slow" nature of tsunami earthquakes (e.g., the 1992 Nicaragura earthquake). Although TOH11 is not necessarily understood as a tsunami earthquake, TOH11 is one of historical earthquakes that simultaneously generated large seismic waves and tsunami. Also, TOH11 is one of earthquakes which was observed both by seismic observation network and tsunami observation network around the Japanese islands. Therefore, for the purpose of analyzing the nature of tsunami generation, we try to utilize tsunami waveform data as much as possible. In our previous studies of TOH11 (Fujihara et al., 2012a; Fujihara et al., 2012b), we inverted tsunami waveforms at GPS wave gauges of NOWPHAS to image the spatio-temporal slip distribution. The "temporal" nature of our tsunami source model is generally consistent with the other tsunami source models (e.g., Satake et al, 2013). For seismic waveform inversion based on 1-D structure, here we inverted broadband seismograms at GSN stations based on the teleseismic body-wave inversion scheme (Kikuchi and Kanamori, 2003). Also, for seismic waveform inversion considering the inhomogeneous internal structure, we inverted strong motion seismograms at K-NET and KiK-net stations, based on 3-D Green's functions (Fujihara et al., 2013a; Fujihara et al., 2013b). The gross "temporal" nature of our seismic source models are generally consistent with the other seismic source models (e.g., Yoshida et al

  18. High-resolution seismic wave propagation using local time stepping

    KAUST Repository

    Peter, Daniel

    2017-03-13

    High-resolution seismic wave simulations often require local refinements in numerical meshes to accurately capture e.g. steep topography or complex fault geometry. Together with explicit time schemes, this dramatically reduces the global time step size for ground-motion simulations due to numerical stability conditions. To alleviate this problem, local time stepping (LTS) algorithms allow an explicit time stepping scheme to adapt the time step to the element size, allowing nearoptimal time steps everywhere in the mesh. This can potentially lead to significantly faster simulation runtimes.

  19. Comparison of Omega-2 and Omega-3 calibration explosions basing on regional seismic data

    International Nuclear Information System (INIS)

    Mikhajlova, N.N.; Sokolova, I.N.

    2001-01-01

    Comparison of different parameters of seismic records of Omega-2 and Omega-3 calibration explosions was performed. It was shown that despite the equal charge the level of seismic oscillations was lower during the Omega-3 explosion than during Omega-2. Spectral composition, polarization of oscillations, wave picture is identical at a given station for both explosions. Assumptions were made on the reason of such difference in seismic effect. (author)

  20. Very Fast Estimation of Epicentral Distance and Magnitude from a Single Three Component Seismic Station Using Machine Learning Techniques

    Science.gov (United States)

    Ochoa Gutierrez, L. H.; Niño Vasquez, L. F.; Vargas-Jimenez, C. A.

    2012-12-01

    To minimize adverse effects originated by high magnitude earthquakes, early warning has become a powerful tool to anticipate a seismic wave arrival to an specific location and lets to bring people and government agencies opportune information to initiate a fast response. To do this, a very fast and accurate characterization of the event must be done but this process is often made using seismograms recorded in at least 4 stations where processing time is usually greater than the wave travel time to the interest area, mainly in coarse networks. A faster process can be done if only one three component seismic station is used that is the closest unsaturated station respect to the epicenter. Here we present a Support Vector Regression algorithm which calculates Magnitude and Epicentral Distance using only 5 seconds of signal since P wave onset. This algorithm was trained with 36 records of historical earthquakes where the input were regression parameters of an exponential function estimated by least squares, corresponding to the waveform envelope and the maximum value of the observed waveform for each component in one single station. A 10 fold Cross Validation was applied for a Normalized Polynomial Kernel obtaining the mean absolute error for different exponents and complexity parameters. Magnitude could be estimated with 0.16 of mean absolute error and the distance with an error of 7.5 km for distances within 60 to 120 km. This kind of algorithm is easy to implement in hardware and can be used directly in the field station to make possible the broadcast of estimations of this values to generate fast decisions at seismological control centers, increasing the possibility to have an effective reactiontribute and Descriptors calculator for SVR model training and test

  1. A survey of atmospheric wave recording at Blacknest

    International Nuclear Information System (INIS)

    Grover, F.H.

    1977-11-01

    Techniques are described for recording atmospheric waves at the AWRE Blacknest Research Centre. Examples, with interpretative comments, of various types of atmospheric waves observed over a period of several years are illustrated in a series of figures taken from a representative selection of Blacknest records. (author)

  2. Structure of the Suasselkä postglacial fault in northern Finland obtained by analysis of local events and ambient seismic noise

    Science.gov (United States)

    Afonin, Nikita; Kozlovskaya, Elena; Kukkonen, Ilmo; Dafne/Finland Working Group

    2017-04-01

    Understanding the inner structure of seismogenic faults and their ability to reactivate is particularly important in investigating the continental intraplate seismicity regime. In our study we address this problem using analysis of local seismic events and ambient seismic noise recorded by the temporary DAFNE array in the northern Fennoscandian Shield. The main purpose of the DAFNE/FINLAND passive seismic array experiment was to characterize the present-day seismicity of the Suasselkä postglacial fault (SPGF), which was proposed as one potential target for the DAFNE (Drilling Active Faults in Northern Europe) project. The DAFNE/FINLAND array comprised an area of about 20 to 100 km and consisted of eight short-period and four broadband three-component autonomous seismic stations installed in the close vicinity of the fault area. The array recorded continuous seismic data during September 2011-May 2013. Recordings of the array have being analysed in order to identify and locate natural earthquakes from the fault area and to discriminate them from the blasts in the Kittilä gold mine. As a result, we found a number of natural seismic events originating from the fault area, which proves that the fault is still seismically active. In order to study the inner structure of the SPGF we use cross-correlation of ambient seismic noise recorded by the array. Analysis of azimuthal distribution of noise sources demonstrated that during the time interval under consideration the distribution of noise sources is close to the uniform one. The continuous data were processed in several steps including single-station data analysis, instrument response removal and time-domain stacking. The data were used to estimate empirical Green's functions between pairs of stations in the frequency band of 0.1-1 Hz and to calculate corresponding surface wave dispersion curves. The S-wave velocity models were obtained as a result of dispersion curve inversion. The results suggest that the area of

  3. Three-dimensional seismic velocity structure and earthquake relocations at Katmai, Alaska

    Science.gov (United States)

    Murphy, Rachel; Thurber, Clifford; Prejean, Stephanie G.; Bennington, Ninfa

    2014-01-01

    We invert arrival time data from local earthquakes occurring between September 2004 and May 2009 to determine the three-dimensional (3D) upper crustal seismic structure in the Katmai volcanic region. Waveforms for the study come from the Alaska Volcano Observatory's permanent network of 20 seismic stations in the area (predominantly single-component, short period instruments) plus a densely spaced temporary array of 11 broadband, 3-component stations. The absolute and relative arrival times are used in a double-difference seismic tomography inversion to solve for 3D P- and S-wave velocity models for an area encompassing the main volcanic centers. The relocated hypocenters provide insight into the geometry of seismogenic structures in the area, revealing clustering of events into four distinct zones associated with Martin, Mageik, Trident-Novarupta, and Mount Katmai. The seismic activity extends from about sea level to 2 km depth (all depths referenced to mean sea level) beneath Martin, is concentrated near 2 km depth beneath Mageik, and lies mainly between 2 and 4 km depth below Katmai and Trident-Novarupta. Many new features are apparent within these earthquake clusters. In particular, linear features are visible within all clusters, some associated with swarm activity, including an observation of earthquake migration near Trident in 2008. The final velocity model reveals a possible zone of magma storage beneath Mageik, but there is no clear evidence for magma beneath the Katmai-Novarupta area where the 1912 eruptive activity occurred, suggesting that the storage zone for that eruption may have largely been evacuated, or remnant magma has solidified.

  4. Seismic imaging of North China: insight into intraplate volcanism and seismotectonics

    Science.gov (United States)

    Zhao, D.

    2004-12-01

    We used seismic tomography to study the detailed three-dimensional (3-D) seismic velocity structure of the crust and mantle beneath North China for understanding the intraplate volcanism and seismotectonics of the Asian continent. Two active volcanoes, Changbai and Wudalianchi, exist in Northeast China and they have erupted several times in the last 1000 years. The origin of the active intraplate volcanoes is still unclear. Global tomography shows that the subducting Pacific slab becomes stagnant under NE Asia and strong low-velocity (low-V) anomalies exist in the upper mantle under the two volcanoes (Zhao, 2004). Recently we determined a 3-D P-wave velocity structure under the Changbai volcano using teleseismic data recorded by 19 portable seismic stations in NE China (Zhao et al., 2004). Our result shows a columnar low-V anomaly extending to 400 km depth and high-velocity anomalies in the mantle transition zone with deep-focus earthquakes of about 600 km depth. These results indicatie that the Changbai and Wudalianchi volcanoes are not hotspot like Hawaii but a kind of back-arc volcano related to the deep subduction and stagnancy of the Pacific slab under NE Asia. A detailed 3-D P-wave tomography of the crust and uppermost mantle under the Beijing region is determined by using local earthquake arrival times recorded by the newly installed Chinese Capital Seismic Network with 101 short-period seismic stations coving the region densely and uniformly (Huang and Zhao, 2004). The results show that large crustal earthquakes, such as the 1679 Sanhe earthquake (M 8.0) and the 1976 Tangshan earthquake (M 7.8), generally occurred in high-velocity areas in the upper to middle crust. In the lower crust to the uppermost mantle under the source zones of the large earthquakes, however, low-velocity and high-conductivity anomalies exist, which are considered to be associated with fluids. The fluids in the lower crust may cause the weakening of the seismogenic layer in the upper

  5. Innovations in seismic tomography, their applications and induced seismic events in carbon sequestration

    Science.gov (United States)

    Li, Peng

    algorithm with the inclusion of full topography that is integrated from the Digital Elevation Model data. We present both synthetic and real data tests based on the compressional (P) wave arrival time data for Kilauea volcano in Hawai'i. A total of 33,768 events with 515,711 P-picks recorded by 35 stations at the Hawaiian Volcano Observatory are used in these tests. The comparison between the new and traditional methods based on the synthetic test shows that our new algorithm significantly improves the accuracy of the velocity model, especially at shallow depths. In the real data test, the P-wave velocity model of Kilauea shows some intriguing features. Velocity decrease from the surface to 2 km depth beneath Kilauea caldera indicates a state change of the basalt. Low velocity zones beneath Pu'u'O'o, Heiheiahulu and the Hilina fault system between 5 and 12 km are possible partial melting zones. High velocity anomalies are resolved below 6 km depth beneath the summit caldera, which may suggest the presence of consolidated gabbro-ultramafic cumulates. In the third work, we installed three broadband seismic stations (Test1, Test2 and Test3) in an Enhanced Oil Recovery field to monitor the potential seismic events associated with CO 2 injection. In the two years of continuous seismic data between October 2011 and October 2013, we observed a type of long duration (LD) events instead of typical micro earthquakes, with an average daily rate of 12. The LD events have the following characteristics: (1) their duration varies from ˜30 to ˜300 sec; (2) the amplitude changes smoothly from the beginning to the end of the LD event window; (3) they are local seismic events and were not recorded by regional seismic stations (e.g., ˜200 km away); (4) the waveforms are very different from those of typical earthquakes, but similar to volcanic tremors; (5) the frequency content is mainly concentrated between 0.5 and 6 Hz, which is similar to the frequency band of volcanic tremors; and (6

  6. Using discrete wavelet transform features to discriminate between noise and phases in seismic waveforms

    Science.gov (United States)

    Forrest, R.; Ray, J.; Hansen, C. W.

    2017-12-01

    Currently, simple polarization metrics such as the horizontal-to-vertical ratio are used to discriminate between noise and various phases in three-component seismic waveform data collected at regional distances. Accurately establishing the identity and arrival of these waves in adverse signal-to-noise environments is helpful in detecting and locating the seismic events. In this work, we explore the use of multiresolution decompositions to discriminate between noise and event arrivals. A segment of the waveform lying inside a time-window that spans the coda of an arrival is subjected to a discrete wavelet decomposition. Multi-resolution classification features as well as statistical tests are derived from these wavelet decomposition quantities to quantify their discriminating power. Furthermore, we move to streaming data and address the problem of false positives by introducing ensembles of classifiers. We describe in detail results of these methods tuned from data obtained from Coronel Fontana, Argentina (CFAA), as well as Stephens Creek, Australia (STKA). Acknowledgement: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  7. Co-seismic response of water level in the Jingle well (China) associated with the Gorkha Nepal (Mw 7.8) earthquake

    Science.gov (United States)

    He, Anhua; Fan, Xuefang; Zhao, Gang; Liu, Yang; Singh, Ramesh P.; Hu, Yuliang

    2017-09-01

    Changes in co-seismic water levels associated with the Gorkha Nepal earthquake (25 April 2015, Mw 7.8) were recorded in the Jingle well in Shanxi Province China (longitude E112.03°, latitude N38.35°, about 2769 km from epicenter). Based on the observed water levels, we clearly identified signals relating to P, S and surface waves. However, the water temperature recorded at a depth of 350 m shows no co-seismic changes. A spectrum analysis of co-seismic variations of water level shows that the oscillation frequency and amplitude of water level in the borehole are determined by the natural frequency of the borehole, which is not associated with the propagation of seismic waves. The borehole-aquifer system shows a large amplification associated with ground vibrations generated by earthquakes. Considering the local hydro-geological map and the temperature gradient of the Jingle well, a large volume ;groundwater reservoir; model can be used to explain these processes. Due to seismic wave propagation, the volume of a well-confined aquifer expands and contracts forming fractures that change the water flow. In the well-confined aquifer, water levels oscillate simultaneously with high amplitude ground shaking during earthquakes. However, the water in the center of the ;underground reservoir; remains relatively stationary, without any changes in the water temperature. In addition, a possible precursor wave is recorded in the water level at the Jingle well prior to the Gorkha earthquake.

  8. Time-domain full waveform inversion using the gradient preconditioning based on seismic wave energy: Application to the South China Sea

    KAUST Repository

    Mengxuan, Zhong

    2017-06-01

    The gradient preconditioning algorithms based on Hessian matrices in time-domain full waveform inversion (FWI) are widely used now, but consume a lot of memory and do not fit the FWI of large models or actual seismic data well. To avoid the huge storage consumption, the gradient preconditioning approach based on seismic wave energy has been proposed it simulates the “approximated wave field” with the acoustic wave equation and uses the energy of the simulated wavefield to precondition the gradient. The method does not require computing and storing the Hessian matrix or its inverse and can effectively eliminate the effect caused by geometric diffusion and uneven illumination on gradient. The result of experiments in this article with field data from South China Sea confirms that the time-domain FWI using the gradient preconditioning based on seismic wave energy (GPWE) can achieve higher inversion accuracy for the deep high-velocity model and its underlying strata.

  9. Auto Correlation Analysis of Coda Waves from Local Earthquakes for Detecting Temporal Changes in Shallow Subsurface Structures: the 2011 Tohoku-Oki, Japan Earthquake

    Science.gov (United States)

    Nakahara, Hisashi

    2015-02-01

    For monitoring temporal changes in subsurface structures I propose to use auto correlation functions of coda waves from local earthquakes recorded at surface receivers, which probably contain more body waves than surface waves. Use of coda waves requires earthquakes resulting in decreased time resolution for monitoring. Nonetheless, it may be possible to monitor subsurface structures in sufficient time resolutions in regions with high seismicity. In studying the 2011 Tohoku-Oki, Japan earthquake (Mw 9.0), for which velocity changes have been previously reported, I try to validate the method. KiK-net stations in northern Honshu are used in this analysis. For each moderate earthquake normalized auto correlation functions of surface records are stacked with respect to time windows in the S-wave coda. Aligning the stacked, normalized auto correlation functions with time, I search for changes in phases arrival times. The phases at lag times of <1 s are studied because changes at shallow depths are focused. Temporal variations in the arrival times are measured at the stations based on the stretching method. Clear phase delays are found to be associated with the mainshock and to gradually recover with time. The amounts of the phase delays are 10 % on average with the maximum of about 50 % at some stations. The deconvolution analysis using surface and subsurface records at the same stations is conducted for validation. The results show the phase delays from the deconvolution analysis are slightly smaller than those from the auto correlation analysis, which implies that the phases on the auto correlations are caused by larger velocity changes at shallower depths. The auto correlation analysis seems to have an accuracy of about several percent, which is much larger than methods using earthquake doublets and borehole array data. So this analysis might be applicable in detecting larger changes. In spite of these disadvantages, this analysis is still attractive because it can

  10. Monitoring daily and sub-daily variations in crustal strain with seismic arrays

    Science.gov (United States)

    Mao, S.; Campillo, M.; van der Hilst, R. D.; Brenguier, F.; Hillers, G.

    2017-12-01

    We demonstrate that we can monitor deformation of the shallow crust (with hourly temporal resolution) directly with seismic waves, by measuring relative seismic wave speed changes (dv/v) due to relatively known periodical forcing (tides and changes in atmospheric temperature) at Piton de la Fournaise Volcano (PdF), La Réunion. We use ambient seismic noise recorded (for one month) at VolcArray, an experiment with three arrays of 49 vertical-component geophones deployed on a 7x7 grid of approximately 80 m spacing. Through noise-based coda wave interferometry we infer for each array the average relative changes in propagation speed of seismic waves (dv/v) as a function of time, which relate to temporal changes in medium properties within 100m depth. The variations in dv/v ( 0.05%) on time-scales longer than a day are best explained by effects of precipitation on pore pressure. In contrast, the (weaker) daily and sub-daily fluctuations of dv/v ( 0.01%) are likely to be caused by tidal and thermal effects. We verify that the inferred variations of dv/v are unrelated to spatiotemporal changes of noise wavefields. We further compare the power spectrum of dv/v with spectra of simulated tide-induced volumetric strain, temperature records, very broadband (VBB) seismograms, and borehole tilt records. In all five types of data, dominant peaks are found at around diurnal, semi-diurnal, and ter-diurnal frequencies. A comparison of phase and spectra of the data suggests that the tidal and thermal effects on dv/v are of similar magnitude but vary with frequency. Theoretical modeling of tide- and temperature-induced strain in different frequency bands agrees with the relative magnitude of the two effects on dv/v from passive monitoring.

  11. Beyond seismic interferometry: imaging the earth's interior with virtual sources and receivers inside the earth

    Science.gov (United States)

    Wapenaar, C. P. A.; Van der Neut, J.; Thorbecke, J.; Broggini, F.; Slob, E. C.; Snieder, R.

    2015-12-01

    Imagine one could place seismic sources and receivers at any desired position inside the earth. Since the receivers would record the full wave field (direct waves, up- and downward reflections, multiples, etc.), this would give a wealth of information about the local structures, material properties and processes in the earth's interior. Although in reality one cannot place sources and receivers anywhere inside the earth, it appears to be possible to create virtual sources and receivers at any desired position, which accurately mimics the desired situation. The underlying method involves some major steps beyond standard seismic interferometry. With seismic interferometry, virtual sources can be created at the positions of physical receivers, assuming these receivers are illuminated isotropically. Our proposed method does not need physical receivers at the positions of the virtual sources; moreover, it does not require isotropic illumination. To create virtual sources and receivers anywhere inside the earth, it suffices to record the reflection response with physical sources and receivers at the earth's surface. We do not need detailed information about the medium parameters; it suffices to have an estimate of the direct waves between the virtual-source positions and the acquisition surface. With these prerequisites, our method can create virtual sources and receivers, anywhere inside the earth, which record the full wave field. The up- and downward reflections, multiples, etc. in the virtual responses are extracted directly from the reflection response at the surface. The retrieved virtual responses form an ideal starting point for accurate seismic imaging, characterization and monitoring.

  12. Improved surface-wave retrieval from ambient seismic noise by multi-dimensional deconvolution

    Science.gov (United States)

    Wapenaar, Kees; Ruigrok, Elmer; van der Neut, Joost; Draganov, Deyan

    2011-01-01

    The methodology of surface-wave retrieval from ambient seismic noise by crosscorrelation relies on the assumption that the noise field is equipartitioned. Deviations from equipartitioning degrade the accuracy of the retrieved surface-wave Green's function. A point-spread function, derived from the same ambient noise field, quantifies the smearing in space and time of the virtual source of the Green's function. By multidimensionally deconvolving the retrieved Green's function by the point-spread function, the virtual source becomes better focussed in space and time and hence the accuracy of the retrieved surface-wave Green's function may improve significantly. We illustrate this at the hand of a numerical example and discuss the advantages and limitations of this new methodology.

  13. Simulation of seismic waves in the brittle-ductile transition (BDT) using a Burgers model

    Science.gov (United States)

    Poletto, Flavio; Farina, Biancamaria; Carcione, José Maria

    2014-05-01

    The seismic characterization of the brittle-ductile transition (BDT) in the Earth's crust is of great importance for the study of high-enthalpy geothermal fields in the proximity of magmatic zones. It is well known that the BDT can be viewed as the transition between zones with viscoelastic and plastic behavior, i.e., the transition between the upper, cooler, brittle crustal zone, and the deeper ductile zone. Depending on stress and temperature conditions, the BDT behavior is basically determined by the viscosity of the crustal rocks, which acts as a key factor. In situ shear stress and temperature are related to shear viscosity and steady-state creep flow through the Arrhenius equation, and deviatory stress by octahedral stress criterion. We present a numerical approach to simulate the propagation of P-S and SH seismic waves in a 2D model of the heterogeneous Earth's crust. The full-waveform simulation code is based on a Burgers mechanical model (Carcione, 2007), which enables us to describe both the seismic attenuation effects and the steady-state creep flow (Carcione and Poletto, 2013; Carcione et al. 2013). The differential equations of motion are calculated for the Burgers model, and recast in the velocity-stress formulation. Equations are solved in the time domain using memory variables. The approach uses a direct method based on the Runge-Kutta technique, and the Fourier pseudo-spectral methods, for time integration and for spatial derivation, respectively. In this simulation we assume isotropic models. To test the code, the signals generated by the full-waveform simulation algorithm are compared with success to analytic solutions obtained with different shear viscosities. Moreover, synthetic results are calculated to simulate surface and VSP seismograms in a realistic rheological model with a dramatic temperature change, to study the observability of BDT by seismic reflection methods. The medium corresponds to a selected rheology of the Iceland scenario

  14. First-arrival Tomography Using the Double-square-root Equation Solver Stepping in Subsurface Offset

    KAUST Repository

    Serdyukov, A.S.

    2013-01-01

    Double-square-root (DSR) equation can be viewed as a Hamilton-Jacobi equation describing kinematics of downward data continuation in depth. It describes simultaneous propagation of source and receiver rays assuming that they are nowhere horizontal. Thus it is not suitable for describing diving waves. This equation can be rewritten in a new form when stepping is made in subsurface offset instead of depth. In this form it can be used for describing traveltimes of diving waves in prestack seismic data. This equation can be solved using WENO-RK numerical scheme. Prestack traveltimes (for multiple sources) can be computed in one run thus speeding up solution of the forward problem. We derive linearized version of this new DSR equation that can be used for tomographic inversion of first-arrival traveltimes. Here we used a ray-based tomographic inversion consisting of the following steps: get numerical solution of the offset DSR equation in the background velocity model, back trace DSR rays connecting receivers to sources, update velocity model using truncated SVD pseudoinverse. This approach was tested on a synthetic model generating diving waves.

  15. A new algorithm for three-dimensional joint inversion of body wave and surface wave data and its application to the Southern California plate boundary region

    Science.gov (United States)

    Fang, Hongjian; Zhang, Haijiang; Yao, Huajian; Allam, Amir; Zigone, Dimitri; Ben-Zion, Yehuda; Thurber, Clifford; van der Hilst, Robert D.

    2016-05-01

    We introduce a new algorithm for joint inversion of body wave and surface wave data to get better 3-D P wave (Vp) and S wave (Vs) velocity models by taking advantage of the complementary strengths of each data set. Our joint inversion algorithm uses a one-step inversion of surface wave traveltime measurements at different periods for 3-D Vs and Vp models without constructing the intermediate phase or group velocity maps. This allows a more straightforward modeling of surface wave traveltime data with the body wave arrival times. We take into consideration the sensitivity of surface wave data with respect to Vp in addition to its large sensitivity to Vs, which means both models are constrained by two different data types. The method is applied to determine 3-D crustal Vp and Vs models using body wave and Rayleigh wave data in the Southern California plate boundary region, which has previously been studied with both double-difference tomography method using body wave arrival times and ambient noise tomography method with Rayleigh and Love wave group velocity dispersion measurements. Our approach creates self-consistent and unique models with no prominent gaps, with Rayleigh wave data resolving shallow and large-scale features and body wave data constraining relatively deeper structures where their ray coverage is good. The velocity model from the joint inversion is consistent with local geological structures and produces better fits to observed seismic waveforms than the current Southern California Earthquake Center (SCEC) model.

  16. Seismic recording at the Los Medanos area of Southeastern New Mexico, 1974-1975

    International Nuclear Information System (INIS)

    Sanford, A.R.; Johansen, S.J.; Caravella, F.J.; Ward, R.M.

    1976-01-01

    The objective has been to determine if low-level seismic activity is occurring at or near the proposed nuclear waste repository in southeastern New Mexico. The research involved installation and maintenance of a continuously recording seismograph at the Los Medanos site and interpretation of the seismic events detected by that station. The following topics are discussed: (1) a description of the seismic instrumentation and its performance; (2) statistics on the local and regional earthquakes detected by the seismograph station at the Los Medanos site; (3) special studies on the seismic events associated with rockfalls at the National Potash Co. Eddy County Mine on July 26, 1972 and November 28, 1974; and (4) improved estimates of recurrence intervals for major earthquakes likely to effect the Los Medanos site

  17. Seismic Imager Space Telescope

    Science.gov (United States)

    Sidick, Erkin; Coste, Keith; Cunningham, J.; Sievers,Michael W.; Agnes, Gregory S.; Polanco, Otto R.; Green, Joseph J.; Cameron, Bruce A.; Redding, David C.; Avouac, Jean Philippe; hide

    2012-01-01

    A concept has been developed for a geostationary seismic imager (GSI), a space telescope in geostationary orbit above the Pacific coast of the Americas that would provide movies of many large earthquakes occurring in the area from Southern Chile to Southern Alaska. The GSI movies would cover a field of view as long as 300 km, at a spatial resolution of 3 to 15 m and a temporal resolution of 1 to 2 Hz, which is sufficient for accurate measurement of surface displacements and photometric changes induced by seismic waves. Computer processing of the movie images would exploit these dynamic changes to accurately measure the rapidly evolving surface waves and surface ruptures as they happen. These measurements would provide key information to advance the understanding of the mechanisms governing earthquake ruptures, and the propagation and arrest of damaging seismic waves. GSI operational strategy is to react to earthquakes detected by ground seismometers, slewing the satellite to point at the epicenters of earthquakes above a certain magnitude. Some of these earthquakes will be foreshocks of larger earthquakes; these will be observed, as the spacecraft would have been pointed in the right direction. This strategy was tested against the historical record for the Pacific coast of the Americas, from 1973 until the present. Based on the seismicity recorded during this time period, a GSI mission with a lifetime of 10 years could have been in position to observe at least 13 (22 on average) earthquakes of magnitude larger than 6, and at least one (2 on average) earthquake of magnitude larger than 7. A GSI would provide data unprecedented in its extent and temporal and spatial resolution. It would provide this data for some of the world's most seismically active regions, and do so better and at a lower cost than could be done with ground-based instrumentation. A GSI would revolutionize the understanding of earthquake dynamics, perhaps leading ultimately to effective warning

  18. Seismic velocity structure of the crust and shallow mantle of the Central and Eastern United States by seismic surface wave imaging

    Science.gov (United States)

    Pollitz, Fred; Mooney, Walter D.

    2016-01-01

    Seismic surface waves from the Transportable Array of EarthScope's USArray are used to estimate phase velocity structure of 18 to 125 s Rayleigh waves, then inverted to obtain three-dimensional crust and upper mantle structure of the Central and Eastern United States (CEUS) down to ∼200 km. The obtained lithosphere structure confirms previously imaged CEUS features, e.g., the low seismic-velocity signature of the Cambrian Reelfoot Rift and the very low velocity at >150 km depth below an Eocene volcanic center in northwestern Virginia. New features include high-velocity mantle stretching from the Archean Superior Craton well into the Proterozoic terranes and deep low-velocity zones in central Texas (associated with the late Cretaceous Travis and Uvalde volcanic fields) and beneath the South Georgia Rift (which contains Jurassic basalts). Hot spot tracks may be associated with several imaged low-velocity zones, particularly those close to the former rifted Laurentia margin.

  19. How prepared were the Puerto Rico Seismic Network sites for the arrival of Hurricane Maria? Lessons learned on communications, power and infrastructure.

    Science.gov (United States)

    Vanacore, E. A.; Lopez, A. M.; Huerfano, V.; Lugo, J.; Baez-Sanchez, G.

    2017-12-01

    For exactly 85 years the island of Puerto Rico in the northeastern Caribbean was spared from catastrophic category 4 hurricane winds. Then Hurricane Maria arrived on September 20, 2017 with maximum sustained winds of up to 155 mph. The eye of the hurricane crossed the island from southeast to northwest in eight hours leaving almost a meter of rainfall on its path. Sustained winds, gusts and precipitation were most certainly going to affect the seismic and geodetic equipment the Puerto Rico Seismic Network (PRSN) use for locating earthquakes in the region. PRSN relies on 35 seismic stations (velocity and strong-motion) to characterize the seismic behavior of the island and 15 geodetic (GNSS) stations to determine crustal deformation of the Puerto Rico - Virgin Islands microplate. PRSN stations have been designed to withstand earthquakes. However, the equipment suffered considerable damage due to the strong winds especially station communication towers. This coupled with catastrophic damage to the telecommunication and power grids of the island had severe effects on the network. Additionally, the level of devastation was such that it hampered the ability of PRSN staff to visit the sites for assessment and repair. Here we present the effects of category 4 hurricane had on our seismic and geodetic sites, examine the susceptibility of the PRSN stations' power and communications, and discuss future plans to recuperate and improve station resiliency for future catastrophic events. These lessons learned hopefully will help harden sites of networks, agencies and/or institutions that rely on similar infrastructure.

  20. Matrix Approach of Seismic Wave Imaging: Application to Erebus Volcano

    Science.gov (United States)

    Blondel, T.; Chaput, J.; Derode, A.; Campillo, M.; Aubry, A.

    2017-12-01

    This work aims at extending to seismic imaging a matrix approach of wave propagation in heterogeneous media, previously developed in acoustics and optics. More specifically, we will apply this approach to the imaging of the Erebus volcano in Antarctica. Volcanoes are actually among the most challenging media to explore seismically in light of highly localized and abrupt variations in density and wave velocity, extreme topography, extensive fractures, and the presence of magma. In this strongly scattering regime, conventional imaging methods suffer from the multiple scattering of waves. Our approach experimentally relies on the measurement of a reflection matrix associated with an array of geophones located at the surface of the volcano. Although these sensors are purely passive, a set of Green's functions can be measured between all pairs of geophones from ice-quake coda cross-correlations (1-10 Hz) and forms the reflection matrix. A set of matrix operations can then be applied for imaging purposes. First, the reflection matrix is projected, at each time of flight, in the ballistic focal plane by applying adaptive focusing at emission and reception. It yields a response matrix associated with an array of virtual geophones located at the ballistic depth. This basis allows us to get rid of most of the multiple scattering contribution by applying a confocal filter to seismic data. Iterative time reversal is then applied to detect and image the strongest scatterers. Mathematically, it consists in performing a singular value decomposition of the reflection matrix. The presence of a potential target is assessed from a statistical analysis of the singular values, while the corresponding eigenvectors yield the corresponding target images. When stacked, the results obtained at each depth give a three-dimensional image of the volcano. While conventional imaging methods lead to a speckle image with no connection to the actual medium's reflectivity, our method enables to

  1. Crosshole investigations - short and medium range seismic tomography

    International Nuclear Information System (INIS)

    Cosma, C.

    1987-02-01

    Seismic tomographic tests were conducted as a part of the Crosshole Investigations program of the Stripa Project. The aim has been to study if it is possible to detect by seismic tomography major fracture zones and determine their dimensions and orientation. The analysis was based on both compressional (P) and transversal (S) waves. The Young's modulus has been also calculated for a sub-set of measurements as a cross check for the P and S wave velocities. The experimental data was collected at the crosshole site in the Stripa mine during 1984-1985. A down-the-hole impact source was used together with triaxial detectors and a digital seismograph. Five tomographic sections were obtained. The number of records per section was appr. 250. Measurements were done down to 200 m depth in all boreholes. The main conclusion is that it is possible to detect major fracture zones by seismic tomography. Their position and orientation can also be estimated. (orig./HP)

  2. Seismic moment tensors of acoustic emissions recorded during laboratory rock deformation experiments: sensitivity to attenuation and anisotropy

    Czech Academy of Sciences Publication Activity Database

    Stierle, E.; Vavryčuk, Václav; Kwiatek, G.; Charalampidou, E.-M.; Bohnhoff, M.

    2016-01-01

    Roč. 205, č. 1 (2016), s. 38-50 ISSN 0956-540X R&D Projects: GA ČR(CZ) GAP210/12/1491; GA ČR(CZ) GC16-19751J Institutional support: RVO:67985530 Keywords : earthquake source observations * seismic anisotropy * seismic attenuation * wave propagation * acoustic properties Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.414, year: 2016

  3. Cavola experiment site: geophysical investigations and deployment of a dense seismic array on a landslide

    Directory of Open Access Journals (Sweden)

    L. Martelli

    2007-06-01

    Full Text Available Geophysical site investigations have been performed in association with deployment of a dense array of 95 3-component seismometers on the Cavola landslide in the Northern Apennines. The aim of the array is to study propagation of seismic waves in the heterogeneous medium through comparison of observation and modelling. The small-aperture array (130 m×56 m operated continuously for three months in 2004. Cavola landslide consists of a clay body sliding over mudstone-shale basement, and has a record of historical activity, including destruction of a small village in 1960. The site investigations include down-hole logging of P- and S-wave travel times at a new borehole drilled within the array, two seismic refraction lines with both P-wave profiling and surface-wave analyses, geo-electrical profiles and seismic noise measurements. From the different approaches a consistent picture of the depths and seismic velocities for the landslide has emerged. Their estimates agree with resonance frequencies of seismic noise, and also with the logged depths to basement of 25 m at a new borehole and of 44 m at a pre-existing borehole. Velocities for S waves increase with depth, from 230 m/s at the surface to 625 m/s in basement immediately below the landslide.

  4. Migration of scattered teleseismic body waves

    Science.gov (United States)

    Bostock, M. G.; Rondenay, S.

    1999-06-01

    The retrieval of near-receiver mantle structure from scattered waves associated with teleseismic P and S and recorded on three-component, linear seismic arrays is considered in the context of inverse scattering theory. A Ray + Born formulation is proposed which admits linearization of the forward problem and economy in the computation of the elastic wave Green's function. The high-frequency approximation further simplifies the problem by enabling (1) the use of an earth-flattened, 1-D reference model, (2) a reduction in computations to 2-D through the assumption of 2.5-D experimental geometry, and (3) band-diagonalization of the Hessian matrix in the inverse formulation. The final expressions are in a form reminiscent of the classical diffraction stack of seismic migration. Implementation of this procedure demands an accurate estimate of the scattered wave contribution to the impulse response, and thus requires the removal of both the reference wavefield and the source time signature from the raw record sections. An approximate separation of direct and scattered waves is achieved through application of the inverse free-surface transfer operator to individual station records and a Karhunen-Loeve transform to the resulting record sections. This procedure takes the full displacement field to a wave vector space wherein the first principal component of the incident wave-type section is identified with the direct wave and is used as an estimate of the source time function. The scattered displacement field is reconstituted from the remaining principal components using the forward free-surface transfer operator, and may be reduced to a scattering impulse response upon deconvolution of the source estimate. An example employing pseudo-spectral synthetic seismograms demonstrates an application of the methodology.

  5. Structure of Suasselkä Postglacial Fault in northern Finland obtained by analysis of ambient seismic noise

    Science.gov (United States)

    Afonin, Nikita; Kozlovskaya, Elena

    2016-04-01

    Understanding inner structure of seismogenic faults and their ability to reactivate is particularly important in investigating the continental intraplate seismicity regime. In our study we address this problem using analysis of ambient seismic noise recorded by the temporary DAFNE array in northern Fennoscandian Shield. The main purpose of the DAFNE/FINLAND passive seismic array experiment was to characterize the present-day seismicity of the Suasselkä post-glacial fault (SPGF) that was proposed as one potential target for the DAFNE (Drilling Active Faults in Northern Europe) project. The DAFNE/FINLAND array comprised the area of about 20 to 100 km and consisted of 8 short-period and 4 broad-band 3-component autonomous seismic stations installed in the close vicinity of the fault area. The array recorded continuous seismic data during September, 2011-May, 2013. Recordings of the array have being analyzed in order to identify and locate natural earthquakes from the fault area and to discriminate them from the blasts in the Kittilä Gold Mine. As a result, we found several dozens of natural seismic events originating from the fault area, which proves that the fault is still seismically active. In order to study the inner structure of the SPGF we use cross-correlation of ambient seismic noise recorded by the array. Analysis of azimuthal distribution of noise sources demonstrated that that during the time interval under consideration the distribution of noise sources is close to the uniform one. The continuous data were processed in several steps including single station data analysis, instrument response removal and time-domain stacking. The data were used to estimate empirical Green's functions between pairs of stations in the frequency band of 0.1-1 Hz and to calculate correspondent surface wave dispersion curves. After that S-wave velocity models were obtained as a result of dispersion curves inversion using Geopsy software. The results suggest that the area of

  6. Study on Rayleigh Wave Inversion for Estimating Shear-wave Velocity Profile

    Directory of Open Access Journals (Sweden)

    T.A. Sanny

    2003-05-01

    Full Text Available Rayleigh wave or ground roll is a noise in seismic body waves. However, how to use this noise for soil characterization is very interesting since Rayleigh wave phase velocity is a function of compression-wave velocity, shear-wave velocity, density and layer thickness. In layered-medium Rayleigh wave velocity also depends on wavelength or frequency, and this phenomenon is called dispersion. Inversion procedure to get shear-wave velocity profile needs a priori information about the solution of the problem to limit the unknown parameters. The Lagrange multiplier method was used to solve the constrained optimization problems or well known as a smoothing parameter in inversion problems. The advantage of our inversion procedure is that it can guarantee the convergence of solution even though the field data is incomplete, insufficient, and inconsistent. The addition of smoothing parameter can reduce the time to converge. Beside numerical stability, the statistical stability is also involved in inversion procedure. In field experiment we extracted ground roll data from seismic refraction record. The dispersion curves had been constructed by applying f-k analysis and f-k dip filtering. The dispersion curves show the dependence of Rayleigh wave phase velocities in layered media to frequency. The synthetic models also demonstrate the stability and the speed of inversion procedure.

  7. Wave-equation Q tomography

    KAUST Repository

    Dutta, Gaurav

    2016-10-12

    Strong subsurface attenuation leads to distortion of amplitudes and phases of seismic waves propagating inside the earth. The amplitude and the dispersion losses from attenuation are often compensated for during prestack depth migration. However, most attenuation compensation or Qcompensation migration algorithms require an estimate of the background Q model. We have developed a wave-equation gradient optimization method that inverts for the subsurface Q distribution by minimizing a skeletonized misfit function ∈, where ∈ is the sum of the squared differences between the observed and the predicted peak/centroid-frequency shifts of the early arrivals. The gradient is computed by migrating the observed traces weighted by the frequency shift residuals. The background Q model is perturbed until the predicted and the observed traces have the same peak frequencies or the same centroid frequencies. Numerical tests determined that an improved accuracy of the Q model by wave-equation Q tomography leads to a noticeable improvement in migration image quality. © 2016 Society of Exploration Geophysicists.

  8. Wave-equation Q tomography

    KAUST Repository

    Dutta, Gaurav; Schuster, Gerard T.

    2016-01-01

    Strong subsurface attenuation leads to distortion of amplitudes and phases of seismic waves propagating inside the earth. The amplitude and the dispersion losses from attenuation are often compensated for during prestack depth migration. However, most attenuation compensation or Qcompensation migration algorithms require an estimate of the background Q model. We have developed a wave-equation gradient optimization method that inverts for the subsurface Q distribution by minimizing a skeletonized misfit function ∈, where ∈ is the sum of the squared differences between the observed and the predicted peak/centroid-frequency shifts of the early arrivals. The gradient is computed by migrating the observed traces weighted by the frequency shift residuals. The background Q model is perturbed until the predicted and the observed traces have the same peak frequencies or the same centroid frequencies. Numerical tests determined that an improved accuracy of the Q model by wave-equation Q tomography leads to a noticeable improvement in migration image quality. © 2016 Society of Exploration Geophysicists.

  9. Analysis of the seismic wavefield in the Moesian Platform (Bucharest area)

    Science.gov (United States)

    -Florinela Manea, Elena; Hobiger, Manuel-Thomas; Michel, Clotaire; Fäh, Donat; -Ortanza Cioflan, Carmen

    2016-04-01

    Bucharest is located in the center of the Moesian platform, in a large and deep sedimentary basin (450 km long, 300 km wide and in some places up to 20 km depth). During large earthquakes generated by the Vrancea seismic zone, located approximately 140 km to the North, the ground motion recorded in Bucharest area is characterized by predominant long periods and large amplification. This phenomenon has been explained by the influence of both source mechanism (azimuth and type of incident waves) and mechanical properties of the local structure (geological layering and geometry). The main goal of our study is to better characterize and understand the seismic wave field produced by earthquakes in the area of Bucharest. We want to identify the contribution of different seismic surface waves, such as the ones produced at the edges of the large sedimentary basin or multipath interference waves (Airy phases of Love and Rayleigh waves) to the ground motion. The data from a 35 km diameter array (URS experiment) installed by the National Institute for Earth Physics during 10 months in 2003 and 2004 in the urban area of Bucharest and adjacent zones was used. In order to perform the wave field characterization of the URS array, the MUSIQUE technique was used. This technique consists in a combination of the classical MUSIC and the quaternion-MUSIC algorithms and analyzes the three-component signals of all sensors of a seismic array together in order to analyze the Love and Rayleigh wave dispersion curves as well as the Rayleigh wave ellipticity curve. The analysis includes 20 regional earthquakes with Mw >3 and 5 teleseismic events with Mw> 7 that have enough energy at low frequency (0.1 - 1 Hz), i.e. in the resolution range of the array. For all events, the greatest energy is coming from the backazimuth of the source and the wave field is dominated by Love waves. The results of the array analyses clearly indicate a significant scattering corresponding to 2D or 3D effects in the

  10. A 80 OBS and 30 Land 3-component seismometers array encompassing the 280 km segment of the Lesser Antilles subduction megathrust seismogenic zone: view of current seismicity

    Science.gov (United States)

    Laigle, Mireille; Sapin, Martine; Ruiz, Mario; Diaz, Jordi; Kissling, Edi; Charvis, Philippe; Flueh, Ernst; Hirn, Alfred

    2010-05-01

    An extensive onshore and offshore seismic station array in the Lesser Antilles subduction zone allows to monitor microearthquake activity for a period of 4 months in a region previously outside of reach for detailed observation. Such a network has been possible thanks to a cluster of 3 seismic surveys (TRAIL - F/S Merian, SISMANTILLESII - N/O Atalante, and OBSANTILLES - N/O Antea) for deploying and recovering the instruments from several pools (Geoazur, INSU-IPGP, IFM-GEOMAR, AWI ). It has been followed by an additional deployment of the 28 GeoAzur OBSs (OBSANTILLES - N/O Antea) during 5 months in the south-western half. These operations have been carried out for the seismic investigation of the Antilles megathrust seismogenic zone in the framework of the THALES WAS RIGHT european project, and with also the financial support of the french ANR Catastrophes Telluriques et Tsunamis (SUBSISMANTI) and by the EU SALVADOR Programme of IFM-GEOMAR. Onshore, 30 3-components land stations (CSIC Barcelone, IPG Paris, INSU-RLBM and -LITHOSCOPE) have been temporarily deployed. The deep seismic structure of the whole area has been investigated during these seismic surveys by wide-angle reflection and refraction seismics recorded by these instruments as well as multi-channel reflection seismic imaging (MCS) along a dense grid of crossing profiles at the OBS positions providing excellent velocity information for the upper plate. Both the location and the interpretation of the recorded earthquake activity require constraints on the deep seismic structure, which will be discussed with respect to the 3D geometry of the interplate boundary and oceanic Moho, as well as those of the forearc basement and Moho. Preliminary locations have been obtained within a simple 1D velocity model by taking into account corrections for the variable thickness of the mud- and sediments layers beneath each OBS. The latter are estimated for both P- and S-waves to compensate for the huge structural

  11. A P-wave velocity model of the upper crust of the Sannio region (Southern Apennines, Italy

    Directory of Open Access Journals (Sweden)

    M. Cocco

    1998-06-01

    Full Text Available This paper describes the results of a seismic refraction profile conducted in October 1992 in the Sannio region, Southern Italy, to obtain a detailed P-wave velocity model of the upper crust. The profile, 75 km long, extended parallel to the Apenninic chain in a region frequently damaged in historical time by strong earthquakes. Six shots were fired at five sites and recorded by a number of seismic stations ranging from 41 to 71 with a spacing of 1-2 km along the recording line. We used a two-dimensional raytracing technique to model travel times and amplitudes of first and second arrivals. The obtained P-wave velocity model has a shallow structure with strong lateral variations in the southern portion of the profile. Near surface sediments of the Tertiary age are characterized by seismic velocities in the 3.0-4.1 km/s range. In the northern part of the profile these deposits overlie a layer with a velocity of 4.8 km/s that has been interpreted as a Mesozoic sedimentary succession. A high velocity body, corresponding to the limestones of the Western Carbonate Platform with a velocity of 6 km/s, characterizes the southernmost part of the profile at shallow depths. At a depth of about 4 km the model becomes laterally homogeneous showing a continuous layer with a thickness in the 3-4 km range and a velocity of 6 km/s corresponding to the Meso-Cenozoic limestone succession of the Apulia Carbonate Platform. This platform appears to be layered, as indicated by an increase in seismic velocity from 6 to 6.7 km/s at depths in the 6-8 km range, that has been interpreted as a lithological transition from limestones to Triassic dolomites and anhydrites of the Burano formation. A lower P-wave velocity of about 5.0-5.5 km/s is hypothesized at the bottom of the Apulia Platform at depths ranging from 10 km down to 12.5 km; these low velocities could be related to Permo-Triassic siliciclastic deposits of the Verrucano sequence drilled at the bottom of the Apulia

  12. One billion year-old Mid-continent Rift leaves virtually no clues in the mantle

    Science.gov (United States)

    Bollmann, T. A.; Frederiksen, A. W.; van der Lee, S.; Wolin, E.; Revenaugh, J.; Wiens, D.; Darbyshire, F. A.; Aleqabi, G. I.; Wysession, M. E.; Stein, S.; Jurdy, D. M.

    2017-12-01

    We measured the relative arrival times of more than forty-six thousand teleseismic P waves recorded by seismic stations of Earthscope's Superior Province Rifting Earthscope Experiment (SPREE) and combined them with a similar amount of such measurements from other seismic stations in the larger region. SPREE recorded seismic waves for two and a half years around the prominent, one billion year-old Mid-continent Rift structure. The curvilinear Mid-continent Rift (MR) is distinguished by voluminous one billion year-old lava flows, which produce a prominent gravity high along the MR. As for other seismic waves, these lava flows along with their underplated counterpart, slightly slow down the measured teleseismic P waves, on average, compared to P waves that did not traverse structures beneath the Mid-continent Rift. However, the variance in the P wave arrival times in these two groups is nearly ten times higher than their average difference. In a seismic-tomographic inversion, we mapped all measured arrival times into structures deep beneath the crust, in the Earth's mantle. Beneath the crust we generally find relatively high P velocities, indicating relatively cool and undeformable mantle structures. However, the uppermost mantle beneath the MR shows several patches of slightly decreased P velocities. These patches are coincident with where the gravity anomalies peak, in Iowa and along the northern Minnesota/Wisconsin border. We will report on the likelihood that these anomalies are indeed a remaining mantle-lithospheric signature of the MR or whether these patches indirectly reflect the presence of the lava flows and their underplated counterparts at the crust-mantle interface. Other structures of interest and of varying depth extent in our tomographic image locate at 1) the intersection of the Superior Craton with the Penokean Province and the Marshfield Terrane west of the MR in southern Minnesota, 2) the intersection of the Penokean, Yavapai, and Mazatzal Terranes

  13. Optimal wave focusing for seismic source imaging

    Science.gov (United States)

    Bazargani, Farhad

    In both global and exploration seismology, studying seismic sources provides geophysicists with invaluable insight into the physics of earthquakes and faulting processes. One way to characterize the seismic source is to directly image it. Time-reversal (TR) focusing provides a simple and robust solution to the source imaging problem. However, for recovering a well- resolved image, TR requires a full-aperture receiver array that surrounds the source and adequately samples the wavefield. This requirement often cannot be realized in practice. In most source imaging experiments, the receiver geometry, due to the limited aperture and sparsity of the stations, does not allow adequate sampling of the source wavefield. Incomplete acquisition and imbalanced illumination of the imaging target limit the resolving power of the TR process. The main focus of this thesis is to offer an alternative approach to source imaging with the goal of mitigating the adverse effects of incomplete acquisition on the TR modeling. To this end, I propose a new method, named Backus-Gilbert (BG) source imaging, to optimally focus the wavefield onto the source position using a given receiver geometry. I first introduce BG as a method for focusing waves in acoustic media at a desired location and time. Then, by exploiting the source-receiver reciprocity of the Green function and the linearity of the problem, I show that BG focusing can be adapted and used as a source-imaging tool. Following this, I generalize the BG theory for elastic waves. Applying BG formalism for source imaging requires a model for the wave propagation properties of the earth and an estimate of the source location. Using numerical tests, I next examine the robustness and sensitivity of the proposed method with respect to errors in the earth model, uncertainty in the source location, and noise in data. The BG method can image extended sources as well as point sources. It can also retrieve the source mechanism. These features of

  14. Hovsgol earthquake 5 December 2014, M W = 4.9: seismic and acoustic effects

    Science.gov (United States)

    Dobrynina, Anna A.; Sankov, Vladimir A.; Tcydypova, Larisa R.; German, Victor I.; Chechelnitsky, Vladimir V.; Ulzibat, Munkhuu

    2018-03-01

    A moderate shallow earthquake occurred on 5 December 2014 ( M W = 4.9) in the north of Lake Hovsgol (northern Mongolia). The infrasonic signal with duration 140 s was recorded for this earthquake by the "Tory" infrasound array (Institute of Solar-Terrestrial Physics of the Siberian Branch of the Russian Academy of Science, Russia). Source parameters of the earthquake (seismic moment, geometrical sizes, displacement amplitudes in the focus) were determined using spectral analysis of direct body P and S waves. The spectral analysis of seismograms and amplitude variations of the surface waves allows to determine the effect of the propagation of the rupture in the earthquake focus, the azimuth of the rupture propagation direction and the velocity of displacement in the earthquake focus. The results of modelling of the surface displacements caused by the Hovsgol earthquake and high effective velocity of propagation of infrasound signal ( 625 m/s) indicate that its occurrence is not caused by the downward movement of the Earth's surface in the epicentral region but by the effect of the secondary source. The position of the secondary source of infrasound signal is defined on the northern slopes of the Khamar-Daban ridge according to the data on the azimuth and time of arrival of acoustic wave at the Tory station. The interaction of surface waves with the regional topography is proposed as the most probable mechanism of formation of the infrasound signal.

  15. Wave-equation Qs Inversion of Skeletonized Surface Waves

    KAUST Repository

    Li, Jing

    2017-02-08

    We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is the one that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs inversion (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to full waveform inversion (FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsurface Qs distribution as long as the Vs model is known with sufficient accuracy.

  16. Skeletonized wave-equation Qs tomography using surface waves

    KAUST Repository

    Li, Jing

    2017-08-17

    We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is then found that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs tomography (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to Q full waveform inversion (Q-FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsur-face Qs distribution as long as the Vs model is known with sufficient accuracy.

  17. Wave-equation Qs Inversion of Skeletonized Surface Waves

    KAUST Repository

    Li, Jing; Dutta, Gaurav; Schuster, Gerard T.

    2017-01-01

    We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is the one that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs inversion (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to full waveform inversion (FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsurface Qs distribution as long as the Vs model is known with sufficient accuracy.

  18. Modeling seismic wave propagation using staggered-grid mimetic finite differences

    Directory of Open Access Journals (Sweden)

    Freysimar Solano-Feo

    2017-04-01

    Full Text Available Mimetic finite difference (MFD approximations of continuous gradient and divergence operators satisfy a discrete version of the Gauss-Divergence theorem on staggered grids. On the mimetic approximation of this integral conservation principle, an unique boundary flux operator is introduced that also intervenes on the discretization of a given boundary value problem (BVP. In this work, we present a second-order MFD scheme for seismic wave propagation on staggered grids that discretized free surface and absorbing boundary conditions (ABC with same accuracy order. This scheme is time explicit after coupling a central three-level finite difference (FD stencil for numerical integration. Here, we briefly discuss the convergence properties of this scheme and show its higher accuracy on a challenging test when compared to a traditional FD method. Preliminary applications to 2-D seismic scenarios are also presented and show the potential of the mimetic finite difference method.

  19. Simultaneous Determination of Structure and Event Location Using Body and Surface Wave Measurements at a Single Station: Preparation for Mars Data from the InSight Mission

    Science.gov (United States)

    Panning, M. P.; Banerdt, W. B.; Beucler, E.; Blanchette-Guertin, J. F.; Boese, M.; Clinton, J. F.; Drilleau, M.; James, S. R.; Kawamura, T.; Khan, A.; Lognonne, P. H.; Mocquet, A.; van Driel, M.

    2015-12-01

    An important challenge for the upcoming InSight mission to Mars, which will deliver a broadband seismic station to Mars along with other geophysical instruments in 2016, is to accurately determine event locations with the use of a single station. Locations are critical for the primary objective of the mission, determining the internal structure of Mars, as well as a secondary objective of measuring the activity of distribution of seismic events. As part of the mission planning process, a variety of techniques have been explored for location of marsquakes and inversion of structure, and preliminary procedures and software are already under development as part of the InSight Mars Quake and Mars Structure Services. One proposed method, involving the use of recordings of multiple-orbit surface waves, has already been tested with synthetic data and Earth recordings. This method has the strength of not requiring an a priori velocity model of Mars for quake location, but will only be practical for larger events. For smaller events where only first orbit surface waves and body waves are observable, other methods are required. In this study, we implement a transdimensional Bayesian inversion approach to simultaneously invert for basic velocity structure and location parameters (epicentral distance and origin time) using only measurements of body wave arrival times and dispersion of first orbit surface waves. The method is tested with synthetic data with expected Mars noise and Earth data for single events and groups of events and evaluated for errors in both location and structural determination, as well as tradeoffs between resolvable parameters and the effect of 3D crustal variations.

  20. Correlation-based seismic velocity inversion

    NARCIS (Netherlands)

    Van Leeuwen, T.

    2010-01-01

    Most of our knowledge of the subsurface comes from the measurement of quantities that are indirectly related to the earth’s structure. Examples are seismic waves, gravity and electromagnetic waves. We consider the use of seismic waves for inference of structural information on an exploration scale.

  1. Earthquake source parameter and focal mechanism estimates for the Western Quebec Seismic Zone in eastern Canada

    Science.gov (United States)

    Rodriguez Padilla, A. M.; Onwuemeka, J.; Liu, Y.; Harrington, R. M.

    2017-12-01

    The Western Quebec Seismic Zone (WQSZ) is a 160-km-wide band of intraplate seismicity extending 500 km from the Adirondack Highlands (United States) to the Laurentian uplands (Canada). Historically, the WQSZ has experienced over fifteen earthquakes above magnitude 5, with the noteworthy MN5.2 Ladysmith event on May 17, 2013. Previous studies have associated seismicity in the area to the reactivation of Early Paleozoic normal faults within a failed Iapetan rift arm, or strength contrasts between mafic intrusions and felsic rocks due to the Mesozoic track of the Great Meteor hotspot. A good understanding of seismicity and its relation to pre-existing structures requires information about event source properties, such as static stress drop and fault plane orientation, which can be constrained via spectral analysis and focal mechanism solutions. Using data recorded by the CNSN and USArray Transportable Array, we first characterize b-value for 709 events between 2012 and 2016 in WQSZ, obtaining a value of 0.75. We then determine corner frequency and seismic moment values by fitting S-wave spectra on transverse components at all stations for 35 events MN 2.7+. We select event pairs with highly similar waveforms, proximal hypocenters, and magnitudes differing by 1-2 units. Our preliminary results using single-station spectra show corner frequencies of 15 to 40 Hz and stress drop values between 7 and 130 MPa, typical of intraplate seismicity. Last, we solve focal mechanism solutions of 35 events with impulsive P-wave arrivals at a minimum of 8 stations using the hybridMT moment tensor inversion algorithm. Our preliminary results suggest predominantly thrust faulting mechanisms, and at times oblique thrust faulting. The P-axis trend of the focal mechanism solutions suggests a principal stress orientation of NE-SW, which is consistent with that derived from focal mechanisms of earthquakes prior to 2013. We plan to fit the event pair spectral ratios to correct for attenuation

  2. Signal extraction and wave field separation in tunnel seismic prediction by independent component analysis

    Science.gov (United States)

    Yue, Y.; Jiang, T.; Zhou, Q.

    2017-12-01

    In order to ensure the rationality and the safety of tunnel excavation, the advanced geological prediction has been become an indispensable step in tunneling. However, the extraction of signal and the separation of P and S waves directly influence the accuracy of geological prediction. Generally, the raw data collected in TSP system is low quality because of the numerous disturb factors in tunnel projects, such as the power interference and machine vibration interference. It's difficult for traditional method (band-pass filtering) to remove interference effectively as well as bring little loss to signal. The power interference, machine vibration interference and the signal are original variables and x, y, z component as observation signals, each component of the representation is a linear combination of the original variables, which satisfy applicable conditions of independent component analysis (ICA). We perform finite-difference simulations of elastic wave propagation to synthetic a tunnel seismic reflection record. The method of ICA was adopted to process the three-component data, and the results show that extract the estimates of signal and the signals are highly correlated (the coefficient correlation is up to more than 0.93). In addition, the estimates of interference that separated from ICA and the interference signals are also highly correlated, and the coefficient correlation is up to more than 0.99. Thus, simulation results showed that the ICA is an ideal method for extracting high quality data from mixed signals. For the separation of P and S waves, the conventional separation techniques are based on physical characteristics of wave propagation, which require knowledge of the near-surface P and S waves velocities and density. Whereas the ICA approach is entirely based on statistical differences between P and S waves, and the statistical technique does not require a priori information. The concrete results of the wave field separation will be presented in

  3. Upper-mantle velocities below the Scandinavian Mountains from P- and S- wave traveltime tomography

    DEFF Research Database (Denmark)

    Hejrani, Babak; Balling, N.; Jacobsen, B. H.

    2017-01-01

    More than 20000 arrival-times of teleseismic P- and S-waves were measured over a period of more than 10 years in five separate temporary and two permanent seismic networks covering the Scandinavian (Scandes) Mountains and adjacent areas of the Baltic Shield. The relative traveltime residuals were...... between Lofoten and the crest of the Northern Scandes Mountains and stays off the coast further north. Seismic velocities in the depth interval 100-300 km change across the UMVB from low relative VP and even lower relative VS on the western side to high relative VP and even higher relative VS to the east...

  4. Data from investigation on seismic Sea-waves events in the Eastern Mediterranean from the Birth of Christ to 500 A.D.

    Directory of Open Access Journals (Sweden)

    J. ANTONOPOULOS

    1980-06-01

    Full Text Available The Eastern Mediterranean has a long history of damaging seismic sea
    waves (Tsunamis but a great number of them which are locally generated are small. They have caused no serious damage to the coasts because their
    energy is confined by many islands of the Greek Archipelagos. However,
    some of them have been rather severe and destructive to property and
    human life.
    This paper is comprised of data from an investigation into the activity
    of seismic sea waves in the Eastern Mediterranean from the Birth of
    Christ to 500 A.D. It contains a great amount of information concerning
    earthquakes, volcanic eruptions and seismic sea waves.
    All the available information has been compiled from historical accounts,
    archives, press reports, magazines and related works.

  5. Remotely triggered seismicity in north China following the 2008 M w 7.9 Wenchuan earthquake

    Science.gov (United States)

    Peng, Zhigang; Wang, Weijun; Chen, Qi-Fu; Jiang, Tao

    2010-11-01

    We conduct a systematic survey of remote triggering of earthquakes in north China following the 2008 M w 7.9 Wenchuan earthquake. We identify triggered earthquakes as impulsive seismic energies with clear P and S arrivals on 5 Hz high-pass-filtered three-component velocity seismograms during and immediately after the passage of teleseismic waves. We find clearly triggered seismic activity near the Babaoshan and Huangzhuang-Gaoliying faults southwest of Beijing, and near the aftershock zone of the 1976 M W 7.6 Tangshan earthquake. While several earthquakes occur during and immediately after the teleseismic waves in the aftershock zone of the 1975 M w 7.0 Haicheng earthquake, the change of seismicity is not significant enough to establish the direct triggering relationship. Our results suggest that intraplate regions with active faults associated with major earthquakes during historic or recent times are susceptible to remote triggering. We note that this does not always guarantee the triggering to occur, indicating that other conditions are needed. Since none of these regions is associated with any active geothermal or volcanic activity, we infer that dynamic triggering could be ubiquitous and occur in a wide range of tectonic environments.

  6. Use of seismic pulses in surface sources of excitation

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, L.

    1982-01-01

    A discussion is held of the experimental use of surface plus seismic sources. An examination is made of the technicalgeophysical criteria for using the pulse sources. Results are presented from measurements and tests obtained with the help of an air cushion and dinoseis. A comparison is made of the amplitude spectra of the seismic recordings obtained with the help of blasting, dinoseis and air cushion. Possibilities and limitations for using the surface sources in industrial exploration for oil and gas are discussed. Seismic profile is presented which intersects the Tisu River. It was obtained with the help of a dinoseis which notes a sharp change in the wave pattern.

  7. Seismicity and arrival-time residuals from the Victoria Earthquake of June 9, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Wong, V.; Frez, J.

    1981-01-01

    Hypocenter distribution in space and time of the aftershock activity from the Victoria Earthquake of June 9, 1980 was studied. It was concluded that the main event excited aftershocks in several pre-existing nests at the northwest end of the Cerro Prieto Fault, but no significant activity occurred at the immediate neighborhood of the main event. The depth of the aftershocks increases with the distance from the northwest end of the fault and this feature might be related with the higher temperatures and the spreading center located between the ends of the Imperial and Cerro Prieto Faults. The significance of the arrival-times residuals for local and regional stations is discussed both for P and S-waves and the importance of obtaining station corrections is emphasized. The non-uniqueness in determining a structure which minimizes the residuals is illustrated. Two different structures which satisfy the local data are presented.

  8. Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography

    Energy Technology Data Exchange (ETDEWEB)

    Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

    2012-01-10

    In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

  9. Seismic Microzonation for Refinement of Seismic Load Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Savich, A. I.; Bugaevskii, A. G., E-mail: office@geodyn.ru, E-mail: bugaevskiy@geodyn.ru [Center of the Office of Geodynamic Observations in the Power Sector, an affiliate of JSC “Institut Gidroproekt” (Russian Federation)

    2016-05-15

    Functional dependencies are established for the characteristics of seismic transients recorded at various points of a studied site, which are used to propose a new approach to seismic microzonation (SMZ) that enables the creation of new SMZ maps of strong seismic motion, with due regard for dynamic parameters of recorded transients during weak earthquakes.

  10. Character of GPR wave in air and processed method

    International Nuclear Information System (INIS)

    Shi Jianping; Zhang Zhiyong; Deng Juzhi

    2009-01-01

    The wave reflected by objects in the air is unavoidable because electromagnetic wave of GPR was send to all directions. There are three air reflection types: directly arrived wave, system ring and reflection wave. The directly arrived waves don't disturb the recognition of the reflections from earth because they affect the first short time of GPR trace record. But system ring and reflection from air are the mainly part of disturbs. The time and distance curve of reflection from air can be classified into two types: hyperbola type and line type. The reflection from air and from earth can be recognized by calculating the velocity of electromagnetic wave. Line type reflection can be filtered by background remove and 2-D filter; by comparing the migrated profiles with velocity in air and ground, the interpretation will become more exact. (authors)

  11. Skeletonized Least Squares Wave Equation Migration

    KAUST Repository

    Zhan, Ge; Schuster, Gerard T.

    2010-01-01

    of the wave equation. Only the early‐arrivals of these Green's functions are saved and skeletonized to form the migration Green's function (MGF) by convolution. Then the migration image is obtained by a dot product between the recorded shot gathers and the MGF

  12. High resolution seismic tomography imaging of Ireland with quarry blast data

    Science.gov (United States)

    Arroucau, P.; Lebedev, S.; Bean, C. J.; Grannell, J.

    2017-12-01

    Local earthquake tomography is a well established tool to image geological structure at depth. That technique, however, is difficult to apply in slowly deforming regions, where local earthquakes are typically rare and of small magnitude, resulting in sparse data sampling. The natural earthquake seismicity of Ireland is very low. That due to quarry and mining blasts, on the other hand, is high and homogeneously distributed. As a consequence, and thanks to the dense and nearly uniform coverage achieved in the past ten years by temporary and permanent broadband seismological stations, the quarry blasts offer an alternative approach for high resolution seismic imaging of the crust and uppermost mantle beneath Ireland. We detected about 1,500 quarry blasts in Ireland and Northern Ireland between 2011 and 2014, for which we manually picked more than 15,000 P- and 20,000 S-wave first arrival times. The anthropogenic, explosive origin of those events was unambiguously assessed based on location, occurrence time and waveform characteristics. Here, we present a preliminary 3D tomographic model obtained from the inversion of 3,800 P-wave arrival times associated with a subset of 500 events observed in 2011, using FMTOMO tomographic code. Forward modeling is performed with the Fast Marching Method (FMM) and the inverse problem is solved iteratively using a gradient-based subspace inversion scheme after careful selection of damping and smoothing regularization parameters. The results illuminate the geological structure of Ireland from deposit to crustal scale in unprecedented detail, as demonstrated by sensitivity analysis, source relocation with the 3D velocity model and comparisons with surface geology.

  13. One dimensional P wave velocity structure of the crust beneath west Java and accurate hypocentre locations from local earthquake inversion

    International Nuclear Information System (INIS)

    Supardiyono; Santosa, Bagus Jaya

    2012-01-01

    A one-dimensional (1-D) velocity model and station corrections for the West Java zone were computed by inverting P-wave arrival times recorded on a local seismic network of 14 stations. A total of 61 local events with a minimum of 6 P-phases, rms 0.56 s and a maximum gap of 299° were selected. Comparison with previous earthquake locations shows an improvement for the relocated earthquakes. Tests were carried out to verify the robustness of inversion results in order to corroborate the conclusions drawn out from our reasearch. The obtained minimum 1-D velocity model can be used to improve routine earthquake locations and represents a further step toward more detailed seismotectonic studies in this area of West Java.

  14. One dimensional P wave velocity structure of the crust beneath west Java and accurate hypocentre locations from local earthquake inversion

    Energy Technology Data Exchange (ETDEWEB)

    Supardiyono; Santosa, Bagus Jaya [Physics Department, Faculty of Mathematics and Natural Sciences, State University of Surabaya, Surabaya (Indonesia) and Physics Department, Faculty of Mathematics and Natural Sciences, Sepuluh Nopember Institute of Technology, Surabaya (Indonesia); Physics Department, Faculty of Mathematics and Natural Sciences, Sepuluh Nopember Institute of Technology, Surabaya (Indonesia)

    2012-06-20

    A one-dimensional (1-D) velocity model and station corrections for the West Java zone were computed by inverting P-wave arrival times recorded on a local seismic network of 14 stations. A total of 61 local events with a minimum of 6 P-phases, rms 0.56 s and a maximum gap of 299 Degree-Sign were selected. Comparison with previous earthquake locations shows an improvement for the relocated earthquakes. Tests were carried out to verify the robustness of inversion results in order to corroborate the conclusions drawn out from our reasearch. The obtained minimum 1-D velocity model can be used to improve routine earthquake locations and represents a further step toward more detailed seismotectonic studies in this area of West Java.

  15. Seismic velocity structure in the lower crust beneath the seismic belt in the San-in district, Southwest Japan

    Science.gov (United States)

    Tsuda, H.; Iio, Y.; Shibutani, T.

    2017-12-01

    In the San-in district in Southwest Japan, a linear distribution of the epicenters of microearthquakes is seen along the coast of the Japan Sea (Fig. 1). The linear distribution is known as the seismic belt in the San-in district. Large earthquakes also occurred in the seismic belt. What localizes the earthquake distribution in the San-in district which is located far from the plate boundary? We thought that the model proposed by Iio et al. (2002, 2004) could answer this question. The model is as follows. Viscosity is low in a part of the lower crust, which is called `weak zone'. Stress and strain are concentrated in the upper crust right above the weak zone, due to concentrated deformation in the weak zone, and thus earthquakes occur there. To verify whether the weak zone exists in the lower crust beneath the seismic belt, we estimated the seismic velocity structure there by travel-time tomography. We used the tomography program, FMTOMO (Rawlinson et al., 2006). For the model space, we set the latitude range of 33°-36°N, the longitude range of 131°-136°E (Fig. 1), and the depth range of 0-81 km. The grid intervals are 0.1°×0.1°×7 km. We used arrival times picked by Japan Meteorological Agency (JMA) for earthquakes that occurred in the study area. In addition, we used arrival times manually picked at stations in and around the San-in district for earthquakes that occurred within the Philippine Sea Slab, because they are not included in the JMA data. Since the seismic waves from those earthquakes to the stations in the San-in district pass through the lower crust beneath the San-in district, we expect that these data can improve the resolution there. We revealed that low velocity anomalies exist in the lower crust beneath the seismic belt (Fig. 1). It is inferred that the region of low velocity anomalies is characterized by low viscosity, since velocities of rocks decrease with temperature and/or water content. Therefore, the results of this study support

  16. First approximations in avalanche model validations using seismic information

    Science.gov (United States)

    Roig Lafon, Pere; Suriñach, Emma; Bartelt, Perry; Pérez-Guillén, Cristina; Tapia, Mar; Sovilla, Betty

    2017-04-01

    of the flow in the slope, and make observations of the internal flow dynamics, especially flow regimes transitions, which depend on the slope-perpendicular energy fluxes induced by collisions at the basal boundary. The recorded data over several experimental seasons provide a catalogue of seismic data from different types and sizes of avalanches triggered at the VDLS experimental site. These avalanches are recorded also by the SLF instrumentation (FMCW radars, photography, photogrammetry, video, videogrammetry, pressure sensors). We select the best-quality avalanche data to model and establish comparisons. All this information allows us to calibrate parameters governing the internal energy fluxes, especially parameters governing the interaction of the avalanche with the incumbent snow cover. For the comparison between the seismic signal and the RAMMS models, we are focusing at the temporal evolution of the flow, trying to find the same arrival times of the front at the seismic sensor location in the avalanche path. We make direct quantitative comparisons between measurements and model outputs, using modelled flow height, normal stress, velocity, and pressure values, compared with the seismic signal, its envelope and its running spectrogram. In all cases, the first comparisons between the seismic signal and RAMMS outputs are very promising.

  17. Lithospheric strucutre and relationship to seismicity beneath the Southeastern US using reciever functions

    Science.gov (United States)

    Cunningham, E.; Lekic, V.

    2017-12-01

    Despite being on a passive margin for millions of years, the Southeastern United States (SEUS) contains numerous seismogenic zones with the ability to produce damaging earthquakes. However, mechanisms controlling these intraplate earthquakes are poorly understood. Recently, Biryol et al. 2016 use P-wave tomography suggest that upper mantle structures beneath the SEUS correlate with areas of seismicity and seismic quiescence. Specifically, thick and fast velocity lithosphere beneath North Carolina is stable and indicative of areas of low seismicity. In contrast, thin and slow velocity lithosphere is weak, and the transition between the strong and weak lithosphere may be correlated with seismogenic zones found in the SEUS. (eg. Eastern Tennessee seismic zone and the Central Virginia seismic zone) Therefore, I systematically map the heterogeneity of the mantle lithosphere using converted seismic waves and quantify the spatial correlation between seismicity and lithospheric structure. The extensive network of seismometers that makes up the Earthscope USArray combined with the numerous seismic deployments in the Southeastern United States allows for unprecedented opportunity to map changes in lithospheric structure across seismogenic zones and seismic quiescent regions. To do so, I will use both P-to-s and S-to-p receiver functions (RFS). Since RFs are sensitive to seismic wavespeeds and density discontinuities with depth, they particularly useful for studying lithospheric structure. Ps receiver functions contain high frequency information allowing for high resolution, but can become contaminated by large sediment signals; therefore, I removed sediment multiples and correct for time delays of later phases using the method of Yu et. al 2015 which will allow us to see later arriving phases associated with lithospheric discontinuities. S-to-p receiver functions are not contaminated by shallow layers, making them ideal to study deep lithospheric structures but they can

  18. Unwrapped phase inversion for near surface seismic data

    KAUST Repository

    Choi, Yun Seok

    2012-11-04

    The Phase-wrapping is one of the main obstacles of waveform inversion. We use an inversion algorithm based on the instantaneous-traveltime that overcomes the phase-wrapping problem. With a high damping factor, the frequency-dependent instantaneous-traveltime inversion provides the stability of refraction tomography, with higher resolution results, and no arrival picking involved. We apply the instantaneous-traveltime inversion to the synthetic data generated by the elastic time-domain modeling. The synthetic data is a representative of the near surface seismic data. Although the inversion algorithm is based on the acoustic wave equation, the numerical examples show that the instantaneous-traveltime inversion generates a convergent velocity model, very similar to what we see from traveltime tomography.

  19. RAPID DETERMINATION OF FOCAL DEPTH USING A GLOBAL NETWORK OF SMALL-APERTURE SEISMIC ARRAYS

    Science.gov (United States)

    Seats, K.; Koper, K.; Benz, H.

    2009-12-01

    The National Earthquake Information Center (NEIC) of the United States Geological Survey (USGS) operates 24 hours a day, 365 days a year with the mission of locating and characterizing seismic events around the world. A key component of this task is quickly determining the focal depth of each seismic event, which has a first-order effect on estimates of ground shaking used in the impact assessment applications of emergency response activities. Current methods of depth estimation used at the NEIC include arrival time inversion both with and without depth phases, a Bayesian depth constraint based on historical seismicity (1973-present), and moment tensor inversion primarily using P- and S-wave waveforms. In this study, we explore the possibility of automated modeling of waveforms from vertical-component arrays of the International Monitoring System (IMS) to improve rapid depth estimation at NEIC. Because these arrays are small-aperture, they are effective at increasing signal to noise ratios for frequencies of 1 Hz and higher. Currently, NEIC receives continuous real-time data from 23 IMS arrays. Following work done by previous researchers, we developed a technique that acts as an array of arrays. For a given epicentral location we calculate fourth root beams for each IMS array in the distance range of 30 to 95 degrees at the expected slowness vector of the first arrival. Because the IMS arrays are small-aperture, these beams highlight energy that has slowness similar to the first arrival, such as depth phases. The beams are rectified by taking the envelope and then automatically aligned on the largest peak within 5 seconds of the expected arrival time. The station beams are then combined into network beams assuming a range of depths varying from 10 km to 700 km in increments of 1 km. The network beams are computed assuming both pP and sP propagation, and a measure of beam power is output as a function of depth for both propagation models, as well as their sum. We

  20. Characterization of rotary-percussion drilling as a seismic-while-drilling source

    Science.gov (United States)

    Xiao, Yingjian; Hurich, Charles; Butt, Stephen D.

    2018-04-01

    This paper focuses on an evaluation of rotary-percussion drilling (RPD) as a seismic source. Two field experiments were conducted to characterize seismic sources from different rocks with different strengths, i.e. weak shale and hard arkose. Characterization of RPD sources consist of spectral analysis and mean power measurements, along with field measurements of the source radiation patterns. Spectral analysis shows that increase of rock strength increases peak frequency and widens bandwidth, which makes harder rock more viable for seismic-while-drilling purposes. Mean power analysis infers higher magnitude of body waves in RPD than in conventional drillings. Within the horizontal plane, the observed P-wave energy radiation pattern partially confirms the theoretical radiation pattern under a single vertical bit vibration. However a horizontal lobe of energy is observed close to orthogonal to the axial bit vibration. From analysis, this lobe is attributed to lateral bit vibration, which is not documented elsewhere during RPD. Within the horizontal plane, the observed radiation pattern of P-waves is generally consistent with a spherically-symmetric distribution of energy. In addition, polarization analysis is conducted on P-waves recorded at surface geophones for understanding the particle motions. P-wave particle motions are predominantly in the vertical direction showing the interference of the free-surface.

  1. Stress Regime in the Nepalese Himalaya from Recent Earthquakes.

    Science.gov (United States)

    Pant, M.; Karplus, M. S.; Velasco, A. A.; Nabelek, J.; Kuna, V. M.; Ghosh, A.; Mendoza, M.; Adhikari, L. B.; Sapkota, S. N.; Klemperer, S. L.; Patlan, E.

    2017-12-01

    The two recent earthquakes, April 25, 2015 Mw 7.8 (Gorkha earthquake) and May 12, 2015 Mw 7.2, at the Indo-Eurasian plate margin killed thousands of people and caused billion dollars of property loss. In response to these events, we deployed a dense array of seismometers to record the aftershocks along Gorkha earthquake rupture area. Our network NAMASTE (Nepal Array Measuring Aftershock Seismicity Trailing Earthquake) included 45 different seismic stations (16 short period, 25 broadband, and 4 strong motion sensors) covering a large area from north-central Nepal to south of the Main Frontal Thrust at a spacing of 20 km. The instruments recorded aftershocks from June 2015 to May 2016. We used time domain short term average (STA) and long term average (LTA) algorithms (1/10s and 4/40s) respectively to detect the arrivals and then developed an earthquake catalog containing 9300 aftershocks. We are manually picking the P-wave first motion arrival polarity to develop a catalog of focal mechanisms for the larger magnitude (>M3.0) events with adequate (>10) arrivals. We hope to characterize the seismicity and stress mechanisms of the complex fault geometries in the Nepalese Himalaya and to address the geophysical processes controlling seismic cycles in the Indo-Eurasian plate margin.

  2. Bootstrap inversion for Pn wave velocity in North-Western Italy

    Directory of Open Access Journals (Sweden)

    C. Eva

    1997-06-01

    Full Text Available An inversion of Pn arrival times from regional distance earthquakes (180-800 km, recorded by 94 seismic stations operating in North-Western Italy and surrounding areas, was carried out to image lateral variations of P-wave velocity at the crust-mantle boundary, and to estimate the static delay time at each station. The reliability of the obtained results was assessed using both synthetic tests and the bootstrap Monte Carlo resampling technique. Numerical simulations demonstrated the existence of a trade-off between cell velocities and estimated station delay times along the edge of the model. Bootstrap inversions were carried out to determine the standard deviation of velocities and time terms. Low Pn velocity anomalies are detected beneath the outer side of the Alps (-6% and the Western Po plain (-4% in correspondence with two regions of strong crustal thickening and negative Bouguer anomaly. In contrast, high Pn velocities are imaged beneath the inner side of the Alps (+4% indicating the presence of high velocity and density lower crust-upper mantle. The Ligurian sea shows high Pn velocities close to the Ligurian coastlines (+3% and low Pn velocities (-1.5% in the middle of the basin in agreement with the upper mantle velocity structure revealed by seismic refraction profiles.

  3. An Expedient but Fascinating Geophysical Chimera: The Pinyon Flat Seismic Strain Point Array

    Science.gov (United States)

    Langston, C. A.

    2016-12-01

    The combination of a borehole Gladwin Tensor Strain Meter (GTSM) and a co-located three component broadband seismometer (BB) can theoretically be used to determine the propagation attributes of P-SV waves in vertically inhomogeneous media such as horizontal phase velocity and azimuth of propagation through application of wave gradiometry. A major requirement for this to be successful is to have well-calibrated strain and seismic sensors to be able to rely on using absolute wave amplitude from both systems. A "point" seismic array is constructed using the PBO GTSM station B084 and co-located BB seismic stations from an open array experiment deployed by UCSD as well as PFO station at the Pinyon Flat facility. Site amplitude statics for all three ground motion components are found for the 14-element (13 PY stations + PFO), small aperture seismic array using data from 47 teleseisms recorded from 2014 until present. Precision of amplitude measurement at each site is better than 0.2% for vertical components, 0.5% for EW components, and 1% for NS components. Relative amplitudes among sites of the array are often better than 1% attesting to the high quality of the instrumentation and installation. The wavefield and related horizontal strains are computed for the location of B084 using a second order Taylor's expansion of observed waveforms from moderate ( M4) regional events. The computed seismic array areal, differential, and shear strains show excellent correlation in both phase and amplitude with those recorded by B084 when using the calibration matrix previously determined using teleseismic strains from the entire ANZA seismic network. Use of the GTSM-BB "point" array significantly extends the bandwidth of gradiometry calculations over the small-aperture seismic array by nearly two orders of magnitude from 0.5 Hz to 0.01 Hz. In principle, a seismic strain point array could be constructed from every PBO GTSM with a co-located seismometer to help serve earthquake early

  4. Shear-wave seismic reflection imaging and impedance inversion for a near-surface point-bar

    Science.gov (United States)

    Benton, N. W.; Morrison, M.; Lorenzo, J. M.; Odom, B.; Clift, P. D.; Olson, E.; Gostic, A.

    2017-12-01

    Imaging and inversion of SH-waves are useful to detect, map, and quantitatively characterize near-surface point-bar strata. We conduct a horizontally-polarized (SH) reflection survey across and along a near-surface (9 - 40 m) downstream point-bar. We invert for shear-impedance profiles and correlate our interpretation to electrical conductivity (EC) logs in adjacent wells to study the internal architecture and lithology of point-bars. We acquire two common-midpoint (CMP) SH-wave seismic reflection lines at False River (Point Coupee Parish, Louisiana). A 104 m long seismic line (L1) is oriented orthogonal (NW - SE) to point-bar strike. A second line (L2) is 48 m long and set parallel to point-bar strike (NE - SW). Two EC wells lie 33 m apart. Both wells are parallel with respect to the L1 survey and offset from it by 15 m. EC log measurements range from 1 - 25 m depth. Interference of Love-waves prevents seismic imaging at depths less than 9 m. The L1 and L2 data sets are inverted for shear-impedance using a model-based band-limited impedance (BLIMP) algorithm that incorporates a low-frequency velocity model. This model is also used for the depthing processing. The L1 cross-section shows coherent dipping reflection events ( 4 - 7º) from 0.15 - 0.35 s (10 - 40 m). The corresponding shear-impedance profile also reveals coherent and dipping impedance contrasts that grow in magnitude with increasing depth. The L2 cross-section shows comparatively less dip ( 1º) as well as sharper and shallower continuity of reflection events (0.1 - 0.28 s TWT or 9 - 25 m). Depth-converted (TVD) seismic amplitudes and impedance values correlate to near-surface point-bar geology via superposition of log data. The first well (W5) shows distinct EC local maxima (+50 - 70 mS/m) at 14.5 and 15.5 m depth that correlate well with the seismic amplitudes and impedance values from both L1 and L2 data sets. The second well (W7) shows comparatively lower local maxima (+40 - 60 mS/m) but at greater

  5. Real Time Seismic Prediction while Drilling

    Science.gov (United States)

    Schilling, F. R.; Bohlen, T.; Edelmann, T.; Kassel, A.; Heim, A.; Gehring, M.; Lüth, S.; Giese, R.; Jaksch, K.; Rechlin, A.; Kopf, M.; Stahlmann, J.; Gattermann, J.; Bruns, B.

    2009-12-01

    Efficient and safe drilling is a prerequisite to enhance the mobility of people and goods, to improve the traffic as well as utility infrastructure of growing megacities, and to ensure the growing energy demand while building geothermal and in hydroelectric power plants. Construction within the underground is often building within the unknown. An enhanced risk potential for people and the underground building may arise if drilling enters fracture zones, karsts, brittle rocks, mixed solid and soft rocks, caves, or anthropogenic obstacles. Knowing about the material behavior ahead of the drilling allows reducing the risk during drilling and construction operation. In drilling operations direct observations from boreholes can be complemented with geophysical investigations. In this presentation we focus on “real time” seismic prediction while drilling which is seen as a prerequisite while using geophysical methods in modern drilling operations. In solid rocks P- and S-wave velocity, refraction and reflection as well as seismic wave attenuation can be used for the interpretation of structures ahead of the drilling. An Integrated Seismic Imaging System (ISIS) for exploration ahead of a construction is used, where a pneumatic hammer or a magnetostrictive vibration source generate repetitive signals behind the tunneling machine. Tube waves are generated which travel along the tunnel to the working face. There the tube waves are converted to mainly S- but also P-Waves which interact with the formation ahead of the heading face. The reflected or refracted waves travel back to the working front are converted back to tube waves and recorded using three-component geophones which are fit into the tips of anchor rods. In near real time, the ISIS software allows for an integrated 3D imaging and interpretation of the observed data, geological and geotechnical parameters. Fracture zones, heterogeneities, and variations in the rock properties can be revealed during the drilling

  6. Crustal structure of northern Italy from the ellipticity of Rayleigh waves

    Science.gov (United States)

    Berbellini, Andrea; Morelli, Andrea; G. Ferreira, Ana M.

    2017-04-01

    Northern Italy is a diverse geological region, including the wide and thick Po Plain sedimentary basin, which is bounded by the Alps and the Apennines. The seismically slow shallow structure of the Po Plain is difficult to retrieve with classical seismic measurements such as surface wave dispersion, yet the detailed structure of the region greatly affects seismic wave propagation and hence seismic ground shaking. Here we invert Rayleigh wave ellipticity measurements in the period range 10-60 s for 95 stations in northern Italy using a fully non linear approach to constrain vertical vS,vP and density profiles of the crust beneath each station. The ellipticity of Rayleigh wave ground motion is primarily sensitive to shear-wave velocity beneath the recording station, which reduces along-path contamination effects. We use the 3D layering structure in MAMBo, a previous model based on a compilation of geological and geophysical information for the Po Plain and surrounding regions of northern Italy, and employ ellipticity data to constrain vS,vP and density within its layers. We show that ellipticity data from ballistic teleseismic wave trains alone constrain the crustal structure well. This leads to MAMBo-E, an updated seismic model of the region's crust that inherits information available from previous seismic prospection and geological studies, while fitting new seismic data well. MAMBo-E brings new insights into lateral heterogeneity in the region's subsurface. Compared to MAMBo, it shows overall faster seismic anomalies in the region's Quaternary, Pliocene and Oligo-Miocene layers and better delineates the seismic structures of the Po Plain at depth. Two low velocity regions are mapped in the Mesozoic layer in the western and eastern parts of the Plain, which seem to correspond to the Monferrato sedimentary basin and to the Ferrara-Romagna thrust system, respectively.

  7. Multi-2D seismic imaging of the Solfatara crater (Campi Flegrei Caldera, southern Italy) from active seismic data

    Science.gov (United States)

    Gammaldi, S.; Amoroso, O.; D'Auria, L.; Zollo, A.

    2017-12-01

    Campi Flegrei is an active caldera characterized by secular, periodic episodes of spatially extended, low-rate ground deformation (bradyseism) accompanied by an intense seismic and geothermal activity. Its inner crater Solfatara is characterized by diffuse surface degassing and continuous fumarole activity. This points out the relevance of fluid and heat transport from depth and prompts for further research to improve the understanding of the hydrothermal system feeding processes and fluid migration to the surface. The experiment Repeated Induced Earthquake and Noise (RICEN) (EU Project MEDSUV), was carried out between September 2013 and November 2014 to investigate the space and time varying properties of the subsoil beneath the crater. The processed dataset consists of records from two 1D orthogonal seismic arrays deployed along WNW-ESE and NNE-SSW directions crossing the 400 m crater surface. To highlight the first P-wave arrivals a bandpass filter and an AGC were applied which allowed the detection of 17894 manually picked arrival times. Starting from a 1D velocity model, we performed a 2D non-linear Bayesian estimation. The method consists in retrieving the velocity model searching for the maximum of the "a posteriori" probability density function. The optimization is performed by the sequential use of the Genetic Algorithm and the Simplex methods. The retrieved images provide evidence for a very low P-velocity layer (Vp<500 m/s) associated with quaternary deposits, a low velocity (Vp=500-1500 m/s) water saturated deep layer at West, contrasted by a high velocity (Vp=2000-3200 m/s) layer correlated with a consolidated tephra deposit. The transition velocity range (from 1500 to 2000 m/s) suggests the possible presence of a gas-rich, accumulation volume. Based on the surface evidence of the gas released by the Bocca Grande and Bocca Nuova fumaroles at the Eastern border of Solfatara and the presence of the central deeper plume, we infer a detailed image for the

  8. Opportunities and pitfalls in surface-wave interpretation

    KAUST Repository

    Schuster, Gerard T.

    2017-01-21

    Many explorationists think of surface waves as the most damaging noise in land seismic data. Thus, much effort is spent in designing geophone arrays and filtering methods that attenuate these noisy events. It is now becoming apparent that surface waves can be a valuable ally in characterizing the near-surface geology. This review aims to find out how the interpreter can exploit some of the many opportunities available in surface waves recorded in land seismic data. For example, the dispersion curves associated with surface waves can be inverted to give the S-wave velocity tomogram, the common-offset gathers can reveal the presence of near-surface faults or velocity anomalies, and back-scattered surface waves can be migrated to detect the location of near-surface faults. However, the main limitation of surface waves is that they are typically sensitive to S-wave velocity variations no deeper than approximately half to one-third the dominant wavelength. For many exploration surveys, this limits the depth of investigation to be no deeper than approximately 0.5-1.0 km.

  9. Opportunities and pitfalls in surface-wave interpretation

    KAUST Repository

    Schuster, Gerard T.; Li, Jing; Lu, Kai; Metwally, Ahmed Mohsen Hassan; AlTheyab, Abdullah; Hanafy, Sherif

    2017-01-01

    Many explorationists think of surface waves as the most damaging noise in land seismic data. Thus, much effort is spent in designing geophone arrays and filtering methods that attenuate these noisy events. It is now becoming apparent that surface waves can be a valuable ally in characterizing the near-surface geology. This review aims to find out how the interpreter can exploit some of the many opportunities available in surface waves recorded in land seismic data. For example, the dispersion curves associated with surface waves can be inverted to give the S-wave velocity tomogram, the common-offset gathers can reveal the presence of near-surface faults or velocity anomalies, and back-scattered surface waves can be migrated to detect the location of near-surface faults. However, the main limitation of surface waves is that they are typically sensitive to S-wave velocity variations no deeper than approximately half to one-third the dominant wavelength. For many exploration surveys, this limits the depth of investigation to be no deeper than approximately 0.5-1.0 km.

  10. The Iquique 2014 sequence: understanding its nucleation and propagation from the seismicity evolution

    Science.gov (United States)

    Fuenzalida, A.; Rietbrock, A.; Woollam, J.; Tavera, H.; Ruiz, S.

    2017-12-01

    The Northern Chile and Southern Peru region is well known for its high seismic hazard due to the lack of recent major ruptures along long segments of the subduction interface. For this reason the 2014 Iquique Mw 8.1 earthquake that occurred in the Northern Chile seismic gap was expected and high quality seismic and geodetic networks were operating at the time of the event recording the precursory phase of a mega-thrust event with unprecedented detail. In this study we used seismic data collected during the 2014 Iquique sequence to generate a detailed earthquake catalogue. This catalogue consists of more than 15,000 events identified in Northern Chile during the period between 1/3/14 and 31/5/14 and provides full coverage of the immediate foreshock sequence, the main-shock and early after-shock series. The initial catalogue was obtained by automatic data processing and only selecting events with at least two associate S phases to improve the reliability of initial locations. Subsequently, this subset of events was automatically processed again using an optimized STA/LTA triggering algorithm for both P and S-waves and constraining the detection times by estimated arrival times at each station calculated for the preliminary locations. Finally, all events were relocated using a recently developed 1D velocity model and associated station corrections. For events Mw 4 or larger that occurred between the 15/3/14 and 10/04/14, we estimated it regional moment tensor by full-waveform inversion. Our results confirm the seismic activation of the upper plate during the foreshock sequence, as well highlight a crustal activity on the fore-arc during the aftershock series. The seismicity distribution was compared to the previous inter-seismic coupling studies obtained in the region, in which we observe interplay between high and low coupling areas, which are correlated to the seismicity rate. The spatial distribution of the seismicity and the complexities on the mechanisms observed

  11. Determination of Shear Properties in the Upper Seafloor Using Seismo-acoustic Interface Waves

    Energy Technology Data Exchange (ETDEWEB)

    Frivik, Svein Arne

    1998-12-31

    This thesis develops methods for recording and analysis of seismo-acoustic interface waves for determination of shear wave velocity as a function of depth and includes this in standard refraction seismic surveying. It investigates different techniques for estimation of dispersion characteristics of the interface waves and demonstrates that multi sensor spectral estimation techniques improve the dispersion estimates. The dispersion estimate of the fundamental interface wave mode is used as input to an object function for a model based linearized inversion. The inversion scheme provides an estimate of the shear wave velocity as a function of depth. Three field surveys were performed. Data were acquired with a standard bottom deployed refraction seismic hydrophone array containing 24 or 48 receivers, with a receiver spacing of 2.5 m. Explosive charges were used as sources. The recording time was increased from 0.5 to 8 s, compared to standard refraction seismic surveys. Shear wave velocity and shear modulus estimates were obtained from all the sites. At one of the sites, geotechnically obtained shear wave parameters were available, and a comparison between the two techniques were performed. the result of the comparison is promising and shows the potential of the technique. Although the result of applying the processing scheme to all three data sets is promising, it appears that survey parameters, like source-array spacing, receiver spacing and type of source might have been optimized for better performance. Based on this limitation, a new processing scheme and a new array configuration is proposed for surveys which integrates the recording and processing of both compressional waves and shear waves. 89 refs., 65 refs., 19 tabs.

  12. Toward predicting clay landslide with ambient seismic noise

    Science.gov (United States)

    Larose, E. F.; Mainsant, G.; Carriere, S.; Chambon, G.; Michoud, C.; Jongmans, D.; Jaboyedoff, M.

    2013-12-01

    Clay-rich pose critical problems in risk management worldwide. The most widely proposed mechanism leading to such flow-like movements is the increase in water pore pressure in the sliding mass, generating partial or complete liquefaction. This solid-to-liquid transition results in a dramatic reduction of mechanical rigidity, which could be detected by monitoring shear wave velocity variations, The ambient seismic noise correlation technique has been applied to measure the variation in the seismic surface wave velocity in the Pont Bourquin landslide (Swiss Alps). This small but active composite earthslide-earthflow was equipped with continuously recording seismic sensors during spring and summer 2010, and then again from fall 2011 on. An earthslide of a few thousand cubic meters was triggered in mid-August 2010, after a rainy period. This article shows that the seismic velocity of the sliding material, measured from daily noise correlograms, decreased continuously and rapidly for several days prior to the catastrophic event. From a spectral analysis of the velocity decrease, it was possible to determine the location of the change at the base of the sliding layer. These results are confirmed by analogous small-scale experiments in the laboratory. These results demonstrate that ambient seismic noise can be used to detect rigidity variations before failure and could potentially be used to predict landslides.

  13. Crustal surface wave velocity structure of the east Albany-Fraser Orogen, Western Australia, from ambient noise recordings

    Science.gov (United States)

    Sippl, C.; Kennett, B. L. N.; Tkalčić, H.; Gessner, K.; Spaggiari, C. V.

    2017-09-01

    Group and phase velocity maps in the period range 2-20 s for the Proterozoic east Albany-Fraser Orogen, Western Australia, are extracted from ambient seismic noise recorded with the 70-station ALFREX array. This 2 yr temporary installation provided detailed coverage across the orogen and the edge of the Neoarchean Yilgarn Craton, a region where no passive seismic studies of this scale have occurred to date. The surface wave velocities are rather high overall (>3 km s-1 nearly everywhere), as expected for exposed Proterozoic basement rocks. No clear signature of the transition between Yilgarn Craton and Albany-Fraser Orogen is observed, but several strong anomalies corresponding to more local geological features were obtained. A prominent, NE-elongated high-velocity anomaly in the northern part of the array is coincident with a Bouguer gravity high caused by the upper crustal metamorphic rocks of the Fraser Zone. This feature disappears towards longer periods, which hints at an exclusively upper crustal origin for this anomaly. Further east, the limestones of the Cenozoic Eucla Basin are clearly imaged as a pronounced low-velocity zone at short periods, but the prevalence of low velocities to periods of ≥5 s implies that the uppermost basement in this area is likewise slow. At longer periods, slightly above-average surface wave velocities are imaged below the Eucla Basin.

  14. Determination of Rayleigh wave ellipticity using single-station and array-based processing of ambient seismic noise

    Science.gov (United States)

    Workman, Eli Joseph

    We present a single-station method for the determination of Rayleigh wave ellipticity, or Rayleigh wave horizontal to vertical amplitude ratio (H/V) using Frequency Dependent Polarization Analysis (FDPA). This procedure uses singular value decomposition of 3-by-3 spectral covariance matrices over 1-hr time windows to determine properties of the ambient seismic noise field such as particle motion and dominant wave-type. In FPDA, if the noise is mostly dominated by a primary singular value and the phase difference is roughly 90° between the major horizontal axis and the vertical axis of the corresponding singular vector, we infer that Rayleigh waves are dominant and measure an H/V ratio for that hour and frequency bin. We perform this analysis for all available data from the Earthscope Transportable Array between 2004 and 2014. We compare the observed Rayleigh wave H/V ratios with those previously measured by multicomponent, multistation noise cross-correlation (NCC), as well as classical noise spectrum H/V ratio analysis (NSHV). At 8 sec the results from all three methods agree, suggesting that the ambient seismic noise field is Rayleigh wave dominated. Between 10 and 30 sec, while the general pattern agrees well, the results from FDPA and NSHV are persistently slightly higher ( 2%) and significantly higher (>20%), respectively, than results from the array-based NCC. This is likely caused by contamination from other wave types (i.e., Love waves, body waves, and tilt noise) in the single station methods, but it could also reflect a small, persistent error in NCC. Additionally, we find that the single station method has difficulty retrieving robust Rayleigh wave H/V ratios within major sedimentary basins, such as the Williston Basin and Mississippi Embayment, where the noise field is likely dominated by reverberating Love waves.

  15. OpenSWPC: an open-source integrated parallel simulation code for modeling seismic wave propagation in 3D heterogeneous viscoelastic media

    Science.gov (United States)

    Maeda, Takuto; Takemura, Shunsuke; Furumura, Takashi

    2017-07-01

    We have developed an open-source software package, Open-source Seismic Wave Propagation Code (OpenSWPC), for parallel numerical simulations of seismic wave propagation in 3D and 2D (P-SV and SH) viscoelastic media based on the finite difference method in local-to-regional scales. This code is equipped with a frequency-independent attenuation model based on the generalized Zener body and an efficient perfectly matched layer for absorbing boundary condition. A hybrid-style programming using OpenMP and the Message Passing Interface (MPI) is adopted for efficient parallel computation. OpenSWPC has wide applicability for seismological studies and great portability to allowing excellent performance from PC clusters to supercomputers. Without modifying the code, users can conduct seismic wave propagation simulations using their own velocity structure models and the necessary source representations by specifying them in an input parameter file. The code has various modes for different types of velocity structure model input and different source representations such as single force, moment tensor and plane-wave incidence, which can easily be selected via the input parameters. Widely used binary data formats, the Network Common Data Form (NetCDF) and the Seismic Analysis Code (SAC) are adopted for the input of the heterogeneous structure model and the outputs of the simulation results, so users can easily handle the input/output datasets. All codes are written in Fortran 2003 and are available with detailed documents in a public repository.[Figure not available: see fulltext.

  16. P- and S-wave models and statistical characterization of scatterers at the Solfatara Volcano using active seismic data from RICEN experiment

    Science.gov (United States)

    Serra, Marcello; Festa, Gaetano; Roux, Philippe; Vandemeulebrouck, Jean; Gresse, Marceau; Zollo, Aldo

    2017-04-01

    RICEN (Repeated and InduCed Earthquakes and Noise) is an active and passive experiment organized at the Solfatara volcano, in the framework of the European project MEDSUV. It was aimed to reveal and track the variations in the elastic properties of the medium at small scale through repeated observations over time. It covered an area of 90m x 115m by a regular grid of 240 receivers and 100 shotpoints at the center of the volcano. A Vibroseis truck was used as seismic source . We cross-correlated the seismograms by the source time function to obtain the Green's functions filtered in the frequency band excited by the source. To estimate the phase and the group velocities of the Rayleigh-waves we used the coherence of the signal along the seismic sections. In subgrids of 40m x 40m we realigned the waveforms or their envelope in different frequency bands, to maximize the amplitude of the stack function, the phase or the group velocities being those speeds proving this maximum. We jointly inverted the dispersion curves to obtain a locally layered 1-D medium in term of S-waves. Finally the collection of all the models provides us with a 3-D image of the investigated area. The S-wave velocity decreases toward the "Fangaia", due to the water saturation of the medium, as confirmed by geoelectric results. Since the Solfatara is a strongly heterogeneous medium, it is not possible to localize the velocity anomalies at different scales and a description of the medium through statistical parameters, such as the mean free path (MFP) and the transport mean free path (TMFP) was provided. The MFP was recovered from the ratio between coherent and incoherent intensities of the surface waves measured in different frequency bands. It decreases with frequency from about 40m at 8.5 Hz to 10m at 21.5 Hz, this behavior being typical of volcanic areas. The TMFP was measured fitting the decay of the coda of the energy at different distances. As expected it is larger than the MFP and strongly

  17. The Effects of Realistic Geological Heterogeneity on Seismic Modeling: Applications in Shear Wave Generation and Near-Surface Tunnel Detection

    Science.gov (United States)

    Sherman, Christopher Scott

    Naturally occurring geologic heterogeneity is an important, but often overlooked, aspect of seismic wave propagation. This dissertation presents a strategy for modeling the effects of heterogeneity using a combination of geostatistics and Finite Difference simulation. In the first chapter, I discuss my motivations for studying geologic heterogeneity and seis- mic wave propagation. Models based upon fractal statistics are powerful tools in geophysics for modeling heterogeneity. The important features of these fractal models are illustrated using borehole log data from an oil well and geomorphological observations from a site in Death Valley, California. A large part of the computational work presented in this disserta- tion was completed using the Finite Difference Code E3D. I discuss the Python-based user interface for E3D and the computational strategies for working with heterogeneous models developed over the course of this research. The second chapter explores a phenomenon observed for wave propagation in heteroge- neous media - the generation of unexpected shear wave phases in the near-source region. In spite of their popularity amongst seismic researchers, approximate methods for modeling wave propagation in these media, such as the Born and Rytov methods or Radiative Trans- fer Theory, are incapable of explaining these shear waves. This is primarily due to these method's assumptions regarding the coupling of near-source terms with the heterogeneities and mode conversion. To determine the source of these shear waves, I generate a suite of 3D synthetic heterogeneous fractal geologic models and use E3D to simulate the wave propaga- tion for a vertical point force on the surface of the models. I also present a methodology for calculating the effective source radiation patterns from the models. The numerical results show that, due to a combination of mode conversion and coupling with near-source hetero- geneity, shear wave energy on the order of 10% of the

  18. Early arrival waveform inversion of shallow seismic land data

    KAUST Repository

    Hanafy, Sherif M.; Yu, Han

    2013-01-01

    , compared to traveltime tomography, EWI can generate a highly resolved velocity tomogram from shallow seismic data. The more accurate EWI tomogram can make an economically important difference in assessing the storage potential of this wadi; in this case we

  19. 3D Seismic Imaging using Marchenko Methods

    Science.gov (United States)

    Lomas, A.; Curtis, A.

    2017-12-01

    Marchenko methods are novel, data driven techniques that allow seismic wavefields from sources and receivers on the Earth's surface to be redatumed to construct wavefields with sources in the subsurface - including complex multiply-reflected waves, and without the need for a complex reference model. In turn, this allows subsurface images to be constructed at any such subsurface redatuming points (image or virtual receiver points). Such images are then free of artefacts from multiply-scattered waves that usually contaminate migrated seismic images. Marchenko algorithms require as input the same information as standard migration methods: the full reflection response from sources and receivers at the Earth's surface, and an estimate of the first arriving wave between the chosen image point and the surface. The latter can be calculated using a smooth velocity model estimated using standard methods. The algorithm iteratively calculates a signal that focuses at the image point to create a virtual source at that point, and this can be used to retrieve the signal between the virtual source and the surface. A feature of these methods is that the retrieved signals are naturally decomposed into up- and down-going components. That is, we obtain both the signal that initially propagated upwards from the virtual source and arrived at the surface, separated from the signal that initially propagated downwards. Figure (a) shows a 3D subsurface model with a variable density but a constant velocity (3000m/s). Along the surface of this model (z=0) in both the x and y directions are co-located sources and receivers at 20-meter intervals. The redatumed signal in figure (b) has been calculated using Marchenko methods from a virtual source (1200m, 500m and 400m) to the surface. For comparison the true solution is given in figure (c), and shows a good match when compared to figure (b). While these 2D redatuming and imaging methods are still in their infancy having first been developed in

  20. Thermal alteration of pyrite to pyrrhotite during earthquakes : New evidence of seismic slip in the rock record

    NARCIS (Netherlands)

    Yang, Tao; Dekkers, Mark J.; Chen, Jianye

    Seismic slip zones convey important information on earthquake energy dissipation and rupture processes. However, geological records of earthquakes along exhumed faults remain scarce. They can be traced with a variety of methods that establish the frictional heating of seismic slip, although each has

  1. Reduction of computing time for seismic applications based on the Helmholtz equation by Graphics Processing Units

    NARCIS (Netherlands)

    Knibbe, H.P.

    2015-01-01

    The oil and gas industry makes use of computational intensive algorithms to provide an image of the subsurface. The image is obtained by sending wave energy into the subsurface and recording the signal required for a seismic wave to reflect back to the surface from the Earth interfaces that may have

  2. The Gassmann-Burgers Model to Simulate Seismic Waves at the Earth Crust And Mantle

    Science.gov (United States)

    Carcione, José M.; Poletto, Flavio; Farina, Biancamaria; Craglietto, Aronne

    2017-03-01

    The upper part of the crust shows generally brittle behaviour while deeper zones, including the mantle, may present ductile behaviour, depending on the pressure-temperature conditions; moreover, some parts are melted. Seismic waves can be used to detect these conditions on the basis of reflection and transmission events. Basically, from the elastic-plastic point of view the seismic properties (seismic velocity and density) depend on effective pressure and temperature. Confining and pore pressures have opposite effects on these properties, such that very small effective pressures (the presence of overpressured fluids) may substantially decrease the P- and S-wave velocities, mainly the latter, by opening of cracks and weakening of grain contacts. Similarly, high temperatures induce the same effect by partial melting. To model these effects, we consider a poro-viscoelastic model based on Gassmann equations and Burgers mechanical model to represent the properties of the rock frame and describe ductility in which deformation takes place by shear plastic flow. The Burgers elements allow us to model the effects of seismic attenuation, velocity dispersion and steady-state creep flow, respectively. The stiffness components of the brittle and ductile media depend on stress and temperature through the shear viscosity, which is obtained by the Arrhenius equation and the octahedral stress criterion. Effective pressure effects are taken into account in the dry-rock moduli using exponential functions whose parameters are obtained by fitting experimental data as a function of confining pressure. Since fluid effects are important, the density and bulk modulus of the saturating fluids (water and steam) are modeled using the equations provided by the NIST website, including supercritical behaviour. The theory allows us to obtain the phase velocity and quality factor as a function of depth and geological pressure and temperature as well as time frequency. We then obtain the PS and SH

  3. Mathematical model of the seismic electromagnetic signals (SEMS) in non crystalline substances

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, L. C. C.; Yahya, N.; Daud, H.; Shafie, A. [Electromagnetic cluster, Universiti Teknologi Petronas, 31750 Tronoh, Perak (Malaysia)

    2012-09-26

    The mathematical model of seismic electromagnetic waves in non crystalline substances is developed and the solutions are discussed to show the possibility of improving the electromagnetic waves especially the electric field. The shear stress of the medium in fourth order tensor gives the equation of motion. Analytic methods are selected for the solutions written in Hansen vector form. From the simulated SEMS, the frequency of seismic waves has significant effects to the SEMS propagating characteristics. EM waves transform into SEMS or energized seismic waves. Traveling distance increases once the frequency of the seismic waves increases from 100% to 1000%. SEMS with greater seismic frequency will give seismic alike waves but greater energy is embedded by EM waves and hence further distance the waves travel.

  4. Mathematical model of the seismic electromagnetic signals (SEMS) in non crystalline substances

    International Nuclear Information System (INIS)

    Dennis, L. C. C.; Yahya, N.; Daud, H.; Shafie, A.

    2012-01-01

    The mathematical model of seismic electromagnetic waves in non crystalline substances is developed and the solutions are discussed to show the possibility of improving the electromagnetic waves especially the electric field. The shear stress of the medium in fourth order tensor gives the equation of motion. Analytic methods are selected for the solutions written in Hansen vector form. From the simulated SEMS, the frequency of seismic waves has significant effects to the SEMS propagating characteristics. EM waves transform into SEMS or energized seismic waves. Traveling distance increases once the frequency of the seismic waves increases from 100% to 1000%. SEMS with greater seismic frequency will give seismic alike waves but greater energy is embedded by EM waves and hence further distance the waves travel.

  5. Yield Estimation for Semipalatinsk Underground Nuclear Explosions Using Seismic Surface-wave Observations at Near-regional Distances

    Science.gov (United States)

    Adushkin, V. V.

    - A statistical procedure is described for estimating the yields of underground nuclear tests at the former Soviet Semipalatinsk test site using the peak amplitudes of short-period surface waves observed at near-regional distances (Δ Semipalatinsk explosions, including the Soviet JVE explosion of September 14, 1988, and it is demonstrated that it provides seismic estimates of explosion yield which are typically within 20% of the yields determined for these same explosions using more accurate, non-seismic techniques based on near-source observations.

  6. Seismic Structure of the Shallow Mantle Beneath the Endeavor Segment of the Juan de Fuca Ridge

    Science.gov (United States)

    VanderBeek, B. P.; Toomey, D. R.; Hooft, E. E.; Wilcock, W. S.; Weekly, R. T.; Soule, D. C.

    2013-12-01

    We present tomographic images of the seismic structure of the shallow mantle beneath the intermediate-spreading Endeavor segment of the Juan de Fuca ridge. Our results provide insight into the relationship between magma supply from the mantle and overlying ridge crest processes. We use seismic energy refracted below the Moho (Pn), as recorded by the Endeavor tomography (ETOMO) experiment, to image the anisotropic and isotropic P wave velocity structure. The ETOMO experiment was an active source seismic study conducted in August 2009 as part of the RIDGE2000 science program. The experimental area extends 100 km along- and 60 km across-axis and encompasses active hydrothermal vent fields near the segment center, the eastern end of the Heck seamount chain, and two overlapping spreading centers (OSCs) at either end of the segment. Previous tomographic analyses of seismic arrivals refracted through the crust (Pg), and reflected off the Moho (PmP), constrain a three-dimensional starting model of crustal velocity and thickness. These Pg and PmP arrivals are incorporated in our inversion of Pn travel-time data to further constrain the isotropic and anisotropic mantle velocity structure. Preliminary results reveal three distinct mantle low-velocity zones, inferred as regions of mantle melt delivery to the base of the crust, that are located: (i) off-axis near the segment center, (ii) beneath the Endeavor-West Valley OSC, and (iii) beneath the Cobb OSC near Split Seamount. The mantle anomalies are located at intervals of ~30 to 40 km along-axis and the low velocity anomalies beneath the OSCs are comparable in magnitude to the one located near the segment center. The direction of shallow mantle flow is inferred from azimuthal variations in Pn travel-time residuals relative to a homogeneous isotropic mantle. Continuing analysis will focus on constraining spatial variations in the orientation of azimuthal anisotropy. On the basis of our results, we will discuss the transport of

  7. Seismic Imaging of the West Napa Fault in Napa, California

    Science.gov (United States)

    Goldman, M.; Catchings, R.; Chan, J. H.; Sickler, R. R.; Nevitt, J. M.; Criley, C.

    2017-12-01

    In October 2016, we acquired high-resolution P- and S-wave seismic data along a 120-m-long, SW-NE-trending profile in Napa, California. Our seismic survey was designed to image a strand of the West Napa Fault Zone (WNFZ), which ruptured during the 24 August 2014 Mw 6.0 South Napa Earthquake. We separately acquired P- and S-wave data at every station using multiple hammer hits, which were edited and stacked into individual shot gathers in the lab. Each shot was co-located with and recorded by 118 P-wave (40-Hz) geophones, spaced at 1 m, and by 180 S-wave (4.5-Hz) geophones, spaced at 1 m. We developed both P- and S-wave tomographic velocity models, as well as Poisson's ratio and a Vp/Vs ratio models. We observed a well-defined zone of elevated Vp/Vs ratios below about 10 m depth, centered beneath the observed surface rupture. P-wave reflection images show that the fault forms a flower-structure in the upper few tens of meters. This method has been shown to delineate fault structures even in areas of rough terrain.

  8. Study of Rayleigh-Love coupling from Spatial Gradient Observation

    Science.gov (United States)

    Lin, C. J.; Hosseini, K.; Donner, S.; Vernon, F.; Wassermann, J. M.; Igel, H.

    2017-12-01

    We present a new method to study Rayleigh-Love coupling. Instead of using seismograms solely, where ground motion is recorded as function of time, we incorporate with rotation and strain, also called spatial gradient where ground is represented as function of distance. Seismic rotation and strain are intrinsic different observable wavefield so are helpful to indentify wave type and wave propagation. A Mw 7.5 earthquake on 29 March 2015 occurred in Kokopo, Papua New Guinea recorded by a dense seismic array at PFO, California are used to obtaint seismic spatial gradient. We firstly estimate time series of azimuthal direction and phase velocity of SH wave and Rayleigh wave by analyzing collocated seismograms and rotations. This result also compares with frequency wavenumber methods using a nearby ANZA seismic array. We find the direction of Rayleigh wave fits well with great-circle back azimuth during wave propagation, while the direction of Love wave deviates from that, especially when main energy of Rayleigh wave arrives. From the analysis of cross-correlation between areal strain and vertical rotation, it reveals that high coherence, either positive or negative, happens at the same time when Love wave deparate from great-circle path. We also find the observed azimuth of Love wave and polarized particle motion of Rayleigh wave fits well with the fast direction of Rayleigh wave, for the period of 50 secs. We conclude the cause of deviated azimuth of Love wave is due to Rayleigh-Love coupling, as surface wave propagates through the area with anisotropic structure.

  9. Locating seismicity on the Arctic plate boundary using multiple-event techniques and empirical signal processing

    Science.gov (United States)

    Gibbons, S. J.; Harris, D. B.; Dahl-Jensen, T.; Kværna, T.; Larsen, T. B.; Paulsen, B.; Voss, P. H.

    2017-12-01

    The oceanic boundary separating the Eurasian and North American plates between 70° and 84° north hosts large earthquakes which are well recorded teleseismically, and many more seismic events at far lower magnitudes that are well recorded only at regional distances. Existing seismic bulletins have considerable spread and bias resulting from limited station coverage and deficiencies in the velocity models applied. This is particularly acute for the lower magnitude events which may only be constrained by a small number of Pn and Sn arrivals. Over the past two decades there has been a significant improvement in the seismic network in the Arctic: a difficult region to instrument due to the harsh climate, a sparsity of accessible sites (particularly at significant distances from the sea), and the expense and difficult logistics of deploying and maintaining stations. New deployments and upgrades to stations on Greenland, Svalbard, Jan Mayen, Hopen, and Bjørnøya have resulted in a sparse but stable regional seismic network which results in events down to magnitudes below 3 generating high-quality Pn and Sn signals on multiple stations. A catalogue of several hundred events in the region since 1998 has been generated using many new phase readings on stations on both sides of the spreading ridge in addition to teleseismic P phases. A Bayesian multiple event relocation has resulted in a significant reduction in the spread of hypocentre estimates for both large and small events. Whereas single event location algorithms minimize vectors of time residuals on an event-by-event basis, the Bayesloc program finds a joint probability distribution of origins, hypocentres, and corrections to traveltime predictions for large numbers of events. The solutions obtained favour those event hypotheses resulting in time residuals which are most consistent over a given source region. The relocations have been performed with different 1-D velocity models applicable to the Arctic region and

  10. Identifying and Correcting Timing Errors at Seismic Stations in and around Iran

    International Nuclear Information System (INIS)

    Syracuse, Ellen Marie; Phillips, William Scott; Maceira, Monica; Begnaud, Michael Lee

    2017-01-01

    A fundamental component of seismic research is the use of phase arrival times, which are central to event location, Earth model development, and phase identification, as well as derived products. Hence, the accuracy of arrival times is crucial. However, errors in the timing of seismic waveforms and the arrival times based on them may go unidentified by the end user, particularly when seismic data are shared between different organizations. Here, we present a method used to analyze travel-time residuals for stations in and around Iran to identify time periods that are likely to contain station timing problems. For the 14 stations with the strongest evidence of timing errors lasting one month or longer, timing corrections are proposed to address the problematic time periods. Finally, two additional stations are identified with incorrect locations in the International Registry of Seismograph Stations, and one is found to have erroneously reported arrival times in 2011.

  11. Trial to active seismic while drilling; Jinko shingen wo mochiita SWD eno kokoromi

    Energy Technology Data Exchange (ETDEWEB)

    Tsuru, T; Kozawa, T [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1996-10-01

    This paper describes the development of a more stable SWD system with larger energy by adding an artificial seismic source near the bit. SWD is a technique by which the seismic wave generated while drilling of rocks by bit can be observed on the ground surface and the records equivalent to the reverse VSP can be obtained. For this system, a shell with a vibrator was fixed immediately on the bit as a sub-generator, and total energy of usual impact by the bit and vibration by the vibrator was used as a seismic source for SWD. For the seismic wave generation mechanism of this vibrator, the shell was resonated by the magnetostrictive element, and vibration was given to the bit and drilling pipe. When this seismic source is used, only single frequency is obtained for each vibration due to the utilization of resonance of shell. Therefore, the generation patterns should be made, by which wide band energy can be obtained after the interaction. Since the survey was conducted using this bottom hole seismic source at the drilling depth more than 3,000 m, it was necessary to enhance the vibration energy. 2 refs., 2 figs.

  12. Seismic moment tensor for anisotropic media: implication for Non-double-couple earthquakes

    Science.gov (United States)

    Cai, X.; Chen, X.; Chen, Y.; Cai, M.

    2008-12-01

    It is often found that the inversion results of seismic moment tensor from real seismic recorded data show the trace of seismic moment tensor M is not zero, a phenomenon called non-double-couple earthquake sources mechanism. Recently we have derived the analytical expressions of M in transversely isotropic media with the titled axis of symmetry and the results shows even only pure shear-motion of fault can lead to the implosive components determined by several combined anisotropic elastic constants. Many non-double-couple earthquakes from observations often appear in volcanic and geothermal areas (Julian, 1998), where there exist a mount of stress-aligned fluid-saturated parallel vertical micro-cracks identical to transversely isotropic media (Crampin, 2008), this stress-aligned crack will modify the seismic moment tensor. In another word, non-double-couple earthquakes don't mean to have a seismic failure movement perpendicular to the fault plane, while traditional research of seismic moment tensor focus on the case of isotropy, which cannot provide correct interpretation of seismic source mechanism. Reference: Julian, B.R., Miller, A.D. and Foulger, G.R., 1998. Non-double-couple earthquakes,1. Theory, Rev. Geophys., 36, 525¨C549. Crampin,S., Peacock,S., 2008, A review of the current understanding of seismic shear-wave splitting in the Earth's crust and common fallacies in interpretation, wave motion, 45,675-722

  13. Tracking changes in volcanic systems with seismic Interferometry

    Science.gov (United States)

    Haney, Matt; Alicia J. Hotovec-Ellis,; Bennington, Ninfa L.; Silvio De Angelis,; Clifford Thurber,

    2014-01-01

    The detection and evaluation of time-dependent changes at volcanoes form the foundation upon which successful volcano monitoring is built. Temporal changes at volcanoes occur over all time scales and may be obvious (e.g., earthquake swarms) or subtle (e.g., a slow, steady increase in the level of tremor). Some of the most challenging types of time-dependent change to detect are subtle variations in material properties beneath active volcanoes. Although difficult to measure, such changes carry important information about stresses and fluids present within hydrothermal and magmatic systems. These changes are imprinted on seismic waves that propagate through volcanoes. In recent years, there has been a quantum leap in the ability to detect subtle structural changes systematically at volcanoes with seismic waves. The new methodology is based on the idea that useful seismic signals can be generated “at will” from seismic noise. This means signals can be measured any time, in contrast to the often irregular and unpredictable times of earthquakes. With seismic noise in the frequency band 0.1–1 Hz arising from the interaction of the ocean with the solid Earth known as microseisms, researchers have demonstrated that cross-correlations of passive seismic recordings between pairs of seismometers yield coherent signals (Campillo and Paul 2003; Shapiro and Campillo 2004). Based on this principle, coherent signals have been reconstructed from noise recordings in such diverse fields as helioseismology (Rickett and Claerbout 2000), ultrasound (Weaver and Lobkis 2001), ocean acoustic waves (Roux and Kuperman 2004), regional (Shapiro et al. 2005; Sabra et al. 2005; Bensen et al. 2007) and exploration (Draganov et al. 2007) seismology, atmospheric infrasound (Haney 2009), and studies of the cryosphere (Marsan et al. 2012). Initial applications of ambient seismic noise were to regional surface wave tomography (Shapiro et al. 2005). Brenguier et al. (2007) were the first to

  14. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Bjorn N. P. Paulsson

    2006-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400

  15. New perspectives on the damage estimation for buried pipeline systems due to seismic wave propagation

    Energy Technology Data Exchange (ETDEWEB)

    Pineda Porras, Omar Andrey [Los Alamos National Laboratory

    2009-01-01

    Over the past three decades, seismic fragility fonnulations for buried pipeline systems have been developed following two tendencies: the use of earthquake damage scenarios from several pipeline systems to create general pipeline fragility functions; and, the use of damage scenarios from one pipeline system to create specific-system fragility functions. In this paper, the advantages and disadvantages of both tendencies are analyzed and discussed; in addition, a summary of what can be considered the new challenges for developing better pipeline seismic fragility formulations is discussed. The most important conclusion of this paper states that more efforts are needed to improve the estimation of transient ground strain -the main cause of pipeline damage due to seismic wave propagation; with relevant advances in that research field, new and better fragility formulations could be developed.

  16. Modeling Water Motion near Seismic Waves Propagating across a Graded Seabed, as Generated by Man-Made Impacts

    Directory of Open Access Journals (Sweden)

    Richard A. Hazelwood

    2016-08-01

    Full Text Available Seismic interface waves generated by seabed impacts are believed to have biological importance. Various wave types are of interest to seismologists, who can minimize the unwanted, but often dominant, ground roll waves with suitable instrumentation. Waves made by dredging and piling have been measured using geophones and found to be of this interface type, which propagate much more slowly than the pressure waves in the water column above. Short interface wavelets of a few cycles were modeled using transient finite element analysis (FEA. Wavelets with low losses have been modeled using graded sediment data from the literature. They do not radiate energy away from the interface because the evanescent acoustic pressures they generate decay rapidly with distance from the seabed. Associated water particle velocities are much greater than would be expected from similar acoustic pressure measurements in a free field. This motion is significant to aquatic life which is dependent on inertial sensors (otoliths, etc. to respond to the environment. Additional amplification of the horizontal seabed motion of the adjacent water is predicted for a short seismic wavelet modeled in a graded solid seabed. Further recent analysis studied the distribution of the energy flux within the sediment layers.

  17. Seismic radio by reverse time mirrors

    KAUST Repository

    Hanafy, Sherif M.; Sandoval Curiel, Ernesto

    2010-01-01

    We present the theory and one field example of using seismic waves to send and receive coded messages. The method requires the recording of one calibration shot gather that will be used to decode the message. Coded messages can be send with a system similar to Baudot code. One field test is recorded in Tucson, AZ., USA, where we send and received 3‐short messages. One possible application of this method is to send coded messages from trapped miners to the surface. Advantages of this method are; no velocity model is required, easy and fast to use.

  18. Seismic radio by reverse time mirrors

    KAUST Repository

    Hanafy, Sherif M.

    2010-10-17

    We present the theory and one field example of using seismic waves to send and receive coded messages. The method requires the recording of one calibration shot gather that will be used to decode the message. Coded messages can be send with a system similar to Baudot code. One field test is recorded in Tucson, AZ., USA, where we send and received 3‐short messages. One possible application of this method is to send coded messages from trapped miners to the surface. Advantages of this method are; no velocity model is required, easy and fast to use.

  19. Characteristics of Helicopter-Generated and Volcano-Related Seismic Tremor Signals

    Science.gov (United States)

    Eibl, Eva P. S.; Lokmer, Ivan; Bean, Christopher J.; Akerlie, Eggert; Vogfjörd, Kristin S.

    2017-04-01

    In volcanic environments it is crucial to distinguish between man-made seismic signals and signals created by the volcano. We compare volcanic, seismic signals with helicopter generated, seismic signals recorded in the last 2.5 years in Iceland. In both cases a long-lasting, emergent seismic signal, that can be referred to as seismic tremor, was generated. In the case of a helicopter, the rotating blades generate pressure pulses that travel through the air and excite Rayleigh waves at up to 40 km distance depending on wind speed, wind direction and topographic features. The longest helicopter related seismic signal we recorded was at the order of 40 minutes long. The tremor usually has a fundamental frequency of more than 10 Hz and overtones at integers of the fundamental frequency. Changes in distance lead to either increases or decreases of the frequency due to the Doppler Effect and are strongest for small source-receiver distances. The volcanic tremor signal was recorded during the Bardarbunga eruption at Holuhraun in 2014/15. For volcano-related seismic signals it is usually more difficult to determine the source process that generated the tremor. The pre-eruptive tremor persists for 2 weeks, while the co-eruptive tremor lasted for 6 months. We observed no frequency changes, most energy between 1 and 2 Hz and no or very little energy above 5 Hz. We compare the different characteristics of helicopter-related and volcano-related seismic signals and discuss how they can be distinguished. In addition we discuss how we can determine if a frequency change is related to a moving source or change in repeat time or a change in the geometry of the resonating body.

  20. On the development in digital engineering-seismic studies in Finland

    International Nuclear Information System (INIS)

    Okko, O.

    1998-01-01

    Shallow refraction and reflection seismic soundings were carried out in Finland using the newest portable digital seismographs. These improve the field investigation methods and introduce digital data processing techniques. New mechanical wave sources were developed to allow the conventional refraction soundings to be carried out in urban and industrial areas. The Finnish crystalline bedrock is covered by thin post-glacial overburden. With the present recording technology the bedrock refractions from the shots of a buffalo gun were recorded from shallow depths down to 15 - 20 meters. In the digital refraction records, reflected waves are also visible from depths of a few meters to the first hundred meters. In a combined interpretation of these sounding modes, the number of seismic layers in the soil sequence can be estimated from reflectors to avoid the well-known misinterpretations due to blind zones in the refraction survey. Digital recording was also introduced into a slim acoustic logging system. This makes it possible to record whole waveforms to analyze the travel times and amplitudes of body and surface waves along 56 mm diameter boreholes. The acoustic logging is very sensitive to microcracking along the hole, requiring inversion techniques to calculate the velocities and attenuation factors in the formation. The velocity and attenuation of the body waves is connected to mechanical weakness in the bedrock using the calculated log of Young's modulus. Furthermore, attenuation of the Stoneley-type surface waves can separate the water-bearing open fractures from the closed ones. Subhorizontal fracture zones in the bedrock were mapped by high frequency soundings carried out on bedrock outcrops. The sonic logs at the same sites showed that the required thickness of these reflective horizons has to be a few meters. Unfortunately, most of the fractures intersected by boreholes are thinner than 1 m at the intersections making them difficult targets. The logs also