WorldWideScience

Sample records for seismic noise measurements

  1. Retrieval of reflections from seismic background?noise measurements

    NARCIS (Netherlands)

    Draganov, D.S.; Wapenaar, K.; Mulder, W.; Singer, J.; Verdel, A.

    2007-01-01

    The retrieval of the earth's reflection response from cross?correlations of seismic noise recordings can provide valuable information, which may otherwise not be available due to limited spatial distribution of seismic sources. We cross?correlated ten hours of seismic background?noise data acquired

  2. A generalized formulation for noise-based seismic velocity change measurements

    Science.gov (United States)

    Gómez-García, C.; Brenguier, F.; Boué, P.; Shapiro, N.; Droznin, D.; Droznina, S.; Senyukov, S.; Gordeev, E.

    2017-12-01

    The observation of continuous seismic velocity changes is a powerful tool for detecting seasonal variations in crustal structure, volcanic unrest, co- and post-seismic evolution of stress in fault areas or the effects of fluid injection. The standard approach for measuring such velocity changes relies on comparison of travel times in the coda of a set of seismic signals, usually noise-based cross-correlations retrieved at different dates, and a reference trace, usually a averaged function over dates. A good stability in both space and time of the noise sources is then the main assumption for reliable measurements. Unfortunately, these conditions are often not fulfilled, as it happens when ambient-noise sources are non-stationary, such as the emissions of low-frequency volcanic tremors.We propose a generalized formulation for retrieving continuous time series of noise-based seismic velocity changes without any arbitrary reference cross-correlation function. We set up a general framework for future applications of this technique performing synthetic tests. In particular, we study the reliability of the retrieved velocity changes in case of seasonal-type trends, transient effects (similar to those produced as a result of an earthquake or a volcanic eruption) and sudden velocity drops and recoveries as the effects of transient local source emissions. Finally, we apply this approach to a real dataset of noise cross-correlations. We choose the Klyuchevskoy volcanic group (Kamchatka) as a case study where the recorded wavefield is hampered by loss of data and dominated by strongly localized volcanic tremor sources. Despite the mentioned wavefield contaminations, we retrieve clear seismic velocity drops associated with the eruptions of the Klyuchevskoy an the Tolbachik volcanoes in 2010 and 2012, respectively.

  3. Statistical Properties of Seismic Noise Measured in Underground Spaces During Seismic Swarm

    Czech Academy of Sciences Publication Activity Database

    Lyubushin, A. A.; Kaláb, Zdeněk; Lednická, Markéta

    2014-01-01

    Roč. 49, č. 2 (2014), s. 209-224 ISSN 2213-5812 R&D Projects: GA ČR GA105/09/0089; GA MŠk LM2010008 Institutional support: RVO:68145535 Keywords : seismic noise * multifractals * wavelets * kurtosis * West Bohemia seismic swarm Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.543, year: 2014 http://link.springer.com/article/10.1007/s40328-014-0051-y

  4. Detection capability of the IMS seismic network based on ambient seismic noise measurements

    Science.gov (United States)

    Gaebler, Peter J.; Ceranna, Lars

    2016-04-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection threshold can be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  5. Bedload transport from spectral analysis of seismic noise near rivers

    Science.gov (United States)

    Hsu, L.; Finnegan, N. J.; Brodsky, E. E.

    2010-12-01

    Channel change in rivers is driven by bedload sediment transport. However, the nonlinear nature of sediment transport combined with the difficulty of making direct observations in rivers at flood hinder prediction of the timing and magnitude of bedload movement. Recent studies have shown that spectral analysis of seismic noise from seismometers near rivers illustrate a correlation between the relative amplitude of high frequency (>1 Hz) seismic noise and conditions for bedload transport, presumably from the energy transferred from clast collisions with the channel. However, a previous study in the Himalayas did not contain extensive bedload transport or discharge measurements, and the correspondence of seismic noise with proxy variables such as regional hydrologic and meteorologic data was not exact. A more complete understanding of the relationship between bedload transport and seismic noise would be valuable for extending the spatial and temporal extent of bedload data. To explore the direct relationship between bedload transport and seismic noise, we examine data from several seismic stations near the Trinity River in California, where the fluvial morphodynamics and bedload rating curves have been studied extensively. We compare the relative amplitude of the ambient seismic noise with records of water discharge and sediment transport. We also examine the noise at hourly, daily, and seasonal timescales to determine other possible sources of noise. We report the influence of variables such as local river slope, adjacent geology, anthropogenic noise, and distance from the river. The results illustrate the feasibility of using existing seismic arrays to sense radiated energy from processes of bedload transport. In addition, the results can be used to design future seismic array campaigns to optimize information about bedload transport. This technique provides great spatial and temporal coverage, and can be performed where direct bedload measurements are difficult or

  6. Ambient Seismic Noise Interferometry on the Island of Hawai`i

    Science.gov (United States)

    Ballmer, Silke

    Ambient seismic noise interferometry has been successfully applied in a variety of tectonic settings to gain information about the subsurface. As a passive seismic technique, it extracts the coherent part of ambient seismic noise in-between pairs of seismic receivers. Measurements of subtle temporal changes in seismic velocities, and high-resolution tomographic imaging are then possible - two applications of particular interest for volcano monitoring. Promising results from other volcanic settings motivate its application in Hawai'i, with this work being the first to explore its potential. The dataset used for this purpose was recorded by the Hawaiian Volcano Observatory's permanent seismic network on the Island of Hawai'i. It spans 2.5 years from 5/2007 to 12/2009 and covers two distinct sources of volcanic tremor. After applying standard processing for ambient seismic noise interferometry, we find that volcanic tremor strongly affects the extracted noise information not only close to the tremor source, but unexpectedly, throughout the island-wide network. Besides demonstrating how this long-range observability of volcanic tremor can be used to monitor volcanic activity in the absence of a dense seismic array, our results suggest that care must be taken when applying ambient seismic noise interferometry in volcanic settings. In a second step, we thus exclude days that show signs of volcanic tremor, reducing the dataset to three months, and perform ambient seismic noise tomography. The resulting two-dimensional Rayleigh wave group velocity maps for 0.1 - 0.9 Hz compare very well with images from previous travel time tomography, both, for the main volcanic structures at low frequencies as well as for smaller features at mid-to-high frequencies - a remarkable observation for the temporally truncated dataset. These robust results suggest that ambient seismic noise tomography in Hawai'i is suitable 1) to provide a three-dimensional S-wave model for the volcanoes and 2

  7. Toward predicting clay landslide with ambient seismic noise

    Science.gov (United States)

    Larose, E. F.; Mainsant, G.; Carriere, S.; Chambon, G.; Michoud, C.; Jongmans, D.; Jaboyedoff, M.

    2013-12-01

    Clay-rich pose critical problems in risk management worldwide. The most widely proposed mechanism leading to such flow-like movements is the increase in water pore pressure in the sliding mass, generating partial or complete liquefaction. This solid-to-liquid transition results in a dramatic reduction of mechanical rigidity, which could be detected by monitoring shear wave velocity variations, The ambient seismic noise correlation technique has been applied to measure the variation in the seismic surface wave velocity in the Pont Bourquin landslide (Swiss Alps). This small but active composite earthslide-earthflow was equipped with continuously recording seismic sensors during spring and summer 2010, and then again from fall 2011 on. An earthslide of a few thousand cubic meters was triggered in mid-August 2010, after a rainy period. This article shows that the seismic velocity of the sliding material, measured from daily noise correlograms, decreased continuously and rapidly for several days prior to the catastrophic event. From a spectral analysis of the velocity decrease, it was possible to determine the location of the change at the base of the sliding layer. These results are confirmed by analogous small-scale experiments in the laboratory. These results demonstrate that ambient seismic noise can be used to detect rigidity variations before failure and could potentially be used to predict landslides.

  8. Background noise spectra of global seismic stations

    Energy Technology Data Exchange (ETDEWEB)

    Wada, M.M.; Claassen, J.P.

    1996-08-01

    Over an extended period of time station noise spectra were collected from various sources for use in estimating the detection and location performance of global networks of seismic stations. As the database of noise spectra enlarged and duplicate entries became available, an effort was mounted to more carefully select station noise spectra while discarding others. This report discusses the methodology and criteria by which the noise spectra were selected. It also identifies and illustrates the station noise spectra which survived the selection process and which currently contribute to the modeling efforts. The resulting catalog of noise statistics not only benefits those who model network performance but also those who wish to select stations on the basis of their noise level as may occur in designing networks or in selecting seismological data for analysis on the basis of station noise level. In view of the various ways by which station noise were estimated by the different contributors, it is advisable that future efforts which predict network performance have available station noise data and spectral estimation methods which are compatible with the statistics underlying seismic noise. This appropriately requires (1) averaging noise over seasonal and/or diurnal cycles, (2) averaging noise over time intervals comparable to those employed by actual detectors, and (3) using logarithmic measures of the noise.

  9. A high-resolution ambient seismic noise model for Europe

    Science.gov (United States)

    Kraft, Toni

    2014-05-01

    In the past several years, geological energy technologies receive growing attention and have been initiated in or close to urban areas. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential to the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquake at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. Due to this development an increasing number of seismic monitoring networks are being installed in densely populated areas with strongly heterogeneous, and unfavorable ambient noise conditions. This poses a major challenge on the network design process, which aims to find the sensor geometry that optimizes the

  10. Background noise model development for seismic stations of KMA

    Science.gov (United States)

    Jeon, Youngsoo

    2010-05-01

    The background noise recorded at seismometer is exist at any seismic signal due to the natural phenomena of the medium which the signal passed through. Reducing the seismic noise is very important to improve the data quality in seismic studies. But, the most important aspect of reducing seismic noise is to find the appropriate place before installing the seismometer. For this reason, NIMR(National Institution of Meteorological Researches) starts to develop a model of standard background noise for the broadband seismic stations of the KMA(Korea Meteorological Administration) using a continuous data set obtained from 13 broadband stations during the period of 2007 and 2008. We also developed the model using short period seismic data from 10 stations at the year of 2009. The method of Mcmara and Buland(2004) is applied to analyse background noise of Korean Peninsula. The fact that borehole seismometer records show low noise level at frequency range greater than 1 Hz compared with that of records at the surface indicate that the cultural noise of inland Korean Peninsula should be considered to process the seismic data set. Reducing Double Frequency peak also should be regarded because the Korean Peninsula surrounded by the seas from eastern, western and southern part. The development of KMA background model shows that the Peterson model(1993) is not applicable to fit the background noise signal generated from Korean Peninsula.

  11. Seismic signal and noise on Europa

    Science.gov (United States)

    Panning, Mark; Stähler, Simon; Bills, Bruce; Castillo Castellanos, Jorge; Huang, Hsin-Hua; Husker, Allen; Kedar, Sharon; Lorenz, Ralph; Pike, William T.; Schmerr, Nicholas; Tsai, Victor; Vance, Steven

    2017-10-01

    Seismology is one of our best tools for detailing interior structure of planetary bodies, and a seismometer is included in the baseline and threshold mission design for the upcoming Europa Lander mission. Guiding mission design and planning for adequate science return, though, requires modeling of both the anticipated signal and noise. Assuming ice seismicity on Europa behaves according to statistical properties observed in Earth catalogs and scaling cumulative seismic moment release to the moon, we can simulate long seismic records and estimate background noise and peak signal amplitudes (Panning et al., 2017). This suggests a sensitive instrument comparable to many broadband terrestrial instruments or the SP instrument from the InSight mission to Mars will be able to record signals, while high frequency geophones are likely inadequate. We extend this analysis to also begin incorporation of spatial and temporal variation due to the tidal cycle, which can help inform landing site selection. We also begin exploration of how chaotic terrane at the bottom of the ice shell and inter-ice heterogeneities (i.e. internal melt structures) may affect anticipated seismic observations using 2D numerical seismic simulations.M. P. Panning, S. C. Stähler, H.-H. Huang, S. D. Vance, S. Kedar, V. C. Tsai, W. T. Pike, R. D. Lorenz, “Expected seismicity and the seismic noise environment of Europa,” J. Geophys. Res., in revision, 2017.

  12. The Global Detection Capability of the IMS Seismic Network in 2013 Inferred from Ambient Seismic Noise Measurements

    Science.gov (United States)

    Gaebler, P. J.; Ceranna, L.

    2016-12-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection thresholdcan be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  13. High Temporal Resolution Mapping of Seismic Noise Sources Using Heterogeneous Supercomputers

    Science.gov (United States)

    Paitz, P.; Gokhberg, A.; Ermert, L. A.; Fichtner, A.

    2017-12-01

    The time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems like earthquake fault zones, volcanoes, geothermal and hydrocarbon reservoirs. We present results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service providing seismic noise source maps for Central Europe with high temporal resolution. We use source imaging methods based on the cross-correlation of seismic noise records from all seismic stations available in the region of interest. The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept to provide the interested researchers worldwide with regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for collecting, on a periodic basis, raw seismic records from the European seismic networks, (2) high-performance noise source mapping application responsible for the generation of source maps using cross-correlation of seismic records, (3) back-end infrastructure for the coordination of various tasks and computations, (4) front-end Web interface providing the service to the end-users and (5) data repository. The noise source mapping itself rests on the measurement of logarithmic amplitude ratios in suitably pre-processed noise correlations, and the use of simplified sensitivity kernels. During the implementation we addressed various challenges, in particular, selection of data sources and transfer protocols, automation and monitoring of daily data downloads, ensuring the required data processing performance, design of a general service-oriented architecture for coordination of various sub-systems, and

  14. Seismic Noise Analysis and Reduction through Utilization of Collocated Seismic and Atmospheric Sensors at the GRO Chile Seismic Network

    Science.gov (United States)

    Farrell, M. E.; Russo, R. M.

    2013-12-01

    The installation of Earthscope Transportable Array-style geophysical observatories in Chile expands open data seismic recording capabilities in the southern hemisphere by nearly 30%, and has nearly tripled the number of seismic stations providing freely-available data in southern South America. Through the use of collocated seismic and atmospheric sensors at these stations we are able to analyze how local atmospheric conditions generate seismic noise, which can degrade data in seismic frequency bands at stations in the ';roaring forties' (S latitudes). Seismic vaults that are climate-controlled and insulated from the local environment are now employed throughout the world in an attempt to isolate seismometers from as many noise sources as possible. However, this is an expensive solution that is neither practical nor possible for all seismic deployments; and also, the increasing number and scope of temporary seismic deployments has resulted in the collection and archiving of terabytes of seismic data that is affected to some degree by natural seismic noise sources such as wind and atmospheric pressure changes. Changing air pressure can result in a depression and subsequent rebound of Earth's surface - which generates low frequency noise in seismic frequency bands - and even moderate winds can apply enough force to ground-coupled structures or to the surface above the seismometers themselves, resulting in significant noise. The 10 stations of the permanent Geophysical Reporting Observatories (GRO Chile), jointly installed during 2011-12 by IRIS and the Chilean Servicio Sismológico, include instrumentation in addition to the standard three seismic components. These stations, spaced approximately 300 km apart along the length of the country, continuously record a variety of atmospheric data including infrasound, air pressure, wind speed, and wind direction. The collocated seismic and atmospheric sensors at each station allow us to analyze both datasets together, to

  15. Dynamic characteristics of background seismic noise according to records of nuclear monitoring seismic stations in Kazakstan

    International Nuclear Information System (INIS)

    Belyashova, N.N.; Sinyova, Z.I.; Komarov, I.I.; Mikhailova, N.N.

    1998-01-01

    The seismic stations of Kazakstan, included into nuclear monitoring network (see fig.1) are equipped with broad hand seismometers; seismic data are recorded in digital format. All this allows to investigate spectral and time characteristics of seismic background noise in very large frequency diapason (more than 3-5 orders), for all three components of oscillation vector. The spectral density of background seismic noise for vertical and both horizontal components (fig.2) was calculated for all of the observation points. The regular features of structure of noise spectra, inherent for all of the studied observation points, as well as some features, specific for studied places were found. The curves of spectral noise density were compared with global noise model, determined by the data of Global Seismological Network (GSN)

  16. Ambient seismic noise monitoring of a clay landslide: Toward failure prediction

    Science.gov (United States)

    Mainsant, Guénolé; Larose, Eric; Brönnimann, Cornelia; Jongmans, Denis; Michoud, Clément; Jaboyedoff, Michel

    2012-03-01

    Given that clay-rich landslides may become mobilized, leading to rapid mass movements (earthflows and debris flows), they pose critical problems in risk management worldwide. The most widely proposed mechanism leading to such flow-like movements is the increase in water pore pressure in the sliding mass, generating partial or complete liquefaction. This solid-to-liquid transition results in a dramatic reduction of mechanical rigidity in the liquefied zones, which could be detected by monitoring shear wave velocity variations. With this purpose in mind, the ambient seismic noise correlation technique has been applied to measure the variation in the seismic surface wave velocity in the Pont Bourquin landslide (Swiss Alps). This small but active composite earthslide-earthflow was equipped with continuously recording seismic sensors during spring and summer 2010. An earthslide of a few thousand cubic meters was triggered in mid-August 2010, after a rainy period. This article shows that the seismic velocity of the sliding material, measured from daily noise correlograms, decreased continuously and rapidly for several days prior to the catastrophic event. From a spectral analysis of the velocity decrease, it was possible to determine the location of the change at the base of the sliding layer. These results demonstrate that ambient seismic noise can be used to detect rigidity variations before failure and could potentially be used to predict landslides.

  17. Seismic noise study for a new seismic station at King Fahd University of Petroleum and Minerals in Saudi Arabia

    Science.gov (United States)

    Kaka, S. I.

    2012-04-01

    We have carried out a seismic noise study in order to understand the noise level at three selected locations at King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia. The main purpose is to select a suitable site with low seismic noise and good signal-to-noise ratio for our new broadband seismic station. There are several factors involved in the selection of a site location for a new station. Most importantly, we need to strike a balance between a logistically convenient site versus a technically suitable site. As a starting point, we selected six potential sites due to accessibility and proximity to the seismic processing center laboratory in the Department of Earth Sciences (ESD) at KFUPM. We then eliminated two sites that are relatively close to possible low-frequency noise sources. We have considered many possible noise sources which include: vehicle traffic / heavy machinery, the direct path of air flowing from air conditioning vent, tall trees / power poles and metal doorways. One more site was eliminated because the site was located in the open where it experiences maximum wind speed which is considered a major source of noise. All three potential sites are situated within the Dammam Dome where both lower middle and upper Rus Formations are exposed. The upper Rus is mainly made up of fine grained chalky limestone and the lower Rus is made up of alternation of marls and thin dolomitic limestone. The area is not known for any major faults and considered very low seismicity and hence the identification of seismoteconic features is not required. Before conducting the noise study, we calibrated and tested the seismic recording system, which was recently acquired by the ESD at KFUPM. The system includes a seismic recorder and a sensor with a GPS device. We deployed the system in order to measure the low-frequency background noise. Knowing the low frequency noise will help in predicting the high-frequency noise. The recording systems were

  18. Seismic noise level variation in South Korea

    Science.gov (United States)

    Sheen, D.; Shin, J.

    2008-12-01

    The variations of seismic background noise in South Korea have been investigated by means of power spectral analysis. The Korea Institute of Geoscience and Mineral Resources (KIGAM) and the Korea Meteorological Administation (KMA) have national wide seismic networks in South Korea, and, in the end of 2007, there are 30 broadband stations which have been operating for more than a year. In this study, we have estimated the power spectral density of seismic noise for 30 broadband stations from 2005 to 2007. Since we estimate PSDs from a large dataset of continuous waveform in this study, a robust PSD estimate of McNamara and Buland (2004) is used. In the frequency range 1-5 Hz, the diurnal variations of noise are observed at most of stations, which are especially larger at coastal stations and at insular than at inland. Some stations shows daily difference of diurnal variations, which represents that cultural activities contribute to the noise level of a station. The variation of number of triggered stations, however, shows that cultural noise has little influence on the detection capability of seismic network in South Korea. Seasonal variations are observed well in the range 0.1-0.5 Hz, while much less found in the frequency range 1-5 Hz. We observed that strong peaks in the range 0.1-0.5 Hz occur at the summer when Pacific typhoons are close to the Korean Peninsula.

  19. Observations and modeling of seismic background noise

    Science.gov (United States)

    Peterson, Jon R.

    1993-01-01

    The preparation of this report had two purposes. One was to present a catalog of seismic background noise spectra obtained from a worldwide network of seismograph stations. The other purpose was to refine and document models of seismic background noise that have been in use for several years. The second objective was, in fact, the principal reason that this study was initiated and influenced the procedures used in collecting and processing the data.With a single exception, all of the data used in this study were extracted from the digital data archive at the U.S. Geological Survey's Albuquerque Seismological Laboratory (ASL). This archive dates from 1972 when ASL first began deploying digital seismograph systems and collecting and distributing digital data under the sponsorship of the Defense Advanced Research Projects Agency (DARPA). There have been many changes and additions to the global seismograph networks during the past twenty years, but perhaps none as significant as the current deployment of very broadband seismographs by the U.S. Geological Survey (USGS) and the University of California San Diego (UCSD) under the scientific direction of the IRIS consortium. The new data acquisition systems have extended the bandwidth and resolution of seismic recording, and they utilize high-density recording media that permit the continuous recording of broadband data. The data improvements and continuous recording greatly benefit and simplify surveys of seismic background noise.Although there are many other sources of digital data, the ASL archive data were used almost exclusively because of accessibility and because the data systems and their calibration are well documented for the most part. Fortunately, the ASL archive contains high-quality data from other stations in addition to those deployed by the USGS. Included are data from UCSD IRIS/IDA stations, the Regional Seismic Test Network (RSTN) deployed by Sandia National Laboratories (SNL), and the TERRAscope network

  20. Spots of Seismic Danger Extracted by Properties of Low-Frequency Seismic Noise

    Science.gov (United States)

    Lyubushin, Alexey

    2013-04-01

    A new method of seismic danger estimate is presented which is based on using properties of low-frequency seismic noise from broadband networks. Two statistics of noise waveforms are considered: multi-fractal singularity spectrum support width D and minimum normalized entropy En of squared orthogonal wavelet coefficients. The maps of D and En are plotted in the moving time window. Let us call the regions extracted by low values of D and high values of En as "spots of seismic danger" - SSD. Mean values of D and En are strongly anti-correlated - that is why statistics D and En extract the same SSD. Nevertheless their mutual considering is expedient because these parameters are based on different approaches. The physical mechanism which underlies the method is consolidation of small blocks of the Earth's crust into the large one before the strong earthquake. This effect has a consequence that seismic noise does not include spikes which are connected with mutual movements of small blocks. The absence of irregular spikes in the noise follows the decreasing of D and increasing of entropy En. The stability in space and size of the SSD provides estimates of the place and energy of the probable future earthquake. The increasing or decreasing of SSD size and minimum or maximum values of D and En within SSD allows estimate the trend of seismic danger. The method is illustrating by the analysis of seismic noise from broadband seismic network F-net in Japan [1-5]. Statistically significant decreasing of D allowed a hypothesis about approaching Japan to a future seismic catastrophe to be formulated at the middle of 2008. The peculiarities of correlation coefficient estimate within 1 year time window between median values of D and generalized Hurst exponent allowed to make a decision that starting from July of 2010 Japan come to the state of waiting strong earthquake [3]. The method extracted a huge SSD near Japan which includes the region of future Tohoku mega-earthquake and the

  1. Spectral characteristics of seismic noise using data of Kazakhstan monitoring stations

    International Nuclear Information System (INIS)

    Mikhajlova, N.N.; Komarov, I.I.

    2006-01-01

    Spectral specifications of seismic noise research for PS23-Makanchi, Karatau, Akbulak, AS057-Borovoye and new three-component station AS059-Aktyubinsk was done. Spectral noise density models were obtained for day and night time and spectral density values variation. Noise close to low-level universal noise model is peculiar for all stations, which provides their high efficiency while seismic monitoring. Noise parameters dependence on seismic receivers installation conditions was investigated separately. Based on three stations (Makanchi, Borovoye, and Aktyubinsk), spectral density change features are shown after borehole equipment installation. (author)

  2. Seismic Linear Noise Attenuation with Use of Radial Transform

    Science.gov (United States)

    Szymańska-Małysa, Żaneta

    2018-03-01

    One of the goals of seismic data processing is to attenuate the recorded noise in order to enable correct interpretation of the image. Radial transform has been used as a very effective tool in the attenuation of various types of linear noise, both numerical and real (such as ground roll, direct waves, head waves, guided waves etc). The result of transformation from offset - time (X - T) domain into apparent velocity - time (R - T) domain is frequency separation between reflections and linear events. In this article synthetic and real seismic shot gathers were examined. One example was targeted at far offset area of dataset where reflections and noise had similar apparent velocities and frequency bands. Another example was a result of elastic modelling where linear artefacts were produced. Bandpass filtering and scaling operation executed in radial domain attenuated all discussed types of linear noise very effectively. After noise reduction all further processing steps reveal better results, especially velocity analysis, migration and stacking. In all presented cases signal-to-noise ratio was significantly increased and reflections covered previously by noise were revealed. Power spectra of filtered seismic records preserved real dynamics of reflections.

  3. A Comparison of seismic instrument noise coherence analysis techniques

    Science.gov (United States)

    Ringler, A.T.; Hutt, C.R.; Evans, J.R.; Sandoval, L.D.

    2011-01-01

    The self-noise of a seismic instrument is a fundamental characteristic used to evaluate the quality of the instrument. It is important to be able to measure this self-noise robustly, to understand how differences among test configurations affect the tests, and to understand how different processing techniques and isolation methods (from nonseismic sources) can contribute to differences in results. We compare two popular coherence methods used for calculating incoherent noise, which is widely used as an estimate of instrument self-noise (incoherent noise and self-noise are not strictly identical but in observatory practice are approximately equivalent; Holcomb, 1989; Sleeman et al., 2006). Beyond directly comparing these two coherence methods on similar models of seismometers, we compare how small changes in test conditions can contribute to incoherent-noise estimates. These conditions include timing errors, signal-to-noise ratio changes (ratios between background noise and instrument incoherent noise), relative sensor locations, misalignment errors, processing techniques, and different configurations of sensor types.

  4. The persistent signature of tropical cyclones in ambient seismic noise

    KAUST Repository

    Gualtieri, Lucia; Camargo, Suzana J.; Pascale, Salvatore; Pons, Flavio M.E.; Ekströ m, Gö ran

    2017-01-01

    The spectrum of ambient seismic noise shows strong signals associated with tropical cyclones, yet a detailed understanding of these signals and the relationship between them and the storms is currently lacking. Through the analysis of more than a decade of seismic data recorded at several stations located in and adjacent to the northwest Pacific Ocean, here we show that there is a persistent and frequency-dependent signature of tropical cyclones in ambient seismic noise that depends on characteristics of the storm and on the detailed location of the station relative to the storm. An adaptive statistical model shows that the spectral amplitude of ambient seismic noise, and notably of the short-period secondary microseisms, has a strong relationship with tropical cyclone intensity and can be employed to extract information on the tropical cyclones.

  5. The persistent signature of tropical cyclones in ambient seismic noise

    KAUST Repository

    Gualtieri, Lucia

    2017-12-28

    The spectrum of ambient seismic noise shows strong signals associated with tropical cyclones, yet a detailed understanding of these signals and the relationship between them and the storms is currently lacking. Through the analysis of more than a decade of seismic data recorded at several stations located in and adjacent to the northwest Pacific Ocean, here we show that there is a persistent and frequency-dependent signature of tropical cyclones in ambient seismic noise that depends on characteristics of the storm and on the detailed location of the station relative to the storm. An adaptive statistical model shows that the spectral amplitude of ambient seismic noise, and notably of the short-period secondary microseisms, has a strong relationship with tropical cyclone intensity and can be employed to extract information on the tropical cyclones.

  6. High temporal resolution mapping of seismic noise sources using heterogeneous supercomputers

    Science.gov (United States)

    Gokhberg, Alexey; Ermert, Laura; Paitz, Patrick; Fichtner, Andreas

    2017-04-01

    Time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems. Significant interest in seismic noise source maps with high temporal resolution (days) is expected to come from a number of domains, including natural resources exploration, analysis of active earthquake fault zones and volcanoes, as well as geothermal and hydrocarbon reservoir monitoring. Currently, knowledge of noise sources is insufficient for high-resolution subsurface monitoring applications. Near-real-time seismic data, as well as advanced imaging methods to constrain seismic noise sources have recently become available. These methods are based on the massive cross-correlation of seismic noise records from all available seismic stations in the region of interest and are therefore very computationally intensive. Heterogeneous massively parallel supercomputing systems introduced in the recent years combine conventional multi-core CPU with GPU accelerators and provide an opportunity for manifold increase and computing performance. Therefore, these systems represent an efficient platform for implementation of a noise source mapping solution. We present the first results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service that provides seismic noise source maps for Central Europe with high temporal resolution (days to few weeks depending on frequency and data availability). The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept in order to provide the interested external researchers the regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for

  7. Variations of Background Seismic Noise Before Strong Earthquakes, Kamchatka.

    Science.gov (United States)

    Kasimova, V.; Kopylova, G.; Lyubushin, A.

    2017-12-01

    The network of broadband seismic stations of Geophysical Service (Russian Academy of Science) works on the territory of Kamchatka peninsula in the Far East of Russia. We used continuous records on Z-channels at 21 stations for creation of background seismic noise time series in 2011-2017. Average daily parameters of multi-fractal spectra of singularity have been calculated at each station using 1-minute records. Maps and graphs of their spatial distribution and temporal changes were constructed at time scales from days to several years. The analysis of the coherent behavior of the time series of the statistics was considered. The technique included the splitting of seismic network into groups of stations, taking into account the coastal effect, the network configuration and the main tectonic elements of Kamchatka. Then the time series of median values of noise parameters from each group of stations were made and the frequency-time diagrams of the evolution of the spectral measure of the coherent behavior of four time series were analyzed. The time intervals and frequency bands of the maximum values showing the increase of coherence in the changes of all statistics were evaluated. The strong earthquakes with magnitudes M=6.9-8.3 occurred near the Kamchatka peninsula during the observations. The synchronous variations of the background noise parameters and increase in the coherent behavior of the median values of statistical parameters was shown before two earthquakes 2013 (February 28, Mw=6.9; May 24, Mw=8.3) within 3-9 months and before earthquake of January 30, 2016, Mw=7.2 within 3-6 months. The maximum effect of increased coherence in the range of periods 4-5.5 days corresponds to the time of preparation of two strong earthquakes in 2013 and their aftershock processes. Peculiarities in changes of statistical parameters at stages of preparation of strong earthquakes indicate the attenuation in high-amplitude outliers and the loss of multi-fractal properties in

  8. Seismic noise attenuation using an online subspace tracking algorithm

    Science.gov (United States)

    Zhou, Yatong; Li, Shuhua; Zhang, Dong; Chen, Yangkang

    2018-02-01

    We propose a new low-rank based noise attenuation method using an efficient algorithm for tracking subspaces from highly corrupted seismic observations. The subspace tracking algorithm requires only basic linear algebraic manipulations. The algorithm is derived by analysing incremental gradient descent on the Grassmannian manifold of subspaces. When the multidimensional seismic data are mapped to a low-rank space, the subspace tracking algorithm can be directly applied to the input low-rank matrix to estimate the useful signals. Since the subspace tracking algorithm is an online algorithm, it is more robust to random noise than traditional truncated singular value decomposition (TSVD) based subspace tracking algorithm. Compared with the state-of-the-art algorithms, the proposed denoising method can obtain better performance. More specifically, the proposed method outperforms the TSVD-based singular spectrum analysis method in causing less residual noise and also in saving half of the computational cost. Several synthetic and field data examples with different levels of complexities demonstrate the effectiveness and robustness of the presented algorithm in rejecting different types of noise including random noise, spiky noise, blending noise, and coherent noise.

  9. Newtonian-noise cancellation in large-scale interferometric GW detectors using seismic tiltmeters

    International Nuclear Information System (INIS)

    Harms, Jan; Venkateswara, Krishna

    2016-01-01

    The mitigation of terrestrial gravity noise, also known as Newtonian noise (NN), is one of the foremost challenges to improve low-frequency sensitivity of ground-based gravitational-wave detectors. At frequencies above 1 Hz, it is predicted that gravity noise from seismic surface Rayleigh waves is the dominant contribution to NN in surface detectors, and may still contribute significantly in future underground detectors. Noise cancellation based on a coherent estimate of NN using data from a seismometer array was proposed in the past. In this article, we propose an alternative scheme to cancel NN using a seismic tiltmeter. It is shown that even under pessimistic assumptions concerning the complexity of the seismic field, a single tiltmeter under each test mass of the detector is sufficient to achieve substantial noise cancellation. A technical tiltmeter design is presented to achieve the required sensitivity in the Newtonian-noise frequency band. (paper)

  10. Source localization analysis using seismic noise data acquired in exploration geophysics

    Science.gov (United States)

    Roux, P.; Corciulo, M.; Campillo, M.; Dubuq, D.

    2011-12-01

    Passive monitoring using seismic noise data shows a growing interest at exploration scale. Recent studies demonstrated source localization capability using seismic noise cross-correlation at observation scales ranging from hundreds of kilometers to meters. In the context of exploration geophysics, classical localization methods using travel-time picking fail when no evident first arrivals can be detected. Likewise, methods based on the intensity decrease as a function of distance to the source also fail when the noise intensity decay gets more complicated than the power-law expected from geometrical spreading. We propose here an automatic procedure developed in ocean acoustics that permits to iteratively locate the dominant and secondary noise sources. The Matched-Field Processing (MFP) technique is based on the spatial coherence of raw noise signals acquired on a dense array of receivers in order to produce high-resolution source localizations. Standard MFP algorithms permits to locate the dominant noise source by matching the seismic noise Cross-Spectral Density Matrix (CSDM) with the equivalent CSDM calculated from a model and a surrogate source position that scans each position of a 3D grid below the array of seismic sensors. However, at exploration scale, the background noise is mostly dominated by surface noise sources related to human activities (roads, industrial platforms,..), which localization is of no interest for the monitoring of the hydrocarbon reservoir. In other words, the dominant noise sources mask lower-amplitude noise sources associated to the extraction process (in the volume). Their location is therefore difficult through standard MFP technique. The Multi-Rate Adaptative Beamforming (MRABF) is a further improvement of the MFP technique that permits to locate low-amplitude secondary noise sources using a projector matrix calculated from the eigen-value decomposition of the CSDM matrix. The MRABF approach aims at cancelling the contributions of

  11. On inferring the noise in probabilistic seismic AVO inversion using hierarchical Bayes

    DEFF Research Database (Denmark)

    Madsen, Rasmus Bødker; Zunino, Andrea; Hansen, Thomas Mejer

    2017-01-01

    A realistic noise model is essential for trustworthy inversion of geophysical data. Sometimes, as in case of seismic data, quan- tification of the noise model is non-trivial. To remedy this, a hierarchical Bayes approach can be adopted in which proper- ties of the noise model, such as the amplitude...... of an assumed uncorrelated Gaussian noise model, can be inferred as part of the inversion. Here we demonstrate how such an approach can lead to substantial overfitting of noise when inverting a 1D re- flection seismic NMO data set. We then argue that usually the noise model is correlated, and suggest to infer...

  12. Signal-to-noise ratio application to seismic marker analysis and fracture detection

    Science.gov (United States)

    Xu, Hui-Qun; Gui, Zhi-Xian

    2014-03-01

    Seismic data with high signal-to-noise ratios (SNRs) are useful in reservoir exploration. To obtain high SNR seismic data, significant effort is required to achieve noise attenuation in seismic data processing, which is costly in materials, and human and financial resources. We introduce a method for improving the SNR of seismic data. The SNR is calculated by using the frequency domain method. Furthermore, we optimize and discuss the critical parameters and calculation procedure. We applied the proposed method on real data and found that the SNR is high in the seismic marker and low in the fracture zone. Consequently, this can be used to extract detailed information about fracture zones that are inferred by structural analysis but not observed in conventional seismic data.

  13. A semi-supervised method to detect seismic random noise with fuzzy GK clustering

    International Nuclear Information System (INIS)

    Hashemi, Hosein; Javaherian, Abdolrahim; Babuska, Robert

    2008-01-01

    We present a new method to detect random noise in seismic data using fuzzy Gustafson–Kessel (GK) clustering. First, using an adaptive distance norm, a matrix is constructed from the observed seismic amplitudes. The next step is to find centres of ellipsoidal clusters and construct a partition matrix which determines the soft decision boundaries between seismic events and random noise. The GK algorithm updates the cluster centres in order to iteratively minimize the cluster variance. Multiplication of the fuzzy membership function with values of each sample yields new sections; we name them 'clustered sections'. The seismic amplitude values of the clustered sections are given in a way to decrease the level of noise in the original noisy seismic input. In pre-stack data, it is essential to study the clustered sections in a f–k domain; finding the quantitative index for weighting the post-stack data needs a similar approach. Using the knowledge of a human specialist together with the fuzzy unsupervised clustering, the method is a semi-supervised random noise detection. The efficiency of this method is investigated on synthetic and real seismic data for both pre- and post-stack data. The results show a significant improvement of the input noisy sections without harming the important amplitude and phase information of the original data. The procedure for finding the final weights of each clustered section should be carefully done in order to keep almost all the evident seismic amplitudes in the output section. The method interactively uses the knowledge of the seismic specialist in detecting the noise

  14. An Application of Reassigned Time-Frequency Representations for Seismic Noise/Signal Decomposition

    Science.gov (United States)

    Mousavi, S. M.; Langston, C. A.

    2016-12-01

    Seismic data recorded by surface arrays are often strongly contaminated by unwanted noise. This background noise makes the detection of small magnitude events difficult. An automatic method for seismic noise/signal decomposition is presented based upon an enhanced time-frequency representation. Synchrosqueezing is a time-frequency reassignment method aimed at sharpening a time-frequency picture. Noise can be distinguished from the signal and suppressed more easily in this reassigned domain. The threshold level is estimated using a general cross validation approach that does not rely on any prior knowledge about the noise level. Efficiency of thresholding has been improved by adding a pre-processing step based on higher order statistics and a post-processing step based on adaptive hard-thresholding. In doing so, both accuracy and speed of the denoising have been improved compared to our previous algorithms (Mousavi and Langston, 2016a, 2016b; Mousavi et al., 2016). The proposed algorithm can either kill the noise (either white or colored) and keep the signal or kill the signal and keep the noise. Hence, It can be used in either normal denoising applications or in ambient noise studies. Application of the proposed method on synthetic and real seismic data shows the effectiveness of the method for denoising/designaling of local microseismic, and ocean bottom seismic data. References: Mousavi, S.M., C. A. Langston., and S. P. Horton (2016), Automatic Microseismic Denoising and Onset Detection Using the Synchrosqueezed-Continuous Wavelet Transform. Geophysics. 81, V341-V355, doi: 10.1190/GEO2015-0598.1. Mousavi, S.M., and C. A. Langston (2016a), Hybrid Seismic Denoising Using Higher-Order Statistics and Improved Wavelet Block Thresholding. Bull. Seismol. Soc. Am., 106, doi: 10.1785/0120150345. Mousavi, S.M., and C.A. Langston (2016b), Adaptive noise estimation and suppression for improving microseismic event detection, Journal of Applied Geophysics., doi: http

  15. Retrieving robust noise-based seismic velocity changes from sparse data sets: synthetic tests and application to Klyuchevskoy volcanic group (Kamchatka)

    Science.gov (United States)

    Gómez-García, C.; Brenguier, F.; Boué, P.; Shapiro, N. M.; Droznin, D. V.; Droznina, S. Ya; Senyukov, S. L.; Gordeev, E. I.

    2018-05-01

    Continuous noise-based monitoring of seismic velocity changes provides insights into volcanic unrest, earthquake mechanisms and fluid injection in the sub-surface. The standard monitoring approach relies on measuring travel time changes of late coda arrivals between daily and reference noise cross-correlations, usually chosen as stacks of daily cross-correlations. The main assumption of this method is that the shape of the noise correlations does not change over time or, in other terms, that the ambient-noise sources are stationary through time. These conditions are not fulfilled when a strong episodic source of noise, such as a volcanic tremor for example, perturbs the reconstructed Green's function. In this paper we propose a general formulation for retrieving continuous time series of noise-based seismic velocity changes without the requirement of any arbitrary reference cross-correlation function. Instead, we measure the changes between all possible pairs of daily cross-correlations and invert them using different smoothing parameters to obtain the final velocity change curve. We perform synthetic tests in order to establish a general framework for future applications of this technique. In particular, we study the reliability of velocity change measurements versus the stability of noise cross-correlation functions. We apply this approach to a complex dataset of noise cross-correlations at Klyuchevskoy volcanic group (Kamchatka), hampered by loss of data and the presence of highly non-stationary seismic tremors.

  16. Seismic random noise attenuation using shearlet and total generalized variation

    International Nuclear Information System (INIS)

    Kong, Dehui; Peng, Zhenming

    2015-01-01

    Seismic denoising from a corrupted observation is an important part of seismic data processing which improves the signal-to-noise ratio (SNR) and resolution. In this paper, we present an effective denoising method to attenuate seismic random noise. The method takes advantage of shearlet and total generalized variation (TGV) regularization. Different regularity levels of TGV improve the quality of the final result by suppressing Gibbs artifacts caused by the shearlet. The problem is formulated as mixed constraints in a convex optimization. A Bregman algorithm is proposed to solve the proposed model. Extensive experiments based on one synthetic datum and two post-stack field data are done to compare performance. The results demonstrate that the proposed method provides superior effectiveness and preserve the structure better. (paper)

  17. Seismic random noise attenuation using shearlet and total generalized variation

    Science.gov (United States)

    Kong, Dehui; Peng, Zhenming

    2015-12-01

    Seismic denoising from a corrupted observation is an important part of seismic data processing which improves the signal-to-noise ratio (SNR) and resolution. In this paper, we present an effective denoising method to attenuate seismic random noise. The method takes advantage of shearlet and total generalized variation (TGV) regularization. Different regularity levels of TGV improve the quality of the final result by suppressing Gibbs artifacts caused by the shearlet. The problem is formulated as mixed constraints in a convex optimization. A Bregman algorithm is proposed to solve the proposed model. Extensive experiments based on one synthetic datum and two post-stack field data are done to compare performance. The results demonstrate that the proposed method provides superior effectiveness and preserve the structure better.

  18. Shear wave velocity versus quality factor: results from seismic noise recordings

    Science.gov (United States)

    Boxberger, Tobias; Pilz, Marco; Parolai, Stefano

    2017-08-01

    The assessment of the shear wave velocity (vs) and shear wave quality factor (Qs) for the shallow structure below a site is necessary to characterize its site response. In the past, methods based on the analysis of seismic noise have been shown to be very efficient for providing a sufficiently accurate estimation of the vs versus depth at reasonable costs for engineering seismology purposes. In addition, a slight modification of the same method has proved to be able to provide realistic Qs versus depth estimates. In this study, data sets of seismic noise recorded by microarrays of seismic stations in different geological environments of Europe and Central Asia are used to calculate both vs and Qs versus depth profiles. Analogous to the generally adopted approach in seismic hazard assessment for mapping the average shear wave velocity in the uppermost 30 m (vs30) as a proxy of the site response, this approach was also applied to the quality factor within the uppermost 30 m (Qs30). A slightly inverse correlation between both parameters is found based on a methodological consistent determination for different sites. Consequently, a combined assessment of vs and Qs by seismic noise analysis has the potential to provide a more comprehensive description of the geological structure below a site.

  19. First results of cross-correlation analysis of ambient seismic noise from the Hellenic Unified Seismic Network

    NARCIS (Netherlands)

    Panou, Areti; Paulssen, Hanneke; Hatzidimitriou, Panagiotis

    2015-01-01

    In this study we present phase velocity maps that were obtained from the cross-correlation analysis of ambient seismic noise recorded in the region of Greece.We used one year (2013) of ambient seismic data obtained from the vertical component of 64 broadband permanent seismological stations that are

  20. Seismic signal and noise on Europa and how to use it

    Science.gov (United States)

    Panning, M. P.; Stähler, S. C.; Bills, B. G.; Castillo, J.; Huang, H. H.; Husker, A. L.; Kedar, S.; Lorenz, R. D.; Pike, W. T.; Schmerr, N. C.; Tsai, V. C.; Vance, S.

    2017-12-01

    Seismology is one of our best tools for detailing interior structure of planetary bodies, and a seismometer is included in the baseline and threshold mission design for a potential Europa lander mission. Guiding mission design and planning for adequate science return, though, requires modeling of both the anticipated signal and noise. Assuming ice seismicity on Europa behaves according to statistical properties observed in Earth catalogs and scaling cumulative seismic moment release to the moon, we simulate long seismic records and estimate background noise and peak signal amplitudes (Panning et al., 2017). This suggests a sensitive instrument comparable to many broadband terrestrial instruments or the SP instrument from the InSight mission to Mars will be able to record signals, while high frequency geophones are likely inadequate. We extend this analysis to also begin incorporation of spatial and temporal variation due to the tidal cycle, which can help inform landing site selection. We also begin exploration of how chaotic terrane at the bottom of the ice shell and inter-ice heterogeneities (i.e. internal melt structures) may affect predicted seismic observations using 2D numerical seismic simulations. We also show some of the key seismic observations to determine interior properties of Europa (Stähler et al., 2017). M. P. Panning, S. C. Stähler, H.-H. Huang, S. D. Vance, S. Kedar, V. C. Tsai, W. T. Pike, R. D. Lorenz, "Expected seismicity and the seismic noise environment of Europa," J. Geophys. Res., in revision, 2017. S. C. Stähler, M. P. Panning, S. D. Vance, R. D. Lorenz, M. van Driel, T. Nissen-Meyer, S. Kedar, "Seismic wave propagation in icy ocean worlds," J. Geophys. Res., in revision, 2017.

  1. Random noise suppression of seismic data using non-local Bayes algorithm

    Science.gov (United States)

    Chang, De-Kuan; Yang, Wu-Yang; Wang, Yi-Hui; Yang, Qing; Wei, Xin-Jian; Feng, Xiao-Ying

    2018-02-01

    For random noise suppression of seismic data, we present a non-local Bayes (NL-Bayes) filtering algorithm. The NL-Bayes algorithm uses the Gaussian model instead of the weighted average of all similar patches in the NL-means algorithm to reduce the fuzzy of structural details, thereby improving the denoising performance. In the denoising process of seismic data, the size and the number of patches in the Gaussian model are adaptively calculated according to the standard deviation of noise. The NL-Bayes algorithm requires two iterations to complete seismic data denoising, but the second iteration makes use of denoised seismic data from the first iteration to calculate the better mean and covariance of the patch Gaussian model for improving the similarity of patches and achieving the purpose of denoising. Tests with synthetic and real data sets demonstrate that the NL-Bayes algorithm can effectively improve the SNR and preserve the fidelity of seismic data.

  2. Spatial correlation analysis of seismic noise for STAR X-ray infrastructure design

    Science.gov (United States)

    D'Alessandro, Antonino; Agostino, Raffaele; Festa, Lorenzo; Gervasi, Anna; Guerra, Ignazio; Palmer, Dennis T.; Serafini, Luca

    2014-05-01

    . For this reason, we performed some measurements of seismic noise in order to characterize the environmental noise in the site in which the X-ray accelerator arise. For the characterization of the site, we carried out several passive seismic monitoring experiments at different times of the day and in different weather conditions. We recorded microtremor using an array of broadband 3C seismic sensors arranged along the linear accelerator. For each measurement point, we determined the displacement, velocity and acceleration spectrogram and power spectral density of both horizontal and vertical components. We determined also the microtremor horizontal to vertical spectral ratio as function of azimuth to individuate the main ground vibration direction and detect the existence of site or building resonance frequencies. We applied a rotation matrix to transform the North-South and East-West signal components in transversal and radial components, respect to the direction of the linear accelerator. Subsequently, for each couple of seismic stations we determined the coherence function to analyze the seismic noise spatial correlation. These analyses have allowed us to exhaustively characterize the seismic noise of the study area, from the point of view of the power and space-time variability, both in frequency and wavelength.

  3. Monitoring Instrument Performance in Regional Broadband Seismic Network Using Ambient Seismic Noise

    Science.gov (United States)

    Ye, F.; Lyu, S.; Lin, J.

    2017-12-01

    In the past ten years, the number of seismic stations has increased significantly, and regional seismic networks with advanced technology have been gradually developed all over the world. The resulting broadband data help to improve the seismological research. It is important to monitor the performance of broadband instruments in a new network in a long period of time to ensure the accuracy of seismic records. Here, we propose a method that uses ambient noise data in the period range 5-25 s to monitor instrument performance and check data quality in situ. The method is based on an analysis of amplitude and phase index parameters calculated from pairwise cross-correlations of three stations, which provides multiple references for reliable error estimates. Index parameters calculated daily during a two-year observation period are evaluated to identify stations with instrument response errors in near real time. During data processing, initial instrument responses are used in place of available instrument responses to simulate instrument response errors, which are then used to verify our results. We also examine feasibility of the tailing noise using data from stations selected from USArray in different locations and analyze the possible instrumental errors resulting in time-shifts used to verify the method. Additionally, we show an application that effects of instrument response errors that experience pole-zeros variations on monitoring temporal variations in crustal properties appear statistically significant velocity perturbation larger than the standard deviation. The results indicate that monitoring seismic instrument performance helps eliminate data pollution before analysis begins.

  4. Epicenter Location of Regional Seismic Events Using Love Wave and Rayleigh Wave Ambient Seismic Noise Green's Functions

    Science.gov (United States)

    Levshin, A. L.; Barmin, M. P.; Moschetti, M. P.; Mendoza, C.; Ritzwoller, M. H.

    2011-12-01

    We describe a novel method to locate regional seismic events based on exploiting Empirical Green's Functions (EGF) that are produced from ambient seismic noise. Elastic EGFs between pairs of seismic stations are determined by cross-correlating long time-series of ambient noise recorded at the two stations. The EGFs principally contain Rayleigh waves on the vertical-vertical cross-correlations and Love waves on the transverse-transverse cross-correlations. Earlier work (Barmin et al., "Epicentral location based on Rayleigh wave empirical Green's functions from ambient seismic noise", Geophys. J. Int., 2011) showed that group time delays observed on Rayleigh wave EGFs can be exploited to locate to within about 1 km moderate sized earthquakes using USArray Transportable Array (TA) stations. The principal advantage of the method is that the ambient noise EGFs are affected by lateral variations in structure similarly to the earthquake signals, so the location is largely unbiased by 3-D structure. However, locations based on Rayleigh waves alone may be biased by more than 1 km if the earthquake depth is unknown but lies between 2 km and 7 km. This presentation is motivated by the fact that group time delays for Love waves are much less affected by earthquake depth than Rayleigh waves; thus exploitation of Love wave EGFs may reduce location bias caused by uncertainty in event depth. The advantage of Love waves to locate seismic events, however, is mitigated by the fact that Love wave EGFs have a smaller SNR than Rayleigh waves. Here, we test the use of Love and Rayleigh wave EGFs between 5- and 15-sec period to locate seismic events based on the USArray TA in the western US. We focus on locating aftershocks of the 2008 M 6.0 Wells earthquake, mining blasts in Wyoming and Montana, and small earthquakes near Norman, OK and Dallas, TX, some of which may be triggered by hydrofracking or injection wells.

  5. Wind seismic noise introduced by external infrastructure: field data and transfer mechanism

    Science.gov (United States)

    Martysevich, Pavel; Starovoyt, Yuri

    2017-04-01

    Background seismic noise generated by wind was analyzed at six co-located seismic and infrasound arrays with the use of the wind speed data. The main factors affecting the noise level were identified as (a) external structures as antenna towers for intrasite communication, vegetation and heavy solar panels fixtures, (b) borehole casing and (c) local lithology. The wind-induced seismic noise peaks in the spectra can be predicted by combination of inverted pendulum model for antenna towers and structures used to support solar panels, free- or clamped-tube resonance of the borehole casing and is dependent on the type of sedimentary upper layer. Observed resonance frequencies are in agreement with calculated clamped / free tube modes for towers and borehole casings. Improvement of the seismic data quality can be achieved by minimizing the impact of surrounding structures close to seismic boreholes. The need and the advantage of the borehole installation may vanish and appear to be even not necessary at locations with non-consolidated sediments because the impact of surrounding structures on seismic background may significantly deteriorate the installation quality and therefore the detection capability of the array. Several IMS arrays where the radio telemetry antennas are used for data delivery to the central site may benefit from the redesign of the intrasite communication system by its substitute with the fiber-optic net as less harmful engineering solution.

  6. 3D seismic data de-noising and reconstruction using Multichannel Time Slice Singular Spectrum Analysis

    Science.gov (United States)

    Rekapalli, Rajesh; Tiwari, R. K.; Sen, Mrinal K.; Vedanti, Nimisha

    2017-05-01

    Noises and data gaps complicate the seismic data processing and subsequently cause difficulties in the geological interpretation. We discuss a recent development and application of the Multi-channel Time Slice Singular Spectrum Analysis (MTSSSA) for 3D seismic data de-noising in time domain. In addition, L1 norm based simultaneous data gap filling of 3D seismic data using MTSSSA also discussed. We discriminated the noises from single individual time slices of 3D volumes by analyzing Eigen triplets of the trajectory matrix. We first tested the efficacy of the method on 3D synthetic seismic data contaminated with noise and then applied to the post stack seismic reflection data acquired from the Sleipner CO2 storage site (pre and post CO2 injection) from Norway. Our analysis suggests that the MTSSSA algorithm is efficient to enhance the S/N for better identification of amplitude anomalies along with simultaneous data gap filling. The bright spots identified in the de-noised data indicate upward migration of CO2 towards the top of the Utsira formation. The reflections identified applying MTSSSA to pre and post injection data correlate well with the geology of the Southern Viking Graben (SVG).

  7. Ambient seismic noise interferometry in Hawai'i reveals long-range observability of volcanic tremor

    Science.gov (United States)

    Ballmer, Silke; Wolfe, Cecily; Okubo, Paul G.; Haney, Matt; Thurber, Clifford H.

    2013-01-01

    The use of seismic noise interferometry to retrieve Green's functions and the analysis of volcanic tremor are both useful in studying volcano dynamics. Whereas seismic noise interferometry allows long-range extraction of interpretable signals from a relatively weak noise wavefield, the characterization of volcanic tremor often requires a dense seismic array close to the source. We here show that standard processing of seismic noise interferometry yields volcanic tremor signals observable over large distances exceeding 50 km. Our study comprises 2.5 yr of data from the U.S. Geological Survey Hawaiian Volcano Observatory short period seismic network. Examining more than 700 station pairs, we find anomalous and temporally coherent signals that obscure the Green's functions. The time windows and frequency bands of these anomalous signals correspond well with the characteristics of previously studied volcanic tremor sources at Pu'u 'Ō'ō and Halema'uma'u craters. We use the derived noise cross-correlation functions to perform a grid-search for source location, confirming that these signals are surface waves originating from the known tremor sources. A grid-search with only distant stations verifies that useful tremor signals can indeed be recovered far from the source. Our results suggest that the specific data processing in seismic noise interferometry—typically used for Green's function retrieval—can aid in the study of both the wavefield and source location of volcanic tremor over large distances. In view of using the derived Green's functions to image heterogeneity and study temporal velocity changes at volcanic regions, however, our results illustrate how care should be taken when contamination by tremor may be present.

  8. Monitoring Unstable Glaciers with Seismic Noise Interferometry

    Science.gov (United States)

    Preiswerk, L. E.; Walter, F.

    2016-12-01

    Gravity-driven glacier instabilities are a threat to human infrastructure in alpine terrain, and this hazard is likely to increase with future changes in climate. Seismometers have been used previously on hazardous glaciers to monitor the natural englacial seismicity. In some situations, an increase in "icequake" activity may indicate fracture growth and thus an imminent major break-off. However, without independent constraints on unstable volumes, such mere event counting is of little use. A promising new approach to monitor unstable masses in Alpine terrain is coda wave interferometry of ambient noise. While already established in the solid earth, application to glaciers is not straightforward, because the lack of inhomogeneities typically suppresses seismic coda waves in glacier ice. Only glaciers with pervasive crevasses provide enough scattering to generate long codas. This is requirement is likely met for highly dynamic unstable glaciers. Here, we report preliminary results from a temporary 5-station on-ice array of seismometers (corner frequencies: 1 Hz, array aperture: 500m) on Bisgletscher (Switzerland). The seismometers were deployed in shallow boreholes, directly above the unstable tongue of the glacier. In the frequency band 4-12 Hz, we find stable noise cross-correlations, which in principle allows monitoring on a subdaily scale. The origin and the source processes of the ambient noise in these frequencies are however uncertain. As a first step, we evaluate the stability of the sources in order to separate effects of changing source parameters from changes of englacial properties. Since icequakes occurring every few seconds may dominate the noise field, we compare their temporal and spatial occurrences with the cross-correlation functions (stability over time, the asymmetry between causal and acausal parts of the cross-correlation functions) as well as with results from beamforming to assess the influence of these transient events on the noise field.

  9. Ambient seismic noise levels: A survey of the permanent and temporary seismographic networks in Morocco, North Africa

    Science.gov (United States)

    El Fellah, Y.; Khairy Abd Ed-Aal, A.; El Moudnib, L.; Mimoun, H.; Villasenor, A.; Gallart, J.; Thomas, C.; Elouai, D.; Mimoun, C.; Himmi, M.

    2013-12-01

    Abstract The results, of a conducted study carried out to analyze variations in ambient seismic noise levels at sites of the installed broadband stations in Morocco, North Africa, are obtained. The permanent and the temporary seismic stations installed in Morocco of the Scientific Institute ( IS, Rabat, Morocco), institute de Ciencias de la Tierra Jaume almera (ICTJA, Barcelona, Spain) and Institut für Geophysik (Munster, Germany) were used in this study. In this work, we used 23 broadband seismic stations installed in different structural domains covering all Morocco from south to north. The main purposes of the current study are: 1) to present a catalog of seismic background noise spectra for Morocco obtained from recently installed broadband stations, 2) to assess the effects of experimental temporary seismic vault construction, 3) to determine the time needed for noise at sites to stabilize, 4) to establish characteristics and origin of seismic noise at those sites. We calculated power spectral densities of background noise for each component of each broadband seismometer deployed in the different investigated sites and then compared them with the high-noise model and low-noise Model of Peterson (1993). All segments from day and night local time windows were included in the calculation without parsing out earthquakes. The obtained results of the current study could be used forthcoming to evaluate permanent station quality. Moreover, this study could be considered as a first step to develop new seismic noise models in North Africa not included in Peterson (1993). Keywords Background noise; Power spectral density; Model of Peterson; Scientific Institute; Institute de Ciencias de la Tierra Jaume almera; Institut für Geophysik

  10. Design and implementation of a low-cost multichannel seismic noise recorder for array measurements

    Science.gov (United States)

    Soler-Llorens, Juan Luis; Juan Giner-Caturla, Jose; Molina-Palacios, Sergio; Galiana-Merino, Juan Jose; Rosa-Herranz, Julio; Agea-Medina, Noelia

    2017-04-01

    Soil characterization is the starting point for seismic hazard studies. Currently, the methods based on ambient noise measurements are very used because they are non-invasive methods and relatively easy to implement in urban areas. Among these methods, the analysis of array measurements provides the dispersion curve and subsequently the shear-wave velocity profile associated to the site under study. In this case, we need several sensors recording simultaneously and a data acquisition system with one channel by sensor, what can become the complete equipment unaffordable for small research groups. In this work, we have designed and implemented a low-cost multichannel ambient noise recorder for array measurements. The complete system is based on Arduino, an open source electronic development platform, which allows recording 12 differential input channels simultaneously. Besides, it is complemented with a conditioning circuit that includes an anti-aliasing filter and a selectable gain between 0 and 40dB. The data acquisition is set up through a user-friendly graphical user interface. It is important to note that the electronic scheme as well as the programming code are open hardware and software, respectively, so it allows other researchers to suite the system to their particular requirements. The developed equipment has been tested at several sites around the province of Alicante (southeast of Spain), where the soil characteristics are well-known from previous studies. Array measurements have been taken and after that, the recorded data have been analysed using the frequency-wavenumber (f-k) and the extended spatial autocorrelation (ESAC) methods. The comparison of the obtained dispersion curves with the ones obtained in previous studies shows the suitability of the implemented low-cost system for array measurements.

  11. Development of a low cost method to estimate the seismic signature of a geothermal field form ambient noise analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Tibuleac, Ileana [Univ. of Nevada, Reno, NV (United States)

    2016-06-30

    A new, cost effective and non-invasive exploration method using ambient seismic noise has been tested at Soda Lake, NV, with promising results. The material included in this report demonstrates that, with the advantage of initial S-velocity models estimated from ambient noise surface waves, the seismic reflection survey, although with lower resolution, reproduces the results of the active survey when the ambient seismic noise is not contaminated by strong cultural noise. Ambient noise resolution is less at depth (below 1000m) compared to the active survey. In general, the results are promising and useful information can be recovered from ambient seismic noise, including dipping features and fault locations.

  12. Integration of ambient seismic noise monitoring, displacement and meteorological measurements to infer the temperature-controlled long-term evolution of a complex prone-to-fall cliff

    Science.gov (United States)

    Colombero, C.; Baillet, L.; Comina, C.; Jongmans, D.; Larose, E.; Valentin, J.; Vinciguerra, S.

    2018-06-01

    Monitoring the temporal evolution of resonance frequencies and velocity changes detected from ambient seismic noise recordings can help in recognizing reversible and irreversible modifications within unstable rock volumes. With this aim, the long-term ambient seismic noise data set acquired at the potentially unstable cliff of Madonna delSasso (NW Italian Alps) was analysed in this study, using both spectral analysis and cross-correlation techniques. Noise results were integrated and compared with direct displacement measurements and meteorological data, to understand the long-term evolution of the cliff. No irreversible modifications in the stability of the site were detected over the monitored period. Conversely, daily and seasonal air temperature fluctuations were found to control resonance frequency values, amplitudes and directivities and to induce reversible velocity changes within the fractured rock mass. The immediate modification in the noise parameters due to temperature fluctuations was interpreted as the result of rock mass thermal expansion and contraction, inducing variations in the contact stiffness along the fractures isolating two unstable compartments. Differences with previous case studies were highlighted in the long-term evolution of noise spectral amplitudes and directivities, due to the complex 3-D fracture setting of the site and to the combined effects of the two unstable compartments.

  13. Ambient seismic noise tomography for exploration seismology at Valhall

    Science.gov (United States)

    de Ridder, S. A.

    2011-12-01

    Permanent ocean-bottom cables installed at the Valhall field can repeatedly record high quality active seismic surveys. But in the absence of active seismic shooting, passive data can be recorded and streamed to the platform in real time. Here I studied 29 hours of data using seismic interferometry. I generate omni-directional Scholte-wave virtual-sources at frequencies considered very-low in the exploration seismology community (0.4-1.75 Hz). Scholte-wave group arrival times are inverted using both eikonal tomography and straight-ray tomography. The top 100 m near-surface at Valhall contains buried channels about 100 m wide that have been imaged with active seismic. Images obtained by ASNT using eikonal tomography or straight-ray tomography both contain anomalies that match these channels. When continuous recordings are made in real-time, tomography images of the shallow subsurface can be formed or updated on a daily basis, forming a very low cost near-surface monitoring system using seismic noise.

  14. Seismic noise attenuation using an online subspace tracking algorithm

    NARCIS (Netherlands)

    Zhou, Yatong; Li, Shuhua; Zhang, D.; Chen, Yangkang

    2018-01-01

    We propose a new low-rank based noise attenuation method using an efficient algorithm for tracking subspaces from highly corrupted seismic observations. The subspace tracking algorithm requires only basic linear algebraic manipulations. The algorithm is derived by analysing incremental gradient

  15. Locating scatterers while drilling using seismic noise due to tunnel boring machine

    Science.gov (United States)

    Harmankaya, U.; Kaslilar, A.; Wapenaar, K.; Draganov, D.

    2018-05-01

    Unexpected geological structures can cause safety and economic risks during underground excavation. Therefore, predicting possible geological threats while drilling a tunnel is important for operational safety and for preventing expensive standstills. Subsurface information for tunneling is provided by exploratory wells and by surface geological and geophysical investigations, which are limited by location and resolution, respectively. For detailed information about the structures ahead of the tunnel face, geophysical methods are applied during the tunnel-drilling activity. We present a method inspired by seismic interferometry and ambient-noise correlation that can be used for detecting scatterers, such as boulders and cavities, ahead of a tunnel while drilling. A similar method has been proposed for active-source seismic data and validated using laboratory and field data. Here, we propose to utilize the seismic noise generated by a Tunnel Boring Machine (TBM), and recorded at the surface. We explain our method at the hand of data from finite-difference modelling of noise-source wave propagation in a medium where scatterers are present. Using the modelled noise records, we apply cross-correlation to obtain correlation gathers. After isolating the scattered arrivals in these gathers, we cross-correlate again and invert for the correlated traveltime to locate scatterers. We show the potential of the method for locating the scatterers while drilling using noise records due to TBM.

  16. Sources of high frequency seismic noise: insights from a dense network of ~250 stations in northern Alsace (France)

    Science.gov (United States)

    Vergne, Jerome; Blachet, Antoine; Lehujeur, Maximilien

    2015-04-01

    Monitoring local or regional seismic activity requires stations having a low level of background seismic noise at frequencies higher than few tenths of Hertz. Network operators are well aware that the seismic quality of a site depends on several aspects, among them its geological setting and the proximity of roads, railways, industries or trees. Often, the impact of each noise source is only qualitatively known which precludes estimating the quality of potential future sites before they are tested or installed. Here, we want to take advantage of a very dense temporary network deployed in Northern Alsace (France) to assess the effect of various kinds of potential sources on the level of seismic noise observed in the frequency range 0.2-50 Hz. In September 2014, more than 250 seismic stations (FairfieldNodal@ Zland nodes with 10Hz vertical geophone) have been installed every 1.5 km over a ~25km diameter disc centred on the deep geothermal sites of Soultz-sous-Forêts and Rittershoffen. This region exhibits variable degrees of human imprints from quite remote areas to sectors with high traffic roads and big villages. It also encompasses both the deep sedimentary basin of the Rhine graben and the piedmont of the Vosges massif with exposed bedrock. For each site we processed the continuous data to estimate probability density functions of the power spectral densities. At frequencies higher than 1 Hz most sites show a clear temporal modulation of seismic noise related to human activity with the well-known variations between day and night and between weekdays and weekends. Moreover we observe a clear evolution of the spatial distribution of seismic noise levels with frequency. Basically, between 0.5 and 4 Hz the geological setting modulates the level of seismic noise. At higher frequencies, the amplitude of seismic noise appears mostly related to the distance to nearby roads. Based on road maps and traffic estimation, a forward approach is performed to model the induced

  17. Improved surface?wave retrieval from ambient seismic noise by multi?dimensional deconvolution

    NARCIS (Netherlands)

    Wapenaar, C.P.A.; Ruigrok, E.N.; Van der Neut, J.R.; Draganov, D.S.

    2011-01-01

    The methodology of surface?wave retrieval from ambient seismic noise by crosscorrelation relies on the assumption that the noise field is equipartitioned. Deviations from equipartitioning degrade the accuracy of the retrieved surface?wave Green's function. A point?spread function, derived from the

  18. Understanding the amplitudes of noise correlation measurements

    Science.gov (United States)

    Tsai, Victor C.

    2011-01-01

    Cross correlation of ambient seismic noise is known to result in time series from which station-station travel-time measurements can be made. Part of the reason that these cross-correlation travel-time measurements are reliable is that there exists a theoretical framework that quantifies how these travel times depend on the features of the ambient noise. However, corresponding theoretical results do not currently exist to describe how the amplitudes of the cross correlation depend on such features. For example, currently it is not possible to take a given distribution of noise sources and calculate the cross correlation amplitudes one would expect from such a distribution. Here, we provide a ray-theoretical framework for calculating cross correlations. This framework differs from previous work in that it explicitly accounts for attenuation as well as the spatial distribution of sources and therefore can address the issue of quantifying amplitudes in noise correlation measurements. After introducing the general framework, we apply it to two specific problems. First, we show that we can quantify the amplitudes of coherency measurements, and find that the decay of coherency with station-station spacing depends crucially on the distribution of noise sources. We suggest that researchers interested in performing attenuation measurements from noise coherency should first determine how the dominant sources of noise are distributed. Second, we show that we can quantify the signal-to-noise ratio of noise correlations more precisely than previous work, and that these signal-to-noise ratios can be estimated for given situations prior to the deployment of seismometers. It is expected that there are applications of the theoretical framework beyond the two specific cases considered, but these applications await future work.

  19. Advances in Rotational Seismic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Robert [Applied Technology Associates, Albuquerque, NM (United States); Laughlin, Darren [Applied Technology Associates, Albuquerque, NM (United States); Brune, Robert [Applied Technology Associates, Albuquerque, NM (United States)

    2016-10-19

    Rotational motion is increasingly understood to be a significant part of seismic wave motion. Rotations can be important in earthquake strong motion and in Induced Seismicity Monitoring. Rotational seismic data can also enable shear selectivity and improve wavefield sampling for vertical geophones in 3D surveys, among other applications. However, sensor technology has been a limiting factor to date. The US Department of Energy (DOE) and Applied Technology Associates (ATA) are funding a multi-year project that is now entering Phase 2 to develop and deploy a new generation of rotational sensors for validation of rotational seismic applications. Initial focus is on induced seismicity monitoring, particularly for Enhanced Geothermal Systems (EGS) with fracturing. The sensors employ Magnetohydrodynamic (MHD) principles with broadband response, improved noise floors, robustness, and repeatability. This paper presents a summary of Phase 1 results and Phase 2 status.

  20. Shear-wave velocity of marine sediments offshore Taiwan using ambient seismic noise

    Science.gov (United States)

    Lin, Yu-Tse; Lin, Jing-Yi; Kuo-Chen, Hao; Yeh, Yi-Chin; Cheng, Win-Bin

    2017-04-01

    Seismic ambient noise technology has many advantages over the traditional two-station method. The most important one is that noise is happening all the time and it can be widely and evenly distributed. Thus, the Green's Function of any station pair can be obtained through the data cross-correlation process. Many related studies have been performed to estimate the velocity structures based on the inland area. Only a few studies were reported for the marine area due to the relatively shorter recording time of ocean bottom seismometers (OBS) deployment and the high cost of the marine experiment. However, the understanding about the shear-wave velocity (Vs) of the marine sediments is very crucial for the hazard assessment related to submarine landslides, particularly with the growing of submarine resources exploration. In this study, we applied the ambient noise technique to four OBS seismic networks located offshore Taiwan in the aim of getting more information about the noise sources and having the preliminary estimation for the Vs of the marine sediments. Two of the seismic networks were deployed in the NE part of Taiwan, near the Ryukyu subduction system, whereas the others were in the SW area, on the continental margin rich in gas hydrate. Generally, ambient seismic noise could be associated with wind, ocean waves, rock fracturing and anthropogenic activity. In the southwestern Taiwan, the cross-correlation function obtained from two seismic networks indicate similar direction, suggestion that the source from the south part of the network could be the origin of the noise. However, the two networks in the northeastern Taiwan show various source direction, which could be caused by the abrupt change of bathymetry or the volcanic degassing effect frequently observed by the marine geophysical method in the area. The Vs determined from the dispersion curve shows a relatively higher value for the networks in the Okinawa Trough (OT) off NE Taiwan than that in the

  1. Broadband seismic noise attenuation versus depth at the Albuquerque Seismological Laboratory

    Science.gov (United States)

    Hutt, Charles R.; Ringler, Adam; Gee, Lind

    2017-01-01

    Seismic noise induced by atmospheric processes such as wind and pressure changes can be a major contributor to the background noise observed in many seismograph stations, especially those installed at or near the surface. Cultural noise such as vehicle traffic or nearby buildings with air handling equipment also contributes to seismic background noise. Such noise sources fundamentally limit our ability to resolve earthquake‐generated signals. Many previous seismic noise versus depth studies focused separately on either high‐frequency (>1  Hz">>1  Hz) or low‐frequency (shallow surface vaults) up to 100 m or more (boreholes) in the permanent observatories of the Global Seismographic Network (GSN). It is important for managers and planners of these and similar arrays and networks of seismograph stations to understand the attenuation of surface‐generated noise versus depth so that they can achieve desired performance goals within their budgets as well as their frequency band of focus. The results of this study will assist in decisions regarding BB and VBB seismometer installation depths. In general, we find that greater installation depths are better and seismometer emplacement in hard rock is better than in soil. Attenuation for any given depth varies with frequency. More specifically, we find that the dependence of depth will be application dependent based on the frequency band and sensitive axes of interest. For quick deployments (like aftershock studies), 1 m may be deep enough to produce good data, especially when the focus is on vertical data where temperature stability fundamentally limits the low‐frequency noise levels and little low‐frequency data will be used. For temporary (medium‐term) deployments (e.g., TA) where low cost can be very important, 2–3 m should be sufficient, but such shallow installations will limit the ability to resolve low‐frequency signals, especially on horizontal components. Of course, one should try for

  2. Ambient seismic noise as an interesting indirect cue for the Cerithidea decollata migrations

    Science.gov (United States)

    Pazzi, Veronica; Lotti, Alessia

    2017-04-01

    Presence or absence of water, food availability, capability of avoiding predation, and body temperature are constantly changing according to the tidal excursion. In fact, more than the diurnal light-dark variation, tide is shaping the whole intertidal animal life. Therefore, physiological and behavioural systems exist to reduce the stress that the intertidal fauna may face during the unsuitable tidal phase. Cerithidea decollata is a common western Indian Ocean mangrove gastropod. It feeds on the ground at low tide, and climbs the trees two/three hours before the water arrival to avoid submersion. In spite of the irregular East African tidal pattern, it also regularly settles on trunks roughly 40 cm above the maximum level of the incoming tide. Migrations usually take place about twice a day unless at Neap Tide, when snails may remain on the dry ground. Past experiments showed that a biological clock cannot account for water level foreseeing, nor direct visual cues or chemical information from the water itself or from previous migrations have been detected. On the other hand, tidal gravity variations can be felt by the snails. Moreover, other indirect cues could be hypothesize related to a) the oceanic waves reaching the coast and the barrier reef (seismic noise), or b) the changes in ground resistivity (self potential) caused by the sea water moving close. To verify these hypotheses, an integrated geophysical survey (single-station seismic noise and self potential survey) was carried out at Mida Creek (Kenya) to characterize the local seismic wavefield in terms of its amplitude and to measure the temporal variations of the electric potential field. Final goal was to verify whether a correlation exists between the time evolution of these phenomena and the snail movements. Here we present the first results of the seismic noise measurements. Data were acquired by means of a single station all-in-one 3-directional 24-bit digital tromometer equipped with 4.5 Hz

  3. On inferring the noise in probabilistic seismic AVO inversion using hierarchical Bayes

    OpenAIRE

    Madsen, Rasmus Bødker; Zunino, Andrea; Hansen, Thomas Mejer

    2017-01-01

    A realistic noise model is essential for trustworthy inversion of geophysical data. Sometimes, as in case of seismic data, quan- tification of the noise model is non-trivial. To remedy this, a hierarchical Bayes approach can be adopted in which proper- ties of the noise model, such as the amplitude of an assumed uncorrelated Gaussian noise model, can be inferred as part of the inversion. Here we demonstrate how such an approach can lead to substantial overfitting of noise when inverting a 1D ...

  4. Cetacean behavioral responses to noise exposure generated by seismic surveys: how to mitigate better?

    Directory of Open Access Journals (Sweden)

    Clara Monaco

    2016-09-01

    Full Text Available Cetaceans use sound in many contexts, such as in social interactions, as well as to forage and to react in dangerous situations. Little information exists to describe how they respond physically and behaviorally to intense and long-term noise levels. Effects on cetaceans from seismic survey activities need to be understood in order to determine detailed acoustic exposure guidelines and to apply appropriated mitigation measures. This study examines direct behavioral responses of cetaceans in the southern Mediterranean Sea during seismic surveys with large airgun arrays (volume up to 5200 ci used in the TOMO-ETNA active seismic experiment of summer 2014. Wide Angle Seismic and Multi-Channel Seismic surveys had carried out with refraction and reflection seismic methods, producing about 25,800 air-gun shots. Visual monitoring undertaken in the 26 daylights of seismic exploration adopted the protocol of the Joint Nature Conservation Committee. Data recorded were analyzed to examine effects on cetaceans. Sighting rates, distance and orientation from the airguns were compared for different volume categories of the airgun arrays. Results show that cetaceans can be disturbed by seismic survey activities, especially during particularly events. Here we propose many integrated actions to further mitigate this exposure and implications for management.

  5. Results from an acoustic modelling study of seismic airgun survey noise in Queen Charlotte Basin

    Energy Technology Data Exchange (ETDEWEB)

    MacGillivray, A.O.; Chapman, N.R. [Victoria Univ., BC (Canada). School of Earth and Ocean Sciences

    2005-12-07

    An acoustic modelling study was conducted to examine seismic survey noise propagation in the Queen Charlotte Basin (QCB) and better understand the physical aspects of sound transmission. The study results are intended to help determine the potential physiological and behavioural effects of airgun noise on marine mammals and fish. The scope of the study included a numerical simulation of underwater sound transmission in QCB in areas where oil and gas exploration activities may be conducted; a forecast of received noise levels by combining acoustic transmission loss computations with acoustic source levels representative of seismic exploration activity and, the use of received forecasts to estimate zones of impact for marine mammals. The critical environmental parameters in the QCB are the bathymetry of the ocean, the sound speed profile in the water and the geoacoustic profile of the seabed. The RAM acoustic propagation model developed by the United States Naval Research Laboratory was used to compute acoustic transmission loss in the QCB. The source level and directionality of the seismic array was determined by a full-waveform array source signature model. This modelling study of noise propagation from seismic surveys revealed several key findings. Among them, it showed that received noise levels in the water are affected by the source location, array orientation and the shape of the sound speed profile with respect to water depth. It also showed that noise levels are lowest in shallow bathymetry. 30 refs., 5 tabs., 13 figs.

  6. Composition and variation of noise recorded at the Yellowknife Seismic Array, 1991-2007

    Science.gov (United States)

    Koper, K.D.; De Foy, B.; Benz, H.

    2009-01-01

    We analyze seismic noise recorded on the 18 short-period, vertical component seismometers of the Yellowknife Seismic Array (YKA). YKA has an aperture of 23 km and is sited on cratonic lithosphere in an area with low cultural noise. These properties make it ideal for studying natural seismic noise at periods of 1-3 s. We calculated frequency-wave number spectra in this band for over 6,000 time windows that were extracted once per day for 17 years (1991-2007). Slowness analysis reveals a rich variety of seismic phases originating from distinct source regions: Rg waves from the Great Slave Lake; Lg waves from the Atlantic, Pacific, and Arctic Oceans; and teleseismic P waves from the north Pacific and equatorial mid-Atlantic regions. The surface wave energy is generated along coastlines, while the body wave energy is generated at least in part in deep-water, pelagic regions. Surface waves tend to dominate at the longer periods and, just as in earthquake seismograms, Lg is the most prominent arrival. Although the periods we study are slightly shorter than the classic double-frequency microseismic band of 4-10 s, the noise at YKA has clear seasonal behavior that is consistent with the ocean wave climate in the Northern Hemisphere. The temporal variation of most of the noise sources can be well fit using just two Fourier components: yearly and biyearly terms that combine to give a fast rise in microseismic power from mid-June through mid-October, followed by a gradual decline. The exception is the Rg energy from the Great Slave Lake, which shows a sharp drop in noise power over a 2-week period in November as the lake freezes. The L g noise from the east has a small but statistically significant positive slope, perhaps implying increased ocean wave activity in the North Atlantic over the last 17 years. Copyright 2009 by the American Geophysical Union.

  7. Rayleigh wave tomography in North-China from ambient seismic noise

    OpenAIRE

    Fang, Lihua

    2010-01-01

    2008/2009 The theory and methodology of ambient noise tomography has been studied and applied to North-China successfully. Continuous vertical-component seismograms, spanning the period from January 1, 2007 to February 28, 2008 recorded by 190 broadband stations and 10 very broadband stations, have been used. The cross correlation technique has been applied to ambient noise data recorded by North-China Seismic Array for each station pairs of the array. Rayleigh wave group ve...

  8. An analysis of seismic background noise variation and evaluation of detection capability of Keskin Array (BRTR PS-43) in Turkey

    Science.gov (United States)

    Bakir, M. E.; Ozel, N. M.; Semin, K. U.

    2011-12-01

    Bogazici University, Kandilli Observatory and Earthquake Research Institute (KOERI) is currently operating the Keskin seismic array (BRTR-PS 43) located in town Keskin, providing real-time data to IDC. The instrumentaion of seismic array includes six short period borehole seismometers and one broadband borehole seismometer. The seismic background noise variation of Keskin array are studied in order to estimate the local and regional event detection capability in the frequency range from 1 Hz to 10 Hz. The Power density spectrum and also probability density function of Keskin array data were computed for seasonal and diurnal noise variations between 2008 and 2010. The computation will be extended to cover the period between 2005 and 2008. We attempt to determine the precise frequency characteristics of the background noise, which will help us to assess the station sensitivity. Minimum detectable magnitude versus distance for Keskin seismic array will be analyzed based on the seismic noise analysis. Detailed analysis results of seismic background noise and detection capability will be presented by this research.

  9. New Observations of Seismic Group Velocities in the Western Solomon Islands from Cross-Correlation of Ambient Seismic Noise

    Science.gov (United States)

    Ku, C. S.; You, S. H.; Kuo, Y. T.; Huang, B. S.; Wu, Y. M.; Chen, Y. G.; Taylor, F. W.

    2015-12-01

    A MW 8.1 earthquake occurred on 1 April 2007 in the western Solomon Islands. Following this event, a damaging tsunami was induced and hit the Island Gizo where the capital city of Western Province of Solomon Islands located. Several buildings of this city were destroyed and several peoples lost their lives during this earthquake. However, during this earthquake, no near source seismic instrument has been installed in this region. The seismic evaluations for the aftershock sequence, the possible earthquake early warning and tsunami warning were unavailable. For the purpose of knowing more detailed information about seismic activity in this region, we have installed 9 seismic stations (with Trillium 120PA broadband seismometer and Q330S 24bit digitizer) around the rupture zone of the 2007 earthquake since September of 2009. Within a decade, it has been demonstrated both theoretically and experimentally that the Green's function or impulse response between two seismic stations can be retrieved from the cross-correlation of ambient noise. In this study, 6 stations' observations which are more complete during 2011/10 ~ 2012/12 period, were selected for the purpose of the cross-correlation analysis of ambient seismic noise. The group velocities at period 2-20 seconds of 15 station-pairs were extracted by using multiple filter technique (MFT) method. The analyzed results of this study presented significant results of group velocities with higher frequency contents than other studies (20-60 seconds in usually cases) and opened new opportunities to study the shallow crustal structure of the western Solomon Islands.

  10. Seismic Background Noise Analysis of BRTR (PS-43) Array

    Science.gov (United States)

    Ezgi Bakir, Mahmure; Meral Ozel, Nurcan; Umut Semin, Korhan

    2015-04-01

    The seismic background noise variation of BRTR array, composed of two sub arrays located in Ankara and in Ankara-Keskin, has been investigated by calculating Power Spectral Density and Probability Density Functions for seasonal and diurnal noise variations between 2005 and 2011. PSDs were computed within the frequency range of 100 s - 10 Hz. The results show us a little change in noise conditions in terms of time and location. Especially, noise level changes were observed at 3-5 Hz in diurnal variations at Keskin array and there is a 5-7 dB difference in day and night time in cultural noise band (1-10 Hz). On the other hand, noise levels of medium period array is high in 1-2 Hz frequency rather than short period array. High noise levels were observed in daily working times when we compare it to night-time in cultural noise band. The seasonal background noise variation at both sites also shows very similar properties to each other. Since these stations are borehole instruments and away from the coasts, we saw a small change in noise levels caused by microseism. Comparison between Keskin short period array and Ankara medium period array show us Keskin array is quiter than Ankara array.

  11. Determination of Rayleigh wave ellipticity using single-station and array-based processing of ambient seismic noise

    Science.gov (United States)

    Workman, Eli Joseph

    We present a single-station method for the determination of Rayleigh wave ellipticity, or Rayleigh wave horizontal to vertical amplitude ratio (H/V) using Frequency Dependent Polarization Analysis (FDPA). This procedure uses singular value decomposition of 3-by-3 spectral covariance matrices over 1-hr time windows to determine properties of the ambient seismic noise field such as particle motion and dominant wave-type. In FPDA, if the noise is mostly dominated by a primary singular value and the phase difference is roughly 90° between the major horizontal axis and the vertical axis of the corresponding singular vector, we infer that Rayleigh waves are dominant and measure an H/V ratio for that hour and frequency bin. We perform this analysis for all available data from the Earthscope Transportable Array between 2004 and 2014. We compare the observed Rayleigh wave H/V ratios with those previously measured by multicomponent, multistation noise cross-correlation (NCC), as well as classical noise spectrum H/V ratio analysis (NSHV). At 8 sec the results from all three methods agree, suggesting that the ambient seismic noise field is Rayleigh wave dominated. Between 10 and 30 sec, while the general pattern agrees well, the results from FDPA and NSHV are persistently slightly higher ( 2%) and significantly higher (>20%), respectively, than results from the array-based NCC. This is likely caused by contamination from other wave types (i.e., Love waves, body waves, and tilt noise) in the single station methods, but it could also reflect a small, persistent error in NCC. Additionally, we find that the single station method has difficulty retrieving robust Rayleigh wave H/V ratios within major sedimentary basins, such as the Williston Basin and Mississippi Embayment, where the noise field is likely dominated by reverberating Love waves.

  12. Adaptive Sensor Tuning for Seismic Event Detection in Environment with Electromagnetic Noise

    Science.gov (United States)

    Ziegler, Abra E.

    The goal of this research is to detect possible microseismic events at a carbon sequestration site. Data recorded on a continuous downhole microseismic array in the Farnsworth Field, an oil field in Northern Texas that hosts an ongoing carbon capture, utilization, and storage project, were evaluated using machine learning and reinforcement learning techniques to determine their effectiveness at seismic event detection on a dataset with electromagnetic noise. The data were recorded from a passive vertical monitoring array consisting of 16 levels of 3-component 15 Hz geophones installed in the field and continuously recording since January 2014. Electromagnetic and other noise recorded on the array has significantly impacted the utility of the data and it was necessary to characterize and filter the noise in order to attempt event detection. Traditional detection methods using short-term average/long-term average (STA/LTA) algorithms were evaluated and determined to be ineffective because of changing noise levels. To improve the performance of event detection and automatically and dynamically detect seismic events using effective data processing parameters, an adaptive sensor tuning (AST) algorithm developed by Sandia National Laboratories was utilized. AST exploits neuro-dynamic programming (reinforcement learning) trained with historic event data to automatically self-tune and determine optimal detection parameter settings. The key metric that guides the AST algorithm is consistency of each sensor with its nearest neighbors: parameters are automatically adjusted on a per station basis to be more or less sensitive to produce consistent agreement of detections in its neighborhood. The effects that changes in neighborhood configuration have on signal detection were explored, as it was determined that neighborhood-based detections significantly reduce the number of both missed and false detections in ground-truthed data. The performance of the AST algorithm was

  13. Optimized suppression of coherent noise from seismic data using the Karhunen-Loeve transform

    International Nuclear Information System (INIS)

    Montagne, Raul; Vasconcelos, Giovani L.

    2006-01-01

    Signals obtained in land seismic surveys are usually contaminated with coherent noise, among which the ground roll (Rayleigh surface waves) is of major concern for it can severely degrade the quality of the information obtained from the seismic record. This paper presents an optimized filter based on the Karhunen-Loeve transform for processing seismic images contaminated with ground roll. In this method, the contaminated region of the seismic record, to be processed by the filter, is selected in such way as to correspond to the maximum of a properly defined coherence index. The main advantages of the method are that the ground roll is suppressed with negligible distortion of the remnant reflection signals and that the filtering procedure can be automated. The image processing technique described in this study should also be relevant for other applications where coherent structures embedded in a complex spatiotemporal pattern need to be identified in a more refined way. In particular, it is argued that the method is appropriate for processing optical coherence tomography images whose quality is often degraded by coherent noise (speckle)

  14. AcquisitionFootprintAttenuationDrivenbySeismicAttributes

    Directory of Open Access Journals (Sweden)

    Cuellar-Urbano Mayra

    2014-04-01

    Full Text Available Acquisition footprint, one of the major problems that PEMEX faces in seismic imaging, is noise highly correlated to the geometric array of sources and receivers used for onshore and offshore seismic acquisitions. It prevails in spite of measures taken during acquisition and data processing. This pattern, throughout the image, is easily confused with geological features and misguides seismic attribute computation. In this work, we use seismic data from PEMEX Exploración y Producción to show the conditioning process for removing random and coherent noise using linear filters. Geometric attributes used in a workflow were computed for obtaining an acquisition footprint noise model and adaptively subtract it from the seismic data.

  15. Towards measuring the off-resonant thermal noise of a pendulum mirror

    CERN Document Server

    Leonhardt, V; Kloevekorn, P; Willke, B; Lück, H B; Danzmann, K

    2002-01-01

    Thermal noise is one of the dominant noise sources in interferometric length measurements and can limit the sensitivity of gravitational wave detectors. Our goal is to analyse the off-resonant thermal noise of a high Q pendulum. Therefore we interferometrically detect the length changes of a 2.3 cm long optical resonator, which for good seismic isolation consists of two multiple stage pendulums. We are able to lock the length of this optical resonator to a frequency-stabilized laser beam and as a result get the spectral density of the differential mirror movement.

  16. Ambient noise tomography across Mount St. Helens using a dense seismic array

    KAUST Repository

    Wang, Yadong

    2017-05-08

    We investigated upper crustal structure with data from a dense seismic array deployed around Mount St. Helens for 2 weeks in the summer of 2014. Interstation cross correlations of ambient seismic noise data from the array were obtained, and clear fundamental mode Rayleigh waves were observed between 2.5 and 5 s periods. In addition, higher-mode signals were observed around 2 s period. Frequency-time analysis was applied to measure fundamental mode Rayleigh wave phase velocities, which were used to invert for 2-D phase velocity maps. An azimuth-dependent traveltime correction was implemented to mitigate potential biases introduced due to an inhomogeneous noise source distribution. Reliable phase velocity maps were only obtained between 3 and 4 s periods due to limitations imposed by the array aperture and higher-mode contamination. The phase velocity tomography results, which are sensitive to structure shallower than 6 km depth, reveal an ~10–15% low-velocity anomaly centered beneath the volcanic edifice and peripheral high-velocity anomalies that likely correspond to cooled igneous intrusions. We suggest that the low-velocity anomaly reflects the high-porosity mixture of lava and ash deposits near the surface of the edifice, a highly fractured magmatic conduit and hydrothermal system beneath the volcano, and possibly a small contribution from silicate melt.

  17. Extracting Earth's Elastic Wave Response from Noise Measurements

    Science.gov (United States)

    Snieder, Roel; Larose, Eric

    2013-05-01

    Recent research has shown that noise can be turned from a nuisance into a useful seismic source. In seismology and other fields in science and engineering, the estimation of the system response from noise measurements has proven to be a powerful technique. To convey the essence of the method, we first treat the simplest case of a homogeneous medium to show how noise measurements can be used to estimate waves that propagate between sensors. We provide an overview of physics research—dating back more than 100 years—showing that random field fluctuations contain information about the system response. This principle has found extensive use in surface-wave seismology but can also be applied to the estimation of body waves. Because noise provides continuous illumination of the subsurface, the extracted response is ideally suited for time-lapse monitoring. We present examples of time-lapse monitoring as applied to the softening of soil after the 2011 Tohoku-oki earthquake, the detection of a precursor to a landslide, and temporal changes in the lunar soil.

  18. Variations in the microseismic noise level observed at the Bucovina Seismic Array (BURAR)

    International Nuclear Information System (INIS)

    Ghica, Daniela; Radulian, Mircea; Popa, Mihaela

    2005-01-01

    The microseismic noise level analysis for a seismic array is an essential step to accurately process the data recorded by the system. Basically, the observed background noise is a complex combination of natural and cultural sources as local geology, specific area activity (roads traffic, agricultural and industrial activities) or weather conditions.The understanding of the BURAR site noise characteristics is important for the array specific techniques (beamforming, f-k analysis), to apply the correct bandpass filtering, in order to obtain noise suppression and conservation of the 'true' seismic signal. The array monitoring potential of very small earthquakes and explosions will be enhanced, based on the best signal-to-noise ratio.The noise study at BURAR was carried out over one-year period, considering the noise power spectra in a 0.1 to 10 Hz frequency interval, for every 24 hours: 5 minutes during day and 5 minutes during night. Only short-period vertical sensors were considered. Systematic variations in the microseismic noise level at the BURAR site were observed:- diurnal: a decreasing of about 40% in night noise level at 1 Hz frequency; at 6 Hz frequency, the decreasing could reach 80-90% for 'non-winter' months (May to October); - seasonal: during the winter time, a lower noise level is observed, due to the restraining of the local specific activity (especially agriculture and farming) and of the road traffic. To summarize the level of microseismic noise observed at BURAR for one-year observations, a model curve for array noise level has been estimated, including upper and lower bounds of noise power density together with average spectrum. The BURAR noise model will be useful in the process of local site conditions estimation, by eliminating the noise contribution from the array recording. Also, the detection processing, phase identification and events location procedures will be significantly improved. (authors)

  19. Characteristics of Broadband Seismic Noise in Taiwan and Neighboring Islands

    Science.gov (United States)

    Chen, Ching-Wei; Rau, Ruey-Juin

    2017-04-01

    We used seismic waveform data from 115 broad-band stations of BATS (Institute of Earth Science, Academia Sinica) and Central Weather Bureau Seismic Network from 2012 to 2016 for noise-level mapping in Taiwan and neighboring islands. We computed Power Spectral Density (PSD) for each station and analyzed long-term variance of microseism energy and polarizations of noise for severe weather events. The island of Taiwan is surrounded by ocean and the Central Range which has the highest peak Jade Mountain at 3,952 meters height occupies more than 66% of the island and departs it into the east and west coasts. The geographic settings then result in the high population density in the western plain and northern Taiwan. The dominant noise source in the microseism band (periods from 4-20 seconds) is the coupling between the near-coast ocean and sea floor which produces the high noise of averaging -130 dB along the west coastal area. In the eastern volcanic-arc coastal areas, the noise level is about 7% smaller than the west coast due to its deeper offshore water depth. As for the shorter periods (0.1-0.25 seconds) band, the so-called culture noise, an anthropic activity variance with the highest -103 dB can be identified in the metropolitan areas, such as the Taipei city and the noise level in the Central Range area is averaging -138 dB. Moreover, the noise also shows a daily and temporal evolution mainly related to the traffic effect. Furthermore, we determined the noise level for the entire island of Taiwan during 26-28 September, 2016, when the typhoon Megi hit the island and retrieved the enhancement of secondary microseism energy for each stations. Typhoon Megi landed in eastern and central Taiwan and reached the maximum wind speed of 45m/s in the surrounded eyewall. The Central Range, as a barrier, decreased the wind speed in southern Taiwan making an enhancement less than 10 dB, while in northern Taiwan where the direction the typhoon headed to, can reach more than 35

  20. A method to establish seismic noise baselines for automated station assessment

    Science.gov (United States)

    McNamara, D.E.; Hutt, C.R.; Gee, L.S.; Benz, H.M.; Buland, R.P.

    2009-01-01

    We present a method for quantifying station noise baselines and characterizing the spectral shape of out-of-nominal noise sources. Our intent is to automate this method in order to ensure that only the highest-quality data are used in rapid earthquake products at NEIC. In addition, the station noise baselines provide a valuable tool to support the quality control of GSN and ANSS backbone data and metadata. The procedures addressed here are currently in development at the NEIC, and work is underway to understand how quickly changes from nominal can be observed and used within the NEIC processing framework. The spectral methods and software used to compute station baselines and described herein (PQLX) can be useful to both permanent and portable seismic stations operators. Applications include: general seismic station and data quality control (QC), evaluation of instrument responses, assessment of near real-time communication system performance, characterization of site cultural noise conditions, and evaluation of sensor vault design, as well as assessment of gross network capabilities (McNamara et al. 2005). Future PQLX development plans include incorporating station baselines for automated QC methods and automating station status report generation and notification based on user-defined QC parameters. The PQLX software is available through the USGS (http://earthquake. usgs.gov/research/software/pqlx.php) and IRIS (http://www.iris.edu/software/ pqlx/).

  1. 3-component beamforming analysis of ambient seismic noise field for Love and Rayleigh wave source directions

    Science.gov (United States)

    Juretzek, Carina; Hadziioannou, Céline

    2014-05-01

    Our knowledge about common and different origins of Love and Rayleigh waves observed in the microseism band of the ambient seismic noise field is still limited, including the understanding of source locations and source mechanisms. Multi-component array methods are suitable to address this issue. In this work we use a 3-component beamforming algorithm to obtain source directions and polarization states of the ambient seismic noise field within the primary and secondary microseism bands recorded at the Gräfenberg array in southern Germany. The method allows to distinguish between different polarized waves present in the seismic noise field and estimates Love and Rayleigh wave source directions and their seasonal variations using one year of array data. We find mainly coinciding directions for the strongest acting sources of both wave types at the primary microseism and different source directions at the secondary microseism.

  2. Passive monitoring of a sea dike during a tidal cycle using sea waves as a seismic noise source

    Science.gov (United States)

    Joubert, Anaëlle; Feuvre, Mathieu Le; Cote, Philippe

    2018-05-01

    Over the past decade, ambient seismic noise has been used successfully to monitor various geological objects with high accuracy. Recently, it has been shown that surface seismic waves propagating within a sea dike body can be retrieved from the cross-correlation of ambient seismic noise generated by sea waves. We use sea wave impacts to monitor the response of a sea dike during a tidal cycle using empirical Green's functions. These are obtained either by cross-correlation or deconvolution, from signals recorded by sensors installed linearly on the crest of a dike. Our analysis is based on delay and spectral amplitude measurements performed on reconstructed surface waves propagating along the array. We show that localized variations of velocity and attenuation are correlated with changes in water level as a probable consequence of water infiltration inside the structure. Sea dike monitoring is of critical importance for safety and economic reasons, as internal erosion is generally only detected at late stages by visual observations. The method proposed here may provide a solution for detecting structural weaknesses, monitoring progressive internal erosion, and delineating areas of interest for further geotechnical studies, in view to understanding the erosion mechanisms involved.

  3. Structure of Suasselkä Postglacial Fault in northern Finland obtained by analysis of ambient seismic noise

    Science.gov (United States)

    Afonin, Nikita; Kozlovskaya, Elena

    2016-04-01

    Understanding inner structure of seismogenic faults and their ability to reactivate is particularly important in investigating the continental intraplate seismicity regime. In our study we address this problem using analysis of ambient seismic noise recorded by the temporary DAFNE array in northern Fennoscandian Shield. The main purpose of the DAFNE/FINLAND passive seismic array experiment was to characterize the present-day seismicity of the Suasselkä post-glacial fault (SPGF) that was proposed as one potential target for the DAFNE (Drilling Active Faults in Northern Europe) project. The DAFNE/FINLAND array comprised the area of about 20 to 100 km and consisted of 8 short-period and 4 broad-band 3-component autonomous seismic stations installed in the close vicinity of the fault area. The array recorded continuous seismic data during September, 2011-May, 2013. Recordings of the array have being analyzed in order to identify and locate natural earthquakes from the fault area and to discriminate them from the blasts in the Kittilä Gold Mine. As a result, we found several dozens of natural seismic events originating from the fault area, which proves that the fault is still seismically active. In order to study the inner structure of the SPGF we use cross-correlation of ambient seismic noise recorded by the array. Analysis of azimuthal distribution of noise sources demonstrated that that during the time interval under consideration the distribution of noise sources is close to the uniform one. The continuous data were processed in several steps including single station data analysis, instrument response removal and time-domain stacking. The data were used to estimate empirical Green's functions between pairs of stations in the frequency band of 0.1-1 Hz and to calculate correspondent surface wave dispersion curves. After that S-wave velocity models were obtained as a result of dispersion curves inversion using Geopsy software. The results suggest that the area of

  4. Improved surface-wave retrieval from ambient seismic noise by multi-dimensional deconvolution

    Science.gov (United States)

    Wapenaar, Kees; Ruigrok, Elmer; van der Neut, Joost; Draganov, Deyan

    2011-01-01

    The methodology of surface-wave retrieval from ambient seismic noise by crosscorrelation relies on the assumption that the noise field is equipartitioned. Deviations from equipartitioning degrade the accuracy of the retrieved surface-wave Green's function. A point-spread function, derived from the same ambient noise field, quantifies the smearing in space and time of the virtual source of the Green's function. By multidimensionally deconvolving the retrieved Green's function by the point-spread function, the virtual source becomes better focussed in space and time and hence the accuracy of the retrieved surface-wave Green's function may improve significantly. We illustrate this at the hand of a numerical example and discuss the advantages and limitations of this new methodology.

  5. Crustal structure and Seismic Hazard studies in Nigeria from ambient noise and earthquakes

    Science.gov (United States)

    Kadiri, U. A.

    2016-12-01

    The crust, upper Mantle and seismic hazard studies have been carried out in Nigeria using noise and earthquake data. The data were acquired from stations in Nigeria and international Agencies. Firstly, known depths of sediments in the Lower Benue Trough (LBT) were collected from wells; Resonance frequency (Fo) and average shear-wave velocities (Vs) were then computed using Matlab. Secondly, average velocities were estimated from noise cross-correlation along seismic stations. Thirdly, the moho depths beneath Ife, Kaduna and Nsukka stations were estimated, as well as Vp/Vs ratio using 2009 earthquake with epicenter in Nigeria. Finally, Statistical and Probabilistic Seismic Hazard Assessment (PSHA) were used to compute seismic hazard parameters in Nigeria and its surroundings. The results showed that, soils on the LBT with average shear wave velocity of about 5684m/s would experience more amplification in case of an earthquake, compared to the basement complex in Nigeria. The Vs beneath the seismic stations in Nigeria were also estimated as 288m/s, 1019m/s, 940.6m/s and 255.02m/s in Ife, Nsukka, Awka, and Abakaliki respectively. The average velocity along the station paths was 4.5km/secs, and the Vp, Vs for depths 100-500km profile in parts of South West Nigeria increased from about 5.83-6.42Km/sec and 3.48-6.31km/s respectively with Vp/Vs ratio decreasing from 1.68 to 1.02. Statistical analysis revealed a trend of increasing earthquake occurrence along the Mid-Atlantic Ridge and tending to West African region. The analysis of PSHA shows the likelihood of earthquakes with different magnitudes occurring in Nigeria and other parts West Africa in future. This work is aimed at addressing critical issues regarding sites effect characterization, improved earthquake location and robust seismic hazards assessment for planning in the choice of sites for critical facilities in Nigeria. Keywords: Sediment thickness, Resonance Frequency, Average Velocity, Seismic Hazard, Nigeria

  6. Using Seismic Interferometry to Investigate Seismic Swarms

    Science.gov (United States)

    Matzel, E.; Morency, C.; Templeton, D. C.

    2017-12-01

    Seismicity provides a direct means of measuring the physical characteristics of active tectonic features such as fault zones. Hundreds of small earthquakes often occur along a fault during a seismic swarm. This seismicity helps define the tectonically active region. When processed using novel geophysical techniques, we can isolate the energy sensitive to the fault, itself. Here we focus on two methods of seismic interferometry, ambient noise correlation (ANC) and the virtual seismometer method (VSM). ANC is based on the observation that the Earth's background noise includes coherent energy, which can be recovered by observing over long time periods and allowing the incoherent energy to cancel out. The cross correlation of ambient noise between a pair of stations results in a waveform that is identical to the seismogram that would result if an impulsive source located at one of the stations was recorded at the other, the Green function (GF). The calculation of the GF is often stable after a few weeks of continuous data correlation, any perturbations to the GF after that point are directly related to changes in the subsurface and can be used for 4D monitoring.VSM is a style of seismic interferometry that provides fast, precise, high frequency estimates of the Green's function (GF) between earthquakes. VSM illuminates the subsurface precisely where the pressures are changing and has the potential to image the evolution of seismicity over time, including changes in the style of faulting. With hundreds of earthquakes, we can calculate thousands of waveforms. At the same time, VSM collapses the computational domain, often by 2-3 orders of magnitude. This allows us to do high frequency 3D modeling in the fault region. Using data from a swarm of earthquakes near the Salton Sea, we demonstrate the power of these techniques, illustrating our ability to scale from the far field, where sources are well separated, to the near field where their locations fall within each other

  7. Estimation of background noise level on seismic station using statistical analysis for improved analysis accuracy

    Science.gov (United States)

    Han, S. M.; Hahm, I.

    2015-12-01

    We evaluated the background noise level of seismic stations in order to collect the observation data of high quality and produce accurate seismic information. Determining of the background noise level was used PSD (Power Spectral Density) method by McNamara and Buland (2004) in this study. This method that used long-term data is influenced by not only innate electronic noise of sensor and a pulse wave resulting from stabilizing but also missing data and controlled by the specified frequency which is affected by the irregular signals without site characteristics. It is hard and inefficient to implement process that filters out the abnormal signal within the automated system. To solve these problems, we devised a method for extracting the data which normally distributed with 90 to 99% confidence intervals at each period. The availability of the method was verified using 62-seismic stations with broadband and short-period sensors operated by the KMA (Korea Meteorological Administration). Evaluation standards were NHNM (New High Noise Model) and NLNM (New Low Noise Model) published by the USGS (United States Geological Survey). It was designed based on the western United States. However, Korean Peninsula surrounded by the ocean on three sides has a complicated geological structure and a high population density. So, we re-designed an appropriate model in Korean peninsula by statistically combined result. The important feature is that secondary-microseism peak appeared at a higher frequency band. Acknowledgements: This research was carried out as a part of "Research for the Meteorological and Earthquake Observation Technology and Its Application" supported by the 2015 National Institute of Meteorological Research (NIMR) in the Korea Meteorological Administration.

  8. Cultural noise and the night-day asymmetry of the seismic activity recorded at the Bunker-East (BKE) Vesuvian Station

    Science.gov (United States)

    Scafetta, Nicola; Mazzarella, Adriano

    2018-01-01

    Mazzarella and Scafetta (2016) showed that the seismic activity recorded at the Bunker-East (BKE) Vesuvian station from 1999 to 2014 suggests a higher nocturnal seismic activity. However, this station is located at about 50 m from the main road to the volcano's crater and since 2009 its seismograms also record a significant diurnal cultural noise due mostly to tourist tours to Mt. Vesuvius. Herein, we investigate whether the different seismic frequency between day and night times could be an artifact of the peculiar cultural noise that affects this station mostly from 9:00 am to 5:00 pm from spring to fall. This time-distributed cultural noise should evidently reduce the possibility to detect low magnitude earthquakes during those hours but not high magnitude events. Using hourly distributions referring to different magnitude thresholds from M = 0.2 to M = 2.0, the Gutenberg-Richter magnitude-frequency diagram applied to the day and night-time sub-catalogs and Montecarlo statistical modeling, we demonstrate that the day-night asymmetry persists despite an evident disruption induced by cultural noise during day-hours. In particular, for the period 1999-2017, and for earthquakes with M ≥ 2 we found a Gutenberg-Richter exponent b = 1.66 ± 0.07 for the night-time events and b = 2.06 ± 0.07 for day-time events. Moreover, we repeat the analysis also for an older BKE catalog covering the period from 1992 to 2000 when cultural noise was not present. The analysis confirms a higher seismic nocturnal activity that is also characterized by a smaller Gutenberg-Richter exponent b for M ≥ 2 earthquakes relative to the day-time activity. Thus, the found night-day seismic asymmetric behavior is likely due to a real physical feature affecting Mt. Vesuvius.

  9. Towards a first design of a Newtonian-noise cancellation system for Advanced LIGO

    International Nuclear Information System (INIS)

    Coughlin, M; Mukund, N; Mitra, S; Harms, J; Driggers, J; Adhikari, R

    2016-01-01

    Newtonian gravitational noise from seismic fields is predicted to be a limiting noise source at low frequency for second generation gravitational-wave detectors. Mitigation of this noise will be achieved by Wiener filtering using arrays of seismometers deployed in the vicinity of all test masses. In this work, we present optimized configurations of seismometer arrays using a variety of simplified models of the seismic field based on seismic observations at LIGO Hanford. The model that best fits the seismic measurements leads to noise reduction limited predominantly by seismometer self-noise. A first simplified design of seismic arrays for Newtonian-noise cancellation at the LIGO sites is presented, which suggests that it will be sufficient to monitor surface displacement inside the buildings. (paper)

  10. Seismic and resistivity anisotropy analysis at the Low-Noise Underground Laboratory (LSBB) of Rustrel (France)

    Science.gov (United States)

    Zeyen, H. J.; Bereš, J.; Gaffet, S.; Sénéchal, G.; Rousset, D.; Pessel, M.

    2011-12-01

    Many geological materials exhibit anisotropic behaviour. A limestone massif, especially if cracked with fractures and faults in a predominant orientation is expected to manifest seismic and electric resistivity anisotropy. Seismic velocity within air- or water-filled cracks is smaller than in the rock matrix. Therefore, the velocity parallel to fractures, controlled mainly by the rock matrix, is expected to be faster than perpendicular to the fractures, where waves have to cross fractures and rock matrix. Seismic and resistivity measurements were conducted in three underground galleries of the Low-Noise Underground Gallery (LSBB) in southern France forming a horse-shoe setting. The galleries are located inside a karstic limestone massif. Around 22500 first arrival travel-times were picked and different types of pole-pole and dipole-dipole resistivity measurement were carried out in parallel. Resistivities and velocities vary strongly with direction of observation. The direction of fast velocities is at right angle with the one of slow velocities, a typical sign for anisotropy. Observation of a system of subparallel fractures allows to approximate the actual rock anisotropy by a horizontal transverse isotropy model. The dataset was treated by different approaches, including simple cosine fit, inversion of average anisotropy parameters using a Monte-Carlo approach, isotropic and anisotropic tomography inversion. All of the above confirm the directions of fast and slow velocities (30°N and 120°N respectively) and an anisotropy of about 10%. Common measurements of seismic and resistivity data at different periods of the year will have the potential to determine quantitatively the fracture density and the free water content in this karst massif.

  11. Structure of the Suasselkä postglacial fault in northern Finland obtained by analysis of local events and ambient seismic noise

    Science.gov (United States)

    Afonin, Nikita; Kozlovskaya, Elena; Kukkonen, Ilmo; Dafne/Finland Working Group

    2017-04-01

    Understanding the inner structure of seismogenic faults and their ability to reactivate is particularly important in investigating the continental intraplate seismicity regime. In our study we address this problem using analysis of local seismic events and ambient seismic noise recorded by the temporary DAFNE array in the northern Fennoscandian Shield. The main purpose of the DAFNE/FINLAND passive seismic array experiment was to characterize the present-day seismicity of the Suasselkä postglacial fault (SPGF), which was proposed as one potential target for the DAFNE (Drilling Active Faults in Northern Europe) project. The DAFNE/FINLAND array comprised an area of about 20 to 100 km and consisted of eight short-period and four broadband three-component autonomous seismic stations installed in the close vicinity of the fault area. The array recorded continuous seismic data during September 2011-May 2013. Recordings of the array have being analysed in order to identify and locate natural earthquakes from the fault area and to discriminate them from the blasts in the Kittilä gold mine. As a result, we found a number of natural seismic events originating from the fault area, which proves that the fault is still seismically active. In order to study the inner structure of the SPGF we use cross-correlation of ambient seismic noise recorded by the array. Analysis of azimuthal distribution of noise sources demonstrated that during the time interval under consideration the distribution of noise sources is close to the uniform one. The continuous data were processed in several steps including single-station data analysis, instrument response removal and time-domain stacking. The data were used to estimate empirical Green's functions between pairs of stations in the frequency band of 0.1-1 Hz and to calculate corresponding surface wave dispersion curves. The S-wave velocity models were obtained as a result of dispersion curve inversion. The results suggest that the area of

  12. 6C polarization analysis - seismic direction finding in coherent noise, automated event identification, and wavefield separation

    Science.gov (United States)

    Schmelzbach, C.; Sollberger, D.; Greenhalgh, S.; Van Renterghem, C.; Robertsson, J. O. A.

    2017-12-01

    Polarization analysis of standard three-component (3C) seismic data is an established tool to determine the propagation directions of seismic waves recorded by a single station. A major limitation of seismic direction finding methods using 3C recordings, however, is that a correct propagation-direction determination is only possible if the wave mode is known. Furthermore, 3C polarization analysis techniques break down in the presence of coherent noise (i.e., when more than one event is present in the analysis time window). Recent advances in sensor technology (e.g., fibre-optical, magnetohydrodynamic angular rate sensors, and ring laser gyroscopes) have made it possible to accurately measure all three components of rotational ground motion exhibited by seismic waves, in addition to the conventionally recorded three components of translational motion. Here, we present an extension of the theory of single station 3C polarization analysis to six-component (6C) recordings of collocated translational and rotational ground motions. We demonstrate that the information contained in rotation measurements can help to overcome some of the main limitations of standard 3C seismic direction finding, such as handling multiple arrivals simultaneously. We show that the 6C polarisation of elastic waves measured at the Earth's free surface does not only depend on the seismic wave type and propagation direction, but also on the local P- and S-wave velocities just beneath the recording station. Using an adaptation of the multiple signal classification algorithm (MUSIC), we demonstrate how seismic events can univocally be identified and characterized in terms of their wave type. Furthermore, we show how the local velocities can be inferred from single-station 6C data, in addition to the direction angles (inclination and azimuth) of seismic arrivals. A major benefit of our proposed 6C method is that it also allows the accurate recovery of the wave type, propagation directions, and phase

  13. Shear-wave velocities beneath the Harrat Rahat volcanic field, Saudi Arabia, using ambient seismic noise analysis

    Science.gov (United States)

    Civilini, F.; Mooney, W.; Savage, M. K.; Townend, J.; Zahran, H. M.

    2017-12-01

    We present seismic shear-velocities for Harrat Rahat, a Cenozoic bimodal alkaline volcanic field in west-central Saudi Arabia, using seismic tomography from natural ambient noise. This project is part of an overall effort by the Saudi Geological Survey and the United States Geological Survey to describe the subsurface structure and assess hazards within the Saudi Arabian shield. Volcanism at Harrat Rahat began approximately 10 Ma, with at least three pulses around 10, 5, and 2 Ma, and at least several pulses in the Quaternary from 1.9 Ma to the present. This area is instrumented by 14 broadband Nanometrics Trillium T120 instruments across an array aperture of approximately 130 kilometers. We used a year of recorded natural ambient noise to determine group and phase velocity surface wave dispersion maps with a 0.1 decimal degree resolution for radial-radial, transverse-transverse, and vertical-vertical components of the empirical Green's function. A grid-search method was used to carry out 1D shear-velocity inversions at each latitude-longitude point and the results were interpolated to produce pseudo-3D shear velocity models. The dispersion maps resolved a zone of slow surface wave velocity south-east of the city of Medina spatially correlated with the 1256 CE eruption. A crustal layer interface at approximately 20 km depth was determined by the inversions for all components, matching the results of prior seismic-refraction studies. Cross-sections of the 3D shear velocity models were compared to gravity measurements obtained in the south-east edge of the field. We found that measurements of low gravity qualitatively correlate with low values of shear-velocity below 20 km along the cross-section profile. We apply these methods to obtain preliminary tomography results on the entire Arabian Shield.

  14. Seismic tomography of Basse-Terre volcanic island, Guadeloupe, Lesser Antilles, using earthquake travel times and noise correlations

    Science.gov (United States)

    Barnoud, Anne; Coutant, Olivier; Bouligand, Claire; Massin, Frédérick; Stehly, Laurent

    2015-04-01

    We image the volcanic island of Basse-Terre, Guadeloupe, Lesser Antilles, using both earthquake travel times and noise correlations. (1) A new earthquake catalog was recently compiled for the Lesser Antilles by the CDSA/OVSG/IPGP (Massin et al., EGU General Assembly 2014) and allows us to perform classical travel time tomography to obtain smooth 3D body wave velocity models. The geometrical configuration of the volcanic arc controls the resolution of the model in our zone of interest. (2) Surface wave tomography using noise correlations was successfully applied to volcanoes (Brenguier et al., Geophys. Res. Lett. 2007). We use seismic noise recorded at 16 broad-band stations and 9 short-period stations from Basse-Terre over a period of six years (2007-2012). For each station pair, we extract a dispersion curve from the noise correlation to get surface wave velocity models. The inversion of the dispersion curves produces a 3D S-wave velocity model of the island. The spatial distribution of seismic stations accross the island is highly heterogeneous, leading to higher resolution near the dome of the Soufrière of Guadeloupe volcano. Resulting velocity models are compared with densities obtained by 3D inversion of gravimetric data (Barnoud et al., AGU Fall Meeting 2013). Further work should include simultaneous inversion of seismic and gravimetric datasets to overcome resolution limitations.

  15. Ambient Seismic Noise Tomography of a Loess High Bank at Dunaszekcső (Hungary)

    Czech Academy of Sciences Publication Activity Database

    Szanyi, G.; Gráczer, Z.; Györi, E.; Kaláb, Zdeněk; Lednická, Markéta

    2016-01-01

    Roč. 173, č. 8 (2016), s. 2913-2928 ISSN 0033-4553 Institutional support: RVO:68145535 Keywords : seismic interferometry * ambient noise * group velocity * tomography * landslide * high bank Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.591, year: 2016 http://link.springer.com/article/10.1007/s00024-016-1304-1

  16. Antarctic ice sheet thickness estimation using the horizontal-to-vertical spectral ratio method with single-station seismic ambient noise

    Directory of Open Access Journals (Sweden)

    P. Yan

    2018-03-01

    Full Text Available We report on a successful application of the horizontal-to-vertical spectral ratio (H / V method, generally used to investigate the subsurface velocity structures of the shallow crust, to estimate the Antarctic ice sheet thickness for the first time. Using three-component, five-day long, seismic ambient noise records gathered from more than 60 temporary seismic stations located on the Antarctic ice sheet, the ice thickness measured at each station has comparable accuracy to the Bedmap2 database. Preliminary analysis revealed that 60 out of 65 seismic stations on the ice sheet obtained clear peak frequencies (f0 related to the ice sheet thickness in the H / V spectrum. Thus, assuming that the isotropic ice layer lies atop a high velocity half-space bedrock, the ice sheet thickness can be calculated by a simple approximation formula. About half of the calculated ice sheet thicknesses were consistent with the Bedmap2 ice thickness values. To further improve the reliability of ice thickness measurements, two-type models were built to fit the observed H / V spectrum through non-linear inversion. The two-type models represent the isotropic structures of single- and two-layer ice sheets, and the latter depicts the non-uniform, layered characteristics of the ice sheet widely distributed in Antarctica. The inversion results suggest that the ice thicknesses derived from the two-layer ice models were in good concurrence with the Bedmap2 ice thickness database, and that ice thickness differences between the two were within 300 m at almost all stations. Our results support previous finding that the Antarctic ice sheet is stratified. Extensive data processing indicates that the time length of seismic ambient noise records can be shortened to two hours for reliable ice sheet thickness estimation using the H / V method. This study extends the application fields of the H / V method and provides an effective and independent way to measure

  17. SEG Advances in Rotational Seismic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Robert; Laughlin, Darren; Brune, Bob

    2016-10-17

    Significant advancements in the development of sensors to enable rotational seismic measurements have been achieved. Prototypes are available now to support experiments that help validate the utility of rotational seismic measurements.

  18. Time-lapse imaging of fault properties at seismogenic depth using repeating earthquakes, active sources and seismic ambient noise

    Science.gov (United States)

    Cheng, Xin

    2009-12-01

    The time-varying stress field of fault systems at seismogenic depths plays the mort important role in controlling the sequencing and nucleation of seismic events. Using seismic observations from repeating earthquakes, controlled active sources and seismic ambient noise, five studies at four different fault systems across North America, Central Japan, North and mid-West China are presented to describe our efforts to measure such time dependent structural properties. Repeating and similar earthquakes are hunted and analyzed to study the post-seismic fault relaxation at the aftershock zone of the 1984 M 6.8 western Nagano and the 1976 M 7.8 Tangshan earthquakes. The lack of observed repeating earthquakes at western Nagano is attributed to the absence of a well developed weak fault zone, suggesting that the fault damage zone has been almost completely healed. In contrast, the high percentage of similar and repeating events found at Tangshan suggest the existence of mature fault zones characterized by stable creep under steady tectonic loading. At the Parkfield region of the San Andreas Fault, repeating earthquake clusters and chemical explosions are used to construct a scatterer migration image based on the observation of systematic temporal variations in the seismic waveforms across the occurrence time of the 2004 M 6 Parkfield earthquake. Coseismic fluid charge or discharge in fractures caused by the Parkfield earthquake is used to explain the observed seismic scattering properties change at depth. In the same region, a controlled source cross-well experiment conducted at SAFOD pilot and main holes documents two large excursions in the travel time required for a shear wave to travel through the rock along a fixed pathway shortly before two rupture events, suggesting that they may be related to pre-rupture stress induced changes in crack properties. At central China, a tomographic inversion based on the theory of seismic ambient noise and coda wave interferometry

  19. Using discrete wavelet transform features to discriminate between noise and phases in seismic waveforms

    Science.gov (United States)

    Forrest, R.; Ray, J.; Hansen, C. W.

    2017-12-01

    Currently, simple polarization metrics such as the horizontal-to-vertical ratio are used to discriminate between noise and various phases in three-component seismic waveform data collected at regional distances. Accurately establishing the identity and arrival of these waves in adverse signal-to-noise environments is helpful in detecting and locating the seismic events. In this work, we explore the use of multiresolution decompositions to discriminate between noise and event arrivals. A segment of the waveform lying inside a time-window that spans the coda of an arrival is subjected to a discrete wavelet decomposition. Multi-resolution classification features as well as statistical tests are derived from these wavelet decomposition quantities to quantify their discriminating power. Furthermore, we move to streaming data and address the problem of false positives by introducing ensembles of classifiers. We describe in detail results of these methods tuned from data obtained from Coronel Fontana, Argentina (CFAA), as well as Stephens Creek, Australia (STKA). Acknowledgement: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  20. Seismic Structure of Perth Basin (Australia) and surroundings from Passive Seismic Deployments

    Science.gov (United States)

    Issa, N.; Saygin, E.; Lumley, D. E.; Hoskin, T. E.

    2016-12-01

    We image the subsurface structure of Perth Basin, Western Australia and surroundings by using ambient seismic noise data from 14 seismic stations recently deployed by University of Western Australia (UWA) and other available permanent stations from Geoscience Australia seismic network and the Australian Seismometers in Schools program. Each of these 14 UWA seismic stations comprises a broadband sensor and a high fidelity 3-component 10 Hz geophone, recording in tandem at 250 Hz and 1000 Hz. The other stations used in this study are equipped with short period and broadband sensors. In addition, one shallow borehole station is operated with eight 3 component geophones at depths of between 2 and 44 m. The network is deployed to characterize natural seismicity in the basin and to try and identify any microseismic activity across Darling Fault Zone (DFZ), bounding the basin to the east. The DFZ stretches to approximately 1000 km north-south in Western Australia, and is one of the longest fault zones on the earth with a limited number of detected earthquakes. We use seismic noise cross- and auto-correlation methods to map seismic velocity perturbations across the basin and the transition from DFZ to the basin. Retrieved Green's functions are stable and show clear dispersed waveforms. Travel times of the surface wave Green's functions from noise cross-correlations are inverted with a two-step probabilistic framework to map the absolute shear wave velocities as a function of depth. The single station auto-correlations from the seismic noise yields P wave reflectivity under each station, marking the major discontinuities. Resulting images show the shear velocity perturbations across the region. We also quantify the variation of ambient seismic noise at different depths in the near surface using the geophones in the shallow borehole array.

  1. Rayleigh wave tomography of the British Isles from ambient seismic noise

    Science.gov (United States)

    Nicolson, Heather; Curtis, Andrew; Baptie, Brian

    2014-08-01

    We present the first Rayleigh wave group speed maps of the British Isles constructed from ambient seismic noise. The maps also constitute the first surface wave tomography study of the crust under the British Isles at a relatively high resolution. We computed interferometric, interstation Rayleigh waves from vertical component records of ambient seismic noise recorded on 63 broad-band and short-period stations across the UK and Ireland. Group velocity measurements were made from the resulting surface wave dispersion curves between 5 and 25 s using a multiple phase-matched filter method. Uncertainties in the group velocities were computed by calculating the standard deviation of four dispersion curves constructed by stacking a random selection of daily cross-correlations. Where an uncertainty could not be obtained for a ray path using this method, we estimated it as a function of the interreceiver distance. Group velocity maps were computed for 5-25-s period using the Fast Marching forward solution of the eikonal equation and iterative, linearized inversion. At short and intermediate periods, the maps show remarkable agreement with the major geological features of the British Isles including: terrane boundaries in Scotland; regions of late Palaeozoic basement uplift; areas of exposed late Proterozoic/early Palaeozoic rocks in southwest Scotland, northern England and northwest Wales and, sedimentary basins formed during the Mesozoic such as the Irish Sea Basin, the Chester Basin, the Worcester Graben and the Wessex Basin. The maps also show a consistent low-velocity anomaly in the region of the Midlands Platform, a Proterozoic crustal block in the English Midlands. At longer periods, which are sensitive velocities in the lower crustal/upper mantle, the maps suggest that the depth of Moho beneath the British Isles decreases towards the north and west. Areas of fast velocity in the lower crust also coincide with areas thought to be associated with underplating of the

  2. Using the Moon As A Low-Noise Seismic Detector For Strange Quark Nuggets

    Science.gov (United States)

    Banerdt, W. Bruce; Chui, Talso; Griggs, Cornelius E.; Herrin, Eugene T.; Nakamura, Yosio; Paik, Ho Jung; Penanen, Konstantin; Rosenbaum, Doris; Teplitz, Vigdor L.; Young, Joseph

    2006-01-01

    Strange quark matter made of up, down and strange quarks has been postulated by Witten [1]. Strange quark matter would be nearly charge neutral and would have density of nuclear matter (10(exp 14) gm/cu cm). Witten also suggested that nuggets of strange quark matter, or strange quark nuggets (SQNs), could have formed shortly after the Big Bang, and that they would be viable candidates for cold dark matter. As suggested by de Rujula and Glashow [2], an SQN may pass through a celestial body releasing detectable seismic energy along a straight line. The Moon, being much quieter seismically than the Earth, would be a favorable place to search for such events. We review previous searches for SQNs to illustrate the parameter space explored by using the Moon as a low-noise detector of SQNs. We also discuss possible detection schemes using a single seismometer, and using an International Lunar Seismic Network.

  3. Correction of clock errors in seismic data using noise cross-correlations

    Science.gov (United States)

    Hable, Sarah; Sigloch, Karin; Barruol, Guilhem; Hadziioannou, Céline

    2017-04-01

    Correct and verifiable timing of seismic records is crucial for most seismological applications. For seismic land stations, frequent synchronization of the internal station clock with a GPS signal should ensure accurate timing, but loss of GPS synchronization is a common occurrence, especially for remote, temporary stations. In such cases, retrieval of clock timing has been a long-standing problem. The same timing problem applies to Ocean Bottom Seismometers (OBS), where no GPS signal can be received during deployment and only two GPS synchronizations can be attempted upon deployment and recovery. If successful, a skew correction is usually applied, where the final timing deviation is interpolated linearly across the entire operation period. If GPS synchronization upon recovery fails, then even this simple and unverified, first-order correction is not possible. In recent years, the usage of cross-correlation functions (CCFs) of ambient seismic noise has been demonstrated as a clock-correction method for certain network geometries. We demonstrate the great potential of this technique for island stations and OBS that were installed in the course of the Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel (RHUM-RUM) project in the western Indian Ocean. Four stations on the island La Réunion were affected by clock errors of up to several minutes due to a missing GPS signal. CCFs are calculated for each day and compared with a reference cross-correlation function (RCF), which is usually the average of all CCFs. The clock error of each day is then determined from the measured shift between the daily CCFs and the RCF. To improve the accuracy of the method, CCFs are computed for several land stations and all three seismic components. Averaging over these station pairs and their 9 component pairs reduces the standard deviation of the clock errors by a factor of 4 (from 80 ms to 20 ms). This procedure permits a continuous monitoring of clock errors where small clock

  4. Rayleigh waves from correlation of seismic noise in Great Island of Tierra del Fuego, Argentina: Constraints on upper crustal structure

    Directory of Open Access Journals (Sweden)

    Carolina Buffoni

    2018-01-01

    Full Text Available In this study, the ambient seismic noise cross-correlation technique is applied to estimate the upper structure of the crust beneath Great Island of Tierra del Fuego (TdF, Argentina, by the analysis of short-period Rayleigh wave group velocities. The island, situated in the southernmost South America, is a key area of investigation among the interaction between the South American and Scotia plates and is considered as a very seismically active one. Through cross-correlating the vertical components of ambient seismic noise registered at four broadband stations in TdF, we were able to extract Rayleigh waves which were used to estimate group velocities in the period band of 2.5–16 s using a time-frequency analysis. Although ambient noise sources are distributed inhomogeneously, robust empirical Green's functions could be recovered from the cross-correlation of 12 months of ambient noise. The observed group velocities were inverted considering a non-linear iterative damped least-squares inversion procedure and several 1-D shear wave velocity models of the upper crust were obtained. According to the inversion results, the S-wave velocity ranges between 1.75 and 3.7 km/s in the first 10 km of crust, depending on the pair of stations considered. These results are in agreement to the major known surface and sub-surface geological and tectonic features known in the area. This study represents the first ambient seismic noise analysis in TdF in order to constraint the upper crust beneath this region. It can also be considered as a successful feasibility study for future analyses with a denser station deployment for a more detailed imaging of structure.

  5. Waveform correlation and coherence of short-period seismic noise within Gauribidanur array with implications for event detection

    International Nuclear Information System (INIS)

    Bhadauria, Y.S.; Arora, S.K.

    1995-01-01

    In continuation with our effort to model the short-period micro seismic noise at the seismic array at Gauribidanur (GBA), we have examined in detail time-correlation and spectral coherence of the noise field within the array space. This has implications of maximum possible improvement in signal-to-noise ratio (SNR) relevant to event detection. The basis of this study is about a hundred representative wide-band noise samples collected from GBA throughout the year 1992. Both time-structured correlation as well as coherence of the noise waveforms are found to be practically independent of the inter element distances within the array, and they exhibit strong temporal and spectral stability. It turns out that the noise is largely incoherent at frequencies ranging upwards from 2 Hz; the coherency coefficient tends to increase in the lower frequency range attaining a maximum of 0.6 close to 0.5 Hz. While the maximum absolute cross-correlation also diminishes with increasing frequency, the zero-lag cross-correlation is found to be insensitive to frequency filtering regardless of the pass band. An extremely small value of -0.01 of the zero-lag correlation and a comparatively higher year-round average estimate at 0.15 of the maximum absolute time-lagged correlation yields an SNR improvement varying between a probable high of 4.1 and a low of 2.3 for the full 20-element array. 19 refs., 6 figs

  6. Measurement of Noise in Supercapacitors

    OpenAIRE

    Szewczyk Arkadiusz

    2017-01-01

    A developed method and measurement setup for measurement of noise generated in a supercapacitor is presented. The requirements for noise data recording are considered and correlated with working modes of supercapacitors. An example of results of low-frequency noise measurements in commercially available supercapacitors are presented. The ability of flicker noise measurements suggests that they can be used to assess quality of tested supercapacitors.

  7. Measurement of Noise in Supercapacitors

    Directory of Open Access Journals (Sweden)

    Szewczyk Arkadiusz

    2017-12-01

    Full Text Available A developed method and measurement setup for measurement of noise generated in a supercapacitor is presented. The requirements for noise data recording are considered and correlated with working modes of supercapacitors. An example of results of low-frequency noise measurements in commercially available supercapacitors are presented. The ability of flicker noise measurements suggests that they can be used to assess quality of tested supercapacitors.

  8. Micromachined silicon seismic accelerometer development

    Energy Technology Data Exchange (ETDEWEB)

    Barron, C.C.; Fleming, J.G.; Montague, S. [and others

    1996-08-01

    Batch-fabricated silicon seismic transducers could revolutionize the discipline of seismic monitoring by providing inexpensive, easily deployable sensor arrays. Our ultimate goal is to fabricate seismic sensors with sensitivity and noise performance comparable to short-period seismometers in common use. We expect several phases of development will be required to accomplish that level of performance. Traditional silicon micromachining techniques are not ideally suited to the simultaneous fabrication of a large proof mass and soft suspension, such as one needs to achieve the extreme sensitivities required for seismic measurements. We have therefore developed a novel {open_quotes}mold{close_quotes} micromachining technology that promises to make larger proof masses (in the 1-10 mg range) possible. We have successfully integrated this micromolding capability with our surface-micromachining process, which enables the formation of soft suspension springs. Our calculations indicate that devices made in this new integrated technology will resolve down to at least sub-{mu}G signals, and may even approach the 10{sup -10} G/{radical}Hz acceleration levels found in the low-earth-noise model.

  9. Pre-failure behaviour of an unstable limestone cliff from displacement and seismic data

    Directory of Open Access Journals (Sweden)

    J.-L. Got

    2010-04-01

    Full Text Available We monitored the displacement and seismic activity of an unstable vertical rock slice in a natural limestone cliff of the southeast Vercors massif, southeast France, during the months preceding its collapse. Displacement measurements showed an average acceleration of the movement of its top, with clear increases in the displacement velocity and in the discrete seismic event production rate during periods where temperature falls, with more activity when rainfall or frost occurs. Crises of discrete seismic events produce high amplitudes in periodograms, but do not change the high frequency base noise level rate. We infer that these crises express the critical crack growth induced by water weakening (from water vapor condensation or rain of the rock strength rather than to a rapid change in applied stresses. Seismic noise analysis showed a steady increase in the high frequency base noise level and the emergence of spectral modes in the signal recorded by the sensor installed on the unstable rock slice during the weeks preceding the collapse. High frequency seismic noise base level seems to represent subcritical crack growth. It is a smooth and robust parameter whose variations are related to generalized changes in the rupture process. Drop of the seismic noise amplitude was concomitant with the emergence of spectral modes – that are compatible with high-order eigenmodes of the unstable rock slice – during the later stages of its instability. Seismic noise analysis, especially high frequency base noise level analysis may complement that of inverse displacement velocity in early-warning approaches when strong displacement fluctuations occur.

  10. Fast principal component analysis for stacking seismic data

    Science.gov (United States)

    Wu, Juan; Bai, Min

    2018-04-01

    Stacking seismic data plays an indispensable role in many steps of the seismic data processing and imaging workflow. Optimal stacking of seismic data can help mitigate seismic noise and enhance the principal components to a great extent. Traditional average-based seismic stacking methods cannot obtain optimal performance when the ambient noise is extremely strong. We propose a principal component analysis (PCA) algorithm for stacking seismic data without being sensitive to noise level. Considering the computational bottleneck of the classic PCA algorithm in processing massive seismic data, we propose an efficient PCA algorithm to make the proposed method readily applicable for industrial applications. Two numerically designed examples and one real seismic data are used to demonstrate the performance of the presented method.

  11. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knox, Hunter Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); James, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Rebekah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cole, Chris [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  12. Engineering geological zonation of a complex landslide system through seismic ambient noise measurements at the Selmun Promontory (Malta)

    Science.gov (United States)

    Iannucci, Roberto; Martino, Salvatore; Paciello, Antonella; D'Amico, Sebastiano; Galea, Pauline

    2018-05-01

    The cliff slope of the Selmun Promontory, located in the Northern part of the island of Malta (Central Mediterranean Sea) close to the coastline, is involved in a landslide process as exhibited by the large block-size talus at its bottom. The landslide process is related to the geological succession outcropping in the Selmun area, characterized by the overposition of a grained limestone on a plastic clay, that induces a lateral spreading phenomenon associated with detachment and collapse of different-size rock blocks. The landslide process shapes a typical landscape with a stable plateau of stiff limestone bordered by an unstable cliff slope. The ruins of Għajn Ħadid Tower, the first of the 13 watchtowers built in 1658 by the Grand Master Martin de Redin, stand out on the Selmun Promontory. The conservation of this important heritage site, already damaged by an earthquake which struck the Maltese Archipelago on 1856 October 12, is currently threatened by a progressive retreat of the landslide process towards the inland plateau area. During 2015 and 2016, field surveys were carried out to derive an engineering geological model of the Selmun Promontory. After a high-resolution geomechanical survey, the spatial distribution of the joints affecting the limestone was obtained. At the same time, 116 single-station noise measurements were carried out to cover inland and edge of the limestone plateau as well as the slope where the clays outcrop. The obtained 1-hour time histories were analysed through the horizontal to vertical spectral ratio technique, as well as polarization and ellipticity analysis of particle motion to define the local seismic response in zones having different stability conditions, that is, related to the presence of unstable rock blocks characterized by different vibrational modes. The results obtained demonstrate the suitability of passive seismic geophysical techniques for zoning landslide hazard in case of rock slopes and prove the relevance of

  13. Seasonal variation of seismic ambient noise level at King Sejong Station, Antarctica

    Science.gov (United States)

    Lee, W.; Sheen, D.; Seo, K.; Yun, S.

    2009-12-01

    The generation of the secondary- or double-frequency (DF) microseisms with dominant frequencies between 0.1 and 0.5 Hz has been explained by nonlinear second-order pressure perturbations on the ocean bottom due to the interference of two ocean waves of equal wavelengths traveling in opposite directions. Korea Polar Research Institute (KOPRI) has been operating a broadband seismic station (KSJ1) at King George Island (KGI), Antarctica, since 2001. Examining the ambient seismic noise level for the period from 2006 to 2008 at KSJ1, we found a significant seasonal variation in the frequency range 0.1-0.5 Hz. Correlation of the DF peaks with significant ocean wave height and peak wave period models indicates that the oceanic infragravity waves in the Drake Passage is a possible source to excite the DF microseisms at KGI. Location of King Sejong Station, Antarctica Seasonal variations of DF peak, significant wave height, and peak wave period

  14. Improvements of Real Time First Motion Focal Mechanism and Noise Characteristics of New Sites at the Puerto Rico Seismic Network

    Science.gov (United States)

    Williams, D. M.; Lopez, A. M.; Huerfano, V.; Lugo, J.; Cancel, J.

    2011-12-01

    Seismic networks need quick and efficient ways to obtain information related to seismic events for the purposes of seismic activity monitoring, risk assessment, and scientific knowledge among others. As part of an IRIS summer internship program, two projects were performed to provide a tool for quick faulting mechanism and improve seismic data at the Puerto Rico Seismic Network (PRSN). First, a simple routine to obtain a focal mechanisms, the geometry of the fault, based on first motions was developed and implemented for data analysts routine operations at PRSN. The new tool provides the analyst a quick way to assess the probable faulting mechanism that occurred while performing the interactive earthquake location procedure. The focal mechanism is generated on-the-fly when data analysts pick P wave arrivals onsets and motions. Once first motions have been identified, an in-house PRSN utility is employed to obtain the double couple representation and later plotted using GMT's psmeca utility. Second, we addressed the issue of seismic noise related to thermal fluctuations inside seismic vaults. Seismic sites can be extremely noisy due to proximity to cultural activities and unattended thermal fluctuations inside sensor housings, thus resulting in skewed readings. In the past, seismologists have used different insulation techniques to reduce the amount of unwanted noise that a seismometers experience due to these thermal changes with items such as Styrofoam, and fiber glass among others. PRSN traditionally uses Styrofoam boxes to cover their seismic sensors, however, a proper procedure to test how these method compare to other new techniques has never been approached. The deficiency of properly testing these techniques in the Caribbean and especially Puerto Rico is that these thermal fluctuations still happen because of the intense sun and humidity. We conducted a test based on the methods employed by the IRIS Transportable Array, based on insulation by sand burial of

  15. New insights of seismic disturbances due to wind turbines - long and short term measurements in SW Germany

    Science.gov (United States)

    Zieger, Toni; Ritter, Joachim

    2017-04-01

    Within the scope of the project "TremAc", we present new insights of ground motion disturbances due to wind turbines (WTs) in the vicinity of the town of Landau, SW Germany. The main goal of this project, which is funded by the German Federal Ministry for Economic Affairs and Energy, is the detection of influences from WTs on human health and buildings in an interdisciplinary way. The interaction between WTs, humans, infrastructure (incl.seismic stations) becomes more and more an important role with the increase of installed WTs. We present averaged one hour long PSD-spectra in a frequency range from 0.5 Hz to 7 Hz depending on the wind speed before and after the installation of characteristic WTs, especially for seismic borehole stations, during one month measurements. The results show a clear increase of the ground motion and a related disturbance of the seismic recordings. The station threshold for signal detection below 2 Hz is reduced after the installation of a new wind farm in the area around Landau. This effect occurs even up to distances to the WTs of more than 5 kilometers. The increasing noise level depends also clearly on wind speed, which indicate also the WT origin related with the signals. Using short-term measurements during few hours, we are able to determine the maximum of the PSD values for different discrete frequencies as function of distance to the next WT and to fit a power-law decay curve proportional to 1/rb to the data. In this way we can differentiate between near- and far-field effects of the seismic wave propagation of WTs. A clear frequency dependent decay can be observed, for which high frequencies are more attenuated than lower frequencies, probably due to scattering processes. The new results will help for a better understanding of WTs as a seismic noise source and their interaction with nearby seismic stations and other infrastructure. Seismic data were provided by "Erdbebendienst Südwest", "Federal Institute for Geosciences and

  16. Landslide maps and seismic noise: Rockmass weakening caused by shallow earthquakes

    Science.gov (United States)

    Uchida, Tara; Marc, Odin; Sens-Schönfelder, Christoph; Sawazaki, Kaoru; Hobiger, Manuel; Hovius, Niels

    2015-04-01

    Some studies have suggested that the shaking and deformation associated with earthquake would result in a temporary increased hillslope erodibility. However very few data have been able to clarify such effect. We present integrated geomorphic data constraining an elevated landslide rate following 4 continental shallow earthquakes, the Mw 6.9 Finisterre (1993), the Mw 7.6 ChiChi (1999), the Mw 6.6 Niigata (2004) and the Mw 6.8 Iwate-Miyagi (2008) earthquakes. We constrained the magnitude, the recovery time and somewhat the mechanism at the source of this higher landslide risk. We provide some evidences excluding aftershocks or rain forcing intensity as possible mechanism and leaving subsurface weakening as the most likely. The landslide data suggest that this ground strength weakening is not limited to the soil cover but also affect the shallow bedrock. Additionally, we used ambient noise autocorrelation techniques to monitor shallow subsurface seismic velocity within the epicentral area of three of those earthquakes. For most stations we observe a velocity drop followed by a recovery processes of several years in fair agreement with the recovery time estimated based on landslide observation. Thus a common processes could alter the strength of the first 10m of soil/rock and simultaneously drive the landslide rate increase and the seismic velocity drop. The ability to firmly demonstrate this link require additional constraints on the seismic signal interpretation but would provide a very useful tool for post-earthquake risk managment.

  17. Noise measurements on proximity effect bridges

    International Nuclear Information System (INIS)

    Decker, S.K.; Mercereau, J.E.

    1975-01-01

    Audio frequency noise density measurements were performed on weakly superconducting proximity effect bridges on using a cooled transformer and room temperature low noise preamplifier. The noise temperature of the measuring system is approximately 4 0 K for a 0.9 Ω resistor. Noise density was measured as a function of bias current and temperature for the bridges. Excess noise above that expected from Johnson noise for a resistor equal to the dynamic resistance of the bridges was observed in the region near the critical current of the device. At high currents compared to the critical current, the noise density closely approaches that given by Johnson noise

  18. Noise and Vibrations Measurements. External noise and vibrations measurements for offshore SODAR application

    International Nuclear Information System (INIS)

    Ormel, F.T.; Eecen, P.J.; Herman, S.A.

    2003-10-01

    The partners in the WISE project investigate whether application of the SODAR (sonic detection and ranging) measurement technique in wind energy experimental work is feasible as a replacement for cup anemometers, wind direction sensors and tall meteorological masts. In Work Package 2 of the WISE project extensive controlled experiments with the SODAR are performed. For example SODAR measurements are compared with measurements from nearby masts and different brands of SODARs are compared. Part of the work package is the measurement of vibration and noise on an offshore SODAR system. The results of these measurements are presented in this report. ECN performed measurements at an offshore location to investigate the influence of noise and vibrations on the performance of a MiniSODAR measurement system. The aim of the measurements is to quantify the effect of these external noise and vibrations disturbances on the MiniSODAR's performance. Measurements on an identical SODAR system onshore are carried out to compare the disturbances of offshore and onshore external conditions. The effect of background noise on SODAR operation has clearly been established in literature. Therefore, measurements have been performed only to establish the absolute sound pressure levels. This is done at the Measuring Platform Noordwijk (MPN) located in the North Sea, nine kilometres out of the coast at Noordwijk, The Netherlands, and at two locations onshore. At the MPN-platform, the SODAR has been moved from the middle deck to the upper deck to diminish the influence of the diesel generator needed for the electric powering of the island. Although the absolute sound pressure level became higher at the new location, this level became lower at the most important frequencies inside the SODAR, due to the use of absorbing foam. With regards to the sound pressure level the move improved the situation. The sound pressure levels measured offshore were 6 to 15 dB higher than for the two locations

  19. Refinements to the method of epicentral location based on surface waves from ambient seismic noise: introducing Love waves

    Science.gov (United States)

    Levshin, Anatoli L.; Barmin, Mikhail P.; Moschetti, Morgan P.; Mendoza, Carlos; Ritzwoller, Michael H.

    2012-01-01

    The purpose of this study is to develop and test a modification to a previous method of regional seismic event location based on Empirical Green’s Functions (EGFs) produced from ambient seismic noise. Elastic EGFs between pairs of seismic stations are determined by cross-correlating long ambient noise time-series recorded at the two stations. The EGFs principally contain Rayleigh- and Love-wave energy on the vertical and transverse components, respectively, and we utilize these signals between about 5 and 12 s period. The previous method, based exclusively on Rayleigh waves, may yield biased epicentral locations for certain event types with hypocentral depths between 2 and 5 km. Here we present theoretical arguments that show how Love waves can be introduced to reduce or potentially eliminate the bias. We also present applications of Rayleigh- and Love-wave EGFs to locate 10 reference events in the western United States. The separate Rayleigh and Love epicentral locations and the joint locations using a combination of the two waves agree to within 1 km distance, on average, but confidence ellipses are smallest when both types of waves are used.

  20. Seismic Ecology

    Science.gov (United States)

    Seleznev, V. S.; Soloviev, V. M.; Emanov, A. F.

    The paper is devoted to researches of influence of seismic actions for industrial and civil buildings and people. The seismic actions bring influence directly on the people (vibration actions, force shocks at earthquakes) or indirectly through various build- ings and the constructions and can be strong (be felt by people) and weak (be fixed by sensing devices). The great number of work is devoted to influence of violent seismic actions (first of all of earthquakes) on people and various constructions. This work is devoted to study weak, but long seismic actions on various buildings and people. There is a need to take into account seismic oscillations, acting on the territory, at construction of various buildings on urbanized territories. Essential influence, except for violent earthquakes, man-caused seismic actions: the explosions, seismic noise, emitted by plant facilities and moving transport, radiation from high-rise buildings and constructions under action of a wind, etc. can exert. Materials on increase of man- caused seismicity in a number of regions in Russia, which earlier were not seismic, are presented in the paper. Along with maps of seismic microzoning maps to be built indicating a variation of amplitude spectra of seismic noise within day, months, years. The presence of an information about amplitudes and frequencies of oscillations from possible earthquakes and man-caused oscillations in concrete regions allows carry- ing out soundly designing and construction of industrial and civil housing projects. The construction of buildings even in not seismically dangerous regions, which have one from resonance frequencies coincident on magnitude to frequency of oscillations, emitted in this place by man-caused objects, can end in failure of these buildings and heaviest consequences for the people. The practical examples of detail of engineering- seismological investigation of large industrial and civil housing projects of Siberia territory (hydro power

  1. Pavement noise measurements in Poland

    Science.gov (United States)

    Zofka, Ewa; Zofka, Adam; Mechowski, Tomasz

    2017-09-01

    The objective of this study is to investigate the feasibility of the On-Board Sound Intensity (OBSI) system to measure tire-pavement noise in Poland. In general, sources of noise emitted by the modern vehicles are the propulsion noise, aerodynamic resistance and noise generated at the tire-pavement interface. In order to capture tire-pavement noise, the OBSI system uses a noise intensity probe installed in the close proximity of that interface. In this study, OBSI measurements were performed at different types of pavement surfaces such as stone mastic asphalt (SMA), regular asphalt concrete (HMA) as well as Portland cement concrete (PCC). The influence of several necessary OBSI measurement conditions were recognized as: testing speed, air temperature, tire pressure and tire type. The results of this study demonstrate that the OBSI system is a viable and robust tool that can be used for the quality evaluation of newly built asphalt pavements in Poland. It can be also applied to generate reliable input parameters for the noise propagation models that are used to assess the environmental impact of new and existing highway corridors.

  2. Constraining the dynamics of 2014-15 Bardarbunga-Holuhraun intrusion and eruption using seismic noise

    Science.gov (United States)

    Caudron, Corentin; Donaldson, Clare; White, Robert

    2016-04-01

    The 2010 Eyjafjallajokull volcanic eruption explosively emitted a large quantity of ash in the atmosphere and paralysed the European airspace for weeks. Several seismic scientific studies already contributed to the understanding of this complex eruption (e.g., Tarasewicz et al., 2012). Although an excellent network of seismometers recorded this eruption, some volcanological and seismological aspects are still poorly understood. In order to gain further constraints on the dynamics of this ground-breaking eruptions, we mine the seismic dataset using the seismic ambient noise technique between pairs of stations and the Seismic Amplitude Ratio Analysis (SARA). Our preliminary results reveal a strong contamination of the Cross Correlation Functions (CCF) by the volcanic tremor, particularly above 0.5 Hz even for station pairs located >50 km from the volcano. Although this volcanic tremor precludes the monitoring of the seismic velocities, it literally illuminated the medium. The two phases of the eruptions (i.e., effusive and explosive) are clearly distinguished in these functions due to their different locations. During the explosive phase, an intriguing shift of the main peaks of the cross correlation functions is evidenced (early May 2010). It is remarkably consistent with the downward migration proposed by Tarasewicz et al. (2012) and is interpreted as a migration of the volcanic tremor. SARA methodology, which is continuously imaging and tracking any significant seismicity at a 10-min time scale (Taisne et al., 2010), is applied in the 5-15 Hz frequency band in order to image to continuously migrating microseismicity. The analysis displays several shallow migrations (above 5 km of depth, in March 2010) preceding the effusive phase of the eruption. Interestingly, the results also evidence a fast and deep migration (> 5 km) starting a few hours before the beginning of the explosive phase (13 April 2010). These preliminary results may shed light on the triggering of

  3. Overview of potential issues related to seismic exploration off the north coast of B.C.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.A. [LGL Ltd., King City, ON (Canada)

    2003-07-01

    British Columbia's fisheries industry is worth hundreds of millions of dollars per year and is of great cultural significance to First Nations. While concern about the impact of seismic exploration is relatively recent LGL Limited has been examining the effects of seismic exploration on marine wildlife since 1974 with particular emphasis on the significance of underwater noise from air gun arrays and the effects of seismic hearing in fish and marine mammals such as seals and whales. Research programs have been conducted in the Gulf of Mexico, the west coast of North America, Cook Inlet, Bering Sea, Chukchi Sea and the Beaufort Sea. Studies have also been conducted throughout Arctic Canada, the coastal waters of Newfoundland, the Scotian Shelf, and the Bay of Fundy. This presentation described seismic noise sources, source levels, how source levels are measured, and the path of noise with reference to transmission loss, received levels, and ambient noise. Over the decades, there have not been large-scale demonstrated effects on fisheries in the areas where seismic exploration has occurred. Major collapses have not occurred in fisheries even in the most mature oil and gas fields. It was therefore concluded that seismic exploration can be conducted safely in the northern waters of British Columbia if the programs are carefully planned and if appropriate mitigation measures are in place with good quantitative monitoring by trained biologists. 5 figs.

  4. Low noise constant current source for bias dependent noise measurements

    International Nuclear Information System (INIS)

    Talukdar, D.; Bose, Suvendu; Bardhan, K. K.; Chakraborty, R. K.

    2011-01-01

    A low noise constant current source used for measuring the 1/f noise in disordered systems in ohmic as well as nonohmic regime is described. The source can supply low noise constant current starting from as low as 1 μA to a few tens of milliampere with a high voltage compliance limit of around 20 V. The constant current source has several stages, which can work in a standalone manner or together to supply the desired value of load current. The noise contributed by the current source is very low in the entire current range. The fabrication of a low noise voltage preamplifier modified for bias dependent noise measurements and based on the existing design available in the MAT04 data sheet is also described.

  5. Combined GPS and seismic monitoring of a 12-story structure in a region of induced seismicity in Oklahoma

    Science.gov (United States)

    Haase, J. S.; Soliman, M.; Kim, H.; Jaiswal, P.; Saunders, J. K.; Vernon, F.; Zhang, W.

    2017-12-01

    This work focuses on quantifying ground motions and their effects in Oklahoma near the location of the 2016 Mw 5.8 Pawnee earthquake, where seismicity has been increasing due to wastewater injection related to oil and natural gas production. Much of the building inventory in Oklahoma was constructed before the increase in seismicity and before the implementation of earthquake design and detailing provisions for reinforced concrete (RC) structures. We will use combined GPS/seismic monitoring techniques to measure ground motion in the field and the response of structures to this ground motion. Several Oklahoma State University buildings experienced damage due to the Pawnee earthquake. The USGS Shake Map product estimated peak ground acceleration (PGA) ranging from 0.12g to 0.15g at campus locations. We are deploying a high-rate GPS sensor and accelerometer on the roof and another accelerometer at ground level of a 12-story RC structure and at selected field sites in order to collect ambient noise data and nearby seismicity. The longer period recording characteristics of the GPS/seismic system are particularly well adapted to monitoring these large structures in the event of a significant earthquake. Gross characteristics of the structural system are described, which consists of RC columns and RC slabs in all stories. We conducted a preliminary structural analysis including modal analysis and response spectrum analysis based on a finite element (FE) simulation, which indicated that the period associated with the first X-axis bending, first torsional, and first Y-axis bending modes are 2.2 s, 2.1 s, and 1.8 s, respectively. Next, a preliminary analysis was conducted to estimate the range of expected deformation at the roof level for various earthquake excitations. The earthquake analysis shows a maximum roof displacement of 5 and 7 cm in the horizontal directions resulting from earthquake loads with PGA of 0.2g, well above the noise level of the combined GPS/seismic

  6. Impact of wind on ambient noise recorded by the "13 BB star" seismic array in northern Poland

    Science.gov (United States)

    Lepore, Simone; Markowicz, Krzysztof; Grad, Marek

    2016-04-01

    Seismic interferometry and beam forming techniques were applied to ambient noise recorded during January 2014 at the "13 BB star" array, composed of thirteen seismic stations located in northern Poland, with the aim of evaluating the azimuth of noise sources and the velocities of surface waves. After normalizing the raw recordings in time and frequency domain, the spectral characteristics of the ambient noise were studied to choose a frequency band suitable for the waves' retrieval. To get the velocity of surface waves by seismic interferometry, the crosscorrelation between all station pairs was analysed for the vertical and horizontal components in the 0.05-0.1 Hz, 0.1-1 Hz and 1 10 Hz frequency bands. For each pair, the crosscorrelation was applied to one hour recordings extracted from the ambient noise. The obtained traces were calculated for a complete day, and then summed together: the daily results were stacked for the whole January 2014. In the lowest frequency range, most of the energy is located around the 3.0 km/s line, meaning that the surface waves coming from the uppermost mantle will be retrieved. The intermediate frequency range shows most of the energy between the 2.0 km/s and 1.5 km/s lines: consequently, surface waves originating from the crust will be retrieved. In the highest frequency range, the surface waves are barely visible on the crosscorrelation traces, implying that the associated energy is strongly attenuated. The azimuth variation associated to the noise field was evaluated by means of the beam forming method, using the data from the whole array for all the three components. To that, the beam power was estimated in a small range of frequencies every day for the whole month. For each day, one hour long results of beam forming applications were stacked together. To avoid aliasing and near field effects, the minimum frequency was set at 0.05 Hz and the maximum to 0.1 Hz. In this frequency band, the amplitude maximum was sought

  7. High temperature measurement by noise thermometry

    International Nuclear Information System (INIS)

    Decreton, M.C.

    1982-06-01

    Noise thermometry has received a lot of attention for measurements of temperatures in the high range around 1000-2000 deg. K. For these measurements, laboratory type experiments have been mostly performed. These have shown the interest of the technique when long term stability, high precision and insensibility to external conditions are concerned. This is particularly true for measurements in nuclear reactors where important drifts due to irradiation effects are experienced with other measurement techniques, as thermocouple for instance. Industrial noise thermometer experiments have not been performed extensively up to now. The subject of the present study is the development of a 1800 deg. K noise thermometer for nuclear applications. The measurement method is based on a generalized noise power approach. The rms noise voltage (Vsub(s)) and noise current (Isub(s)) are successively measured on the resistive sensor. The same quantities are also measured on a dummy short circuited probe (Vsub(d) and Isub(d)). The temperature is then deduced from these measured values by the following formula: cTsub(s) = (Vsub(s) 2 - Vsub(d) 2 )(Vsub(s)/Isub(s) - Vsub(d)/Isub(d)) - 1 , where c is a constant and Tsub(s) the absolute temperature of the sensor. This approach has the particular advantage of greatly reducing the sensibility to environmental perturbations on the leads and to the influence of amplifier noise sources. It also eliminates the necessity of resistance measurement and keeps the electronic circuits as simple as possible

  8. 14 CFR 36.801 - Noise measurement.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Noise measurement. 36.801 Section 36.801 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Helicopters § 36.801 Noise measurement. For primary, normal...

  9. Imaging the Iceland Hotspot Track Beneath Greenland with Seismic Noise Correlations

    Science.gov (United States)

    Mordret, A.

    2017-12-01

    During the past 65 million years, the Greenland craton drifted over the Iceland hotspot; however, uncertainties in geodynamic modeling and a lack of geophysical evidence prevent an accurate reconstruction of the hotspot track. I image the Greenland lithosphere down to 300 km depth with seismic noise tomography. The hotspot track is observed as a linear high-velocity anomaly in the middle crust associated with magmatic intrusions. In the upper mantle, the remnant thermal signature of the hotspot manifests as low velocity and low viscosity bodies. This new detailed picture of the Greenland lithosphere will drive more accurate geodynamic reconstructions of tectonic plate motions and prediction of Greenland heat flow, which in turn will enable more precise estimations of the Greenland ice-sheet mass balance.

  10. Mobile seismic exploration

    Energy Technology Data Exchange (ETDEWEB)

    Dräbenstedt, A., E-mail: a.draebenstedt@polytec.de, E-mail: rembe@iei.tu-clausthal.de, E-mail: ulrich.polom@liag-hannover.de; Seyfried, V. [Research & Development, Polytec GmbH, Waldbronn (Germany); Cao, X.; Rembe, C., E-mail: a.draebenstedt@polytec.de, E-mail: rembe@iei.tu-clausthal.de, E-mail: ulrich.polom@liag-hannover.de [Institute of Electrical Information Technology, TU Clausthal, Clausthal-Zellerfeld (Germany); Polom, U., E-mail: a.draebenstedt@polytec.de, E-mail: rembe@iei.tu-clausthal.de, E-mail: ulrich.polom@liag-hannover.de [Leibniz Institute of Applied Geophysics, Hannover (Germany); Pätzold, F.; Hecker, P. [Institute of Flight Guidance, TU Braunschweig, Braunschweig (Germany); Zeller, T. [Clausthaler Umwelttechnik Institut CUTEC, Clausthal-Zellerfeld (Germany)

    2016-06-28

    Laser-Doppler-Vibrometry (LDV) is an established technique to measure vibrations in technical systems with picometer vibration-amplitude resolution. Especially good sensitivity and resolution can be achieved at an infrared wavelength of 1550 nm. High-resolution vibration measurements are possible over more than 100 m distance. This advancement of the LDV technique enables new applications. The detection of seismic waves is an application which has not been investigated so far because seismic waves outside laboratory scales are usually analyzed at low frequencies between approximately 1 Hz and 250 Hz and require velocity resolutions in the range below 1 nm/s/√Hz. Thermal displacements and air turbulence have critical influences to LDV measurements at this low-frequency range leading to noise levels of several 100 nm/√Hz. Commonly seismic waves are measured with highly sensitive inertial sensors (geophones or Micro Electro-Mechanical Sensors (MEMS)). Approaching a laser geophone based on LDV technique is the topic of this paper. We have assembled an actively vibration-isolated optical table in a minivan which provides a hole in its underbody. The laser-beam of an infrared LDV assembled on the optical table impinges the ground below the car through the hole. A reference geophone has detected remaining vibrations on the table. We present the results from the first successful experimental demonstration of contactless detection of seismic waves from a movable vehicle with a LDV as laser geophone.

  11. High resolution Rayleigh wave group velocity tomography in North-China from ambient seismic noise

    International Nuclear Information System (INIS)

    Fang Lihua; Wu Jianping; Ding Zhifeng; Panza, G.F.

    2009-03-01

    This study presents the results of the Rayleigh wave group velocity tomography in North-China performed using ambient seismic noise observed at 190 broadband and 10 very broadband stations of the North-China Seismic Array. All available vertical component time-series for the 14 months span between January, 2007 and February, 2008 are cross-correlated to obtain empirical Rayleigh wave Green functions that are subsequently processed, with the multiple filter method, to isolate the group velocity dispersion curves of the fundamental mode of Rayleigh wave. Tomographic maps, with a grid spacing of 0.25 deg. x 0.25 deg., are computed at the periods of 4.5s, 12s, 20s, 28s. The maps at short periods reveal an evident lateral heterogeneity in the crust of North-China, quite well in agreement with known geological and tectonic features. The North China Basin is imaged as a broad low velocity area, while the Taihangshan and Yanshan uplifts and Ordos block are imaged as high velocity zones, and the Quaternary intermountain basins show up as small low-velocity anomalies. The group velocity contours at 4.5s, 12s and 20s are consistent with the Bouguer gravity anomalies measured in the area of the Taihangshan fault, that cuts through the lower crust at least. Most of the historical strong earthquakes (M≥6.0) are located where the tomographic maps show zones with moderate velocity gradient. (author)

  12. Assimilation of ambient seismic noise in hydrological models allows estimation of hydraulic conductivity in unsaturated media

    Science.gov (United States)

    Fores, B.; Champollion, C.; Mainsant, G.; Fort, A.; Albaric, J.

    2016-12-01

    Karstic hydrosystems represent one of the main water resources in the Mediterranean area but are challenging for geophysical methods. The GEK (Geodesy in Karstic Environment) observatory has been setup in 2011 to study the unsaturated zone of a karstic system in the south of France. The unsaturated zone (the epikarst) is thick and up to 100m on the site. Since 2011, gravity, rainfall and evapotranspiration are monitored. Together, they allow precise estimation of the global water storage changes but lack depth resolution. Surface waves velocity variations, obtained from ambient seismic noise monitoring are used here to overcome this lack. Indeed, velocities depend on saturation and the depths where changes occur can be defined as surface waves are dispersive. From October 2014 to November 2015, two seismometers have been recording noise. Velocity changes at a narrow frequency band (6-8 Hz) have shown a clear annual cycle. Minimum velocity is several months late on precipitations, which is coherent with a slow infiltration and a maximum sensitivity at -40m for these frequencies and this site. Models have been made with the Hydrus-1D software which allows modeling 1D-flow in variably saturated media. With a stochastic sampling, we have researched the underground parameters that reproduce the most the different observations (gravity, evapotranspiration and rainfall, and velocity changes). We show that velocity changes clearly constrain the hydraulic conductivity of the medium. Ambient seismic noise is therefore a promising method to study unsaturated zone which are too deep or too heterogeneous for classic methods.

  13. Seismic survey in southeastern Socorro Island: Background noise measurements, seismic events, and T phases

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, Raul W [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, D.F. (Mexico); Galindo, Marta [Comprehensive Nuclear-Test-Ban Treaty Organization, IMS, Vienna (Austria); Pacheco, Javier F; Iglesias, Arturo; Teran, Luis F [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, D.F. (Mexico); Barreda, Jose L; Coba, Carlos [Facultad de Ingenieria, Benemerita Universidad Autonoma de Puebla, Puebla (Mexico)

    2005-01-15

    We carried out a seismic survey and installed five portable, broadband seismometers in the southeastern corner of Socorro Island during June 1999. Power spectral densities for all five sites were relatively noisy when compared to reference curves around the world. Power spectral densities remain constant regardless of the time of day, or the day of the week. Cultural noise at the island is very small. Quiet and noisy sites were identified to determine the best location of the T phase station to be installed jointly by the Universidad Nacional Autonoma de Mexico and the Comprehensive Nuclear-Test-Ban Treaty Organization. During the survey six earthquakes were recorded at epicentral distances between 42 km and 2202 km, with magnitudes between 2.8 and 7.0. Two small earthquakes (M{sub c} = 2.8 and 3.3) occurred on the Clarion Fracture Zone. The four largest and more distant earthquakes produced T waves. One T wave from an epicenter near the coast of Guatemala had a duration of about 100 s and a frequency content between 2 and 8 Hz, with maximum amplitude at about 4.75 Hz. The Tehuacan earthquake of June 15, 1999 (M{sub w} = 7.0) produced arrivals of P {yields} T and S {yields} T waves, with energy between 2 Hz and 3.75 Hz. The earthquake occurred inland within the subducted Cocos plate at a depth of 60 km; a significant portion of the path was continental. Seismic P and S waves probably propagated upward in the subducted slab, and were converted to acoustic energy at the continental slope. Total duration of the T phase is close to 500 s and reaches its maximum amplitude about 200 s after the P {yields} T arrival. The T wave contains energy at frequencies between 2 and 10 Hz and reaches its maximum amplitude at about 2.5 Hz. T phases were also recorded from two earthquakes in Guerrero, Mexico and in the Rivera Fracture Zone. [Spanish] En junio de 1999 instalamos cinco sismometros portatiles de banda ancha en el sureste de la Isla Socorro. Se encontro que las densidades

  14. Tracking changes in volcanic systems with seismic Interferometry

    Science.gov (United States)

    Haney, Matt; Alicia J. Hotovec-Ellis,; Bennington, Ninfa L.; Silvio De Angelis,; Clifford Thurber,

    2014-01-01

    The detection and evaluation of time-dependent changes at volcanoes form the foundation upon which successful volcano monitoring is built. Temporal changes at volcanoes occur over all time scales and may be obvious (e.g., earthquake swarms) or subtle (e.g., a slow, steady increase in the level of tremor). Some of the most challenging types of time-dependent change to detect are subtle variations in material properties beneath active volcanoes. Although difficult to measure, such changes carry important information about stresses and fluids present within hydrothermal and magmatic systems. These changes are imprinted on seismic waves that propagate through volcanoes. In recent years, there has been a quantum leap in the ability to detect subtle structural changes systematically at volcanoes with seismic waves. The new methodology is based on the idea that useful seismic signals can be generated “at will” from seismic noise. This means signals can be measured any time, in contrast to the often irregular and unpredictable times of earthquakes. With seismic noise in the frequency band 0.1–1 Hz arising from the interaction of the ocean with the solid Earth known as microseisms, researchers have demonstrated that cross-correlations of passive seismic recordings between pairs of seismometers yield coherent signals (Campillo and Paul 2003; Shapiro and Campillo 2004). Based on this principle, coherent signals have been reconstructed from noise recordings in such diverse fields as helioseismology (Rickett and Claerbout 2000), ultrasound (Weaver and Lobkis 2001), ocean acoustic waves (Roux and Kuperman 2004), regional (Shapiro et al. 2005; Sabra et al. 2005; Bensen et al. 2007) and exploration (Draganov et al. 2007) seismology, atmospheric infrasound (Haney 2009), and studies of the cryosphere (Marsan et al. 2012). Initial applications of ambient seismic noise were to regional surface wave tomography (Shapiro et al. 2005). Brenguier et al. (2007) were the first to

  15. Evaluation of noise pollution in urban traffic hubs—Noise maps and measurements

    International Nuclear Information System (INIS)

    Fiedler, Paulo Eduardo Kirrian; Zannin, Paulo Henrique Trombetta

    2015-01-01

    A study was made of some of the main traffic hubs in a Latin American metropolis, in order to determine the presence or absence of noise by means of noise measurements and acoustic mapping. To characterize noise in the evaluated road stretches, 232 measurements were taken at different points. The Predictor software package was used for the noise mapping calculations. Noise sensitive areas, e.g., hospitals, were identified in the evaluated road stretches. Noise maps were calculated for two hospitals, showing the current levels of noise that reach their facades. Hypothetical scenarios were simulated by making changes in the composition of traffic and total number of vehicles, and an assessment was made of the potential influence of these modifications in reducing the noise levels reaching the facades of the buildings in question. The simulations indicated that a 50% reduction in total traffic flow, or a 50% reduction in heavy vehicle traffic flow, would reduce the noise levels by about 3 dB(A). - Highlights: • Evaluation of noise pollution in urban traffic hubs • Street systems • Environmental noise impacts • Noise mapping

  16. Evaluation of noise pollution in urban traffic hubs—Noise maps and measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Paulo Eduardo Kirrian; Zannin, Paulo Henrique Trombetta, E-mail: paulo.zannin@pesquisador.cnpq.br

    2015-02-15

    A study was made of some of the main traffic hubs in a Latin American metropolis, in order to determine the presence or absence of noise by means of noise measurements and acoustic mapping. To characterize noise in the evaluated road stretches, 232 measurements were taken at different points. The Predictor software package was used for the noise mapping calculations. Noise sensitive areas, e.g., hospitals, were identified in the evaluated road stretches. Noise maps were calculated for two hospitals, showing the current levels of noise that reach their facades. Hypothetical scenarios were simulated by making changes in the composition of traffic and total number of vehicles, and an assessment was made of the potential influence of these modifications in reducing the noise levels reaching the facades of the buildings in question. The simulations indicated that a 50% reduction in total traffic flow, or a 50% reduction in heavy vehicle traffic flow, would reduce the noise levels by about 3 dB(A). - Highlights: • Evaluation of noise pollution in urban traffic hubs • Street systems • Environmental noise impacts • Noise mapping.

  17. Ocean Ambient Noise Measurement and Theory

    CERN Document Server

    Carey, William M

    2011-01-01

    This book develops the theory of ocean ambient noise mechanisms and measurements, and also describes general noise characteristics and computational methods.  It concisely summarizes the vast ambient noise literature using theory combined with key representative results.  The air-sea boundary interaction zone is described in terms of non-dimensional variables requisite for future experiments.  Noise field coherency, rare directional measurements, and unique basin scale computations and methods are presented.  The use of satellite measurements in these basin scale models is demonstrated.  Finally, this book provides a series of appendices giving in-depth mathematical treatments.  With its complete and careful discussions of both theory and experimental results, this book will be of the greatest interest to graduate students and active researchers working in fields related to ambient noise in the ocean.

  18. Measurements techniques for transportation noise

    International Nuclear Information System (INIS)

    Brambilla, G.

    2001-01-01

    The noise from transport systems (roads, railways and aircraft) are increasing more and more both in space and in time and, therefore, they are still the major factor responsible for environmental noise pollution. The population exposed to transport noise is also increasing, and the corresponding health effects on people (i.e. annoyance and sleep disturbance) become more severe. Due to this current situation international and national legislation has been issued and implemented to reduce the harmful effects of such noise. This paper describes the techniques prescribed by recent Italian legislation to measure road, railway and aircraft noise. (author)

  19. High-resolution 3-D S-wave Tomography of upper crust structures in Yilan Plain from Ambient Seismic Noise

    Science.gov (United States)

    Chen, Kai-Xun; Chen, Po-Fei; Liang, Wen-Tzong; Chen, Li-Wei; Gung, YuanCheng

    2015-04-01

    The Yilan Plain (YP) in NE Taiwan locates on the western YP of the Okinawa Trough and displays high geothermal gradients with abundant hot springs, likely resulting from magmatism associated with the back-arc spreading as attested by the offshore volcanic island (Kueishantao). YP features NS distinctive characteristics that the South YP exhibits thin top sedimentary layer, high on-land seismicity and significant SE movements, relative those of the northern counterpart. A dense network (~2.5 km station interval) of 89 Texan instruments was deployed in Aug. 2014, covering most of the YP and its vicinity. The ray path coverage density of each 0.015 degree cells are greater than 150 km that could provide the robustness assessment of tomographic results. We analyze ambient noise signals to invert a high-resolution 3D S-wave model for shallow velocity structures in and around YP. The aim is to investigate the velocity anomalies corresponding to geothermal resources and the NS geological distinctions aforementioned. We apply the Welch's method to generate empirical Rayleigh wave Green's functions between two stations records of continuous vertical components. The group velocities of thus derived functions are then obtained by the multiple-filter analysis technique measured at the frequency range between 0.25 and 1 Hz. Finally, we implement a wavelet-based multi-scale parameterization technique to construct 3D model of S-wave velocity. Our first month results exhibit low velocity in the plain, corresponding existing sediments, those of whole YP show low velocity offshore YP and those of high-resolution south YP reveal stark velocity contrast across the Sanshin fault. Key words: ambient seismic noises, Welch's method, S-wave, Yilan Plain

  20. Seismicity at Old Faithful Geyser: an isolated source of geothermal noise and possible analogue of volcanic seismicity

    Science.gov (United States)

    Kieffer, Susan Werner

    1984-09-01

    Old Faithful Geyser in Yellowstone National Park, U.S.A., is a relatively isolated source of seismic noise and exhibits seismic behavior similar to that observed at many volcanoes, including "bubblequakes" that resemble B-type "earthquakes", harmonic tremor before and during eruptions, and periods of seismic quiet prior to eruptions. Although Old Faithful differs from volcanoes in that the conduit is continuously open, that rock-fracturing is not a process responsible for seismicity, and that the erupting fluid is inviscid H 2O rather than viscous magma, there are also remarkable similarities in the problems of heat and mass recharge to the system, in the eruption dynamics, and in the seismicity. Water rises irregularly into the immediate reservoir of Old Faithful as recharge occurs, a fact that suggests that there are two enlarged storage regions: one between 18 and 22 m (the base of the immediate reservoir) and one between about 10 and 12 m depth. Transport of heat from hot water or steam entering at the base of the recharging water column into cooler overlying water occurs by migration of steam bubbles upward and their collapse in the cooler water, and by episodes of convective overturn. An eruption occurs when the temperature of the near-surface water exceeds the boiling point if the entire water column is sufficiently close to the boiling curve that the propagation of pressure-release waves (rarefactions) down the column can bring the liquid water onto the boiling curve. The process of conversion of the liquid water in the conduit at the onset of an eruption into a two-phase liquid-vapor mixture takes on the order of 30 s. The seismicity is directly related to the sequence of filling and heating during the recharge cycle, and to the fluid mechanics of the eruption. Short (0.2-0.3 s), monochromatic, high-frequency events (20-60 Hz) resembling unsustained harmonic tremor and, in some instances, B-type volcanic earthquakes, occur when exploding or imploding

  1. Detecting earthquakes over a seismic network using single-station similarity measures

    Science.gov (United States)

    Bergen, Karianne J.; Beroza, Gregory C.

    2018-06-01

    New blind waveform-similarity-based detection methods, such as Fingerprint and Similarity Thresholding (FAST), have shown promise for detecting weak signals in long-duration, continuous waveform data. While blind detectors are capable of identifying similar or repeating waveforms without templates, they can also be susceptible to false detections due to local correlated noise. In this work, we present a set of three new methods that allow us to extend single-station similarity-based detection over a seismic network; event-pair extraction, pairwise pseudo-association, and event resolution complete a post-processing pipeline that combines single-station similarity measures (e.g. FAST sparse similarity matrix) from each station in a network into a list of candidate events. The core technique, pairwise pseudo-association, leverages the pairwise structure of event detections in its network detection model, which allows it to identify events observed at multiple stations in the network without modeling the expected moveout. Though our approach is general, we apply it to extend FAST over a sparse seismic network. We demonstrate that our network-based extension of FAST is both sensitive and maintains a low false detection rate. As a test case, we apply our approach to 2 weeks of continuous waveform data from five stations during the foreshock sequence prior to the 2014 Mw 8.2 Iquique earthquake. Our method identifies nearly five times as many events as the local seismicity catalogue (including 95 per cent of the catalogue events), and less than 1 per cent of these candidate events are false detections.

  2. The stability of H/V spectral ratios from noise measurements in Armutlu Peninsula (Turkey)

    Energy Technology Data Exchange (ETDEWEB)

    Livaoğlu, Hamdullah, E-mail: hamdullah.livaoglu@kocaeli.edu.tr; Irmak, T. Serkan; Caka, Deniz; Yavuz, Evrim; Tunç, B.; Baris, S. [Faculty of Engineering, Department of Geophysics, Kocaeli University, 41380, Kocaeli (Turkey); Lühr, B. G.; Woith, H. [GFZ, German Research Centre for Geoscience, Postsdam (Germany)

    2016-04-18

    The horizontal to vertical spectral ratio (H/V) method has been successfully using in order to estimate the fundamental resonance frequency of the sedimentary cover, its thickness and amplification factor since at least 3 decades. There are numerous studies have been carried out on the stability of the H/V spectral ratios. Almost all studies showed that fundamental frequency is stable even measurements are repeated at different times. From this point of view, the results will show us an approach whether the stations are suitable for accurate estimate of earthquake studies and engineering purposes or not. Also we want to see if any effects of the amplification factor changing on the seismograms for Armutlu Seismic Network (ARNET) even though seismic stations are established far away from cultural noise and located on hard rock sites. It has been selected one hour recorded data of all stations during the most stationary times. The amplification and resonant frequency variations of H/V ratio were calculated to investigate temporal stability in time. There is a total harmony in fundamental frequencies values and H/V spectral ratio values in time-lagged periods. Some stations shows secondary minor peaks in high frequency band due to a shallow formation effect or cultural noises around. In the east side of the area ILYS station shows amplitude peak in lower fundamental frequency band from expected. This could compose a high amplification in lower frequencies and so that yield less reliable results in local earthquakes studies. By the experimental results from ambient noise analysis, it could be worked up for relocation of one station.

  3. Obtaining and Estimating Low Noise Floors in Vibration Sensors

    DEFF Research Database (Denmark)

    Brincker, Rune; Larsen, Jesper Abildgaard

    2007-01-01

    For some applications like seismic applications and measuring ambient vibrations in structures, it is essential that the noise floors of the sensors and other system components are low and known to the user. Some of the most important noise sources are reviewed and it is discussed how the sensor...... can be designed in order to obtain a low noise floor. Techniques to estimate the noise floors for sensors are reviewed and are demonstrated on a commercial commonly used sensor for vibration testing. It is illustrated how the noise floor can be calculated using the coherence between simultaneous...

  4. Spin noise measurement with diamagnetic atoms

    International Nuclear Information System (INIS)

    Takeuchi, M.; Ichihara, S.; Takano, T.; Kumakura, M.; Takahashi, Y.

    2007-01-01

    We report the measurement of the atomic spin noise of the diamagnetic atom ytterbium (Yb). Yb has various merits for utilizing the quantum nature of the atomic spin ensemble compared with the paramagnetic atoms used in all previous experiments. From the magnitude of the noise level and dependence on the detuning, we concluded that we succeeded in the measurement of 171 Yb atomic spin noise in an atomic beam

  5. Linking ground motion measurements and macro-seismic observations in France: A case study based on the RAP (accelerometric) and BCSF (macro-seismic) databases

    International Nuclear Information System (INIS)

    Lesueur, Ch.

    2011-01-01

    Comparison between accelerometric and macro-seismic observations is made for three mw∼4.5 earthquakes of eastern France between 2003 and 2005. Scalar and spectral instrumental parameters are processed from the accelerometric data recorded by nine accelerometric stations located between 29 km and 180 km from the epicentres. Macro-seismic data are based on the French internet reports. In addition to the individual macro-seismic intensity, analysis of the internal correlation between the encoded answers highlights four predominant fields of questions, bearing different physical meanings: 1) 'vibratory motions of small objects', 2) 'displacement and fall of objects', 3) 'acoustic noise', and 4) 'personal feelings'. Best correlations between macro-seismic and instrumental observations are obtained when the macro-seismic parameters are averaged over 10 km radius circles around each station. macro-seismic intensities predicted by published pgv-intensity relationships quite agree with the observed intensities, contrary to those based on pga. The correlations between the macro-seismic and instrumental data, for intensities between ii and v (ems-98), show that pgv is the instrumental parameter presenting the best correlation with all macro-seismic parameters. The correlation with response spectra, exhibits clear frequency dependence over a limited frequency range [0.5-33 hz]. Horizontal and vertical components are significantly correlated with macro-seismic parameters between 1 and 10 hz, a range corresponding to both natural frequencies of most buildings and high energy content in the seismic ground motion. Between 10 and 25 hz, a clear lack of correlation between macro-seismic and instrumental data is observed, while beyond 25 hz the correlation coefficient increases, approaching that of the PGA correlation level. (author)

  6. Theory and Measurement of Signal-to-Noise Ratio in Continuous-Wave Noise Radar.

    Science.gov (United States)

    Stec, Bronisław; Susek, Waldemar

    2018-05-06

    Determination of the signal power-to-noise power ratio on the input and output of reception systems is essential to the estimation of their quality and signal reception capability. This issue is especially important in the case when both signal and noise have the same characteristic as Gaussian white noise. This article considers the problem of how a signal-to-noise ratio is changed as a result of signal processing in the correlation receiver of a noise radar in order to determine the ability to detect weak features in the presence of strong clutter-type interference. These studies concern both theoretical analysis and practical measurements of a noise radar with a digital correlation receiver for 9.2 GHz bandwidth. Firstly, signals participating individually in the correlation process are defined and the terms signal and interference are ascribed to them. Further studies show that it is possible to distinguish a signal and a noise on the input and output of a correlation receiver, respectively, when all the considered noises are in the form of white noise. Considering the above, a measurement system is designed in which it is possible to represent the actual conditions of noise radar operation and power measurement of a useful noise signal and interference noise signals—in particular the power of an internal leakage signal between a transmitter and a receiver of the noise radar. The proposed measurement stands and the obtained results show that it is possible to optimize with the use of the equipment and not with the complex processing of a noise signal. The radar parameters depend on its prospective application, such as short- and medium-range radar, ground-penetrating radar, and through-the-wall detection radar.

  7. Noise thermometry - a new temperature measuring method

    International Nuclear Information System (INIS)

    Brixy, H.; Hecker, R.; Rittinghaus, K.F.

    1975-01-01

    The thermal Johnson-Niquist noise is the basis of noise thermometry. This temperature measuring method is, e.g., of interest insofar as the noise thermometer gives absolute values as a primary thermometer and is in principle extensively independent of environmental influences and material properties. The resistance values of the measuring probe are about 10 Ohm to a few kOhm. The demands of electronics are high, the self-noise of the measuring apparatus must be as small as possible; a comparative measuring method is advantageous. 1 to 2,500 K are given as a possible temperature range. An accuracy of 0.1% could be achieved in laboratory measurements. Temperature measurements to be used in operation in a few nuclear reactors are mentioned. (HP/LH) [de

  8. Measurement and control of occupational noise

    International Nuclear Information System (INIS)

    Elammari, Muftah Faraj

    2007-01-01

    High level of environmental and occupational noise remain a problem all over the world. As problems and complaints increased dramatically by the end of the 19th and beginning of the 20th centuries focusing on the problem was intensified. In this thesis occupational noise levels at different places were measured and compared with the international permissible levels using the integrating sound level meter (Quest 2800). The calibration of the instrument was carried out before and after each measurement using the acoustic calibrator (Quest CA-12B calibrator). The method which was followed was measuring the sound pressure level of the different noise sources over a broad frequency band covering the audible frequency range using the (octave band filter, model OB-100), disregrading variation with time. Since the human ear is most sensitive in the 2-5 khz range of frequencies and least sensitive at extremely high and low frequencies the instrument was adjusted on the A weighting net work which varies with frequencies in a very similar way as that of the human ear. From the obtained results, some noise levels which were recorded were within the permissible levels i.e. below 90 dba and some noise levels were higher than the permissible limit as in janzour textile factory (95 dba), The welding workshop (120 dba), Benghazi Macaroni factory (100 dba), and near the air blowers at Zletin cement factory, Benghazi cement factory (97-10-dba) in these cases suggestions were made to minimize the problem. Concerning the noise control, four methods of noise control were tested, these methods were: reducing noise by sound absorbing material at Sirt local broadcasting radio, reducing noise by keeping a distance from the noise source, at the Boilers hall at REWDC, reducing noise by enclosures, at the compressors room at Zletin cement factory, and finally reducing noise by performing regular maintenance at Garabolli photo development centre. The percentage of noise reduction was 21%, 12

  9. Measurement time and statistics for a noise thermometer with a synthetic-noise reference

    Science.gov (United States)

    White, D. R.; Benz, S. P.; Labenski, J. R.; Nam, S. W.; Qu, J. F.; Rogalla, H.; Tew, W. L.

    2008-08-01

    This paper describes methods for reducing the statistical uncertainty in measurements made by noise thermometers using digital cross-correlators and, in particular, for thermometers using pseudo-random noise for the reference signal. First, a discrete-frequency expression for the correlation bandwidth for conventional noise thermometers is derived. It is shown how an alternative frequency-domain computation can be used to eliminate the spectral response of the correlator and increase the correlation bandwidth. The corresponding expressions for the uncertainty in the measurement of pseudo-random noise in the presence of uncorrelated thermal noise are then derived. The measurement uncertainty in this case is less than that for true thermal-noise measurements. For pseudo-random sources generating a frequency comb, an additional small reduction in uncertainty is possible, but at the cost of increasing the thermometer's sensitivity to non-linearity errors. A procedure is described for allocating integration times to further reduce the total uncertainty in temperature measurements. Finally, an important systematic error arising from the calculation of ratios of statistical variables is described.

  10. Squeezed noise in precision force measurements

    International Nuclear Information System (INIS)

    Bocko, M.F.; Bordoni, F.; Fuligni, F.; Johnson, W.W.

    1986-01-01

    The effort to build gravitational radiation antennae with sensitivity sufficient to detect bursts of radiation from supernovae in the Virgo cluster of galaxies has caused a consideration of the fundamental limits for the detection of weak forces. The existing Weber bar detectors will be eventually limited, by the phase insensitive transducers now used, to noise temperatures no better than that of the first amplifier which follows the transducer. Even for a quantum limited amplifier this may not give the sensitivity required to definitively detect gravitational radiation. In a 'back action evasion' measurement a specific phase sensitive transducer would be used. It is believed that by the technique of measuring one of the two antenna phases it is possible to reach an effective noise temperature for the measured phase which is far below the amplifier noise temperature. This is at the expense of an infinite noise temperature in the unmeasured antenna phase and is thus described as squeezing the noise. The authors outline the theoretical model for the behavior of such systems and present data from several experiments which demonstrate the main features of a back action evasion measurement. (Auth.)

  11. Analysis of seismic noise to check the mechanical isolation of a medical device

    Directory of Open Access Journals (Sweden)

    Sara Rombetto

    2011-07-01

    Full Text Available We have investigated the mechanical response of a magnetically shielded room that hosts a magnetoencephalography system that is subject to external vibrations. This is a superconducting quantum interference device, which are the most sensitive sensors for magnetic flux variations. When the magnetoencephalography operates with people inside the room, the spectrum of the flux of the magnetic field shows anomalous peaks at several frequencies between 1 Hz and 20 Hz, independent of the experiment that is being run. As the variations in the flux of the magnetic field through the sensors might not only be related to the electrical currents circulating inside the brain, but also to non-damped mechanical oscillations of the room, we installed seismic instrumentation to measure the effective motion inside the room and to compare it to the external motion. For this analysis, we recorded the ambient seismic noise at two very close stations, one inside the magnetically shielded room, the other one outside in the room in which the magnetically shielded room is itself located. Data were collected over four days, including a week-end, to study the response of the magnetically shielded room subjected to different energy levels of external vibrations. The root mean square, Fourier spectra and power spectral density show significant differences between the signal recorded inside and outside the magnetically shielded room, with several anomalous peaks in the frequency band of 1 Hz to 20 Hz. The normalized spectral quantities (horizontal to vertical spectral ratio, and ratio between the internal and external spectra show large amplification at several frequencies, reaching in some cases one order of magnitude. We concluded that the magnetically shielded room does not dampen the external vibrations, but it instead appears to amplify these across a broad frequency range.

  12. Characterization of the seismic environment at the Sanford Underground Laboratory, South Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Harms, J; Dorsher, S; Kandhasamy, S; Mandic, V [University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Acernese, F; Barone, F [Universita degli Studi di Salerno, Fisciano (Saudi Arabia) (Italy); Bartos, I; Marka, S [Columbia University, New York, NY 10027 (United States); Beker, M; Van den Brand, J F J; Rabeling, D S [Nikhef, National Institute for Subatomic Physics, Science Park 105, 1098 XG Amsterdam (Netherlands); Christensen, N; Coughlin, M [Carleton College, Northfield, MN 55057 (United States); DeSalvo, R [California Institute of Technology, Pasadena, CA 91125 (United States); Heise, J; Trancynger, T [Sanford Underground Laboratory, 630 East Summit Street, Lead, SD 57754 (United States); Mueller, G [University of Florida, Gainesville, FL 32611 (United States); Naticchioni, L [Department of Physics, University of Rome ' Sapienza' , P.le Aldo Moro 2, 00185 Rome (Italy); O' Keefe, T [Saint Louis University, 3450 Lindell Blvd., St. Louis, MO 63103 (United States); Sajeva, A, E-mail: janosch@caltech.ed [Dipartimento di Fisica ' Enrico Fermi' , Universita di Pisa, Largo Bruno Pontecorvo, Pisa (Italy)

    2010-11-21

    An array of seismometers is being developed at the Sanford Underground Laboratory, the former Homestake mine, in South Dakota to study the properties of underground seismic fields and Newtonian noise, and to investigate the possible advantages of constructing a third-generation gravitational-wave detector underground. Seismic data were analyzed to characterize seismic noise and disturbances. External databases were used to identify sources of seismic waves: ocean-wave data to identify sources of oceanic microseisms and surface wind-speed data to investigate correlations with seismic motion as a function of depth. In addition, sources of events contributing to the spectrum at higher frequencies are characterized by studying the variation of event rates over the course of a day. Long-term observations of spectral variations provide further insight into the nature of seismic sources. Seismic spectra at three different depths are compared, establishing the 4100 ft level as a world-class low seismic-noise environment.

  13. Automated seismic detection of landslides at regional scales: a Random Forest based detection algorithm

    Science.gov (United States)

    Hibert, C.; Michéa, D.; Provost, F.; Malet, J. P.; Geertsema, M.

    2017-12-01

    Detection of landslide occurrences and measurement of their dynamics properties during run-out is a high research priority but a logistical and technical challenge. Seismology has started to help in several important ways. Taking advantage of the densification of global, regional and local networks of broadband seismic stations, recent advances now permit the seismic detection and location of landslides in near-real-time. This seismic detection could potentially greatly increase the spatio-temporal resolution at which we study landslides triggering, which is critical to better understand the influence of external forcings such as rainfalls and earthquakes. However, detecting automatically seismic signals generated by landslides still represents a challenge, especially for events with small mass. The low signal-to-noise ratio classically observed for landslide-generated seismic signals and the difficulty to discriminate these signals from those generated by regional earthquakes or anthropogenic and natural noises are some of the obstacles that have to be circumvented. We present a new method for automatically constructing instrumental landslide catalogues from continuous seismic data. We developed a robust and versatile solution, which can be implemented in any context where a seismic detection of landslides or other mass movements is relevant. The method is based on a spectral detection of the seismic signals and the identification of the sources with a Random Forest machine learning algorithm. The spectral detection allows detecting signals with low signal-to-noise ratio, while the Random Forest algorithm achieve a high rate of positive identification of the seismic signals generated by landslides and other seismic sources. The processing chain is implemented to work in a High Performance Computers centre which permits to explore years of continuous seismic data rapidly. We present here the preliminary results of the application of this processing chain for years

  14. Interpretation of incore noise measurements in BWR's

    International Nuclear Information System (INIS)

    Dam, H. van

    1982-01-01

    A survey is given of the main incentives for power reactor noise research and the differences and similarities of noise in power and zero power systems are touched on. The basic characteristics of the adjoint method in reactor noise theory are treated. The detector adjoint functions describe the transfer functions between spatially distributed noise sources and a (neutron or gamma) detector. In particular, the spatial dependence of these functions explains the 'local' and 'global' effects in BWR noise measurements. By including thermal hydraulic feedback effects in the adjoint analysis, it is shown that the common idea of a dominant global effect at low frequencies which should result in point kinetic behaviour, is erroneous. The same analysis provides a method for nonperturbing on-line measurement of the reactor transfer function, which is demonstrated by results from measurements on a BWR in the Netherlands. In the final part of the paper some ideas are given for further research in the field of BWR noise. (author)

  15. Measuring of noise emitted by moving vehicles

    Directory of Open Access Journals (Sweden)

    Skrúcaný Tomáš

    2017-01-01

    Full Text Available The article aims to measure the intensity of the exterior noise of a vehicle in motion. It provides the results of the measurements of the external noise of selected vehicles in motion and the impact of selected factors on the sound level of driving. There are done two measurements in the paper. Results from the first one are comparing noise level of 9 passenger cars according to the Directive 71/157/EEC. The second one shows the road surface influence on the exterior noise of moving vehicle where the sound level was measured by a road whose surface was made of slightly degraded concrete, and at a different place of the same road, where the surface was renovated by applying asphalt mix onto it.

  16. Planetary Seismology : Lander- and Wind-Induced Seismic Signals

    Science.gov (United States)

    Lorenz, Ralph

    2016-10-01

    Seismic measurements are of interest for future geophysical exploration of ocean worlds such as Europa or Titan, as well as Venus, Mars and the Moon. Even when a seismometer is deployed away from a lander (as in the case of Apollo) lander-generated disturbances are apparent. Such signatures may be usefully diagnostic of lander operations (at least for outreach), and may serve as seismic excitation for near-field propagation studies. The introduction of these 'spurious' events may also influence the performance of event detection and data compression algorithms.Examples of signatures in the Viking 2 seismometer record of lander mechanism operations are presented. The coherence of Viking seismometer noise levels and wind forcing is well-established : some detailed examples are examined. Wind noise is likely to be significant on future Mars missions such as InSight, as well as on Titan and Venus.

  17. Analysis of a Shock-Associated Noise Prediction Model Using Measured Jet Far-Field Noise Data

    Science.gov (United States)

    Dahl, Milo D.; Sharpe, Jacob A.

    2014-01-01

    A code for predicting supersonic jet broadband shock-associated noise was assessed using a database containing noise measurements of a jet issuing from a convergent nozzle. The jet was operated at 24 conditions covering six fully expanded Mach numbers with four total temperature ratios. To enable comparisons of the predicted shock-associated noise component spectra with data, the measured total jet noise spectra were separated into mixing noise and shock-associated noise component spectra. Comparisons between predicted and measured shock-associated noise component spectra were used to identify deficiencies in the prediction model. Proposed revisions to the model, based on a study of the overall sound pressure levels for the shock-associated noise component of the measured data, a sensitivity analysis of the model parameters with emphasis on the definition of the convection velocity parameter, and a least-squares fit of the predicted to the measured shock-associated noise component spectra, resulted in a new definition for the source strength spectrum in the model. An error analysis showed that the average error in the predicted spectra was reduced by as much as 3.5 dB for the revised model relative to the average error for the original model.

  18. Variations in the Parameters of Background Seismic Noise during the Preparation Stages of Strong Earthquakes in the Kamchatka Region

    Science.gov (United States)

    Kasimova, V. A.; Kopylova, G. N.; Lyubushin, A. A.

    2018-03-01

    The results of the long (2011-2016) investigation of background seismic noise (BSN) in Kamchatka by the method suggested by Doct. Sci. (Phys.-Math.) A.A. Lyubushin with the use of the data from the network of broadband seismic stations of the Geophysical Survey of the Russian Academy of Sciences are presented. For characterizing the BSN field and its variability, continuous time series of the statistical parameters of the multifractal singularity spectra and wavelet expansion calculated from the records at each station are used. These parameters include the generalized Hurst exponent α*, singularity spectrum support width Δα, wavelet spectral exponent β, minimal normalized entropy of wavelet coefficients En, and spectral measure of their coherent behavior. The peculiarities in the spatiotemporal distribution of the BSN parameters as a probable response to the earthquakes with M w = 6.8-8.3 that occurred in Kamchatka in 2013 and 2016 are considered. It is established that these seismic events were preceded by regular variations in the BSN parameters, which lasted for a few months and consisted in the reduction of the median and mean α*, Δα, and β values estimated over all the stations and in the increase of the En values. Based on the increase in the spectral measure of the coherent behavior of the four-variate time series of the median and mean values of the considered statistics, the effect of the enhancement of the synchronism in the joint (collective) behavior of these parameters during a certain period prior to the mantle earthquake in the Sea of Okhotsk (May 24, 2013, M w = 8.3) is diagnosed. The procedures for revealing the precursory effects in the variations of the BSN parameters are described and the examples of these effects are presented.

  19. Adaptive prediction applied to seismic event detection

    International Nuclear Information System (INIS)

    Clark, G.A.; Rodgers, P.W.

    1981-01-01

    Adaptive prediction was applied to the problem of detecting small seismic events in microseismic background noise. The Widrow-Hoff LMS adaptive filter used in a prediction configuration is compared with two standard seismic filters as an onset indicator. Examples demonstrate the technique's usefulness with both synthetic and actual seismic data

  20. Joint inversion of teleseismic P waveforms and surface-wave group velocities from ambient seismic noise in the Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Růžek, Bohuslav; Plomerová, Jaroslava; Babuška, Vladislav

    2012-01-01

    Roč. 56, č. 1 (2012), s. 107-140 ISSN 0039-3169 R&D Projects: GA ČR GA205/07/1088; GA AV ČR IAA300120709; GA MŠk LM2010008 Institutional research plan: CEZ:AV0Z30120515 Keywords : receiver function * seismic noise * joint inversion * Bohemian Massif * velocity structure Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.975, year: 2012

  1. Seismic measurements of explosions in the Tatum Salt Dome, Mississippi

    Science.gov (United States)

    Borcherdt, Roger D.; Healy, J.H.; Jackson, W.H.; Warren, D.R.

    1967-01-01

    Project Sterling provided for the detonation of a nuclear device in the cavity resulting from the Salmon nuclear explosion in the Tatum salt dome in southern Mississippi. It also provided for a high explosive (HE) comparison shot in a nearby drill hole. The purpose of the experiment was to gather information on the seismic decoupling of a nuclear explosion in a cavity by comparing seismic signals from a nuclear shot in the Salmon cavity with seismic signals recorded from Salmon and with seismic signals recorded from a muall (about 2 tons) HE shot in the salt dome. Surface seismic measurements were made by the U.S. Geological Survey, the U.S. Coast and Geodetic Survey, and the Air Force Technical Applications Center with coordination and overall direction by the Lawrence Radiation Laboratory. This report covers only the seismic measurements made by the U. S. Geological Survey. The first objective of this report is to describe the field recording procedures and the data obtained by the U. S. Geological Survey from these events. The second objective is to describe the spectral analyses which have been made on the data and the relative seismic amplitudes which have been determined from these analyses.

  2. Adaptive prediction applied to seismic event detection

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G.A.; Rodgers, P.W.

    1981-09-01

    Adaptive prediction was applied to the problem of detecting small seismic events in microseismic background noise. The Widrow-Hoff LMS adaptive filter used in a prediction configuration is compared with two standard seismic filters as an onset indicator. Examples demonstrate the technique's usefulness with both synthetic and actual seismic data.

  3. Seismic Prediction While Drilling (SPWD): Seismic exploration ahead of the drill bit using phased array sources

    Science.gov (United States)

    Jaksch, Katrin; Giese, Rüdiger; Kopf, Matthias

    2010-05-01

    maximize the energy of the seismic source in order to reach a sufficient exploration range. The next step for focusing is to use the method of phased array. Dependent of the seismic wave velocities of the surrounding rock, the distance of the actuators to each other and the used frequencies the signal phases for each actuator can be determined. Since one year several measurements with the prototype have been realized under defined conditions at a test site in a mine. The test site consists of a rock block surrounded from three galleries with a dimension of about 100 by 200 meters. For testing the prototype two horizontal boreholes were drilled. They are directed to one of the gallery to get a strong reflector. The quality of the data of the borehole seismics in amplitude and frequency spectra show overall a good signal-to-noise ratio and correlate strongly with the fracture density along the borehole and are associated with a lower signal-to-noise ratio. Additionally, the geophones of the prototype show reflections from ahead and rearward in the seismic data. In particular, the reflections from the gallery ahead are used for the calibration of focusing. The direct seismic wave field indicates distinct compression and shear waves. The analysis of several seismic measurements with a focus on the direct seismic waves shows that the phased array technology explicit can influence the directional characteristics of the radiated seimic waves. The amplitudes of the seismic waves can be enhanced up to three times more in the desired direction and simultaneously be attenuated in the reverse direction. A major step for the directional investigation in boreholes has accomplished. But the focusing of the seismic waves has to be improved to maximize the energy in the desired direction in more measurements by calibrating the initiating seismic signals of the sources. A next step this year is the development of a wireline prototype for application in vertical boreholes with depths not

  4. Evolution and strengthening of the Calabrian Regional Seismic Network during the Pollino sequence

    Science.gov (United States)

    D'Alessandro, Antonino; Gervasi, Anna; Guerra, Ignazio

    2013-04-01

    In the last three years the Calabria-Lucania border area is affected by an intense seismic activity generated by the activation of geological structures which be seat of clusters of microearthquakes, with energy release sufficient to be felt and to generate alarm and bother. Besides to the historical memory of the inhabitants of Mormanno (the town most affected of macroseismic effects) there are some historical documents that indicate the occurrence of a similar seismic crisis in 1888. A more recent seismic sequence, the first monitored by seismic instruments, occurred in 1973-1974. In the last case, the activity started in early 2010 and is still ongoing. The two shocks of ML = 4.3 and 5.0 and the the very long time duration differs this crisis from the previous ones. Given this background, in 1981 was installed at Mormanno a seismic station (MMN) belonging to Regional Seismic Network of the University of Calabria (RSRC), now also a station of the Italian National Seismic Network of the Istituto Nazionale di Geofisica Vulcanolgia (INSN-INGV). This seismic station made it possible to follow the evolution of seismicity in this area and in particular the progressive increase in seismic activity started in 2010. Since 2010, some 3D stand-alone, was installed by the University of Calabria. Further stations of INGV were installed in November 2011 after a sharp increase of the energy release and subsequently by the INGV and the GeoForschungsZentrum (Potsdam) after the main shock of the whole sequence. Seismic networks are powerful tools for understanding active tectonic processes in a monitored seismically active region. However, the optimal monitoring of a seismic region requires the assessment of the seismic network capabilities to identify seismogenic areas that are not adequately covered and to quantify measures that will allow the network improvement. In this paper we examine in detail the evolution and the strengthening of the RSRC in the last years analyzing the

  5. Design and analysis of fractional order seismic transducer for displacement and acceleration measurements

    Science.gov (United States)

    Veeraian, Parthasarathi; Gandhi, Uma; Mangalanathan, Umapathy

    2018-04-01

    Seismic transducers are widely used for measurement of displacement, velocity, and acceleration. This paper presents the design of seismic transducer in the fractional domain for the measurement of displacement and acceleration. The fractional order transfer function for seismic displacement and acceleration transducer are derived using Grünwald-Letnikov derivative. Frequency response analysis of fractional order seismic displacement transducer (FOSDT) and fractional order seismic acceleration transducer (FOSAT) are carried out for different damping ratio with the different fractional order, and the maximum dynamic measurement range is identified. The results demonstrate that fractional order seismic transducer has increased dynamic measurement range and less phase distortion as compared to the conventional seismic transducer even with a lower damping ratio. Time response of FOSDT and FOSAT are derived analytically in terms of Mittag-Leffler function, the effect of fractional behavior in the time domain is evaluated from the impulse and step response. The fractional order system is found to have significantly reduced overshoot as compared to the conventional transducer. The fractional order seismic transducer design proposed in this paper is illustrated with a design example for FOSDT and FOSAT. Finally, an electrical equivalent of FOSDT and FOSAT is considered, and its frequency response is found to be in close agreement with the proposed fractional order seismic transducer.

  6. Measuring Tyre Rolling Noise at the Contact Patch

    Science.gov (United States)

    Kozak, P.; Matuszkova, R.; Radimsky, M.; Kudrna, J.

    2017-06-01

    This paper deals with noise generated by road traffic. A focus is concentrated solely on one of its sources related to tyre/road interaction referred as rolling noise. The paper states brief overview of various approaches and methods used to measure this particular source of road traffic noise. On the basis of literature reviews, a unique device has been designed. Development of the measuring device and possibilities of its usage are described in detail in this paper. Obtained results of noise measurements can then be used to design measures that increase safety and a lead to better comfort on the road.

  7. Measurement of low-frequency noise in rooms

    DEFF Research Database (Denmark)

    Pedersen, Steffen; Møller, Henrik; Persson-Waye, Kerstin

    2006-01-01

    Measurement of low-frequency noise in rooms is problematic due to standing wave patterns. The spatial variation in the sound pressure level can typically be as much as 20-30 dB. For assessment of annoyance from low-frequency noise in dwellings, it is important to measure a level close...... rooms. The sound pressure level was measured 1) in three-dimensional corners and 2) according to current Swedish and Danish measurement methods. Furthermore, the entire sound pressure distributions were measured by scanning. The Swedish and Danish measurement methods include a corner measurement...... to the highest level present in a room, rather than a room average level. In order to ensure representative noise measurements, different positions were investigated based on theoretical considerations and observations from numerical room simulations. In addition measurements were performed in three different...

  8. Bayesian seismic AVO inversion

    Energy Technology Data Exchange (ETDEWEB)

    Buland, Arild

    2002-07-01

    -wave velocity and density. The inversion algorithm has been tested on a 3-D dataset from the Sleipner Field with 4 million grid nodes, each with three unknown model parameters. The computing time was less than 3 minutes on the inversion in the Fourier domain, while each 3-D Fourier transform used about 30 seconds on a single 400 MHz Mips R12000 CPU. A Bayesian method for wavelet estimation from seismic and well data is developed. The method works both on stacked data and prestack data in form of angle gathers. The seismic forward model is based on the convolutional model, where the reflectivity is calculated from the well logs. The estimated wavelets are given as probability density functions such that uncertainties of the wavelets are an integral part of the solution. Possible mistie between the seismic traveltimes and the time axis of the well logs, errors in the log measurements and seismic noise are included in the model. The solution is obtained by Markov chain Monte Carlo simulation. (Author, abbrev.)

  9. Earthquake Monitoring with the MyShake Global Smartphone Seismic Network

    Science.gov (United States)

    Inbal, A.; Kong, Q.; Allen, R. M.; Savran, W. H.

    2017-12-01

    Smartphone arrays have the potential for significantly improving seismic monitoring in sparsely instrumented urban areas. This approach benefits from the dense spatial coverage of users, as well as from communication and computational capabilities built into smartphones, which facilitate big seismic data transfer and analysis. Advantages in data acquisition with smartphones trade-off with factors such as the low-quality sensors installed in phones, high noise levels, and strong network heterogeneity, all of which limit effective seismic monitoring. Here we utilize network and array-processing schemes to asses event detectability with the MyShake global smartphone network. We examine the benefits of using this network in either triggered or continuous modes of operation. A global database of ground motions measured on stationary phones triggered by M2-6 events is used to establish detection probabilities. We find that the probability of detecting an M=3 event with a single phone located 20 nearby phones closely match the regional catalog locations. We use simulated broadband seismic data to examine how location uncertainties vary with user distribution and noise levels. To this end, we have developed an empirical noise model for the metropolitan Los-Angeles (LA) area. We find that densities larger than 100 stationary phones/km2 are required to accurately locate M 2 events in the LA basin. Given the projected MyShake user distribution, that condition may be met within the next few years.

  10. Seismically observed seiching in the Panama Canal

    Science.gov (United States)

    McNamara, D.E.; Ringler, A.T.; Hutt, C.R.; Gee, L.S.

    2011-01-01

    A large portion of the seismic noise spectrum is dominated by water wave energy coupled into the solid Earth. Distinct mechanisms of water wave induced ground motions are distinguished by their spectral content. For example, cultural noise is generally Panama Canal there is an additional source of long-period noise generated by standing water waves, seiches, induced by disturbances such as passing ships and wind pressure. We compare seismic waveforms to water level records and relate these observations to changes in local tilt and gravity due to an oscillating seiche. The methods and observations discussed in this paper provide a first step toward quantifying the impact of water inundation as recorded by seismometers. This type of quantified understanding of water inundation will help in future estimates of similar phenomena such as the seismic observations of tsunami impact. Copyright 2011 by the American Geophysical Union.

  11. Unsupervised seismic facies analysis with spatial constraints using regularized fuzzy c-means

    Science.gov (United States)

    Song, Chengyun; Liu, Zhining; Cai, Hanpeng; Wang, Yaojun; Li, Xingming; Hu, Guangmin

    2017-12-01

    Seismic facies analysis techniques combine classification algorithms and seismic attributes to generate a map that describes main reservoir heterogeneities. However, most of the current classification algorithms only view the seismic attributes as isolated data regardless of their spatial locations, and the resulting map is generally sensitive to noise. In this paper, a regularized fuzzy c-means (RegFCM) algorithm is used for unsupervised seismic facies analysis. Due to the regularized term of the RegFCM algorithm, the data whose adjacent locations belong to same classification will play a more important role in the iterative process than other data. Therefore, this method can reduce the effect of seismic data noise presented in discontinuous regions. The synthetic data with different signal/noise values are used to demonstrate the noise tolerance ability of the RegFCM algorithm. Meanwhile, the fuzzy factor, the neighbour window size and the regularized weight are tested using various values, to provide a reference of how to set these parameters. The new approach is also applied to a real seismic data set from the F3 block of the Netherlands. The results show improved spatial continuity, with clear facies boundaries and channel morphology, which reveals that the method is an effective seismic facies analysis tool.

  12. Reducing high Reynolds number hydroacoustic noise using superhydrophobic coating

    International Nuclear Information System (INIS)

    Elboth, Thomas; Reif, Bjørn Anders Pettersson; Andreassen, Øyvind; Martell, Michael B

    2011-01-01

    The objective of this study is to assess and quantify the effect of a superhydrophobic surface coating on turbulence-generated flow noise. The study utilizes results obtained from high Reynolds-number full-scale flow noise measurements taken on a commercial seismic streamer and results from low Reynolds-number direct numerical simulations. It is shown that it is possible to significantly reduce both the frictional drag and the levels of the turbulence generated flow noise even at very high Reynolds-numbers. For instance, frequencies below 10 Hz a reduction in the flow noise level of nearly 50% was measured. These results can be attributed to a reduced level of shear stress and change in the kinematic structure of the turbulence, both of which occur in the immediate vicinity of the superhydrophobic surface.

  13. Interpretation of incore noise measurements in BWR's

    International Nuclear Information System (INIS)

    Dam, H. van

    1983-01-01

    A survey is given of the main incentives for power reactor noise research, and the differences and similarities of noise in power and zero power systems are shown. After a short outline of historical developments the basic characteristics of the adjoint method in reactor noise theory are dealt with. The detector adjoint functions describe the transfer functions between spatially distributed noise sources and a (neutron or gamma) detector. In particular, the spatial dependence of these functions explains the 'local' and 'global' effects in BWR noise measurements. By including thermal hydraulic feedback effects in the adjoint analysis, it is shown that the common idea of a dominant global effect at low frequencies, which should result in point kinetic behaviour, is erroneous. The same analysis provides a method for nonperturbing on-line measurements on a BWR in The Netherlands. In the final part of the paper some ideas are given for further research in the field of BWR noise. (author)

  14. Site response assessment using borehole seismic records

    Energy Technology Data Exchange (ETDEWEB)

    Park, Donghee; Chang, Chunjoong; Choi, Weonhack [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. The Korea Meteorological Administration (KMA) and the Korea Institute of Geology and Mining (KIGAM) have installed and are operating borehole seismometers at a depth of 70∼100 meters for the precise determination of epicenters. Also, Korea Hydro and Nuclear Power Co., Ltd. (KHNP) has installed and is operating 2 borehole seismic stations near Weolseong area to observe at a depth of 140 meters seismic activities connected to fault activity. KHNP plans to operate in the second half of 2014 a borehole seismic station for depths less than 300 and 600 meters in order to study the seismic response characteristics in deep strata. As a basic study for analyzing ground motion response characteristics at depths of about 300 to 600 meters in connection with the deep geological disposal of spent nuclear fuel, the present study examined the background noise response characteristics of the borehole seismic station operated by KHNP. In order to analyze the depth-dependent impact of seismic waves at deeper depths than in Korea, seismic data collected by Japan's KIK-net seismic stations were used and the seismic wave characteristics analyzed by size and depth. In order to analyze the borehole seismic observation data from the seismic station operated by KHNP, this study analyzed the background noise characteristics by using a probability density function.

  15. Site response assessment using borehole seismic records

    International Nuclear Information System (INIS)

    Park, Donghee; Chang, Chunjoong; Choi, Weonhack

    2014-01-01

    In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. The Korea Meteorological Administration (KMA) and the Korea Institute of Geology and Mining (KIGAM) have installed and are operating borehole seismometers at a depth of 70∼100 meters for the precise determination of epicenters. Also, Korea Hydro and Nuclear Power Co., Ltd. (KHNP) has installed and is operating 2 borehole seismic stations near Weolseong area to observe at a depth of 140 meters seismic activities connected to fault activity. KHNP plans to operate in the second half of 2014 a borehole seismic station for depths less than 300 and 600 meters in order to study the seismic response characteristics in deep strata. As a basic study for analyzing ground motion response characteristics at depths of about 300 to 600 meters in connection with the deep geological disposal of spent nuclear fuel, the present study examined the background noise response characteristics of the borehole seismic station operated by KHNP. In order to analyze the depth-dependent impact of seismic waves at deeper depths than in Korea, seismic data collected by Japan's KIK-net seismic stations were used and the seismic wave characteristics analyzed by size and depth. In order to analyze the borehole seismic observation data from the seismic station operated by KHNP, this study analyzed the background noise characteristics by using a probability density function

  16. Noise suppression in surface microseismic data by τ-p transform

    Science.gov (United States)

    Forghani-Arani, Farnoush; Batzle, Mike; Behura, Jyoti; Willis, Mark; Haines, Seth; Davidson, Michael

    2013-01-01

    Surface passive seismic methods are receiving increased attention for monitoring changes in reservoirs during the production of unconventional oil and gas. However, in passive seismic data the strong cultural and ambient noise (mainly surface-waves) decreases the effectiveness of these techniques. Hence, suppression of surface-waves is a critical step in surface microseismic monitoring. We apply a noise suppression technique, based on the τ — p transform, to a surface passive seismic dataset recorded over a Barnett Shale reservoir undergoing a hydraulic fracturing process. This technique not only improves the signal-to-noise ratios of added synthetic microseismic events, but it also preserves the event waveforms.

  17. Regression of environmental noise in LIGO data

    International Nuclear Information System (INIS)

    Tiwari, V; Klimenko, S; Mitselmakher, G; Necula, V; Drago, M; Prodi, G; Frolov, V; Yakushin, I; Re, V; Salemi, F; Vedovato, G

    2015-01-01

    We address the problem of noise regression in the output of gravitational-wave (GW) interferometers, using data from the physical environmental monitors (PEM). The objective of the regression analysis is to predict environmental noise in the GW channel from the PEM measurements. One of the most promising regression methods is based on the construction of Wiener–Kolmogorov (WK) filters. Using this method, the seismic noise cancellation from the LIGO GW channel has already been performed. In the presented approach the WK method has been extended, incorporating banks of Wiener filters in the time–frequency domain, multi-channel analysis and regulation schemes, which greatly enhance the versatility of the regression analysis. Also we present the first results on regression of the bi-coherent noise in the LIGO data. (paper)

  18. Investigation and measures to noise on spectroscopic measurement system in JT-60U

    International Nuclear Information System (INIS)

    Nagaya, Susumu; Kubo, Hirotaka; Sugie, Tatsuo; Onizawa, Masami; Kawai, Isao; Nakata, Hisao.

    1997-11-01

    Breakdown of a negative-ion-based neutral beam injection (N-NBI) has caused noise trouble to several systems. The control circuit of a spectroscopic measurement system had not well worked because of the noise. The noise has been measured by an optical-fiber isolation system during operation of JT-60U. The amplitude and the frequency were 15-18 V and 15 MHz respectively. The transmission noise has been reduced by putting ferrite cores to all cables connecting with the control circuits. As a result, the trouble with the spectroscopic measurement system has completely been solved. Adding condensers and resistors to the circuit was not effective to reduce the noise. (author)

  19. MyShake: Building a smartphone seismic network

    Science.gov (United States)

    Kong, Q.; Allen, R. M.; Schreier, L.

    2014-12-01

    We are in the process of building up a smartphone seismic network. In order to build this network, we did shake table tests to evaluate the performance of the smartphones as seismic recording instruments. We also conducted noise floor test to find the minimum earthquake signal we can record using smartphones. We added phone noises to the strong motion data from past earthquakes, and used these as an analogy dataset to test algorithms and to understand the difference of using the smartphone network and the traditional seismic network. We also built a prototype system to trigger the smartphones from our server to record signals which can be sent back to the server in near real time. The phones can also be triggered by our developed algorithm running locally on the phone, if there's an earthquake occur to trigger the phones, the signal recorded by the phones will be sent back to the server. We expect to turn the prototype system into a real smartphone seismic network to work as a supplementary network to the existing traditional seismic network.

  20. Variations of local seismic response in Benevento (Southern Italy) using earthquakes and ambient noise recordings

    Science.gov (United States)

    Improta, Luigi; di Giulio, Giuseppe; Rovelli, Antonio

    The city of Benevento (Southern Italy) has been repeatedly struck by large historical earthquakes. A heterogeneous geologic structure and widespread soft soil conditions make the estimation of site effects crucial for the seismic hazard assessment of the city. From 2000 until 2004, we installed seismic stations to collect earthquake data over zones with different geological conditions. Despite the high level of urban noise, we recorded more than 150 earthquakes at twelve sites. This data set yields the first, well documented experimental evidence for weak to moderate local amplifications. We investigated site effects primarily by the classical spectral ratio technique (CSR) using a rock station placed on the Benevento hill as reference. All sites in the Calore river valley and in the eastern part of the Benevento hill show a moderate high-frequency (f > 4 Hz) amplification peak. Conversely, sites in the Sabato river valley share weak-to-moderate amplification in a wide frequency band (from 1-2 to 7-10 Hz), without evident frequency peaks. Application of no-reference-site techniques to earthquake and noise data confirms the results of the CSRs in the sites of the Calore river valley and of the eastern part of the Benevento hill, but fails in providing indications for site effects in the Sabato river valley, being the H/V ratios nearly flat. One-dimensional modeling indicates that the ground motion amplification can be essentially explained in terms of a vertically varying geologic structure. High-frequency narrow peaks are caused by the strong impedance contrast existing between near-surface soft deposits and stiff cemented conglomerates. Conversely, broad-band amplifications in the Sabato river valley are likely due to a more complex layering with weak impedance contrasts both in the shallow and deep structure of the valley.

  1. Visualization of volumetric seismic data

    Science.gov (United States)

    Spickermann, Dela; Böttinger, Michael; Ashfaq Ahmed, Khawar; Gajewski, Dirk

    2015-04-01

    Mostly driven by demands of high quality subsurface imaging, highly specialized tools and methods have been developed to support the processing, visualization and interpretation of seismic data. 3D seismic data acquisition and 4D time-lapse seismic monitoring are well-established techniques in academia and industry, producing large amounts of data to be processed, visualized and interpreted. In this context, interactive 3D visualization methods proved to be valuable for the analysis of 3D seismic data cubes - especially for sedimentary environments with continuous horizons. In crystalline and hard rock environments, where hydraulic stimulation techniques may be applied to produce geothermal energy, interpretation of the seismic data is a more challenging problem. Instead of continuous reflection horizons, the imaging targets are often steep dipping faults, causing a lot of diffractions. Without further preprocessing these geological structures are often hidden behind the noise in the data. In this PICO presentation we will present a workflow consisting of data processing steps, which enhance the signal-to-noise ratio, followed by a visualization step based on the use the commercially available general purpose 3D visualization system Avizo. Specifically, we have used Avizo Earth, an extension to Avizo, which supports the import of seismic data in SEG-Y format and offers easy access to state-of-the-art 3D visualization methods at interactive frame rates, even for large seismic data cubes. In seismic interpretation using visualization, interactivity is a key requirement for understanding complex 3D structures. In order to enable an easy communication of the insights gained during the interactive visualization process, animations of the visualized data were created which support the spatial understanding of the data.

  2. Impact of magnitude uncertainties on seismic catalogue properties

    Science.gov (United States)

    Leptokaropoulos, K. M.; Adamaki, A. K.; Roberts, R. G.; Gkarlaouni, C. G.; Paradisopoulou, P. M.

    2018-05-01

    Catalogue-based studies are of central importance in seismological research, to investigate the temporal, spatial and size distribution of earthquakes in specified study areas. Methods for estimating the fundamental catalogue parameters like the Gutenberg-Richter (G-R) b-value and the completeness magnitude (Mc) are well established and routinely applied. However, the magnitudes reported in seismicity catalogues contain measurement uncertainties which may significantly distort the estimation of the derived parameters. In this study, we use numerical simulations of synthetic data sets to assess the reliability of different methods for determining b-value and Mc, assuming the G-R law validity. After contaminating the synthetic catalogues with Gaussian noise (with selected standard deviations), the analysis is performed for numerous data sets of different sample size (N). The noise introduced to the data generally leads to a systematic overestimation of magnitudes close to and above Mc. This fact causes an increase of the average number of events above Mc, which in turn leads to an apparent decrease of the b-value. This may result to a significant overestimation of seismicity rate even well above the actual completeness level. The b-value can in general be reliably estimated even for relatively small data sets (N < 1000) when only magnitudes higher than the actual completeness level are used. Nevertheless, a correction of the total number of events belonging in each magnitude class (i.e. 0.1 unit) should be considered, to deal with the magnitude uncertainty effect. Because magnitude uncertainties (here with the form of Gaussian noise) are inevitable in all instrumental catalogues, this finding is fundamental for seismicity rate and seismic hazard assessment analyses. Also important is that for some data analyses significant bias cannot necessarily be avoided by choosing a high Mc value for analysis. In such cases, there may be a risk of severe miscalculation of

  3. Accuracy and sensitivity analysis on seismic anisotropy parameter estimation

    Science.gov (United States)

    Yan, Fuyong; Han, De-Hua

    2018-04-01

    There is significant uncertainty in measuring the Thomsen’s parameter δ in laboratory even though the dimensions and orientations of the rock samples are known. It is expected that more challenges will be encountered in the estimating of the seismic anisotropy parameters from field seismic data. Based on Monte Carlo simulation of vertical transversely isotropic layer cake model using the database of laboratory anisotropy measurement from the literature, we apply the commonly used quartic non-hyperbolic reflection moveout equation to estimate the seismic anisotropy parameters and test its accuracy and sensitivities to the source-receive offset, vertical interval velocity error and time picking error. The testing results show that the methodology works perfectly for noise-free synthetic data with short spread length. However, this method is extremely sensitive to the time picking error caused by mild random noises, and it requires the spread length to be greater than the depth of the reflection event. The uncertainties increase rapidly for the deeper layers and the estimated anisotropy parameters can be very unreliable for a layer with more than five overlain layers. It is possible that an isotropic formation can be misinterpreted as a strong anisotropic formation. The sensitivity analysis should provide useful guidance on how to group the reflection events and build a suitable geological model for anisotropy parameter inversion.

  4. Measurement noise of a point autofocus surface topography instrument

    DEFF Research Database (Denmark)

    Feng, Xiaobing; Quagliotti, Danilo; Maculotti, Giacomo

    Optical instruments for areal topography measurement can be especially sensitive to noise when scanning is required. Such noise has different sources, including those internally generated and external sources from the environment.......Optical instruments for areal topography measurement can be especially sensitive to noise when scanning is required. Such noise has different sources, including those internally generated and external sources from the environment....

  5. Enhancement of the Signal-to-Noise Ratio in Sonic Logging Waveforms by Seismic Interferometry

    KAUST Repository

    Aldawood, Ali

    2012-04-01

    Sonic logs are essential tools for reliably identifying interval velocities which, in turn, are used in many seismic processes. One problem that arises, while logging, is irregularities due to washout zones along the borehole surfaces that scatters the transmitted energy and hence weakens the signal recorded at the receivers. To alleviate this problem, I have extended the theory of super-virtual refraction interferometry to enhance the signal-to-noise ratio (SNR) sonic waveforms. Tests on synthetic and real data show noticeable signal-to-noise ratio (SNR) enhancements of refracted P-wave arrivals in the sonic waveforms. The theory of super-virtual interferometric stacking is composed of two redatuming steps followed by a stacking procedure. The first redatuming procedure is of correlation type, where traces are correlated together to get virtual traces with the sources datumed to the refractor. The second datuming step is of convolution type, where traces are convolved together to dedatum the sources back to their original positions. The stacking procedure following each step enhances the signal to noise ratio of the refracted P-wave first arrivals. Datuming with correlation and convolution of traces introduces severe artifacts denoted as correlation artifacts in super-virtual data. To overcome this problem, I replace the datuming with correlation step by datuming with deconvolution. Although the former datuming method is more robust, the latter one reduces the artifacts significantly. Moreover, deconvolution can be a noise amplifier which is why a regularization term is utilized, rendering the datuming with deconvolution more stable. Tests of datuming with deconvolution instead of correlation with synthetic and real data examples show significant reduction of these artifacts. This is especially true when compared with the conventional way of applying the super-virtual refraction interferometry method.

  6. Controlled Noise Seismology

    KAUST Repository

    Hanafy, Sherif M.

    2015-08-19

    We use controlled noise seismology (CNS) to generate surface waves, where we continuously record seismic data while generating artificial noise along the profile line. To generate the CNS data we drove a vehicle around the geophone line and continuously recorded the generated noise. The recorded data set is then correlated over different time windows and the correlograms are stacked together to generate the surface waves. The virtual shot gathers reveal surface waves with moveout velocities that closely approximate those from active source shot gathers.

  7. Controlled Noise Seismology

    KAUST Repository

    Hanafy, Sherif M.; AlTheyab, Abdullah; Schuster, Gerard T.

    2015-01-01

    We use controlled noise seismology (CNS) to generate surface waves, where we continuously record seismic data while generating artificial noise along the profile line. To generate the CNS data we drove a vehicle around the geophone line and continuously recorded the generated noise. The recorded data set is then correlated over different time windows and the correlograms are stacked together to generate the surface waves. The virtual shot gathers reveal surface waves with moveout velocities that closely approximate those from active source shot gathers.

  8. Seismic switch for strong motion measurement

    Science.gov (United States)

    Harben, P.E.; Rodgers, P.W.; Ewert, D.W.

    1995-05-30

    A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs.

  9. RF Shot Noise Measurements in Au Atomic-scale Junctions

    Science.gov (United States)

    Chen, Ruoyu

    Conduction electrons are responsible for many physical or chemical phenomena in condensed matter systems, and their behavior can be directly studied by electronic transport measurements. In conventional transport measurements, conductance or resistance is usually the focus. Such a measurement can be as simple as a quick two terminal DC check by a multi-meter, or a more sophisticated lock-in measurement of multiple higher harmonic signals synchronized to different frequencies. Conductance carries direct information about the quasi-particle density of states and the local electronic distributions, which are usually Fermi-Dirac distribution. Conductance is modified or dominated by scattering from defacts or interfaces, and could also reflect the spin-spin exchange interactions or inelastic couplings with phonons and photons. Naturally one can ask the question: is there anything else we can measure electronically, which carries extra information that a conductance measurement does not provide? One answer to this question is the electronic noise. While the conductance reflects the average charge conduction ability of a system, noise describes how the physical quantities fluctuate around their average values. Some of the fluctuations carry information about their physical origins. This thesis will focus on one particular type of the electronic noise shot noise, but other types of noise will also be introduced and discussed. We choose to measure the radio frequency component of shot noise, combining with a modulated lock-in detection technique, which provides a method to largely get rid of other unwanted low-frequency noise signals. Au atomic-scale junctions are the systems we studied here. Au is relatively well understood and will not generate too many complications, so it's ideal as the first platform for us to understand both shot noise itself and our RF technique. On the other hand, the atomic scale raises fundamental questions about electronic transport and local

  10. Seismic constraints on magma evolution beneath Mount Baekdu (Changbai) volcano from transdimensional Bayesian inversion of ambient noise data

    Science.gov (United States)

    Kim, Seongryong; Tkalčić, Hrvoje; Rhie, Junkee

    2017-07-01

    The magmatic process of continental intraplate volcanism (CIV) is difficult to understand due to heterogeneous interactions with the crust and the lithospheric upper mantle. Mount Baekdu (Changbai) volcano (MBV) is one of the prominent CIVs in northeast Asia that has shown a complex history of eruptions and associated magmatic structures. In addition, the relationship between the crustal magmatic structures and upper mantle phenomena are enigmatic due to the lack of consistent seismic constraints for the lithospheric structure. To enhance comprehensive understanding of the MBV magma evolution, we image the lithospheric structure beneath the MBV and surrounding regions using ambient noise data and the following two approaches: (1) multiple measures of ambient noise dispersion are acquired through different methods and (2) a transdimensional Bayesian inversion method is utilized to obtain unbiased results in joint analysis of the multiple data sets. The estimated Earth structure shows a thick crust ( 40 km) and a crustal anomaly with relatively high S wave velocity in the depth range 20-40 km. This type of structure extends to 100 km north from the MBV and is accompanied by the shallow and rapid S wave velocity decrease beneath the mantle lid ( 80 km). Through a comparison with previous P wave models, we interpret this structure as a consequence of compositional partitioning by mafic underplating and overlying cooled felsic layers as a result of fractional crystalization.

  11. Noise reduction in long‐period seismograms by way of array summing

    Science.gov (United States)

    Ringler, Adam; Wilson, David; Storm, Tyler; Marshall, Benjamin T.; Hutt, Charles R.; Holland, Austin

    2016-01-01

    Long‐period (>100  s period) seismic data can often be dominated by instrumental noise as well as local site noise. When multiple collocated sensors are installed at a single site, it is possible to improve the overall station noise levels by applying stacking methods to their traces. We look at the noise reduction in long‐period seismic data by applying the time–frequency phase‐weighted stacking method of Schimmel and Gallart (2007) as well as the phase‐weighted stacking (PWS) method of Schimmel and Paulssen (1997) to four collocated broadband sensors installed in the quiet Albuquerque Seismological Laboratory underground vault. We show that such stacking methods can improve vertical noise levels by as much as 10 dB over the mean background noise levels at 400 s period, suggesting that greater improvements could be achieved with an array involving multiple sensors. We also apply this method to reduce local incoherent noise on horizontal seismic records of the 2 March 2016 Mw 7.8 Sumatra earthquake, where the incoherent noise levels at very long periods are similar in amplitude to the earthquake signal. To maximize the coherency, we apply the PWS method to horizontal data where relative azimuths between collocated sensors are estimated and compared with a simpler linear stack with no azimuthal rotation. Such methods could help reduce noise levels at various seismic stations where multiple high‐quality sensors have been deployed. Such small arrays may also provide a solution to improving long‐period noise levels at Global Seismographic Network stations.

  12. High-Tc Superconducting Bolometer Noise Measurement Using Low Noise Transformers - Theory and Optimization

    Science.gov (United States)

    Aslam, Shahid; Jones, Hollis H.

    2011-01-01

    Care must always be taken when performing noise measurements on high-Tc superconducting materials to ensure that the results are not from the measurement system itself. One situation likely to occur is with low noise transformers. One of the least understood devices, it provides voltage gain for low impedance inputs (< 100 ), e.g., YBaCuO and GdBaCuO thin films, with comparatively lower noise levels than other devices for instance field effect and bipolar junction transistors. An essential point made in this paper is that because of the complex relationships between the transformer ports, input impedance variance alters the transformer s transfer function in particular, the low frequency cutoff shift. The transfer of external and intrinsic transformer noise to the output along with optimization and precautions are treated; all the while, we will cohesively connect the transfer function shift, the load impedance, and the actual noise at the transformer output.

  13. Shaking table test study on seismic performance of dehydrogenation fan for nuclear power plants

    International Nuclear Information System (INIS)

    Liu Kaiyan; Shi Weixing; Cao Jialiang; Wang Yang

    2011-01-01

    Seismic performance of the dehydrogenation fan for nuclear power plants was evaluated based on the shaking table test of earthquake simulation. Dynamic characteristics including the orthogonal tri-axial fundamental frequencies and equivalent damping ratios were measured by the white noise scanning method. Artificial seismic waves were generated corresponding to the floor acceleration response spectra for nuclear power plants. Furthermore, five OBE and one SSE shaking table tests for dehydrogenation fan were performed by using the artificial seismic waves as the seismic inputs along the orthogonal axis simultaneity. Operating function of dehydrogenation fan was monitored and observed during all seismic tests, and performance indexes of dehydrogenation fan were compared before and after seismic tests. The results show that the structural integrity and operating function of the dehydrogenation fan are perfect during all seismic tests; and the performance indexes of the dehydrogenation fan can remain consistent before and after seismic tests; the seismic performance of the dehydrogenation fan can satisfy relevant technical requirements. (authors)

  14. Automated Processing Workflow for Ambient Seismic Recordings

    Science.gov (United States)

    Girard, A. J.; Shragge, J.

    2017-12-01

    Structural imaging using body-wave energy present in ambient seismic data remains a challenging task, largely because these wave modes are commonly much weaker than surface wave energy. In a number of situations body-wave energy has been extracted successfully; however, (nearly) all successful body-wave extraction and imaging approaches have focused on cross-correlation processing. While this is useful for interferometric purposes, it can also lead to the inclusion of unwanted noise events that dominate the resulting stack, leaving body-wave energy overpowered by the coherent noise. Conversely, wave-equation imaging can be applied directly on non-correlated ambient data that has been preprocessed to mitigate unwanted energy (i.e., surface waves, burst-like and electromechanical noise) to enhance body-wave arrivals. Following this approach, though, requires a significant preprocessing effort on often Terabytes of ambient seismic data, which is expensive and requires automation to be a feasible approach. In this work we outline an automated processing workflow designed to optimize body wave energy from an ambient seismic data set acquired on a large-N array at a mine site near Lalor Lake, Manitoba, Canada. We show that processing ambient seismic data in the recording domain, rather than the cross-correlation domain, allows us to mitigate energy that is inappropriate for body-wave imaging. We first develop a method for window selection that automatically identifies and removes data contaminated by coherent high-energy bursts. We then apply time- and frequency-domain debursting techniques to mitigate the effects of remaining strong amplitude and/or monochromatic energy without severely degrading the overall waveforms. After each processing step we implement a QC check to investigate improvements in the convergence rates - and the emergence of reflection events - in the cross-correlation plus stack waveforms over hour-long windows. Overall, the QC analyses suggest that

  15. Improving the accuracy of smart devices to measure noise exposure.

    Science.gov (United States)

    Roberts, Benjamin; Kardous, Chucri; Neitzel, Richard

    2016-11-01

    Occupational noise exposure is one of the most frequent hazards present in the workplace; up to 22 million workers have potentially hazardous noise exposures in the U.S. As a result, noise-induced hearing loss is one of the most common occupational injuries in the U.S. Workers in manufacturing, construction, and the military are at the highest risk for hearing loss. Despite the large number of people exposed to high levels of noise at work, many occupations have not been adequately evaluated for noise exposure. The objective of this experiment was to investigate whether or not iOS smartphones and other smart devices (Apple iPhones and iPods) could be used as reliable instruments to measure noise exposures. For this experiment three different types of microphones were tested with a single model of iPod and three generations of iPhones: the internal microphones on the device, a low-end lapel microphone, and a high-end lapel microphone marketed as being compliant with the International Electrotechnical Commission's (IEC) standard for a Class 2-microphone. All possible combinations of microphones and noise measurement applications were tested in a controlled environment using several different levels of pink noise ranging from 60-100 dBA. Results were compared to simultaneous measurements made using a Type 1 sound level measurement system. Analysis of variance and Tukey's honest significant difference (HSD) test were used to determine if the results differed by microphone or noise measurement application. Levels measured with external microphones combined with certain noise measurement applications did not differ significantly from levels measured with the Type 1 sound measurement system. Results showed that it may be possible to use iOS smartphones and smart devices, with specific combinations of measurement applications and calibrated external microphones, to collect reliable, occupational noise exposure data under certain conditions and within the limitations of the

  16. Mobile Communication Devices, Ambient Noise, and Acoustic Voice Measures.

    Science.gov (United States)

    Maryn, Youri; Ysenbaert, Femke; Zarowski, Andrzej; Vanspauwen, Robby

    2017-03-01

    The ability to move with mobile communication devices (MCDs; ie, smartphones and tablet computers) may induce differences in microphone-to-mouth positioning and use in noise-packed environments, and thus influence reliability of acoustic voice measurements. This study investigated differences in various acoustic voice measures between six recording equipments in backgrounds with low and increasing noise levels. One chain of continuous speech and sustained vowel from 50 subjects with voice disorders (all separated by silence intervals) was radiated and re-recorded in an anechoic chamber with five MCDs and one high-quality recording system. These recordings were acquired in one condition without ambient noise and in four conditions with increased ambient noise. A total of 10 acoustic voice markers were obtained in the program Praat. Differences between MCDs and noise condition were assessed with Friedman repeated-measures test and posthoc Wilcoxon signed-rank tests, both for related samples, after Bonferroni correction. (1) Except median fundamental frequency and seven nonsignificant differences, MCD samples have significantly higher acoustic markers than clinical reference samples in minimal environmental noise. (2) Except median fundamental frequency, jitter local, and jitter rap, all acoustic measures on samples recorded with the reference system experienced significant influence from room noise levels. Fundamental frequency is resistant to recording system, environmental noise, and their combination. All other measures, however, were impacted by both recording system and noise condition, and especially by their combination, often already in the reference/baseline condition without added ambient noise. Caution is therefore warranted regarding implementation of MCDs as clinical recording tools, particularly when applied for treatment outcomes assessments. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  17. Neurally based measurement and evaluation of environmental noise

    CERN Document Server

    Soeta, Yoshiharu

    2015-01-01

    This book deals with methods of measurement and evaluation of environmental noise based on an auditory neural and brain-oriented model. The model consists of the autocorrelation function (ACF) and the interaural cross-correlation function (IACF) mechanisms for signals arriving at the two ear entrances. Even when the sound pressure level of a noise is only about 35 dBA, people may feel annoyed due to the aspects of sound quality. These aspects can be formulated by the factors extracted from the ACF and IACF. Several examples of measuring environmental noise—from outdoor noise such as that of aircraft, traffic, and trains, and indoor noise such as caused by floor impact, toilets, and air-conditioning—are demonstrated. According to the noise measurement and evaluation, applications for sound design are discussed. This book provides an excellent resource for students, researchers, and practitioners in a wide range of fields, such as the automotive, railway, and electronics industries, and soundscape, architec...

  18. The monterey bay broadband ocean bottom seismic observatory

    Directory of Open Access Journals (Sweden)

    R. Uhrhammer

    2006-06-01

    Full Text Available We report on the installation of a long-term buried ocean-floor broadband seismic station (MOBB in Monterey Bay, California (USA, 40km off-shore, at a water depth of 1000 m. The station was installed in April 2002 using a ship and ROV, in a collaborative effort between the Monterey Bay Aquarium Research Institute (MBARI and the Berkeley Seismological Laboratory (BSL. The station is located on the western side of the San Gregorio Fault, a major fault in the San Andreas plate boundary fault system. In addition to a 3-component CMG-1T seismometer package, the station comprises a current meter and Differential Pressure Gauge, both sampled at high-enough frequency (1 Hz to allow the study of relations between background noise on the seismometers and ocean waves and currents. The proximity of several land-based broadband seismic stations of the Berkeley Digital Seismic Network allows insightful comparisons of land/ocean background seismic noise at periods relevant to regional and teleseismic studies. The station is currently autonomous. Recording and battery packages are exchanged every 3 months during scheduled one day dives. Ultimately, this station will be linked to shore using continuous telemetry (cable and/or buoy and will contribute to the earthquake notification system in Northern California. We present examples of earthquake and noise data recorded during the first 6 months of operation of MOBB. Lessons learned from these and continued recordings will help understand the nature and character of background noise in regional off-shore environments and provide a reference for the installation of future off-shore temporary and permanent broadband seismic stations.

  19. Noise measurements of highway pavements in Texas.

    Science.gov (United States)

    2009-10-01

    This report presents the results of noise testing performed on Texas pavements between May of 2006 and the : summer of 2008. Two field test methodologies were used: roadside noise measurement with SPL meters and onvehicle : sound intensity measuremen...

  20. A Deterministic Approach to Noise Attenuation in Oil and Gas ...

    African Journals Online (AJOL)

    This paper presents an estimation of an oil and gas seismic data acquisition process which incorporates a priori knowledge of noise contamination in the measured data. A conceptual simplicity of parameter and state estimation by a least squares computational algorithm was developed and a filter was postulated to define ...

  1. Detection of very long period solar free oscillations in ambient seismic array noise

    Science.gov (United States)

    Caton, R.; Pavlis, G. L.; Thomson, D. J.; Vernon, F.

    2017-12-01

    For nearly two decades long-period seismologists have been aware that the Earth's free oscillations are in a constant state of excitement, even in the absence of large earthquakes. This phenomenon is now called the "Earth's hum," and much research has been done to determine what generates this hum. Here we examine a hypothesis first put forward by Thomson et al. in 2007 that a portion of the hum's energy comes from the sun. They hypothesized that solar free oscillations couple into the solid Earth, likely through electromagnetic processes, and produce signals that are observable in the frequency domain. If this is true, then at least some measurement of helioseismic oscillations may be possible using relatively cheap, ground-based instruments rather than spacecraft. In this project we attempt to improve upon previous studies by producing spectra from seismic arrays, rather than a single station. We use data from two arrays: The Homestake Mine 3D array in Lead, SD, and the Pinyon Flats array, which has seismometers in boreholes drilled into bedrock. Both have exceptionally low noise levels at ultra long periods and show easily visible earth tides on horizontal component data filtered to below the microseism band. In the Homestake data, below 500 μHz we have found evidence of what we suggest may be closely spaced solar g-mode lines. Such modes are produced by a density inversion at the top of the solar core. There is no sign of these modes in the Pinyon Flats data, but we find this is likely due to the signal-to-noise ratio of those data, which is significantly lower than Homestake. Significance tests of bands below 500 μHz indicate with probability levels as high as 40σ that these lines are not the result of random processes. Critical examination of our processing steps for sources of bias indicate that the observed line structure is not a processing artifact.

  2. Comparison of measured and predicted airfoil self-noise with application to wind turbine noise reduction

    International Nuclear Information System (INIS)

    Dassen, T.; Parchen, R.; Guidati, G.; Wagner, S.; Kang, S.; Khodak, A.E.

    1998-01-01

    In the ongoing JOULE-III project 'Development of Design Tools for Reduced Aerodynamic Noise Wind Turbines (DRAW)', prediction codes for inflow-turbulence (IT) noise and turbulent boundary layer trailing-edge (TE) noise, are developed and validated. It is shown that the differences in IT noise radiation between airfoils having a different shape, are correctly predicted. The first, preliminary comparison made between predicted and measured TE noise spectra yields satisfactory results. 17 refs

  3. On the application of Hidden Markov Model and Bayesian Belief Network to seismic noise at Las Canadas Caldera, Tenerife, Spain

    International Nuclear Information System (INIS)

    Quintero Oliveros, Anggi; Carniel, Roberto; Tarraga, Marta; Aspinall, Willy

    2008-01-01

    The Teide-Pico Viejo volcanic complex situated in Tenerife Island (Canary Islands, Spain) has recently shown signs of unrest, long after its last eruptive episode at Chinyero in 1909, and the last explosive episode which happened at Montana Blanca, 2000 years ago. In this paper we study the seismicity of the Teide-Pico Viejo complex recorded between May and December 2004, in order to show the applicability of tools such as Hidden Markov Models and Bayesian Belief Networks which can be used to build a structure for evaluating the probability of given eruptive or volcano-related scenarios. The results support the existence of a bidirectional relationship between volcano-tectonic events and the background seismic noise - in particular its frequency content. This in turn suggests that the two phenomena can be related to one unique process influencing their generation

  4. On the application of Hidden Markov Model and Bayesian Belief Network to seismic noise at Las Canadas Caldera, Tenerife, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Quintero Oliveros, Anggi [Dipartimento di Georisorse e Territorio, Universita di Udine (Italy); Departamento de Ciencias de La Tierra, Universidad Simon Bolivar, Caracas (Venezuela); Carniel, Roberto [Dipartimento di Georisorse e Territorio, Universita di Udine (Italy)], E-mail: roberto.carniel@uniud.it; Tarraga, Marta [Departamento de Volcanologia, Museo Nacional de Ciencias Naturales, CSIC, Madrid (Spain); Aspinall, Willy [Aspinall and Associates, 5 Woodside Close, Beaconsfield, Bucks (United Kingdom)

    2008-08-15

    The Teide-Pico Viejo volcanic complex situated in Tenerife Island (Canary Islands, Spain) has recently shown signs of unrest, long after its last eruptive episode at Chinyero in 1909, and the last explosive episode which happened at Montana Blanca, 2000 years ago. In this paper we study the seismicity of the Teide-Pico Viejo complex recorded between May and December 2004, in order to show the applicability of tools such as Hidden Markov Models and Bayesian Belief Networks which can be used to build a structure for evaluating the probability of given eruptive or volcano-related scenarios. The results support the existence of a bidirectional relationship between volcano-tectonic events and the background seismic noise - in particular its frequency content. This in turn suggests that the two phenomena can be related to one unique process influencing their generation.

  5. Velocity variations associated with the large 2010 eruption of Merapi volcano, Java, retrieved from seismic multiplets and ambient noise cross-correlation

    Science.gov (United States)

    Budi-Santoso, Agus; Lesage, Philippe

    2016-07-01

    We present a study of the seismic velocity variations that occurred in the structure before the large 2010 eruption of Merapi volcano. For the first time to our knowledge, the technique of coda wave interferometry is applied to both families of similar events (multiplets) and to correlation functions of seismic noise. About half of the seismic events recorded at the summit stations belong to one of the ten multiplets identified, including 120 similar events that occurred in the last 20 hr preceding the eruption onset. Daily noise cross-correlation functions (NCF) were calculated for the six pairs of short-period stations available. Using the stretching method, we estimate time-series of apparent velocity variation (AVV) for each multiplet and each pair of stations. No significant velocity change is detected until September 2010. From 10 October to the beginning of the eruption on 26 October, a complex pattern of AVV is observed with amplitude of up to ±1.5 per cent. Velocity decrease is first observed from families of deep events and then from shallow earthquakes. In the same period, AVV with different signs and chronologies are estimated from NCF calculated for various station pairs. The location in the horizontal plane of the velocity perturbations related with the AVV obtained from NCF is estimated by using an approach based on the radiative transfer approximation. Although their spatial resolution is limited, the resulting maps display velocity decrease in the upper part of the edifice in the period 12-25 October. After the eruption onset, the pattern of velocity perturbations is significantly modified with respect to the previous one. We interpret these velocity variations in the framework of a scenario of magmatic intrusion that integrates most observations. The perturbation of the stress field associated with the magma migration can induce both decrease and increase of the seismic velocity of rocks. Thus the detected AVVs can be considered as precursors of

  6. Noise measurements during high-frequency oscillatory and conventional mechanical ventilation.

    Science.gov (United States)

    Berens, R J; Weigle, C G

    1995-10-01

    To evaluate the noise levels with high-frequency oscillatory ventilation and conventional mechanical ventilation. An observational, prospective study. Pediatric intensive care unit. The caretakers and environment of the pediatric intensive care unit. High-frequency oscillatory and conventional mechanical ventilation. Caretakers evaluated noise using a visual analog scale. Noise was measured with a decibel meter and an octave band frequency filter. There was twice as much noise perceived by the caretakers and as measured on the decibel A scale. All measures showed significantly greater noise, especially at low frequencies, with high-frequency oscillatory ventilation. High-frequency oscillatory ventilation exposes the patient to twice as much noise as does the use of conventional mechanical ventilation.

  7. Uncorrelated Noise in Turbulence Measurements

    DEFF Research Database (Denmark)

    Kristensen, Leif; Lenschow, D. H.

    1985-01-01

    of atmospheric variability. The authors assume that the measured signal is a representation of a variable that is continuous on the scale of interest in the atmosphere. Uncorrelated noise affects the autovariance function (or, equivalently, the structure function) only between zero and the first lag, while its...... effect is smeared across the entire power spectrum. For this reason, quantities such as variance dissipation may be more conveniently estimated from the structure function than from the spectrum. The modeling results are confirmed by artificially modifying a test time series with Poisson noise...

  8. Debuncher Momentum Cooling Systems Signal to Noise Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pasquinelli, Ralph J.; /Fermilab

    2001-12-18

    The Debuncher Momentum cooling systems were carefully measured for signal to noise. It was observed that cooling performance was not optimum. Closer inspection shows that the installed front-end bandpass filters are wider than the pickup response. (The original filters were specified to be wider so that none of the available bandwidth would be clipped.) The end result is excess noise is amplified and passed onto the kickers unimpeded, hence, reducing the achievable system gain. From this data, new filters should be designed to improve performance. New system bandwidths are specified on the data figures. Also included are the transfer function measurements that clearly show adjacent band response. In band 4 upper, the adjacent lobes are strong and out of phase. This is also degrading the system performance. The correlation between spectrum analyzer signal to noise and network analyzer system transfer functions is very strong. The table below has a calculation of expected improvement of front noise reduction by means of building new front-end bandpass filters. The calculation is based on a flat input noise spectrum and is a linear estimation of improvement. The listed 3dB bandwidths of the original filters are from measured data. The expected bandwidth is taken from the linear spectrum analyzer plots and is closer to a 10 dB bandwidth making the percentage improvement conservative. The signal to noise measurements are taken with circulating pbars in the Debuncher. One cooling system was measured at a time with all others off. Beam currents are below ten microamperes.

  9. Debuncher Momentum Cooling Systems Signal to Noise Measurements

    International Nuclear Information System (INIS)

    Pasquinelli, Ralph J.

    2001-01-01

    The Debuncher Momentum cooling systems were carefully measured for signal to noise. It was observed that cooling performance was not optimum. Closer inspection shows that the installed front-end bandpass filters are wider than the pickup response. (The original filters were specified to be wider so that none of the available bandwidth would be clipped.) The end result is excess noise is amplified and passed onto the kickers unimpeded, hence, reducing the achievable system gain. From this data, new filters should be designed to improve performance. New system bandwidths are specified on the data figures. Also included are the transfer function measurements that clearly show adjacent band response. In band 4 upper, the adjacent lobes are strong and out of phase. This is also degrading the system performance. The correlation between spectrum analyzer signal to noise and network analyzer system transfer functions is very strong. The table below has a calculation of expected improvement of front noise reduction by means of building new front-end bandpass filters. The calculation is based on a flat input noise spectrum and is a linear estimation of improvement. The listed 3dB bandwidths of the original filters are from measured data. The expected bandwidth is taken from the linear spectrum analyzer plots and is closer to a 10 dB bandwidth making the percentage improvement conservative. The signal to noise measurements are taken with circulating pbars in the Debuncher. One cooling system was measured at a time with all others off. Beam currents are below ten microamperes.

  10. Data Quality Assurance for Supersonic Jet Noise Measurements

    Science.gov (United States)

    Brown, Clifford A.; Henderson, Brenda S.; Bridges, James E.

    2010-01-01

    The noise created by a supersonic aircraft is a primary concern in the design of future high-speed planes. The jet noise reduction technologies required on these aircraft will be developed using scale-models mounted to experimental jet rigs designed to simulate the exhaust gases from a full-scale jet engine. The jet noise data collected in these experiments must accurately predict the noise levels produced by the full-scale hardware in order to be a useful development tool. A methodology has been adopted at the NASA Glenn Research Center s Aero-Acoustic Propulsion Laboratory to insure the quality of the supersonic jet noise data acquired from the facility s High Flow Jet Exit Rig so that it can be used to develop future nozzle technologies that reduce supersonic jet noise. The methodology relies on mitigating extraneous noise sources, examining the impact of measurement location on the acoustic results, and investigating the facility independence of the measurements. The methodology is documented here as a basis for validating future improvements and its limitations are noted so that they do not affect the data analysis. Maintaining a high quality jet noise laboratory is an ongoing process. By carefully examining the data produced and continually following this methodology, data quality can be maintained and improved over time.

  11. The Lusi seismic experiment: An initial study to understand the effect of seismic activity to Lusi

    Energy Technology Data Exchange (ETDEWEB)

    Karyono, E-mail: karyonosu@gmail.com [Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta (Indonesia); OSLO University (Norway); Padjadjaran University (UNPAD), Bandung (Indonesia); Mazzini, Adriano; Sugiharto, Anton [OSLO University (Norway); Lupi, Matteo [ETH Zurich (Switzerland); Syafri, Ildrem [Padjadjaran University (UNPAD), Bandung (Indonesia); Masturyono,; Rudiyanto, Ariska; Pranata, Bayu; Muzli,; Widodo, Handi Sulistyo; Sudrajat, Ajat [Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta (Indonesia)

    2015-04-24

    The spectacular Lumpur Sidoarjo (Lusi) eruption started in northeast Java on the 29 of May 2006 following a M6.3 earthquake striking the island [1,2]. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system [3] and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. The Lusi seismic experiment is a project aims to begin a detailed study of seismicity around the Lusi area. In this initial phase we deploy 30 seismometers strategically distributed in the area around Lusi and along the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. The purpose of the initial monitoring is to conduct a preliminary seismic campaign aiming to identify the occurrence and the location of local seismic events in east Java particularly beneath Lusi.This network will locate small event that may not be captured by the existing BMKG network. It will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-AW region and spatial and temporal variations of vp/vs ratios. The goal of this study is to understand how the seismicity occurring along the Sunda subduction zone affects to the behavior of the Lusi eruption. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. In this study, we will extract Green’s functions from ambient seismic noise data in order to image the shallow subsurface structure beneath LUSI area. The waveform cross-correlation technique will be apply to all of recordings of ambient seismic noise at 30 seismographic stations around the LUSI area. We use the dispersive behaviour of the retrieved Rayleigh waves to infer velocity structures in the shallow subsurface.

  12. Measuring low-frequency noise indoors

    DEFF Research Database (Denmark)

    Pedersen, Steffen; Møller, Henrik; Persson-Waye, Kerstin

    2008-01-01

    that is exceeded in 10% of the volume of a room (L10) is proposed as a rational and objective target for a measurement method. In Sweden and Denmark rules exist for measuring low-frequency noise indoors. The performance of these procedures was investigated in three rooms. The results from the Swedish method were...

  13. Noise in the Measurement of Light with Photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Robben, F

    1968-05-15

    In order to be able to compare measurements derived from the anode current of a photomultiplier with measurement derived from photoelectron pulse counting, a systematic investigation of the properties of some photomultiplier tubes has been made. This has led to a correlation of the properties of a photomultiplier based on the quantum efficiency {eta}, the gain G, a photoelectron loss factor S and an effective dark rate D. In terms of these quantities the signal to noise ratio of an experimental measurement can be calculated, given the light flux and measurement technique. The fluctuations in a photomultiplier output are divided into two parts; Poisson fluctuations, and those due to excess noise. It is experimentally shown, from measurements on a 931A photomultiplier, that the excess noise exceeds the Poisson fluctuations only at very low frequencies, or long DC measurement times (> 10 s), for both pulse counting and anode current measurements. The Poisson fluctuations are found to be approximately the same for both pulse counting and anode current measurements, at both high light levels where the dark current, or dark pulses, are negligible, as well as at low light levels where the dark current is dominant. The excess noise is found to be somewhat greater in the case of anode current measurements. Thus both pulse counting and anode current measurement techniques have nearly identical noise properties, as far as the photomultiplier is concerned, and selection of either experimental technique depends primarily on the properties of the electronic equipment. By use of a synchronous detection technique, the variance of the pulse count was measured experimentally to an accuracy of {+-} 4 %, and was shown to be in agreement with that predicted by Poisson statistics.

  14. In-situ measurements of seismic velocities in the San Francisco Bay region...part II

    Science.gov (United States)

    Gibbs, James F.; Fumal, Thomas E.; Borcherdt, Roger D.

    1976-01-01

    Seismic wave velocities (compressional and shear) are important parameters for determining the seismic response characteristics of various geologic units when subjected to strong earthquake ground shaking. Seismic velocities of various units often show a strong correlation with the amounts of damage following large earthquakes and have been used as a basis for certain types of seismic zonation studies. Currently a program is in progress to measure seismic velocities in the San Francisco Bay region at an estimated 150 sites. At each site seismic travel times are measured in drill holes, normally at 2.5-m intervals to a depth of 30 m. Geologic logs are determined from drill hole cuttings, undisturbed samples, and penetrometer samples. The data provide a detailed comparison of geologic and seismic characteristics and provide parameters for estimating strong earthquake ground motions quantitatively at each of the site. A major emphasis of this program is to obtain a detailed comparison of geologic and seismic data on a regional scale for use in seismic zonation. The broad data base available in the San Francisco Bay region suggests using the area as a pilot area for the development of general techniques applicable to other areas.

  15. Attenuation (1/Q) estimation in reflection seismic records

    International Nuclear Information System (INIS)

    Raji, Wasiu; Rietbrock, Andreas

    2013-01-01

    Despite its numerous potential applications, the lack of a reliable method for determining attenuation (1/Q) in seismic data is an issue when utilizing attenuation for hydrocarbon exploration. In this paper, a new method for measuring attenuation in reflection seismic data is presented. The inversion process involves two key stages: computation of the centroid frequency for the individual signal using a variable window length and fast Fourier transform; and estimation of the difference in the centroid frequency and travel time for paired incident and transmitted signals. The new method introduces a shape factor and a constant which allows several spectral shapes to be used to represent a real seismic signal without altering the mathematical model. Application of the new method to synthetic data shows that it can provide reliable estimates of Q using any of the spectral shapes commonly assumed for real seismic signals. Tested against two published methods of Q measurement, the new method shows less sensitivity to interference from noise and change of frequency bandwidth. The method is also applied to a 3D data set from the Gullfaks field, North Sea, Norway. The trace length is divided into four intervals: AB, BC, CD, and DE. Results show that interval AB has the lowest 1/Q value, and that interval BC has the highest 1/Q value. The values of 1/Q measured in the CDP stack using the new method are consistent with those measured using the classical spectral ratio method. (paper)

  16. Anatomy of the high-frequency ambient seismic wave field at the TCDP borehole.

    OpenAIRE

    Hillers , Gregor; Campillo , Michel; Lin , Y.-Y.; Ma , K.F.; Roux , Philippe

    2012-01-01

    International audience; The Taiwan Chelungpu-fault Drilling Project (TCDP) installed a vertical seismic array between 950 and 1270 m depth in an active thrust fault environment. In this paper we analyze continuous noise records of the TCDP array between 1 and 16 Hz. We apply multiple array processing and noise correlation techniques to study the noise source process, properties of the propagation medium, and the ambient seismic wave field. Diurnal amplitude and slowness patterns suggest that ...

  17. Power reactor noise measurements in Hungary

    International Nuclear Information System (INIS)

    Pallagi, D.; Horanyi, S.; Hargitai, T.

    1975-01-01

    An outline is given of the history of reactor noise research in Hungary. A brief description is given of studies in the WWR-SM reactor, a modified version of the original WWR-S thermal reactor, for the detection of in-core simulated boiling by analysis of the noise of out-of-core ionization chambers. Coolant velocity measurements by transit time analysis of temperature fluctuations are described. (U.K.)

  18. Measurement of luminance noise and chromaticity noise of LCDs with a colorimeter and a color camera

    Science.gov (United States)

    Roehrig, H.; Dallas, W. J.; Krupinski, E. A.; Redford, Gary R.

    2007-09-01

    This communication focuses on physical evaluation of image quality of displays for applications in medical imaging. In particular we were interested in luminance noise as well as chromaticity noise of LCDs. Luminance noise has been encountered in the study of monochrome LCDs for some time, but chromaticity noise is a new type of noise which has been encountered first when monochrome and color LCDs were compared in an ROC study. In this present study one color and one monochrome 3 M-pixel LCDs were studied. Both were DICOM calibrated with equal dynamic range. We used a Konica Minolta Chroma Meter CS-200 as well as a Foveon color camera to estimate luminance and chrominance variations of the displays. We also used a simulation experiment to estimate luminance noise. The measurements with the colorimeter were consistent. The measurements with the Foveon color camera were very preliminary as color cameras had never been used for image quality measurements. However they were extremely promising. The measurements with the colorimeter and the simulation results showed that the luminance and chromaticity noise of the color LCD were larger than that of the monochrome LCD. Under the condition that an adequate calibration method and image QA/QC program for color displays are available, we expect color LCDs may be ready for radiology in very near future.

  19. Noise in NC-AFM measurements with significant tip–sample interaction

    Directory of Open Access Journals (Sweden)

    Jannis Lübbe

    2016-12-01

    Full Text Available The frequency shift noise in non-contact atomic force microscopy (NC-AFM imaging and spectroscopy consists of thermal noise and detection system noise with an additional contribution from amplitude noise if there are significant tip–sample interactions. The total noise power spectral density DΔf(fm is, however, not just the sum of these noise contributions. Instead its magnitude and spectral characteristics are determined by the strongly non-linear tip–sample interaction, by the coupling between the amplitude and tip–sample distance control loops of the NC-AFM system as well as by the characteristics of the phase locked loop (PLL detector used for frequency demodulation. Here, we measure DΔf(fm for various NC-AFM parameter settings representing realistic measurement conditions and compare experimental data to simulations based on a model of the NC-AFM system that includes the tip–sample interaction. The good agreement between predicted and measured noise spectra confirms that the model covers the relevant noise contributions and interactions. Results yield a general understanding of noise generation and propagation in the NC-AFM and provide a quantitative prediction of noise for given experimental parameters. We derive strategies for noise-optimised imaging and spectroscopy and outline a full optimisation procedure for the instrumentation and control loops.

  20. Measurements and preliminary interpretation of K-Reactor foundation response to man-made seismic excitation

    International Nuclear Information System (INIS)

    Lee, R.C.; Stephenson, D.E.

    1992-01-01

    In support of the Savannah River Technology Center (SRTC) effort to develop K-Reactor seismic design basis ground motions, SRTC monitored local high-explosive tests at a ''free-field'' site adjacent to K-Reactor and on the -40 level on the foundation of K-Reactor. The high-explosive tests were part of the SRTC/United States Geological Survey (USGS) regional refraction and attenuation experiment that used deeply buried high explosive charges near New Ellenton, Snelling, and at more distant South Carolina sites. The primary purpose of the Reactor measurements are to compare the relative amplitude and frequency content of ambient noise and shot generated ground motions measured at the K-Reactor foundation level and in the ''free-field'' so that foundation effects to ground motions can be documented and possibly incorporated in the facility design basis. Data analysis indicates that one of the five high explosive tests provided sufficient excitations at K-Reactor to produce satisfactory signal-to-noise between about 1 Hz and 15 Hz. Within this frequency band, Fourier spectral amplitude ratios of motions recorded within the first 10 seconds of first motion show substantial reductions (30 endash 50%) on shot radial and transverse components for frequencies greater than about 3 to 5 Hz. Approximately 50% reductions between 10 to 15 Hz were seen on vertical component ratios, and amplifications of 100% at 4 Hz and 5 Hz endash 6 Hz

  1. Seismic signal auto-detecing from different features by using Convolutional Neural Network

    Science.gov (United States)

    Huang, Y.; Zhou, Y.; Yue, H.; Zhou, S.

    2017-12-01

    We try Convolutional Neural Network to detect some features of seismic data and compare their efficience. The features include whether a signal is seismic signal or noise and the arrival time of P and S phase and each feature correspond to a Convolutional Neural Network. We first use traditional STA/LTA to recongnize some events and then use templete matching to find more events as training set for the Neural Network. To make the training set more various, we add some noise to the seismic data and make some synthetic seismic data and noise. The 3-component raw signal and time-frequancy ananlyze are used as the input data for our neural network. Our Training is performed on GPUs to achieve efficient convergence. Our method improved the precision in comparison with STA/LTA and template matching. We will move to recurrent neural network to see if this kind network is better in detect P and S phase.

  2. Seismic Correlation and Coupling from Underground, Surface, to the Ionosphere

    Science.gov (United States)

    Wang, J. S.; Waysand, G.

    2009-12-01

    Electromagnetic activity correlated to seismicity is displayed in a variety of ways. Earthquake precursors and aftershocks associated with local fault slips have been detected regionally by visual observations and radar reflections, and globally by satellite measurements of electromagnetic profiles. Magnetic excitations have recently been measured underground that associated with major earthquakes (e.g., the 2008 Sichuan and the 2006 Pingtung earthquakes). In all cases, the frequencies are extremely low; hence, the corresponding wavelengths are extremely large. In other term, wherever an earthquake occurs on Earth, any electromagnetic measurement of it is always near-field from the signal source. Thus, signal-to-noise ratio is the only limiting factor. The increasing abundance of observations, and the variety of instruments enabling these observations, requires investigators to look beyond borders of their individual discipline and adopt a global approach to the problem. To elucidate the dynamic generation and propagation of seismic-induced electromagnetic signals, it is important to assess from small to large scales the variability of (1) the seismic-electromagnetic coupling at localized zones and block boundaries, (2) the potential signal paths through the earth geomagnetic fields, and (3) the ionosphere and atmospheric measurements and observations. The pre-earthquake signals as potential precursors have generated great interests for decades, especially with the deployments of satellites for geophysical measurements. The emerging understanding is that stress buildups and releases induce electromagnetic emissions which are likely associated with charged particle movements, propagations mainly along waveguides through the earth magnetic field to the atmosphere and ionosphere. The globally distributed perturbations and profiles above ground are systematically mapped. The signals could also be transmitted nearly vertically from epicenters to the ground and beyond

  3. Novel ST-MUSIC-based spectral analysis for detection of ULF geomagnetic signals anomalies associated with seismic events in Mexico

    Directory of Open Access Journals (Sweden)

    Omar Chavez

    2016-05-01

    Full Text Available Recently, the analysis of ultra-low-frequency (ULF geomagnetic signals in order to detect seismic anomalies has been reported in several works. Yet, they, although having promising results, present problems for their detection since these anomalies are generally too much weak and embedded in high noise levels. In this work, a short-time multiple signal classification (ST-MUSIC, which is a technique with high-frequency resolution and noise immunity, is proposed for the detection of seismic anomalies in the ULF geomagnetic signals. Besides, the energy (E of geomagnetic signals processed by ST-MUSIC is also presented as a complementary parameter to measure the fluctuations between seismic activity and seismic calm period. The usefulness and effectiveness of the proposal are demonstrated through the analysis of a synthetic signal and five real signals with earthquakes. The analysed ULF geomagnetic signals have been obtained using a tri-axial fluxgate magnetometer at the Juriquilla station, which is localized in Queretaro, Mexico (geographic coordinates: longitude 100.45° E and latitude 20.70° N. The results obtained show the detection of seismic perturbations before, during, and after the main shock, making the proposal a suitable tool for detecting seismic precursors.

  4. Recent developments in seismic seabed oil reservoir monitoring applications using fibre-optic sensing networks

    International Nuclear Information System (INIS)

    De Freitas, J M

    2011-01-01

    This review looks at recent developments in seismic seabed oil reservoir monitoring techniques using fibre-optic sensing networks. After a brief introduction covering the background and scope of the review, the following section focuses on state-of-the-art fibre-optic hydrophones and accelerometers used for seismic applications. Related metrology aspects of the sensor such as measurement of sensitivity, noise and cross-axis performance are addressed. The third section focuses on interrogation systems. Two main phase-based competing systems have emerged over the past two decades for seismic applications, with a third technique showing much promise; these have been compared in terms of general performance. (topical review)

  5. Noise evaluation of a point autofocus surface topography measuring instrument

    Science.gov (United States)

    Maculotti, Giacomo; Feng, Xiaobing; Galetto, Maurizio; Leach, Richard

    2018-06-01

    In this work, the measurement noise of a point autofocus surface topography measuring instrument is evaluated, as the first step towards establishing a route to traceability for this type of instrument. The evaluation is based on the determination of the metrological characteristics for noise as outlined in draft ISO specification standards by using a calibrated optical flat. The static noise and repeatability of the autofocus sensor are evaluated. The influence of environmental disturbances on the measured surface topography and the built-in software to compensate for such influences are also investigated. The instrument was found to have a measurement noise of approximately 2 nm or, when expressed with the measurement bandwidth, 0.4 nm for a single-point measurement.

  6. Cavola experiment site: geophysical investigations and deployment of a dense seismic array on a landslide

    Directory of Open Access Journals (Sweden)

    L. Martelli

    2007-06-01

    Full Text Available Geophysical site investigations have been performed in association with deployment of a dense array of 95 3-component seismometers on the Cavola landslide in the Northern Apennines. The aim of the array is to study propagation of seismic waves in the heterogeneous medium through comparison of observation and modelling. The small-aperture array (130 m×56 m operated continuously for three months in 2004. Cavola landslide consists of a clay body sliding over mudstone-shale basement, and has a record of historical activity, including destruction of a small village in 1960. The site investigations include down-hole logging of P- and S-wave travel times at a new borehole drilled within the array, two seismic refraction lines with both P-wave profiling and surface-wave analyses, geo-electrical profiles and seismic noise measurements. From the different approaches a consistent picture of the depths and seismic velocities for the landslide has emerged. Their estimates agree with resonance frequencies of seismic noise, and also with the logged depths to basement of 25 m at a new borehole and of 44 m at a pre-existing borehole. Velocities for S waves increase with depth, from 230 m/s at the surface to 625 m/s in basement immediately below the landslide.

  7. Accelerometer Sensor Specifications to Predict Hydrocarbon Using Passive Seismic Technique

    Directory of Open Access Journals (Sweden)

    M. H. Md Khir

    2016-01-01

    Full Text Available The ambient seismic ground noise has been investigated in several surveys worldwide in the last 10 years to verify the correlation between observed seismic energy anomalies at the surface and the presence of hydrocarbon reserves beneath. This is due to the premise that anomalies provide information about the geology and potential presence of hydrocarbon. However a technology gap manifested in nonoptimal detection of seismic signals of interest is observed. This is due to the fact that available sensors are not designed on the basis of passive seismic signal attributes and mainly in terms of amplitude and bandwidth. This is because of that fact that passive seismic acquisition requires greater instrumentation sensitivity, noise immunity, and bandwidth, with active seismic acquisition, where vibratory or impulsive sources were utilized to receive reflections through geophones. Therefore, in the case of passive seismic acquisition, it is necessary to select the best monitoring equipment for its success or failure. Hence, concerning sensors performance, this paper highlights the technological gap and motivates developing dedicated sensors for optimal solution at lower frequencies. Thus, the improved passive seismic recording helps in oil and gas industry to perform better fracture mapping and identify more appropriate stratigraphy at low frequencies.

  8. A comparison of high-frequency noise levels on Cascadia Initiative ocean-bottom seismometers

    Science.gov (United States)

    Hilmo, R.; Wilcock, W. S. D.; Roland, E. C.; Bodin, P.; Connolly, J.

    2017-12-01

    The Cascadia Initiative (CI) included a four-year deployment of 70 ocean bottom seismometers (OBSs) on the Cascadia subduction zone and the Juan de Fuca plate for the purposes of characterizing seismicity and imaging the Earth's interior. The Cascadia subduction zone megathrust exhibits very low rates of seismicity relative to most other subduction zones, and there is great motivation to understand deformation on the megathrust because of its potential to produce a catastrophic M9 earthquake. An understanding of earthquake detectability of the CI network, based on knowledge of noise levels, could contribute to the interpretation of earthquake catalogs derived from the experiment and aid in the design of future networks. This project is aimed at estimating these thresholds of local earthquake detectability and how they change across the array both geographically and temporally. We characterize background noise levels recorded from 0.1 to 20 Hz with an emphasis on the frequency band used to detect local seismicity ( 3-15 Hz) to understand how noise levels depend on instrument design and environmental parameters including seafloor depth, season and oceanographic conditions. Our initial analysis of 3 weeks of vertical channel data in September, January, and May 2012-2013 shows that noise increase significantly moving from the continental shelf to deeper water. Noise levels at a given depth vary with instrument type but further analysis is required to determine whether this reflects variations in instrumental noise and ground coupling noise or errors in the scaling of the instrument response. There is also a strong seasonality in recorded noise levels at some frequencies, with winter noise levels exceeding spring and fall noise levels by up to 10 decibels in both the microseism band and in the fin whale calling band (15-20 Hz). In contrast, the seasonal noise level in the local seismicity band for a given instrument type and location shows smaller noise variation

  9. Measured Noise from Small Unmanned Aerial Vehicles

    Science.gov (United States)

    Cabell, Randolph; McSwain, Robert; Grosveld, Ferdinand

    2016-01-01

    Proposed uses of small unmanned aerial vehicles (UAVs), including home package delivery, have the potential to expose large portions of communities to a new noise source. This paper discusses results of flyover noise measurements of four small UAVs, including an internal combustion-powered model airplane and three battery-powered multicopters. Basic noise characteristics of these vehicles are discussed, including spectral properties and sound level metrics such as sound pressure level, effective perceived noise level, and sound exposure level. The size and aerodynamic characteristics of the multicopters in particular make their flight path susceptible to atmospheric disturbances such as wind gusts. These gusts, coupled with a flight control system that varies rotor speed to maintain vehicle stability, create an unsteady acoustic signature. The spectral variations resulting from this unsteadiness are explored, in both hover and flyover conditions for the multicopters. The time varying noise, which differs from the relatively steady noise generated by large transport aircraft, may complicate the prediction of human annoyance using conventional sound level metrics.

  10. Estimation of noise-free variance to measure heterogeneity.

    Directory of Open Access Journals (Sweden)

    Tilo Winkler

    Full Text Available Variance is a statistical parameter used to characterize heterogeneity or variability in data sets. However, measurements commonly include noise, as random errors superimposed to the actual value, which may substantially increase the variance compared to a noise-free data set. Our aim was to develop and validate a method to estimate noise-free spatial heterogeneity of pulmonary perfusion using dynamic positron emission tomography (PET scans. On theoretical grounds, we demonstrate a linear relationship between the total variance of a data set derived from averages of n multiple measurements, and the reciprocal of n. Using multiple measurements with varying n yields estimates of the linear relationship including the noise-free variance as the constant parameter. In PET images, n is proportional to the number of registered decay events, and the variance of the image is typically normalized by the square of its mean value yielding a coefficient of variation squared (CV(2. The method was evaluated with a Jaszczak phantom as reference spatial heterogeneity (CV(r(2 for comparison with our estimate of noise-free or 'true' heterogeneity (CV(t(2. We found that CV(t(2 was only 5.4% higher than CV(r2. Additional evaluations were conducted on 38 PET scans of pulmonary perfusion using (13NN-saline injection. The mean CV(t(2 was 0.10 (range: 0.03-0.30, while the mean CV(2 including noise was 0.24 (range: 0.10-0.59. CV(t(2 was in average 41.5% of the CV(2 measured including noise (range: 17.8-71.2%. The reproducibility of CV(t(2 was evaluated using three repeated PET scans from five subjects. Individual CV(t(2 were within 16% of each subject's mean and paired t-tests revealed no difference among the results from the three consecutive PET scans. In conclusion, our method provides reliable noise-free estimates of CV(t(2 in PET scans, and may be useful for similar statistical problems in experimental data.

  11. Search for Long Period Solar Normal Modes in Ambient Seismic Noise

    Science.gov (United States)

    Caton, R.; Pavlis, G. L.

    2016-12-01

    We search for evidence of solar free oscillations (normal modes) in long period seismic data through multitaper spectral analysis of array stacks. This analysis is similar to that of Thomson & Vernon (2015), who used data from the most quiet single stations of the global seismic network. Our approach is to use stacks of large arrays of noisier stations to reduce noise. Arrays have the added advantage of permitting the use of nonparametic statistics (jackknife errors) to provide objective error estimates. We used data from the Transportable Array, the broadband borehole array at Pinyon Flat, and the 3D broadband array in Homestake Mine in Lead, SD. The Homestake Mine array has 15 STS-2 sensors deployed in the mine that are extremely quiet at long periods due to stable temperatures and stable piers anchored to hard rock. The length of time series used ranged from 50 days to 85 days. We processed the data by low-pass filtering with a corner frequency of 10 mHz, followed by an autoregressive prewhitening filter and median stack. We elected to use the median instead of the mean in order to get a more robust stack. We then used G. Prieto's mtspec library to compute multitaper spectrum estimates on the data. We produce delete-one jackknife error estimates of the uncertainty at each frequency by computing median stacks of all data with one station removed. The results from the TA data show tentative evidence for several lines between 290 μHz and 400 μHz, including a recurring line near 379 μHz. This 379 μHz line is near the Earth mode 0T2 and the solar mode 5g5, suggesting that 5g5 could be coupling into the Earth mode. Current results suggest more statistically significant lines may be present in Pinyon Flat data, but additional processing of the data is underway to confirm this observation.

  12. Characterization of site-effects in the urban area of Canakkale, Turkey, using ambient noise measurements

    Science.gov (United States)

    Demirci, Alper; Bekler, Tolga; Karagöz, Özlem

    2010-05-01

    The local site conditions can cause variations in the ground motion during the earthquake events. These local effects can be estimated by Nakamura method (1989) which is based on the analysis and treatment of earth vibration records by calculating the ratio of horizontal spectrum to vertical spectrum (H/V). This approach uses ambient noises and aids to estimate the dynamic soil conditions like fundamental vibration period and soil amplification of the surface layers, to characterize the seismic hazard during earthquakes and to provide detailed information for seismic microzonation in small scale urban areas. Due to these advantages, the method has been frequently used by a great number of seismologists and engineers. In this study, we aimed at explaining the soil conditions in Çanakkale and Kepez basins by using H/V technique. Çanakkale and Kepez (NW, Turkey) have fairly complex tectonic structure and have been exposed to serious earthquake damages in historical and instrumental period. Active faults, which have influence on the Çanakkale and Kepez settlements, are the Yenice-Gönen fault, Saroz-Gaziköy fault and Etili fault. It is well known that, these faults have produced high magnitude earthquakes such as 7.2 in 1912 and 7.3 in 1953. The surface geology of the surveyed area is covered by quaternary aged sediments. Sarıçay river, which originates from the eastern hilly area, accumulates sediment deposits and forms this alluvial basin. Considering the geological conditions, ambient noises were recorded at 88 measurement points which were selected to provide good coverage of the study area. All records were acquired during the midnight (between 1:00 am and 6:00 am) to reduce the artificial effects in the urban area. Taking into account the effects of undesirable traffic and industrial noises in the vicinity of measurements stations, record lengths were chosen in the range of 25-75 minutes with the sampling rate of 100 Hz. Once the required signal processes

  13. A direct method for calculating instrument noise levels in side-by-side seismometer evaluations

    Science.gov (United States)

    Holcomb, L. Gary

    1989-01-01

    The subject of determining the inherent system noise levels present in modem broadband closed loop seismic sensors has been an evolving topic ever since closed loop systems became available. Closed loop systems are unique in that the system noise can not be determined via a blocked mass test as in older conventional open loop seismic sensors. Instead, most investigators have resorted to performing measurements on two or more systems operating in close proximity to one another and to analyzing the outputs of these systems with respect to one another to ascertain their relative noise levels.The analysis of side-by-side relative performance is inherently dependent on the accuracy of the mathematical modeling of the test configuration. This report presents a direct approach to extracting the system noise levels of two linear systems with a common coherent input signal. The mathematical solution to the problem is incredibly simple; however the practical application of the method encounters some difficulties. Examples of expected accuracies are presented as derived by simulating real systems performance using computer generated random noise. In addition, examples of the performance of the method when applied to real experimental test data are shown.

  14. Characterization of Unstable Rock Slopes Through Passive Seismic Measurements

    Science.gov (United States)

    Kleinbrod, U.; Burjanek, J.; Fäh, D.

    2014-12-01

    Catastrophic rock slope failures have high social impact, causing significant damage to infrastructure and many casualties throughout the world each year. Both detection and characterization of rock instabilities are therefore of key importance. An analysis of ambient vibrations of unstable rock slopes might be a new alternative to the already existing methods, e.g. geotechnical displacement measurements. Systematic measurements have been performed recently in Switzerland to study the seismic response of potential rockslides concerning a broad class of slope failure mechanisms and material conditions. Small aperture seismic arrays were deployed at sites of interest for a short period of time (several hours) in order to record ambient vibrations. Each measurement setup included a reference station, which was installed on a stable part close to the instability. Recorded ground motion is highly directional in the unstable parts of the rock slope, and significantly amplified with respect to stable areas. These effects are strongest at certain frequencies, which were identified as eigenfrequencies of the unstable rock mass. In most cases the directions of maximum amplification are perpendicular to open cracks and in good agreement with the deformation directions obtained by geodetic measurements. Such unique signatures might improve our understanding of slope structure and stability. Thus we link observed vibration characteristics with available results of detailed geological characterization. This is supported by numerical modeling of seismic wave propagation in fractured media with complex topography.For example, a potential relation between eigenfrequencies and unstable rock mass volume is investigated.

  15. An examination of the parametric properties of four noise sensitivity measures

    DEFF Research Database (Denmark)

    van Kamp, Irene; Ellermeier, Wolfgang; Lopez-Barrio, Isabel

    2006-01-01

    Noise sensitivity (NS) is a personality trait with a strong influence on reactions to noise. Studies of reaction should include a standard measure of NS that is founded on a theoretically justified definition of NS, and examination of existing NS measures' parametric properties (internal consiste......, demographics and lifestyle). A standard NS measure should demonstrate high reliability, and should predict responses to noise. Discussion is welcomed and will focus on validation strategies and optimizing the study design.......Noise sensitivity (NS) is a personality trait with a strong influence on reactions to noise. Studies of reaction should include a standard measure of NS that is founded on a theoretically justified definition of NS, and examination of existing NS measures' parametric properties (internal...... consistency; stability; convergent and predictive validity). At each of 6 laboratory centres (Aalborg; London; Sydney; Dortmund; Madrid, Amsterdam), participants will complete four NS measures on each of two occasions. In one occasion, participants will complete a task while exposed to recorded aircraft noise...

  16. Two applications of time reversal mirrors: Seismic radio and seismic radar

    KAUST Repository

    Hanafy, Sherif M.

    2011-07-08

    Two seismic applications of time reversal mirrors (TRMs) are introduced and tested with field experiments. The first one is sending, receiving, and decoding coded messages similar to a radio except seismic waves are used. The second one is, similar to radar surveillance, detecting and tracking a moving object(s) in a remote area, including the determination of the objects speed of movement. Both applications require the prior recording of calibrationGreen’s functions in the area of interest. This reference Green’s function will be used as a codebook to decrypt the coded message in the first application and as a moving sensor for the second application. Field tests show that seismicradar can detect the moving coordinates ( x(t), y(t), z(t)) of a person running through a calibration site. This information also allows for a calculation of his velocity as a function of location. Results with the seismic radio are successful in seismically detecting and decoding coded pulses produced by a hammer. Both seismic radio and radar are highly robust to signals in high noise environments due to the super-stacking property of TRMs.

  17. Observations of Near-Field Rotational Motions from Oklahoma Seismicity using Applied Technology Associate Sensors

    Science.gov (United States)

    Ringler, A. T.; Anthony, R. E.; Holland, A. A.; Wilson, D. C.

    2017-12-01

    Characterizing rotational motions from moderate-sized earthquakes in the near-field has the potential to improve earthquake engineering and seismic gradiometry by better characterizing the rotational component of the seismic wavefield, but has remained challenging due to the limited development of portable, low-noise rotational sensors. Here, we test Applied Technology Associate (ATA) Proto-Seismic Magnetohydrodynamic (SMHD) three-component rotational rate sensors at Albuquerque Seismological Laboratory (ASL) for self-noise and sensitivity before deploying them at U.S. Geological Survey (USGS) temporary aftershock station OK38 in Waynoka, Oklahoma. The sensors have low self-noise levels below 2 Hz, making them ideal to record local rotations. From April 11, 2017 to June 6, 2017 we recorded the translational and rotational motions of over 155 earthquakes of ML≥2.0 within 2 degrees of the station. Using the recorded events we compare Peak Ground Velocity (PGV) with Peak Ground Rotation Rate (PG). For example, we measured a maximal PG of 0.00211 radians/s and 0.00186 radians/s for the horizontal components of the two rotational sensors during the Mwr=4.2 event on May 13, 2017 which was 0.5 km from that station. Similarly, our PG for the vertical rotational components were 0.00112 radians/s and 0.00085 radians/s. We also measured Peak Ground Rotations (PGω) as a function of seismic moment, as well as mean vertical Power Spectral Density (PSD) with mean horizontal PSD power levels. We compute apparent phase velocity directly from the rotational data, which may have may improve estimates of local site effects. Finally, by comparing various rotational and translational components we look at potential implications for estimating local event source parameters, which may help in identifying phenomena such as repeating earthquakes by using differences in the rotational components correlation.

  18. Sound quality measures for speech in noise through a commercial hearing aid implementing digital noise reduction.

    Science.gov (United States)

    Ricketts, Todd A; Hornsby, Benjamin W Y

    2005-05-01

    This brief report discusses the affect of digital noise reduction (DNR) processing on aided speech recognition and sound quality measures in 14 adults fitted with a commercial hearing aid. Measures of speech recognition and sound quality were obtained in two different speech-in-noise conditions (71 dBA speech, +6 dB SNR and 75 dBA speech, +1 dB SNR). The results revealed that the presence or absence of DNR processing did not impact speech recognition in noise (either positively or negatively). Paired comparisons of sound quality for the same speech in noise signals, however, revealed a strong preference for DNR processing. These data suggest that at least one implementation of DNR processing is capable of providing improved sound quality, for speech in noise, in the absence of improved speech recognition.

  19. A software to measure phase-velocity dispersion from ambient-noise correlations and its application to the SNSN data

    Science.gov (United States)

    Sadeghisorkhani, Hamzeh; Gudmundsson, Ólafur

    2017-04-01

    Graphical software for phase-velocity dispersion measurements of surface waves in noise-correlation traces, called GSpecDisp, is presented. It is an interactive environment for the measurements and presentation of the results. It measures phase-velocity dispersion curves in the frequency domain based on matching of the real part of the cross-correlation spectrum with the appropriate Bessel function. The inputs are time-domain cross-correlations in SAC format. It can measure two types of phase-velocity dispersion curves; 1- average phase-velocity of a region, and 2- single-pair phase velocity. The average phase-velocity dispersion curve of a region can be used as a reference curve to automatically select the dispersion curves from each single-pair cross-correlation in that region. It also allows the users to manually refine the selections. Therefore, no prior knowledge is needed for an unknown region. GSpecDisp can measure the phase velocity of Rayleigh and Love waves from all possible components of the noise correlation tensor, including diagonal and off-diagonal components of the tensor. First, we explain how GSpecDisp is applied to measure phase-velocity dispersion curves. Then, we demonstrate measurement results on synthetic and real data from the Swedish National Seismic Network (SNSN). We compare the results with two other methods of phase-velocity dispersion measurements. Finally, we compare phase-velocity dispersion curves of Rayleigh waves obtained from different components of the correlation tensor.

  20. Noise measurement on Preshower Si sensors

    CERN Document Server

    Evangelou, Ioannis; Barney, David; Bloch, Philippe; Elsha, Vladimir; Go, Apollo; Kloukinas, Kostas; Kokkas, Panagiotis; Manthos, Nikolaos; Peisert, Anna; Prouskas, C; Reynaud, Serge; Triantis, Frixos A; Tzoulis, Nikolaos; Zub, E

    2002-01-01

    Throughout the past couple of years when we were designing the Preshower silicon sensors we have noticed that some of them have strips with a noise higher than the average and not correlated to the leakage current. In order to investigate this effect we have developed a set-up for noise measurement on wafers and diced sensors that does not require bonding. The set-up is based on the DeltaStream chip coupled to a probe card with 32 pins at a pitch of 1.9 mm. All the digital electronics, including the analogue-to-digital converter and a microprocessor, is placed on a motherboard which communicates with a PC via an RS232 line. We have tested 45 sensors and found that some strips which have an above average noise, also have a higher relative current increase as a function of voltage, deltaI/(I deltaV), even though their leakage current is below 50 nA. We also observed that on these strips th e breakdown occurs within about 60 V from the onset of the noise. The source of this noise is not yet clear and the investi...

  1. Optimizing Seismic Monitoring Networks for EGS and Conventional Geothermal Projects

    Science.gov (United States)

    Kraft, Toni; Herrmann, Marcus; Bethmann, Falko; Stefan, Wiemer

    2013-04-01

    In the past several years, geological energy technologies receive growing attention and have been initiated in or close to urban areas. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential for the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquakes at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. We have developed an optimization algorithm for seismic monitoring networks in urban areas that allows to design and evaluate seismic network geometries for arbitrary geotechnical operation layouts. The algorithm is based on the D-optimal experimental design that aims to minimize the error ellipsoid of the linearized

  2. Coherent Waves in Seismic Researches

    Science.gov (United States)

    Emanov, A.; Seleznev, V. S.

    2013-05-01

    Development of digital processing algorithms of seismic wave fields for the purpose of useful event picking to study environment and other objects is the basis for the establishment of new seismic techniques. In the submitted paper a fundamental property of seismic wave field coherence is used. The authors extended conception of coherence types of observed wave fields and devised a technique of coherent component selection from observed wave field. Time coherence and space coherence are widely known. In this paper conception "parameter coherence" has been added. The parameter by which wave field is coherent can be the most manifold. The reason is that the wave field is a multivariate process described by a set of parameters. Coherence in the first place means independence of linear connection in wave field of parameter. In seismic wave fields, recorded in confined space, in building-blocks and stratified mediums time coherent standing waves are formed. In prospecting seismology at observation systems with multiple overlapping head waves are coherent by parallel correlation course or, in other words, by one measurement on generalized plane of observation system. For detail prospecting seismology at observation systems with multiple overlapping on basis of coherence property by one measurement of area algorithms have been developed, permitting seismic records to be converted to head wave time sections which have neither reflected nor other types of waves. Conversion in time section is executed on any specified observation base. Energy storage of head waves relative to noise on basis of multiplicity of observation system is realized within area of head wave recording. Conversion on base below the area of wave tracking is performed with lack of signal/noise ratio relative to maximum of this ratio, fit to observation system. Construction of head wave time section and dynamic plots a basis of automatic processing have been developed, similar to CDP procedure in method of

  3. Characterization of a complex near-surface structure using well logging and passive seismic measurements

    Science.gov (United States)

    Benjumea, Beatriz; Macau, Albert; Gabàs, Anna; Figueras, Sara

    2016-04-01

    We combine geophysical well logging and passive seismic measurements to characterize the near-surface geology of an area located in Hontomin, Burgos (Spain). This area has some near-surface challenges for a geophysical study. The irregular topography is characterized by limestone outcrops and unconsolidated sediments areas. Additionally, the near-surface geology includes an upper layer of pure limestones overlying marly limestones and marls (Upper Cretaceous). These materials lie on top of Low Cretaceous siliciclastic sediments (sandstones, clays, gravels). In any case, a layer with reduced velocity is expected. The geophysical data sets used in this study include sonic and gamma-ray logs at two boreholes and passive seismic measurements: three arrays and 224 seismic stations for applying the horizontal-to-vertical amplitude spectra ratio method (H/V). Well-logging data define two significant changes in the P-wave-velocity log within the Upper Cretaceous layer and one more at the Upper to Lower Cretaceous contact. This technique has also been used for refining the geological interpretation. The passive seismic measurements provide a map of sediment thickness with a maximum of around 40 m and shear-wave velocity profiles from the array technique. A comparison between seismic velocity coming from well logging and array measurements defines the resolution limits of the passive seismic techniques and helps it to be interpreted. This study shows how these low-cost techniques can provide useful information about near-surface complexity that could be used for designing a geophysical field survey or for seismic processing steps such as statics or imaging.

  4. Noise Reduction of Measurement Data using Linear Digital Filters

    Directory of Open Access Journals (Sweden)

    Hitzmann B.

    2007-12-01

    Full Text Available In this paper Butterworth, Chebyshev (Type I and II and Elliptic digital filters are designed for signal noise reduction. On-line data measurements of substrate concentration from E. coli fed-batch cultivation process are used. Application of the designed filters leads to a successful noise reduction of on-line glucose measurements. The digital filters presented here are simple, easy to implement and effective - the used filters allow for a smart compromise between signal information and noise corruption.

  5. Measurement of the environmental noise at the Torseroed wind turbine site

    International Nuclear Information System (INIS)

    Fegeant, Olivier

    2000-12-01

    Further to complaints about the noise generated by a Micon 600 kW wind turbine, measurements of both noise immission and noise emission were performed at the Torseroed site. The measurements and analysis presented in this report were carried out by following the recommendations of the IEA documents for noise emission and immission measurements. It was found that the immission level, i.e. the wind turbine sound, at one of the nearest dwelling, namely Solglaentan, is 39 dB(A) for a wind speed of 8 m/s at hub height. Measurements carried out close to the turbine show that the sound power level of the turbine is 4.3 dB higher than the A-weighted level given by the supplier. Furthermore, the noise level increases more rapidly as a function of the wind speed than what is expected from the values furnished by the manufacturer. The measurements results also show that the background noise level is unusually low at Solglaentan

  6. The Influence of Geography and Geology on Seismic Background Noise Levels Across the United States as Revealed by the Transportable Array

    Science.gov (United States)

    Anthony, R. E.; Ringler, A. T.; Holland, A. A.; Wilson, D. C.

    2017-12-01

    The EarthScope USArray Transportable Array (TA) has now covered the US with 3-component broadband seismometers at approximately 70 km station spacing and deployment durations of approximately 2 years. This unprecedented coverage, combined with high-quality and near homogenous installation techniques, offers a novel dataset in which to characterize spatially varying levels of background seismic noise across the United States. We present background noise maps in period bands of interest to earthquake and imaging seismology across the US (lower 48 states and Alaska). Early results from the contiguous 48 states demonstrate that ambient noise levels within the body wave period band (1-5 s) vary by > 20 dB (rel. 1 (m/s2)2/Hz) with the highest noise levels occurring at stations located within sedimentary basins and lowest within the mountain ranges of the Western US. Additionally, stations around the Great Lakes observe heightened noise levels in this band beyond the aforementioned basin amplification. We attribute this observation to local swell activity in the Great Lakes generating short-period microseism signals. This suggests that lake-generated microseisms may be a significant source of noise for Alaskan deployments situated in close proximity to lakes to facilitate float plane access. We further investigate how basin amplification and short-period lake microseism signals may noticeably impact detection and signal-to-noise of teleseismic body wave signals during certain time periods. At longer-periods (> 20 s), we generally observe larger noise levels on the horizontal components of stations situated in basins or on soft sediment, likely caused by locally induced tilt of the sensor. We will present similar analysis from the initial Alaska TA dataset to quantitatively assess how utilization of posthole sensors affects signal-to-noise for the long-period horizontal wavefield.

  7. Cross-correlation measurement of quantum shot noise using homemade transimpedance amplifiers

    International Nuclear Information System (INIS)

    Hashisaka, Masayuki; Ota, Tomoaki; Yamagishi, Masakazu; Fujisawa, Toshimasa; Muraki, Koji

    2014-01-01

    We report a cross-correlation measurement system, based on a new approach, which can be used to measure shot noise in a mesoscopic conductor at milliKelvin temperatures. In contrast to other measurement systems in which high-speed low-noise voltage amplifiers are commonly used, our system employs homemade transimpedance amplifiers (TAs). The low input impedance of the TAs significantly reduces the crosstalk caused by unavoidable parasitic capacitance between wires. The TAs are designed to have a flat gain over a frequency band from 2 kHz to 1 MHz. Low-noise performance is attained by installing the TAs at a 4 K stage of a dilution refrigerator. Our system thus fulfills the technical requirements for cross-correlation measurements: low noise floor, high frequency band, and negligible crosstalk between two signal lines. Using our system, shot noise generated at a quantum point contact embedded in a quantum Hall system is measured. The good agreement between the obtained shot-noise data and theoretical predictions demonstrates the accuracy of the measurements

  8. Seismic structure of the upper crust in the Albertine Rift from travel-time and ambient-noise tomography - a comparison

    Science.gov (United States)

    Jakovlev, Andrey; Kaviani, Ayoub; Ruempker, Georg

    2017-04-01

    Here we present results of the investigation of the upper crust in the Albertine rift around the Rwenzori Mountains. We use a data set collected from a temporary network of 33 broadband stations operated by the RiftLink research group between September 2009 and August 2011. During this period, 82639 P-wave and 73408 S-wave travel times from 12419 local and regional earthquakes were registered. This presents a very rare opportunity to apply both local travel-time and ambient-noise tomography to analyze data from the same network. For the local travel-time tomographic inversion the LOTOS algorithm (Koulakov, 2009) was used. The algorithm performs iterative simultaneous inversions for 3D models of P- and S-velocity anomalies in combination with earthquake locations and origin times. 28955 P- and S-wave picks from 2769 local earthquakes were used. To estimate the resolution and stability of the results a number of the synthetic and real data tests were performed. To perform the ambient noise tomography we use the following procedure. First, we follow the standard procedure described by Bensen et al. (2007) as modified by Boué et al. (2014) to compute the vertical component cross-correlation functions between all pairs of stations. We also adapted the algorithm introduced by Boué et al. (2014) and use the WHISPER software package (Briand et al., 2013) to preprocess individual daily vertical-component waveforms. On the next step, for each period, we use the method of Barmin et al. (2001) to invert the dispersion measurements along each path for group velocity tomographic maps. Finally, we adapt a modified version of the algorithm suggested by Macquet et al. (2014) to invert the group velocity maps for shear velocity structure. We apply several tests, which show that the best resolution is obtained at a period of 8 seconds, which correspond to a depth of approximately 6 km. Models of the seismic structure obtained by the two methods agree well at shallow depth of about

  9. Relative Seismic Velocity Variations Correlate with Deformation at Kīlauea Volcano.

    Science.gov (United States)

    Donaldson, C.; Caudron, C.; Green, R. G.; White, R. S.

    2016-12-01

    Passive interferometry using ambient seismic noise is an appealing monitoring tool at volcanoes. The continuous nature of seismic noise provides better temporal resolution than earthquake interferometry and ambient noise may be sensitive to changes at depths that do not deform the volcano surface. Despite this, to our knowledge, no studies have yet comprehensively compared deformation and velocity at a volcano over a significant length of time. We use a volcanic tremor source (approximately 0.3 - 1.0 Hz) at Kīlauea volcano as a source for interferometry to measure relative velocity changes with time. The tremor source that dominates the cross correlations is located under the Halema'uma'u caldera at Kīlauea summit. By cross-correlating the vertical component of day-long seismic records between 200 pairs of stations, we extract coherent and temporally consistent coda wave signals with time lags of up to 70 seconds. Our resulting time series of relative velocity shows a remarkable correlation with the tilt record measured at Kīlauea summit. Kīlauea summit is continually inflating and deflating as the level of the lava lake rises and falls. During these deflation-inflation (DI) events the tilt increases (inflation), as the velocity increases, on the scale of days to weeks. In contrast, we also detect a longer-term velocity decrease between 2011-2015 as the volcano slowly inflates. We suggest that variations in velocity result from opening and closing cracks and pores due to changes in magma pressurization. Early modeling results indicate that pressurizing magma reservoirs at different depths can result in opposite changes in compression/extension at the surface. The consistent correlation of relative velocity and deformation in this study provides an opportunity to better understand the mechanism causing velocity changes, which currently limits the scope of passive interferometry as a monitoring tool.

  10. Reducing the uncertainty in the fidelity of seismic imaging results

    Science.gov (United States)

    Zhou, H. W.; Zou, Z.

    2017-12-01

    A key aspect in geoscientific inversion is quantifying the quality of the results. In seismic imaging, we must quantify the uncertainty of every imaging result based on field data, because data noise and methodology limitations may produce artifacts. Detection of artifacts is therefore an important aspect in uncertainty quantification in geoscientific inversion. Quantifying the uncertainty of seismic imaging solutions means assessing their fidelity, which defines the truthfulness of the imaged targets in terms of their resolution, position error and artifact. Key challenges to achieving the fidelity of seismic imaging include: (1) Difficulty to tell signal from artifact and noise; (2) Limitations in signal-to-noise ratio and seismic illumination; and (3) The multi-scale nature of the data space and model space. Most seismic imaging studies of the Earth's crust and mantle have employed inversion or modeling approaches. Though they are in opposite directions of mapping between the data space and model space, both inversion and modeling seek the best model to minimize the misfit in the data space, which unfortunately is not the output space. The fact that the selection and uncertainty of the output model are not judged in the output space has exacerbated the nonuniqueness problem for inversion and modeling. In contrast, the practice in exploration seismology has long established a two-fold approach of seismic imaging: Using velocity modeling building to establish the long-wavelength reference velocity models, and using seismic migration to map the short-wavelength reflectivity structures. Most interestingly, seismic migration maps the data into an output space called imaging space, where the output reflection images of the subsurface are formed based on an imaging condition. A good example is the reverse time migration, which seeks the reflectivity image as the best fit in the image space between the extrapolation of time-reversed waveform data and the prediction

  11. Effects of measurement noise on modal parameter identification

    International Nuclear Information System (INIS)

    Dorvash, S; Pakzad, S N

    2012-01-01

    In the past decade, much research has been conducted on data-driven structural health monitoring (SHM) algorithms with use of sensor measurements. A fundamental step in this SHM application is to identify the dynamic characteristics of structures. Despite the significant efforts devoted to development and enhancement of the modal parameter identification algorithms, there are still substantial uncertainties in the results obtained in real-life deployments. One of the sources of uncertainties in the results is the existence of noise in the measurement data. Depending on the subsequent application of the system identification, the level of uncertainty in the results and, consequently, the level of noise contamination can be very important. As an effort towards understanding the effect of measurement noise on the modal identification, this paper presents parameters that quantify the effects of measurement noise on the modal identification process and determine their influence on the accuracy of results. The performance of these parameters is validated by a numerically simulated example. They are then used to investigate the accuracy of identified modal properties of the Golden Gate Bridge using ambient data collected by wireless sensors. The vibration monitoring tests of the Golden Gate Bridge provided two synchronized data sets collected by two different sensor types. The influence of the sensor noise level on the accuracy of results is investigated throughout this work and it is shown that high quality sensors provide more accurate results as the physical contribution of response in their measured data is significantly higher. Additionally, higher purity and consistency of modal parameters, identified by higher quality sensors, is observed in the results. (paper)

  12. Burar seismic station: evaluation of seismic performance

    International Nuclear Information System (INIS)

    Ghica, Daniela; Popa, Mihaela

    2005-01-01

    A new seismic monitoring system, the Bucovina Seismic Array (BURAR), has been established since July 2002, in the Northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics (NIEP), Romania. The small-aperture array consists of 10 seismic sensors (9 vertical short-period and one three-component broad band) located in boreholes and distributed in a 5 x 5 km 2 area. At present, the seismic data are continuously recorded by the BURAR and transmitted in real-time to the Romanian National Data Center in Bucharest and National Data Center of the USA, in Florida. Based on the BURAR seismic information gathered at the National Data Center, NIEP (ROM N DC), in the August 2002 - December 2004 time interval, analysis and statistical assessments were performed. Following the preliminary processing of the data, several observations on the global performance of the BURAR system were emphasized. Data investigation showed an excellent efficiency of the BURAR system particularly in detecting teleseismic and regional events. Also, a statistical analysis for the BURAR detection capability of the local Vrancea events was performed in terms of depth and magnitude for the year 2004. The high signal detection capability of the BURAR resulted, generally, in improving the location solutions for the Vrancea seismic events. The location solution accuracy is enhanced when adding BURAR recordings, especially in the case of low magnitude events (recorded by few stations). The location accuracy is increased, both in terms of constraining hypocenter depth and epicentral coordinates. Our analysis certifies the importance of the BURAR system in NIEP efforts to elaborate seismic bulletins. Furthermore, the specific procedures for array data processing (beam forming, f-k analysis) increase significantly the signal-to-noise ratio by summing up the coherent signals from the array components, and ensure a better accuracy

  13. Coupling of relative intensity noise and pathlength noise to the length measurement in the optical metrology system of LISA Pathfinder

    Science.gov (United States)

    Wittchen, Andreas; the LPF Collaboration

    2017-05-01

    LISA Pathfinder is a technology demonstration mission for the space-based gravitational wave observatory, LISA. It demonstrated that the performance requirements for the interferometric measurement of two test masses in free fall can be met. An important part of the data analysis is to identify the limiting noise sources. [1] This measurement is performed with heterodyne interferometry. The performance of this optical metrology system (OMS) at high frequencies is limited by sensing noise. One such noise source is Relative Intensity Noise (RIN). RIN is a property of the laser, and the photodiode current generated by the interferometer signal contains frequency dependant RIN. From this electric signal the phasemeter calculates the phase change and laser power, and the coupling of RIN into the measurement signal depends on the noise frequency. RIN at DC, at the heterodyne frequency and at two times the heterodyne frequency couples into the phase. Another important noise at high frequencies is path length noise. To reduce the impact this noise is suppressed with a control loop. Path length noise not suppressed will couple directly into the length measurement. The subtraction techniques of both noise sources depend on the phase difference between the reference signal and the measurement signal, and thus on the test mass position. During normal operations we position the test mass at the interferometric zero, which is optimal for noise subtraction purposes. This paper will show results from an in-flight experiment where the test mass position was changed to make the position dependant noise visible.

  14. Bowhead whale aggregation areas and their role in the mitigation of seismic noise

    Energy Technology Data Exchange (ETDEWEB)

    Joynt, A.A.; Harwood, L.A. [Department of Fisheries and Oceans, Ottawa, ON (Canada)

    2007-07-01

    Aerial surveys have been conducted to document the distribution and relative abundance of bowhead whales in the offshore Beaufort Sea. They have shown that bowhead feeding aggregations form in traditional areas where oceanographic conditions favour the concentration of zooplankton. However, not all aggregation areas are attractive to bowheads due to varying oceanographic conditions. Some of the feeding aggregation areas are located in offshore waters which have been subject to seismic exploration activity. There is limited knowledge of the effects of underwater noise or industrial activity on Arctic marine mammals in their critical habitat because of the difficulty of studying in a marine Arctic environment. This has presented a challenge regarding the establishment of proper mitigation specific to critical habitats. Data from emerging science and industry's input from experiences in similar environments like the Chukchi Sea is bringing about new data from which to develop better and realistic mitigation. It was concluded that continuing cooperation between regulators, science, and industry is the key to creating innovative approaches to mitigate the effects of industry on marine mammals. figs.

  15. Uncertainty In Measuring Noise Parameters Of a Communication Receiver

    International Nuclear Information System (INIS)

    Korcz, Karol; Palczynska, Beata; Spiralski, Ludwik

    2005-01-01

    The paper presents the method of assessing uncertainty in measuring the usable sensitivity Es of communication receiver. The influence of partial uncertainties of measuring the noise factor F and the energy pass band of the receiver Δf on the combined standard uncertainty level is analyzed. The method to assess the uncertainty in measuring the noise factor on the basis of the systematic component of uncertainty, assuming that the main source of measurement uncertainty is the hardware of the measuring system, is proposed. The assessment of uncertainty in measuring the pass band of the receiver is determined with the assumption that input quantities of the measurement equation are not correlated. They are successive, discrete values of the spectral power density of the noise on the output of receiver. The results of the analyses of particular uncertainties components of measuring the sensitivity, which were carried out for a typical communication receiver, are presented

  16. The crustal structure beneath The Netherlands derived from ambient seismic noise

    NARCIS (Netherlands)

    Yudistira, Tedi; Paulssen, Hanneke; Trampert, Jeannot

    2017-01-01

    This work presents the first comprehensive 3-D model of the crust beneath The Netherlands. To obtain this model, we designed the NARS-Netherlands project, a dense deployment of broadband stations in the area. Rayleigh and Love wave group velocity dispersion was measured from ambient noise

  17. Amplification and Attenuation across USArray using Ambient Noise Wavefront Tracking

    KAUST Repository

    Bowden, Daniel C.; Tsai, Victor C.; Lin, Fan-Chi

    2017-01-01

    As seismic travel-time tomography continues to be refined using data from the vast USArray dataset, it is advantageous to also exploit the amplitude information carried by seismic waves. We use ambient noise cross correlation to make observations

  18. Measurement of MOSFET LF Noise Under Large Signal RF Excitation

    NARCIS (Netherlands)

    van der Wel, A.P.; Klumperink, Eric A.M.; Nauta, Bram

    A new measurement technique is presented that allows measurement of MOSFET LF noise under large signal RF excitation. Measurements indicate that MOSFETS exhibit a reduction in LF noise when they are cycled from inversion to accummulation and that this reduction does not depend on the frequency of

  19. On the use of mobile phones and wearable microphones for noise exposure measurements: Calibration and measurement accuracy

    Science.gov (United States)

    Dumoulin, Romain

    Despite the fact that noise-induced hearing loss remains the number one occupational disease in developed countries, individual noise exposure levels are still rarely known and infrequently tracked. Indeed, efforts to standardize noise exposure levels present disadvantages such as costly instrumentation and difficulties associated with on site implementation. Given their advanced technical capabilities and widespread daily usage, mobile phones could be used to measure noise levels and make noise monitoring more accessible. However, the use of mobile phones for measuring noise exposure is currently limited due to the lack of formal procedures for their calibration and challenges regarding the measurement procedure. Our research investigated the calibration of mobile phone-based solutions for measuring noise exposure using a mobile phone's built-in microphones and wearable external microphones. The proposed calibration approach integrated corrections that took into account microphone placement error. The corrections were of two types: frequency-dependent, using a digital filter and noise level-dependent, based on the difference between the C-weighted noise level minus A-weighted noise level of the noise measured by the phone. The electro-acoustical limitations and measurement calibration procedure of the mobile phone were investigated. The study also sought to quantify the effect of noise exposure characteristics on the accuracy of calibrated mobile phone measurements. Measurements were carried out in reverberant and semi-anechoic chambers with several mobiles phone units of the same model, two types of external devices (an earpiece and a headset with an in-line microphone) and an acoustical test fixture (ATF). The proposed calibration approach significantly improved the accuracy of the noise level measurements in diffuse and free fields, with better results in the diffuse field and with ATF positions causing little or no acoustic shadowing. Several sources of errors

  20. Robust estimation of seismic coda shape

    Science.gov (United States)

    Nikkilä, Mikko; Polishchuk, Valentin; Krasnoshchekov, Dmitry

    2014-04-01

    We present a new method for estimation of seismic coda shape. It falls into the same class of methods as non-parametric shape reconstruction with the use of neural network techniques where data are split into a training and validation data sets. We particularly pursue the well-known problem of image reconstruction formulated in this case as shape isolation in the presence of a broadly defined noise. This combined approach is enabled by the intrinsic feature of seismogram which can be divided objectively into a pre-signal seismic noise with lack of the target shape, and the remainder that contains scattered waveforms compounding the coda shape. In short, we separately apply shape restoration procedure to pre-signal seismic noise and the event record, which provides successful delineation of the coda shape in the form of a smooth almost non-oscillating function of time. The new algorithm uses a recently developed generalization of classical computational-geometry tool of α-shape. The generalization essentially yields robust shape estimation by ignoring locally a number of points treated as extreme values, noise or non-relevant data. Our algorithm is conceptually simple and enables the desired or pre-determined level of shape detail, constrainable by an arbitrary data fit criteria. The proposed tool for coda shape delineation provides an alternative to moving averaging and/or other smoothing techniques frequently used for this purpose. The new algorithm is illustrated with an application to the problem of estimating the coda duration after a local event. The obtained relation coefficient between coda duration and epicentral distance is consistent with the earlier findings in the region of interest.

  1. Anatomy of the high-frequency ambient seismic wave field at the TCDP borehole

    Science.gov (United States)

    Hillers, G.; Campillo, M.; Lin, Y.-Y.; Ma, K.-F.; Roux, P.

    2012-06-01

    The Taiwan Chelungpu-fault Drilling Project (TCDP) installed a vertical seismic array between 950 and 1270 m depth in an active thrust fault environment. In this paper we analyze continuous noise records of the TCDP array between 1 and 16 Hz. We apply multiple array processing and noise correlation techniques to study the noise source process, properties of the propagation medium, and the ambient seismic wave field. Diurnal amplitude and slowness patterns suggest that noise is generated by cultural activity. The vicinity of the recording site to the excitation region, indicated by a narrow azimuthal distribution of propagation directions, leads to a predominant ballistic propagation regime. This is evident from the compatibility of the data with an incident plane wave model, polarized direct arrivals of noise correlation functions, and the asymmetric arrival shape. Evidence for contributions from scattering comes from equilibrated earthquake coda energy ratios, the frequency dependent randomization of propagation directions, and the existence of correlation coda waves. We conclude that the ballistic and scattered propagation regime coexist, where the first regime dominates the records, but the second is weaker yet not negligible. Consequently, the wave field is not equipartitioned. Correlation signal-to-noise ratios indicate a frequency dependent noise intensity. Iterations of the correlation procedure enhance the signature of the scattered regime. Discrepancies between phase velocities estimated from correlation functions and in-situ measurements are associated with the array geometry and its relative orientation to the predominant energy flux. The stability of correlation functions suggests their applicability in future monitoring efforts.

  2. A critique of the UK's JNCC seismic survey guidelines for minimising acoustic disturbance to marine mammals: Best practise?

    International Nuclear Information System (INIS)

    Parsons, E.C.M.; Dolman, Sarah J.; Jasny, Michael; Rose, Naomi A.; Simmonds, Mark P.; Wright, Andrew J.

    2009-01-01

    The United Kingdom's statutory conservation agency, the Joint Nature Conservation Committee (JNCC), developed guidelines in 1995 to minimise acoustic disturbance of marine mammals by oil and gas industry seismic surveys. These were the first national guidelines to be developed and have subsequently become the standard, or basis, of international mitigation measures for noise pollution during seismic surveys. However, relatively few aspects of these measures have a firm scientific basis or proven efficacy. Existing guidelines do not offer adequate protection to marine mammals, given the complex propagation of airgun pulses; the difficulty of monitoring in particular the smaller, cryptic, and/or deep-diving species, such as beaked whales and porpoises; limitations in monitoring requirements; lack of baseline data; and other biological and acoustical complications or unknowns. Current guidelines offer a 'common sense' approach to noise mitigation, but in light of recent research and ongoing concerns, they should be updated, with broader measures needed to ensure adequate species protection and to address data gaps.

  3. Evaluating noise abatement measures using strategic noise maps

    NARCIS (Netherlands)

    Borst, H.C.; Miedema, H.M.E.; Laan, W.P.N. van der; Lohman, W.J.A.

    2006-01-01

    Noise annoyance due to transportation is widespread in industrialized countries and in urban areas in the developing countries. The European Noise Directive (END) requires an assessment of the noise situation as well as the formulation of action plans for the reduction of the number of people

  4. Prediction of Landing Gear Noise Reduction and Comparison to Measurements

    Science.gov (United States)

    Lopes, Leonard V.

    2010-01-01

    Noise continues to be an ongoing problem for existing aircraft in flight and is projected to be a concern for next generation designs. During landing, when the engines are operating at reduced power, the noise from the airframe, of which landing gear noise is an important part, is equal to the engine noise. There are several methods of predicting landing gear noise, but none have been applied to predict the change in noise due to a change in landing gear design. The current effort uses the Landing Gear Model and Acoustic Prediction (LGMAP) code, developed at The Pennsylvania State University to predict the noise from landing gear. These predictions include the influence of noise reduction concepts on the landing gear noise. LGMAP is compared to wind tunnel experiments of a 6.3%-scale Boeing 777 main gear performed in the Quiet Flow Facility (QFF) at NASA Langley. The geometries tested in the QFF include the landing gear with and without a toboggan fairing and the door. It is shown that LGMAP is able to predict the noise directives and spectra from the model-scale test for the baseline configuration as accurately as current gear prediction methods. However, LGMAP is also able to predict the difference in noise caused by the toboggan fairing and by removing the landing gear door. LGMAP is also compared to far-field ground-based flush-mounted microphone measurements from the 2005 Quiet Technology Demonstrator 2 (QTD 2) flight test. These comparisons include a Boeing 777-300ER with and without a toboggan fairing that demonstrate that LGMAP can be applied to full-scale flyover measurements. LGMAP predictions of the noise generated by the nose gear on the main gear measurements are also shown.

  5. 3D seismic denoising based on a low-redundancy curvelet transform

    International Nuclear Information System (INIS)

    Cao, Jingjie; Zhao, Jingtao; Hu, Zhiying

    2015-01-01

    Contamination of seismic signal with noise is one of the main challenges during seismic data processing. Several methods exist for eliminating different types of noises, but optimal random noise attenuation remains difficult. Based on multi-scale, multi-directional locality of curvelet transform, the curvelet thresholding method is a relatively new method for random noise elimination. However, the high redundancy of a 3D curvelet transform makes its computational time and memory for massive data processing costly. To improve the efficiency of the curvelet thresholding denoising, a low-redundancy curvelet transform was introduced. The redundancy of the low-redundancy curvelet transform is approximately one-quarter of the original transform and the tightness of the original transform is also kept, thus the low-redundancy curvelet transform calls for less memory and computational resource compared with the original one. Numerical results on 3D synthetic and field data demonstrate that the low-redundancy curvelet denoising consumes one-quarter of the CPU time compared with the original curvelet transform using iterative thresholding denoising when comparable results are obtained. Thus, the low-redundancy curvelet transform is a good candidate for massive seismic denoising. (paper)

  6. Noise reduction by support vector regression with a Ricker wavelet kernel

    International Nuclear Information System (INIS)

    Deng, Xiaoying; Yang, Dinghui; Xie, Jing

    2009-01-01

    We propose a noise filtering technology based on the least-squares support vector regression (LS-SVR), to improve the signal-to-noise ratio (SNR) of seismic data. We modified it by using an admissible support vector (SV) kernel, namely the Ricker wavelet kernel, to replace the conventional radial basis function (RBF) kernel in seismic data processing. We investigated the selection of the regularization parameter for the LS-SVR and derived a concise selecting formula directly from the noisy data. We used the proposed method for choosing the regularization parameter which not only had the advantage of high speed but could also obtain almost the same effectiveness as an optimal parameter method. We conducted experiments using synthetic data corrupted by the random noise of different types and levels, and found that our method was superior to the wavelet transform-based approach and the Wiener filtering. We also applied the method to two field seismic data sets and concluded that it was able to effectively suppress the random noise and improve the data quality in terms of SNR

  7. Noise reduction by support vector regression with a Ricker wavelet kernel

    Science.gov (United States)

    Deng, Xiaoying; Yang, Dinghui; Xie, Jing

    2009-06-01

    We propose a noise filtering technology based on the least-squares support vector regression (LS-SVR), to improve the signal-to-noise ratio (SNR) of seismic data. We modified it by using an admissible support vector (SV) kernel, namely the Ricker wavelet kernel, to replace the conventional radial basis function (RBF) kernel in seismic data processing. We investigated the selection of the regularization parameter for the LS-SVR and derived a concise selecting formula directly from the noisy data. We used the proposed method for choosing the regularization parameter which not only had the advantage of high speed but could also obtain almost the same effectiveness as an optimal parameter method. We conducted experiments using synthetic data corrupted by the random noise of different types and levels, and found that our method was superior to the wavelet transform-based approach and the Wiener filtering. We also applied the method to two field seismic data sets and concluded that it was able to effectively suppress the random noise and improve the data quality in terms of SNR.

  8. Vibration measurement with nonlinear converter in the presence of noise

    Science.gov (United States)

    Mozuras, Almantas

    2017-10-01

    Conventional vibration measurement methods use the linear properties of physical converters. These methods are strongly influenced by nonlinear distortions, because ideal linear converters are not available. Practically, any converter can be considered as a linear one, when an output signal is very small. However, the influence of noise increases significantly and signal-to-noise ratio decreases at lower signals. When the output signal is increasing, the nonlinear distortions are also augmenting. If the wide spectrum vibration is measured, conventional methods face a harmonic distortion as well as intermodulation effects. Purpose of this research is to develop a measurement method of wide spectrum vibration by using a converter described by a nonlinear function of type f(x), where x =x(t) denotes the dependence of coordinate x on time t due to the vibration. Parameter x(t) describing the vibration is expressed as Fourier series. The spectral components of the converter output f(x(t)) are determined by using Fourier transform. The obtained system of nonlinear equations is solved using the least squares technique that permits to find x(t) in the presence of noise. This method allows one to carry out the absolute or relative vibration measurements. High resistance to noise is typical for the absolute vibration measurement, but it is necessary to know the Taylor expansion coefficients of the function f(x). If the Taylor expansion is not known, the relative measurement of vibration parameters is also possible, but with lower resistance to noise. This method allows one to eliminate the influence of nonlinear distortions to the measurement results, and consequently to eliminate harmonic distortion and intermodulation effects. The use of nonlinear properties of the converter for measurement gives some advantages related to an increased frequency range of the output signal (consequently increasing the number of equations) that allows one to decrease the noise influence on

  9. Measurements of noise from rotary coal unloading operations

    International Nuclear Information System (INIS)

    Adams, T.S.; Bilello, M.A.

    1991-01-01

    In the licensing effort for a coal-fired power plant in the northeast United States, noise related to delivery and unloading of coal by train was identified as a significant concern to the nearby community. Specific issues included locomotive noise, the banging noises caused by railcar couplings during the start and stop cycles of the unloading operation, wheel squeal in the curves of the rail loop, and rotary coal unloader noises. This paper reports that a literature review provided adequate information on idling locomotive noise but very little on the other noise sources. Coupling impact noise was well documented for railcars actually being coupled at various speeds but not for coupled trains during start and stop operations. Wheel squeal was well documented by subway trains travelling at normal speeds, but nothing could be found for wheel squeal during very slow train movement as occurs during unloading. Similarly, adequate information was available for unenclosed rotary unloaders but not for enclosed unloaders. Consequently, actual noise measurements of a similar enclosed facility, and the associated train movements, were undertaken to obtain data more directly applicable to the planned facility

  10. Seismic signatures of the Lodgepole fractured reservoir in Utah-Wyoming overthrust belt

    Energy Technology Data Exchange (ETDEWEB)

    Parra, J.; Collier, H.; Angstman, B.

    1997-08-01

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft. For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.

  11. Monitoring daily and sub-daily variations in crustal strain with seismic arrays

    Science.gov (United States)

    Mao, S.; Campillo, M.; van der Hilst, R. D.; Brenguier, F.; Hillers, G.

    2017-12-01

    We demonstrate that we can monitor deformation of the shallow crust (with hourly temporal resolution) directly with seismic waves, by measuring relative seismic wave speed changes (dv/v) due to relatively known periodical forcing (tides and changes in atmospheric temperature) at Piton de la Fournaise Volcano (PdF), La Réunion. We use ambient seismic noise recorded (for one month) at VolcArray, an experiment with three arrays of 49 vertical-component geophones deployed on a 7x7 grid of approximately 80 m spacing. Through noise-based coda wave interferometry we infer for each array the average relative changes in propagation speed of seismic waves (dv/v) as a function of time, which relate to temporal changes in medium properties within 100m depth. The variations in dv/v ( 0.05%) on time-scales longer than a day are best explained by effects of precipitation on pore pressure. In contrast, the (weaker) daily and sub-daily fluctuations of dv/v ( 0.01%) are likely to be caused by tidal and thermal effects. We verify that the inferred variations of dv/v are unrelated to spatiotemporal changes of noise wavefields. We further compare the power spectrum of dv/v with spectra of simulated tide-induced volumetric strain, temperature records, very broadband (VBB) seismograms, and borehole tilt records. In all five types of data, dominant peaks are found at around diurnal, semi-diurnal, and ter-diurnal frequencies. A comparison of phase and spectra of the data suggests that the tidal and thermal effects on dv/v are of similar magnitude but vary with frequency. Theoretical modeling of tide- and temperature-induced strain in different frequency bands agrees with the relative magnitude of the two effects on dv/v from passive monitoring.

  12. Acoustic-Seismic Coupling in Porous Ground - Measurements and Analysis for On-Site-Inspection Support

    Science.gov (United States)

    Liebsch, Mattes; Gorschlüter, Felix; Altmann, Jürgen

    2014-05-01

    During on-site inspections (OSI) of the Comprehensive Nuclear Test Ban Treaty Organisation (CTBTO) a local seismic network can be installed to measure seismic aftershock signals of an assumed underground nuclear explosion. These signals are caused by relaxation processes in and near the cavity created by the explosion and when detected can lead to a localisation of the cavity. This localisation is necessary to take gas samples from the ground which are analysed for radioactive noble gas isotopes to confirm or dismiss the suspicion of a nuclear test. The aftershock signals are of very low magnitude so they can be masked by different sources, in particular periodic disturbances caused by vehicles and aircraft in the inspection area. Vehicles and aircraft (mainly helicopters) will be used for the inspection activities themselves, e.g. for overhead imagery or magnetic-anomaly sensing. While vehicles in contact with the ground can excite soil vibrations directly, aircraft and vehicles alike emit acoustic waves which excite soil vibrations when hitting the ground. These disturbing signals are of periodic nature while the seismic aftershock signals are pulse-shaped, so their separation is possible. The understanding of the coupling of acoustic waves to the ground is yet incomplete, a better understanding is necessary to improve the performance of an OSI, e.g. to address potential consequences for the sensor placement, the helicopter trajectories etc. In a project funded by the Young Scientist Research Award of the CTBTO to one of us (ML), we investigated the acoustic-seismic coupling of airborne signals of jet aircraft and artificially induced ones by a speaker. During a measurement campaign several acoustic and seismic sensors were placed below the take-off trajectory of an airport at 4 km distance. Therefore taking off and landing jet aircraft passed nearly straightly above the setup. Microphones were placed close to the ground to record the sound pressure of incident

  13. In-situ measurements of seismic velocities in the San Francisco Bay Region; part III

    Science.gov (United States)

    Gibbs, James F.; Fumal, Thomas E.; Borcherdt, Roger D.; Roth, Edward F.

    1977-01-01

    Seismic wave velocities (compressional and shear) are important parameters for estimating the seismic response characteristics of various geologic units when subjected to strong earthquake ground shaking. Seismic velocities of various units often show a strong correlation with the amounts of damage following large earthquakes and have been used as a basis for certain types of seismic zonation studies. In the current program seismic velocities have been measured at 59 locations 1n the San Francisco Bay Region. This report is the third in a series of Open-File Reports and describes the in-situ velocity measurements at locations 35-59. At each location seismic travel times are measured in drill holes, normally at 2.5-m intervals to a depth of 30 m. Geologic logs are determined from drill cuttings, undisturbed (cored) samples, and penetrometer samples. The data provide a detailed comparison of geologic and seismic characteristics and provide parameters for estimating strong earthquake ground motions quantitatively at each of the sites. A major emphasis of this program is to obtain a detailed comparison of geologic and seismic data on a regional scale for use in seismic zonation. There is a variety of geologic and seismic data available in the San Francisco Bay Region for use 1n developing the general zoning techniques which can then be applied to other areas. Shear wave velocities 1n near-surface geologic materials are of especial interest for engineering seismology and seismic zonation studies, yet in general, they are difficult to measure because of contamination by compressional waves. A comparison of various in-situ techniques by Warrick (1974) establishes the reliability of the method utilizing a "horizontal traction" source for sites underlain by bay mud and alluvium. Gibbs, and others (1975a) present data from 12 holes and establishes the reliability of the method for sites underlain by a variety of different rock units and suggest extending the measurements to

  14. Measuring the Noise Caused by Tehran Metro

    Directory of Open Access Journals (Sweden)

    Majid Abbas Pour

    1999-03-01

    Full Text Available One of the most common and important sources of noise in the residential environments are vehicles such as airplanes and subways. Trafficking of vehicles in streets and highways, psychologically, have damaging impacts on people living close to such areas. The development and expansion of the trading and industrial units is another factor that causes more and more exposure to noise.We have aimed at measuring the noises caused by vibration of subways of the Line of Karaj-Tehran-Mehrshahr and its effect on its surrounding area.To study this effect we designed a mathematical model and put the information of this subway line in the mentioned model. Then we analyzed the findings.This model demonstrated that we can control the harsh noise of the subway by reducing the speed of the train to 60Km/h in some points and increase in other parts to 130Km/h.

  15. Noise in position measurement by centroid calculation

    International Nuclear Information System (INIS)

    Volkov, P.

    1996-01-01

    The position of a particle trajectory in a gaseous (or semiconductor) detector can be measured by calculating the centroid of the induced charge on the cathode plane. The charge amplifiers attached to each cathode strip introduce noise which is added to the signal. This noise broadens the position resolution line. Our article gives an analytical tool to estimate the resolution broadening due to the noise per strip and the number of strips involved in the centroid calculation. It is shown that the position resolution increases faster than the square root of the number of strips involved. We also consider the consequence of added interstrip capacitors, intended to diminish the differential nonlinearity. It is shown that the position error increases slower than linearly with the interstrip capacities, due to the cancellation of correlated noise. The estimation we give, can be applied to calculations of position broadening other than the centroid finding. (orig.)

  16. Compressed Sensing with Linear Correlation Between Signal and Measurement Noise

    DEFF Research Database (Denmark)

    Arildsen, Thomas; Larsen, Torben

    2014-01-01

    reconstruction algorithms, but is not known in existing literature. The proposed technique reduces reconstruction error considerably in the case of linearly correlated measurements and noise. Numerical experiments confirm the efficacy of the technique. The technique is demonstrated with application to low......Existing convex relaxation-based approaches to reconstruction in compressed sensing assume that noise in the measurements is independent of the signal of interest. We consider the case of noise being linearly correlated with the signal and introduce a simple technique for improving compressed...... sensing reconstruction from such measurements. The technique is based on a linear model of the correlation of additive noise with the signal. The modification of the reconstruction algorithm based on this model is very simple and has negligible additional computational cost compared to standard...

  17. Cross correlation measurement of low frequency conductivity noise

    Science.gov (United States)

    Jain, Aditya Kumar; Nigudkar, Himanshu; Chakraborti, Himadri; Udupa, Aditi; Gupta, Kantimay Das

    2018-04-01

    In order to study the low frequency noise(1/f noise)an experimental technique based on cross correlation of two channels is presented. In this method the device under test (DUT)is connected to the two independently powered preamplifiers in parallel. The amplified signals from the two preamplifiers are fed to two channels of a digitizer. Subsequent data processing largelyeliminates the uncorrelated noise of the two channels. This method is tested for various commercial carbon/metal film resistors by measuring equilibrium thermal noise (4kBTR). The method is then modified to study the non-equilibrium low frequency noise of heterostructure samples using fiveprobe configuration. Five contact probes allow two parts of the sample to become two arms of a balanced bridge. This configuration helps in suppressing the effect of power supply fluctuations, bath temperature fluctuations and contact resistances.

  18. Measurements of effective noise temperature in fused silica fiber violin modes

    Energy Technology Data Exchange (ETDEWEB)

    Bilenko, I.A.; Lourie, S.L

    2002-11-25

    The results of measurements of the effective noise temperature in fused silica fiber violin modes are presented. In these measurements the fibers were stressed and value of the effective noise temperature was obtained by direct observation of oscillations in the fundamental violin modes of several samples. Measured values indicate that effective noise temperature does not exceed the room temperature significantly. This result is important for the design of the advanced gravitational wave antennae.

  19. Noise Measurements of the VAIIPR Fan

    Science.gov (United States)

    Mendoza, Jeff; Weir, Don

    2012-01-01

    This final report has been prepared by Honeywell Aerospace, Phoenix, Arizona, a unit of Honeywell International, Inc., documenting work performed during the period September 2004 through November 2005 for the National Aeronautics and Space Administration (NASA) Glenn Research Center, Cleveland, Ohio, under the Revolutionary Aero-Space Engine Research (RASER) Program, Contract No. NAS3- 01136, Task Order 6, Noise Measurements of the VAIIPR Fan. The NASA Task Manager was Dr. Joe Grady, NASA Glenn Research Center, Mail Code 60-6, Cleveland, Ohio 44135. The NASA Contract Officer was Mr. Albert Spence, NASA Glenn Research Center, Mail Code 60-6, Cleveland, Ohio 44135. This report focuses on the evaluation of internal fan noise as generated from various inflow disturbances based on measurements made from a circumferential array of sensors located near the fan and sensors upstream of a serpentine inlet.

  20. An excess noise measurement system for weak responsivity avalanche photodiodes

    Science.gov (United States)

    Qiao, Liang; Dimler, Simon J.; Baharuddin, Aina N. A. P.; Green, James E.; David, John P. R.

    2018-06-01

    A system for measuring, with reduced photocurrent, the excess noise associated with the gain in avalanche photodiodes (APDs), using a transimpedance amplifier front-end and based on phase-sensitive detection is described. The system can reliably measure the excess noise power of devices, even when the un-multiplied photocurrent is low (~10 nA). This is more than one order of magnitude better than previously reported systems and represents a significantly better noise signal to noise ratio. This improvement in performance has been achieved by increasing the value of the feedback resistor and reducing the op-amp bandwidth. The ability to characterise APD performance with such low photocurrents enables the use of low power light sources such as light emitting diode rather than lasers to investigate the APD noise performance.

  1. Seismic imaging of the shallow subsurface with high frequency seismic measurements

    International Nuclear Information System (INIS)

    Kaelin, B.; Lawrence Berkeley National Lab., CA

    1998-07-01

    Elastic wave propagation in highly heterogeneous media is investigated and theoretical calculations and field measurements are presented. In the first part the dynamic composite elastic medium (DYCEM) theory is derived for one-dimensional stratified media. A self-consistent method using the scattering functions of the individual layers is formulated, which allows the calculation of phase velocity, attenuation and waveform. In the second part the DYCEM theory has been generalized for three-dimensional inclusions. The specific case of spherical inclusions is calculated with the exact scattering functions and compared with several low frequency approximations. In the third part log and VSP data of partially water saturated tuffs in the Yucca Mountain region of Nevada are analyzed. The anomalous slow seismic velocities can be explained by combining self-consistent theories for pores and cracks. The fourth part analyzes an air injection experiment in a shallow fractured limestone, which has shown large effects on the amplitude, but small effects on the travel time of the transmitted seismic waves. The large amplitude decrease during the experiment is mainly due to the impedance contrast between the small velocities of gas-water mixtures inside the fracture and the formation. The slow velocities inside the fracture allow an estimation of aperture and gas concentration profiles

  2. Teaching hands-on geophysics: examples from the Rū seismic network in New Zealand

    International Nuclear Information System (INIS)

    Van Wijk, Kasper; Simpson, Jonathan; Adam, Ludmila

    2017-01-01

    Education in physics and geosciences can be effectively illustrated by the analysis of earthquakes and the subsequent propagation of seismic waves in the Earth. Educational seismology has matured to a level where both the hard- and software are robust and user friendly. This has resulted in successful implementation of educational networks around the world. Seismic data recorded by students are of such quality that these can be used in classic earthquake location exercises, for example. But even ocean waves weakly coupled into the Earth’s crust can now be recorded on educational seismometers. These signals are not just noise, but form the basis of more recent developments in seismology, such as seismic interferometry, where seismic waves generated by ocean waves—instead of earthquakes—can be used to infer information about the Earth’s interior. Here, we introduce an earthquake location exercise and an analysis of ambient seismic noise, and present examples. Data are provided, and all needed software is freely available. (review)

  3. Inversion of seismic data: how to take the correlated nature of noise into account; Inversion de donnees sismiques: prise en compte de la nature correlee du bruit

    Energy Technology Data Exchange (ETDEWEB)

    Renard, F.

    2003-01-01

    The goal of seismic inversion is to recover an Earth model that best fits some observed data. To reach that goal, we have to minimize an objective function that measures the amplitude of the misfits according to a norm to be chosen in data space. In general, the used norm is the L2 norm. Unfortunately, such a norm is not adapted to data corrupted by correlated noise: the noise is in that case inverted as signal and the inversion results are unacceptable. The goal of this thesis is to obtain satisfactory results to the inverse problem in that situation. For this purpose, we study two inverse problems: reflection tomography and waveform inversion. In reflection tomography, we propose a new formulation of the continuum inverse problem which relies on a H1 norm in data space. This allows us to account for the correlated nature of the noise that corrupts the kinematic information. However, this norm does not give more satisfactory results than the ones obtained with the classical formalism. This is why, for sake of simplicity, we recommend to use this classical formalism. Then we try to understand how to properly sample the kinematic information so as to obtain an accurate approximation of the continuum inverse problem. In waveform inversion, we propose to directly invert data corrupted by some correlated noise. A first idea consists in rejecting the noise in the residues. In that goal, we can use a semi-norm to formulate the inverse problem. This technique gives very good results, except when the data are corrupted by random noise. Thus we propose a second method which consists in retrieving, by solving an inverse problem, the signal and the noise whose sum best fits the data. This technique gives very satisfactory results, even if some random noise pollutes the data, and is moreover solved, thanks to an original algorithm, in a very efficient way. (author)

  4. Detailed comparison between computed and measured FBR core seismic responses

    International Nuclear Information System (INIS)

    Forni, M.; Martelli, A.; Melloni, R.; Bonacina, G.

    1988-01-01

    This paper presents a detailed comparison between seismic calculations and measurements performed for various mock-ups consisting of groups of seven and nineteen simplified elements of the Italian PEC fast reactor core. Experimental tests had been performed on shaking tables in air and water (simulating sodium) with excitations increasing up to above Safe Shutdown Earthquake. The PEC core-restraint ring had been simulated in some tests. All the experimental tests have been analysed by use of both the one-dimensional computer program CORALIE and the two-dimensional program CLASH. Comparisons have been made for all the instrumented elements, in both the time and the frequency domains. The good agreement between calculations and measurements has confirmed adequacy of the fluid-structure interaction model used for PEC core seismic design verification

  5. An effective approach to attenuate random noise based on compressive sensing and curvelet transform

    International Nuclear Information System (INIS)

    Liu, Wei; Cao, Siyuan; Zu, Shaohuan; Chen, Yangkang

    2016-01-01

    Random noise attenuation is an important step in seismic data processing. In this paper, we propose a novel denoising approach based on compressive sensing and the curvelet transform. We formulate the random noise attenuation problem as an L _1 norm regularized optimization problem. We propose to use the curvelet transform as the sparse transform in the optimization problem to regularize the sparse coefficients in order to separate signal and noise and to use the gradient projection for sparse reconstruction (GPSR) algorithm to solve the formulated optimization problem with an easy implementation and a fast convergence. We tested the performance of our proposed approach on both synthetic and field seismic data. Numerical results show that the proposed approach can effectively suppress the distortion near the edge of seismic events during the noise attenuation process and has high computational efficiency compared with the traditional curvelet thresholding and iterative soft thresholding based denoising methods. Besides, compared with f-x deconvolution, the proposed denoising method is capable of eliminating the random noise more effectively while preserving more useful signals. (paper)

  6. Kalman filtering techniques for reducing variance of digital speckle displacement measurement noise

    Institute of Scientific and Technical Information of China (English)

    Donghui Li; Li Guo

    2006-01-01

    @@ Target dynamics are assumed to be known in measuring digital speckle displacement. Use is made of a simple measurement equation, where measurement noise represents the effect of disturbances introduced in measurement process. From these assumptions, Kalman filter can be designed to reduce variance of measurement noise. An optical and analysis system was set up, by which object motion with constant displacement and constant velocity is experimented with to verify validity of Kalman filtering techniques for reduction of measurement noise variance.

  7. Geophysical surveys and velocimetric measures in the Cerreto di Spoleto (Perugia) area, aiming at a seismic microzoning; Indagini geofisiche e misure velocimetriche finalizzate alla microzonazione sismica dell'area di Cerreto di Spoleto (Perugia)

    Energy Technology Data Exchange (ETDEWEB)

    Bongiovanni, G.; Martino, S.; Paciello, A.; Verrubbi, V. [ENEA, Div. Caratterizzazione dell' Ambiente e del Territorio, Centro Ricerche Csaccia, S. Maria di Galeria, Rome (Italy)

    2001-07-01

    Geophysical prospectings and velocimetric measures, aiming at the seismic microzoning of Cerreto di Spoleto area, are presented. Starting from the data obtained by previous geological-geomechanical surveys, seismic-refraction prospectings were carried on in order to obtain a dynamic characterisation and a geometrical description both of soil and rock materials. The velocimetric measures were performed by temporary free-field arrays, recording both environmental noise and small-magnitude seismic events. The analysis of the obtained records is still in progress, in order to evaluate the local seismic wave amplification. [Italian] Vengono illustrate le indagini geofisiche e le misure velocimetriche condotte nell'area di Cerreto di Spoleto (PG) per la microzonazione sismica. In particolare, sulla base dei dati geologici e geomeccanici precedentemente acquisiti, sono state effettuate indagini di sismica a rifrazione che hanno portato alla caratterizzazione dinamica dei litotipi ed alla definizione delle loro geometrie. Le misure velometriche sono state condotte installando array temporanei in free-field per la registrazione di rumore ambientale ed eventi sismici di piccola magnitudo. E' in corso l'elaborazione delle registrazioni ottenute, finalizzata all'analisi degli effetti di amplificazione sismica locale.

  8. Background Noise of the Aldeia da Serra Region (Portugal) from a temporary broad band network

    Science.gov (United States)

    Wachilala, Piedade; Borges, José; Caldeira, Bento; Bezzeghoud, Mourad

    2017-04-01

    In this study, we analyse seismic background noise to assess the effect of noise based on the detectability of a temporary network constituted by DOCTAR (Deep Ocean Test Array), who have been deployed in a period between 2011 and 2012 in Portugal mainland, and the Évora permanent seismic station. This network is constituted by 14 digital broadband stations (14 CMG-3ESP and one STS2 sensors) with a flat response between the 60 sec to 50 Hz, 24-bit and 120s to 60Hz respectively. The temporary network was operated in continuous recording mode (three-components) in a region located in the north of the region of Évora, within a radius of about 30 km around the village of Aldeia da Serra, region in which there is an important seismic activity in the context of Portugal mainland. We calculated power spectral densities of background noise for each station/component and compare them with high-noise model and low-noise model of Peterson (1993). We consider different for day and night local and for different periods of the year. Power spectral density estimates show moderate noise levels with all stations falling within the high and low bounds of Peterson (1993). Considering the results of the noise, we estimate the detection limit of each station and consequently the detectability of the network. From this information and taking in attention the events recorded during the period of DOCTAR operation we analyse the improvement promoted by this temporary network regarding the existent seismic networks to the local seismicity study. This work was partially supported by COMPETE 2020 program (POCI-01-0145-FEDER-007690 project). We acknowledge GFZ Potsdam for providing part of the data used in this study.

  9. Seismicity Precursors of the M6.0 2004 Parkfield and M7.0 1989Loma Prieta Earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Korneev, Valeri A.

    2006-03-09

    The M6.0 2004 Parkfield and M7.0 1989 Loma Prietastrike-slip earthquakes on the San Andreas Fault (SAF) were preceded byseismicity peaks occurring several months prior to the main events.Earthquakes directly within the SAF zone were intentionally excluded fromthe analysis because they manifest stress-release processes rather thanstress accumulation. The observed increase in seismicity is interpretedas a signature of the increasing stress level in the surrounding crust,whereas the peaks and the subsequent decrease in seismicity areattributed to damage-induced softening processes. Furthermore, in bothcases there is a distinctive zone of low seismic activity that surroundsthe epicentral region in the pre-event period. The increase of seismicityin the crust surrounding a potential future event and the development ofa low-seismicity epicentral zone can be regarded as promising precursoryinformation that could help signal the arrival of large earthquakes. TheGutenberg-Richter relationship (GRR) should allow extrapolation ofseismicity changes down to seismic noise level magnitudes. Thishypothesis is verified by comparison of seismic noise at 80 Hz with theParkfield M4 1993-1994 series, where noise peaks 5 months before theseries to about twice the background level.

  10. Ambient noise levels in the Taiwan region

    Science.gov (United States)

    Liang, W.; Liu, C.; Chen, R.; Huang, B.; Wu, F. T.; Wang, C.

    2008-12-01

    To characterize the island-wide background seismic noise in Taiwan, we estimate the power spectral density (PSD) at broadband stations of both the BATS (Broadband Array in Taiwan for Seismology) and the TAIGER experiment (Apr. 2006~Apr. 2008) for periods ranging from ~0.2 to 100 seconds. A new approach to calculate the probability density functions of noise power (PDFs, MaNamara and Buland, 2004) is used in this study. The results indicate that the cultural noise at higher frequencies is significant at populated area, which shows diurnal and weekly variation as what we expected. The noise power for microseisms centered at a period of ~5 seconds around the western costal plain show ~20dB higher than what observed at eastern Taiwan. This observation supports the inference that the coastal regions having narrow shelf with irregular coastlines are know to be especially efficient at radiating the predominat microseisms. Results from the linear array across central Taiwan demonstrate that the average noise power is quietest at the eastern Central Range. We have mapped the PDF mode for stations at various periods to see the spatial distribution of ambient noise levels, which could be used as the basic information for future station siting. Temporal variation of noise PSD is also present to provide a quantitative description of the seismic data quality collected by both BATS and TAIGER experiment. Some operational problems like base tilt, sensitivity change can be identified easily as well.

  11. Automated seismic waveform location using Multichannel Coherency Migration (MCM)-I. Theory

    Science.gov (United States)

    Shi, Peidong; Angus, Doug; Rost, Sebastian; Nowacki, Andy; Yuan, Sanyi

    2018-03-01

    With the proliferation of dense seismic networks sampling the full seismic wavefield, recorded seismic data volumes are getting bigger and automated analysis tools to locate seismic events are essential. Here, we propose a novel Multichannel Coherency Migration (MCM) method to locate earthquakes in continuous seismic data and reveal the location and origin time of seismic events directly from recorded waveforms. By continuously calculating the coherency between waveforms from different receiver pairs, MCM greatly expands the available information which can be used for event location. MCM does not require phase picking or phase identification, which allows fully automated waveform analysis. By migrating the coherency between waveforms, MCM leads to improved source energy focusing. We have tested and compared MCM to other migration-based methods in noise-free and noisy synthetic data. The tests and analysis show that MCM is noise resistant and can achieve more accurate results compared with other migration-based methods. MCM is able to suppress strong interference from other seismic sources occurring at a similar time and location. It can be used with arbitrary 3D velocity models and is able to obtain reasonable location results with smooth but inaccurate velocity models. MCM exhibits excellent location performance and can be easily parallelized giving it large potential to be developed as a real-time location method for very large datasets.

  12. Improving ambient noise cross-correlations in the noisy ocean bottom environment of the Juan de Fuca plate

    Science.gov (United States)

    Tian, Ye; Ritzwoller, Michael H.

    2017-09-01

    Ambient noise tomography exploits seismic ground motions that propagate coherently over long interstation distances. Such ground motions provide information about the medium of propagation that is recoverable from interstation cross-correlations. Local noise sources, which are particularly strong in ocean bottom environments, corrupt ambient noise cross-correlations and compromise the effectiveness of ambient noise tomography. Based on 62 ocean bottom seismometers (OBSs) located on Juan de Fuca (JdF) plate from the Cascadia Initiative experiment and 40 continental stations near the coast of the western United States obtained in 2011 and 2012, we attempt to reduce the effects of local noise on vertical component seismic records across the plate and onto US continent. The goal is to provide better interstation cross-correlations for use in ambient noise tomography and the study of ambient noise directionality. As shown in previous studies, tilt and compliance noise are major sources of noise that contaminate the vertical channels of the OBSs and such noise can be greatly reduced by exploiting information on the horizontal components and the differential pressure gauge records, respectively. We find that ambient noise cross-correlations involving OBSs are of significantly higher signal-to-noise ratio at periods greater than 10 s after reducing these types of noise, particularly in shallow water environments where tilt and compliance noise are especially strong. The reduction of tilt and compliance noise promises to improve the accuracy and spatial extent of ambient noise tomography, allowing measurements based on coherently propagating ambient noise to be made at stations in the shallower parts of the JdF plate and at longer periods than in previous studies. In addition such local noise reduction produces better estimates of the azimuthal content of ambient noise.

  13. Objective measures of listening effort: effects of background noise and noise reduction.

    Science.gov (United States)

    Sarampalis, Anastasios; Kalluri, Sridhar; Edwards, Brent; Hafter, Ervin

    2009-10-01

    This work is aimed at addressing a seeming contradiction related to the use of noise-reduction (NR) algorithms in hearing aids. The problem is that although some listeners claim a subjective improvement from NR, it has not been shown to improve speech intelligibility, often even making it worse. To address this, the hypothesis tested here is that the positive effects of NR might be to reduce cognitive effort directed toward speech reception, making it available for other tasks. Normal-hearing individuals participated in 2 dual-task experiments, in which 1 task was to report sentences or words in noise set to various signal-to-noise ratios. Secondary tasks involved either holding words in short-term memory or responding in a complex visual reaction-time task. At low values of signal-to-noise ratio, although NR had no positive effect on speech reception thresholds, it led to better performance on the word-memory task and quicker responses in visual reaction times. Results from both dual tasks support the hypothesis that NR reduces listening effort and frees up cognitive resources for other tasks. Future hearing aid research should incorporate objective measurements of cognitive benefits.

  14. Pilot study of methods and equipment for in-home noise level measurements.

    Science.gov (United States)

    Neitzel, Richard L; Heikkinen, Maire S A; Williams, Christopher C; Viet, Susan Marie; Dellarco, Michael

    2015-01-15

    Knowledge of the auditory and non-auditory effects of noise has increased dramatically over the past decade, but indoor noise exposure measurement methods have not advanced appreciably, despite the introduction of applicable new technologies. This study evaluated various conventional and smart devices for exposure assessment in the National Children's Study. Three devices were tested: a sound level meter (SLM), a dosimeter, and a smart device with a noise measurement application installed. Instrument performance was evaluated in a series of semi-controlled tests in office environments over 96-hour periods, followed by measurements made continuously in two rooms (a child's bedroom and a most used room) in nine participating homes over a 7-day period with subsequent computation of a range of noise metrics. The SLMs and dosimeters yielded similar A-weighted average noise levels. Levels measured by the smart devices often differed substantially (showing both positive and negative bias, depending on the metric) from those measured via SLM and dosimeter, and demonstrated attenuation in some frequency bands in spectral analysis compared to SLM results. Virtually all measurements exceeded the Environmental Protection Agency's 45 dBA day-night limit for indoor residential exposures. The measurement protocol developed here can be employed in homes, demonstrates the possibility of measuring long-term noise exposures in homes with technologies beyond traditional SLMs, and highlights potential pitfalls associated with measurements made by smart devices.

  15. Crustal structure of Australia from ambient seismic noise tomography

    Science.gov (United States)

    Saygin, Erdinc; Kennett, B. L. N.

    2012-01-01

    Surface wave tomography for Australian crustal structure has been carried out using group velocity measurements in the period range 1-32 s extracted from stacked correlations of ambient noise between station pairs. Both Rayleigh wave and Love wave group velocity maps are constructed for each period using the vertical and transverse component of the Green's function estimates from the ambient noise. The full suite of portable broadband deployments and permanent stations on the continent have been used with over 250 stations in all and up to 7500 paths. The permanent stations provide a useful link between the various shorter-term portable deployments. At each period the group velocity maps are constructed with a fully nonlinear tomographic inversion exploiting a subspace technique and the Fast Marching Method for wavefront tracking. For Rayleigh waves the continental coverage is good enough to allow the construction of a 3D shear wavespeed model in a two stage approach. Local group dispersion information is collated for a distribution of points across the continent and inverted for a 1D SV wavespeed profile using a Neighbourhood Algorithm method. The resulting set of 1D models are then interpolated to produce the final 3D wavespeed model. The group velocity maps show the strong influence of thick sediments at shorter periods, and distinct fast zones associated with cratonic regions. Below the sediments the 3D shear wavespeed model displays significant heterogeneity with only moderate correlation with surface tectonic features. For example, there is no evident expression of the Tasman Line marking the eastern edge of Precambrian outcrop. The large number of available inter-station paths extracted from the ambient noise analysis provide detailed shear wavespeed information for crustal structure across the Australian continent for the first time, including regions where there was no prior sampling because of difficult logistics.

  16. The prediction of rotor rotational noise using measured fluctuating blade loads

    Science.gov (United States)

    Hosier, R. N.; Pegg, R. J.; Ramakrishnan, R.

    1974-01-01

    In tests conducted at the NASA Langley Research Center Helicopter Rotor Test Facility, simultaneous measurements of the high-frequency fluctuating aerodynamic blade loads and far-field radiated noise were made on a full-scale, nontranslating rotor system. After their characteristics were determined, the measured blade loads were used in an existing theory to predict the far-field rotational noise. A comparison of the calculated and measured rotational noise is presented with specific attention given to the effect of blade loading coefficients, chordwise loading distributions, blade loading phases, and observer azimuthal position on the predictions.

  17. The Analysis and Suppression of the spike noise in vibrator record

    Science.gov (United States)

    Jia, H.; Jiang, T.; Xu, X.; Ge, L.; Lin, J.; Yang, Z.

    2013-12-01

    During the seismic exploration with vibrator, seismic recording systems have often been affected by random spike noise in the background, which leads to strong data distortions as a result of the cross-correlation processing of the vibrator method. Partial or total loss of the desired seismic information is possible if no automatic spike reduction is available in the field prior to correlation of the field record. Generally speaking, original record of vibrator is uncorrelated data, in which the signal is non-wavelet form. In order to obtain the seismic record similar to explosive source, the signal of uncorrelated data needs to use the correlation algorithm to compress into wavelet form. The correlation process results in that the interference of spike in correlated data is not only being suppressed, but also being expanded. So the spike noise suppression of vibrator is indispensable. According to numerical simulation results, the effect of spike in the vibrator record is mainly affected by the amplitude and proportional points in the uncorrelated record. When the spike noise ratio in uncorrelated record reaches 1.5% and the average amplitude exceeds 200, it will make the SNR(signal-to-noise ratio) of the correlated record lower than 0dB, so that it is difficult to separate the signal. While the amplitude and ratio is determined by the intensity of background noise. Therefore, when the noise level is strong, in order to improve SNR of the seismic data, the uncorrelated record of vibrator need to take necessary steps to suppress spike noise. For the sake of reducing the influence of the spike noise, we need to make the detection and suppression of spike noise process for the uncorrelated record. Because vibrator works by inputting sweep signal into the underground long time, ideally, the peak and valley values of each trace have little change. On the basis of the peak and valley values, we can get a reference amplitude value. Then the spike can be detected and

  18. Internet-Based Solutions for a Secure and Efficient Seismic Network

    Science.gov (United States)

    Bhadha, R.; Black, M.; Bruton, C.; Hauksson, E.; Stubailo, I.; Watkins, M.; Alvarez, M.; Thomas, V.

    2017-12-01

    The Southern California Seismic Network (SCSN), operated by Caltech and USGS, leverages modern Internet-based computing technologies to provide timely earthquake early warning for damage reduction, event notification, ShakeMap, and other data products. Here we present recent and ongoing innovations in telemetry, security, cloud computing, virtualization, and data analysis that have allowed us to develop a network that runs securely and efficiently.Earthquake early warning systems must process seismic data within seconds of being recorded, and SCSN maintains a robust and resilient network of more than 350 digital strong motion and broadband seismic stations to achieve this goal. We have continued to improve the path diversity and fault tolerance within our network, and have also developed new tools for latency monitoring and archiving.Cyberattacks are in the news almost daily, and with most of our seismic data streams running over the Internet, it is only a matter of time before SCSN is targeted. To ensure system integrity and availability across our network, we have implemented strong security, including encryption and Virtual Private Networks (VPNs).SCSN operates its own data center at Caltech, but we have also installed real-time servers on Amazon Web Services (AWS), to provide an additional level of redundancy, and eventually to allow full off-site operations continuity for our network. Our AWS systems receive data from Caltech-based import servers and directly from field locations, and are able to process the seismic data, calculate earthquake locations and magnitudes, and distribute earthquake alerts, directly from the cloud.We have also begun a virtualization project at our Caltech data center, allowing us to serve data from Virtual Machines (VMs), making efficient use of high-performance hardware and increasing flexibility and scalability of our data processing systems.Finally, we have developed new monitoring of station average noise levels at most stations

  19. Noise measurements in 4 wind turbine farms

    International Nuclear Information System (INIS)

    Van Zuylen, E.J.; Koerts, M.

    1993-02-01

    The title wind turbine arrays are situated in Herbayum (Newinco 23PI250), Callantsoog (Bouma 160/20), Noordoostpolder (Windmaster WM300), and Ulketocht (Newinco 500 kW). Measurements were carried out by means of the so-called Ecofys Correlating Noise Meter to determine the source level of the wind turbines. The resulting source level as a function of the wind speed is interpolated to a source level for a wind speed of 8 m/s at 10 m height, on the basis of which the noise contours can be calculated. The noise contours are determined to analyze the noise load for people living in the neighbourhood of the wind parks. The source levels are compared with values as indicated in certificates, which are granted on the basis of a so-called Restricted Quality Certificate (BKC, abbreviated in Dutch) or the new standard NNI 6096/2 for the above-mentioned wind turbines. In general the results of this study agree quite well with the certified values. 12 figs., 7 tabs., 6 refs

  20. FliPer: checking the reliability of global seismic parameters from automatic pipelines

    Science.gov (United States)

    Bugnet, L.; García, R. A.; Davies, G. R.; Mathur, S.; Corsaro, E.

    2017-12-01

    Our understanding of stars through asteroseismic data analysis is limited by our ability to take advantage of the huge amount of observed stars provided by space missions such as CoRoT, \\keplerp, \\ktop, and soon TESS and PLATO. Global seismic pipelines provide global stellar parameters such as mass and radius using the mean seismic parameters, as well as the effective temperature. These pipelines are commonly used automatically on thousands of stars observed by K2 for 3 months (and soon TESS for at least ˜ 1 month). However, pipelines are not immune from misidentifying noise peaks and stellar oscillations. Therefore, new validation techniques are required to assess the quality of these results. We present a new metric called FliPer (Flicker in Power), which takes into account the average variability at all measured time scales. The proper calibration of \\powvar enables us to obtain good estimations of global stellar parameters such as surface gravity that are robust against the influence of noise peaks and hence are an excellent way to find faults in asteroseismic pipelines.

  1. Extraction of Pn seismic signals from air-gun shots recorded by the Cascadia Amphibious seismic experiment

    Science.gov (United States)

    Rathnayaka, S.; Gao, H.

    2017-12-01

    The goal of this study is to extract Pn (head wave) seismic waveforms recorded by both offshore and onshore (broadband and short period) seismic stations and evaluate the data quality. Two offshore active-source seismic experiments, MGL 1211 and MGL 1212, were conducted from 13th June to 24th July 2012, during the first year deployment of the Cascadia Initiative Amphibious Array. In total, we choose 110 ocean bottom seismometers and 209 inland stations that are located along the entire Cascadia subduction zone. We first remove the instrument response, and then explore the potential frequency ranges and the diurnal effect. We make the common receiver gathering for each seismic station and filter the seismic waveforms at multiple frequency bands, ranging from 3-5 Hz, 5-10 Hz, 10-20 Hz, to 20-40 Hz, respectively. To quantitatively evaluate the data quality, we calculate the signal-to-noise ratio (SNR) of the waveforms for usable stations that record clear Pn arrivals at multiple frequency bands. Our results show that most offshore stations located at deep water (>1.5 km) record clear air-gun shot signals at frequencies higher than 3 Hz and up to 550 km away from the source. For most stations located on the shallow continental shelf, the seismic recordings appear much noisier at all the frequencies compared to stations at deep water. Three general trends are observed for the SNR distribution; First, the SNR ratio increases from lower to higher frequency bands; Second, the ratio decreases with the increasing source-to-receiver distance; And third, the ratio increases from shallow to deep water. We also observe a rough negative relationship of the signal-to-noise ratio with the thickness of the marine sediment. Only 5 inland stations record clear air-gun shot arrivals up to 200 km away from the source. More detailed data quality analysis with more results will also be present.

  2. A model for measurement of noise in CCD digital-video cameras

    International Nuclear Information System (INIS)

    Irie, K; Woodhead, I M; McKinnon, A E; Unsworth, K

    2008-01-01

    This study presents a comprehensive measurement of CCD digital-video camera noise. Knowledge of noise detail within images or video streams allows for the development of more sophisticated algorithms for separating true image content from the noise generated in an image sensor. The robustness and performance of an image-processing algorithm is fundamentally limited by sensor noise. The individual noise sources present in CCD sensors are well understood, but there has been little literature on the development of a complete noise model for CCD digital-video cameras, incorporating the effects of quantization and demosaicing

  3. The Community Seismic Network: Enabling Observations Through Citizen Science Participation

    Science.gov (United States)

    Kohler, M. D.; Clayton, R. W.; Heaton, T. H.; Bunn, J.; Guy, R.; Massari, A.; Chandy, K. M.

    2017-12-01

    The Community Seismic Network is a dense accelerometer array deployed in the greater Los Angeles area and represents the future of densely instrumented urban cities where localized vibration measurements are collected continuously throughout the free-field and built environment. The hardware takes advantage of developments in the semiconductor industry in the form of inexpensive MEMS accelerometers that are each coupled with a single board computer. The data processing and archival architecture borrows from developments in cloud computing and network connectedness. The ability to deploy densely in the free field and in upper stories of mid/high-rise buildings is enabled by community hosts for sensor locations. To this end, CSN has partnered with the Los Angeles Unified School District (LAUSD), the NASA-Jet Propulsion Laboratory (JPL), and commercial and civic building owners to host sensors. At these sites, site amplification estimates from RMS noise measurements illustrate the lateral variation in amplification over length scales of 100 m or less, that correlate with gradients in the local geology such as sedimentary basins that abut crystalline rock foothills. This is complemented by high-resolution, shallow seismic velocity models obtained using an H/V method. In addition, noise statistics are used to determine the reliability of sites for ShakeMap and earthquake early warning data. The LAUSD and JPL deployments are examples of how situational awareness and centralized warning products such as ShakeMap and ShakeCast are enabled by citizen science participation. Several buildings have been instrumented with at least one triaxial accelerometer per floor, providing measurements for real-time structural health monitoring through local, customized displays. For real-time and post-event evaluation, the free-field and built environment CSN data and products illustrate the feasibility of order-of-magnitude higher spatial resolution mapping compared to what is currently

  4. Structureborne noise measurements on a small twin-engine aircraft

    Science.gov (United States)

    Cole, J. E., III; Martini, K. F.

    1988-01-01

    Structureborne noise measurements performed on a twin-engine aircraft (Beechcraft Baron) are reported. There are two overall objectives of the test program. The first is to obtain data to support the development of analytical models of the wing and fuselage, while the second is to evaluate effects of structural parameters on cabin noise. Measurements performed include structural and acoustic responses to impact excitation, structural and acoustic loss factors, and modal parameters of the wing. Path alterations include added mass to simulate fuel, variations in torque of bolts joining wing and fuselage, and increased acoustic absorption. Conclusions drawn regarding these measurements are presented.

  5. Measuring Variability in the Presence of Noise

    Science.gov (United States)

    Welsh, W. F.

    Quantitative measurements of a variable signal in the presence of noise requires very careful attention to subtle affects which can easily bias the measurements. This is not limited to the low-count rate regime, nor is the bias error necessarily small. In this talk I will mention some of the dangers in applying standard techniques which are appropriate for high signal to noise data but fail in the cases where the S/N is low. I will discuss methods for correcting the bias in the these cases, both for periodic and non-periodic variability, and will introduce the concept of the ``filtered de-biased RMS''. I will also illustrate some common abuses of power spectrum interpretation. All of these points will be illustrated with examples from recent work on CV and AGN variability.

  6. Validation of an Aero-Acoustic Wind Turbine Noise Model Using Advanced Noise Source Measurements of a 500kW Turbine

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Fischer, Andreas

    2016-01-01

    rotor noise model is presented. It includes the main sources of aeroacoustic noise from wind turbines: turbulent inflow, trailing edge and stall noise. The noise measured by one microphone located directly downstream of the wind turbine is compared to the model predictions at the microphone location....... A good qualitative agreement is found. When wind speed increases, the rotor noise model shows that at high frequencies the stall noise becomes dominant. It also shows that turbulent inflow noise is dominant at low frequencies for all wind speeds and that trailing edge noise is dominant at low wind speeds...

  7. Seismic isolation of Advanced LIGO: Review of strategy, instrumentation and performance

    International Nuclear Information System (INIS)

    Matichard, F; Mittleman, R; Mason, K; Biscans, S; Barnum, S; Evans, M; Foley, S; Lantz, B; Celerier, C; Clark, D; DeBra, D; Kissel, J; Allwine, E; Abbott, B; Abbott, R; Abbott, S; Coyne, D; McIver, J; Birch, J; DeRosa, R

    2015-01-01

    The new generation of gravitational waves detectors require unprecedented levels of isolation from seismic noise. This article reviews the seismic isolation strategy and instrumentation developed for the Advanced LIGO observatories. It summarizes over a decade of research on active inertial isolation and shows the performance recently achieved at the Advanced LIGO observatories. The paper emphasizes the scientific and technical challenges of this endeavor and how they have been addressed. An overview of the isolation strategy is given. It combines multiple layers of passive and active inertial isolation to provide suitable rejection of seismic noise at all frequencies. A detailed presentation of the three active platforms that have been developed is given. They are the hydraulic pre-isolator, the single-stage internal isolator and the two-stage internal isolator. The architecture, instrumentation, control scheme and isolation results are presented for each of the three systems. Results show that the seismic isolation sub-system meets Advanced LIGO’s stringent requirements and robustly supports the operation of the two detectors. (paper)

  8. Seismic Tomography and the Development of a State Velocity Profile

    Science.gov (United States)

    Marsh, S. J.; Nakata, N.

    2017-12-01

    Earthquakes have been a growing concern in the State of Oklahoma in the last few years and as a result, accurate earthquake location is of utmost importance. This means using a high resolution velocity model with both lateral and vertical variations. Velocity data is determined using ambient noise seismic interferometry and tomography. Passive seismic data was acquired from multiple IRIS networks over the span of eight years (2009-2016) and filtered for earthquake removal to obtain the background ambient noise profile for the state. Seismic Interferometry is applied to simulate ray paths between stations, this is done with each possible station pair for highest resolution. Finally the method of seismic tomography is used to extract the velocity data and develop the state velocity map. The final velocity profile will be a compilation of different network analyses due to changing station availability from year to year. North-Central Oklahoma has a dense seismic network and has been operating for the past few years. The seismic stations are located here because this is the most seismically active region. Other parts of the state have not had consistent coverage from year to year, and as such a reliable and high resolution velocity profile cannot be determined from this network. However, the Transportable Array (TA) passed through Oklahoma in 2014 and provided a much wider and evenly spaced coverage. The goal of this study is to ultimately combine these two arrays over time, and provide a high quality velocity profile for the State of Oklahoma.

  9. Passive coherent discriminator using phase diversity for the simultaneous measurement of frequency noise and intensity noise of a continuous-wave laser

    Science.gov (United States)

    Michaud-Belleau, V.; Bergeron, H.; Light, P. S.; Hébert, N. B.; Deschênes, J. D.; Luiten, A. N.; Genest, J.

    2016-10-01

    The frequency noise and intensity noise of a laser set the performance limits in many modern photonics applications and, consequently, must often be characterized. As lasers continue to improve, the measurement of these noises however becomes increasingly challenging. Current approaches for the characterization of very high-performance lasers often call for a second laser with equal or higher performance to the one that is to be measured, an incoherent interferometer having an extremely long delay-arm, or an interferometer that relies on an active device. These instrumental features can be impractical or problematic under certain experimental conditions. As an alternative, this paper presents an entirely passive coherent interferometer that employs an optical 90° hybrid coupler to perform in-phase and quadrature detection. We demonstrate the technique by measuring the frequency noise power spectral density of a highly-stable 192 THz (1560 nm) fiber laser over five frequency decades. Simultaneously, we are able to measure its relative intensity noise power spectral density and characterize the correlation between its amplitude noise and phase noise. We correct some common misconceptions through a detailed theoretical analysis and demonstrate the necessity to account for normal imperfections of the optical 90° hybrid coupler. We finally conclude that this passive coherent discriminator is suitable for reliable and simple noise characterization of highly-stable lasers, with bandwidth and dynamic range benefits but susceptibility to additive noise contamination.

  10. Robust shot-noise measurement for continuous-variable quantum key distribution

    Science.gov (United States)

    Kunz-Jacques, Sébastien; Jouguet, Paul

    2015-02-01

    We study a practical method to measure the shot noise in real time in continuous-variable quantum key distribution systems. The amount of secret key that can be extracted from the raw statistics depends strongly on this quantity since it affects in particular the computation of the excess noise (i.e., noise in excess of the shot noise) added by an eavesdropper on the quantum channel. Some powerful quantum hacking attacks relying on faking the estimated value of the shot noise to hide an intercept and resend strategy were proposed. Here, we provide experimental evidence that our method can defeat the saturation attack and the wavelength attack.

  11. Reflection seismic imaging of the upper crystalline crust for characterization of potential repository sites: Fine tuning the seismic source

    Energy Technology Data Exchange (ETDEWEB)

    Juhlin, C.; Palm, H.; Bergman, B. [Uppsala Univ. (Sweden). Dept. of Earth Sciences

    2001-09-01

    SKB is currently carrying out studies to determine which seismic techniques, and how, they will be used for investigations prior to and during the building of a high-level nuclear waste repository. Active seismic methods included in these studies are refraction seismics, reflection seismics, and vertical seismic profiling (VSP). The main goal of the active seismic methods is to locate fracture zones in the crystalline bedrock. Plans are to use longer reflection seismic profiles (3.4 km) in the initial stages of the site investigations. The target depth for these seismic profiles is 100-1500 m. Prior to carrying out the seismic surveys over actual candidate waste repository sites it has been necessary to carry out a number of tests to determine the optimum acquisition parameters. This report constitutes a summary of the tests carried out by Uppsala University. In addition, recommended acquisition and processing parameters are presented at the end of the report. A major goal in the testing has been to develop a methodology for acquiring high-resolution reflection seismic data over crystalline rock in as a cost effective manner as possible. Since the seismic source is generally a major cost in any survey, significant attention has been given to reducing the cost of the source. It was agreed upon early in the study that explosives were the best source from a data quality perspective and, therefore, only explosive source methods have been considered in this study. The charge size and shot hole dimension required to image the upper 1-1.5 km of bedrock is dependent upon the conditions at the surface. In this study two types of shot hole drilling methods have been employed depending upon whether the thickness of the loose sediments at the surface is greater or less than 0.5 m. The charge sizes and shot hole dimensions required are: Loose sediment thickness less than 0.5 m: 15 g in 90 cm deep 12 mm wide uncased shot holes. Loose sediment thickness greater than 0.5 m: 75 g

  12. Shallow crustal radial anisotropy beneath the Tehran basin of Iran from seismic ambient noise tomography

    Science.gov (United States)

    Shirzad, Taghi; Shomali, Z. Hossein

    2014-06-01

    We studied the shear wave velocity structure and radial anisotropy beneath the Tehran basin by analyzing the Rayleigh wave and Love wave empirical Green's functions obtained from cross-correlation of seismic ambient noise. Approximately 199 inter-station Rayleigh and Love wave empirical Green's functions with sufficient signal-to-noise ratios extracted from 30 stations with various sensor types were used for phase velocity dispersion analysis of periods ranging from 1 to 7 s using an image transformation analysis technique. Dispersion curves extracted from the phase velocity maps were inverted based on non-linear damped least squares inversion method to obtain a quasi-3D model of crustal shear wave velocities. The data used in this study provide an unprecedented opportunity to resolve the spatial distribution of radial anisotropy within the uppermost crust beneath the Tehran basin. The quasi-3D shear wave velocity model obtained in this analysis delineates several distinct low- and high-velocity zones that are generally separated by geological boundaries. High-shear-velocity zones are located primarily around the mountain ranges and extend to depths of 2.0 km, while the low-shear-velocity zone is located near regions with sedimentary layers. In the shallow subsurface, our results indicate strong radial anisotropy with negative magnitude (VSV > VSH) primarily associated with thick sedimentary deposits, reflecting vertical alignment of cracks. With increasing depth, the magnitude of the radial anisotropy shifts from predominantly negative (less than -10%) to predominantly positive (greater than 5%). Our results show a distinct change in radial anisotropy between the uppermost sedimentary layer and the bedrock.

  13. A seismic hazard overview of the Mitidja Basin (Northern Algeria)

    Science.gov (United States)

    Fontiela, J. F.; Borges, J.; Ouyed, M.; Bezzeghoud, M.; Idres, M.; Caldeira, B.; Boughacha, M. S.; Carvalho, J.; Samai, S.; Aissa, S.; Benfadda, A.; Chimouni, R.; Yalaoui, R.; Dias, R.

    2017-12-01

    The Mitidja Basin (MB) is located in N Algeria and it is filled by quaternary sediments with a length of 100 km on the EW direction and around 20 km width. The S and N limites comprise the Boumerdes-Larbaa-Blida, and the Thenia-Sahel active fault system, respectively. Both fault systems are of the reverse type with opposed dips and accommodate a general slip rate of ˜4 mm/year. In the basin occurred earthquakes that caused severe damage and losses such as the ones of Algiers (1365, Io=X; 1716, Io=X) and the Bourmedes earthquake (Mw 6.9; May 2003) that affected the area of Zemmouri and caused 2.271 deaths. The event was caused by the reactivation of the MB boundary faults. The earthquake generated a max uplift of 0.8m along the coast and a horizontal max. slip of 0.24m.Recent studies show that the Boumerdes earthquake overloaded the adjacent faults system with a stress increase between 0.4 and 1.5 bar. The stress change recommends a detailed study of mentioned faults system due to the increase of the seismic hazard. The high seismogenic potential of the fault system bordering the MB, increases the vulnerability of densely populated areas of Algiers and the amplification effect caused by the basin are the motivation of this project that will focus on the evaluation of the seismic hazard of the region. To achieve seismic hazard assessment on the MB, through realistic predictions of strong ground motion, caused by moderate and large earthquakes, it is important 1) develop a detailed 3D velocity/structure model of the MB that includes geological constraints, seismic reflection data acquired on wells, refraction velocities and seismic noise data, and determination of the attenuation laws based on instrumental records; 2) evaluate the seismic potential and parameters of the main active faults of the MB; 3) develop numerical methods (deterministic and stochastic) to simulate strong ground motions produced by extended seismic sources. To acquire seismic noise were used

  14. Global seismic inversion as the next standard step in the processing sequence

    Energy Technology Data Exchange (ETDEWEB)

    Maver, Kim G.; Hansen, Lars S.; Jepsen, Anne-Marie; Rasmussen, Klaus B.

    1998-12-31

    Seismic inversion of post stack seismic data has until recently been regarded as a reservoir oriented method since the standard inversion techniques rely on extensive well control and a detailed user derived input model. Most seismic inversion techniques further requires a stable wavelet. As a consequence seismic inversion is mainly utilised in mature areas focusing of specific zones only after the seismic data has been interpreted and is well understood. By using an advanced 3-D global technique, seismic inversion is presented as the next standard step in the processing sequence. The technique is robust towards noise within the seismic data, utilizes a time variant wavelet, and derives a low frequency model utilizing the stacking velocities and only limited well control. 4 figs.

  15. Using Smart Devices to Measure Intermittent Noise in the Workplace

    Directory of Open Access Journals (Sweden)

    Benjamin Roberts

    2017-01-01

    Full Text Available Purpose: To determine the accuracy of smart devices (iPods to measure intermittent noise and integrate a noise dose in the workplace. Materials and Methods: In experiment 1, four iPods were each paired with a Larson Davis Spark dosimeter and exposed to randomly fluctuating pink noise in a reverberant sound chamber. Descriptive statistics and the mean difference between the iPod and its paired dosimeter were calculated for the 1-s data logged measurements. The calculated time weighted average (TWA was also compared between the devices. In experiment 2, 15 maintenance workers and 14 office workers wore an iPod and dosimeter during their work-shift for a maximum of five workdays. A mixed effects linear regression model was used to control for repeated measures and to determine the effect of the device type on the projected 8-h TWA. Results: In experiment 1, a total of 315,306 1-s data logged measurements were made. The interquartile range of the mean difference fell within ±2.0 A-weighted decibels (dBA, which is the standard used by the American National Standards Institute to classify a type 2 sound level meter. The mean difference of the calculated TWA was within ±0.5 dBA except for one outlier. In experiment 2, the results of the mixed effects model found that, on average, iPods measured an 8-h TWA 1.7 dBA higher than their paired dosimeters. Conclusion: This study shows that iPods have the ability to make reasonably accurate noise measurements in the workplace, but they are not as accurate as traditional noise dosimeters.

  16. German seismic regulations

    International Nuclear Information System (INIS)

    Danisch, Ruediger

    2002-01-01

    Rules and regulations for seismic design in Germany cover the following: seismic design of conventional buildings; and seismic design of nuclear facilities. Safety criteria for NPPs, accident guidelines, and guidelines for PWRs as well as safety standards are cited. Safety standards concerned with NPPs seismic design include basic principles, soil analysis, design of building structures, design of mechanical and electrical components, seismic instrumentation, and measures to be undertaken after the earthquake

  17. Seismicity and seismic monitoring in the Asse salt mine

    International Nuclear Information System (INIS)

    Flach, D.; Gommlich, G.; Hente, B.

    1987-01-01

    Seismicity analyses are made in order to assess the safety of candidate sites for ultimate disposal of hazardous wastes. The report in hand reviews the seismicity history of the Asse salt mine and presents recent results of a measuring campaign made in the area. The monitoring network installed at the site supplies data and information on the regional seismicity, on seismic amplitudes under ground and above ground, and on microseismic activities. (DG) [de

  18. Time-lapse seismic attribute analysis for a water-flooded reservoir

    International Nuclear Information System (INIS)

    Jin, Long; Sen, M K; Stoffa, P L; Seif, R K

    2008-01-01

    One of the goals of time-lapse seismic monitoring is the direct detection of the fluid front and two-phase contact area. However, several factors affect the quality of time-lapse seismic difference data and decrease detectability. One of these factors is random noise. In this paper, we propose five different methods aimed at improving the quality and detectability of noisy time-lapse seismic difference data. Common to these methods is the transform of the differences to a domain where the time-lapse signal and random noise are well separated. Our proposed methods include direct Fourier transform based spectral decomposition, bispectra, wavelet transform, singular value decomposition and hybrid methods. We also propose a method that combines multiple time-lapse difference data and gives a final difference which enhances the common part and attenuates the differences of the multiple difference images resulting in a better detectability than the original images. A synthetic time-lapse model is used to demonstrate the feasibility of our proposed methods

  19. Seismic Observations in the Taipei Metropolitan Area Using the Downhole Network

    Directory of Open Access Journals (Sweden)

    Win-Gee Huang

    2010-01-01

    Full Text Available Underlain by soft soils, the Taipei Metropolitan Area (TMA experienced major damage due to ground-motion amplification during the Hualien earthquake of 1986, the Chi-Chi earthquake of 1999, the Hualien earthquake of 2002 and the Taitung earthquake of 2003. To study how a local site can substantially change the characteristics of seismic waves as they pass through soft deposits below the free surface, two complementary downhole seismic arrays have been operated in the TMA, since 1991 and 2008. The accelerometer downhole array is composed of eight boreholes at depths in excess of 300 meters. The downhole array velocity sensor collocated with accelerometer composed of four boreholes at depths up to 90 meters. The integrated seismic network monitors potential earthquakes originating from faults in and around the TMA and provides wide-dynamic range measurement of data ranging in amplitude from seismic background noise levels to damage levels as a result of shaking. The data sets can be used to address on the response of soft-soil deposits to ground motions. One of the major considerations is the nonlinear response of soft soil deposits at different levels of excitation. The collocated acceloerometer and velocity sensors at boreholes give the necessary data for studies of non-linearity to be acquired. Such measurements in anticipation of future large, damaging earthquakes will be of special importance for the mitigation of earthquake losses.

  20. Passive monitoring for near surface void detection using traffic as a seismic source

    Science.gov (United States)

    Zhao, Y.; Kuzma, H. A.; Rector, J.; Nazari, S.

    2009-12-01

    In this poster we present preliminary results based on our several field experiments in which we study seismic detection of voids using a passive array of surface geophones. The source of seismic excitation is vehicle traffic on nearby roads, which we model as a continuous line source of seismic energy. Our passive seismic technique is based on cross-correlation of surface wave fields and studying the resulting power spectra, looking for "shadows" caused by the scattering effect of a void. High frequency noise masks this effect in the time domain, so it is difficult to see on conventional traces. Our technique does not rely on phase distortions caused by small voids because they are generally too tiny to measure. Unlike traditional impulsive seismic sources which generate highly coherent broadband signals, perfect for resolving phase but too weak for resolving amplitude, vehicle traffic affords a high power signal a frequency range which is optimal for finding shallow structures. Our technique results in clear detections of an abandoned railroad tunnel and a septic tank. The ultimate goal of this project is to develop a technology for the simultaneous imaging of shallow underground structures and traffic monitoring near these structures.

  1. Seismic exploration?scale velocities and structure from ambient seismic noise (>1?Hz)

    NARCIS (Netherlands)

    Draganov, D.S.; Campman, X.; Thorbecke, J.W.; Verdel, A.; Wapenaar, C.P.A.

    2013-01-01

    The successful surface waves retrieval in solid?Earth seismology using long?time correlations and subsequent tomographic images of the crust have sparked interest in extraction of subsurface information from noise in the exploration seismology. Subsurface information in exploration seismology is

  2. Seismic exploration-scale velocities and structure from ambient seismic noise (>1 Hz)

    NARCIS (Netherlands)

    Draganov, D.; Campman, X.; Thorbecke, J.; Verdel, A.; Wapenaar, K.

    2013-01-01

    The successful surface waves retrieval in solid-Earth seismology using long-time correlations and subsequent tomographic images of the crust have sparked interest in extraction of subsurface information from noise in the exploration seismology. Subsurface information in exploration seismology is

  3. What Do Contrast Threshold Equivalent Noise Studies Actually Measure? Noise vs. Nonlinearity in Different Masking Paradigms.

    Directory of Open Access Journals (Sweden)

    Alex S Baldwin

    Full Text Available The internal noise present in a linear system can be quantified by the equivalent noise method. By measuring the effect that applying external noise to the system's input has on its output one can estimate the variance of this internal noise. By applying this simple "linear amplifier" model to the human visual system, one can entirely explain an observer's detection performance by a combination of the internal noise variance and their efficiency relative to an ideal observer. Studies using this method rely on two crucial factors: firstly that the external noise in their stimuli behaves like the visual system's internal noise in the dimension of interest, and secondly that the assumptions underlying their model are correct (e.g. linearity. Here we explore the effects of these two factors while applying the equivalent noise method to investigate the contrast sensitivity function (CSF. We compare the results at 0.5 and 6 c/deg from the equivalent noise method against those we would expect based on pedestal masking data collected from the same observers. We find that the loss of sensitivity with increasing spatial frequency results from changes in the saturation constant of the gain control nonlinearity, and that this only masquerades as a change in internal noise under the equivalent noise method. Part of the effect we find can be attributed to the optical transfer function of the eye. The remainder can be explained by either changes in effective input gain, divisive suppression, or a combination of the two. Given these effects the efficiency of our observers approaches the ideal level. We show the importance of considering these factors in equivalent noise studies.

  4. Suspension-thermal noise in spring–antispring systems for future gravitational-wave detectors

    Science.gov (United States)

    Harms, Jan; Mow-Lowry, Conor M.

    2018-01-01

    Spring–antispring systems have been investigated in the context of low-frequency seismic isolation in high-precision optical experiments. These systems provide the possibility to tune the fundamental resonance frequency to, in principle, arbitrarily low values, and at the same time maintain a compact design. It was argued though that thermal noise in spring–antispring systems would not be as small as one may naively expect from lowering the fundamental resonance frequency. In this paper, we present calculations of suspension-thermal noise for spring–antispring systems potentially relevant in future gravitational-wave detectors, i.e. the beam-balance tiltmeter, and the Roberts linkage. We find a concise expression of the suspension-thermal noise spectrum, which assumes a form very similar to the well-known expression for a simple pendulum. For systems such as the Roberts linkage foreseen as passive seismic isolation, we find that while they can provide strong seismic isolation due to a very low fundamental resonance frequency, their thermal noise is determined by the dimension of the system and is insensitive to fine-tunings of the geometry that can strongly influence the resonance frequency. By analogy, i.e. formal similarity of the equations of motion, this is true for all horizontal mechanical isolation systems with spring–antispring dynamics. This imposes strict requirements on mechanical spring–antispring systems for seismic isolation in potential future low-frequency gravitational-wave detectors as we discuss for the four main concepts, atom-interferometric, superconducting, torsion-bars, and conventional laser interferometer, and generally suggests that thermal noise needs to be evaluated carefully for high-precision experiments implementing spring–antispring dynamics.

  5. High-resolution and super stacking of time-reversal mirrors in locating seismic sources

    KAUST Repository

    Cao, Weiping

    2011-07-08

    Time reversal mirrors can be used to backpropagate and refocus incident wavefields to their actual source location, with the subsequent benefits of imaging with high-resolution and super-stacking properties. These benefits of time reversal mirrors have been previously verified with computer simulations and laboratory experiments but not with exploration-scale seismic data. We now demonstrate the high-resolution and the super-stacking properties in locating seismic sources with field seismic data that include multiple scattering. Tests on both synthetic data and field data show that a time reversal mirror has the potential to exceed the Rayleigh resolution limit by factors of 4 or more. Results also show that a time reversal mirror has a significant resilience to strong Gaussian noise and that accurate imaging of source locations from passive seismic data can be accomplished with traces having signal-to-noise ratios as low as 0.001. Synthetic tests also demonstrate that time reversal mirrors can sometimes enhance the signal by a factor proportional to the square root of the product of the number of traces, denoted as N and the number of events in the traces. This enhancement property is denoted as super-stacking and greatly exceeds the classical signal-to-noise enhancement factor of. High-resolution and super-stacking are properties also enjoyed by seismic interferometry and reverse-time migration with the exact velocity model. © 2011 European Association of Geoscientists & Engineers.

  6. Characterization of site conditions for selected seismic stations in eastern part of Romania

    Science.gov (United States)

    Grecu, B.; Zaharia, B.; Diaconescu, M.; Bala, A.; Nastase, E.; Constantinescu, E.; Tataru, D.

    2018-02-01

    Strong motion data are essential for seismic hazard assessment. To correctly understand and use this kind of data is necessary to have a good knowledge of local site conditions. Romania has one of the largest strong motion networks in Europe with 134 real-time stations. In this work, we aim to do a comprehensive site characterization for eight of these stations located in the eastern part of Romania. We make use of a various seismological dataset and we perform ambient noise and earthquake-based investigations to estimate the background noise level, the resonance frequencies and amplification of each site. We also derive the Vs30 parameter from the surface shear-wave velocity profiles obtained through the inversion of the Rayleigh waves recorded in active seismic measurements. Our analyses indicate similar results for seven stations: high noise levels for frequencies larger than 1 Hz, well defined fundamental resonance at low frequencies (0.15-0.29 Hz), moderate amplification levels (up to 4 units) for frequencies between 0.15 and 5-7 Hz and same soil class (type C) according to the estimated Vs30 and Eurocode 8. In contrast, the eighth station for which the soil class is evaluated of type B exhibits a very good noise level for a wide range of frequencies (0.01-20 Hz), a broader fundamental resonance at high frequencies ( 8 Hz) and a flat amplification curve between 0.1 and 3-4 Hz.

  7. Crosshole seismic measurements to characterise and monitor the internal condition of embankment dams

    Energy Technology Data Exchange (ETDEWEB)

    Vazinkhoo, S. [Horizon Engineering Inc., North Vancouver, BC (Canada); Gaffran, P. [BC Hydro, Burnaby, BC (Canada)

    2002-12-01

    A sinkhole was discovered at the Bennett Dam in June 1996. The discovery was immediately followed by an investigation consisting 14 geophysical techniques, of which crosshole seismic testing was the most successful. The Bennett Dam Sinkhole Investigation Project resulted in remedial action which involved compaction grouting to repair the defects. Crosshole seismic testing has been carried out annually since 1996 to verify that the integrity of the repaired zone is being maintained. Large amounts of data have been collected since initial testing to augment other acquired data from more conventional geotechnical techniques. Both data sets have provided a unique opportunity to correlate seismic velocities to mechanical soil properties. The condition of the dam can now be readily assessed through the prediction of seismic velocities for a range of soil properties at any point in the dam. The study has resulted in a better understanding of measured velocities with respect to dam behaviour. Results confirm that seismic velocity testing is a useful, non-intrusive tool for monitoring the performance of embankment dams. 13 refs., 2 tabs., 8 figs.

  8. Passive seismic investigation of Harrat Rahat

    Energy Technology Data Exchange (ETDEWEB)

    Mellors, Robert J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-04-07

    Ambient noise correlation was applied to 18 months of continuous seismic data from 14 stations. The procedure of Bensen et al [2007] was followed with some changes to optimize signal-to-noise of the results. The 18 months of correlations (representing about 1 week of CPU time on a 12 core machine) were stacked and manually inspected to yield about 40 cross-correlations. These cross-correlations represent the Green’s function between the station pairs and will be analyzed in part two of this project to yield velocity structure.

  9. Electrochemical noise measurements under pressurized water reactor conditions

    International Nuclear Information System (INIS)

    Van Nieuwenhove, R.

    2000-01-01

    Electrochemical potential noise measurements on sensitized stainless steel pressure tubes under pressurized water reactor (PWR) conditions were performed for the first time. Very short potential spikes, believed to be associated to crack initiation events, were detected when stressing the sample above the yield strength and increased in magnitude until the sample broke. Sudden increases of plastic deformation, as induced by an increased tube pressure, resulted in slower, high-amplitude potential transients, often accompanied by a reduction in noise level

  10. Measurement of Acceptable Noise Level with Background Music.

    Science.gov (United States)

    Ahn, Hyun-Jung; Bahng, Junghwa; Lee, Jae Hee

    2015-09-01

    Acceptable noise level (ANL) is a measure of the maximum background noise level (BNL) that a person is willing to tolerate while following a target story. Although researchers have used various sources of target sound in ANL measures, a limited type of background noise has been used. Extending the previous study of Gordon-Hickey & Moore (2007), the current study determined the effect of music genre and tempo on ANLs as possible factors affecting ANLs. We also investigated the relationships between individual ANLs and the familiarity of music samples and between music ANLs and subjective preference. Forty-one participants were seperated into two groups according to their ANLs, 29 low-ANL listeners and 12 high-ANL listeners. Using Korean ANL material, the individual ANLs were measured based on the listeners' most comfortable listening level and BNL. The ANLs were measured in six conditions, with different music tempo (fast, slow) and genre (K-pop, pop, classical) in a counterbalanced order. Overall, ANLs did not differ by the tempo of background music, but music genre significantly affected individual ANLs. We observed relatively higher ANLs with K-pop music and relatively lower ANLs with classical music. This tendency was similar in both low-ANL and high-ANL groups. However, the subjective ratings of music familiarity and preference affected ANLs differently for low-ANL and high-ANL groups. In contrast to the low-ANL listeners, the ANLs of the high-ANL listeners were significantly affected by music familiarity and preference. The genre of background music affected ANLs obtained using background music. The degree of music familiarity and preference appears to be associated with individual susceptibility to background music only for listeners who are greatly annoyed by background noise (high-ANL listeners).

  11. Rift Structure in Eastern Papua New Guinea From the Joint Inversion of Receiver Functions and Seismic Noise

    Science.gov (United States)

    Abers, G. A.; Obrebski, M. J.; Jin, G.; Eilon, Z.

    2014-12-01

    The recent CDPapua seismic array in the active D'Entrecasteaux-Woodlark Rift provides insights into how continental crust accommodates large extension. Here, >100 km of extension has occurred in the last 4-6 Ma, exhuming rocks from 100 km depth. To better understand the modes of deformation of the crust, we analyze shear wave velocity (Vs) distribution for a set of temporary land and ocean bottom broadband stations. We resolve the depth of the main velocity contrasts using receiver function (RF) analysis, alleviating the intrinsic trade-off between depth and velocity intrinsic by joint inversion with dispersion constraints (10 - 100 s) from earthquake surface waves and ambient noise. A transdimensional Bayesian scheme explores the model space (Vs in each layer, number of interfaces and their respective depths), minimizing the number of layers required to fit the observations given their noise level. Preliminary results suggest that the Moho is sharp in most places, with a depth of 28-38 km and 20-27 km below the Papuan Peninsula and the highly-extended D'Entracasteaux Islands, respectively. The mid-lower crust of these regions appears to be similar and consistent with felsic compositions, 3.25≤Vs≤3.5 km/s, and may represent the Owen-Stanley Metamorphic Belt or underlying continental rocks. A fast layer (3.75≤Vs≤4 km/s) is observed below the Papuan Peninsula in the 20-30 km depth range and may indicate more mafic lower crust. In contrast, faster velocities between 10 and 20km depth are modeled below the Goodenough Basin (3.75≤Vs≤4 km/s) and the Trobriand Basin (3.5≤Vs≤3.75 km/s) where rocks of the Papuan Ultramafic Belt have been suggested, although these results partly depend upon complicated signals from ocean-bottom seismometers. Well-located seismicity shows that active fault systems generally follow the boundaries between regions of different crustal velocity structure. Overall these results confirm a continental velocity structure for the

  12. On the attenuation of the ambient seismic field

    International Nuclear Information System (INIS)

    Weemstra, C.

    2013-01-01

    Although myriad applications exploiting the ambient seismic field have been reported to date, comparatively little attention has been paid to its potential to resolve subsurface attenuation. The ambient seismic field, however, may ultimately prove itself an invaluable asset in constraining subsurface attenuation structure. Especially areas with dense seismometer coverage hold great potential. Moreover, since this coverage continues to grow, significant developments may await in the future. Subsurface structure in terms of attenuation is of great importance for many reasons. For example, knowledge of the attenuation structure may aid in predicting ground motions caused by future large earthquakes. From a scientific perspective, a great deal of new information may be extracted, potentially fostering research in related fields (e.g., geodynamics, hydrology). Both from an environmental and economic point of view, inversion of the ambient seismic wavefield for attenuation structure may in the future provide a means to image hydrocarbon reservoirs. In sufficiently diffuse wavefields, simple cross-correlation of long noise time series recorded by two receivers results in the response at one of the receivers as if there was a source at the position of the other. I present a case study that shows that thus retrieved surface waves can be used to recover attenuation beneath an array of ocean-bottom seismometers. Given the small aperture of the seismic survey, this is unprecedented. Unambiguous interpretation of recovered attenuation values is of major importance. Lack of understanding of the effect that preprocessing has on the amplitude of the noise cross-correlation prevents such unambiguous interpretation. I carefully examine the effect spectral whitening has on the noise cross-correlation. Emphasis is given to the dependence of the amplitudes on the length of the time windows employed in the cross-correlation procedure. Short time-window lengths may require an additional

  13. Measuring the background acoustic noise in the BN-600 steam generator

    International Nuclear Information System (INIS)

    Yugaj, V.S.; Zhukovets, V.N.; Ivannikov, V.I.; Vylomov, V.V.; Ryabinin, F.; Chernykh, P.G.; Flejsher, Yu.V.

    1987-01-01

    Acoustic noises in the lower chambers of evaporation and intermediate overheating moduli of the BN-600 reactor steam generator are measured. Bachground noises are registered in the whole range of frequencies studied, from 0.63 to 160 kHz. The comparison of noise spectra in evaporator and overheater has revealed a certain difference. However the general tendency is the reduction of the noise level at high frequencies > 8 kHz. The increase of the noise level at low steam content is observed only in a narrow of frequency range of 3-6 kHz

  14. Automated measurement of CT noise in patient images with a novel structure coherence feature

    International Nuclear Information System (INIS)

    Chun, Minsoo; Kim, Jong Hyo; Choi, Young Hun

    2015-01-01

    While the assessment of CT noise constitutes an important task for the optimization of scan protocols in clinical routine, the majority of noise measurements in practice still rely on manual operation, hence limiting their efficiency and reliability. This study presents an algorithm for the automated measurement of CT noise in patient images with a novel structure coherence feature. The proposed algorithm consists of a four-step procedure including subcutaneous fat tissue selection, the calculation of structure coherence feature, the determination of homogeneous ROIs, and the estimation of the average noise level. In an evaluation with 94 CT scans (16 517 images) of pediatric and adult patients along with the participation of two radiologists, ROIs were placed on a homogeneous fat region at 99.46% accuracy, and the agreement of the automated noise measurements with the radiologists’ reference noise measurements (PCC  =  0.86) was substantially higher than the within and between-rater agreements of noise measurements (PCC within   =  0.75, PCC between   =  0.70). In addition, the absolute noise level measurements matched closely the theoretical noise levels generated by a reduced-dose simulation technique. Our proposed algorithm has the potential to be used for examining the appropriateness of radiation dose and the image quality of CT protocols for research purposes as well as clinical routine. (paper)

  15. Processing Approaches for DAS-Enabled Continuous Seismic Monitoring

    Science.gov (United States)

    Dou, S.; Wood, T.; Freifeld, B. M.; Robertson, M.; McDonald, S.; Pevzner, R.; Lindsey, N.; Gelvin, A.; Saari, S.; Morales, A.; Ekblaw, I.; Wagner, A. M.; Ulrich, C.; Daley, T. M.; Ajo Franklin, J. B.

    2017-12-01

    Distributed Acoustic Sensing (DAS) is creating a "field as laboratory" capability for seismic monitoring of subsurface changes. By providing unprecedented spatial and temporal sampling at a relatively low cost, DAS enables field-scale seismic monitoring to have durations and temporal resolutions that are comparable to those of laboratory experiments. Here we report on seismic processing approaches developed during data analyses of three case studies all using DAS-enabled seismic monitoring with applications ranging from shallow permafrost to deep reservoirs: (1) 10-hour downhole monitoring of cement curing at Otway, Australia; (2) 2-month surface monitoring of controlled permafrost thaw at Fairbanks, Alaska; (3) multi-month downhole and surface monitoring of carbon sequestration at Decatur, Illinois. We emphasize the data management and processing components relevant to DAS-based seismic monitoring, which include scalable approaches to data management, pre-processing, denoising, filtering, and wavefield decomposition. DAS has dramatically increased the data volume to the extent that terabyte-per-day data loads are now typical, straining conventional approaches to data storage and processing. To achieve more efficient use of disk space and network bandwidth, we explore improved file structures and data compression schemes. Because noise floor of DAS measurements is higher than that of conventional sensors, optimal processing workflow involving advanced denoising, deconvolution (of the source signatures), and stacking approaches are being established to maximize signal content of DAS data. The resulting workflow of data management and processing could accelerate the broader adaption of DAS for continuous monitoring of critical processes.

  16. The systematic error of temperature noise correlation measurement method and self-calibration

    International Nuclear Information System (INIS)

    Tian Hong; Tong Yunxian

    1993-04-01

    The turbulent transport behavior of fluid noise and the nature of noise affect on the velocity measurement system have been studied. The systematic error of velocity measurement system is analyzed. A theoretical calibration method is proposed, which makes the velocity measurement of time-correlation as an absolute measurement method. The theoretical results are in good agreement with experiments

  17. Towards Quantification of Glacier Dynamic Ice Loss through Passive Seismic Monitoring

    Science.gov (United States)

    Köhler, A.; Nuth, C.; Weidle, C.; Schweitzer, J.; Kohler, J.; Buscaino, G.

    2015-12-01

    Global glaciers and ice caps loose mass through calving, while existing models are currently not equipped to realistically predict dynamic ice loss. This is mainly because long-term continuous calving records, that would help to better understand fine scale processes and key climatic-dynamic feedbacks between calving, climate, terminus evolution and marine conditions, do not exist. Combined passive seismic/acoustic strategies are the only technique able to capture rapid calving events continuously, independent of daylight or meteorological conditions. We have produced such a continuous calving record for Kronebreen, a tidewater glacier in Svalbard, using data from permanent seismic stations between 2001 and 2014. However, currently no method has been established in cryo-seismology to quantify the calving ice loss directly from seismic data. Independent calibration data is required to derive 1) a realistic estimation of the dynamic ice loss unobserved due to seismic noise and 2) a robust scaling of seismic calving signals to ice volumes. Here, we analyze the seismic calving record at Kronebreen and independent calving data in a first attempt to quantify ice loss directly from seismic records. We make use of a) calving flux data with weekly to monthly resolution obtained from satellite remote sensing and GPS data between 2007 and 2013, and b) direct, visual calving observations in two weeks in 2009 and 2010. Furthermore, the magnitude-scaling property of seismic calving events is analyzed. We derive and discuss an empirical relation between seismic calving events and calving flux which for the first time allows to estimate a time series of calving volumes more than one decade back in time. Improving our model requires to incorporate more precise, high-resolution calibration data. A new field campaign will combine innovative, multi-disciplinary monitoring techniques to measure calving ice volumes and dynamic ice-ocean interactions simultaneously with terrestrial laser

  18. A procedure for noise uncoupling in laser interferometry

    CERN Document Server

    Barone, F; Rosa, R D; Eleuteri, A; Milano, L; Qipiani, K

    2002-01-01

    A numerical procedure for noise recognition and uncoupling is described. The procedure is applied to a Michelson interferometer and is effective in seismic and acoustic noise uncoupling from the output signal of the interferometer. Due to the low data flow coming from the instrumentation this uncoupling can be performed in real time and it is useful as a data quality procedure for interferometer data output.

  19. The seismic monitoring network of Mt. Vesuvius

    Directory of Open Access Journals (Sweden)

    Massimo Orazi

    2013-11-01

    Full Text Available Mt. Vesuvius (southern Italy is one of the most hazardous volcanoes in the world. Its activity is currently characterized by moderate seismicity, with hypocenters located beneath the crater zone with depth rarely exceeding 5 km and magnitudes generally less than 3. The current configuration of the seismic monitoring network of Mt. Vesuvius consists of 18 seismic stations and 7 infrasound microphones. During the period 2006-2010 a seismic array with 48 channels was also operative. The station distribution provides appropriate coverage of the area around the volcanic edifice. The current development of the network and its geometry, under conditions of low seismic noise, allows locating seismic events with M<1. Remote instruments continuously transmit data to the main acquisition center in Naples. Data transmission is realized using different technological solutions based on UHF, Wi-Fi radio links, and TCP/IP client-server applications. Data are collected in the monitoring center of the Osservatorio Vesuviano (Italian National Institute of Geophysics and Volcanology, Naples section, which is equipped with systems for displaying and analyzing signals, using both real-time automatic and manual procedures. 24-hour surveillance allows to immediately communicate any significant anomaly to the Civil Protection authorities.

  20. Innovations in seismic tomography, their applications and induced seismic events in carbon sequestration

    Science.gov (United States)

    Li, Peng

    This dissertation presents two innovations in seismic tomography and a new discovery of induced seismic events associated with CO2 injection at an Enhanced Oil Recovery (EOR) site. The following are brief introductions of these three works. The first innovated work is adaptive ambient seismic noise tomography (AANT). Traditional ambient noise tomography methods using regular grid nodes are often ill posed because the inversion grids do not always represent the distribution of ray paths. Large grid spacing is usually used to reduce the number of inversion parameters, which may not be able to solve for small-scale velocity structure. We present a new adaptive tomography method with irregular grids that provides a few advantages over the traditional methods. First, irregular grids with different sizes and shapes can fit the ray distribution better and the traditionally ill-posed problem can become more stable owing to the different parameterizations. Second, the data in the area with dense ray sampling will be sufficiently utilized so that the model resolution can be greatly improved. Both synthetic and real data are used to test the newly developed tomography algorithm. In synthetic data tests, we compare the resolution and stability of the traditional and adaptive methods. The results show that adaptive tomography is more stable and performs better in improving the resolution in the area with dense ray sampling. For real data, we extract the ambient noise signals of the seismic data near the Garlock Fault region, obtained from the Southern California Earthquake Data Center. The resulting group velocity of Rayleigh waves is well correlated with the geological structures. High velocity anomalies are shown in the cold southern Sierra Nevada, the Tehachapi Mountains and the Western San Gabriel Mountains. The second innovated work is local earthquake tomography with full topography (LETFT). In this work, we develop a new three-dimensional local earthquake tomography

  1. Multiple attenuation to reflection seismic data using Radon filter and Wave Equation Multiple Rejection (WEMR) method

    Energy Technology Data Exchange (ETDEWEB)

    Erlangga, Mokhammad Puput [Geophysical Engineering, Institut Teknologi Bandung, Ganesha Street no.10 Basic Science B Buliding fl.2-3 Bandung, 40132, West Java Indonesia puput.erlangga@gmail.com (Indonesia)

    2015-04-16

    Separation between signal and noise, incoherent or coherent, is important in seismic data processing. Although we have processed the seismic data, the coherent noise is still mixing with the primary signal. Multiple reflections are a kind of coherent noise. In this research, we processed seismic data to attenuate multiple reflections in the both synthetic and real seismic data of Mentawai. There are several methods to attenuate multiple reflection, one of them is Radon filter method that discriminates between primary reflection and multiple reflection in the τ-p domain based on move out difference between primary reflection and multiple reflection. However, in case where the move out difference is too small, the Radon filter method is not enough to attenuate the multiple reflections. The Radon filter also produces the artifacts on the gathers data. Except the Radon filter method, we also use the Wave Equation Multiple Elimination (WEMR) method to attenuate the long period multiple reflection. The WEMR method can attenuate the long period multiple reflection based on wave equation inversion. Refer to the inversion of wave equation and the magnitude of the seismic wave amplitude that observed on the free surface, we get the water bottom reflectivity which is used to eliminate the multiple reflections. The WEMR method does not depend on the move out difference to attenuate the long period multiple reflection. Therefore, the WEMR method can be applied to the seismic data which has small move out difference as the Mentawai seismic data. The small move out difference on the Mentawai seismic data is caused by the restrictiveness of far offset, which is only 705 meter. We compared the real free multiple stacking data after processing with Radon filter and WEMR process. The conclusion is the WEMR method can more attenuate the long period multiple reflection than the Radon filter method on the real (Mentawai) seismic data.

  2. Vibration Noise Modeling for Measurement While Drilling System Based on FOGs

    Directory of Open Access Journals (Sweden)

    Chunxi Zhang

    2017-10-01

    Full Text Available Aiming to improve survey accuracy of Measurement While Drilling (MWD based on Fiber Optic Gyroscopes (FOGs in the long period, the external aiding sources are fused into the inertial navigation by the Kalman filter (KF method. The KF method needs to model the inertial sensors’ noise as the system noise model. The system noise is modeled as white Gaussian noise conventionally. However, because of the vibration while drilling, the noise in gyros isn’t white Gaussian noise any more. Moreover, an incorrect noise model will degrade the accuracy of KF. This paper developed a new approach for noise modeling on the basis of dynamic Allan variance (DAVAR. In contrast to conventional white noise models, the new noise model contains both the white noise and the color noise. With this new noise model, the KF for the MWD was designed. Finally, two vibration experiments have been performed. Experimental results showed that the proposed vibration noise modeling approach significantly improved the estimated accuracies of the inertial sensor drifts. Compared the navigation results based on different noise model, with the DAVAR noise model, the position error and the toolface angle error are reduced more than 90%. The velocity error is reduced more than 65%. The azimuth error is reduced more than 50%.

  3. Vibration Noise Modeling for Measurement While Drilling System Based on FOGs.

    Science.gov (United States)

    Zhang, Chunxi; Wang, Lu; Gao, Shuang; Lin, Tie; Li, Xianmu

    2017-10-17

    Aiming to improve survey accuracy of Measurement While Drilling (MWD) based on Fiber Optic Gyroscopes (FOGs) in the long period, the external aiding sources are fused into the inertial navigation by the Kalman filter (KF) method. The KF method needs to model the inertial sensors' noise as the system noise model. The system noise is modeled as white Gaussian noise conventionally. However, because of the vibration while drilling, the noise in gyros isn't white Gaussian noise any more. Moreover, an incorrect noise model will degrade the accuracy of KF. This paper developed a new approach for noise modeling on the basis of dynamic Allan variance (DAVAR). In contrast to conventional white noise models, the new noise model contains both the white noise and the color noise. With this new noise model, the KF for the MWD was designed. Finally, two vibration experiments have been performed. Experimental results showed that the proposed vibration noise modeling approach significantly improved the estimated accuracies of the inertial sensor drifts. Compared the navigation results based on different noise model, with the DAVAR noise model, the position error and the toolface angle error are reduced more than 90%. The velocity error is reduced more than 65%. The azimuth error is reduced more than 50%.

  4. SeismoDome: Sonic and visual representation of earthquakes and seismic waves in the planetarium

    Science.gov (United States)

    Holtzman, B. K.; Candler, J.; Repetto, D.; Pratt, M. J.; Paté, A.; Turk, M.; Gualtieri, L.; Peter, D. B.; Trakinski, V.; Ebel, D. S. S.; Gossmann, J.; Lem, N.

    2017-12-01

    Since 2014, we have produced four "Seismodome" public programs in the Hayden Planetarium at the American Museum of Natural History in New York City. To teach the general public about the dynamics of the Earth, we use a range of seismic data (seismicity catalogs, surface and body wave fields, ambient noise, free oscillations) to generate movies and sounds conveying aspects of the physics of earthquakes and seismic waves. The narrative aims to stretch people's sense of time and scale, starting with 2 billion years of convection, then zooming in seismicity over days to twenty years at different length scales, to hours of global seismic wave propagation, all compressed to minute long movies. To optimize the experience in the planetarium, the 180-degree fisheye screen corresponds directly to the surface of the Earth, such that the audience is inside the planet. The program consists of three main elements (1) Using sonified and animated seismicity catalogs, comparison of several years of earthquakes on different plate boundaries conveys the dramatic differences in their dynamics and the nature of great and "normal" earthquakes. (2) Animations of USArray data (based on "Ground Motion Visualizations" methods from IRIS but in 3D, with added sound) convey the basic observations of seismic wave fields, with which we raise questions about what they tell us about earthquake physics and the Earth's interior structure. (3) Movies of spectral element simulations of global seismic wave fields synchronized with sonified natural data push these questions further, especially when viewed from the interior of the planet. Other elements include (4) sounds of the global ambient noise field coupled to movies of mean ocean wave height (related to the noise source) and (5) three months of free oscillations / normal modes ringing after the Tohoku earthquake. We use and develop a wide range of sonification and animation methods, written mostly in python. Flat-screen versions of these movies

  5. Existing reflection seismic data re-processing

    International Nuclear Information System (INIS)

    Higashinaka, Motonori; Sano, Yukiko; Kozawa, Takeshi

    2005-08-01

    This document is to report the results of existing seismic data re-processing around Horonobe town, Hokkaido, Japan, which is a part of the Horonobe Underground Research Project. The main purpose of this re-processing is to recognize the subsurface structure of Omagari Fault and fold system around Omagari Fault. The seismic lines for re-processing are TYHR-A3 line and SHRB-2 line, which JAPEX surveyed in 1975. Applying weathering static correction using refraction analysis and noise suppression procedure, we have much enhanced seismic profile. Following information was obtained from seismic re-processing results. TYHR-A3 line: There are strong reflections, dipping to the west. These reflections are corresponding western limb of anticline to the west side of Omagari Fault. SHRB-2 line: There are strong reflections, dipping to the west, at CDP 60-140, while there are reflections, dipping to the east, to the east side of CDP 140. These reflections correspond to the western limb and the eastern limb of the anticline, which is parallel to Omagari FAULT. This seismic re-processing provides some useful information to know the geological structure around Omagari Fault. (author)

  6. Measurement of quantum noise in a single-electron transistor near the quantum limit

    Science.gov (United States)

    Xue, W. W.; Ji, Z.; Pan, Feng; Stettenheim, Joel; Blencowe, M. P.; Rimberg, A. J.

    2009-09-01

    Quantum measurement has challenged physicists for almost a century. Classically, there is no lower bound on the noise a measurement may add. Quantum mechanically, however, measuring a system necessarily perturbs it. When applied to electrical amplifiers, this means that improved sensitivity requires increased backaction that itself contributes noise. The result is a strict quantum limit on added amplifier noise. To approach this limit, a quantum-limited amplifier must possess an ideal balance between sensitivity and backaction; furthermore, its noise must dominate that of subsequent classical amplifiers. Here, we report the first complete and quantitative measurement of the quantum noise of a superconducting single-electron transistor (S-SET) near a double Cooper-pair resonance predicted to have the right combination of sensitivity and backaction. A simultaneous measurement of our S-SET's charge sensitivity indicates that it operates within a factor of 3.6 of the quantum limit, a fourfold improvement over the nearest comparable results.

  7. ARMA modelling of neutron stochastic processes with large measurement noise

    International Nuclear Information System (INIS)

    Zavaljevski, N.; Kostic, Lj.; Pesic, M.

    1994-01-01

    An autoregressive moving average (ARMA) model of the neutron fluctuations with large measurement noise is derived from langevin stochastic equations and validated using time series data obtained during prompt neutron decay constant measurements at the zero power reactor RB in Vinca. Model parameters are estimated using the maximum likelihood (ML) off-line algorithm and an adaptive pole estimation algorithm based on the recursive prediction error method (RPE). The results show that subcriticality can be determined from real data with high measurement noise using much shorter statistical sample than in standard methods. (author)

  8. Residual phase noise measurements of the input section in a receiver

    International Nuclear Information System (INIS)

    Mavric, Uros; Chase, Brian; Fermilab

    2007-01-01

    If not designed properly, the input section of an analog down-converter can introduce phase noise that can prevail over other noise sources in the system. In the paper we present residual phase noise measurements of a simplified input section of a classical receiver that is composed of various commercially available mixers and driven by an LO amplifier

  9. Magnitude, moment, and measurement: The seismic mechanism controversy and its resolution.

    Science.gov (United States)

    Miyake, Teru

    This paper examines the history of two related problems concerning earthquakes, and the way in which a theoretical advance was involved in their resolution. The first problem is the development of a physical, as opposed to empirical, scale for measuring the size of earthquakes. The second problem is that of understanding what happens at the source of an earthquake. There was a controversy about what the proper model for the seismic source mechanism is, which was finally resolved through advances in the theory of elastic dislocations. These two problems are linked, because the development of a physically-based magnitude scale requires an understanding of what goes on at the seismic source. I will show how the theoretical advances allowed seismologists to re-frame the questions they were trying to answer, so that the data they gathered could be brought to bear on the problem of seismic sources in new ways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Flow measurements using noise signals of axially displaced thermocouples

    Energy Technology Data Exchange (ETDEWEB)

    Kozma, R.; Hoogenboom, J.E. (Interuniversitair Reactor Inst., Delft (Netherlands))

    1990-01-01

    Determination of the flow rate of the coolant in the cooling channels of nuclear reactors is an important aspect of core monitoring. It is usually impossible to measure the flow by flowmeters in the individual channels due to the lack of space and safety reasons. An alternative method is based on the analysis of noise signals of the available in-core detectors. In such a noise method, a transit time which characterises the propagation of thermohydraulic fluctuations (density or temperature fluctuations) in the coolant is determined from the correlation between the noise signals of axially displaced detectors. In this paper, the results of flow measurements using axially displaced thermocouples in the channel wall will be presented. The experiments have been performed in a simulated MRT-type fuel assembly located in the research reactor HOR of the Interfaculty Reactor Institute, Delft. It was found that the velocities obtained via temperature noise correlation methods are significantly larger than the area-averaged velocity in the single-phase coolant flow. Model calculations show that the observed phenomenon can be explained by effects due to the radial velocity distribution in the channel. (author).

  11. Measurement of tonal-noise characteristics and periodic flow structure around NACA0018 airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, T.; Fujisawa, N. [Niigata University, Department Mechanical Engineering, Niigata (Japan); Lee, S. [Inha University, Department Mechanical Engineering, Incheon (Korea)

    2006-03-15

    The characteristics of tonal noise and the variations of flow structure around NACA0018 airfoil in a uniform flow are studied by means of simultaneous measurement of noise and velocity field by particle-image velocimetry to understand the generation mechanism of tonal noise. Measurements are made on the noise characteristics, the phase-averaged velocity field with respect to the noise signal, and the cross-correlation contour of velocity fluctuations and noise signal. These experimental results indicate that the tonal noise is generated from the periodic vortex structure on the pressure surface of the airfoil near the trailing edge of the airfoil. It is found that the vortex structure is highly correlated with the noise signal, which indicates the presence of noise-source distribution on the pressure surface. The vorticity distribution on the pressure surface breaks down near the trailing edge of the airfoil and forms a staggered vortex street in the wake of the airfoil. (orig.)

  12. Joseph F. Keithley Award For Advances in Measurement Science Talk: Precision Noise Measurements at Microwave and Optical Frequencies

    Science.gov (United States)

    Ivanov, Eugene

    2010-03-01

    The quest to detect Gravitational Waves resulted in a number of important developments in the fields of oscillator frequency stabilization and precision noise measurements. This was due to the realization of similarities between the principles of high sensitivity measurements of weak mechanical forces and phase/amplitude fluctuations of microwave signals. In both cases interferometric carrier suppression and low-noise amplification of the residual noise sidebands were the main factors behind significant improvements in the resolution of spectral measurements. In particular, microwave frequency discriminators with almost thermal noise limited sensitivity were constructed leading to microwave oscillators with more than 25dB lower phase noise than the previous state-of-the-art. High power solid-state microwave amplifiers offered further opportunity of oscillator phase noise reduction due to the increased energy stored in the high-Q resonator of the frequency discriminator. High power microwave oscillators with the phase noise spectral density close to -160dBc/Hz at 1kHz Fourier frequency have been recently demonstrated. The principles of interferometric signal processing have been applied to the study of noise phenomena in microwave components which were considered to be ``noise free''. This resulted in the first experimental evidence of phase fluctuations in microwave circulators. More efficient use of signal power enabled construction of the ``power recycled'' interferometers with spectral resolution of -200dBc/Hz at 1kHz Fourier frequency. This has been lately superseded by an order of magnitude with a waveguide interferometer due to its higher power recycling factor. A number of opto-electronic measurement systems were developed to characterize the fidelity of frequency transfer from the optical to the microwave domain. This included a new type of a phase detector capable of measuring phase fluctuations of the weak microwave signals extracted from the demodulated

  13. Measuring proton beam thermal noises on the NAP-M storage ring

    International Nuclear Information System (INIS)

    Dement'ev, E.N.; Dikanskij, N.S.; Medvedko, A.S.; Parkhomchuk, V.V.; Pestrikov, D.V.

    1980-01-01

    The data on experimental investigation of thermal noises of an asimuthally homogeneous proton beam on the NAP-M storage ring are given. The noise spectra are measured at the 5th and 8th harmonics of the ciculation frequency using pick-up electrodes. The dependencies of the noise power on the proton current for noncooled and cooled beams are presented. It is shown that as a result of electron cooling the noise power decreases by two orders and in the 0.5-10 μA current range the noise power of the cooled beam does not depend on the proton current. The noise power of the noncooled beam linearly increases with the proton current. It is also shown that with the modulation growth the noise power increases. The conclusions are made that while analyzing noises of the continuous beam in the storage ring the changes of the noise spectra due to particle interaction in the beam should be taken into account

  14. Expert group study on recommended practices for wind turbine testing and evaluation. 10. Measurement of noise immission from wind turbines at noise receptor locations

    International Nuclear Information System (INIS)

    Ljunggren, S.

    1997-01-01

    The purpose of this guide is to provide a set of techniques and methods for the measurement and description of wind turbine noise immission, that is, wind turbine noise at receptor locations. These techniques and methods have been prepared so that they can be used by: manufacturers; developers; operators; planning authorities; research and development engineers, for the purpose of verification of compliance with noise immission limits and of noise propagation models. The measurement of noise immission from wind turbines is a complex acoustic task. This guideline cannot cover all possible problems that may be encountered on, for instance: determination of wind speed; measurements in cases of low signal-to-noise ratio; allowance for reflections from buildings. Thus, it is strongly recommended that the measurements described in this guide are always carried out by experienced acousticians. (au)

  15. Installation of a very broad band borehole seismic station in Ferrara (Emilia)

    OpenAIRE

    Pesaresi, Damiano; Dall'Olio, Lorella; Rovelli, Antonio; Romanelli, Marco; Barnaba, Carla; Abu Zeid, Nasser

    2012-01-01

    The Istituto Nazionale di Geofisica e Vulcanologia (INGV) is the Italian agency devoted to monitor in real time the seismicity on the Italian territory. The seismicity in Italy is of course variable in time and space, being also very much dependant on local noise conditions. Specifically, monitoring seismicity in an alluvial basin like the Po one is a challenge, due to consistent site effects induced by soft alluvial deposits and bad coupling with the deep bedrock (Steidl et al., 1996). This...

  16. Boundary layer measurements of the NACA0015 and implications for noise modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolio, F.

    2011-01-15

    A NACA0015 airfoil section instrumented with an array of high frequency microphones flush-mounted beneath its surface was measured in the wind tunnel at LM Wind Power in Lunderskov. Various inflow speeds and angles of attack were investigated. In addition, a hot-wire device system was used to measure the velocity profiles and turbulence characteristics in the boundary layer near the trailing edge of the airfoil. The measured boundary layer data are presented in this report and compared with CFD results. A relative good agreement is observed, though a few discrepancies also appear. Comparisons of surface pressure fluctuations spectra are used to analyze and improve trailing edge noise modeling by the so-called TNO model. Finally, a pair of hot-wires were placed on each side of the trailing edge in order to measure the radiated trailing edge noise. However, there is no strong evidence that such noise could be measured in the higher frequency range. Nevertheless, low-frequency noise could be measured and related to the presence of the airfoil but its origin is unclear. (Author)

  17. Variations and healing of the seismic velocity (Beno Gutenberg Medal Lecture)

    Science.gov (United States)

    Snieder, Roel

    2016-04-01

    Scattering of waves leads to a complexity of waveforms that is often seen by seismologists as a nuisance. And indeed, the complicated wave paths of multiple scattered waves makes it difficult to use these waves for imaging. Yet, the long wave paths of multiple scattered waves makes these waves an ideal tool for measuring minute velocity changes. This has led to the development of coda wave interferometry as a tool for measuring small velocity changes in the laboratory and with field data. Combined with the use of noise cross correlations - seismic interferometry - this method is even more useful because it follows for a quasi-continuous measurement of velocity changes. I will show examples of detecting velocity changes in the laboratory, the earth's near surface, and in engineered structures. Perhaps surprisingly, the seismic velocity is not constant at all, and varies with the seasons, temperature, precipitation, as the weather does. In addition, the seismic velocity usually drops as a result of deformation. Most of these changes likely occur in the near surface or the region of deformation, and a drawback of using strongly scattered waves is that it is difficult to localize the spatial area of the velocity change. I will present laboratory measurements that show that a certain spatial localization of the velocity change can be achieved. One of the intriguing observations is that after deformation the seismic velocity recovers logarithmically with time. The reason for this particular time-dependence is the presence of healing mechanisms that operate at different time scales. Since this is feature of many physical systems, the logarithmic healing is a widespread behavior and is akin in its generality to the Gutenberg-Richter law.

  18. Noise Measurements of High Aspect Ratio Distributed Exhaust Systems

    Science.gov (United States)

    Bridges, James E.

    2015-01-01

    This paper covers far-field acoustic measurements of a family of rectangular nozzles with aspect ratio 8, in the high subsonic flow regime. Several variations of nozzle geometry, commonly found in embedded exhaust systems, are explored, including bevels, slants, single broad chevrons and notches, and internal septae. Far-field acoustic results, presented previously for the simple rectangular nozzle, showed that increasing aspect ratio increases the high frequency noise, especially directed in the plane containing the minor axis of the nozzle. Detailed changes to the nozzle geometry generally made little difference in the noise, and the differences were greatest at low speed. Having an extended lip on one broad side (bevel) did produce up to 3 decibels more noise in all directions, while extending the lip on the narrow side (slant) produced up to 2 decibels more noise, primarily on the side with the extension. Adding a single, non-intrusive chevron, made no significant change to the noise, while inverting the chevron (notch) produced up to 2decibels increase in the noise. Having internal walls (septae) within the nozzle, such as would be required for structural support or when multiple fan ducts are aggregated, reduced the noise of the rectangular jet, but could produce a highly directional shedding tone from the septae trailing edges. Finally, a nozzle with both septae and a beveled nozzle, representative of the exhaust system envisioned for a distributed electric propulsion aircraft with a common rectangular duct, produced almost as much noise as the beveled nozzle, with the septae not contributing much reduction in noise.

  19. Application of a Beamforming Technique to the Measurement of Airfoil Leading Edge Noise

    Directory of Open Access Journals (Sweden)

    Thomas Geyer

    2012-01-01

    Full Text Available The present paper describes the use of microphone array technology and beamforming algorithms for the measurement and analysis of noise generated by the interaction of a turbulent flow with the leading edge of an airfoil. Experiments were performed using a setup in an aeroacoustic wind tunnel, where the turbulent inflow is provided by different grids. In order to exactly localize the aeroacoustic noise sources and, moreover, to separate airfoil leading edge noise from grid-generated noise, the selected deconvolution beamforming algorithm is extended to be used on a fully three-dimensional source region. The result of this extended beamforming are three-dimensional mappings of noise source locations. Besides acoustic measurements, the investigation of airfoil leading edge noise requires the measurement of parameters describing the incident turbulence, such as the intensity and a characteristic length scale or time scale. The method used for the determination of these parameters in the present study is explained in detail. To demonstrate the applicability of the extended beamforming algorithm and the experimental setup as a whole, the noise generated at the leading edge of airfoils made of porous materials was measured and compared to that generated at the leading edge of a common nonporous airfoil.

  20. Retrieval of reflections from ambient noise using illumination diagnosis

    Science.gov (United States)

    Vidal, C. Almagro; Draganov, D.; van der Neut, J.; Drijkoningen, G.; Wapenaar, K.

    2014-09-01

    Seismic interferometry (SI) enables the retrieval of virtual sources at the location of receivers. In the case of passive SI, no active sources are used for the retrieval of the reflection response of the subsurface, but ambient-noise recordings only. The resulting retrieved response is determined by the illumination characteristics of the recorded ambient noise. Characteristics like geometrical distribution and signature of the noise sources, together with the complexity of the medium and the length of the noise records, determine the quality of the retrieved virtual-shot events. To retrieve body wave reflections, one needs to correlate body-wave noise. A source of such noise might be regional seismicity. In regions with notable human presence, the dominant noise sources are generally located at or close to the surface. In the latter case, the noise will be dominated by surface waves and consequently also the retrieved virtual common-source panels will contain dominant retrieved surface waves, drowning out possible retrieved reflections. In order to retrieve reflection events, suppression of the surface waves becomes the most important pre-processing goal. Because of the reasons mentioned above, we propose a fast method to evaluate the illumination characteristics of ambient noise using the correlation results from ambient-noise records. The method is based on the analysis of the so-called source function of the retrieved virtual-shot panel, and evaluates the apparent slowness of arrivals in the correlation results that pass through the position of the virtual source and at zero time. The results of the diagnosis are used to suppress the retrieval of surface waves and therefore to improve the quality of the retrieved reflection response. We explain the approach using modelled data from transient and continuous noise sources and an example from a passive field data set recorded at Annerveen, Northern Netherlands.

  1. Phase Noise and Intensity Noise of the Pulse Train Generated from Mode-locked Lasers in the Demodulation Measurement

    OpenAIRE

    Wu, Kan; Shum, Ping

    2010-01-01

    The phase noise and intensity noise of a pulse train are theoretically analyzed in the demodulation measurement. The effect of pulse asymmetry is discussed for the first time using Fourier series. Experimentally, photodetectors with different bandwidth and incident power levels are compared to achieve minimum pulse distortion.

  2. Direction dependent Love and Rayleigh wave noise characteristics using multiple arrays across Europe

    Science.gov (United States)

    Juretzek, Carina; Perleth, Magdalena; Hadziioannou, Celine

    2016-04-01

    Seismic noise has become an important signal source for tomography and monitoring purposes. Better understanding of the noise field characteristics is crucial to further improve noise applications. Our knowledge about common and different origins of Love and Rayleigh waves in the microseism band is still limited. This applies in particular for constraints on source locations and source mechanisms of Love waves. Here, 3-component beamforming is used to distinguish between the different polarized wave types in the primary and secondary microseism noise field recorded at several arrays across Europe. We compare characteristics of Love and Rayleigh wave noise, such as source directions and frequency content. Further, Love to Rayleigh wave ratios are measured and a dependence on direction is found, especially in the primary microseism band. Estimates of the kinetic energy density ratios propose a dominance of coherent Love waves in the primary, but not in the secondary microseism band. The seasonality of the noise field characteristics is examined by using a full year of data in 2013 and is found to be stable.

  3. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume V S-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (V), all S-wave measurements are presented that were performed in Borehole C4996 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

  4. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume VI S-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (VI), all S-wave measurements are presented that were performed in Borehole C4997 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

  5. The results of measurements of induced seismic vibration at the Zemplínska Široká and Malý Horeš localities

    Directory of Open Access Journals (Sweden)

    Ladislav Tometz

    2007-04-01

    Full Text Available Secondary invocation seismic waves, which are presently produced by the seismic survey of the upper part of earth crust, can have anfavourable impact on buildings and other engineering works. Therefore, their measurement and monitoring is required. In 2006, Nafta a. s. company conducted underground an a seismic survey in the south part of East Slovak Basin. During this survey, measurements of seismic effects on engineering objects were carried out, whose results suggest a possible negative impact of invocation seismic vibration. From the experimentally measured data was defined an absorption law of seismic waves, which was used to determine safe distances of a sourceof undulation from a receptor. The presented paper suggests a methodologics measurements and a difference in the velocity of wavepropagation in various geological environs.

  6. Statistical analysis of laser-interferometric detector Dylkin-1 data and data on seismic activity

    International Nuclear Information System (INIS)

    Kirillov, R S; Bochkarev, V V; Dulkyn, Academy of Sciences of the Republic of Tatarstan (Russian Federation))" data-affiliation=" (Scientific Center of Gravitational-Wave Research Dulkyn, Academy of Sciences of the Republic of Tatarstan (Russian Federation))" >Skochilov, A F

    2014-01-01

    This work presents statistical analysis of data collected from laser interferometric detector ''Dylkin-1'' and nearby seismic stations. The final goal of Dylkin project consists in creating detector of theoretically predicted gravitational waves produced by binary relativistic astrophysical objects. Currently, works are underway to improve sensitivity of detector by 2-3 orders. The goals of this research were to test isolation of detector from noise caused by seismic waves and to find out whether it is sensitive to variations in the gradient of gravitational potential (acceleration of free fall) caused by free Earth oscillations. Noise isolation has been tested by comparing energy of signals during significant seismic events. Sensitivity to variations in acceleration of free fall has been tested by means of cross-spectral analysis

  7. Automated system for noise-measurements on low-ohmic samples and magnetic sensors

    NARCIS (Netherlands)

    Jonker, R.J.W.; Briaire, J.; Vandamme, L.K.J.

    1999-01-01

    An automated system for electronic noise measurements on metal films is presented. This new system, controlled by a personal computer which utilizes National Instruments' LabVIEW software, is designed to measure low frequency noise as a function of an externally imposed magnetic field and as a

  8. A transimpedance amplifier for excess noise measurements of high junction capacitance avalanche photodiodes

    International Nuclear Information System (INIS)

    Green, James E; David, John P R; Tozer, Richard C

    2012-01-01

    This paper reports a novel and versatile system for measuring excess noise and multiplication in avalanche photodiodes (APDs), using a bipolar junction transistor based transimpedance amplifier front-end and based on phase-sensitive detection, which permits accurate measurement in the presence of a high dark current. The system can reliably measure the excess noise factor of devices with capacitance up to 5 nF. This system has been used to measure thin, large area Si pin APDs and the resulting data are in good agreement with measurements of the same devices obtained from a different noise measurement system which will be reported separately. (paper)

  9. Measurement of the Low Frequency Noise of MOSFETs under Large Signal RF Excitation

    NARCIS (Netherlands)

    van der Wel, A.P.; Klumperink, Eric A.M.; Nauta, Bram

    2002-01-01

    A measurement technique [1] is presented that allows measurement of MOSFET low frequency (LF) noise under large signal RF (Radio Frequency) excitation. Measurements indicate that MOSFETS exhibit a reduction in LF noise when they are cycled from inversion to accummulation and that this reduction does

  10. Seismic Attenuation Tomography of the Rupture Zone of the 2010 Maule, Chile, Earthquake

    Science.gov (United States)

    Torpey, M. E.; Russo, R. M.; Panning, M. P.

    2014-12-01

    We used measurements of differential S to P seismic attenuation in the rupture zone of the 2010 Mw 8.8 Maule, Chile earthquake (33°S-38°S) to characterize the seismic attenuation structure of the South American crust and upper mantle wedge. We used data obtained from the IRIS CHAMP rapid-response temporary seismic network, filtered between 0.7-20 Hz. For events with large signal to noise ratios, we visually identified the P and S arrivals on the seismograms and used an evolving time window to determine 400 individual Qs and t* values and their uncertainties using a spectral ratio method. Using a phase pair method allows us to neglect the source-time function and instrument response of each P-S phase pair. Assuming a constant Qp/Qs ratio for a given P-S phase pair, we evaluated the 400 spectral ratios and discarded portions of the evolving time window that incorporate multipathed phases. We recalculated the Qs and standard deviation of the retained window and excluded measurements with standard deviations larger than half of the Qs value. We also excluded measurements that span frequency windows longer than 10 Hz as they contain noise that contaminates Qs measurements. We examined ~200 local events yielding a total of 1,076 path-integrated Q­s measurements. Qs values are low (100-400) for the majority of ray paths evaluated, however we observe a spatial distribution of low path-integrated Qs values (100-300) in the northeastern portion of the rupture zone and higher values (300-600) in the southwest. We divided the rupture zone into cubes and implemented a bounded linear inequality least squares inversion (0

  11. Experimental Test of Entropic Noise-Disturbance Uncertainty Relations for Spin-1/2 Measurements.

    Science.gov (United States)

    Sulyok, Georg; Sponar, Stephan; Demirel, Bülent; Buscemi, Francesco; Hall, Michael J W; Ozawa, Masanao; Hasegawa, Yuji

    2015-07-17

    Information-theoretic definitions for noise and disturbance in quantum measurements were given in [Phys. Rev. Lett. 112, 050401 (2014)] and a state-independent noise-disturbance uncertainty relation was obtained. Here, we derive a tight noise-disturbance uncertainty relation for complementary qubit observables and carry out an experimental test. Successive projective measurements on the neutron's spin-1/2 system, together with a correction procedure which reduces the disturbance, are performed. Our experimental results saturate the tight noise-disturbance uncertainty relation for qubits when an optimal correction procedure is applied.

  12. Noise Measurement and Frequency Analysis of Commercially Available Noisy Toys

    Directory of Open Access Journals (Sweden)

    Shohreh Jalaie

    2005-06-01

    Full Text Available Objective: Noise measurement and frequency analysis of commercially available noisy toys were the main purposes of the study. Materials and Methods: 181 noisy toys commonly found in toy stores in different zones of Tehran were selected and categorized into 10 groups. Noise measurement were done at 2, 25, and 50 cm from toys in dBA. The noisiest toy of each group was frequency analyzed in octave bands. Results: The highest and the lowest intensity levels belonged to the gun (mean=112 dBA and range of 100-127 dBA and to the rattle-box (mean=84 dBA and range of 74-95 dBA, respectively. Noise intensity levels significantly decreased with increasing distance except for two toys. Noise frequency analysis indicated energy in effective hearing frequencies. Most of the toys energies were in the middle and high frequency region. Conclusion: As intensity level of the toys is considerable, mostly more than 90 dBA, and also their energy exist in the middle and high frequency region, toys should be considered as a cause of the hearing impairment.

  13. A Baseband Ultra-Low Noise SiGe:C BiCMOS 0.25 µm Amplifier And Its Application For An On-Chip Phase-Noise Measurement Circuit

    OpenAIRE

    Godet , Sylvain; Tournier , Éric; Llopis , Olivier; Cathelin , Andreia; Juyon , Julien

    2009-01-01

    4 pages; International audience; The design and realization of an ultra-low noise operational amplifier is presented. Its applications are integrated low-frequency noise measurements in electronic devices and on-chip phase-noise measurement circuit. This paper discusses the SiGe:C BiCMOS 0.25 µm design improvements used for low noise applications. The proposed three-stage operational amplifier uses parallel bipolar transistor connection as input differential pair for low noise behavior. This ...

  14. Phase noise measurements with a cryogenic power-splitter to minimize the cross-spectral collapse effect

    Science.gov (United States)

    Hati, Archita; Nelson, Craig W.; Pappas, David P.; Howe, David A.

    2017-11-01

    The cross-spectrum noise measurement technique enables enhanced resolution of spectral measurements. However, it has disadvantages, namely, increased complexity, inability of making real-time measurements, and bias due to the "cross-spectral collapse" (CSC) effect. The CSC can occur when the spectral density of a random process under investigation approaches the thermal noise of the power splitter. This effect can severely bias results due to a differential measurement between the investigated noise and the anti-correlated (phase-inverted) noise of the power splitter. In this paper, we report an accurate measurement of the phase noise of a thermally limited electronic oscillator operating at room temperature (300 K) without significant CSC bias. We mitigated the problem by cooling the power splitter to liquid helium temperature (4 K). We quantify errors of greater than 1 dB that occur when the thermal noise of the oscillator at room temperature is measured with the power splitter at temperatures above 77 K.

  15. Noise measurement at wind power plants; Geraeuschmessung an Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Schoene, Ralph [Cirrus Research plc, Frankfurt am Main (Germany)

    2012-09-15

    Wind energy is a supporting pillar of the energy transition. For further expansion, it is important to reduce prejudices, for example by measurements as precise as possible and assessments of the often unobjectively discussed noise emissions. These measurements are based on instruments which can analyze and measure low-frequency sound.

  16. Neutron noise measurements at the Delphi subcritical assembly

    International Nuclear Information System (INIS)

    Szieberth, M.; Klujber, G.; Kloosterman, J. L.; De Haas, D.

    2012-01-01

    The paper presents the results and evaluations of a comprehensive set of neutron noise measurements on the Delphi subcritical assembly of the Delft Univ. of Technology. The measurements investigated the effect of different source distributions (inherent spontaneous fission and 252 Cf) and the position of the detectors applied (both radially and vertically). The evaluation of the measured data has been performed by the variance-to-mean ratio (VTMR, Feynman-α), the autocorrelation (ACF, Rossi-α) and the cross-correlation (CCF) methods. The values obtained for the prompt decay constant show a strong bias, which depends both on the detector position and on the source distribution. This is due to the presence of higher modes in the system. It has been observed that the α value fitted is higher when the detector is close to the boundary of the core or to the 252 Cf point-source. The higher alpha-modes have also been observed by fitting functions describing two alpha-modes. The successful set of measurement also provides a good basis for further theoretical investigations including the Monte Carlo simulation of the noise measurements and the calculation of the alpha-modes in the Delphi subcritical assembly. (authors)

  17. Ambient Noise Tomography and Microseism Directionalities across the Juan de Fuca Plate

    Science.gov (United States)

    Tian, Ye

    Ambient noise tomography has been well developed over the past decade and proven to be effective in studying the crust and upper mantle structure beneath the Earth’s continents. With new seismic array deployments beginning in the oceans, the application of the tomographic methods based on ambient noise observed at ocean bottom seismometers (OBSs) has become an important topic for research. In this thesis, I investigate the application of ambient noise tomography to oceanic bottom seismic data recorded by the Cascadia Initiative experiment across the Juan de Fuca plate. With higher local noise levels recorded by OBSs, I find that traditional data processing procedures used in ambient noise tomography produce measurable Rayleigh wave Green’s functions between deep ocean stations, whereas the shallow water stations are severely contaminated by both tilt noise and compliance noise and require new methods of processing. Because the local noise level varies across the study region, four semi-independent studies are conducted to both utilize the quieter deep-water stations and to address the problem posed by noisy shallow water stations. First, I construct an age-dependent shear wave speed model of the crust and uppermost mantle with 18 deep-water stations near the Juan de Fuca Ridge. The model possess a shallow low shear velocity zone near the ridge and has its sedimentary thickness, lithospheric thickness, and mantle shear wave speeds increase systematically with age Second, I investigate the locations and mechanisms of microseism generation using ambient noise cross-correlations constructed between 61 OBSs and 42 continental stations near the western US coast and find that the primary and secondary microseisms are generated at different locations and possibly have different physical mechanisms. Third, I show that tilt and compliance noise on the vertical components of the OBSs can be reduced substantially using the horizontal components and the differential

  18. Optimal Linear Filters for Pulse Height Measurements in the Presence of Noise

    International Nuclear Information System (INIS)

    Nygaard, K.

    1966-07-01

    For measurements of nuclear pulse height spectra a linear filter is used between the pulse amplifier and the pulse height recorder so as to improve the signal/noise ratio. The problem of finding the optimal filter is investigated with emphasis on technical realizability. The maximum available signal/noise ratio is theoretically calculated on the basis of all the information which can be found in the output of the pulse amplifier, and on an assumed a priori knowledge of the pulse time of arrival. It is then shown that the maximum available signal/noise ratio can be obtained with practical measurements without any a priori knowledge of pulse time of arrival, and a general description of the optimal linear filter is given. The solution is unique, technically realizable, and based solely on data (noise power spectrum and pulse shape) which can be measured at the output terminals of the pulse amplifier used

  19. Optimal Linear Filters for Pulse Height Measurements in the Presence of Noise

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, K

    1966-07-15

    For measurements of nuclear pulse height spectra a linear filter is used between the pulse amplifier and the pulse height recorder so as to improve the signal/noise ratio. The problem of finding the optimal filter is investigated with emphasis on technical realizability. The maximum available signal/noise ratio is theoretically calculated on the basis of all the information which can be found in the output of the pulse amplifier, and on an assumed a priori knowledge of the pulse time of arrival. It is then shown that the maximum available signal/noise ratio can be obtained with practical measurements without any a priori knowledge of pulse time of arrival, and a general description of the optimal linear filter is given. The solution is unique, technically realizable, and based solely on data (noise power spectrum and pulse shape) which can be measured at the output terminals of the pulse amplifier used.

  20. More noise, please: How cultural overprinting in the urban environment can be exploited for improved subsurface imaging (Invited)

    Science.gov (United States)

    Weiss, C. J.

    2009-12-01

    A long standing issue for geophysical imaging methods revolves around the proper treatment of "noise": Defining what noise is; separating "noise" for "signal"; filtering and suppressing noise; and recently, challenging the prevailing view that noise is a nuisance to see if, instead, it may contribute favorably toward improving subsurface imaging fidelity. This last point is particularly relevant to geophysical imaging in the urban environment where noise sources are abundant, complex, and logistical constraints on geophysical field procedures prohibit a crude "turning up the volume" approach to simply drown out the noise with powerful sources of electromagnetic and seismic energy. In this contribution I explore the concept passive geophysical imaging which uses uncorrelated ambient noise as the source of geophysical imaging energy to be used in the urban environment. Examples will be presented from seismic and ground penetrating radar methods, in addition to new theoretical results bearing on the feasibility of low-frequency electromagnetic induction techniques.

  1. Measurements of 1/f noise in A-Si:H pin diodes and thin-film-transistors

    International Nuclear Information System (INIS)

    Cho, Gyuseong; Drewery, J.S.; Fujieda, I.; Jing, T.; Kaplan, S.N.; Perez-Mendez, V.; Qureshi, S.; Wildermuth, D.; Street, R.A.

    1990-05-01

    We measured the equivalent noise charge of a-Si:H pin diodes (5 ∼ 45μm i-layer) with a pulse shaping time of 2.5 μsec under reverse biases up to 30 V/μm and analyzed it as a four component noise source. The frequency spectra of 1/f noise on the soft-breakdown region and of the Nyquist noise from contact resistance of diodes were measured. Using the conversion equations for a CR-RC shaper, we identified the contact resistance noise and the 1/f noise as the main noise sources in the low bias and high bias regions respectively. The 1/f noise of a-Si:H TFTs with channel length of 15 μm was measured to be the dominant component up to ∼100kHz for both saturation and linear regions. 15 refs., 7 figs

  2. Full Wavefield Migration of Vertical Seismic Profiling data

    NARCIS (Netherlands)

    Soni, A.K.

    2014-01-01

    Until now, in most seismic imaging technologies, both surface and internal multiples are considered as noise. In today’s industrial practice, we see various methods for suppressing multiples before migration. This means that only a fraction of the recorded wavefield is used in imaging. In this

  3. Application of super-virtual seismic refraction interferometry to enhance first arrivals: A case study from Saudi Arabia

    KAUST Repository

    Alshuhail, Abdulrahman Abdullatif Abdulrahman

    2012-01-01

    Complex near-surface anomalies are one of the main onshore challenges facing seismic data processors. Refraction tomography is becoming a common technology to estimate an accurate near-surface velocity model. This process involves picking the first arrivals of refracted waves. One of the main challenges with refraction tomography is the low signal-to-noise ratio characterizing the first-break waveform arrivals, especially for the far-offset receivers. This is especially evident in data recorded using reflection acquisition geometry. This low signal-to-noise ratio is caused by signal attenuation due to geometrical spreading of the seismic wavefield, near-surface-generated noise, and amplitude absorption. Super-virtual refraction interferometry improves the quality of the first-break picks by enhancing the amplitude of the refracted waves and attenuating the amplitude of the random noise.

  4. [De-noising and measurement of pulse wave velocity of the wavelet].

    Science.gov (United States)

    Liu, Baohua; Zhu, Honglian; Ren, Xiaohua

    2011-02-01

    Pulse wave velocity (PWV) is a vital index of the cardiovascular pathology, so that the accurate measurement of PWV can be of benefit for prevention and treatment of cardiovascular diseases. The noise in the measure system of pulse wave signal, rounding error and selection of the recording site all cause errors in the measure result. In this paper, with wavelet transformation to eliminate the noise and to raise the precision, and with the choice of the point whose slope was maximum as the recording site of the reconstructing pulse wave, the measuring system accuracy was improved.

  5. Measurement of the relative motion of two mirrors in presence of an optical spring

    International Nuclear Information System (INIS)

    Virgilio, A D

    2008-01-01

    The Low Frequency Facility (LFF) experimental set-up consists of one 1 cm long cavity hanging from a mechanical insulation system, that damps seismic noise transmission to the optical components of the VIRGO interferometer. Radiation pressure generates an opto-mechanical coupling between the two mirrors of the cavity, that we call an optical spring. The measured relative displacement power spectrum is compatible with a system at thermal equilibrium within its environment; the optical spring has a stiffness k opt of the order of 10 4 N/m. An upper limits of 10 -15 m/√Hz at 10 Hz for seismic and thermal noise contamination of the Virgo test masses suspended by a SuperAttenuator is derived from measured data

  6. Underground measurements of seismic vibrations at the SSC site

    International Nuclear Information System (INIS)

    Shiltsev, V.D.; Parkhomchuk, V.V.; Weaver, H.J.

    1995-01-01

    The results of underground measurements of seismic vibrations at the tunnel depth of the Superconducting Super Collider (SSC) site are presented. Spectral analysis of the data obtained in the frequency band from 0.05 Hz to 1500 Hz is performed. It is found that amplitudes of ambient ground motion are less than requirements for the Collider, but cultural vibrations are unacceptably large and will cause fast growth of transverse emittance of the SSC beams

  7. High-resolution surface wave tomography of the European crust and uppermost mantle from ambient seismic noise

    Science.gov (United States)

    Lu, Yang; Stehly, Laurent; Paul, Anne; AlpArray Working Group

    2018-05-01

    Taking advantage of the large number of seismic stations installed in Europe, in particular in the greater Alpine region with the AlpArray experiment, we derive a new high-resolution 3-D shear-wave velocity model of the European crust and uppermost mantle from ambient noise tomography. The correlation of up to four years of continuous vertical-component seismic recordings from 1293 broadband stations (10° W-35° E, 30° N-75° N) provides Rayleigh wave group velocity dispersion data in the period band 5-150 s at more than 0.8 million virtual source-receiver pairs. Two-dimensional Rayleigh wave group velocity maps are estimated using adaptive parameterization to accommodate the strong heterogeneity of path coverage. A probabilistic 3-D shear-wave velocity model, including probability densities for the depth of layer boundaries and S-wave velocity values, is obtained by non-linear Bayesian inversion. A weighted average of the probabilistic model is then used as starting model for the linear inversion step, providing the final Vs model. The resulting S-wave velocity model and Moho depth are validated by comparison with previous geophysical studies. Although surface-wave tomography is weakly sensitive to layer boundaries, vertical cross-sections through our Vs model and the associated probability of presence of interfaces display striking similarities with reference controlled-source (CSS) and receiver-function sections across the Alpine belt. Our model even provides new structural information such as a ˜8 km Moho jump along the CSS ECORS-CROP profile that was not imaged by reflection data due to poor penetration across a heterogeneous upper crust. Our probabilistic and final shear wave velocity models have the potential to become new reference models of the European crust, both for crustal structure probing and geophysical studies including waveform modeling or full waveform inversion.

  8. MICROWAVE NOISE MEASUREMENT OF ELECTRON TEMPERATURES IN AFTERGLOW PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Leiby, Jr., C. C.; McBee, W. D.

    1963-10-15

    Transient electron temperatures in afterglow plasmas were determined for He (5 and 10 torr), Ne, and Ne plus or minus 5% Ar (2.4 and 24 torr) by combining measurements of plasma microwave noise power, and plasma reflectivity and absorptivity. Use of a low-noise parametric preamplifier permitted continuous detection during the afterglow of noise power at 5.5 Bc in a 1 Mc bandwidth. Electron temperature decays were a function of pressure and gas but were slower than predicted by electron energy loss mechanisms. The addition of argon altered the electron density decay in the neon afterglow but the electron temperature decay was not appreciably changed. Resonances in detected noise power vs time in the afterglow were observed for two of the three plasma waveguide geometries studied. These resonances correlate with observed resonances in absorptivity and occur over the same range of electron densities for a given geometry independent of gas type and pressure. (auth)

  9. A methodology to calibrate water saturation estimated from 4D seismic data

    International Nuclear Information System (INIS)

    Davolio, Alessandra; Maschio, Célio; José Schiozer, Denis

    2014-01-01

    Time-lapse seismic data can be used to estimate saturation changes within a reservoir, which is valuable information for reservoir management as it plays an important role in updating reservoir simulation models. The process of updating reservoir properties, history matching, can incorporate estimated saturation changes qualitatively or quantitatively. For quantitative approaches, reliable information from 4D seismic data is important. This work proposes a methodology to calibrate the volume of water in the estimated saturation maps, as these maps can be wrongly estimated due to problems with seismic signals (such as noise, errors associated with data processing and resolution issues). The idea is to condition the 4D seismic data to known information provided by engineering, in this case the known amount of injected and produced water in the field. The application of the proposed methodology in an inversion process (previously published) that estimates saturation from 4D seismic data is presented, followed by a discussion concerning the use of such data in a history matching process. The methodology is applied to a synthetic dataset to validate the results, the main of which are: (1) reduction of the effects of noise and errors in the estimated saturation, yielding more reliable data to be used quantitatively or qualitatively and (2) an improvement in the properties update after using this data in a history matching procedure. (paper)

  10. Assessing the effects of noise abatement measures on health risks: A case study in Istanbul

    International Nuclear Information System (INIS)

    Ongel, Aybike; Sezgin, Fatih

    2016-01-01

    In recent decades, noise pollution caused by industrialization and increased motorization has become a major concern around the world because of its adverse effects on human well-being. Therefore, transportation agencies have been implementing noise abatement measures in order to reduce road traffic noise. However, limited attention is given to noise in environmental assessment of road transportation systems. This paper presents a framework for a health impact assessment model for road transportation noise emissions. The model allows noise impacts to be addressed with the health effects of air pollutant and greenhouse gas emissions from road transportation. The health damages assessed in the model include annoyance, sleep disturbance, and cardiovascular disease in terms of acute myocardial infarction. The model was applied in a case study in Istanbul in order to evaluate the change in health risks from the implementation of noise abatement strategies. The noise abatement strategies evaluated include altering pavement surfaces in order to absorb noise and introducing speed limits. It was shown that significant improvements in health risks can be achieved using open graded pavement surfaces and introducing speed limits on highways. - Highlights: • Transportation noise has a significant effect on health. • Noise should be included in the environmental assessment of transportation systems. • Traffic noise abatement measures include noise reducing pavements and speed limits. • Noise abatement measures help reduce the health risks of transportation noise. • Speed limit reduction on uncongested roads is an effective way to reduce health risks.

  11. Assessing the effects of noise abatement measures on health risks: A case study in Istanbul

    Energy Technology Data Exchange (ETDEWEB)

    Ongel, Aybike, E-mail: aybike.ongel@eng.bahcesehir.edu.tr [Bahcesehir University, Department of Civil Engineering, Istanbul 34353 (Turkey); Sezgin, Fatih, E-mail: fatih.sezgin@ibb.gov.tr [Istanbul Metropolitan Municipality, Environmental Protection Agency, Istanbul 34169 (Turkey)

    2016-01-15

    In recent decades, noise pollution caused by industrialization and increased motorization has become a major concern around the world because of its adverse effects on human well-being. Therefore, transportation agencies have been implementing noise abatement measures in order to reduce road traffic noise. However, limited attention is given to noise in environmental assessment of road transportation systems. This paper presents a framework for a health impact assessment model for road transportation noise emissions. The model allows noise impacts to be addressed with the health effects of air pollutant and greenhouse gas emissions from road transportation. The health damages assessed in the model include annoyance, sleep disturbance, and cardiovascular disease in terms of acute myocardial infarction. The model was applied in a case study in Istanbul in order to evaluate the change in health risks from the implementation of noise abatement strategies. The noise abatement strategies evaluated include altering pavement surfaces in order to absorb noise and introducing speed limits. It was shown that significant improvements in health risks can be achieved using open graded pavement surfaces and introducing speed limits on highways. - Highlights: • Transportation noise has a significant effect on health. • Noise should be included in the environmental assessment of transportation systems. • Traffic noise abatement measures include noise reducing pavements and speed limits. • Noise abatement measures help reduce the health risks of transportation noise. • Speed limit reduction on uncongested roads is an effective way to reduce health risks.

  12. Added-value joint source modelling of seismic and geodetic data

    Science.gov (United States)

    Sudhaus, Henriette; Heimann, Sebastian; Walter, Thomas R.; Krueger, Frank

    2013-04-01

    In tectonically active regions earthquake source studies strongly support the analysis of the current faulting processes as they reveal the location and geometry of active faults, the average slip released or more. For source modelling of shallow, moderate to large earthquakes often a combination of geodetic (GPS, InSAR) and seismic data is used. A truly joint use of these data, however, usually takes place only on a higher modelling level, where some of the first-order characteristics (time, centroid location, fault orientation, moment) have been fixed already. These required basis model parameters have to be given, assumed or inferred in a previous, separate and highly non-linear modelling step using one of the these data sets alone. We present a new earthquake rupture model implementation that realizes a fully combined data integration of surface displacement measurements and seismic data in a non-linear optimization of simple but extended planar ruptures. The model implementation allows for fast forward calculations of full seismograms and surface deformation and therefore enables us to use Monte Carlo global search algorithms. Furthermore, we benefit from the complementary character of seismic and geodetic data, e. g. the high definition of the source location from geodetic data and the sensitivity of the resolution of the seismic data on moment releases at larger depth. These increased constraints from the combined dataset make optimizations efficient, even for larger model parameter spaces and with a very limited amount of a priori assumption on the source. A vital part of our approach is rigorous data weighting based on the empirically estimated data errors. We construct full data error variance-covariance matrices for geodetic data to account for correlated data noise and also weight the seismic data based on their signal-to-noise ratio. The estimation of the data errors and the fast forward modelling opens the door for Bayesian inferences of the source

  13. Towards a practical Johnson noise thermometer for long-term measurements in harsh environments

    International Nuclear Information System (INIS)

    Greenen, Adam; Pearce, Jonathan; Cruickshank, David; Bramley, Paul

    2015-01-01

    The impact of mechanical and chemical changes in conventional sensors such as thermocouples and resistance thermometers can be avoided by instead using temperature sensors based on fundamental thermometry. A prime example of this is Johnson noise thermometry, which is based on measurement of the fluctuations in the voltage of a resistor arising from thermal motion of charge carriers - i.e. the 'Johnson noise'. A Johnson noise thermometer never needs calibration and is insensitive to the condition of the sensor material. It is therefore ideally suited to long-term temperature measurements in harsh environments, such as nuclear reactor coolant circuits, in-pile measurements, nuclear waste management and storage, and severe accident monitoring. There have been a number of previous attempts to develop a Johnson noise thermometer for the nuclear industry, but none have reached commercial exploitation because of technical problems in practical implementation. The main challenge is to extract the tiny Johnson noise signal from ambient electrical noise influences, both from the internal amplification electronics, and from external electrical noise sources. Recent advances in electronics technology and digital signal processing techniques have opened up new possibilities for developing a viable, practical Johnson noise thermometer. We describe a project funded by the UK Technology Strategy Board (now Innovate UK) 'Developing the nuclear supply chain' call, currently underway, to develop a practical Johnson noise thermometer that makes use of innovative electronics for ultralow noise amplification and signal processing. The new electronics technology has the potential to help overcome the problems encountered with previous attempts at constructing a practical Johnson noise thermometer. An outline of the new developments is presented, together with an overview of the current status of the project. (authors)

  14. Towards a practical Johnson noise thermometer for long-term measurements in harsh environments

    Energy Technology Data Exchange (ETDEWEB)

    Greenen, Adam; Pearce, Jonathan [National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, (United Kingdom); Cruickshank, David; Bramley, Paul [Metrosol Limited, Plum Park Estate, Watling Street, Paulerspury, Northamptonshire, NN12 6LQ, (United Kingdom)

    2015-07-01

    The impact of mechanical and chemical changes in conventional sensors such as thermocouples and resistance thermometers can be avoided by instead using temperature sensors based on fundamental thermometry. A prime example of this is Johnson noise thermometry, which is based on measurement of the fluctuations in the voltage of a resistor arising from thermal motion of charge carriers - i.e. the 'Johnson noise'. A Johnson noise thermometer never needs calibration and is insensitive to the condition of the sensor material. It is therefore ideally suited to long-term temperature measurements in harsh environments, such as nuclear reactor coolant circuits, in-pile measurements, nuclear waste management and storage, and severe accident monitoring. There have been a number of previous attempts to develop a Johnson noise thermometer for the nuclear industry, but none have reached commercial exploitation because of technical problems in practical implementation. The main challenge is to extract the tiny Johnson noise signal from ambient electrical noise influences, both from the internal amplification electronics, and from external electrical noise sources. Recent advances in electronics technology and digital signal processing techniques have opened up new possibilities for developing a viable, practical Johnson noise thermometer. We describe a project funded by the UK Technology Strategy Board (now Innovate UK) 'Developing the nuclear supply chain' call, currently underway, to develop a practical Johnson noise thermometer that makes use of innovative electronics for ultralow noise amplification and signal processing. The new electronics technology has the potential to help overcome the problems encountered with previous attempts at constructing a practical Johnson noise thermometer. An outline of the new developments is presented, together with an overview of the current status of the project. (authors)

  15. Surface-wave tomography of Ireland and surroundings using ambient noise and teleseismic data

    Science.gov (United States)

    Bonadio, Raffaele; Arroucau, Pierre; Lebedev, Sergei; Meier, Thomas; Schaeffer, Andrew; Licciardi, Andrea; Piana Agostinetti, Nicola

    2016-04-01

    Ireland's geology is dominated by northeast-southwest structural trends and suture zones, mostly inferred from geological mapping and a few active source seismic experiments. However, their geometry and extent at depth and their continuity across the Irish Sea are still poorly known. Important questions also remain unanswered regarding the thickness and bulk properties of the sedimentary cover at the regional scale, the deformation and flow of the deep crust during the formation of Ireland, the thickness of Ireland's lithosphere today, and the thermal structure and dynamics of the asthenosphere beneath Ireland. In this work, we take advantage of abundant, newly available broadband data from temporary array deployments and permanent seismic networks in Ireland and Great Britain to produce high-resolution models of seismic velocity structure and anisotropy of the lithosphere. We combine Rayleigh and Love phase velocity measurements from waveform cross-correlation using both ambient noise and teleseismic data in order to produce high-quality dispersion curves for periods ranging from 1 to 300 s. The phase velocity measurement procedures are adapted from Meier et al.[2], Lebedev et al.[1] and Soomro et al.[3] and are automated in order to deal with the large amount of data and ensure consistency and reproducibility. For the nearly 200 stations used in this study, we obtain a very large number of dispersion curves from both ambient noise and teleseimic data. Dispersion measurements are then inverted in a tomographic procedure for surface-wave phase velocity maps in a very broad period range. The maps constrain the 3D seismic-velocity structure of the crust and upper mantle underlying Ireland and the Irish Sea. {9} Lebedev, S., T. Meier, R. D. van der Hilst. Asthenospheric flow and origin of volcanism in the Baikal Rift area, Earth Planet. Sci. Lett., 249, 415-424, 2006. Meier, T., K. Dietrich, B. Stockhert, H.P. Harjes, One-dimensional models of shear wave velocity for

  16. Speech-in-Noise Tests and Supra-threshold Auditory Evoked Potentials as Metrics for Noise Damage and Clinical Trial Outcome Measures.

    Science.gov (United States)

    Le Prell, Colleen G; Brungart, Douglas S

    2016-09-01

    In humans, the accepted clinical standards for detecting hearing loss are the behavioral audiogram, based on the absolute detection threshold of pure-tones, and the threshold auditory brainstem response (ABR). The audiogram and the threshold ABR are reliable and sensitive measures of hearing thresholds in human listeners. However, recent results from noise-exposed animals demonstrate that noise exposure can cause substantial neurodegeneration in the peripheral auditory system without degrading pure-tone audiometric thresholds. It has been suggested that clinical measures of auditory performance conducted with stimuli presented above the detection threshold may be more sensitive than the behavioral audiogram in detecting early-stage noise-induced hearing loss in listeners with audiometric thresholds within normal limits. Supra-threshold speech-in-noise testing and supra-threshold ABR responses are reviewed here, given that they may be useful supplements to the behavioral audiogram for assessment of possible neurodegeneration in noise-exposed listeners. Supra-threshold tests may be useful for assessing the effects of noise on the human inner ear, and the effectiveness of interventions designed to prevent noise trauma. The current state of the science does not necessarily allow us to define a single set of best practice protocols. Nonetheless, we encourage investigators to incorporate these metrics into test batteries when feasible, with an effort to standardize procedures to the greatest extent possible as new reports emerge.

  17. Note: A temperature-stable low-noise transimpedance amplifier for microcurrent measurement

    Science.gov (United States)

    Xie, Kai; Shi, Xueyou; Zhao, Kai; Guo, Lixin; Zhang, Hanlu

    2017-02-01

    Temperature stability and noise characteristics often run contradictory in microcurrent (e.g., pA-scale) measurement instruments because low-noise performance requires high-value resistors with relatively poor temperature coefficients. A low-noise transimpedance amplifier with high-temperature stability, which involves an active compensation mechanism to overcome the temperature drift mainly caused by high-value resistors, is presented. The implementation uses a specially designed R-2R compensating network to provide programmable current gain with extra-fine trimming resolution. The temperature drifts of all components (e.g., feedback resistors, operational amplifiers, and the R-2R network itself) are compensated simultaneously. Therefore, both low-temperature drift and ultra-low-noise performance can be achieved. With a current gain of 1011 V/A, the internal current noise density was about 0.4 fA/√Hz, and the average temperature coefficient was 4.3 ppm/K at 0-50 °C. The amplifier module maintains accuracy across a wide temperature range without additional thermal stabilization, and its compact size makes it especially suitable for high-precision, low-current measurement in outdoor environments for applications such as electrochemical emission supervision, air pollution particles analysis, radiation monitoring, and bioelectricity.

  18. Seismic exploration for water on Mars

    International Nuclear Information System (INIS)

    Page, T.

    1987-01-01

    It is proposed to soft-land three seismometers in the Utopia-Elysium region and three or more radio controlled explosive charges at nearby sites that can be accurately located by an orbiter. Seismic signatures of timed explosions, to be telemetered to the orbiter, will be used to detect present surface layers, including those saturated by volatiles such as water and/or ice. The Viking Landers included seismometers that showed that at present Mars is seismically quiet, and that the mean crustal thickness at the site is about 14 to 18 km. The new seismic landers must be designed to minimize wind vibration noise, and the landing sites selected so that each is well formed on the regolith, not on rock outcrops or in craters. The explosive charges might be mounted on penetrators aimed at nearby smooth areas. They must be equipped with radio emitters for accurate location and radio receivers for timed detonation

  19. Near real-time noise removal for the Monterey Ocean Bottom Broadband (MOBB) seismic station data

    Science.gov (United States)

    Guinois, M.; Zheng, Z.; Taira, T.; Romanowicz, B. A.

    2012-12-01

    The Monterey Ocean Bottom Broadband (MOBB) observatory, located 40 km offshore central California, at a water depth of 1000 m, provides important complementary coverage of the San Andreas Fualt system to the land-based network. First installed in 2002, it is arguably the longest lived ocean bottom broadband seismic station. It includes a three-component broadband Guralp CMG-1T seismometer and a collocated differential pressure gauge (DPG) to measure the local water pressure continuously, as well as a current meter. After 7 years of autonomous operation, in February 2009, MOBB was successfully connected to the MARS cable (http://www.mbari.org/mars), and the data have been available in real time at the Northern California Earthquake Data Center (Romanowicz et al., 2009). However, the usage of MOBB data has been limited because of the noisy character of the data, in particular at periods of interest for regional moment tensor studies (20-100 sec), due to the ocean infragravity waves. Crawford and Webb (2000) demonstrated that there is a strong correlation between the water pressure and the vertical component of seafloor ground velocity in the infragravity wave band. Applying this to MOBB vertical component data, a transfer function (TF) was determined and utilized to successfully deconvolve the pressure-correlated noise from the vertical component of MOBB seismograms (Dolenc et al., 2007) in the period band 20-200 sec. Romanowicz et al. (2003, 2009) presented examples of how the cleaned MOBB data contribute to the determination of source parameters and regional structure. These past efforts, however, have been mostly case studies for illustration purpose. In this study, we systematically process all the available MOBB data since 2009 (because the cable was trawled, about a year of data is missing from February 2010 to June 2011). We calculate the TF over time and find that it is generally very stable, except for one change in 2010 due to an instrument replacement. Two

  20. OGS improvements in 2012 in running the Northeastern Italy Seismic Network: the Ferrara VBB borehole seismic station

    Science.gov (United States)

    Pesaresi, Damiano; Romanelli, Marco; Barnaba, Carla; Bragato, Pier Luigi; Durì, Giorgio

    2013-04-01

    The Centro di Ricerche Sismologiche (CRS, Seismological Research Center) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the Northeastern Italy Seismic Network: it currently consists of 17 very sensitive broad band and 18 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data center in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of Northeastern Italy. The southwestern edge of the OGS seismic network stands on the Po alluvial basin: earthquake localization and characterization in this area is affected by the presence of soft alluvial deposits. OGS ha already experience in running a local seismic network in high noise conditions making use of borehole installations in the case of the micro-seismicity monitoring of a local gas storage site for a private company. Following the ML=5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on May 20, 2012 at 02:03:53 UTC, a cooperation of Istituto Nazionale di Geofisica e Vulcanologia, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of a previously existing very broad band (VBB) borehole seismic station in Ferrara. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-West, including Ferrara and its surroundings, and on the other hand to evaluate the seismic response at the site. We will describe improvements in running the Northeastern Italy Seismic Network, including details of the Ferrara VBB

  1. Measurement, characterization, and modeling of noise in staring infrared focal plane arrays

    International Nuclear Information System (INIS)

    Scribner, D.A.; Kruer, M.R.; Gridley, C.J.; Sarkady, K.

    1987-01-01

    An account is given of selected methods for the measurement and characterization of spatial and temporal noise in staring focal plane arrays (FPAs), in order to demonstrate how these results can be used in simulations and analytic models to predict the performance of selected staring sensors. Attention is given to MIR FPAs applicable to the detection and tracking of point sources, and to the ways in which these spatial and temporal noise measurements can be incorporated into simulations and sensors having staring FPAs. Methods for predicting the performance of selected staring sensor systems are derivable from spatial and temporal noise values. 13 references

  2. Source modelling of train noise - Literature review and some initial measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xuetao; Jonasson, Hans; Holmberg, Kjell

    2000-07-01

    A literature review of source modelling of railway noise is reported. Measurements on a special test rig at Surahammar and on the new railway line between Arlanda and Stockholm City are reported and analyzed. In the analysis the train is modelled as a number of point sources with or without directivity and each source is combined with analytical sound propagation theory to predict the sound propagation pattern best fitting the measured data. Wheel/rail rolling noise is considered to be the most important noise source. The rolling noise can be modelled as an array of moving point sources, which have a dipole-like horizontal directivity and some kind of vertical directivity. In general it is necessary to distribute the point sources on several heights. Based on our model analysis the source heights for the rolling noise should be below the wheel axles and the most important height is about a quarter of wheel diameter above the railheads. When train speeds are greater than 250 km/h aerodynamic noise will become important and even dominant. It may be important for low frequency components only if the train speed is less than 220 km/h. Little data are available for these cases. It is believed that aerodynamic noise has dipole-like directivity. Its spectrum depends on many factors: speed, railway system, type of train, bogies, wheels, pantograph, presence of barriers and even weather conditions. Other sources such as fans, engine, transmission and carriage bodies are at most second order noise sources, but for trains with a diesel locomotive engine the engine noise will be dominant if train speeds are less than about 100 km/h. The Nord 2000 comprehensive model for sound propagation outdoors, together with the source model that is based on the understandings above, can suitably handle the problems of railway noise propagation in one-third octave bands although there are still problems left to be solved.

  3. 3D Crust and Uppermost Mantle Structure beneath Tian Shan Region from ambient noise and earthquake surface waves

    Science.gov (United States)

    Xiao, X.; Wen, L.

    2017-12-01

    As a typical active intracontinental mountain range in Central Asia, Tian Shan Mt serves as the prototype in studying geodynamic processes and mechanism of intracontinental mountain building. We study 3D crust and the uppermost mantle structure beneath Tian Shan region using ambient noise and earthquake surface waves. Our dataset includes vertical component records of 62 permanent broadband seismic stations operated by the Earthquake Administration of China. Firstly, we calculate two-year stacked Cross-Correlation Functions (CCFs) of ambient noise records between the stations. The CCFs are treated as the Empirical Green's Functions (EGFs) of each station pair, from which we measured phase velocities of fundamental-mode Rayleigh wave in the period of 3-40 s using a frequency-time analysis method. Secondly, we collect surface wave data from tele-seismic events with Mw > 5.5 and depth shallower than 200 km and measure phase velocities of the fundamental-mode of Rayleigh wave in the period of 30-150 s using a two-station method. Finally, we combine the phase velocity measurements from ambient noise and earthquake surface waves, obtain lateral isotropic phase velocity maps at different periods based on tomography and invert a 3D Vsv model of crust and uppermost mantle down to about 150 km using a Monte Carlo Inversion method. We will discuss our inversion results in detail, as well as their implications to the tectonics in the region.

  4. NACA0015 measurements in LM wind tunnel and turbulence generated noise

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolio, Franck

    2008-11-15

    A NACA0015 airfoil section was instrumented with an array of highfrequency microphones mounted on its surface and measured in the wind tunnel at LM Glasfiber at various inflow speeds, angles of attack, and with different turbulent inflow conditions. The aim of this work is to analyze these measurement data, including the turbulent inflow characteristics. The airfoil surface pressure data are considered in the perspective of turbulent inflow noise in order to identify the potential for using these data to validate and possibly improve associated noise models from the literature. In addition, these data are further analyzed in the context of trailing edge noise modeling which is directly related to the surface pressure fluctuations in the vicinity of the trailing edge. (au)

  5. Measurement of spectral phase noise in a cryogenically cooled Ti:Sa amplifier (Conference Presentation)

    Science.gov (United States)

    Nagymihaly, Roland S.; Jójárt, Péter; Börzsönyi, Ádám.; Osvay, Károly

    2017-05-01

    In most of cases the drift of the carrier envelope phase (CEP) of a chirped pulse amplifier (CPA) system is determined only [1], being the relevant parameter at laser-matter interactions. The need of coherent combination of multiple amplifier channels to further increase the peak power of pulses requires interferometric precision [2]. For this purpose, the stability of the group delay of the pulses may become equally important. Further development of amplifier systems requires the investigation of phase noise contributions of individual subsystems, like amplifier stages. Spectrally resolved interferometry (SRI), which is a completely linear optical method, makes the measurement of spectral phase noise possible of basically any part of a laser system [3]. By utilizing this method, the CEP stability of water-cooled Ti:Sa based amplifiers was investigated just recently, where the effects of seed and pump energy, repetition rate, and the cooling crystal mounts were thoroughly measured [4]. We present a systematic investigation on the noise of the spectral phase, including CEP, of laser pulses amplified in a cryogenically-cooled Ti:Sa amplifier of a CPA chain. The double-pass amplifier was built in the sample arm of a compact Michelson interferometer. The Ti:Sa crystal was cooled below 30 °K. The inherent phase noise was measured for different operation modes, as at various repetition rates, and pump depletion. Noise contributions of the vacuum pumps and the cryogenic refrigerator were found to be 43 and 47 mrad, respectively. We have also identified CEP noise having thermal as well as mechanical origin. Both showed a monotonically decreasing tendency towards higher repetition rates. We found that the widths of the noise distributions are getting broader towards lower repetition rates. Spectral phase noise with and without amplification was measured, and we found no significant difference in the phase noise distributions. The mechanical vibration was also measured in

  6. Synchrosqueezing-based Transform and its Application in Seismic Data Analysis

    Directory of Open Access Journals (Sweden)

    Saman Gholtashi

    2015-10-01

    Full Text Available Seismic waves are non-stationary due to its propagation through the earth. Time-frequency transforms are suitable tools for analyzing non-stationary seismic signals. Spectral decomposition can reveal the non-stationary characteristics which cannot be easily observed in the time or frequency representation alone. Various types of spectral decomposition methods have been introduced by some researchers. Conventional spectral decompositions have some restrictions such as Heisenberg uncertainty principle and cross-terms which limit their applications in signal analysis. In this paper, synchrosqueezingbased transforms were used to overcome the mentioned restrictions; also, as an application of this new high resolution time-frequency analysis method, it was applied to random noise removal and the detection of low-frequency shadows in seismic data. The efficiency of this method is evaluated by applying it to both synthetic and real seismic data. The results show that the mentioned transform is a proper tool for seismic data processing and interpretation.

  7. Mapping sediment thickness of Islamabad city using empirical relationships: Implications for seismic hazard assessment

    Science.gov (United States)

    Khan, Sarfraz; Khan, M. Asif

    2016-04-01

    Soft sediments make an important component of the subsurface lithology, especially in areas underlain by river/stream basins. Occupying a position directly above the bedrock up to the land surface, these soft sediments can range in thickness from few centimeters to hundreds of meters. They carry a special nuisance in seismic hazards, as they serve as a source of seismic amplification that may enhance the seismic shaking of many folds. Determination of the thickness of the soft sediments is therefore crucial in seismic hazard analysis. A number of studies in recent years have demonstrated that frequency and amplitude spectrum obtained from the noise measurements during the recording of natural seismicity can be used to obtain thickness of soft sediments covering the bedrock. Nakamura (1989) presented a technique to determine such spectrum using ratio of horizontal to vertical components of the Rayleigh waves. The present study is based on an extensive set of microtremor measurements carried out in the Islamabad city, Pakistan. Fundamental frequencies were obtained from weak motion sensors and Tromino Engy Plus instruments to show that the correlation is clearly valid for a wide range of sediment thickness. A simple formula was derived for the investigated area to determine directly the thickness of sediments from the main peaks in the H/ V spectrum for seismometer and Tromino data separately. A comparison is made between sediment thicknesses derived from empirical relations developed in this study with those given in literature to demonstrate a positive correlation. The correlation of instrumental resonant frequencies with calculated resonant frequencies (theoretical) suggests that the relation derived from the noise measurements mostly depends on the velocity depth function of the shear wave. The fundamental frequency of the main peak of spectral ratio of H/ V using the both instruments correlates well with the thickness of sediments at the site obtained from the

  8. Luminance noise as a novel approach for measuring contrast sensitivity within the magnocellular and parvocellular pathways.

    Science.gov (United States)

    Hall, Cierra M; McAnany, J Jason

    2017-07-01

    This study evaluated the extent to which different types of luminance noise can be used to target selectively the inferred magnocellular (MC) and parvocellular (PC) visual pathways. Letter contrast sensitivity (CS) was measured for three visually normal subjects for letters of different size (0.8°-5.3°) under established paradigms intended to target the MC pathway (steady-pedestal paradigm) and PC pathway (pulsed-pedestal paradigm). Results obtained under these paradigms were compared to those obtained in asynchronous static noise (a field of unchanging luminance noise) and asynchronous dynamic noise (a field of randomly changing luminance noise). CS was measured for letters that were high- and low-pass filtered using a range of filter cutoffs to quantify the object frequency information (cycles per letter) mediating letter identification, which was used as an index of the pathway mediating CS. A follow-up experiment was performed to determine the range of letter duration over which MC and PC pathway CS can be targeted. Analysis of variance indicated that the object frequencies measured under the static noise and steady-pedestal paradigms did not differ significantly (p ≥ 0.065), but differed considerably from those measured under the dynamic noise (both p noise, and in dynamic noise. These data suggest that the spatiotemporal characteristics of noise can be manipulated to target the inferred MC (static noise) and PC (dynamic noise) pathways. The results also suggest that CS within these pathways can be measured at long stimulus durations, which has potential importance in the design of future clinical CS tests.

  9. Radio-frequency shot-noise measurement in a magnetic tunnel junction with a MgO barrier

    International Nuclear Information System (INIS)

    Rehman, Mushtaq; Park, Junghwan; Song, Woon; Chong, Yonuk; Lee, Yeonsub; Min, Byoungchul; Shin, Kyungho; Ryu, Sangwan; Khim, Zheong

    2010-01-01

    We measured the noise power of a magnetic tunnel junction in the frequency range of 710 ∼ 1200 MHz. A low-noise cryogenic HEMT amplifier was used to measure the small noise signal at a high frequency with wide bandwidth. The MgO-barrier tunnel junction showed large tunnel magnetoresistance ratio of 215% at low temperature, which indicates electronic transport through the tunnel barrier without any significant spin-flip scattering. In the bias-dependent noise measurement, however, the zero-bias shot noise was enhanced compared to the value expected from a perfect tunnel barrier or the value observed from a good Al-AlO x -Al tunnel junction. We assume that this enhanced noise comes from inelastic tunneling processes through the barrier, which may be related to the observed zero-bias anomaly in the differential resistance of the tunnel junctions. We present a simple phenomenological model for how the inelastic scattering process can enhance the zero-bias noise in a tunnel junction.

  10. Characterization of Seismic Noise at Selected Non-Urban Sites

    Science.gov (United States)

    2010-03-01

    Field sites for seismic recordings: Scottish moor (upper left), Enfield, NH (upper right), and vicinity of Keele, England (bottom). ERDC...three sites. The sites are: a wind farm on a remote moor in Scotland, a ~13 acre field bounded by woods in a rural Enfield, NH neigh- borhood, and a site...in a rural Enfield, NH, neighborhood, and a site transitional from developed land to farmland within 1 km of the six-lane M6 motorway near Keele

  11. Air flow measurement techniques applied to noise reduction of a centrifugal blower

    Science.gov (United States)

    Laage, John W.; Armstrong, Ashli J.; Eilers, Daniel J.; Olsen, Michael G.; Mann, J. Adin

    2005-09-01

    The air flow in a centrifugal blower was studied using a variety of flow and sound measurement techniques. The flow measurement techniques employed included Particle Image Velocimetry (PIV), pitot tubes, and a five hole spherical probe. PIV was used to measure instantaneous and ensemble-averaged velocity fields over large area of the outlet duct as a function of fan position, allowing for the visualization of the flow as it leave the fan blades and progressed downstream. The results from the flow measurements were reviewed along side the results of the sound measurements with the goal of identifying sources of noise and inefficiencies in flow performance. The radiated sound power was divided into broadband and tone noise and measures of the flow. The changes in the tone and broadband sound were compared to changes in flow quantities such as the turbulent kinetic energy and Reynolds stress. Results for each method will be presented to demonstrate the strengths of each flow measurement technique as well as their limitations. Finally, the role that each played in identifying noise sources is described.

  12. Field-Deployable Acoustic Digital Systems for Noise Measurement

    Science.gov (United States)

    Shams, Qamar A.; Wright, Kenneth D.; Lunsford, Charles B.; Smith, Charlie D.

    2000-01-01

    Langley Research Center (LaRC) has for years been a leader in field acoustic array measurement technique. Two field-deployable digital measurement systems have been developed to support acoustic research programs at LaRC. For several years, LaRC has used the Digital Acoustic Measurement System (DAMS) for measuring the acoustic noise levels from rotorcraft and tiltrotor aircraft. Recently, a second system called Remote Acquisition and Storage System (RASS) was developed and deployed for the first time in the field along with DAMS system for the Community Noise Flight Test using the NASA LaRC-757 aircraft during April, 2000. The test was performed at Airborne Airport in Wilmington, OH to validate predicted noise reduction benefits from alternative operational procedures. The test matrix was composed of various combinations of altitude, cutback power, and aircraft weight. The DAMS digitizes the acoustic inputs at the microphone site and can be located up to 2000 feet from the van which houses the acquisition, storage and analysis equipment. Digitized data from up to 10 microphones is recorded on a Jaz disk and is analyzed post-test by microcomputer system. The RASS digitizes and stores acoustic inputs at the microphone site that can be located up to three miles from the base station and can compose a 3 mile by 3 mile array of microphones. 16-bit digitized data from the microphones is stored on removable Jaz disk and is transferred through a high speed array to a very large high speed permanent storage device. Up to 30 microphones can be utilized in the array. System control and monitoring is accomplished via Radio Frequency (RF) link. This paper will present a detailed description of both systems, along with acoustic data analysis from both systems.

  13. Newtonian noise cancellation in tensor gravitational wave detector

    International Nuclear Information System (INIS)

    Paik, Ho Jung; Harms, Jan

    2016-01-01

    Terrestrial gravity noise produced by ambient seismic and infrasound fields poses one of the main sensitivity limitations in low-frequency ground-based gravitational-wave (GW) detectors. This noise needs to be suppressed by 3-5 orders of magnitude in the frequency band 10 mHz to 1 Hz, which is extremely challenging. We present a new approach that greatly facilitates cancellation of gravity noise in full-tensor GW detectors. It makes explicit use of the direction of propagation of a GW, and can therefore either be implemented in directional searches for GWs or in observations of known sources. We show that suppression of the Newtonian-noise foreground is greatly facilitated using the extra strain channels in full-tensor GW detectors. Only a modest number of auxiliary, high-sensitivity environmental sensors is required to achieve noise suppression by a few orders of magnitude. (paper)

  14. An Analysis of FM Jamming and Noise Quality Measures

    Science.gov (United States)

    1993-12-01

    equipment setup is shown in figure 6. For reasons of practicality and manageability , all equipment was chosen to be commercially available and of a fairly...bins based on the size of the parameter F. It computes a smoothed "Turner Noise Qaulity " similar to the noise quality measure employed by Daly in his...recý.orate for :nf-,aton Doe,A-,ým5 1o- A c-t•s. )2 15 efferso Oarts H,9gPay, Srte 1204. ArtOngton, VA 222024302 and to the Of"ce of Management and aucige

  15. Sparseness- and continuity-constrained seismic imaging

    Science.gov (United States)

    Herrmann, Felix J.

    2005-04-01

    Non-linear solution strategies to the least-squares seismic inverse-scattering problem with sparseness and continuity constraints are proposed. Our approach is designed to (i) deal with substantial amounts of additive noise (SNR formulating the solution of the seismic inverse problem in terms of an optimization problem. During the optimization, sparseness on the basis and continuity along the reflectors are imposed by jointly minimizing the l1- and anisotropic diffusion/total-variation norms on the coefficients and reflectivity, respectively. [Joint work with Peyman P. Moghaddam was carried out as part of the SINBAD project, with financial support secured through ITF (the Industry Technology Facilitator) from the following organizations: BG Group, BP, ExxonMobil, and SHELL. Additional funding came from the NSERC Discovery Grants 22R81254.

  16. OGS improvements in 2012 in running the North-eastern Italy Seismic Network: the Ferrara VBB borehole seismic station

    Science.gov (United States)

    Pesaresi, D.; Romanelli, M.; Barnaba, C.; Bragato, P. L.; Durì, G.

    2014-07-01

    The Centro di Ricerche Sismologiche (CRS, Seismological Research Centre) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the North-eastern Italy Seismic Network: it currently consists of 17 very sensitive broad band and 18 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data centre in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of North-eastern Italy. The south-western edge of the OGS seismic network (Fig. 1) stands on the Po alluvial basin: earthquake localization and characterization in this area is affected by the presence of soft alluvial deposits. OGS ha already experience in running a local seismic network in high noise conditions making use of borehole installations in the case of the micro-seismicity monitoring of a local gas storage site for a private company. Following the ML = 5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on 20 May 2012 at 02:03:53 UTC, a cooperation of Istituto Nazionale di Geofisica e Vulcanologia, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of a previously existing very broad band (VBB) borehole seismic station in Ferrara. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-West, including Ferrara and its surroundings, and on the other hand to evaluate the seismic response at the site. We will describe improvements in running the North-eastern Italy Seismic Network, including details of

  17. First evaluation of low frequency noise measurements of in core detector signals in the measuring assembly Rheinsberg

    International Nuclear Information System (INIS)

    Collatz, S.

    1982-01-01

    Reactor noise spectra of in core neutron detectors are measured in the low frequency range (0.03 Hz to 1 Hz) and evaluated. The increase of the effective noise signal value is due to pressure oscillations or oscillations of special steam volume portions. Thus boiling monitoring of reactor cores in PWR type reactors may be possible, if the low frequency noise of the whole set of in core detectors is taken into account

  18. Inference from the futures: ranking the noise cancelling accuracy of realized measures

    DEFF Research Database (Denmark)

    Mirone, Giorgio

    We consider the log-linear relationship between futures contracts and their underlying assets and show that in the classical Brownian semi-martingale (BSM) framework the two series must, by no-arbitrage, have the same integrated variance. We then introduce the concept of noise cancelling...... measures in the presence of noise. Moreover, a thorough simulation analysis is employed to evaluate the estimators' sensitivity to different price and noise processes, and sampling frequencies....

  19. Magma replenishment and volcanic unrest inferred from the analysis of VT micro-seismicity and seismic velocity changes at Piton de la Fournaise Volcano

    Science.gov (United States)

    Brenguier, F.; Rivemale, E.; Clarke, D. S.; Schmid, A.; Got, J.; Battaglia, J.; Taisne, B.; Staudacher, T.; Peltier, A.; Shapiro, N. M.; Tait, S.; Ferrazzini, V.; Di Muro, A.

    2011-12-01

    Piton de la Fournaise volcano (PdF) is among the most active basaltic volcanoes worldwide with more than one eruption per year on average. Also, PdF is densely instrumented with short-period and broad-band seismometers as well as with GPS receivers. Continuous seismic waveforms are available from 1999. Piton de la Fournaise volcano has a moderate inter-eruptive seismic activity with an average of five detected Volcano-Tectonic (VT) earthquakes per day with magnitudes ranging from 0.5 to 3.5. These earthquakes are shallow and located about 2.5 kilometers beneath the edifice surface. Volcanic unrest is captured on average a few weeks before eruptions by measurements of increased VT seismicity rate, inflation of the edifice summit, and decreased seismic velocities from correlations of seismic noise. Eruptions are usually preceded by seismic swarms of VT earthquakes. Recently, almost 50 % of seismic swarms were not followed by eruptions. Within this work, we aim to gather results from different groups of the UnderVolc research project in order to better understand the processes of deep magma transfer, volcanic unrest, and pre-eruptive magma transport initiation. Among our results, we show that the period 1999-2003 was characterized by a long-term increase of VT seismicity rate coupled with a long-term decrease of seismic velocities. These observations could indicate a long-term replenishment of the magma storage area. The relocation of ten years of inter-eruptive micro-seismicity shows a narrow (~300 m long) sub-vertical fault zone thus indicating a conduit rather than an extended magma reservoir as the shallow magma feeder system. Also, we focus on the processes of short-term volcanic unrest and prove that magma intrusions within the edifice leading to eruptions activate specific VT earthquakes that are distinct from magma intrusions that do not lead to eruptions. We thus propose that, among the different pathways of magma transport within the edifice, only one will

  20. A combined aeroelastic-aeroacoustic model for wind turbine noise: Verification and analysis of field measurements

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Fischer, Andreas

    2017-01-01

    In this paper, semi-empirical engineering models for the three main wind turbine aerodynamic noise sources, namely, turbulent inflow, trailing edge and stall noise, are introduced. They are implemented into the in-house aeroelastic code HAWC2 commonly used for wind turbine load calculations...... and design. The results of the combined aeroelastic and aeroacoustic model are compared with field noise measurements of a 500kW wind turbine. Model and experimental data are in fairly good agreement in terms of noise levels and directivity. The combined model allows separating the various noise sources...... and highlights a number of mechanisms that are difficult to differentiate when only the overall noise from a wind turbine is measured....

  1. Comparison of seismic sources for shallow seismic: sledgehammer and pyrotechnics

    Directory of Open Access Journals (Sweden)

    Brom Aleksander

    2015-10-01

    Full Text Available The pyrotechnic materials are one of the types of the explosives materials which produce thermal, luminous or sound effects, gas, smoke and their combination as a result of a self-sustaining chemical reaction. Therefore, pyrotechnics can be used as a seismic source that is designed to release accumulated energy in a form of seismic wave recorded by tremor sensors (geophones after its passage through the rock mass. The aim of this paper was to determine the utility of pyrotechnics for shallow seismic engineering. The work presented comparing the conventional method of seismic wave excitation for seismic refraction method like plate and hammer and activating of firecrackers on the surface. The energy released by various sources and frequency spectra was compared for the two types of sources. The obtained results did not determine which sources gave the better results but showed very interesting aspects of using pyrotechnics in seismic measurements for example the use of pyrotechnic materials in MASW.

  2. Quantitative analysis of the anti-noise performance of an m-sequence in an electromagnetic method

    Science.gov (United States)

    Yuan, Zhe; Zhang, Yiming; Zheng, Qijia

    2018-02-01

    An electromagnetic method with a transmitted waveform coded by an m-sequence achieved better anti-noise performance compared to the conventional manner with a square-wave. The anti-noise performance of the m-sequence varied with multiple coding parameters; hence, a quantitative analysis of the anti-noise performance for m-sequences with different coding parameters was required to optimize them. This paper proposes the concept of an identification system, with the identified Earth impulse response obtained by measuring the system output with the input of the voltage response. A quantitative analysis of the anti-noise performance of the m-sequence was achieved by analyzing the amplitude-frequency response of the corresponding identification system. The effects of the coding parameters on the anti-noise performance are summarized by numerical simulation, and their optimization is further discussed in our conclusions; the validity of the conclusions is further verified by field experiment. The quantitative analysis method proposed in this paper provides a new insight into the anti-noise mechanism of the m-sequence, and could be used to evaluate the anti-noise performance of artificial sources in other time-domain exploration methods, such as the seismic method.

  3. A novel approach to reduce environmental noise in microgravity measurements using a Scintrex CG5

    Science.gov (United States)

    Boddice, Daniel; Atkins, Phillip; Rodgers, Anthony; Metje, Nicole; Goncharenko, Yuriy; Chapman, David

    2018-05-01

    The accuracy and repeatability of microgravity measurements for surveying purposes are affected by two main sources of noise; instrument noise from the sensor and electronics, and environmental sources of noise from anthropogenic activity, wind, microseismic activity and other sources of vibrational noise. There is little information in the literature on the quantitative values of these different noise sources and their significance for microgravity measurements. Experiments were conducted to quantify these sources of noise with multiple instruments, and to develop methodologies to reduce these unwanted signals thereby improving the accuracy or speed of microgravity measurements. External environmental sources of noise were found to be concentrated at higher frequencies (> 0.1 Hz), well within the instrument's bandwidth. In contrast, the internal instrumental noise was dominant at frequencies much lower than the reciprocal of the maximum integration time, and was identified as the limiting factor for current instruments. The optimum time for integration was found to be between 120 and 150 s for the instruments tested. In order to reduce the effects of external environmental noise on microgravity measurements, a filtering and despiking technique was created using data from noisy environments next to a main road and outside on a windy day. The technique showed a significant improvement in the repeatability of measurements, with between 40% and 50% lower standard deviations being obtained over numerous different data sets. The filtering technique was then tested in field conditions by using an anomaly of known size, and a comparison made between different filtering methods. Results showed improvements with the proposed method performing better than a conventional, or boxcar, averaging process. The proposed despiking process was generally found to be ineffective, with greater gains obtained when complete measurement records were discarded. Field survey results were

  4. A story about estimation of a random field of boulders from incomplete seismic measurements

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2005-01-01

    deposits along the tunnel line. By use of this important distribution information and of the observed homogeneity of the seismic point source field together with the physical properties of diffraction it became possible to make the wanted prediction. During the excavation the found boulders were counted......This paper reports on the statistical interpretation of seismic diffraction measurements of boulder locations. The measurements are made in a corridor along the planned tunnel line for the later realized bored tunnel through the till deposits under the East Channel of the Great Belt in Denmark...... graphical registrations on seismograms do not make a proper interpretation possible without detailed knowledge about the joint distribution of the primary dimensions of the boulders. Therefore separate measurements were made of the dimensions of boulders deposited visibly on the cliff beaches of the Great...

  5. Measurement Of Compressional-Wave Seismic Velocities In 29 Wells At The Hanford Site

    International Nuclear Information System (INIS)

    Peterson, S.W.

    2010-01-01

    Check shot seismic velocity surveys were collected in 100 B/C, 200 East, 200-PO-1 Operational Unit (OU), and the Gable Gap areas in order to provide time-depth correlation information to aid the interpretation of existing seismic reflection data acquired at the Hanford Site (Figure 1). This report details results from 5 wells surveyed in fiscal year (FY) 2008, 7 wells in FY 2009, and 17 wells in FY 2010 and provides summary compressional-wave seismic velocity information to help guide future seismic survey design as well as improve current interpretations of the seismic data (SSC 1979/1980; SGW-39675; SGW-43746). Augmenting the check shot database are four surveys acquired in 2007 in support of the Bechtel National, Inc. Waste Treatment Plant construction design (PNNL-16559, PNNL-16652), and check shot surveys in three wells to support seismic testing in the 200 West Area (Waddell et al., 1999). Additional sonic logging was conducted during the late 1970s and early 1980s as part of the Basalt Waste Isolation Program (BWIP) (SSC 1979/1980) and check shot/sonic surveys as part of the safety report for the Skagit/Hanford Nuclear project (RDH/10-AMCP-0164). Check shot surveys are used to obtain an in situ measure of compressional-wave seismic velocity for sediment and rock in the vicinity of the well point, and provide the seismic-wave travel time to geologic horizons of interest. The check shot method deploys a downhole seismic receiver (geophone) to record the arrival of seismic waves generated by a source at the ground surface. The travel time of the first arriving seismic-wave is determined and used to create a time-depth function to correlate encountered geologic intervals with the seismic data. This critical tie with the underlying geology improves the interpretation of seismic reflection profile information. Fieldwork for this investigation was conducted by in house staff during the weeks of September 22, 2008 for 5 wells in the 200 East Area (Figure 2); June 1

  6. Comparison of shear-wave velocity measurements by crosshole, downhole and seismic cone penetration test methods

    Energy Technology Data Exchange (ETDEWEB)

    Suthaker, N.; Tweedie, R. [Thurber Engineering Ltd., Edmonton, AB (Canada)

    2009-07-01

    Shear wave velocity measurements are an integral part of geotechnical studies for major structures and are an important tool in their design for site specific conditions such as site-specific earthquake response. This paper reported on a study in which shear wave velocities were measured at a proposed petrochemical plant site near Edmonton, Alberta. The proposed site is underlain by lacustrine clay, glacial till and upper Cretaceous clay shale and sandstone bedrock. The most commonly used methods for determining shear wave velocity include crosshole seismic tests, downhole seismic tests, and seismic cone penetration tests (SCPT). This paper presented the results of all 3 methods used in this study and provided a comparison of the various test methods and their limitations. The crosshole test results demonstrated a common trend of increasing shear wave velocity with depth to about 15 m, below which the velocities remained relatively constant. An anomaly was noted at one site, where the shear wave velocity was reduced at a zone corresponding to clay till containing stiff high plastic clay layers. The field study demonstrated that reasonable agreement in shear wave velocity measurements can be made using crosshole, downhole and seismic tests in the same soil conditions. The National Building Code states that the shear wave velocity is the fundamental method for determining site classification, thus emphasizing the importance of obtaining shear wave velocity measurements for site classification. It was concluded that an SCPT program can be incorporated into the field program without much increase in cost and can be supplemented by downhole or crosshole techniques. 5 refs., 2 tabs., 10 figs.

  7. Modeling continuous seismic velocity changes due to ground shaking in Chile

    Science.gov (United States)

    Gassenmeier, Martina; Richter, Tom; Sens-Schönfelder, Christoph; Korn, Michael; Tilmann, Frederik

    2015-04-01

    In order to investigate temporal seismic velocity changes due to earthquake related processes and environmental forcing, we analyze 8 years of ambient seismic noise recorded by the Integrated Plate Boundary Observatory Chile (IPOC) network in northern Chile between 18° and 25° S. The Mw 7.7 Tocopilla earthquake in 2007 and the Mw 8.1 Iquique earthquake in 2014 as well as numerous smaller events occurred in this area. By autocorrelation of the ambient seismic noise field, approximations of the Green's functions are retrieved. The recovered function represents backscattered or multiply scattered energy from the immediate neighborhood of the station. To detect relative changes of the seismic velocities we apply the stretching method, which compares individual autocorrelation functions to stretched or compressed versions of a long term averaged reference autocorrelation function. We use time windows in the coda of the autocorrelations, that contain scattered waves which are highly sensitive to minute changes in the velocity. At station PATCX we observe seasonal changes in seismic velocity as well as temporary velocity reductions in the frequency range of 4-6 Hz. The seasonal changes can be attributed to thermal stress changes in the subsurface related to variations of the atmospheric temperature. This effect can be modeled well by a sine curve and is subtracted for further analysis of short term variations. Temporary velocity reductions occur at the time of ground shaking usually caused by earthquakes and are followed by a recovery. We present an empirical model that describes the seismic velocity variations based on continuous observations of the local ground acceleration. Our hypothesis is that not only the shaking of earthquakes provokes velocity drops, but any small vibrations continuously induce minor velocity variations that are immediately compensated by healing in the steady state. We show that the shaking effect is accumulated over time and best described by

  8. Detection of Artificially Generated Seismic Signals using Balloon-borne Infrasound Sensors

    OpenAIRE

    Krishnamoorthy, Siddharth; Komjathy, Attila; Pauken, Michael T.; Cutts, James A.; Garcia, Raphael F.; Mimoun, David; Cadu, Alexandre; Sournac, Anthony; Jackson, Jennifer M.; Lai, Voon Hui; Bowman, Daniel C.

    2018-01-01

    We conducted an experiment in Pahrump, Nevada, in June 2017, where artificial seismic signals were created using a seismic hammer, and the possibility of detecting them from their acoustic signature was examined. In this work, we analyze the pressure signals recorded by highly sensitive barometers deployed on the ground and on tethers suspended from balloons. Our signal processing results show that wind noise experienced by a barometer on a free‐flying balloon is lower compared to one on a mo...

  9. Large-Strain Monitoring Above a Longwall Coal Mine With GPS and Seismic Measurements

    Science.gov (United States)

    Swanson, P. L.; Andreatta, V.; Meertens, C. M.; Krahenbuhl, T.; Kenner, B.

    2001-12-01

    As part of an effort to evaluate continuous GPS measurements for use in mine safety studies, a joint GPS-seismic experiment was conducted at an underground longwall coal mine near Paonia, Colorado in June, 2001. Seismic and deformation signals were measured using prototype low-cost monitoring systems as a longwall panel was excavated 150 m beneath the site. Data from both seismic and GPS instruments were logged onto low-power PC-104 Linux computers which were networked using a wireless LAN. The seismic system under development at NIOSH/SRL is based on multiple distributed 8-channel 24-bit A/D converters. The GPS system uses a serial single-frequency (L1) receiver and UNAVCO's "Jstream" Java data logging software. For this experiment, a continuously operating dual-frequency GPS receiver was installed 2.4 km away to serve as a reference site. In addition to the continuously operating sites, 10 benchmarks were surveyed daily with short "rapid-static" occupations in order to provide greater spatial sampling. Two single-frequency sites were located 35 meters apart on a relatively steep north-facing slope. As mining progressed from the east, net displacements of 1.2 meters to the north and 1.65 meters of subsidence were observed over a period of 6 days. The east component exhibited up to 0.45 meters of eastward displacement (toward the excavation) followed by reverse movement to the west. This cycle, observed approximately two days earlier at the eastern L1 site, is consistent with a change in surface strain from tension to compression as the excavation front passed underneath. As this strain "wave" propagated across the field site, surface deformation underwent a cycle of tension crack nucleation, crack opening (up to 15 cm normal displacements), subsequent crack closure, and production of low-angle-thrust compressional deformation features. Analysis of seismic results, surface deformation, and additional survey results are presented.

  10. Measurements of noise immission from wind turbines at receptor locations: Use of a vertical microphone board to improve the signal-to-noise ratio

    International Nuclear Information System (INIS)

    Fegeant, Olivier

    1999-01-01

    The growing interest in wind energy has increased the need of accuracy in wind turbine noise immission measurements and thus, the need of new measurement techniques. This paper shows that mounting the microphone on a vertical board improves the signal-to-noise ratio over the whole frequency range compared to the free microphone technique. Indeed, the wind turbine is perceived two times noisier by the microphone due to the signal reflection by the board while, in addition, the wind noise is reduced. Furthermore, the board shielding effect allows the measurements to be carried out in the presence of reflecting surfaces such as building facades

  11. An instantaneous spatiotemporal model to predict a bicyclist's Black Carbon exposure based on mobile noise measurements

    Science.gov (United States)

    Dekoninck, Luc; Botteldooren, Dick; Int Panis, Luc

    2013-11-01

    Several studies have shown that a significant amount of daily air pollution exposure, in particular Black Carbon (BC), is inhaled during trips. Assessing this contribution to exposure remains difficult because on the one hand local air pollution maps lack spatio-temporal resolution, at the other hand direct measurement of particulate matter concentration remains expensive. This paper proposes to use in-traffic noise measurements in combination with geographical and meteorological information for predicting BC exposure during commuting trips. Mobile noise measurements are cheaper and easier to perform than mobile air pollution measurements and can easily be used in participatory sensing campaigns. The uniqueness of the proposed model lies in the choice of noise indicators that goes beyond the traditional overall A-weighted noise level used in previous work. Noise and BC exposures are both related to the traffic intensity but also to traffic speed and traffic dynamics. Inspired by theoretical knowledge on the emission of noise and BC, the low frequency engine related noise and the difference between high frequency and low frequency noise that indicates the traffic speed, are introduced in the model. In addition, it is shown that splitting BC in a local and a background component significantly improves the model. The coefficients of the proposed model are extracted from 200 commuter bicycle trips. The predicted average exposure over a single trip correlates with measurements with a Pearson coefficient of 0.78 using only four parameters: the low frequency noise level, wind speed, the difference between high and low frequency noise and a street canyon index expressing local air pollution dispersion properties.

  12. Background noise levels and correlation with ship traffic in the Gulf of Catania

    Science.gov (United States)

    Viola, Salvatore; Buscaino, Giuseppa; Caruso, Francesco; Chierici, Francesco; Embriaco, Davide; Favali, Paolo; Giovanetti, Gabriele; Grammauta, Roasario; Larosa, Giuseppina; Pavan, Gianni; Pellegrino, Carmelo; Pulvirenti, Sara; Riccobene, Giorgio; Sciacca, Virginia; Simeone, Francesco; Beranzoli, Laura; Marinaro, Giuditta

    2015-04-01

    In the last decades the growing interest in the evaluation of the underwater acoustic noise for studies in the fields of geology, biology and high-energy physics is driving the scientific community to collaborate towards a multidisciplinary approach to the topic. In June 2012 in the framework of the European project EMSO, a multidisciplinary underwater observatory, named NEMO-SN1, was installed 25 km off-shore the port of Catania, at a depth of 2100 m and operated until May 2013 by INFN (Istituto Nazionale di Fisica Nucleare) and INGV (Istituto Nazionale di Geofisica e Vulcanologia). NEMO-SN1 hosted aboard geophysical, oceanographic and acoustic sensors: among these a seismic hydrophone model SMID DT-405D(V). In this work, conducted within the activity of the SMO project, the results on the evaluation of the underwater acoustic pollution in the Gulf of Catania through SMID DT-405D(V) recordings are presented. The seismic hydrophone provided a data set of about 11 months of continuous (24/7) recordings. Underwater sounds have been continuously digitized at a sampling frequency of 2 kHz and the acquired data have been stored in 10min long files for off-line analysis. To describe one-year background noise levels, the mean integrated acoustic noise was measured every second (sampling frequency 2000, NFFT 2048) in the 1/3 octave bands with centre frequency 63 Hz and for each 10 minutes-long file the 5th, the 50th and the 98th percentiles were calculated. Measured noise was correlated with the shipping traffic in the area, thanks to the data provided by an AIS receiver installed at the INFN-Laboratori Nazionali del Sud. An acoustic noise increment was measured in coincidence with the passing of crafts in the area and it was possible to identify the characteristic spectrum of each ship. A simple model for the estimation of the acoustic noise induced by the ships passing through the area was developed. The model was applied by using AIS data acquired during the operation

  13. The effect of noise in a performance measure on work motivation: A real effort laboratory experiment

    NARCIS (Netherlands)

    Sloof, R.; van Praag, C.M.

    2008-01-01

    This paper reports the results of an individual real effort laboratory experiment where subjects are paid for measured performance. Measured performance equals actual performance plus noise. We compare a stable environment where the noise is small with a volatile environment where the noise is

  14. The effect of noise in a performance measure on work motivation: A real effort laboratory experiment

    NARCIS (Netherlands)

    Sloof, R.; van Praag, C.M.

    2010-01-01

    This paper reports the results of an individual real effort laboratory experiment where subjects are paid for measured performance. Measured performance equals actual performance plus noise. We compare a stable environment where the noise is small with a volatile environment where the noise is

  15. Noise analysis of the measurement of group delay in Fourier white-light interferometric cross correlation

    International Nuclear Information System (INIS)

    Laude, Vincent

    2002-01-01

    The problem of noise analysis in measuring the group delay introduced by a dispersive optical element by use of white-light interferometric cross correlation is investigated. Two noise types, detection noise and position noise, are specifically analyzed. Detection noise is shown to be highly sensitive to the spectral content of the white-light source at the frequency considered and to the temporal acquisition window. Position noise, which arises from the finite accuracy of the measurement of the scanning mirror's position, can severely damage the estimation of the group delay. Such is shown to be the case for fast Fourier transform-based estimation algorithms. A new algorithm that is insensitive to scanning delay errors is proposed, and subfemtosecond accuracy is obtained without any postprocessing

  16. Practical ranges of loudness levels of various types of environmental noise, including traffic noise, aircraft noise, and industrial noise

    NARCIS (Netherlands)

    Salomons, E.M.; Janssen, S.A.

    2011-01-01

    In environmental noise control one commonly employs the A-weighted sound level as an approximate measure of the effect of noise on people. A measure that is more closely related to direct human perception of noise is the loudness level. At constant A-weighted sound level, the loudness level of a

  17. Measurement of signal-to-noise ratio performance of TV fluoroscopy systems

    International Nuclear Information System (INIS)

    Geluk, R.J.

    1985-01-01

    A method has been developed for direct measurement of Signal-to-Noise ratio performance on X-ray TV systems. To this end the TV signal resulting from a calibrated test object, is compared with the noise level in the image. The method is objective and produces instantaneous readout, which makes it very suitable for system evaluation under dynamic conditions. (author)

  18. Optimal configuration of partial Mueller matrix polarimeter for measuring the ellipsometric parameters in the presence of Poisson shot noise and Gaussian noise

    Science.gov (United States)

    Quan, Naicheng; Zhang, Chunmin; Mu, Tingkui

    2018-05-01

    We address the optimal configuration of a partial Mueller matrix polarimeter used to determine the ellipsometric parameters in the presence of additive Gaussian noise and signal-dependent shot noise. The numerical results show that, for the PSG/PSA consisting of a variable retarder and a fixed polarizer, the detection process immune to these two types of noise can be optimally composed by 121.2° retardation with a pair of azimuths ±71.34° and a 144.48° retardation with a pair of azimuths ±31.56° for four Mueller matrix elements measurement. Compared with the existing configurations, the configuration presented in this paper can effectively decrease the measurement variance and thus statistically improve the measurement precision of the ellipsometric parameters.

  19. Detecting the presence of a magnetic field under Gaussian and non-Gaussian noise by adaptive measurement

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan-Mei; Li, Jun-Gang, E-mail: jungl@bit.edu.cn; Zou, Jian

    2017-06-15

    Highlights: • Adaptive measurement strategy is used to detect the presence of a magnetic field. • Gaussian Ornstein–Uhlenbeck noise and non-Gaussian noise have been considered. • Weaker magnetic fields may be more easily detected than some stronger ones. - Abstract: By using the adaptive measurement method we study how to detect whether a weak magnetic field is actually present or not under Gaussian noise and non-Gaussian noise. We find that the adaptive measurement method can effectively improve the detection accuracy. For the case of Gaussian noise, we find the stronger the magnetic field strength, the easier for us to detect the magnetic field. Counterintuitively, for non-Gaussian noise, some weaker magnetic fields are more likely to be detected rather than some stronger ones. Finally, we give a reasonable physical interpretation.

  20. Effect of Wind Farm Noise on Local Residents' Decision to Adopt Mitigation Measures.

    Science.gov (United States)

    Botelho, Anabela; Arezes, Pedro; Bernardo, Carlos; Dias, Hernâni; Pinto, Lígia M Costa

    2017-07-11

    Wind turbines' noise is frequently pointed out as the reason for local communities' objection to the installation of wind farms. The literature suggests that local residents feel annoyed by such noise and that, in many instances, this is significant enough to make them adopt noise-abatement interventions on their homes. Aiming at characterizing the relationship between wind turbine noise, annoyance, and mitigating actions, we propose a novel conceptual framework. The proposed framework posits that actual sound pressure levels of wind turbines determine individual homes' noise-abatement decisions; in addition, the framework analyzes the role that self-reported annoyance, and perception of noise levels, plays on the relationship between actual noise pressure levels and those decisions. The application of this framework to a particular case study shows that noise perception and annoyance constitutes a link between the two. Importantly, however, noise also directly affects people's decision to adopt mitigating measures, independently of the reported annoyance.

  1. Effect of Wind Farm Noise on Local Residents’ Decision to Adopt Mitigation Measures

    Science.gov (United States)

    Botelho, Anabela; Bernardo, Carlos; Dias, Hernâni; Pinto, Lígia M. Costa

    2017-01-01

    Wind turbines’ noise is frequently pointed out as the reason for local communities’ objection to the installation of wind farms. The literature suggests that local residents feel annoyed by such noise and that, in many instances, this is significant enough to make them adopt noise-abatement interventions on their homes. Aiming at characterizing the relationship between wind turbine noise, annoyance, and mitigating actions, we propose a novel conceptual framework. The proposed framework posits that actual sound pressure levels of wind turbines determine individual homes’ noise-abatement decisions; in addition, the framework analyzes the role that self-reported annoyance, and perception of noise levels, plays on the relationship between actual noise pressure levels and those decisions. The application of this framework to a particular case study shows that noise perception and annoyance constitutes a link between the two. Importantly, however, noise also directly affects people’s decision to adopt mitigating measures, independently of the reported annoyance. PMID:28696404

  2. Adaptive endpoint detection of seismic signal based on auto-correlated function

    International Nuclear Information System (INIS)

    Fan Wanchun; Shi Ren

    2001-01-01

    Based on the analysis of auto-correlation function, the notion of the distance between auto-correlation function was quoted, and the characterization of the noise and the signal with noise were discussed by using the distance. Then, the method of auto- adaptable endpoint detection of seismic signal based on auto-correlated similarity was summed up. The steps of implementation and determining of the thresholds were presented in detail. The experimental results that were compared with the methods based on artificial detecting show that this method has higher sensitivity even in a low signal with noise ratio circumstance

  3. Electrostatic noise measurement with a pair of spherical probes near interplanetary shocks

    International Nuclear Information System (INIS)

    Solomon, J.; Touzin, F.

    1991-01-01

    In order to obtain accurate measurements of electrostatic noise spectra on board the ISEE 1 satellite, near interplanetary shock waves, the authors perform a detailed theoretical and numerical study of an antenna consisting of a pair of spherical probes. They compute the quasi-thermal electrostatic noise observed theoretically on the antenna by assuming that the solar wind plasma can be properly represented by the sum of two Maxwellian distributions (core and halo). They study the dependence of the electrostatic spectra on the antenna length and on the different plasma parameters, particularly on the density and temperature ratio of the core and of the halo. They show that by also taking into account the instrumental noise and the shot noise on the antenna, a calibration factor can be precisely determined for the antenna that they consider. They display some results obtained from measurements of electrostatic noise spectra behind interplanetary shock waves. Finally, they discuss the real meaning of a specific halo temperature, and they show that, in a first approximation, the theoretical results are only slightly modified when they consider types of distributions other than Maxwellians

  4. Grimsel Test Site. Further Development of Seismic Tomography

    International Nuclear Information System (INIS)

    Albert, W.; Buehnemann, J.; Holliger, K.; Maurer, H.R.; Pratt, G.; Stekl, I.

    1999-03-01

    Experience gained by NAGRA and its partner organisations in the Grimsel underground rock laboratory has led to the identification of two main areas of investigation: The first part of the present project deals with the evaluation and testing of underground seismic sources suitable for large measurement distances. Various high-frequency seismic sources have been tested at the Grimsel Test Site (GTS) (Buehnemann, 1996; Buehnemann and Holliger, 1998). The tests were designed to facilitate future tomographic studies of potential radioactive waste disposal sites. A key objective was to identify borehole and tunnel seismic sources capable of generating and sustaining high-frequency signals over distances of up to 1000 m. Seismic sources were located in both water-filled boreholes (sparker, two piezo-electric sources, explosives) and at the tunnel wall (accelerated weight drop, minivibrator, bolt gun, buffalo gun, explosives). The second focal point of the project was dealing with improvement (and development) of analysis techniques in terms of stability, quality and resolution. 3 inversion techniques were tested and developed using the dataset US85 (Gelbke, 1988). Two travel time inversions - anisotropic velocity tomography - AVT (Pratt and Chapman, 1992) and coupled inversion - CI (Maurer, 1996; Maurer and Green, 1997) - and a wave field inversion (WFI Song et al., 1995) were used. Several problems occurred in the first inversion of the US85 dataset using the Simultaneous Iterative Reconstruction Technique (SIRT); these were due to the velocity anisotropy of the rock, the triggering inaccuracy of the shots and uncertainties regarding the source/receiver locations in the boreholes. In the AVT, the velocity anisotropy of the rock is taken into account as a free parameter. In addition to an 'isotropic' velocity image, this involves producing tomograms of anisotropy. Taking into account the anisotropy of the rock allows the artefacts of the SIRT inversion to be explained

  5. Building a Smartphone Seismic Network

    Science.gov (United States)

    Kong, Q.; Allen, R. M.

    2013-12-01

    We are exploring to build a new type of seismic network by using the smartphones. The accelerometers in smartphones can be used to record earthquakes, the GPS unit can give an accurate location, and the built-in communication unit makes the communication easier for this network. In the future, these smartphones may work as a supplement network to the current traditional network for scientific research and real-time applications. In order to build this network, we developed an application for android phones and server to record the acceleration in real time. These records can be sent back to a server in real time, and analyzed at the server. We evaluated the performance of the smartphone as a seismic recording instrument by comparing them with high quality accelerometer while located on controlled shake tables for a variety of tests, and also the noise floor test. Based on the daily human activity data recorded by the volunteers and the shake table tests data, we also developed algorithm for the smartphones to detect earthquakes from daily human activities. These all form the basis of setting up a new prototype smartphone seismic network in the near future.

  6. Application of seismic interferometric migration for shallow seismic high precision data processing: A case study in the Shenhu area

    Science.gov (United States)

    Wei, Jia; Liu, Huaishan; Xing, Lei; Du, Dong

    2018-02-01

    The stability of submarine geological structures has a crucial influence on the construction of offshore engineering projects and the exploitation of seabed resources. Marine geologists should possess a detailed understanding of common submarine geological hazards. Current marine seismic exploration methods are based on the most effective detection technologies. Therefore, current research focuses on improving the resolution and precision of shallow stratum structure detection methods. In this article, the feasibility of shallow seismic structure imaging is assessed by building a complex model, and differences between the seismic interferometry imaging method and the traditional imaging method are discussed. The imaging effect of the model is better for shallow layers than for deep layers because coherent noise produced by this method can result in an unsatisfactory imaging effect for deep layers. The seismic interference method has certain advantages for geological structural imaging of shallow submarine strata, which indicates continuous horizontal events, a high resolution, a clear fault, and an obvious structure boundary. The effects of the actual data applied to the Shenhu area can fully illustrate the advantages of the method. Thus, this method has the potential to provide new insights for shallow submarine strata imaging in the area.

  7. SPREE: A Successful Seismic Array by a Failed Rift System; Analysis of Seismic Noise in the Seismically Quiet Mid-continent

    Science.gov (United States)

    Wolin, E.; van der Lee, S.; Bollmann, T. A.; Revenaugh, J.; Aleqabi, G. I.; Darbyshire, F. A.; Frederiksen, A. W.; Wiens, D.; Shore, P.

    2014-12-01

    The Superior Province Rifting Earthscope Experiment (SPREE) completed its field recording phase last fall with over 96% data return. While 60% of the stations returned data 100% of the time, only 9 performed below 90% and one station had questionable timing. One station was vandalized, another stolen. One station continued recording after its solar panels were pierced by a bullet, while another two stations survived a wildfire and a blow-down, respectively. The blow-down was an extreme wind event that felled hundreds of thousands of trees around the station. SPREE stations recorded many hundreds of earthquakes. Two regional earthquakes and over 400 teleseismic earthquakes had magnitudes over 5.5 and three, smaller local earthquakes had magnitudes over 2.5. We have calculated power spectral estimates between 0.1-1000 s period for the ~2.5-year lifespan of all 82 SPREE stations. Vertical channels performed quite well across the entire frequency range, falling well below the high noise model of Peterson (1993) and usually within 10-15 dB of nearby Transportable Array stations. SPREE stations' horizontal components suffer from long-period (> 30 s) noise. This noise is quietest at night and becomes up to 30 dB noisier during the day in the summer months. We explore possible causes of this variation, including thermal and atmospheric pressure effects. One possibility is that stations are insulated by snow during the winter, reducing temperature variations within the vault. Spring snowmelt creates instability at many of the SPREE stations, evidenced by frequent recenterings and enhanced long-period noise. For all channels, power in the microseismic band (4-16 s) is strongest in the winter, corresponding to storm season in the Northern Hemisphere, and approximately 20 dB weaker during the summer. The power spectrum and temporal variation of microseismic energy is consistent across the entire SPREE array.

  8. A neural network for noise correlation classification

    Science.gov (United States)

    Paitz, Patrick; Gokhberg, Alexey; Fichtner, Andreas

    2018-02-01

    We present an artificial neural network (ANN) for the classification of ambient seismic noise correlations into two categories, suitable and unsuitable for noise tomography. By using only a small manually classified data subset for network training, the ANN allows us to classify large data volumes with low human effort and to encode the valuable subjective experience of data analysts that cannot be captured by a deterministic algorithm. Based on a new feature extraction procedure that exploits the wavelet-like nature of seismic time-series, we efficiently reduce the dimensionality of noise correlation data, still keeping relevant features needed for automated classification. Using global- and regional-scale data sets, we show that classification errors of 20 per cent or less can be achieved when the network training is performed with as little as 3.5 per cent and 16 per cent of the data sets, respectively. Furthermore, the ANN trained on the regional data can be applied to the global data, and vice versa, without a significant increase of the classification error. An experiment where four students manually classified the data, revealed that the classification error they would assign to each other is substantially larger than the classification error of the ANN (>35 per cent). This indicates that reproducibility would be hampered more by human subjectivity than by imperfections of the ANN.

  9. Upper crustal structure of Madeira Island revealed from ambient noise tomography

    Science.gov (United States)

    Matos, Catarina; Silveira, Graça; Matias, Luís; Caldeira, Rita; Ribeiro, M. Luísa; Dias, Nuno A.; Krüger, Frank; Bento dos Santos, Telmo

    2015-06-01

    We present the first image of the Madeira upper crustal structure, using ambient seismic noise tomography. 16 months of ambient noise, recorded in a dense network of 26 seismometers deployed across Madeira, allowed reconstructing Rayleigh wave Green's functions between receivers. Dispersion analysis was performed in the short period band from 1.0 to 4.0 s. Group velocity measurements were regionalized to obtain 2D tomographic images, with a lateral resolution of 2.0 km in central Madeira. Afterwards, the dispersion curves, extracted from each cell of the 2D group velocity maps, were inverted as a function of depth to obtain a 3D shear wave velocity model of the upper crust, from the surface to a depth of 2.0 km. The obtained 3D velocity model reveals features throughout the island that correlates well with surface geology and island evolution.

  10. Instrumentation for Gate Current Noise Measurements on sub-100 nm MOS Transistors

    CERN Document Server

    Gaioni, L; Ratti, L; Re, V; Speziali, V; Traversi, G

    2008-01-01

    This work describes a measuring system that was developed to characterize the gate current noise performances of CMOS devices with minimum feature size in the 100 nm span. These devices play an essential role in the design of present daymixedsignal integrated circuits, because of the advantages associated with the scaling process. The reduction in the gate oxide thickness brought about by CMOS technology downscaling leads to a non-negligible gate current due to direct tunneling phenomena; this current represents a noise source which requires an accurate characterization for optimum analog design. In this paper, two instruments able to perform measurements in two different ranges of gate current values will be discussed. Some of the results of gate current noise characterization will also be presented.

  11. Applications of seismic spatial wavefield gradient and rotation data in exploration seismology

    Science.gov (United States)

    Schmelzbach, C.; Van Renterghem, C.; Sollberger, D.; Häusler, M.; Robertsson, J. O. A.

    2017-12-01

    Seismic spatial wavefield gradient and rotation data have the potential to open up new ways to address long-standing problems in land-seismic exploration such as identifying and separating P-, S-, and surface waves. Gradient-based acquisition and processing techniques could enable replacing large arrays of densely spaced receivers by sparse spatially-compact receiver layouts or even one single multicomponent station with dedicated instruments (e.g., rotational seismometers). Such approaches to maximize the information content of single-station recordings are also of significant interest for seismic measurements at sites with limited access such as boreholes, the sea bottom, and extraterrestrial seismology. Arrays of conventional three-component (3C) geophones enable measuring not only the particle velocity in three dimensions but also estimating their spatial gradients. Because the free-surface condition allows to express vertical derivatives in terms of horizontal derivatives, the full gradient tensor and, hence, curl and divergence of the wavefield can be computed. In total, three particle velocity components, three rotational components, and divergence, result seven-component (7C) seismic data. Combined particle velocity and gradient data can be used to isolate the incident P- or S-waves at the land surface or the sea bottom using filtering techniques based on the elastodynamic representation theorem. Alternatively, as only S-waves exhibit rotational motion, rotational measurements can directly be used to identify S-waves. We discuss the derivations of the gradient-based filters as well as their application to synthetic and field data, demonstrating that rotational data can be of particular interest to S-wave reflection and P-to-S-wave conversion imaging. The concept of array-derived gradient estimation can be extended to source arrays as well. Therefore, source arrays allow us to emulate rotational (curl) and dilatational (divergence) sources. Combined with 7C

  12. Pre-stack estimation of time-lapse seismic velocity changes : an example from the Sleipner CO2-sequestration project

    International Nuclear Information System (INIS)

    Ghaderi, A.; Landro, M.; Ghaderi, A.

    2005-01-01

    Carbon dioxide (CO 2 ) is being injected into a shallow sand formation at around a 1,000 metre depth at the Sleipner Field located in the North Sea. It is expected that the CO 2 injected in the bottom of the formation, will form a plume consisting of CO 2 accumulating in thin lenses during migration up through the reservoir. Several studies have been published using stacked seismic data from 1994, 1999, 2001 and 2002. A thorough analysis of post-stack seismic data from the Sleipner CO2-Sequestration Pilot Project was conducted. Interpretation of seismic data is usually done on post-stack data. For a given subsurface reflection point, seismic data are acquired for various incidence angles, typically 40 angles. These 40 seismic signals are stacked together in order to reduce noise. The term pre-stack refers to seismic data prior to this step. For hydrocarbon-related 4-dimensional seismic studies, travel time shift estimations have been used. This paper compared pre-stack and post-stack estimation of average velocity changes based on measured 4-dimensional travel time shifts. It is more practical to compare estimated velocity changes than the actual travel time changes, since the time shifts vary with offset for pre-stack time-lapse seismic analysis. It was concluded that the pre-stack method gives smaller velocity changes when estimated between two key horizons. Therefore, pre-stack travel time analysis in addition to conventional post-stack analysis is recommended. 6 refs., 12 figs

  13. Automated Fault Interpretation and Extraction using Improved Supplementary Seismic Datasets

    Science.gov (United States)

    Bollmann, T. A.; Shank, R.

    2017-12-01

    During the interpretation of seismic volumes, it is necessary to interpret faults along with horizons of interest. With the improvement of technology, the interpretation of faults can be expedited with the aid of different algorithms that create supplementary seismic attributes, such as semblance and coherency. These products highlight discontinuities, but still need a large amount of human interaction to interpret faults and are plagued by noise and stratigraphic discontinuities. Hale (2013) presents a method to improve on these datasets by creating what is referred to as a Fault Likelihood volume. In general, these volumes contain less noise and do not emphasize stratigraphic features. Instead, planar features within a specified strike and dip range are highlighted. Once a satisfactory Fault Likelihood Volume is created, extraction of fault surfaces is much easier. The extracted fault surfaces are then exported to interpretation software for QC. Numerous software packages have implemented this methodology with varying results. After investigating these platforms, we developed a preferred Automated Fault Interpretation workflow.

  14. Mini-Sosie - a new concept in high-resolution seismic surveys

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, C J

    1977-12-01

    Mini-Sosie is a new approach to high-resolution reflection seismics using a nondynamite source. The basic principles is to use an ordinary earth tamper to produce a long duration pseudo-random input pulse train. Returning signals from suitable geophone arrays are decoded in real time by crosscorrelation with the reference signal recorded from a source-sensor attached to the tamper plate. Relatively weak signals are stacked until sufficient amplitude is obtained; most noise is phased out during the decoding process while in-phase seismic events are added, resulting in good signal-to-noise ratios. The resulting output is the standard field seismogram. The source is relatively quiet and surface damage is insignificant thereby avoiding environmental restrictions. Mini-Sosie is especially useful for shallow investigation to one second (two-way time) and has a wide range of applications from shallow oil and gas exploration, coal, and hard mineral exploration to hydrology and engineering studies.

  15. The shallow structure of Solfatara Volcano, Italy, revealed by dense, wide-aperture seismic profiling.

    Science.gov (United States)

    Bruno, Pier Paolo G; Maraio, Stefano; Festa, Gaetano

    2017-12-12

    Two active-source, high-resolution seismic profiles were acquired in the Solfatara tuff cone in May and November 2014, with dense, wide-aperture arrays. Common Receiver Surface processing was crucial in improving signal-to-noise ratio and reflector continuity. These surveys provide, for the first time, high-resolution seismic images of the Solfatara crater, depicting a ~400 m deep asymmetrical crater filled by volcanoclastic sediments and rocks and carved within an overall non-reflective pre-eruptive basement showing features consistent with the emplacement of shallow intrusive bodies. Seismic reflection data were interpreted using the trace complex attributes and clearly display several steep and segmented collapse faults, generally having normal kinematics and dipping toward the crater centre. Fault/fracture planes are imaged as sudden amplitude drops that generate narrow low-similarity and high-dip attributes. Uprising fluids degassed by a magmatic source are the most probable cause of the small-scale amplitude reduction. Seismic data also support the interpretation of the shallow structure of the Solfatara crater as a maar. Our results provides a solid framework to constrain the near-surface geological interpretation of such a complex area, which improves our understanding of the temporal changes of the structure in relation with other geophysical and geochemical measurements.

  16. Temporal Variability in Seismic Velocity at the Salton Sea Geothermal Field

    Science.gov (United States)

    Taira, T.; Nayak, A.; Brenguier, F.

    2015-12-01

    We characterize the temporal variability of ambient noise wavefield and search for velocity changes associated with activities of the geothermal energy development at the Salton Sea Geothermal Field. The noise cross-correlations (NCFs) are computed for ~6 years of continuous three-component seismic data (December 2007 through January 2014) collected at 8 sites from the CalEnergy Subnetwork (EN network) with MSNoise software (Lecocq et al., 2014, SRL). All seismic data are downloaded from the Southern California Earthquake Data Center. Velocity changes (dv/v) are obtained by measuring time delay between 5-day stacks of NCFs and the reference NCF (average over the entire 6 year period). The time history of dv/v is determined by averaging dv/v measurements over all station/channel pairs (252 combinations). Our preliminary dv/v measurement suggests a gradual increase in dv/v over the 6-year period in a frequency range of 0.5-8.0 Hz. The resultant increase rate of velocity is about 0.01%/year. We also explore the frequency-dependent velocity change at the 5 different frequency bands (0.5-2.0 Hz, 0.75-3.0 Hz, 1.0-4.0 Hz, 1.5-6.0 Hz, and 2.0-8.0 Hz) and find that the level of this long-term dv/v variability is increased with increase of frequency (i.e., the highest increase rate of ~0.15%/year at the 0.5-2.0 Hz band). This result suggests that the velocity changes were mostly occurred in a depth of ~500 m assuming that the coda parts of NCFs (~10-40 s depending on station distances) are predominantly composed of scattered surface waves, with the SoCal velocity model (Dreger and Helmberger, 1993, JGR). No clear seasonal variation of dv/v is observed in the frequency band of 0.5-8.0 Hz.

  17. Interferometric seismic imaging around the active Lalor mine in the Flin Flon greenstone belt, Canada

    Science.gov (United States)

    Roots, Eric; Calvert, Andrew J.; Craven, Jim

    2017-10-01

    Seismic interferometry, which recovers the impulse response of the Earth by cross-correlation of ambient noise recorded at sets of two receivers, has found several applications, including the generation of virtual shot gathers for use in seismic reflection processing. To evaluate the effectiveness of this passive recording technique in mineral exploration in a hard-rock environment, 336 receivers recorded 300 h of ambient noise over the volcanogenic massive sulphide deposit of the recently discovered Lalor mine in the Canadian Flin Flon greenstone belt. A novel time-domain beamforming algorithm was developed to search for individual source locations, demonstrating that the vast majority of noise originated from the mine and ventilation shafts of the Lalor mine. The results of the beamforming were utilized in conjunction with frequency-wavenumber filtering to remove undesirable, mostly monochromatic surface wave noise originating from nearby sources. Virtual shot gathers were generated along three receiver lines, each of which was processed as a separate 2-D reflection line. Two of the resulting unmigrated reflection profiles are compared against coincident dipmoveout-stacked data from a larger, coincident 3-D dynamite seismic survey that was also acquired over the Lalor mine in 2013. Using knowledge of the local geology derived from numerous boreholes, coherent events recovered in the passive reflection profiles are inferred to be either spurious arrivals or real reflections, some of which can be interpreted in terms of geological contacts, indicating the future potential of passive recording surveys in hard rock settings.

  18. Residual stress measurements with barkhausen noise in power plant creep failure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Karvonen, I. [CoMoTest Oy, Maentsaelae (Finland)] Suominen, L. [Stresstech Oy, Jyvaeskylae (Finland)

    1998-12-31

    Continuously developing power and process industry needs predictive maintenance inspection methods in order to prevent failures with correctly timed and properly specified measures. Materials` monitoring has traditionally been non-destructive inspection to detect growing cracks or other deficiencies. Recently, after the development of portable stress measurement systems, some advances has been reached. Based on stress anomalies due to creep, fatigue or corrosion, new applications have been found in the use of Barkhausen noise inspection. When the Barkhausen noise findings have been simultaneously confirmed with other stress measuring methods, a wider acceptance of the application of the method can be proposed. (orig.) 7 refs.

  19. Residual stress measurements with barkhausen noise in power plant creep failure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Karvonen, I. [CoMoTest Oy, Maentsaelae (Finland)] Suominen, L. [Stresstech Oy, Jyvaeskylae (Finland)

    1997-12-31

    Continuously developing power and process industry needs predictive maintenance inspection methods in order to prevent failures with correctly timed and properly specified measures. Materials` monitoring has traditionally been non-destructive inspection to detect growing cracks or other deficiencies. Recently, after the development of portable stress measurement systems, some advances has been reached. Based on stress anomalies due to creep, fatigue or corrosion, new applications have been found in the use of Barkhausen noise inspection. When the Barkhausen noise findings have been simultaneously confirmed with other stress measuring methods, a wider acceptance of the application of the method can be proposed. (orig.) 7 refs.

  20. Aerodynamic Measurements of a Gulfstream Aircraft Model With and Without Noise Reduction Concepts

    Science.gov (United States)

    Neuhart, Dan H.; Hannon, Judith A.; Khorrami, Mehdi R.

    2014-01-01

    Steady and unsteady aerodynamic measurements of a high-fidelity, semi-span 18% scale Gulfstream aircraft model are presented. The aerodynamic data were collected concurrently with acoustic measurements as part of a larger aeroacoustic study targeting airframe noise associated with main landing gear/flap components, gear-flap interaction noise, and the viability of related noise mitigation technologies. The aeroacoustic tests were conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the measurements were obtained with the model in landing configuration with the flap deflected at 39º and the main landing gear on and off. Data were acquired at Mach numbers of 0.16, 0.20, and 0.24. Global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Comparison of the present results with those acquired during a previous test shows a significant reduction in the lift experienced by the model. The underlying cause was traced to the likely presence of a much thicker boundary layer on the tunnel floor, which was acoustically treated for the present test. The steady and unsteady pressure fields on the flap, particularly in the regions of predominant noise sources such as the inboard and outboard tips, remained unaffected. It is shown that the changes in lift and drag coefficients for model configurations fitted with gear/flap noise abatement technologies fall within the repeatability of the baseline configuration. Therefore, the noise abatement technologies evaluated in this experiment have no detrimental impact on the aerodynamic performance of the aircraft model.

  1. Microphone Handling Noise: Measurements of Perceptual Threshold and Effects on Audio Quality.

    Directory of Open Access Journals (Sweden)

    Paul Kendrick

    Full Text Available A psychoacoustic experiment was carried out to test the effects of microphone handling noise on perceived audio quality. Handling noise is a problem affecting both amateurs using their smartphones and cameras, as well as professionals using separate microphones and digital recorders. The noises used for the tests were measured from a variety of devices, including smartphones, laptops and handheld microphones. The signal features that characterise these noises are analysed and presented. The sounds include various types of transient, impact noises created by tapping or knocking devices, as well as more sustained sounds caused by rubbing. During the perceptual tests, listeners auditioned speech podcasts and were asked to rate the degradation of any unwanted sounds they heard. A representative design test methodology was developed that tried to encourage everyday rather than analytical listening. Signal-to-noise ratio (SNR of the handling noise events was shown to be the best predictor of quality degradation. Other factors such as noise type or background noise in the listening environment did not significantly affect quality ratings. Podcast, microphone type and reproduction equipment were found to be significant but only to a small extent. A model allowing the prediction of degradation from the SNR is presented. The SNR threshold at which 50% of subjects noticed handling noise was found to be 4.2 ± 0.6 dBA. The results from this work are important for the understanding of our perception of impact sound and resonant noises in recordings, and will inform the future development of an automated predictor of quality for handling noise.

  2. Seismic reflection imaging with conventional and unconventional sources

    Science.gov (United States)

    Quiros Ugalde, Diego Alonso

    This manuscript reports the results of research using both conventional and unconventional energy sources as well as conventional and unconventional analysis to image crustal structure using reflected seismic waves. The work presented here includes the use of explosions to investigate the Taiwanese lithosphere, the use of 'noise' from railroads to investigate the shallow subsurface of the Rio Grande rift, and the use of microearthquakes to image subsurface structure near an active fault zone within the Appalachian mountains. Chapter 1 uses recordings from the land refraction and wide-angle reflection component of the Taiwan Integrated Geodynamic Research (TAIGER) project. The most prominent reflection feature imaged by these surveys is an anomalously strong reflector found in northeastern Taiwan. The goal of this chapter is to analyze the TAIGER recordings and to place the reflector into a geologic framework that fits with the modern tectonic kinematics of the region. Chapter 2 uses railroad traffic as a source for reflection profiling within the Rio Grande rift. Here the railroad recordings are treated in an analogous way to Vibroseis recordings. These results suggest that railroad noise in general can be a valuable new tool in imaging and characterizing the shallow subsurface in environmental and geotechnical studies. In chapters 3 and 4, earthquakes serve as the seismic imaging source. In these studies the methodology of Vertical Seismic Profiling (VSP) is borrowed from the oil and gas industry to develop reflection images. In chapter 3, a single earthquake is used to probe a small area beneath Waterboro, Maine. In chapter 4, the same method is applied to multiple earthquakes to take advantage of the increased redundancy that results from multiple events illuminating the same structure. The latter study demonstrates how dense arrays can be a powerful new tool for delineating, and monitoring temporal changes of deep structure in areas characterized by significant

  3. Comparison of direct measurement methods for headset noise exposure in the workplace

    Directory of Open Access Journals (Sweden)

    Flora G Nassrallah

    2016-01-01

    Full Text Available The measurement of noise exposure from communication headsets poses a methodological challenge. Although several standards describe methods for general noise measurements in occupational settings, these are not directly applicable to noise assessments under communication headsets. For measurements under occluded ears, specialized methods have been specified by the International Standards Organization (ISO 11904 such as the microphone in a real ear and manikin techniques. Simpler methods have also been proposed in some national standards such as the use of general purpose artificial ears and simulators in conjunction with single number corrections to convert measurements to the equivalent diffuse field. However, little is known about the measurement agreement between these various methods and the acoustic manikin technique. Twelve experts positioned circum-aural, supra-aural and insert communication headsets on four different measurement setups (Type 1, Type 2, Type 3.3 artificial ears, and acoustic manikin. Fit-refit measurements of four audio communication signals were taken under quiet laboratory conditions. Data were transformed into equivalent diffuse-field sound levels using third-octave procedures. Results indicate that the Type 1 artificial ear is not suited for the measurement of sound exposure under communication headsets, while Type 2 and Type 3.3 artificial ears are in good agreement with the acoustic manikin technique. Single number corrections were found to introduce a large measurement uncertainty, making the use of the third-octave transformation preferable.

  4. Characteristics of Love and Rayleigh waves in ambient noise: wavetype ratio, source location and seasonal behavior

    Science.gov (United States)

    Juretzek, C.; Perleth, M.; Hadziioannou, C.

    2015-12-01

    Ambient seismic noise has become an important source of signal for tomography and monitoring purposes. Better understanding of the noise field characteristics is crucial to further improve noise applications. Our knowledge about the common and different origins of Love and Rayleigh waves in the microseism bands is still limited. This applies in particular to constraints on source locations and source mechanisms of Love waves. Here, 3-component beamforming is used to distinguish between the differently polarized wave types present in the noise field recorded at several arrays across Europe. The focus lies on frequencies around the primary and secondary microseismic bands. We compare characteristics of Love and Rayleigh wave noise, such as source directions and frequency content. Further, Love to Rayleigh wave ratios are measured at each array, and a dependence on direction is observed. We constrain the corresponding source regions of both wave types by backprojection. By using a full year of data in 2013, we are able to track the seasonal changes in our observations of Love-to-Rayleigh ratio and source locations.

  5. Measurements of translation, rotation and strain: new approaches to seismic processing and inversion

    NARCIS (Netherlands)

    Bernauer, M.; Fichtner, A.; Igel, H.

    2012-01-01

    We propose a novel approach to seismic tomography based on the joint processing of translation, strain and rotation measurements. Our concept is based on the apparent S and P velocities, defined as the ratios of displacement velocity and rotation amplitude, and displacement velocity and

  6. The influence of construction measurement and structure storey on seismic performance of masonry structure

    Science.gov (United States)

    Sun, Baitao; Zhao, Hexian; Yan, Peilei

    2017-08-01

    The damage of masonry structures in earthquakes is generally more severe than other structures. Through the analysis of two typical earthquake damage buildings in the Wenchuan earthquake in Xuankou middle school, we found that the number of storeys and the construction measures had great influence on the seismic performance of masonry structures. This paper takes a teachers’ dormitory in Xuankou middle school as an example, selected the structure arrangement and storey number as two independent variables to design working conditions. Finally we researched on the seismic performance difference of masonry structure under two variables by finite element analysis method.

  7. An adaptive filtering method based on EMD for X-ray pulsar navigation with uncertain measurement noise

    Directory of Open Access Journals (Sweden)

    Li N.

    2017-01-01

    Full Text Available Affected by the unstable pulse radiation and the pulsar directional errors, the statistical characteristics of the pulsar measurement noise may vary with time slowly and cannot be accurately determined, which cause the filtering accuracy of the extended Kalman filter(EKF in pulsar navigation positioning system decline sharply or even diverge. To solve this problem, an adaptive extended Kalman filtering algorithm based on the empirical mode decomposition(EMD is proposed. In this method, the high frequency noise is separated from measurement information of pulsar by the method of EMD, and the noise variance can be estimated to update the parameters of EKF. The simulation results demonstrate that compared with conventional EKF, the proposed method can adaptively track the change of the measurement noise, and still keeps high estimation accuracy with unknown measurement noise, the positioning accuracy of the pulsar navigation is improved simultaneously.

  8. Adaptive elimination of optical fiber transmission noise in fiber ocean bottom seismic system

    Science.gov (United States)

    Zhong, Qiuwen; Hu, Zhengliang; Cao, Chunyan; Dong, Hongsheng

    2017-10-01

    In this paper, a pressure and acceleration insensitive reference Interferometer is used to obtain laser and public noise introduced by transmission fiber and laser. By using direct subtraction and adaptive filtering, this paper attempts to eliminate and estimation the transmission noise of sensing probe. This paper compares the noise suppression effect of four methods, including the direct subtraction (DS), the least mean square error adaptive elimination (LMS), the normalized least mean square error adaptive elimination (NLMS) and the least square (RLS) adaptive filtering. The experimental results show that the noise reduction effect of RLS and NLMS are almost the same, better than LMS and DS, which can reach 8dB (@100Hz). But considering the workload, RLS is not conducive to the real-time operating system. When it comes to the same treatment effect, the practicability of NLMS is higher than RLS. The noise reduction effect of LMS is slightly worse than that of RLS and NLMS, about 6dB (@100Hz), but its computational complexity is small, which is beneficial to the real time system implementation. It can also be seen that the DS method has the least amount of computational complexity, but the noise suppression effect is worse than that of the adaptive filter due to the difference of the noise amplitude between the RI and the SI, only 4dB (@100Hz) can be reached. The adaptive filter can basically eliminate the influence of the transmission noise, and the simulation signal of the sensor is kept intact.

  9. Assessment of effectiveness of anti-seismic measures in stabilization project of ChNPP shelter object

    International Nuclear Information System (INIS)

    Kondrat'ev, S.N.; Kritskij, V.B.; Ryzhov, D.I.; Shugajlo, A.P.; Shugajlo, Al.P.; Prabkhakara, M.

    2004-01-01

    The major factors, which may lead to the collapse of the Shelter object (SO) civil structures, are extreme natural phenomena and among them earthquake. In order to raise the resistance of the SO civil structure to seismic and other significant loads and to reduce the risk of their collapse ChNPP requested KSK Consortium to develop the SO Detailed Design for stabilization. At the present work the results of assessment of anti-seismic measures are given based on results of a technical review of the Detailed Design

  10. Simultaneous multi-component seismic denoising and reconstruction via K-SVD

    Science.gov (United States)

    Hou, Sian; Zhang, Feng; Li, Xiangyang; Zhao, Qiang; Dai, Hengchang

    2018-06-01

    Data denoising and reconstruction play an increasingly significant role in seismic prospecting for their value in enhancing effective signals, dealing with surface obstacles and reducing acquisition costs. In this paper, we propose a novel method to denoise and reconstruct multicomponent seismic data simultaneously. This method lies within the framework of machine learning and the key points are defining a suitable weight function and a modified inner product operator. The purpose of these two processes are to perform missing data machine learning when the random noise deviation is unknown, and building a mathematical relationship for each component to incorporate all the information of multi-component data. Two examples, using synthetic and real multicomponent data, demonstrate that the new method is a feasible alternative for multi-component seismic data processing.

  11. Seismic Search Engine: A distributed database for mining large scale seismic data

    Science.gov (United States)

    Liu, Y.; Vaidya, S.; Kuzma, H. A.

    2009-12-01

    The International Monitoring System (IMS) of the CTBTO collects terabytes worth of seismic measurements from many receiver stations situated around the earth with the goal of detecting underground nuclear testing events and distinguishing them from other benign, but more common events such as earthquakes and mine blasts. The International Data Center (IDC) processes and analyzes these measurements, as they are collected by the IMS, to summarize event detections in daily bulletins. Thereafter, the data measurements are archived into a large format database. Our proposed Seismic Search Engine (SSE) will facilitate a framework for data exploration of the seismic database as well as the development of seismic data mining algorithms. Analogous to GenBank, the annotated genetic sequence database maintained by NIH, through SSE, we intend to provide public access to seismic data and a set of processing and analysis tools, along with community-generated annotations and statistical models to help interpret the data. SSE will implement queries as user-defined functions composed from standard tools and models. Each query is compiled and executed over the database internally before reporting results back to the user. Since queries are expressed with standard tools and models, users can easily reproduce published results within this framework for peer-review and making metric comparisons. As an illustration, an example query is “what are the best receiver stations in East Asia for detecting events in the Middle East?” Evaluating this query involves listing all receiver stations in East Asia, characterizing known seismic events in that region, and constructing a profile for each receiver station to determine how effective its measurements are at predicting each event. The results of this query can be used to help prioritize how data is collected, identify defective instruments, and guide future sensor placements.

  12. Noise measurements of YBa2Cu3O7 thin film high-temperature superconductors

    International Nuclear Information System (INIS)

    Hall, J.J.

    1992-01-01

    The characteristics of thin-film YBa2Cu3O7 superconductors were studied from the superconducting region through the transition region and into the normal region. The properties studied included the resistance-temperature, current-voltage, and electrical noise with concentration of measurements in the transition region. The resistance vs. temperature measurements show a zero resistance followed by a small rise in magnitude at the onset of resistance followed by a sharp increase until the resistance tapers off in the fully normal region. The a-axis films had a larger normal resistivity, a lower critical temperature, and a broader transition than the similar c-axis films. The current(I) - voltage(V) measurements were concentrated in the transition region. A power relation between I and V was found to be V varies as I a(T) where a(T) is temperature dependent starting high the onset of vortex formation, approaches 3 at the vortex unbinding temperature, and goes to 1 when fully normal. This behavior was predicted by the Kosterlitz-Thouless theory and was found experimentally in all four films measured. The current-induced electrical noise characteristics were measured for four samples varying in thickness and axis orientation. Each film exhibited a widely varying magnitude of the noise voltage spectral density (S V ) in the transition region with a leveling off when fully normal. The normalized noise (S V /V squared) showed a sharp decrease in magnitude from the onset of measurable noise continually decreasing until flattening out when fully normal. The a-axis films exhibited S V /V squared over 3 order of magnitude larger than the c-axis films in the transition and normal regions. The normalized temperature coefficient of resistance (beta) was plotted against S V /V squared on a log-log scale to see if the noise generated was due to temperature fluctuations (slope = 2)

  13. Combined interpretation of SkyTEM and high-resolution seismic data

    DEFF Research Database (Denmark)

    Høyer, Anne-Sophie; Lykke-Andersen, Holger; Jørgensen, Flemming Voldum

    2011-01-01

    made based on AEM (SkyTEM) and high-resolution seismic data from an area covering 10 km2 in the western part of Denmark. As support for the interpretations, an exploration well was drilled to provide lithological and logging information in the form of resistivity and vertical seismic profiling. Based...... on the resistivity log, synthetic SkyTEM responses were calculated with a varying number of gate-times in order to illustrate the effect of the noise-level. At the exploration well geophysical data were compared to the lithological log; in general there is good agreement. The same tendency was recognised when Sky...

  14. Amplification and Attenuation across USArray using Ambient Noise Wavefront Tracking

    KAUST Repository

    Bowden, Daniel C.

    2017-11-15

    As seismic travel-time tomography continues to be refined using data from the vast USArray dataset, it is advantageous to also exploit the amplitude information carried by seismic waves. We use ambient noise cross correlation to make observations of surface-wave amplification and attenuation at shorter periods (8 – 32 seconds) than can be observed with only traditional teleseismic earthquake sources. We show that the wavefront tracking approach of [Lin et al., 2012a] can be successfully applied to ambient noise correlations, yielding results quite similar to those from earthquake observations at periods of overlap. This consistency indicates that the wavefront tracking approach is viable for use with ambient noise correlations, despite concerns of the inhomogeneous and unknown distribution of noise sources. The resulting amplification and attenuation maps correlate well with known tectonic and crustal structure; at the shortest periods, our amplification and attenuation maps correlate well with surface geology and known sedimentary basins, while our longest period amplitudes are controlled by crustal thickness and begin to probe upper mantle materials. These amplification and attenuation observations are sensitive to crustal materials in different ways than travel-time observations and may be used to better constrain temperature or density variations. We also value them as an independent means of describing the lateral variability of observed Rayleigh-wave amplitudes without the need for 3D tomographic inversions.

  15. Circuit Models and Experimental Noise Measurements of Micropipette Amplifiers for Extracellular Neural Recordings from Live Animals

    Directory of Open Access Journals (Sweden)

    Chang Hao Chen

    2014-01-01

    Full Text Available Glass micropipettes are widely used to record neural activity from single neurons or clusters of neurons extracellularly in live animals. However, to date, there has been no comprehensive study of noise in extracellular recordings with glass micropipettes. The purpose of this work was to assess various noise sources that affect extracellular recordings and to create model systems in which novel micropipette neural amplifier designs can be tested. An equivalent circuit of the glass micropipette and the noise model of this circuit, which accurately describe the various noise sources involved in extracellular recordings, have been developed. Measurement schemes using dead brain tissue as well as extracellular recordings from neurons in the inferior colliculus, an auditory brain nucleus of an anesthetized gerbil, were used to characterize noise performance and amplification efficacy of the proposed micropipette neural amplifier. According to our model, the major noise sources which influence the signal to noise ratio are the intrinsic noise of the neural amplifier and the thermal noise from distributed pipette resistance. These two types of noise were calculated and measured and were shown to be the dominating sources of background noise for in vivo experiments.

  16. Applicability of reflection seismic measurements in detailed characterization of crystalline bedrock

    International Nuclear Information System (INIS)

    Sireni, S.

    2011-03-01

    known geological feature had no reflector. Reflection seismic measurements can be used in detailed characterization of crystalline bedrock. Wide brittle fault zones and lithological contacts but also single fractures were detected. However, interpretation is challenging and geological and geophysical reference material is needed. All the expected features were not detected and the explanations were not always fully satisfying. (orig.)

  17. Electrochemical corrosion potential and noise measurement in high temperature water

    International Nuclear Information System (INIS)

    Fong, Clinton; Chen, Yaw-Ming; Chu, Fang; Huang, Chia-Shen

    2000-01-01

    Hydrogen water chemistry (HWC) is one of the most important methods in boiling water reactor(BWR) system to mitigate and prevent stress corrosion cracking (SCC) problems of stainless steel components. Currently, the effectiveness of HWC in each BWR is mainly evaluated by the measurement of electrochemical corrosion potentials (ECP) and on-line monitoring of SCC behaviors of stainless steels. The objective of this work was to evaluate the characteristics and performance of commercially available high temperature reference electrodes. In addition, SCC monitoring technique based on electrochemical noise analysis (ECN) was also tested to examine its crack detection capability. The experimental work on electrochemical corrosion potential (ECP) measurements reveals that high temperature external Ag/AgCl reference electrode of highly dilute KCl electrolyte can adequately function in both NWC and HWC environments. The high dilution external Ag/AgCl electrode can work in conjunction with internal Ag/AgCl reference electrode, and Pt electrode to ensure the ECP measurement reliability. In simulated BWR environment, the electrochemical noise tests of SCC were carried out with both actively and passively loaded specimens of type 304 stainless steel with various electrode arrangements. From the coupling current and corrosion potential behaviors of the passive loading tests during immersion test, it is difficult to interpret the general state of stress corrosion cracking based on the analytical results of overall current and potential variations, local pulse patterns, statistical characteristics, or power spectral density of electrochemical noise signals. However, more positive SCC indication was observed in the power spectral density analysis. For aqueous environments of high solution impedance, successful application of electrochemical noise technique for SCC monitoring may require further improvement in specimen designs and analytical methods to enhance detection sensitivity

  18. Acquisition and deconvolution of seismic signals by different methods to perform direct ground-force measurements

    Science.gov (United States)

    Poletto, Flavio; Schleifer, Andrea; Zgauc, Franco; Meneghini, Fabio; Petronio, Lorenzo

    2016-12-01

    We present the results of a novel borehole-seismic experiment in which we used different types of onshore-transient-impulsive and non-impulsive-surface sources together with direct ground-force recordings. The ground-force signals were obtained by baseplate load cells located beneath the sources, and by buried soil-stress sensors installed in the very shallow-subsurface together with accelerometers. The aim was to characterize the source's emission by its complex impedance, function of the near-field vibrations and soil stress components, and above all to obtain appropriate deconvolution operators to remove the signature of the sources in the far-field seismic signals. The data analysis shows the differences in the reference measurements utilized to deconvolve the source signature. As downgoing waves, we process the signals of vertical seismic profiles (VSP) recorded in the far-field approximation by an array of permanent geophones cemented at shallow-medium depth outside the casing of an instrumented well. We obtain a significant improvement in the waveform of the radiated seismic-vibrator signals deconvolved by ground force, similar to that of the seismograms generated by the impulsive sources, and demonstrates that the results obtained by different sources present low values in their repeatability norm. The comparison evidences the potentiality of the direct ground-force measurement approach to effectively remove the far-field source signature in VSP onshore data, and to increase the performance of permanent acquisition installations for time-lapse application purposes.

  19. On-line adaptive line frequency noise cancellation from a nuclear power measuring channel

    Directory of Open Access Journals (Sweden)

    Qadir Javed

    2011-01-01

    Full Text Available On-line software for adaptively canceling 50 Hz line frequency noise has been designed and tested at Pakistan Research Reactor 1. Line frequency noise causes much problem in weak signals acquisition. Sometimes this noise is so dominant that original signal is totally corrupted. Although notch filter can be used for eliminating this noise, but if signal of interest is in close vicinity of 50 Hz, then original signal is also attenuated and hence overall performance is degraded. Adaptive noise removal is a technique which could be employed for removing line frequency without degrading the desired signal. In this paper line frequency noise has been eliminated on-line from a nuclear power measuring channel. The adaptive LMS algorithm has been used to cancel 50 Hz noise. The algorithm has been implemented in labVIEW with NI 6024 data acquisition card. The quality of the acquired signal has been improved much as can be seen in experimental results.

  20. Barkhausen noise measurements give direct observation of magnetocrystalline anisotropy energy in ferromagnetic polycrystals

    International Nuclear Information System (INIS)

    Espina-Hernández, J H; Pérez-Benítez, J A; Caleyo, F; Hallen, J M; Baudin, T; Helbert, A L

    2013-01-01

    This paper presents experimental evidence of the capability of Barkhausen noise measurements to estimate the angular dependence of the average magnetocrystalline energy in soft magnetic polycrystalline materials. Three different API 5L steel samples, all obtained from out-of-service pipelines, were investigated using crystallographic texture and Barkhausen noise measurements. The angular dependence of the rms voltage of the Barkhausen signal was determined in each sample for the time band corresponding to the saturation-to-remanence part of the hysteresis loop where irreversible domain rotation occurs. For each angular position, the rms voltage of the Barkhausen noise signal in this time band was interpreted as a direct measure of the magnetocrystalline anisotropy energy of the polycrystal in the corresponding direction. A strong correlation between the angular dependence of both the rms voltage of the Barkhausen signal in the time band of interest and the average magnetocrystalline energy obtained from crystallographic texture measurements was found experimentally. (fast track communication)

  1. A particle velocity sensor to measure the sound from a structure in the presence of background noise

    NARCIS (Netherlands)

    de Bree, H.E.; Druyvesteyn, W.F.

    2005-01-01

    The performance (or quality) of a product is often checked by measuring the radiated sound (noise) from the vibrating structure. Often this test has to be done in an environment with background noise, which makes the measurement difficult. When using a (pressure) microphone the background noise can

  2. High frequency measurements of shot noise suppression in atomic-scale metal contacts

    Science.gov (United States)

    Wheeler, Patrick J.; Evans, Kenneth; Russom, Jeffrey; King, Nicholas; Natelson, Douglas

    2009-03-01

    Shot noise provides a means of assessing the number and transmission coefficients of transmitting channels in atomic- and molecular-scale junctions. Previous experiments at low temperatures in metal and semiconductor point contacts have demonstrated the expected suppression of shot noise when junction conductance is near an integer multiple of the conductance quantum, G0≡2e^2/h. Using high frequency techniques, we demonstrate the high speed acquisition of such data at room temperature in mechanical break junctions. In clean Au contacts conductance histograms with clear peaks at G0, 2G0, and 3G0 are acquired within hours, and histograms of simultaneous measurements of the shot noise show clear suppression at those conductance values. We describe the dependence of the noise on bias voltage and analyze the noise vs. conductance histograms in terms of a model that averages over transmission coefficients.

  3. Application on technique of joint time-frequency analysis of seismic signal's first arrival estimation

    International Nuclear Information System (INIS)

    Xu Chaoyang; Liu Junmin; Fan Yanfang; Ji Guohua

    2008-01-01

    Joint time-frequency analysis is conducted to construct one joint density function of time and frequency. It can open out one signal's frequency components and their evolvements. It is the new evolvement of Fourier analysis. In this paper, according to the characteristic of seismic signal's noise, one estimation method of seismic signal's first arrival based on triple correlation of joint time-frequency spectrum is introduced, and the results of experiment and conclusion are presented. (authors)

  4. Allegro: noise performance and the ongoing search for gravitational waves

    International Nuclear Information System (INIS)

    Heng, I S; Daw, E; Giaime, J; Hamilton, W O; Mchugh, M P; Johnson, W W

    2002-01-01

    The noise performance of Allegro since 1993 is summarized. We show that the noise level of Allegro is, in general, stationary. Non-Gaussian impulse excitations persist despite efforts to isolate the detector from environmental disturbances. Some excitations are caused by seismic activity and flux jumps in the SQUID. Algorithms to identify and automatically veto these events are presented. Also, the contribution of Allegro to collaborations with other resonant-mass detectors via the International Gravitational Event Collaboration and with LIGO is reviewed

  5. Allegro: noise performance and the ongoing search for gravitational waves

    CERN Document Server

    Heng, I S; Giaime, J; Hamilton, W O; McHugh, M P; Johnson, W W

    2002-01-01

    The noise performance of Allegro since 1993 is summarized. We show that the noise level of Allegro is, in general, stationary. Non-Gaussian impulse excitations persist despite efforts to isolate the detector from environmental disturbances. Some excitations are caused by seismic activity and flux jumps in the SQUID. Algorithms to identify and automatically veto these events are presented. Also, the contribution of Allegro to collaborations with other resonant-mass detectors via the International Gravitational Event Collaboration and with LIGO is reviewed.

  6. Practical Ranges of Loudness Levels of Various Types of Environmental Noise, Including Traffic Noise, Aircraft Noise, and Industrial Noise

    Directory of Open Access Journals (Sweden)

    Sabine A. Janssen

    2011-05-01

    Full Text Available In environmental noise control one commonly employs the A-weighted sound level as an approximate measure of the effect of noise on people. A measure that is more closely related to direct human perception of noise is the loudness level. At constant A-weighted sound level, the loudness level of a noise signal varies considerably with the shape of the frequency spectrum of the noise signal. In particular the bandwidth of the spectrum has a large effect on the loudness level, due to the effect of critical bands in the human hearing system. The low-frequency content of the spectrum also has an effect on the loudness level. In this note the relation between loudness level and A-weighted sound level is analyzed for various environmental noise spectra, including spectra of traffic noise, aircraft noise, and industrial noise. From loudness levels calculated for these environmental noise spectra, diagrams are constructed that show the relation between loudness level, A‑weighted sound level, and shape of the spectrum. The diagrams show that the upper limits of the loudness level for broadband environmental noise spectra are about 20 to 40 phon higher than the lower limits for narrowband spectra, which correspond to the loudness levels of pure tones. The diagrams are useful for assessing limitations and potential improvements of environmental noise control methods and policy based on A-weighted sound levels.

  7. Audible Noise Measurement and Analysis of the Main Power Apparatus in UHV GIS Substations

    Directory of Open Access Journals (Sweden)

    Zhou Nian Guang

    2016-01-01

    Full Text Available Investigation of audible noise characteristics of the main power apparatus in UHV GIS substations provides essential statistics for the noise prediction and control. Noise pressure level, spectrum and attenuation characteristics of the main transformers and high voltage (HV reactors are measured and analyzed in this paper. The result shows that the main transformer and HV reactor have identical A-weighted equivalent sound pressure level. The medium- and low-frequency noises are the primary components in the spectral. More attention should be paid to the low-frequency bands in the noise control process. The noise of cooling fan has a large influence on that of the main transformer. Without the consideration of corona noise, the average A-weighted sound pressure level shows an overall decreasing trend with the increase of the propagation distance. Obvious interference phenomenon of the noises at 100 and 200Hz exists in the noise propagation process.

  8. Development of electronic system for reactivity measurement and reactor noise analysis

    International Nuclear Information System (INIS)

    Strohl, Claude Emile; Soares, Adalberto Jose

    1996-01-01

    In nuclear power reactors, the neutron detector signal is dependent of the number of fissions and the reactor power level. The detector signal can be divided into two components; a DC component, proportional to the average value and an AC component, which is the fluctuating part superimposed to the DC component. The analysis of the fluctuating part of the signal is called noise analysis and allow us to investigate phenomena occurring within the reactor vessel, such as vibration of fuels elements and coolant density, temperature, pressure and flow changes. On the other hand, the measure of the static DC part allow us to measure the local power density. This paper describes the development of a personal computer based signal conditioning card that, together with a personal computer commercial data acquisition card, can be used for noise analysis measurements and reactivity measurements of signals coming from ionization chambers or SPD's. (author)

  9. EVALUATION ON THE SEISMIC RESPONSE CHARACTERISTICS OF A ROAD EMBANKMENT BASED ON THE MODERATE EARTHQUAKE OBSERVATION AND THE MICROTREMOR MEASUREMENT

    Science.gov (United States)

    Hata, Yoshiya; Ichii, Koji; Yamada, Masayuki; Tokida, Ken-Ichi; Takezawa, Koichiro; Shibao, Susumu; Mitsushita, Junji; Murata, Akira; Furukawa, Aiko; Koizumi, Keigo

    Accurate evaluation on the seismic response characteristics of a road embankment is very important for the rational seismic assessment. However, in a lot of previous studies, the seismic response characteristics of an embankment were evaluated based on the results of shaking table test, centrifuge model test and dynamic FEM analysis. In this study, the transfer function and the shear wave velocity of a road embankment were evaluated based on the in-situ records of moderate earthquake observation and microtremor measurement. Test results show the possibility that the shear wave velocity of an embankment can be estimated by the earthquake observation or the microtremor measurement and the dynamic linear FEM analysis.

  10. The Effect of Noise on Relationships Between Speech Intelligibility and Self-Reported Communication Measures in Tracheoesophageal Speakers.

    Science.gov (United States)

    Eadie, Tanya L; Otero, Devon Sawin; Bolt, Susan; Kapsner-Smith, Mara; Sullivan, Jessica R

    2016-08-01

    The purpose of this study was to examine how sentence intelligibility relates to self-reported communication in tracheoesophageal speakers when speech intelligibility is measured in quiet and noise. Twenty-four tracheoesophageal speakers who were at least 1 year postlaryngectomy provided audio recordings of 5 sentences from the Sentence Intelligibility Test. Speakers also completed self-reported measures of communication-the Voice Handicap Index-10 and the Communicative Participation Item Bank short form. Speech recordings were presented to 2 groups of inexperienced listeners who heard sentences in quiet or noise. Listeners transcribed the sentences to yield speech intelligibility scores. Very weak relationships were found between intelligibility in quiet and measures of voice handicap and communicative participation. Slightly stronger, but still weak and nonsignificant, relationships were observed between measures of intelligibility in noise and both self-reported measures. However, 12 speakers who were more than 65% intelligible in noise showed strong and statistically significant relationships with both self-reported measures (R2 = .76-.79). Speech intelligibility in quiet is a weak predictor of self-reported communication measures in tracheoesophageal speakers. Speech intelligibility in noise may be a better metric of self-reported communicative function for speakers who demonstrate higher speech intelligibility in noise.

  11. New Insights on the Structure of the Cascadia Subduction Zone from Amphibious Seismic Data

    Science.gov (United States)

    Janiszewski, Helen Anne

    . This new offshore result indicates that the structure may persist updip indicating the plate interface may be weak. To focus more broadly on the entire subduction system, I calculate phase velocities from teleseismic Rayleigh waves from 20-100 s period across the entire onshore-offshore array. The shear-wave velocity model calculated from these data can provide constrains on the thermal structure of the lithosphere both prior to and during subduction of the Juan de Fuca plate. Using OBS data in this period band requires removal of tilt and compliance noise, two types of water-induced noise that affect long period data. To facilitate these corrections on large seismic arrays such as the CI, an automated quality control routine was developed for selecting noise windows for the calculation of the required transfer functions. These corrections typically involve either averaging out transient signals, which requires the assumption of stationarity of the noise over the long periods of time, or laborious hand selection of noise segments. This new method calculates transfer functions based on daily time series that exclude transient signals, but allows for the investigation of long-term variation over the course of an instrument's deployment. I interpret these new shoreline-crossing phase velocity maps in terms of the tectonics associated with the Cascadia subduction system. Major findings include that oceanic plate cooling models do not explain the velocities observed beneath the Juan de Fuca plate, that slow velocities in the forearc appear to be more prevalent in areas modeled to have experienced high slip in past Cascadia megathrust earthquakes, and along strike variations in phase velocity reflect variations in arc structure and backarc tectonics.

  12. Interseismic Coupling, Co- and Post-seismic Slip: a Stochastic View on the Northern Chilean Subduction Zone

    Science.gov (United States)

    Jolivet, R.; Duputel, Z.; Simons, M.; Jiang, J.; Riel, B. V.; Moore, A. W.; Owen, S. E.

    2017-12-01

    Mapping subsurface fault slip during the different phases of the seismic cycle provides a probe of the mechanical properties and the state of stress along these faults. We focus on the northern Chile megathrust where first order estimates of interseismic fault locking suggests little to no overlap between regions slipping seismically versus those that are dominantly aseismic. However, published distributions of slip, be they during seismic or aseismic phases, rely on unphysical regularization of the inverse problem, thereby cluttering attempts to quantify the degree of overlap between seismic and aseismic slip. Considering all the implications of aseismic slip on our understanding of the nucleation, propagation and arrest of seismic ruptures, it is of utmost importance to quantify our confidence in the current description of fault coupling. Here, we take advantage of 20 years of InSAR observations and more than a decade of GPS measurements to derive probabilistic maps of inter-seismic coupling, as well as co-seismic and post-seismic slip along the northern Chile subduction megathrust. A wide InSAR velocity map is derived using a novel multi-pixel time series analysis method accounting for orbital errors, atmospheric noise and ground deformation. We use AlTar, a massively parallel Monte Carlo Markov Chain algorithm exploiting the acceleration capabilities of Graphic Processing Units, to derive the probability density functions (PDF) of slip. In northern Chile, we find high probabilities for a complete release of the elastic strain accumulated since the 1877 earthquake by the 2014, Iquique earthquake and for the presence of a large, independent, locked asperity left untapped by recent events, north of the Mejillones peninsula. We evaluate the probability of overlap between the co-, inter- and post-seismic slip and consider the potential occurrence of slow, aseismic slip events along this portion of the subduction zone.

  13. Local seismic monitoring east and north of Toronto - Volume 1

    International Nuclear Information System (INIS)

    Mohajer, A.A.; Doughty, M.

    1996-08-01

    Monitoring of small magnitude ('micro') earthquakes in a dense local network is one of the techniques used to delineate currently active faults and seismic sources. The conventional wisdom is that smaller, but more frequent, seismic events normally occur on active fault planes and a log linear empirical relation between frequency and magnitude can be used to estimate the magnitude and recurrence (frequency) of the larger events. A program of site-specific seismic monitoring has been supported by the AECB since 1991, to investigate the feasibility of microearthquake detection in suburban areas of east Toronto in order to assess the rate activity of local events in the vicinity of the nuclear power plants at Pickering and Darlington. For deployment of the seismic stations at the most favorable locations an extensive background noise survey was carried out. This survey involved measuring and comparing the amplitude response of the ambient vibration caused by natural phenomena (e.g. wind blow, water flow, wave action) or human activities such as farming, mining and industrial work at 25 test sites. Subsequently, a five-station seismic network, with a 30 km aperture, was selected between the Pickering and Darlington nuclear power plants on Lake Ontario, to the south, and Lake Scugog to the north. The detection threshold obtained for two of the stations allows recording of local events M L =0-2, a magnitude range which is usually not detected by regional seismic networks. An analysis of several thousand triggered signals resulted in the identification of about 120 local events, which can not be assigned to any source other than the natural release of crustal stresses. The recurrence frequency of these microearthquakes shows a linear relationship which matches that of larger events in the last two centuries in this region. The preliminary results indicate that the stress is currently accumulating and is being released within clusters of small earthquakes

  14. Increase of Investment Appeal of Projects for Noise Control Measures in Urban Environment

    Science.gov (United States)

    Kolmakov, A. V.; Ignatyeva, V. O.

    2017-11-01

    The authors analyzed the contemporary noise pollution level in the large cities of the Russian Federation. The article identifies the factors causing the reduction of acoustically comfortable urban territories. It states the task for the increase of investment appeal of the projects aimed at noise control measures adoption.

  15. Improvement of the accuracy of noise measurements by the two-amplifier correlation method.

    Science.gov (United States)

    Pellegrini, B; Basso, G; Fiori, G; Macucci, M; Maione, I A; Marconcini, P

    2013-10-01

    We present a novel method for device noise measurement, based on a two-channel cross-correlation technique and a direct "in situ" measurement of the transimpedance of the device under test (DUT), which allows improved accuracy with respect to what is available in the literature, in particular when the DUT is a nonlinear device. Detailed analytical expressions for the total residual noise are derived, and an experimental investigation of the increased accuracy provided by the method is performed.

  16. Acoustic isolation vessel for measurement of the background noise in microphones

    Science.gov (United States)

    Ngo, Kim C. T.; Zuckerwar, Allan J.

    1993-01-01

    An acoustic isolation vessel has been developed to measure the background noise in microphones. The test microphone is installed in an inner vessel, which is suspended within an outer vessel, and the intervening air space is evacuated to a high vacuum. An analytical expression for the transmission coefficient is derived, based on a five-media model, and compared to experiment. At an isolation vacuum of 5 x 10 exp -6 Torr the experimental transmission coefficient was found to be lower than -155 dB at frequencies ranging from 40 to 1200 Hz. Measurements of the A-weighted noise levels of commercial condenser microphones of four different sizes show good agreement with published values.

  17. Seismic isolation of small modular reactors using metamaterials

    Directory of Open Access Journals (Sweden)

    Witarto Witarto

    2018-04-01

    Full Text Available Adaptation of metamaterials at micro- to nanometer scales to metastructures at much larger scales offers a new alternative for seismic isolation systems. These new isolation systems, known as periodic foundations, function both as a structural foundation to support gravitational weight of the superstructure and also as a seismic isolator to isolate the superstructure from incoming seismic waves. Here we describe the application of periodic foundations for the seismic protection of nuclear power plants, in particular small modular reactors (SMR. For this purpose, a large-scale shake table test on a one-dimensional (1D periodic foundation supporting an SMR building model was conducted. The 1D periodic foundation was designed and fabricated using reinforced concrete and synthetic rubber (polyurethane materials. The 1D periodic foundation structural system was tested under various input waves, which include white noise, stepped sine and seismic waves in the horizontal and vertical directions as well as in the torsional mode. The shake table test results show that the 1D periodic foundation can reduce the acceleration response (transmissibility of the SMR building up to 90%. In addition, the periodic foundation-isolated structure also exhibited smaller displacement than the non-isolated SMR building. This study indicates that the challenge faced in developing metastructures can be overcome and the periodic foundations can be applied to isolating vibration response of engineering structures.

  18. Seismic isolation of small modular reactors using metamaterials

    Science.gov (United States)

    Witarto, Witarto; Wang, S. J.; Yang, C. Y.; Nie, Xin; Mo, Y. L.; Chang, K. C.; Tang, Yu; Kassawara, Robert

    2018-04-01

    Adaptation of metamaterials at micro- to nanometer scales to metastructures at much larger scales offers a new alternative for seismic isolation systems. These new isolation systems, known as periodic foundations, function both as a structural foundation to support gravitational weight of the superstructure and also as a seismic isolator to isolate the superstructure from incoming seismic waves. Here we describe the application of periodic foundations for the seismic protection of nuclear power plants, in particular small modular reactors (SMR). For this purpose, a large-scale shake table test on a one-dimensional (1D) periodic foundation supporting an SMR building model was conducted. The 1D periodic foundation was designed and fabricated using reinforced concrete and synthetic rubber (polyurethane) materials. The 1D periodic foundation structural system was tested under various input waves, which include white noise, stepped sine and seismic waves in the horizontal and vertical directions as well as in the torsional mode. The shake table test results show that the 1D periodic foundation can reduce the acceleration response (transmissibility) of the SMR building up to 90%. In addition, the periodic foundation-isolated structure also exhibited smaller displacement than the non-isolated SMR building. This study indicates that the challenge faced in developing metastructures can be overcome and the periodic foundations can be applied to isolating vibration response of engineering structures.

  19. Processing of noisy magnetotelluric time series from Koyna-Warna seismic region, India: a systematic approach

    Directory of Open Access Journals (Sweden)

    Ujjal K. Borah

    2015-06-01

    Full Text Available Rolling array pattern broad band magnetotelluric (MT data was acquired in the Koyna-Warna (Maharashtra, India seismic zone during 2012-14 field campaigns. The main objective of this study is to identify the thickness of the Deccan trap in and around the Koyna-Warna seismic zone and to delineate the electrical nature of the sub-basalt. The MT data at many places got contaminated with high tension power line noise due to Koyna hydroelectric power project. So, in the present study an attempt has been made to tackle this problem due to 50 Hz noise and their harmonics and other cultural noise using commercially available processing software MAPROS. Remote site was running during the entire field period to stand against the cultural noise problem. This study is based on Fast Fourier Transform (FFT and mainly focuses on the behaviour of different processing parameters, their interrelations and the influences of different processing methods concerning improvement of the S/N ratio of noisy data. Our study suggests that no single processing approach can give desirable transfer functions, however combination of different processing approaches may be adopted while processing culturally affected noisy data.

  20. Seismic safety of Paks nuclear power plant

    International Nuclear Information System (INIS)

    Katona, T.

    1993-01-01

    An extensive program is underway at Paks NPP for evaluation of the seismic safety and for development of the necessary safety increasing measures. This program includes the following five measures: investigation of methods, regulations and techniques utilized for reassessment of seismic safety of operating NPPs and promoting safety; investigation of earthquake hazards; development of concepts for creating the seismic safety location of earthquake warning system; determination of dynamic features of systems and facilities determined by the concept, and preliminary evaluation of the seismic safety