WorldWideScience

Sample records for seismic noise levels

  1. Seismic noise level variation in South Korea

    Science.gov (United States)

    Sheen, D.; Shin, J.

    2008-12-01

    The variations of seismic background noise in South Korea have been investigated by means of power spectral analysis. The Korea Institute of Geoscience and Mineral Resources (KIGAM) and the Korea Meteorological Administation (KMA) have national wide seismic networks in South Korea, and, in the end of 2007, there are 30 broadband stations which have been operating for more than a year. In this study, we have estimated the power spectral density of seismic noise for 30 broadband stations from 2005 to 2007. Since we estimate PSDs from a large dataset of continuous waveform in this study, a robust PSD estimate of McNamara and Buland (2004) is used. In the frequency range 1-5 Hz, the diurnal variations of noise are observed at most of stations, which are especially larger at coastal stations and at insular than at inland. Some stations shows daily difference of diurnal variations, which represents that cultural activities contribute to the noise level of a station. The variation of number of triggered stations, however, shows that cultural noise has little influence on the detection capability of seismic network in South Korea. Seasonal variations are observed well in the range 0.1-0.5 Hz, while much less found in the frequency range 1-5 Hz. We observed that strong peaks in the range 0.1-0.5 Hz occur at the summer when Pacific typhoons are close to the Korean Peninsula.

  2. Variations in the microseismic noise level observed at the Bucovina Seismic Array (BURAR)

    International Nuclear Information System (INIS)

    Ghica, Daniela; Radulian, Mircea; Popa, Mihaela

    2005-01-01

    The microseismic noise level analysis for a seismic array is an essential step to accurately process the data recorded by the system. Basically, the observed background noise is a complex combination of natural and cultural sources as local geology, specific area activity (roads traffic, agricultural and industrial activities) or weather conditions.The understanding of the BURAR site noise characteristics is important for the array specific techniques (beamforming, f-k analysis), to apply the correct bandpass filtering, in order to obtain noise suppression and conservation of the 'true' seismic signal. The array monitoring potential of very small earthquakes and explosions will be enhanced, based on the best signal-to-noise ratio.The noise study at BURAR was carried out over one-year period, considering the noise power spectra in a 0.1 to 10 Hz frequency interval, for every 24 hours: 5 minutes during day and 5 minutes during night. Only short-period vertical sensors were considered. Systematic variations in the microseismic noise level at the BURAR site were observed:- diurnal: a decreasing of about 40% in night noise level at 1 Hz frequency; at 6 Hz frequency, the decreasing could reach 80-90% for 'non-winter' months (May to October); - seasonal: during the winter time, a lower noise level is observed, due to the restraining of the local specific activity (especially agriculture and farming) and of the road traffic. To summarize the level of microseismic noise observed at BURAR for one-year observations, a model curve for array noise level has been estimated, including upper and lower bounds of noise power density together with average spectrum. The BURAR noise model will be useful in the process of local site conditions estimation, by eliminating the noise contribution from the array recording. Also, the detection processing, phase identification and events location procedures will be significantly improved. (authors)

  3. Ambient seismic noise levels: A survey of the permanent and temporary seismographic networks in Morocco, North Africa

    Science.gov (United States)

    El Fellah, Y.; Khairy Abd Ed-Aal, A.; El Moudnib, L.; Mimoun, H.; Villasenor, A.; Gallart, J.; Thomas, C.; Elouai, D.; Mimoun, C.; Himmi, M.

    2013-12-01

    Abstract The results, of a conducted study carried out to analyze variations in ambient seismic noise levels at sites of the installed broadband stations in Morocco, North Africa, are obtained. The permanent and the temporary seismic stations installed in Morocco of the Scientific Institute ( IS, Rabat, Morocco), institute de Ciencias de la Tierra Jaume almera (ICTJA, Barcelona, Spain) and Institut für Geophysik (Munster, Germany) were used in this study. In this work, we used 23 broadband seismic stations installed in different structural domains covering all Morocco from south to north. The main purposes of the current study are: 1) to present a catalog of seismic background noise spectra for Morocco obtained from recently installed broadband stations, 2) to assess the effects of experimental temporary seismic vault construction, 3) to determine the time needed for noise at sites to stabilize, 4) to establish characteristics and origin of seismic noise at those sites. We calculated power spectral densities of background noise for each component of each broadband seismometer deployed in the different investigated sites and then compared them with the high-noise model and low-noise Model of Peterson (1993). All segments from day and night local time windows were included in the calculation without parsing out earthquakes. The obtained results of the current study could be used forthcoming to evaluate permanent station quality. Moreover, this study could be considered as a first step to develop new seismic noise models in North Africa not included in Peterson (1993). Keywords Background noise; Power spectral density; Model of Peterson; Scientific Institute; Institute de Ciencias de la Tierra Jaume almera; Institut für Geophysik

  4. Background noise model development for seismic stations of KMA

    Science.gov (United States)

    Jeon, Youngsoo

    2010-05-01

    The background noise recorded at seismometer is exist at any seismic signal due to the natural phenomena of the medium which the signal passed through. Reducing the seismic noise is very important to improve the data quality in seismic studies. But, the most important aspect of reducing seismic noise is to find the appropriate place before installing the seismometer. For this reason, NIMR(National Institution of Meteorological Researches) starts to develop a model of standard background noise for the broadband seismic stations of the KMA(Korea Meteorological Administration) using a continuous data set obtained from 13 broadband stations during the period of 2007 and 2008. We also developed the model using short period seismic data from 10 stations at the year of 2009. The method of Mcmara and Buland(2004) is applied to analyse background noise of Korean Peninsula. The fact that borehole seismometer records show low noise level at frequency range greater than 1 Hz compared with that of records at the surface indicate that the cultural noise of inland Korean Peninsula should be considered to process the seismic data set. Reducing Double Frequency peak also should be regarded because the Korean Peninsula surrounded by the seas from eastern, western and southern part. The development of KMA background model shows that the Peterson model(1993) is not applicable to fit the background noise signal generated from Korean Peninsula.

  5. Spectral characteristics of seismic noise using data of Kazakhstan monitoring stations

    International Nuclear Information System (INIS)

    Mikhajlova, N.N.; Komarov, I.I.

    2006-01-01

    Spectral specifications of seismic noise research for PS23-Makanchi, Karatau, Akbulak, AS057-Borovoye and new three-component station AS059-Aktyubinsk was done. Spectral noise density models were obtained for day and night time and spectral density values variation. Noise close to low-level universal noise model is peculiar for all stations, which provides their high efficiency while seismic monitoring. Noise parameters dependence on seismic receivers installation conditions was investigated separately. Based on three stations (Makanchi, Borovoye, and Aktyubinsk), spectral density change features are shown after borehole equipment installation. (author)

  6. Background noise spectra of global seismic stations

    Energy Technology Data Exchange (ETDEWEB)

    Wada, M.M.; Claassen, J.P.

    1996-08-01

    Over an extended period of time station noise spectra were collected from various sources for use in estimating the detection and location performance of global networks of seismic stations. As the database of noise spectra enlarged and duplicate entries became available, an effort was mounted to more carefully select station noise spectra while discarding others. This report discusses the methodology and criteria by which the noise spectra were selected. It also identifies and illustrates the station noise spectra which survived the selection process and which currently contribute to the modeling efforts. The resulting catalog of noise statistics not only benefits those who model network performance but also those who wish to select stations on the basis of their noise level as may occur in designing networks or in selecting seismological data for analysis on the basis of station noise level. In view of the various ways by which station noise were estimated by the different contributors, it is advisable that future efforts which predict network performance have available station noise data and spectral estimation methods which are compatible with the statistics underlying seismic noise. This appropriately requires (1) averaging noise over seasonal and/or diurnal cycles, (2) averaging noise over time intervals comparable to those employed by actual detectors, and (3) using logarithmic measures of the noise.

  7. Estimation of background noise level on seismic station using statistical analysis for improved analysis accuracy

    Science.gov (United States)

    Han, S. M.; Hahm, I.

    2015-12-01

    We evaluated the background noise level of seismic stations in order to collect the observation data of high quality and produce accurate seismic information. Determining of the background noise level was used PSD (Power Spectral Density) method by McNamara and Buland (2004) in this study. This method that used long-term data is influenced by not only innate electronic noise of sensor and a pulse wave resulting from stabilizing but also missing data and controlled by the specified frequency which is affected by the irregular signals without site characteristics. It is hard and inefficient to implement process that filters out the abnormal signal within the automated system. To solve these problems, we devised a method for extracting the data which normally distributed with 90 to 99% confidence intervals at each period. The availability of the method was verified using 62-seismic stations with broadband and short-period sensors operated by the KMA (Korea Meteorological Administration). Evaluation standards were NHNM (New High Noise Model) and NLNM (New Low Noise Model) published by the USGS (United States Geological Survey). It was designed based on the western United States. However, Korean Peninsula surrounded by the ocean on three sides has a complicated geological structure and a high population density. So, we re-designed an appropriate model in Korean peninsula by statistically combined result. The important feature is that secondary-microseism peak appeared at a higher frequency band. Acknowledgements: This research was carried out as a part of "Research for the Meteorological and Earthquake Observation Technology and Its Application" supported by the 2015 National Institute of Meteorological Research (NIMR) in the Korea Meteorological Administration.

  8. A high-resolution ambient seismic noise model for Europe

    Science.gov (United States)

    Kraft, Toni

    2014-05-01

    In the past several years, geological energy technologies receive growing attention and have been initiated in or close to urban areas. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential to the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquake at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. Due to this development an increasing number of seismic monitoring networks are being installed in densely populated areas with strongly heterogeneous, and unfavorable ambient noise conditions. This poses a major challenge on the network design process, which aims to find the sensor geometry that optimizes the

  9. Retrieval of reflections from seismic background?noise measurements

    NARCIS (Netherlands)

    Draganov, D.S.; Wapenaar, K.; Mulder, W.; Singer, J.; Verdel, A.

    2007-01-01

    The retrieval of the earth's reflection response from cross?correlations of seismic noise recordings can provide valuable information, which may otherwise not be available due to limited spatial distribution of seismic sources. We cross?correlated ten hours of seismic background?noise data acquired

  10. Seismic signal and noise on Europa

    Science.gov (United States)

    Panning, Mark; Stähler, Simon; Bills, Bruce; Castillo Castellanos, Jorge; Huang, Hsin-Hua; Husker, Allen; Kedar, Sharon; Lorenz, Ralph; Pike, William T.; Schmerr, Nicholas; Tsai, Victor; Vance, Steven

    2017-10-01

    Seismology is one of our best tools for detailing interior structure of planetary bodies, and a seismometer is included in the baseline and threshold mission design for the upcoming Europa Lander mission. Guiding mission design and planning for adequate science return, though, requires modeling of both the anticipated signal and noise. Assuming ice seismicity on Europa behaves according to statistical properties observed in Earth catalogs and scaling cumulative seismic moment release to the moon, we can simulate long seismic records and estimate background noise and peak signal amplitudes (Panning et al., 2017). This suggests a sensitive instrument comparable to many broadband terrestrial instruments or the SP instrument from the InSight mission to Mars will be able to record signals, while high frequency geophones are likely inadequate. We extend this analysis to also begin incorporation of spatial and temporal variation due to the tidal cycle, which can help inform landing site selection. We also begin exploration of how chaotic terrane at the bottom of the ice shell and inter-ice heterogeneities (i.e. internal melt structures) may affect anticipated seismic observations using 2D numerical seismic simulations.M. P. Panning, S. C. Stähler, H.-H. Huang, S. D. Vance, S. Kedar, V. C. Tsai, W. T. Pike, R. D. Lorenz, “Expected seismicity and the seismic noise environment of Europa,” J. Geophys. Res., in revision, 2017.

  11. Seasonal variation of seismic ambient noise level at King Sejong Station, Antarctica

    Science.gov (United States)

    Lee, W.; Sheen, D.; Seo, K.; Yun, S.

    2009-12-01

    The generation of the secondary- or double-frequency (DF) microseisms with dominant frequencies between 0.1 and 0.5 Hz has been explained by nonlinear second-order pressure perturbations on the ocean bottom due to the interference of two ocean waves of equal wavelengths traveling in opposite directions. Korea Polar Research Institute (KOPRI) has been operating a broadband seismic station (KSJ1) at King George Island (KGI), Antarctica, since 2001. Examining the ambient seismic noise level for the period from 2006 to 2008 at KSJ1, we found a significant seasonal variation in the frequency range 0.1-0.5 Hz. Correlation of the DF peaks with significant ocean wave height and peak wave period models indicates that the oceanic infragravity waves in the Drake Passage is a possible source to excite the DF microseisms at KGI. Location of King Sejong Station, Antarctica Seasonal variations of DF peak, significant wave height, and peak wave period

  12. Seismic noise attenuation using an online subspace tracking algorithm

    Science.gov (United States)

    Zhou, Yatong; Li, Shuhua; Zhang, Dong; Chen, Yangkang

    2018-02-01

    We propose a new low-rank based noise attenuation method using an efficient algorithm for tracking subspaces from highly corrupted seismic observations. The subspace tracking algorithm requires only basic linear algebraic manipulations. The algorithm is derived by analysing incremental gradient descent on the Grassmannian manifold of subspaces. When the multidimensional seismic data are mapped to a low-rank space, the subspace tracking algorithm can be directly applied to the input low-rank matrix to estimate the useful signals. Since the subspace tracking algorithm is an online algorithm, it is more robust to random noise than traditional truncated singular value decomposition (TSVD) based subspace tracking algorithm. Compared with the state-of-the-art algorithms, the proposed denoising method can obtain better performance. More specifically, the proposed method outperforms the TSVD-based singular spectrum analysis method in causing less residual noise and also in saving half of the computational cost. Several synthetic and field data examples with different levels of complexities demonstrate the effectiveness and robustness of the presented algorithm in rejecting different types of noise including random noise, spiky noise, blending noise, and coherent noise.

  13. Seismic random noise attenuation using shearlet and total generalized variation

    International Nuclear Information System (INIS)

    Kong, Dehui; Peng, Zhenming

    2015-01-01

    Seismic denoising from a corrupted observation is an important part of seismic data processing which improves the signal-to-noise ratio (SNR) and resolution. In this paper, we present an effective denoising method to attenuate seismic random noise. The method takes advantage of shearlet and total generalized variation (TGV) regularization. Different regularity levels of TGV improve the quality of the final result by suppressing Gibbs artifacts caused by the shearlet. The problem is formulated as mixed constraints in a convex optimization. A Bregman algorithm is proposed to solve the proposed model. Extensive experiments based on one synthetic datum and two post-stack field data are done to compare performance. The results demonstrate that the proposed method provides superior effectiveness and preserve the structure better. (paper)

  14. Seismic random noise attenuation using shearlet and total generalized variation

    Science.gov (United States)

    Kong, Dehui; Peng, Zhenming

    2015-12-01

    Seismic denoising from a corrupted observation is an important part of seismic data processing which improves the signal-to-noise ratio (SNR) and resolution. In this paper, we present an effective denoising method to attenuate seismic random noise. The method takes advantage of shearlet and total generalized variation (TGV) regularization. Different regularity levels of TGV improve the quality of the final result by suppressing Gibbs artifacts caused by the shearlet. The problem is formulated as mixed constraints in a convex optimization. A Bregman algorithm is proposed to solve the proposed model. Extensive experiments based on one synthetic datum and two post-stack field data are done to compare performance. The results demonstrate that the proposed method provides superior effectiveness and preserve the structure better.

  15. An Application of Reassigned Time-Frequency Representations for Seismic Noise/Signal Decomposition

    Science.gov (United States)

    Mousavi, S. M.; Langston, C. A.

    2016-12-01

    Seismic data recorded by surface arrays are often strongly contaminated by unwanted noise. This background noise makes the detection of small magnitude events difficult. An automatic method for seismic noise/signal decomposition is presented based upon an enhanced time-frequency representation. Synchrosqueezing is a time-frequency reassignment method aimed at sharpening a time-frequency picture. Noise can be distinguished from the signal and suppressed more easily in this reassigned domain. The threshold level is estimated using a general cross validation approach that does not rely on any prior knowledge about the noise level. Efficiency of thresholding has been improved by adding a pre-processing step based on higher order statistics and a post-processing step based on adaptive hard-thresholding. In doing so, both accuracy and speed of the denoising have been improved compared to our previous algorithms (Mousavi and Langston, 2016a, 2016b; Mousavi et al., 2016). The proposed algorithm can either kill the noise (either white or colored) and keep the signal or kill the signal and keep the noise. Hence, It can be used in either normal denoising applications or in ambient noise studies. Application of the proposed method on synthetic and real seismic data shows the effectiveness of the method for denoising/designaling of local microseismic, and ocean bottom seismic data. References: Mousavi, S.M., C. A. Langston., and S. P. Horton (2016), Automatic Microseismic Denoising and Onset Detection Using the Synchrosqueezed-Continuous Wavelet Transform. Geophysics. 81, V341-V355, doi: 10.1190/GEO2015-0598.1. Mousavi, S.M., and C. A. Langston (2016a), Hybrid Seismic Denoising Using Higher-Order Statistics and Improved Wavelet Block Thresholding. Bull. Seismol. Soc. Am., 106, doi: 10.1785/0120150345. Mousavi, S.M., and C.A. Langston (2016b), Adaptive noise estimation and suppression for improving microseismic event detection, Journal of Applied Geophysics., doi: http

  16. Seismic Noise Analysis and Reduction through Utilization of Collocated Seismic and Atmospheric Sensors at the GRO Chile Seismic Network

    Science.gov (United States)

    Farrell, M. E.; Russo, R. M.

    2013-12-01

    The installation of Earthscope Transportable Array-style geophysical observatories in Chile expands open data seismic recording capabilities in the southern hemisphere by nearly 30%, and has nearly tripled the number of seismic stations providing freely-available data in southern South America. Through the use of collocated seismic and atmospheric sensors at these stations we are able to analyze how local atmospheric conditions generate seismic noise, which can degrade data in seismic frequency bands at stations in the ';roaring forties' (S latitudes). Seismic vaults that are climate-controlled and insulated from the local environment are now employed throughout the world in an attempt to isolate seismometers from as many noise sources as possible. However, this is an expensive solution that is neither practical nor possible for all seismic deployments; and also, the increasing number and scope of temporary seismic deployments has resulted in the collection and archiving of terabytes of seismic data that is affected to some degree by natural seismic noise sources such as wind and atmospheric pressure changes. Changing air pressure can result in a depression and subsequent rebound of Earth's surface - which generates low frequency noise in seismic frequency bands - and even moderate winds can apply enough force to ground-coupled structures or to the surface above the seismometers themselves, resulting in significant noise. The 10 stations of the permanent Geophysical Reporting Observatories (GRO Chile), jointly installed during 2011-12 by IRIS and the Chilean Servicio Sismológico, include instrumentation in addition to the standard three seismic components. These stations, spaced approximately 300 km apart along the length of the country, continuously record a variety of atmospheric data including infrasound, air pressure, wind speed, and wind direction. The collocated seismic and atmospheric sensors at each station allow us to analyze both datasets together, to

  17. Dynamic characteristics of background seismic noise according to records of nuclear monitoring seismic stations in Kazakstan

    International Nuclear Information System (INIS)

    Belyashova, N.N.; Sinyova, Z.I.; Komarov, I.I.; Mikhailova, N.N.

    1998-01-01

    The seismic stations of Kazakstan, included into nuclear monitoring network (see fig.1) are equipped with broad hand seismometers; seismic data are recorded in digital format. All this allows to investigate spectral and time characteristics of seismic background noise in very large frequency diapason (more than 3-5 orders), for all three components of oscillation vector. The spectral density of background seismic noise for vertical and both horizontal components (fig.2) was calculated for all of the observation points. The regular features of structure of noise spectra, inherent for all of the studied observation points, as well as some features, specific for studied places were found. The curves of spectral noise density were compared with global noise model, determined by the data of Global Seismological Network (GSN)

  18. Ambient Seismic Noise Interferometry on the Island of Hawai`i

    Science.gov (United States)

    Ballmer, Silke

    Ambient seismic noise interferometry has been successfully applied in a variety of tectonic settings to gain information about the subsurface. As a passive seismic technique, it extracts the coherent part of ambient seismic noise in-between pairs of seismic receivers. Measurements of subtle temporal changes in seismic velocities, and high-resolution tomographic imaging are then possible - two applications of particular interest for volcano monitoring. Promising results from other volcanic settings motivate its application in Hawai'i, with this work being the first to explore its potential. The dataset used for this purpose was recorded by the Hawaiian Volcano Observatory's permanent seismic network on the Island of Hawai'i. It spans 2.5 years from 5/2007 to 12/2009 and covers two distinct sources of volcanic tremor. After applying standard processing for ambient seismic noise interferometry, we find that volcanic tremor strongly affects the extracted noise information not only close to the tremor source, but unexpectedly, throughout the island-wide network. Besides demonstrating how this long-range observability of volcanic tremor can be used to monitor volcanic activity in the absence of a dense seismic array, our results suggest that care must be taken when applying ambient seismic noise interferometry in volcanic settings. In a second step, we thus exclude days that show signs of volcanic tremor, reducing the dataset to three months, and perform ambient seismic noise tomography. The resulting two-dimensional Rayleigh wave group velocity maps for 0.1 - 0.9 Hz compare very well with images from previous travel time tomography, both, for the main volcanic structures at low frequencies as well as for smaller features at mid-to-high frequencies - a remarkable observation for the temporally truncated dataset. These robust results suggest that ambient seismic noise tomography in Hawai'i is suitable 1) to provide a three-dimensional S-wave model for the volcanoes and 2

  19. Results from an acoustic modelling study of seismic airgun survey noise in Queen Charlotte Basin

    Energy Technology Data Exchange (ETDEWEB)

    MacGillivray, A.O.; Chapman, N.R. [Victoria Univ., BC (Canada). School of Earth and Ocean Sciences

    2005-12-07

    An acoustic modelling study was conducted to examine seismic survey noise propagation in the Queen Charlotte Basin (QCB) and better understand the physical aspects of sound transmission. The study results are intended to help determine the potential physiological and behavioural effects of airgun noise on marine mammals and fish. The scope of the study included a numerical simulation of underwater sound transmission in QCB in areas where oil and gas exploration activities may be conducted; a forecast of received noise levels by combining acoustic transmission loss computations with acoustic source levels representative of seismic exploration activity and, the use of received forecasts to estimate zones of impact for marine mammals. The critical environmental parameters in the QCB are the bathymetry of the ocean, the sound speed profile in the water and the geoacoustic profile of the seabed. The RAM acoustic propagation model developed by the United States Naval Research Laboratory was used to compute acoustic transmission loss in the QCB. The source level and directionality of the seismic array was determined by a full-waveform array source signature model. This modelling study of noise propagation from seismic surveys revealed several key findings. Among them, it showed that received noise levels in the water are affected by the source location, array orientation and the shape of the sound speed profile with respect to water depth. It also showed that noise levels are lowest in shallow bathymetry. 30 refs., 5 tabs., 13 figs.

  20. A semi-supervised method to detect seismic random noise with fuzzy GK clustering

    International Nuclear Information System (INIS)

    Hashemi, Hosein; Javaherian, Abdolrahim; Babuska, Robert

    2008-01-01

    We present a new method to detect random noise in seismic data using fuzzy Gustafson–Kessel (GK) clustering. First, using an adaptive distance norm, a matrix is constructed from the observed seismic amplitudes. The next step is to find centres of ellipsoidal clusters and construct a partition matrix which determines the soft decision boundaries between seismic events and random noise. The GK algorithm updates the cluster centres in order to iteratively minimize the cluster variance. Multiplication of the fuzzy membership function with values of each sample yields new sections; we name them 'clustered sections'. The seismic amplitude values of the clustered sections are given in a way to decrease the level of noise in the original noisy seismic input. In pre-stack data, it is essential to study the clustered sections in a f–k domain; finding the quantitative index for weighting the post-stack data needs a similar approach. Using the knowledge of a human specialist together with the fuzzy unsupervised clustering, the method is a semi-supervised random noise detection. The efficiency of this method is investigated on synthetic and real seismic data for both pre- and post-stack data. The results show a significant improvement of the input noisy sections without harming the important amplitude and phase information of the original data. The procedure for finding the final weights of each clustered section should be carefully done in order to keep almost all the evident seismic amplitudes in the output section. The method interactively uses the knowledge of the seismic specialist in detecting the noise

  1. Sources of high frequency seismic noise: insights from a dense network of ~250 stations in northern Alsace (France)

    Science.gov (United States)

    Vergne, Jerome; Blachet, Antoine; Lehujeur, Maximilien

    2015-04-01

    Monitoring local or regional seismic activity requires stations having a low level of background seismic noise at frequencies higher than few tenths of Hertz. Network operators are well aware that the seismic quality of a site depends on several aspects, among them its geological setting and the proximity of roads, railways, industries or trees. Often, the impact of each noise source is only qualitatively known which precludes estimating the quality of potential future sites before they are tested or installed. Here, we want to take advantage of a very dense temporary network deployed in Northern Alsace (France) to assess the effect of various kinds of potential sources on the level of seismic noise observed in the frequency range 0.2-50 Hz. In September 2014, more than 250 seismic stations (FairfieldNodal@ Zland nodes with 10Hz vertical geophone) have been installed every 1.5 km over a ~25km diameter disc centred on the deep geothermal sites of Soultz-sous-Forêts and Rittershoffen. This region exhibits variable degrees of human imprints from quite remote areas to sectors with high traffic roads and big villages. It also encompasses both the deep sedimentary basin of the Rhine graben and the piedmont of the Vosges massif with exposed bedrock. For each site we processed the continuous data to estimate probability density functions of the power spectral densities. At frequencies higher than 1 Hz most sites show a clear temporal modulation of seismic noise related to human activity with the well-known variations between day and night and between weekdays and weekends. Moreover we observe a clear evolution of the spatial distribution of seismic noise levels with frequency. Basically, between 0.5 and 4 Hz the geological setting modulates the level of seismic noise. At higher frequencies, the amplitude of seismic noise appears mostly related to the distance to nearby roads. Based on road maps and traffic estimation, a forward approach is performed to model the induced

  2. Bedload transport from spectral analysis of seismic noise near rivers

    Science.gov (United States)

    Hsu, L.; Finnegan, N. J.; Brodsky, E. E.

    2010-12-01

    Channel change in rivers is driven by bedload sediment transport. However, the nonlinear nature of sediment transport combined with the difficulty of making direct observations in rivers at flood hinder prediction of the timing and magnitude of bedload movement. Recent studies have shown that spectral analysis of seismic noise from seismometers near rivers illustrate a correlation between the relative amplitude of high frequency (>1 Hz) seismic noise and conditions for bedload transport, presumably from the energy transferred from clast collisions with the channel. However, a previous study in the Himalayas did not contain extensive bedload transport or discharge measurements, and the correspondence of seismic noise with proxy variables such as regional hydrologic and meteorologic data was not exact. A more complete understanding of the relationship between bedload transport and seismic noise would be valuable for extending the spatial and temporal extent of bedload data. To explore the direct relationship between bedload transport and seismic noise, we examine data from several seismic stations near the Trinity River in California, where the fluvial morphodynamics and bedload rating curves have been studied extensively. We compare the relative amplitude of the ambient seismic noise with records of water discharge and sediment transport. We also examine the noise at hourly, daily, and seasonal timescales to determine other possible sources of noise. We report the influence of variables such as local river slope, adjacent geology, anthropogenic noise, and distance from the river. The results illustrate the feasibility of using existing seismic arrays to sense radiated energy from processes of bedload transport. In addition, the results can be used to design future seismic array campaigns to optimize information about bedload transport. This technique provides great spatial and temporal coverage, and can be performed where direct bedload measurements are difficult or

  3. Observations and modeling of seismic background noise

    Science.gov (United States)

    Peterson, Jon R.

    1993-01-01

    The preparation of this report had two purposes. One was to present a catalog of seismic background noise spectra obtained from a worldwide network of seismograph stations. The other purpose was to refine and document models of seismic background noise that have been in use for several years. The second objective was, in fact, the principal reason that this study was initiated and influenced the procedures used in collecting and processing the data.With a single exception, all of the data used in this study were extracted from the digital data archive at the U.S. Geological Survey's Albuquerque Seismological Laboratory (ASL). This archive dates from 1972 when ASL first began deploying digital seismograph systems and collecting and distributing digital data under the sponsorship of the Defense Advanced Research Projects Agency (DARPA). There have been many changes and additions to the global seismograph networks during the past twenty years, but perhaps none as significant as the current deployment of very broadband seismographs by the U.S. Geological Survey (USGS) and the University of California San Diego (UCSD) under the scientific direction of the IRIS consortium. The new data acquisition systems have extended the bandwidth and resolution of seismic recording, and they utilize high-density recording media that permit the continuous recording of broadband data. The data improvements and continuous recording greatly benefit and simplify surveys of seismic background noise.Although there are many other sources of digital data, the ASL archive data were used almost exclusively because of accessibility and because the data systems and their calibration are well documented for the most part. Fortunately, the ASL archive contains high-quality data from other stations in addition to those deployed by the USGS. Included are data from UCSD IRIS/IDA stations, the Regional Seismic Test Network (RSTN) deployed by Sandia National Laboratories (SNL), and the TERRAscope network

  4. Seismic Background Noise Analysis of BRTR (PS-43) Array

    Science.gov (United States)

    Ezgi Bakir, Mahmure; Meral Ozel, Nurcan; Umut Semin, Korhan

    2015-04-01

    The seismic background noise variation of BRTR array, composed of two sub arrays located in Ankara and in Ankara-Keskin, has been investigated by calculating Power Spectral Density and Probability Density Functions for seasonal and diurnal noise variations between 2005 and 2011. PSDs were computed within the frequency range of 100 s - 10 Hz. The results show us a little change in noise conditions in terms of time and location. Especially, noise level changes were observed at 3-5 Hz in diurnal variations at Keskin array and there is a 5-7 dB difference in day and night time in cultural noise band (1-10 Hz). On the other hand, noise levels of medium period array is high in 1-2 Hz frequency rather than short period array. High noise levels were observed in daily working times when we compare it to night-time in cultural noise band. The seasonal background noise variation at both sites also shows very similar properties to each other. Since these stations are borehole instruments and away from the coasts, we saw a small change in noise levels caused by microseism. Comparison between Keskin short period array and Ankara medium period array show us Keskin array is quiter than Ankara array.

  5. Spots of Seismic Danger Extracted by Properties of Low-Frequency Seismic Noise

    Science.gov (United States)

    Lyubushin, Alexey

    2013-04-01

    A new method of seismic danger estimate is presented which is based on using properties of low-frequency seismic noise from broadband networks. Two statistics of noise waveforms are considered: multi-fractal singularity spectrum support width D and minimum normalized entropy En of squared orthogonal wavelet coefficients. The maps of D and En are plotted in the moving time window. Let us call the regions extracted by low values of D and high values of En as "spots of seismic danger" - SSD. Mean values of D and En are strongly anti-correlated - that is why statistics D and En extract the same SSD. Nevertheless their mutual considering is expedient because these parameters are based on different approaches. The physical mechanism which underlies the method is consolidation of small blocks of the Earth's crust into the large one before the strong earthquake. This effect has a consequence that seismic noise does not include spikes which are connected with mutual movements of small blocks. The absence of irregular spikes in the noise follows the decreasing of D and increasing of entropy En. The stability in space and size of the SSD provides estimates of the place and energy of the probable future earthquake. The increasing or decreasing of SSD size and minimum or maximum values of D and En within SSD allows estimate the trend of seismic danger. The method is illustrating by the analysis of seismic noise from broadband seismic network F-net in Japan [1-5]. Statistically significant decreasing of D allowed a hypothesis about approaching Japan to a future seismic catastrophe to be formulated at the middle of 2008. The peculiarities of correlation coefficient estimate within 1 year time window between median values of D and generalized Hurst exponent allowed to make a decision that starting from July of 2010 Japan come to the state of waiting strong earthquake [3]. The method extracted a huge SSD near Japan which includes the region of future Tohoku mega-earthquake and the

  6. A comparison of high-frequency noise levels on Cascadia Initiative ocean-bottom seismometers

    Science.gov (United States)

    Hilmo, R.; Wilcock, W. S. D.; Roland, E. C.; Bodin, P.; Connolly, J.

    2017-12-01

    The Cascadia Initiative (CI) included a four-year deployment of 70 ocean bottom seismometers (OBSs) on the Cascadia subduction zone and the Juan de Fuca plate for the purposes of characterizing seismicity and imaging the Earth's interior. The Cascadia subduction zone megathrust exhibits very low rates of seismicity relative to most other subduction zones, and there is great motivation to understand deformation on the megathrust because of its potential to produce a catastrophic M9 earthquake. An understanding of earthquake detectability of the CI network, based on knowledge of noise levels, could contribute to the interpretation of earthquake catalogs derived from the experiment and aid in the design of future networks. This project is aimed at estimating these thresholds of local earthquake detectability and how they change across the array both geographically and temporally. We characterize background noise levels recorded from 0.1 to 20 Hz with an emphasis on the frequency band used to detect local seismicity ( 3-15 Hz) to understand how noise levels depend on instrument design and environmental parameters including seafloor depth, season and oceanographic conditions. Our initial analysis of 3 weeks of vertical channel data in September, January, and May 2012-2013 shows that noise increase significantly moving from the continental shelf to deeper water. Noise levels at a given depth vary with instrument type but further analysis is required to determine whether this reflects variations in instrumental noise and ground coupling noise or errors in the scaling of the instrument response. There is also a strong seasonality in recorded noise levels at some frequencies, with winter noise levels exceeding spring and fall noise levels by up to 10 decibels in both the microseism band and in the fin whale calling band (15-20 Hz). In contrast, the seasonal noise level in the local seismicity band for a given instrument type and location shows smaller noise variation

  7. Wind seismic noise introduced by external infrastructure: field data and transfer mechanism

    Science.gov (United States)

    Martysevich, Pavel; Starovoyt, Yuri

    2017-04-01

    Background seismic noise generated by wind was analyzed at six co-located seismic and infrasound arrays with the use of the wind speed data. The main factors affecting the noise level were identified as (a) external structures as antenna towers for intrasite communication, vegetation and heavy solar panels fixtures, (b) borehole casing and (c) local lithology. The wind-induced seismic noise peaks in the spectra can be predicted by combination of inverted pendulum model for antenna towers and structures used to support solar panels, free- or clamped-tube resonance of the borehole casing and is dependent on the type of sedimentary upper layer. Observed resonance frequencies are in agreement with calculated clamped / free tube modes for towers and borehole casings. Improvement of the seismic data quality can be achieved by minimizing the impact of surrounding structures close to seismic boreholes. The need and the advantage of the borehole installation may vanish and appear to be even not necessary at locations with non-consolidated sediments because the impact of surrounding structures on seismic background may significantly deteriorate the installation quality and therefore the detection capability of the array. Several IMS arrays where the radio telemetry antennas are used for data delivery to the central site may benefit from the redesign of the intrasite communication system by its substitute with the fiber-optic net as less harmful engineering solution.

  8. Seismic noise study for a new seismic station at King Fahd University of Petroleum and Minerals in Saudi Arabia

    Science.gov (United States)

    Kaka, S. I.

    2012-04-01

    We have carried out a seismic noise study in order to understand the noise level at three selected locations at King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia. The main purpose is to select a suitable site with low seismic noise and good signal-to-noise ratio for our new broadband seismic station. There are several factors involved in the selection of a site location for a new station. Most importantly, we need to strike a balance between a logistically convenient site versus a technically suitable site. As a starting point, we selected six potential sites due to accessibility and proximity to the seismic processing center laboratory in the Department of Earth Sciences (ESD) at KFUPM. We then eliminated two sites that are relatively close to possible low-frequency noise sources. We have considered many possible noise sources which include: vehicle traffic / heavy machinery, the direct path of air flowing from air conditioning vent, tall trees / power poles and metal doorways. One more site was eliminated because the site was located in the open where it experiences maximum wind speed which is considered a major source of noise. All three potential sites are situated within the Dammam Dome where both lower middle and upper Rus Formations are exposed. The upper Rus is mainly made up of fine grained chalky limestone and the lower Rus is made up of alternation of marls and thin dolomitic limestone. The area is not known for any major faults and considered very low seismicity and hence the identification of seismoteconic features is not required. Before conducting the noise study, we calibrated and tested the seismic recording system, which was recently acquired by the ESD at KFUPM. The system includes a seismic recorder and a sensor with a GPS device. We deployed the system in order to measure the low-frequency background noise. Knowing the low frequency noise will help in predicting the high-frequency noise. The recording systems were

  9. Seismic Linear Noise Attenuation with Use of Radial Transform

    Science.gov (United States)

    Szymańska-Małysa, Żaneta

    2018-03-01

    One of the goals of seismic data processing is to attenuate the recorded noise in order to enable correct interpretation of the image. Radial transform has been used as a very effective tool in the attenuation of various types of linear noise, both numerical and real (such as ground roll, direct waves, head waves, guided waves etc). The result of transformation from offset - time (X - T) domain into apparent velocity - time (R - T) domain is frequency separation between reflections and linear events. In this article synthetic and real seismic shot gathers were examined. One example was targeted at far offset area of dataset where reflections and noise had similar apparent velocities and frequency bands. Another example was a result of elastic modelling where linear artefacts were produced. Bandpass filtering and scaling operation executed in radial domain attenuated all discussed types of linear noise very effectively. After noise reduction all further processing steps reveal better results, especially velocity analysis, migration and stacking. In all presented cases signal-to-noise ratio was significantly increased and reflections covered previously by noise were revealed. Power spectra of filtered seismic records preserved real dynamics of reflections.

  10. The persistent signature of tropical cyclones in ambient seismic noise

    KAUST Repository

    Gualtieri, Lucia; Camargo, Suzana J.; Pascale, Salvatore; Pons, Flavio M.E.; Ekströ m, Gö ran

    2017-01-01

    The spectrum of ambient seismic noise shows strong signals associated with tropical cyclones, yet a detailed understanding of these signals and the relationship between them and the storms is currently lacking. Through the analysis of more than a decade of seismic data recorded at several stations located in and adjacent to the northwest Pacific Ocean, here we show that there is a persistent and frequency-dependent signature of tropical cyclones in ambient seismic noise that depends on characteristics of the storm and on the detailed location of the station relative to the storm. An adaptive statistical model shows that the spectral amplitude of ambient seismic noise, and notably of the short-period secondary microseisms, has a strong relationship with tropical cyclone intensity and can be employed to extract information on the tropical cyclones.

  11. The persistent signature of tropical cyclones in ambient seismic noise

    KAUST Repository

    Gualtieri, Lucia

    2017-12-28

    The spectrum of ambient seismic noise shows strong signals associated with tropical cyclones, yet a detailed understanding of these signals and the relationship between them and the storms is currently lacking. Through the analysis of more than a decade of seismic data recorded at several stations located in and adjacent to the northwest Pacific Ocean, here we show that there is a persistent and frequency-dependent signature of tropical cyclones in ambient seismic noise that depends on characteristics of the storm and on the detailed location of the station relative to the storm. An adaptive statistical model shows that the spectral amplitude of ambient seismic noise, and notably of the short-period secondary microseisms, has a strong relationship with tropical cyclone intensity and can be employed to extract information on the tropical cyclones.

  12. High temporal resolution mapping of seismic noise sources using heterogeneous supercomputers

    Science.gov (United States)

    Gokhberg, Alexey; Ermert, Laura; Paitz, Patrick; Fichtner, Andreas

    2017-04-01

    Time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems. Significant interest in seismic noise source maps with high temporal resolution (days) is expected to come from a number of domains, including natural resources exploration, analysis of active earthquake fault zones and volcanoes, as well as geothermal and hydrocarbon reservoir monitoring. Currently, knowledge of noise sources is insufficient for high-resolution subsurface monitoring applications. Near-real-time seismic data, as well as advanced imaging methods to constrain seismic noise sources have recently become available. These methods are based on the massive cross-correlation of seismic noise records from all available seismic stations in the region of interest and are therefore very computationally intensive. Heterogeneous massively parallel supercomputing systems introduced in the recent years combine conventional multi-core CPU with GPU accelerators and provide an opportunity for manifold increase and computing performance. Therefore, these systems represent an efficient platform for implementation of a noise source mapping solution. We present the first results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service that provides seismic noise source maps for Central Europe with high temporal resolution (days to few weeks depending on frequency and data availability). The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept in order to provide the interested external researchers the regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for

  13. Toward predicting clay landslide with ambient seismic noise

    Science.gov (United States)

    Larose, E. F.; Mainsant, G.; Carriere, S.; Chambon, G.; Michoud, C.; Jongmans, D.; Jaboyedoff, M.

    2013-12-01

    Clay-rich pose critical problems in risk management worldwide. The most widely proposed mechanism leading to such flow-like movements is the increase in water pore pressure in the sliding mass, generating partial or complete liquefaction. This solid-to-liquid transition results in a dramatic reduction of mechanical rigidity, which could be detected by monitoring shear wave velocity variations, The ambient seismic noise correlation technique has been applied to measure the variation in the seismic surface wave velocity in the Pont Bourquin landslide (Swiss Alps). This small but active composite earthslide-earthflow was equipped with continuously recording seismic sensors during spring and summer 2010, and then again from fall 2011 on. An earthslide of a few thousand cubic meters was triggered in mid-August 2010, after a rainy period. This article shows that the seismic velocity of the sliding material, measured from daily noise correlograms, decreased continuously and rapidly for several days prior to the catastrophic event. From a spectral analysis of the velocity decrease, it was possible to determine the location of the change at the base of the sliding layer. These results are confirmed by analogous small-scale experiments in the laboratory. These results demonstrate that ambient seismic noise can be used to detect rigidity variations before failure and could potentially be used to predict landslides.

  14. High Temporal Resolution Mapping of Seismic Noise Sources Using Heterogeneous Supercomputers

    Science.gov (United States)

    Paitz, P.; Gokhberg, A.; Ermert, L. A.; Fichtner, A.

    2017-12-01

    The time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems like earthquake fault zones, volcanoes, geothermal and hydrocarbon reservoirs. We present results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service providing seismic noise source maps for Central Europe with high temporal resolution. We use source imaging methods based on the cross-correlation of seismic noise records from all seismic stations available in the region of interest. The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept to provide the interested researchers worldwide with regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for collecting, on a periodic basis, raw seismic records from the European seismic networks, (2) high-performance noise source mapping application responsible for the generation of source maps using cross-correlation of seismic records, (3) back-end infrastructure for the coordination of various tasks and computations, (4) front-end Web interface providing the service to the end-users and (5) data repository. The noise source mapping itself rests on the measurement of logarithmic amplitude ratios in suitably pre-processed noise correlations, and the use of simplified sensitivity kernels. During the implementation we addressed various challenges, in particular, selection of data sources and transfer protocols, automation and monitoring of daily data downloads, ensuring the required data processing performance, design of a general service-oriented architecture for coordination of various sub-systems, and

  15. Characteristics of Broadband Seismic Noise in Taiwan and Neighboring Islands

    Science.gov (United States)

    Chen, Ching-Wei; Rau, Ruey-Juin

    2017-04-01

    We used seismic waveform data from 115 broad-band stations of BATS (Institute of Earth Science, Academia Sinica) and Central Weather Bureau Seismic Network from 2012 to 2016 for noise-level mapping in Taiwan and neighboring islands. We computed Power Spectral Density (PSD) for each station and analyzed long-term variance of microseism energy and polarizations of noise for severe weather events. The island of Taiwan is surrounded by ocean and the Central Range which has the highest peak Jade Mountain at 3,952 meters height occupies more than 66% of the island and departs it into the east and west coasts. The geographic settings then result in the high population density in the western plain and northern Taiwan. The dominant noise source in the microseism band (periods from 4-20 seconds) is the coupling between the near-coast ocean and sea floor which produces the high noise of averaging -130 dB along the west coastal area. In the eastern volcanic-arc coastal areas, the noise level is about 7% smaller than the west coast due to its deeper offshore water depth. As for the shorter periods (0.1-0.25 seconds) band, the so-called culture noise, an anthropic activity variance with the highest -103 dB can be identified in the metropolitan areas, such as the Taipei city and the noise level in the Central Range area is averaging -138 dB. Moreover, the noise also shows a daily and temporal evolution mainly related to the traffic effect. Furthermore, we determined the noise level for the entire island of Taiwan during 26-28 September, 2016, when the typhoon Megi hit the island and retrieved the enhancement of secondary microseism energy for each stations. Typhoon Megi landed in eastern and central Taiwan and reached the maximum wind speed of 45m/s in the surrounded eyewall. The Central Range, as a barrier, decreased the wind speed in southern Taiwan making an enhancement less than 10 dB, while in northern Taiwan where the direction the typhoon headed to, can reach more than 35

  16. Statistical Properties of Seismic Noise Measured in Underground Spaces During Seismic Swarm

    Czech Academy of Sciences Publication Activity Database

    Lyubushin, A. A.; Kaláb, Zdeněk; Lednická, Markéta

    2014-01-01

    Roč. 49, č. 2 (2014), s. 209-224 ISSN 2213-5812 R&D Projects: GA ČR GA105/09/0089; GA MŠk LM2010008 Institutional support: RVO:68145535 Keywords : seismic noise * multifractals * wavelets * kurtosis * West Bohemia seismic swarm Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.543, year: 2014 http://link.springer.com/article/10.1007/s40328-014-0051-y

  17. Newtonian-noise cancellation in large-scale interferometric GW detectors using seismic tiltmeters

    International Nuclear Information System (INIS)

    Harms, Jan; Venkateswara, Krishna

    2016-01-01

    The mitigation of terrestrial gravity noise, also known as Newtonian noise (NN), is one of the foremost challenges to improve low-frequency sensitivity of ground-based gravitational-wave detectors. At frequencies above 1 Hz, it is predicted that gravity noise from seismic surface Rayleigh waves is the dominant contribution to NN in surface detectors, and may still contribute significantly in future underground detectors. Noise cancellation based on a coherent estimate of NN using data from a seismometer array was proposed in the past. In this article, we propose an alternative scheme to cancel NN using a seismic tiltmeter. It is shown that even under pessimistic assumptions concerning the complexity of the seismic field, a single tiltmeter under each test mass of the detector is sufficient to achieve substantial noise cancellation. A technical tiltmeter design is presented to achieve the required sensitivity in the Newtonian-noise frequency band. (paper)

  18. A generalized formulation for noise-based seismic velocity change measurements

    Science.gov (United States)

    Gómez-García, C.; Brenguier, F.; Boué, P.; Shapiro, N.; Droznin, D.; Droznina, S.; Senyukov, S.; Gordeev, E.

    2017-12-01

    The observation of continuous seismic velocity changes is a powerful tool for detecting seasonal variations in crustal structure, volcanic unrest, co- and post-seismic evolution of stress in fault areas or the effects of fluid injection. The standard approach for measuring such velocity changes relies on comparison of travel times in the coda of a set of seismic signals, usually noise-based cross-correlations retrieved at different dates, and a reference trace, usually a averaged function over dates. A good stability in both space and time of the noise sources is then the main assumption for reliable measurements. Unfortunately, these conditions are often not fulfilled, as it happens when ambient-noise sources are non-stationary, such as the emissions of low-frequency volcanic tremors.We propose a generalized formulation for retrieving continuous time series of noise-based seismic velocity changes without any arbitrary reference cross-correlation function. We set up a general framework for future applications of this technique performing synthetic tests. In particular, we study the reliability of the retrieved velocity changes in case of seasonal-type trends, transient effects (similar to those produced as a result of an earthquake or a volcanic eruption) and sudden velocity drops and recoveries as the effects of transient local source emissions. Finally, we apply this approach to a real dataset of noise cross-correlations. We choose the Klyuchevskoy volcanic group (Kamchatka) as a case study where the recorded wavefield is hampered by loss of data and dominated by strongly localized volcanic tremor sources. Despite the mentioned wavefield contaminations, we retrieve clear seismic velocity drops associated with the eruptions of the Klyuchevskoy an the Tolbachik volcanoes in 2010 and 2012, respectively.

  19. Adaptive Sensor Tuning for Seismic Event Detection in Environment with Electromagnetic Noise

    Science.gov (United States)

    Ziegler, Abra E.

    The goal of this research is to detect possible microseismic events at a carbon sequestration site. Data recorded on a continuous downhole microseismic array in the Farnsworth Field, an oil field in Northern Texas that hosts an ongoing carbon capture, utilization, and storage project, were evaluated using machine learning and reinforcement learning techniques to determine their effectiveness at seismic event detection on a dataset with electromagnetic noise. The data were recorded from a passive vertical monitoring array consisting of 16 levels of 3-component 15 Hz geophones installed in the field and continuously recording since January 2014. Electromagnetic and other noise recorded on the array has significantly impacted the utility of the data and it was necessary to characterize and filter the noise in order to attempt event detection. Traditional detection methods using short-term average/long-term average (STA/LTA) algorithms were evaluated and determined to be ineffective because of changing noise levels. To improve the performance of event detection and automatically and dynamically detect seismic events using effective data processing parameters, an adaptive sensor tuning (AST) algorithm developed by Sandia National Laboratories was utilized. AST exploits neuro-dynamic programming (reinforcement learning) trained with historic event data to automatically self-tune and determine optimal detection parameter settings. The key metric that guides the AST algorithm is consistency of each sensor with its nearest neighbors: parameters are automatically adjusted on a per station basis to be more or less sensitive to produce consistent agreement of detections in its neighborhood. The effects that changes in neighborhood configuration have on signal detection were explored, as it was determined that neighborhood-based detections significantly reduce the number of both missed and false detections in ground-truthed data. The performance of the AST algorithm was

  20. Source localization analysis using seismic noise data acquired in exploration geophysics

    Science.gov (United States)

    Roux, P.; Corciulo, M.; Campillo, M.; Dubuq, D.

    2011-12-01

    Passive monitoring using seismic noise data shows a growing interest at exploration scale. Recent studies demonstrated source localization capability using seismic noise cross-correlation at observation scales ranging from hundreds of kilometers to meters. In the context of exploration geophysics, classical localization methods using travel-time picking fail when no evident first arrivals can be detected. Likewise, methods based on the intensity decrease as a function of distance to the source also fail when the noise intensity decay gets more complicated than the power-law expected from geometrical spreading. We propose here an automatic procedure developed in ocean acoustics that permits to iteratively locate the dominant and secondary noise sources. The Matched-Field Processing (MFP) technique is based on the spatial coherence of raw noise signals acquired on a dense array of receivers in order to produce high-resolution source localizations. Standard MFP algorithms permits to locate the dominant noise source by matching the seismic noise Cross-Spectral Density Matrix (CSDM) with the equivalent CSDM calculated from a model and a surrogate source position that scans each position of a 3D grid below the array of seismic sensors. However, at exploration scale, the background noise is mostly dominated by surface noise sources related to human activities (roads, industrial platforms,..), which localization is of no interest for the monitoring of the hydrocarbon reservoir. In other words, the dominant noise sources mask lower-amplitude noise sources associated to the extraction process (in the volume). Their location is therefore difficult through standard MFP technique. The Multi-Rate Adaptative Beamforming (MRABF) is a further improvement of the MFP technique that permits to locate low-amplitude secondary noise sources using a projector matrix calculated from the eigen-value decomposition of the CSDM matrix. The MRABF approach aims at cancelling the contributions of

  1. On inferring the noise in probabilistic seismic AVO inversion using hierarchical Bayes

    DEFF Research Database (Denmark)

    Madsen, Rasmus Bødker; Zunino, Andrea; Hansen, Thomas Mejer

    2017-01-01

    A realistic noise model is essential for trustworthy inversion of geophysical data. Sometimes, as in case of seismic data, quan- tification of the noise model is non-trivial. To remedy this, a hierarchical Bayes approach can be adopted in which proper- ties of the noise model, such as the amplitude...... of an assumed uncorrelated Gaussian noise model, can be inferred as part of the inversion. Here we demonstrate how such an approach can lead to substantial overfitting of noise when inverting a 1D re- flection seismic NMO data set. We then argue that usually the noise model is correlated, and suggest to infer...

  2. Signal-to-noise ratio application to seismic marker analysis and fracture detection

    Science.gov (United States)

    Xu, Hui-Qun; Gui, Zhi-Xian

    2014-03-01

    Seismic data with high signal-to-noise ratios (SNRs) are useful in reservoir exploration. To obtain high SNR seismic data, significant effort is required to achieve noise attenuation in seismic data processing, which is costly in materials, and human and financial resources. We introduce a method for improving the SNR of seismic data. The SNR is calculated by using the frequency domain method. Furthermore, we optimize and discuss the critical parameters and calculation procedure. We applied the proposed method on real data and found that the SNR is high in the seismic marker and low in the fracture zone. Consequently, this can be used to extract detailed information about fracture zones that are inferred by structural analysis but not observed in conventional seismic data.

  3. Broadband seismic noise attenuation versus depth at the Albuquerque Seismological Laboratory

    Science.gov (United States)

    Hutt, Charles R.; Ringler, Adam; Gee, Lind

    2017-01-01

    Seismic noise induced by atmospheric processes such as wind and pressure changes can be a major contributor to the background noise observed in many seismograph stations, especially those installed at or near the surface. Cultural noise such as vehicle traffic or nearby buildings with air handling equipment also contributes to seismic background noise. Such noise sources fundamentally limit our ability to resolve earthquake‐generated signals. Many previous seismic noise versus depth studies focused separately on either high‐frequency (>1  Hz">>1  Hz) or low‐frequency (shallow surface vaults) up to 100 m or more (boreholes) in the permanent observatories of the Global Seismographic Network (GSN). It is important for managers and planners of these and similar arrays and networks of seismograph stations to understand the attenuation of surface‐generated noise versus depth so that they can achieve desired performance goals within their budgets as well as their frequency band of focus. The results of this study will assist in decisions regarding BB and VBB seismometer installation depths. In general, we find that greater installation depths are better and seismometer emplacement in hard rock is better than in soil. Attenuation for any given depth varies with frequency. More specifically, we find that the dependence of depth will be application dependent based on the frequency band and sensitive axes of interest. For quick deployments (like aftershock studies), 1 m may be deep enough to produce good data, especially when the focus is on vertical data where temperature stability fundamentally limits the low‐frequency noise levels and little low‐frequency data will be used. For temporary (medium‐term) deployments (e.g., TA) where low cost can be very important, 2–3 m should be sufficient, but such shallow installations will limit the ability to resolve low‐frequency signals, especially on horizontal components. Of course, one should try for

  4. The Influence of Geography and Geology on Seismic Background Noise Levels Across the United States as Revealed by the Transportable Array

    Science.gov (United States)

    Anthony, R. E.; Ringler, A. T.; Holland, A. A.; Wilson, D. C.

    2017-12-01

    The EarthScope USArray Transportable Array (TA) has now covered the US with 3-component broadband seismometers at approximately 70 km station spacing and deployment durations of approximately 2 years. This unprecedented coverage, combined with high-quality and near homogenous installation techniques, offers a novel dataset in which to characterize spatially varying levels of background seismic noise across the United States. We present background noise maps in period bands of interest to earthquake and imaging seismology across the US (lower 48 states and Alaska). Early results from the contiguous 48 states demonstrate that ambient noise levels within the body wave period band (1-5 s) vary by > 20 dB (rel. 1 (m/s2)2/Hz) with the highest noise levels occurring at stations located within sedimentary basins and lowest within the mountain ranges of the Western US. Additionally, stations around the Great Lakes observe heightened noise levels in this band beyond the aforementioned basin amplification. We attribute this observation to local swell activity in the Great Lakes generating short-period microseism signals. This suggests that lake-generated microseisms may be a significant source of noise for Alaskan deployments situated in close proximity to lakes to facilitate float plane access. We further investigate how basin amplification and short-period lake microseism signals may noticeably impact detection and signal-to-noise of teleseismic body wave signals during certain time periods. At longer-periods (> 20 s), we generally observe larger noise levels on the horizontal components of stations situated in basins or on soft sediment, likely caused by locally induced tilt of the sensor. We will present similar analysis from the initial Alaska TA dataset to quantitatively assess how utilization of posthole sensors affects signal-to-noise for the long-period horizontal wavefield.

  5. Ambient noise levels in the Taiwan region

    Science.gov (United States)

    Liang, W.; Liu, C.; Chen, R.; Huang, B.; Wu, F. T.; Wang, C.

    2008-12-01

    To characterize the island-wide background seismic noise in Taiwan, we estimate the power spectral density (PSD) at broadband stations of both the BATS (Broadband Array in Taiwan for Seismology) and the TAIGER experiment (Apr. 2006~Apr. 2008) for periods ranging from ~0.2 to 100 seconds. A new approach to calculate the probability density functions of noise power (PDFs, MaNamara and Buland, 2004) is used in this study. The results indicate that the cultural noise at higher frequencies is significant at populated area, which shows diurnal and weekly variation as what we expected. The noise power for microseisms centered at a period of ~5 seconds around the western costal plain show ~20dB higher than what observed at eastern Taiwan. This observation supports the inference that the coastal regions having narrow shelf with irregular coastlines are know to be especially efficient at radiating the predominat microseisms. Results from the linear array across central Taiwan demonstrate that the average noise power is quietest at the eastern Central Range. We have mapped the PDF mode for stations at various periods to see the spatial distribution of ambient noise levels, which could be used as the basic information for future station siting. Temporal variation of noise PSD is also present to provide a quantitative description of the seismic data quality collected by both BATS and TAIGER experiment. Some operational problems like base tilt, sensitivity change can be identified easily as well.

  6. Shear wave velocity versus quality factor: results from seismic noise recordings

    Science.gov (United States)

    Boxberger, Tobias; Pilz, Marco; Parolai, Stefano

    2017-08-01

    The assessment of the shear wave velocity (vs) and shear wave quality factor (Qs) for the shallow structure below a site is necessary to characterize its site response. In the past, methods based on the analysis of seismic noise have been shown to be very efficient for providing a sufficiently accurate estimation of the vs versus depth at reasonable costs for engineering seismology purposes. In addition, a slight modification of the same method has proved to be able to provide realistic Qs versus depth estimates. In this study, data sets of seismic noise recorded by microarrays of seismic stations in different geological environments of Europe and Central Asia are used to calculate both vs and Qs versus depth profiles. Analogous to the generally adopted approach in seismic hazard assessment for mapping the average shear wave velocity in the uppermost 30 m (vs30) as a proxy of the site response, this approach was also applied to the quality factor within the uppermost 30 m (Qs30). A slightly inverse correlation between both parameters is found based on a methodological consistent determination for different sites. Consequently, a combined assessment of vs and Qs by seismic noise analysis has the potential to provide a more comprehensive description of the geological structure below a site.

  7. First results of cross-correlation analysis of ambient seismic noise from the Hellenic Unified Seismic Network

    NARCIS (Netherlands)

    Panou, Areti; Paulssen, Hanneke; Hatzidimitriou, Panagiotis

    2015-01-01

    In this study we present phase velocity maps that were obtained from the cross-correlation analysis of ambient seismic noise recorded in the region of Greece.We used one year (2013) of ambient seismic data obtained from the vertical component of 64 broadband permanent seismological stations that are

  8. Seismic signal and noise on Europa and how to use it

    Science.gov (United States)

    Panning, M. P.; Stähler, S. C.; Bills, B. G.; Castillo, J.; Huang, H. H.; Husker, A. L.; Kedar, S.; Lorenz, R. D.; Pike, W. T.; Schmerr, N. C.; Tsai, V. C.; Vance, S.

    2017-12-01

    Seismology is one of our best tools for detailing interior structure of planetary bodies, and a seismometer is included in the baseline and threshold mission design for a potential Europa lander mission. Guiding mission design and planning for adequate science return, though, requires modeling of both the anticipated signal and noise. Assuming ice seismicity on Europa behaves according to statistical properties observed in Earth catalogs and scaling cumulative seismic moment release to the moon, we simulate long seismic records and estimate background noise and peak signal amplitudes (Panning et al., 2017). This suggests a sensitive instrument comparable to many broadband terrestrial instruments or the SP instrument from the InSight mission to Mars will be able to record signals, while high frequency geophones are likely inadequate. We extend this analysis to also begin incorporation of spatial and temporal variation due to the tidal cycle, which can help inform landing site selection. We also begin exploration of how chaotic terrane at the bottom of the ice shell and inter-ice heterogeneities (i.e. internal melt structures) may affect predicted seismic observations using 2D numerical seismic simulations. We also show some of the key seismic observations to determine interior properties of Europa (Stähler et al., 2017). M. P. Panning, S. C. Stähler, H.-H. Huang, S. D. Vance, S. Kedar, V. C. Tsai, W. T. Pike, R. D. Lorenz, "Expected seismicity and the seismic noise environment of Europa," J. Geophys. Res., in revision, 2017. S. C. Stähler, M. P. Panning, S. D. Vance, R. D. Lorenz, M. van Driel, T. Nissen-Meyer, S. Kedar, "Seismic wave propagation in icy ocean worlds," J. Geophys. Res., in revision, 2017.

  9. Random noise suppression of seismic data using non-local Bayes algorithm

    Science.gov (United States)

    Chang, De-Kuan; Yang, Wu-Yang; Wang, Yi-Hui; Yang, Qing; Wei, Xin-Jian; Feng, Xiao-Ying

    2018-02-01

    For random noise suppression of seismic data, we present a non-local Bayes (NL-Bayes) filtering algorithm. The NL-Bayes algorithm uses the Gaussian model instead of the weighted average of all similar patches in the NL-means algorithm to reduce the fuzzy of structural details, thereby improving the denoising performance. In the denoising process of seismic data, the size and the number of patches in the Gaussian model are adaptively calculated according to the standard deviation of noise. The NL-Bayes algorithm requires two iterations to complete seismic data denoising, but the second iteration makes use of denoised seismic data from the first iteration to calculate the better mean and covariance of the patch Gaussian model for improving the similarity of patches and achieving the purpose of denoising. Tests with synthetic and real data sets demonstrate that the NL-Bayes algorithm can effectively improve the SNR and preserve the fidelity of seismic data.

  10. Monitoring Instrument Performance in Regional Broadband Seismic Network Using Ambient Seismic Noise

    Science.gov (United States)

    Ye, F.; Lyu, S.; Lin, J.

    2017-12-01

    In the past ten years, the number of seismic stations has increased significantly, and regional seismic networks with advanced technology have been gradually developed all over the world. The resulting broadband data help to improve the seismological research. It is important to monitor the performance of broadband instruments in a new network in a long period of time to ensure the accuracy of seismic records. Here, we propose a method that uses ambient noise data in the period range 5-25 s to monitor instrument performance and check data quality in situ. The method is based on an analysis of amplitude and phase index parameters calculated from pairwise cross-correlations of three stations, which provides multiple references for reliable error estimates. Index parameters calculated daily during a two-year observation period are evaluated to identify stations with instrument response errors in near real time. During data processing, initial instrument responses are used in place of available instrument responses to simulate instrument response errors, which are then used to verify our results. We also examine feasibility of the tailing noise using data from stations selected from USArray in different locations and analyze the possible instrumental errors resulting in time-shifts used to verify the method. Additionally, we show an application that effects of instrument response errors that experience pole-zeros variations on monitoring temporal variations in crustal properties appear statistically significant velocity perturbation larger than the standard deviation. The results indicate that monitoring seismic instrument performance helps eliminate data pollution before analysis begins.

  11. Ambient seismic noise monitoring of a clay landslide: Toward failure prediction

    Science.gov (United States)

    Mainsant, Guénolé; Larose, Eric; Brönnimann, Cornelia; Jongmans, Denis; Michoud, Clément; Jaboyedoff, Michel

    2012-03-01

    Given that clay-rich landslides may become mobilized, leading to rapid mass movements (earthflows and debris flows), they pose critical problems in risk management worldwide. The most widely proposed mechanism leading to such flow-like movements is the increase in water pore pressure in the sliding mass, generating partial or complete liquefaction. This solid-to-liquid transition results in a dramatic reduction of mechanical rigidity in the liquefied zones, which could be detected by monitoring shear wave velocity variations. With this purpose in mind, the ambient seismic noise correlation technique has been applied to measure the variation in the seismic surface wave velocity in the Pont Bourquin landslide (Swiss Alps). This small but active composite earthslide-earthflow was equipped with continuously recording seismic sensors during spring and summer 2010. An earthslide of a few thousand cubic meters was triggered in mid-August 2010, after a rainy period. This article shows that the seismic velocity of the sliding material, measured from daily noise correlograms, decreased continuously and rapidly for several days prior to the catastrophic event. From a spectral analysis of the velocity decrease, it was possible to determine the location of the change at the base of the sliding layer. These results demonstrate that ambient seismic noise can be used to detect rigidity variations before failure and could potentially be used to predict landslides.

  12. Epicenter Location of Regional Seismic Events Using Love Wave and Rayleigh Wave Ambient Seismic Noise Green's Functions

    Science.gov (United States)

    Levshin, A. L.; Barmin, M. P.; Moschetti, M. P.; Mendoza, C.; Ritzwoller, M. H.

    2011-12-01

    We describe a novel method to locate regional seismic events based on exploiting Empirical Green's Functions (EGF) that are produced from ambient seismic noise. Elastic EGFs between pairs of seismic stations are determined by cross-correlating long time-series of ambient noise recorded at the two stations. The EGFs principally contain Rayleigh waves on the vertical-vertical cross-correlations and Love waves on the transverse-transverse cross-correlations. Earlier work (Barmin et al., "Epicentral location based on Rayleigh wave empirical Green's functions from ambient seismic noise", Geophys. J. Int., 2011) showed that group time delays observed on Rayleigh wave EGFs can be exploited to locate to within about 1 km moderate sized earthquakes using USArray Transportable Array (TA) stations. The principal advantage of the method is that the ambient noise EGFs are affected by lateral variations in structure similarly to the earthquake signals, so the location is largely unbiased by 3-D structure. However, locations based on Rayleigh waves alone may be biased by more than 1 km if the earthquake depth is unknown but lies between 2 km and 7 km. This presentation is motivated by the fact that group time delays for Love waves are much less affected by earthquake depth than Rayleigh waves; thus exploitation of Love wave EGFs may reduce location bias caused by uncertainty in event depth. The advantage of Love waves to locate seismic events, however, is mitigated by the fact that Love wave EGFs have a smaller SNR than Rayleigh waves. Here, we test the use of Love and Rayleigh wave EGFs between 5- and 15-sec period to locate seismic events based on the USArray TA in the western US. We focus on locating aftershocks of the 2008 M 6.0 Wells earthquake, mining blasts in Wyoming and Montana, and small earthquakes near Norman, OK and Dallas, TX, some of which may be triggered by hydrofracking or injection wells.

  13. 3D seismic data de-noising and reconstruction using Multichannel Time Slice Singular Spectrum Analysis

    Science.gov (United States)

    Rekapalli, Rajesh; Tiwari, R. K.; Sen, Mrinal K.; Vedanti, Nimisha

    2017-05-01

    Noises and data gaps complicate the seismic data processing and subsequently cause difficulties in the geological interpretation. We discuss a recent development and application of the Multi-channel Time Slice Singular Spectrum Analysis (MTSSSA) for 3D seismic data de-noising in time domain. In addition, L1 norm based simultaneous data gap filling of 3D seismic data using MTSSSA also discussed. We discriminated the noises from single individual time slices of 3D volumes by analyzing Eigen triplets of the trajectory matrix. We first tested the efficacy of the method on 3D synthetic seismic data contaminated with noise and then applied to the post stack seismic reflection data acquired from the Sleipner CO2 storage site (pre and post CO2 injection) from Norway. Our analysis suggests that the MTSSSA algorithm is efficient to enhance the S/N for better identification of amplitude anomalies along with simultaneous data gap filling. The bright spots identified in the de-noised data indicate upward migration of CO2 towards the top of the Utsira formation. The reflections identified applying MTSSSA to pre and post injection data correlate well with the geology of the Southern Viking Graben (SVG).

  14. Ambient seismic noise interferometry in Hawai'i reveals long-range observability of volcanic tremor

    Science.gov (United States)

    Ballmer, Silke; Wolfe, Cecily; Okubo, Paul G.; Haney, Matt; Thurber, Clifford H.

    2013-01-01

    The use of seismic noise interferometry to retrieve Green's functions and the analysis of volcanic tremor are both useful in studying volcano dynamics. Whereas seismic noise interferometry allows long-range extraction of interpretable signals from a relatively weak noise wavefield, the characterization of volcanic tremor often requires a dense seismic array close to the source. We here show that standard processing of seismic noise interferometry yields volcanic tremor signals observable over large distances exceeding 50 km. Our study comprises 2.5 yr of data from the U.S. Geological Survey Hawaiian Volcano Observatory short period seismic network. Examining more than 700 station pairs, we find anomalous and temporally coherent signals that obscure the Green's functions. The time windows and frequency bands of these anomalous signals correspond well with the characteristics of previously studied volcanic tremor sources at Pu'u 'Ō'ō and Halema'uma'u craters. We use the derived noise cross-correlation functions to perform a grid-search for source location, confirming that these signals are surface waves originating from the known tremor sources. A grid-search with only distant stations verifies that useful tremor signals can indeed be recovered far from the source. Our results suggest that the specific data processing in seismic noise interferometry—typically used for Green's function retrieval—can aid in the study of both the wavefield and source location of volcanic tremor over large distances. In view of using the derived Green's functions to image heterogeneity and study temporal velocity changes at volcanic regions, however, our results illustrate how care should be taken when contamination by tremor may be present.

  15. Variations of Background Seismic Noise Before Strong Earthquakes, Kamchatka.

    Science.gov (United States)

    Kasimova, V.; Kopylova, G.; Lyubushin, A.

    2017-12-01

    The network of broadband seismic stations of Geophysical Service (Russian Academy of Science) works on the territory of Kamchatka peninsula in the Far East of Russia. We used continuous records on Z-channels at 21 stations for creation of background seismic noise time series in 2011-2017. Average daily parameters of multi-fractal spectra of singularity have been calculated at each station using 1-minute records. Maps and graphs of their spatial distribution and temporal changes were constructed at time scales from days to several years. The analysis of the coherent behavior of the time series of the statistics was considered. The technique included the splitting of seismic network into groups of stations, taking into account the coastal effect, the network configuration and the main tectonic elements of Kamchatka. Then the time series of median values of noise parameters from each group of stations were made and the frequency-time diagrams of the evolution of the spectral measure of the coherent behavior of four time series were analyzed. The time intervals and frequency bands of the maximum values showing the increase of coherence in the changes of all statistics were evaluated. The strong earthquakes with magnitudes M=6.9-8.3 occurred near the Kamchatka peninsula during the observations. The synchronous variations of the background noise parameters and increase in the coherent behavior of the median values of statistical parameters was shown before two earthquakes 2013 (February 28, Mw=6.9; May 24, Mw=8.3) within 3-9 months and before earthquake of January 30, 2016, Mw=7.2 within 3-6 months. The maximum effect of increased coherence in the range of periods 4-5.5 days corresponds to the time of preparation of two strong earthquakes in 2013 and their aftershock processes. Peculiarities in changes of statistical parameters at stages of preparation of strong earthquakes indicate the attenuation in high-amplitude outliers and the loss of multi-fractal properties in

  16. Monitoring Unstable Glaciers with Seismic Noise Interferometry

    Science.gov (United States)

    Preiswerk, L. E.; Walter, F.

    2016-12-01

    Gravity-driven glacier instabilities are a threat to human infrastructure in alpine terrain, and this hazard is likely to increase with future changes in climate. Seismometers have been used previously on hazardous glaciers to monitor the natural englacial seismicity. In some situations, an increase in "icequake" activity may indicate fracture growth and thus an imminent major break-off. However, without independent constraints on unstable volumes, such mere event counting is of little use. A promising new approach to monitor unstable masses in Alpine terrain is coda wave interferometry of ambient noise. While already established in the solid earth, application to glaciers is not straightforward, because the lack of inhomogeneities typically suppresses seismic coda waves in glacier ice. Only glaciers with pervasive crevasses provide enough scattering to generate long codas. This is requirement is likely met for highly dynamic unstable glaciers. Here, we report preliminary results from a temporary 5-station on-ice array of seismometers (corner frequencies: 1 Hz, array aperture: 500m) on Bisgletscher (Switzerland). The seismometers were deployed in shallow boreholes, directly above the unstable tongue of the glacier. In the frequency band 4-12 Hz, we find stable noise cross-correlations, which in principle allows monitoring on a subdaily scale. The origin and the source processes of the ambient noise in these frequencies are however uncertain. As a first step, we evaluate the stability of the sources in order to separate effects of changing source parameters from changes of englacial properties. Since icequakes occurring every few seconds may dominate the noise field, we compare their temporal and spatial occurrences with the cross-correlation functions (stability over time, the asymmetry between causal and acausal parts of the cross-correlation functions) as well as with results from beamforming to assess the influence of these transient events on the noise field.

  17. Development of a low cost method to estimate the seismic signature of a geothermal field form ambient noise analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Tibuleac, Ileana [Univ. of Nevada, Reno, NV (United States)

    2016-06-30

    A new, cost effective and non-invasive exploration method using ambient seismic noise has been tested at Soda Lake, NV, with promising results. The material included in this report demonstrates that, with the advantage of initial S-velocity models estimated from ambient noise surface waves, the seismic reflection survey, although with lower resolution, reproduces the results of the active survey when the ambient seismic noise is not contaminated by strong cultural noise. Ambient noise resolution is less at depth (below 1000m) compared to the active survey. In general, the results are promising and useful information can be recovered from ambient seismic noise, including dipping features and fault locations.

  18. A Comparison of seismic instrument noise coherence analysis techniques

    Science.gov (United States)

    Ringler, A.T.; Hutt, C.R.; Evans, J.R.; Sandoval, L.D.

    2011-01-01

    The self-noise of a seismic instrument is a fundamental characteristic used to evaluate the quality of the instrument. It is important to be able to measure this self-noise robustly, to understand how differences among test configurations affect the tests, and to understand how different processing techniques and isolation methods (from nonseismic sources) can contribute to differences in results. We compare two popular coherence methods used for calculating incoherent noise, which is widely used as an estimate of instrument self-noise (incoherent noise and self-noise are not strictly identical but in observatory practice are approximately equivalent; Holcomb, 1989; Sleeman et al., 2006). Beyond directly comparing these two coherence methods on similar models of seismometers, we compare how small changes in test conditions can contribute to incoherent-noise estimates. These conditions include timing errors, signal-to-noise ratio changes (ratios between background noise and instrument incoherent noise), relative sensor locations, misalignment errors, processing techniques, and different configurations of sensor types.

  19. Ambient seismic noise as an interesting indirect cue for the Cerithidea decollata migrations

    Science.gov (United States)

    Pazzi, Veronica; Lotti, Alessia

    2017-04-01

    Presence or absence of water, food availability, capability of avoiding predation, and body temperature are constantly changing according to the tidal excursion. In fact, more than the diurnal light-dark variation, tide is shaping the whole intertidal animal life. Therefore, physiological and behavioural systems exist to reduce the stress that the intertidal fauna may face during the unsuitable tidal phase. Cerithidea decollata is a common western Indian Ocean mangrove gastropod. It feeds on the ground at low tide, and climbs the trees two/three hours before the water arrival to avoid submersion. In spite of the irregular East African tidal pattern, it also regularly settles on trunks roughly 40 cm above the maximum level of the incoming tide. Migrations usually take place about twice a day unless at Neap Tide, when snails may remain on the dry ground. Past experiments showed that a biological clock cannot account for water level foreseeing, nor direct visual cues or chemical information from the water itself or from previous migrations have been detected. On the other hand, tidal gravity variations can be felt by the snails. Moreover, other indirect cues could be hypothesize related to a) the oceanic waves reaching the coast and the barrier reef (seismic noise), or b) the changes in ground resistivity (self potential) caused by the sea water moving close. To verify these hypotheses, an integrated geophysical survey (single-station seismic noise and self potential survey) was carried out at Mida Creek (Kenya) to characterize the local seismic wavefield in terms of its amplitude and to measure the temporal variations of the electric potential field. Final goal was to verify whether a correlation exists between the time evolution of these phenomena and the snail movements. Here we present the first results of the seismic noise measurements. Data were acquired by means of a single station all-in-one 3-directional 24-bit digital tromometer equipped with 4.5 Hz

  20. Ambient seismic noise tomography for exploration seismology at Valhall

    Science.gov (United States)

    de Ridder, S. A.

    2011-12-01

    Permanent ocean-bottom cables installed at the Valhall field can repeatedly record high quality active seismic surveys. But in the absence of active seismic shooting, passive data can be recorded and streamed to the platform in real time. Here I studied 29 hours of data using seismic interferometry. I generate omni-directional Scholte-wave virtual-sources at frequencies considered very-low in the exploration seismology community (0.4-1.75 Hz). Scholte-wave group arrival times are inverted using both eikonal tomography and straight-ray tomography. The top 100 m near-surface at Valhall contains buried channels about 100 m wide that have been imaged with active seismic. Images obtained by ASNT using eikonal tomography or straight-ray tomography both contain anomalies that match these channels. When continuous recordings are made in real-time, tomography images of the shallow subsurface can be formed or updated on a daily basis, forming a very low cost near-surface monitoring system using seismic noise.

  1. Seismic noise attenuation using an online subspace tracking algorithm

    NARCIS (Netherlands)

    Zhou, Yatong; Li, Shuhua; Zhang, D.; Chen, Yangkang

    2018-01-01

    We propose a new low-rank based noise attenuation method using an efficient algorithm for tracking subspaces from highly corrupted seismic observations. The subspace tracking algorithm requires only basic linear algebraic manipulations. The algorithm is derived by analysing incremental gradient

  2. Locating scatterers while drilling using seismic noise due to tunnel boring machine

    Science.gov (United States)

    Harmankaya, U.; Kaslilar, A.; Wapenaar, K.; Draganov, D.

    2018-05-01

    Unexpected geological structures can cause safety and economic risks during underground excavation. Therefore, predicting possible geological threats while drilling a tunnel is important for operational safety and for preventing expensive standstills. Subsurface information for tunneling is provided by exploratory wells and by surface geological and geophysical investigations, which are limited by location and resolution, respectively. For detailed information about the structures ahead of the tunnel face, geophysical methods are applied during the tunnel-drilling activity. We present a method inspired by seismic interferometry and ambient-noise correlation that can be used for detecting scatterers, such as boulders and cavities, ahead of a tunnel while drilling. A similar method has been proposed for active-source seismic data and validated using laboratory and field data. Here, we propose to utilize the seismic noise generated by a Tunnel Boring Machine (TBM), and recorded at the surface. We explain our method at the hand of data from finite-difference modelling of noise-source wave propagation in a medium where scatterers are present. Using the modelled noise records, we apply cross-correlation to obtain correlation gathers. After isolating the scattered arrivals in these gathers, we cross-correlate again and invert for the correlated traveltime to locate scatterers. We show the potential of the method for locating the scatterers while drilling using noise records due to TBM.

  3. A direct method for calculating instrument noise levels in side-by-side seismometer evaluations

    Science.gov (United States)

    Holcomb, L. Gary

    1989-01-01

    The subject of determining the inherent system noise levels present in modem broadband closed loop seismic sensors has been an evolving topic ever since closed loop systems became available. Closed loop systems are unique in that the system noise can not be determined via a blocked mass test as in older conventional open loop seismic sensors. Instead, most investigators have resorted to performing measurements on two or more systems operating in close proximity to one another and to analyzing the outputs of these systems with respect to one another to ascertain their relative noise levels.The analysis of side-by-side relative performance is inherently dependent on the accuracy of the mathematical modeling of the test configuration. This report presents a direct approach to extracting the system noise levels of two linear systems with a common coherent input signal. The mathematical solution to the problem is incredibly simple; however the practical application of the method encounters some difficulties. Examples of expected accuracies are presented as derived by simulating real systems performance using computer generated random noise. In addition, examples of the performance of the method when applied to real experimental test data are shown.

  4. Improved surface?wave retrieval from ambient seismic noise by multi?dimensional deconvolution

    NARCIS (Netherlands)

    Wapenaar, C.P.A.; Ruigrok, E.N.; Van der Neut, J.R.; Draganov, D.S.

    2011-01-01

    The methodology of surface?wave retrieval from ambient seismic noise by crosscorrelation relies on the assumption that the noise field is equipartitioned. Deviations from equipartitioning degrade the accuracy of the retrieved surface?wave Green's function. A point?spread function, derived from the

  5. Shear-wave velocity of marine sediments offshore Taiwan using ambient seismic noise

    Science.gov (United States)

    Lin, Yu-Tse; Lin, Jing-Yi; Kuo-Chen, Hao; Yeh, Yi-Chin; Cheng, Win-Bin

    2017-04-01

    Seismic ambient noise technology has many advantages over the traditional two-station method. The most important one is that noise is happening all the time and it can be widely and evenly distributed. Thus, the Green's Function of any station pair can be obtained through the data cross-correlation process. Many related studies have been performed to estimate the velocity structures based on the inland area. Only a few studies were reported for the marine area due to the relatively shorter recording time of ocean bottom seismometers (OBS) deployment and the high cost of the marine experiment. However, the understanding about the shear-wave velocity (Vs) of the marine sediments is very crucial for the hazard assessment related to submarine landslides, particularly with the growing of submarine resources exploration. In this study, we applied the ambient noise technique to four OBS seismic networks located offshore Taiwan in the aim of getting more information about the noise sources and having the preliminary estimation for the Vs of the marine sediments. Two of the seismic networks were deployed in the NE part of Taiwan, near the Ryukyu subduction system, whereas the others were in the SW area, on the continental margin rich in gas hydrate. Generally, ambient seismic noise could be associated with wind, ocean waves, rock fracturing and anthropogenic activity. In the southwestern Taiwan, the cross-correlation function obtained from two seismic networks indicate similar direction, suggestion that the source from the south part of the network could be the origin of the noise. However, the two networks in the northeastern Taiwan show various source direction, which could be caused by the abrupt change of bathymetry or the volcanic degassing effect frequently observed by the marine geophysical method in the area. The Vs determined from the dispersion curve shows a relatively higher value for the networks in the Okinawa Trough (OT) off NE Taiwan than that in the

  6. Cetacean behavioral responses to noise exposure generated by seismic surveys: how to mitigate better?

    Directory of Open Access Journals (Sweden)

    Clara Monaco

    2016-09-01

    Full Text Available Cetaceans use sound in many contexts, such as in social interactions, as well as to forage and to react in dangerous situations. Little information exists to describe how they respond physically and behaviorally to intense and long-term noise levels. Effects on cetaceans from seismic survey activities need to be understood in order to determine detailed acoustic exposure guidelines and to apply appropriated mitigation measures. This study examines direct behavioral responses of cetaceans in the southern Mediterranean Sea during seismic surveys with large airgun arrays (volume up to 5200 ci used in the TOMO-ETNA active seismic experiment of summer 2014. Wide Angle Seismic and Multi-Channel Seismic surveys had carried out with refraction and reflection seismic methods, producing about 25,800 air-gun shots. Visual monitoring undertaken in the 26 daylights of seismic exploration adopted the protocol of the Joint Nature Conservation Committee. Data recorded were analyzed to examine effects on cetaceans. Sighting rates, distance and orientation from the airguns were compared for different volume categories of the airgun arrays. Results show that cetaceans can be disturbed by seismic survey activities, especially during particularly events. Here we propose many integrated actions to further mitigate this exposure and implications for management.

  7. Detection capability of the IMS seismic network based on ambient seismic noise measurements

    Science.gov (United States)

    Gaebler, Peter J.; Ceranna, Lars

    2016-04-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection threshold can be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  8. On inferring the noise in probabilistic seismic AVO inversion using hierarchical Bayes

    OpenAIRE

    Madsen, Rasmus Bødker; Zunino, Andrea; Hansen, Thomas Mejer

    2017-01-01

    A realistic noise model is essential for trustworthy inversion of geophysical data. Sometimes, as in case of seismic data, quan- tification of the noise model is non-trivial. To remedy this, a hierarchical Bayes approach can be adopted in which proper- ties of the noise model, such as the amplitude of an assumed uncorrelated Gaussian noise model, can be inferred as part of the inversion. Here we demonstrate how such an approach can lead to substantial overfitting of noise when inverting a 1D ...

  9. Composition and variation of noise recorded at the Yellowknife Seismic Array, 1991-2007

    Science.gov (United States)

    Koper, K.D.; De Foy, B.; Benz, H.

    2009-01-01

    We analyze seismic noise recorded on the 18 short-period, vertical component seismometers of the Yellowknife Seismic Array (YKA). YKA has an aperture of 23 km and is sited on cratonic lithosphere in an area with low cultural noise. These properties make it ideal for studying natural seismic noise at periods of 1-3 s. We calculated frequency-wave number spectra in this band for over 6,000 time windows that were extracted once per day for 17 years (1991-2007). Slowness analysis reveals a rich variety of seismic phases originating from distinct source regions: Rg waves from the Great Slave Lake; Lg waves from the Atlantic, Pacific, and Arctic Oceans; and teleseismic P waves from the north Pacific and equatorial mid-Atlantic regions. The surface wave energy is generated along coastlines, while the body wave energy is generated at least in part in deep-water, pelagic regions. Surface waves tend to dominate at the longer periods and, just as in earthquake seismograms, Lg is the most prominent arrival. Although the periods we study are slightly shorter than the classic double-frequency microseismic band of 4-10 s, the noise at YKA has clear seasonal behavior that is consistent with the ocean wave climate in the Northern Hemisphere. The temporal variation of most of the noise sources can be well fit using just two Fourier components: yearly and biyearly terms that combine to give a fast rise in microseismic power from mid-June through mid-October, followed by a gradual decline. The exception is the Rg energy from the Great Slave Lake, which shows a sharp drop in noise power over a 2-week period in November as the lake freezes. The L g noise from the east has a small but statistically significant positive slope, perhaps implying increased ocean wave activity in the North Atlantic over the last 17 years. Copyright 2009 by the American Geophysical Union.

  10. Rayleigh wave tomography in North-China from ambient seismic noise

    OpenAIRE

    Fang, Lihua

    2010-01-01

    2008/2009 The theory and methodology of ambient noise tomography has been studied and applied to North-China successfully. Continuous vertical-component seismograms, spanning the period from January 1, 2007 to February 28, 2008 recorded by 190 broadband stations and 10 very broadband stations, have been used. The cross correlation technique has been applied to ambient noise data recorded by North-China Seismic Array for each station pairs of the array. Rayleigh wave group ve...

  11. An analysis of seismic background noise variation and evaluation of detection capability of Keskin Array (BRTR PS-43) in Turkey

    Science.gov (United States)

    Bakir, M. E.; Ozel, N. M.; Semin, K. U.

    2011-12-01

    Bogazici University, Kandilli Observatory and Earthquake Research Institute (KOERI) is currently operating the Keskin seismic array (BRTR-PS 43) located in town Keskin, providing real-time data to IDC. The instrumentaion of seismic array includes six short period borehole seismometers and one broadband borehole seismometer. The seismic background noise variation of Keskin array are studied in order to estimate the local and regional event detection capability in the frequency range from 1 Hz to 10 Hz. The Power density spectrum and also probability density function of Keskin array data were computed for seasonal and diurnal noise variations between 2008 and 2010. The computation will be extended to cover the period between 2005 and 2008. We attempt to determine the precise frequency characteristics of the background noise, which will help us to assess the station sensitivity. Minimum detectable magnitude versus distance for Keskin seismic array will be analyzed based on the seismic noise analysis. Detailed analysis results of seismic background noise and detection capability will be presented by this research.

  12. New Observations of Seismic Group Velocities in the Western Solomon Islands from Cross-Correlation of Ambient Seismic Noise

    Science.gov (United States)

    Ku, C. S.; You, S. H.; Kuo, Y. T.; Huang, B. S.; Wu, Y. M.; Chen, Y. G.; Taylor, F. W.

    2015-12-01

    A MW 8.1 earthquake occurred on 1 April 2007 in the western Solomon Islands. Following this event, a damaging tsunami was induced and hit the Island Gizo where the capital city of Western Province of Solomon Islands located. Several buildings of this city were destroyed and several peoples lost their lives during this earthquake. However, during this earthquake, no near source seismic instrument has been installed in this region. The seismic evaluations for the aftershock sequence, the possible earthquake early warning and tsunami warning were unavailable. For the purpose of knowing more detailed information about seismic activity in this region, we have installed 9 seismic stations (with Trillium 120PA broadband seismometer and Q330S 24bit digitizer) around the rupture zone of the 2007 earthquake since September of 2009. Within a decade, it has been demonstrated both theoretically and experimentally that the Green's function or impulse response between two seismic stations can be retrieved from the cross-correlation of ambient noise. In this study, 6 stations' observations which are more complete during 2011/10 ~ 2012/12 period, were selected for the purpose of the cross-correlation analysis of ambient seismic noise. The group velocities at period 2-20 seconds of 15 station-pairs were extracted by using multiple filter technique (MFT) method. The analyzed results of this study presented significant results of group velocities with higher frequency contents than other studies (20-60 seconds in usually cases) and opened new opportunities to study the shallow crustal structure of the western Solomon Islands.

  13. Optimized suppression of coherent noise from seismic data using the Karhunen-Loeve transform

    International Nuclear Information System (INIS)

    Montagne, Raul; Vasconcelos, Giovani L.

    2006-01-01

    Signals obtained in land seismic surveys are usually contaminated with coherent noise, among which the ground roll (Rayleigh surface waves) is of major concern for it can severely degrade the quality of the information obtained from the seismic record. This paper presents an optimized filter based on the Karhunen-Loeve transform for processing seismic images contaminated with ground roll. In this method, the contaminated region of the seismic record, to be processed by the filter, is selected in such way as to correspond to the maximum of a properly defined coherence index. The main advantages of the method are that the ground roll is suppressed with negligible distortion of the remnant reflection signals and that the filtering procedure can be automated. The image processing technique described in this study should also be relevant for other applications where coherent structures embedded in a complex spatiotemporal pattern need to be identified in a more refined way. In particular, it is argued that the method is appropriate for processing optical coherence tomography images whose quality is often degraded by coherent noise (speckle)

  14. Fast principal component analysis for stacking seismic data

    Science.gov (United States)

    Wu, Juan; Bai, Min

    2018-04-01

    Stacking seismic data plays an indispensable role in many steps of the seismic data processing and imaging workflow. Optimal stacking of seismic data can help mitigate seismic noise and enhance the principal components to a great extent. Traditional average-based seismic stacking methods cannot obtain optimal performance when the ambient noise is extremely strong. We propose a principal component analysis (PCA) algorithm for stacking seismic data without being sensitive to noise level. Considering the computational bottleneck of the classic PCA algorithm in processing massive seismic data, we propose an efficient PCA algorithm to make the proposed method readily applicable for industrial applications. Two numerically designed examples and one real seismic data are used to demonstrate the performance of the presented method.

  15. Ambient noise levels and characterization in Aegean region, Turkey

    Science.gov (United States)

    Sevim, Fatih; Zor, Ekrem; Açıkgöz, Cem; Tarancıoğlu, Adil

    2018-03-01

    We assessed the ambient noise level in the Aegean region and analyzed its diurnal variation and its relation to the earthquake detection capability of the Aegean Region Seismic Network (ARSN). We prepared probability density functions (PDFs) for 19 broadband stations in the Aegean region operated by the Earth and Marine Sciences Institute (EMSI) of the Marmara Research Center (MRC) of the Turkish Scientific Research Council (TÜBİTAK). The power spectral densities (PSDs) used to construct PDFs for each station were computed for the periods between 0.02 and 180 s. In addition, we generated noise map of the Aegean region for different periods using the PDFs to assess the origin of the noise. We analyzed earthquake activity in the region and found that there are more local events recorded at night than during the day for each station. This difference is strongly related to diurnal variation of background noise level for the period range mostly covering the frequency range for the local events. We observed daytime noise level 15 to 20 dB higher than that at the nighttime in high frequencies for almost all stations caused by its proximity to settled areas and roads. Additionally, we observed a splitting peak within the Double Frequency (DF) microseism band; it showed a clear noise increase around the short period DF band at all the stations, decreasing inland. This peak may be related to sea waves locally generated in the Aegean Sea. We also identified a prominent increase related to marble saw companies in some stations' noise PDFs.

  16. A method to establish seismic noise baselines for automated station assessment

    Science.gov (United States)

    McNamara, D.E.; Hutt, C.R.; Gee, L.S.; Benz, H.M.; Buland, R.P.

    2009-01-01

    We present a method for quantifying station noise baselines and characterizing the spectral shape of out-of-nominal noise sources. Our intent is to automate this method in order to ensure that only the highest-quality data are used in rapid earthquake products at NEIC. In addition, the station noise baselines provide a valuable tool to support the quality control of GSN and ANSS backbone data and metadata. The procedures addressed here are currently in development at the NEIC, and work is underway to understand how quickly changes from nominal can be observed and used within the NEIC processing framework. The spectral methods and software used to compute station baselines and described herein (PQLX) can be useful to both permanent and portable seismic stations operators. Applications include: general seismic station and data quality control (QC), evaluation of instrument responses, assessment of near real-time communication system performance, characterization of site cultural noise conditions, and evaluation of sensor vault design, as well as assessment of gross network capabilities (McNamara et al. 2005). Future PQLX development plans include incorporating station baselines for automated QC methods and automating station status report generation and notification based on user-defined QC parameters. The PQLX software is available through the USGS (http://earthquake. usgs.gov/research/software/pqlx.php) and IRIS (http://www.iris.edu/software/ pqlx/).

  17. 3-component beamforming analysis of ambient seismic noise field for Love and Rayleigh wave source directions

    Science.gov (United States)

    Juretzek, Carina; Hadziioannou, Céline

    2014-05-01

    Our knowledge about common and different origins of Love and Rayleigh waves observed in the microseism band of the ambient seismic noise field is still limited, including the understanding of source locations and source mechanisms. Multi-component array methods are suitable to address this issue. In this work we use a 3-component beamforming algorithm to obtain source directions and polarization states of the ambient seismic noise field within the primary and secondary microseism bands recorded at the Gräfenberg array in southern Germany. The method allows to distinguish between different polarized waves present in the seismic noise field and estimates Love and Rayleigh wave source directions and their seasonal variations using one year of array data. We find mainly coinciding directions for the strongest acting sources of both wave types at the primary microseism and different source directions at the secondary microseism.

  18. Passive monitoring of a sea dike during a tidal cycle using sea waves as a seismic noise source

    Science.gov (United States)

    Joubert, Anaëlle; Feuvre, Mathieu Le; Cote, Philippe

    2018-05-01

    Over the past decade, ambient seismic noise has been used successfully to monitor various geological objects with high accuracy. Recently, it has been shown that surface seismic waves propagating within a sea dike body can be retrieved from the cross-correlation of ambient seismic noise generated by sea waves. We use sea wave impacts to monitor the response of a sea dike during a tidal cycle using empirical Green's functions. These are obtained either by cross-correlation or deconvolution, from signals recorded by sensors installed linearly on the crest of a dike. Our analysis is based on delay and spectral amplitude measurements performed on reconstructed surface waves propagating along the array. We show that localized variations of velocity and attenuation are correlated with changes in water level as a probable consequence of water infiltration inside the structure. Sea dike monitoring is of critical importance for safety and economic reasons, as internal erosion is generally only detected at late stages by visual observations. The method proposed here may provide a solution for detecting structural weaknesses, monitoring progressive internal erosion, and delineating areas of interest for further geotechnical studies, in view to understanding the erosion mechanisms involved.

  19. Spatial correlation analysis of seismic noise for STAR X-ray infrastructure design

    Science.gov (United States)

    D'Alessandro, Antonino; Agostino, Raffaele; Festa, Lorenzo; Gervasi, Anna; Guerra, Ignazio; Palmer, Dennis T.; Serafini, Luca

    2014-05-01

    . For this reason, we performed some measurements of seismic noise in order to characterize the environmental noise in the site in which the X-ray accelerator arise. For the characterization of the site, we carried out several passive seismic monitoring experiments at different times of the day and in different weather conditions. We recorded microtremor using an array of broadband 3C seismic sensors arranged along the linear accelerator. For each measurement point, we determined the displacement, velocity and acceleration spectrogram and power spectral density of both horizontal and vertical components. We determined also the microtremor horizontal to vertical spectral ratio as function of azimuth to individuate the main ground vibration direction and detect the existence of site or building resonance frequencies. We applied a rotation matrix to transform the North-South and East-West signal components in transversal and radial components, respect to the direction of the linear accelerator. Subsequently, for each couple of seismic stations we determined the coherence function to analyze the seismic noise spatial correlation. These analyses have allowed us to exhaustively characterize the seismic noise of the study area, from the point of view of the power and space-time variability, both in frequency and wavelength.

  20. Structure of Suasselkä Postglacial Fault in northern Finland obtained by analysis of ambient seismic noise

    Science.gov (United States)

    Afonin, Nikita; Kozlovskaya, Elena

    2016-04-01

    Understanding inner structure of seismogenic faults and their ability to reactivate is particularly important in investigating the continental intraplate seismicity regime. In our study we address this problem using analysis of ambient seismic noise recorded by the temporary DAFNE array in northern Fennoscandian Shield. The main purpose of the DAFNE/FINLAND passive seismic array experiment was to characterize the present-day seismicity of the Suasselkä post-glacial fault (SPGF) that was proposed as one potential target for the DAFNE (Drilling Active Faults in Northern Europe) project. The DAFNE/FINLAND array comprised the area of about 20 to 100 km and consisted of 8 short-period and 4 broad-band 3-component autonomous seismic stations installed in the close vicinity of the fault area. The array recorded continuous seismic data during September, 2011-May, 2013. Recordings of the array have being analyzed in order to identify and locate natural earthquakes from the fault area and to discriminate them from the blasts in the Kittilä Gold Mine. As a result, we found several dozens of natural seismic events originating from the fault area, which proves that the fault is still seismically active. In order to study the inner structure of the SPGF we use cross-correlation of ambient seismic noise recorded by the array. Analysis of azimuthal distribution of noise sources demonstrated that that during the time interval under consideration the distribution of noise sources is close to the uniform one. The continuous data were processed in several steps including single station data analysis, instrument response removal and time-domain stacking. The data were used to estimate empirical Green's functions between pairs of stations in the frequency band of 0.1-1 Hz and to calculate correspondent surface wave dispersion curves. After that S-wave velocity models were obtained as a result of dispersion curves inversion using Geopsy software. The results suggest that the area of

  1. Pre-failure behaviour of an unstable limestone cliff from displacement and seismic data

    Directory of Open Access Journals (Sweden)

    J.-L. Got

    2010-04-01

    Full Text Available We monitored the displacement and seismic activity of an unstable vertical rock slice in a natural limestone cliff of the southeast Vercors massif, southeast France, during the months preceding its collapse. Displacement measurements showed an average acceleration of the movement of its top, with clear increases in the displacement velocity and in the discrete seismic event production rate during periods where temperature falls, with more activity when rainfall or frost occurs. Crises of discrete seismic events produce high amplitudes in periodograms, but do not change the high frequency base noise level rate. We infer that these crises express the critical crack growth induced by water weakening (from water vapor condensation or rain of the rock strength rather than to a rapid change in applied stresses. Seismic noise analysis showed a steady increase in the high frequency base noise level and the emergence of spectral modes in the signal recorded by the sensor installed on the unstable rock slice during the weeks preceding the collapse. High frequency seismic noise base level seems to represent subcritical crack growth. It is a smooth and robust parameter whose variations are related to generalized changes in the rupture process. Drop of the seismic noise amplitude was concomitant with the emergence of spectral modes – that are compatible with high-order eigenmodes of the unstable rock slice – during the later stages of its instability. Seismic noise analysis, especially high frequency base noise level analysis may complement that of inverse displacement velocity in early-warning approaches when strong displacement fluctuations occur.

  2. The Global Detection Capability of the IMS Seismic Network in 2013 Inferred from Ambient Seismic Noise Measurements

    Science.gov (United States)

    Gaebler, P. J.; Ceranna, L.

    2016-12-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection thresholdcan be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  3. Improved surface-wave retrieval from ambient seismic noise by multi-dimensional deconvolution

    Science.gov (United States)

    Wapenaar, Kees; Ruigrok, Elmer; van der Neut, Joost; Draganov, Deyan

    2011-01-01

    The methodology of surface-wave retrieval from ambient seismic noise by crosscorrelation relies on the assumption that the noise field is equipartitioned. Deviations from equipartitioning degrade the accuracy of the retrieved surface-wave Green's function. A point-spread function, derived from the same ambient noise field, quantifies the smearing in space and time of the virtual source of the Green's function. By multidimensionally deconvolving the retrieved Green's function by the point-spread function, the virtual source becomes better focussed in space and time and hence the accuracy of the retrieved surface-wave Green's function may improve significantly. We illustrate this at the hand of a numerical example and discuss the advantages and limitations of this new methodology.

  4. Crustal structure and Seismic Hazard studies in Nigeria from ambient noise and earthquakes

    Science.gov (United States)

    Kadiri, U. A.

    2016-12-01

    The crust, upper Mantle and seismic hazard studies have been carried out in Nigeria using noise and earthquake data. The data were acquired from stations in Nigeria and international Agencies. Firstly, known depths of sediments in the Lower Benue Trough (LBT) were collected from wells; Resonance frequency (Fo) and average shear-wave velocities (Vs) were then computed using Matlab. Secondly, average velocities were estimated from noise cross-correlation along seismic stations. Thirdly, the moho depths beneath Ife, Kaduna and Nsukka stations were estimated, as well as Vp/Vs ratio using 2009 earthquake with epicenter in Nigeria. Finally, Statistical and Probabilistic Seismic Hazard Assessment (PSHA) were used to compute seismic hazard parameters in Nigeria and its surroundings. The results showed that, soils on the LBT with average shear wave velocity of about 5684m/s would experience more amplification in case of an earthquake, compared to the basement complex in Nigeria. The Vs beneath the seismic stations in Nigeria were also estimated as 288m/s, 1019m/s, 940.6m/s and 255.02m/s in Ife, Nsukka, Awka, and Abakaliki respectively. The average velocity along the station paths was 4.5km/secs, and the Vp, Vs for depths 100-500km profile in parts of South West Nigeria increased from about 5.83-6.42Km/sec and 3.48-6.31km/s respectively with Vp/Vs ratio decreasing from 1.68 to 1.02. Statistical analysis revealed a trend of increasing earthquake occurrence along the Mid-Atlantic Ridge and tending to West African region. The analysis of PSHA shows the likelihood of earthquakes with different magnitudes occurring in Nigeria and other parts West Africa in future. This work is aimed at addressing critical issues regarding sites effect characterization, improved earthquake location and robust seismic hazards assessment for planning in the choice of sites for critical facilities in Nigeria. Keywords: Sediment thickness, Resonance Frequency, Average Velocity, Seismic Hazard, Nigeria

  5. Noise reduction in long‐period seismograms by way of array summing

    Science.gov (United States)

    Ringler, Adam; Wilson, David; Storm, Tyler; Marshall, Benjamin T.; Hutt, Charles R.; Holland, Austin

    2016-01-01

    Long‐period (>100  s period) seismic data can often be dominated by instrumental noise as well as local site noise. When multiple collocated sensors are installed at a single site, it is possible to improve the overall station noise levels by applying stacking methods to their traces. We look at the noise reduction in long‐period seismic data by applying the time–frequency phase‐weighted stacking method of Schimmel and Gallart (2007) as well as the phase‐weighted stacking (PWS) method of Schimmel and Paulssen (1997) to four collocated broadband sensors installed in the quiet Albuquerque Seismological Laboratory underground vault. We show that such stacking methods can improve vertical noise levels by as much as 10 dB over the mean background noise levels at 400 s period, suggesting that greater improvements could be achieved with an array involving multiple sensors. We also apply this method to reduce local incoherent noise on horizontal seismic records of the 2 March 2016 Mw 7.8 Sumatra earthquake, where the incoherent noise levels at very long periods are similar in amplitude to the earthquake signal. To maximize the coherency, we apply the PWS method to horizontal data where relative azimuths between collocated sensors are estimated and compared with a simpler linear stack with no azimuthal rotation. Such methods could help reduce noise levels at various seismic stations where multiple high‐quality sensors have been deployed. Such small arrays may also provide a solution to improving long‐period noise levels at Global Seismographic Network stations.

  6. Retrieving robust noise-based seismic velocity changes from sparse data sets: synthetic tests and application to Klyuchevskoy volcanic group (Kamchatka)

    Science.gov (United States)

    Gómez-García, C.; Brenguier, F.; Boué, P.; Shapiro, N. M.; Droznin, D. V.; Droznina, S. Ya; Senyukov, S. L.; Gordeev, E. I.

    2018-05-01

    Continuous noise-based monitoring of seismic velocity changes provides insights into volcanic unrest, earthquake mechanisms and fluid injection in the sub-surface. The standard monitoring approach relies on measuring travel time changes of late coda arrivals between daily and reference noise cross-correlations, usually chosen as stacks of daily cross-correlations. The main assumption of this method is that the shape of the noise correlations does not change over time or, in other terms, that the ambient-noise sources are stationary through time. These conditions are not fulfilled when a strong episodic source of noise, such as a volcanic tremor for example, perturbs the reconstructed Green's function. In this paper we propose a general formulation for retrieving continuous time series of noise-based seismic velocity changes without the requirement of any arbitrary reference cross-correlation function. Instead, we measure the changes between all possible pairs of daily cross-correlations and invert them using different smoothing parameters to obtain the final velocity change curve. We perform synthetic tests in order to establish a general framework for future applications of this technique. In particular, we study the reliability of velocity change measurements versus the stability of noise cross-correlation functions. We apply this approach to a complex dataset of noise cross-correlations at Klyuchevskoy volcanic group (Kamchatka), hampered by loss of data and the presence of highly non-stationary seismic tremors.

  7. Cultural noise and the night-day asymmetry of the seismic activity recorded at the Bunker-East (BKE) Vesuvian Station

    Science.gov (United States)

    Scafetta, Nicola; Mazzarella, Adriano

    2018-01-01

    Mazzarella and Scafetta (2016) showed that the seismic activity recorded at the Bunker-East (BKE) Vesuvian station from 1999 to 2014 suggests a higher nocturnal seismic activity. However, this station is located at about 50 m from the main road to the volcano's crater and since 2009 its seismograms also record a significant diurnal cultural noise due mostly to tourist tours to Mt. Vesuvius. Herein, we investigate whether the different seismic frequency between day and night times could be an artifact of the peculiar cultural noise that affects this station mostly from 9:00 am to 5:00 pm from spring to fall. This time-distributed cultural noise should evidently reduce the possibility to detect low magnitude earthquakes during those hours but not high magnitude events. Using hourly distributions referring to different magnitude thresholds from M = 0.2 to M = 2.0, the Gutenberg-Richter magnitude-frequency diagram applied to the day and night-time sub-catalogs and Montecarlo statistical modeling, we demonstrate that the day-night asymmetry persists despite an evident disruption induced by cultural noise during day-hours. In particular, for the period 1999-2017, and for earthquakes with M ≥ 2 we found a Gutenberg-Richter exponent b = 1.66 ± 0.07 for the night-time events and b = 2.06 ± 0.07 for day-time events. Moreover, we repeat the analysis also for an older BKE catalog covering the period from 1992 to 2000 when cultural noise was not present. The analysis confirms a higher seismic nocturnal activity that is also characterized by a smaller Gutenberg-Richter exponent b for M ≥ 2 earthquakes relative to the day-time activity. Thus, the found night-day seismic asymmetric behavior is likely due to a real physical feature affecting Mt. Vesuvius.

  8. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Bjorn N. P. Paulsson

    2006-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400

  9. Structure of the Suasselkä postglacial fault in northern Finland obtained by analysis of local events and ambient seismic noise

    Science.gov (United States)

    Afonin, Nikita; Kozlovskaya, Elena; Kukkonen, Ilmo; Dafne/Finland Working Group

    2017-04-01

    Understanding the inner structure of seismogenic faults and their ability to reactivate is particularly important in investigating the continental intraplate seismicity regime. In our study we address this problem using analysis of local seismic events and ambient seismic noise recorded by the temporary DAFNE array in the northern Fennoscandian Shield. The main purpose of the DAFNE/FINLAND passive seismic array experiment was to characterize the present-day seismicity of the Suasselkä postglacial fault (SPGF), which was proposed as one potential target for the DAFNE (Drilling Active Faults in Northern Europe) project. The DAFNE/FINLAND array comprised an area of about 20 to 100 km and consisted of eight short-period and four broadband three-component autonomous seismic stations installed in the close vicinity of the fault area. The array recorded continuous seismic data during September 2011-May 2013. Recordings of the array have being analysed in order to identify and locate natural earthquakes from the fault area and to discriminate them from the blasts in the Kittilä gold mine. As a result, we found a number of natural seismic events originating from the fault area, which proves that the fault is still seismically active. In order to study the inner structure of the SPGF we use cross-correlation of ambient seismic noise recorded by the array. Analysis of azimuthal distribution of noise sources demonstrated that during the time interval under consideration the distribution of noise sources is close to the uniform one. The continuous data were processed in several steps including single-station data analysis, instrument response removal and time-domain stacking. The data were used to estimate empirical Green's functions between pairs of stations in the frequency band of 0.1-1 Hz and to calculate corresponding surface wave dispersion curves. The S-wave velocity models were obtained as a result of dispersion curve inversion. The results suggest that the area of

  10. Seismic tomography of Basse-Terre volcanic island, Guadeloupe, Lesser Antilles, using earthquake travel times and noise correlations

    Science.gov (United States)

    Barnoud, Anne; Coutant, Olivier; Bouligand, Claire; Massin, Frédérick; Stehly, Laurent

    2015-04-01

    We image the volcanic island of Basse-Terre, Guadeloupe, Lesser Antilles, using both earthquake travel times and noise correlations. (1) A new earthquake catalog was recently compiled for the Lesser Antilles by the CDSA/OVSG/IPGP (Massin et al., EGU General Assembly 2014) and allows us to perform classical travel time tomography to obtain smooth 3D body wave velocity models. The geometrical configuration of the volcanic arc controls the resolution of the model in our zone of interest. (2) Surface wave tomography using noise correlations was successfully applied to volcanoes (Brenguier et al., Geophys. Res. Lett. 2007). We use seismic noise recorded at 16 broad-band stations and 9 short-period stations from Basse-Terre over a period of six years (2007-2012). For each station pair, we extract a dispersion curve from the noise correlation to get surface wave velocity models. The inversion of the dispersion curves produces a 3D S-wave velocity model of the island. The spatial distribution of seismic stations accross the island is highly heterogeneous, leading to higher resolution near the dome of the Soufrière of Guadeloupe volcano. Resulting velocity models are compared with densities obtained by 3D inversion of gravimetric data (Barnoud et al., AGU Fall Meeting 2013). Further work should include simultaneous inversion of seismic and gravimetric datasets to overcome resolution limitations.

  11. Micromachined silicon seismic accelerometer development

    Energy Technology Data Exchange (ETDEWEB)

    Barron, C.C.; Fleming, J.G.; Montague, S. [and others

    1996-08-01

    Batch-fabricated silicon seismic transducers could revolutionize the discipline of seismic monitoring by providing inexpensive, easily deployable sensor arrays. Our ultimate goal is to fabricate seismic sensors with sensitivity and noise performance comparable to short-period seismometers in common use. We expect several phases of development will be required to accomplish that level of performance. Traditional silicon micromachining techniques are not ideally suited to the simultaneous fabrication of a large proof mass and soft suspension, such as one needs to achieve the extreme sensitivities required for seismic measurements. We have therefore developed a novel {open_quotes}mold{close_quotes} micromachining technology that promises to make larger proof masses (in the 1-10 mg range) possible. We have successfully integrated this micromolding capability with our surface-micromachining process, which enables the formation of soft suspension springs. Our calculations indicate that devices made in this new integrated technology will resolve down to at least sub-{mu}G signals, and may even approach the 10{sup -10} G/{radical}Hz acceleration levels found in the low-earth-noise model.

  12. Ambient Seismic Noise Tomography of a Loess High Bank at Dunaszekcső (Hungary)

    Czech Academy of Sciences Publication Activity Database

    Szanyi, G.; Gráczer, Z.; Györi, E.; Kaláb, Zdeněk; Lednická, Markéta

    2016-01-01

    Roč. 173, č. 8 (2016), s. 2913-2928 ISSN 0033-4553 Institutional support: RVO:68145535 Keywords : seismic interferometry * ambient noise * group velocity * tomography * landslide * high bank Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.591, year: 2016 http://link.springer.com/article/10.1007/s00024-016-1304-1

  13. Practical Ranges of Loudness Levels of Various Types of Environmental Noise, Including Traffic Noise, Aircraft Noise, and Industrial Noise

    Directory of Open Access Journals (Sweden)

    Sabine A. Janssen

    2011-05-01

    Full Text Available In environmental noise control one commonly employs the A-weighted sound level as an approximate measure of the effect of noise on people. A measure that is more closely related to direct human perception of noise is the loudness level. At constant A-weighted sound level, the loudness level of a noise signal varies considerably with the shape of the frequency spectrum of the noise signal. In particular the bandwidth of the spectrum has a large effect on the loudness level, due to the effect of critical bands in the human hearing system. The low-frequency content of the spectrum also has an effect on the loudness level. In this note the relation between loudness level and A-weighted sound level is analyzed for various environmental noise spectra, including spectra of traffic noise, aircraft noise, and industrial noise. From loudness levels calculated for these environmental noise spectra, diagrams are constructed that show the relation between loudness level, A‑weighted sound level, and shape of the spectrum. The diagrams show that the upper limits of the loudness level for broadband environmental noise spectra are about 20 to 40 phon higher than the lower limits for narrowband spectra, which correspond to the loudness levels of pure tones. The diagrams are useful for assessing limitations and potential improvements of environmental noise control methods and policy based on A-weighted sound levels.

  14. Characterization of the seismic environment at the Sanford Underground Laboratory, South Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Harms, J; Dorsher, S; Kandhasamy, S; Mandic, V [University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Acernese, F; Barone, F [Universita degli Studi di Salerno, Fisciano (Saudi Arabia) (Italy); Bartos, I; Marka, S [Columbia University, New York, NY 10027 (United States); Beker, M; Van den Brand, J F J; Rabeling, D S [Nikhef, National Institute for Subatomic Physics, Science Park 105, 1098 XG Amsterdam (Netherlands); Christensen, N; Coughlin, M [Carleton College, Northfield, MN 55057 (United States); DeSalvo, R [California Institute of Technology, Pasadena, CA 91125 (United States); Heise, J; Trancynger, T [Sanford Underground Laboratory, 630 East Summit Street, Lead, SD 57754 (United States); Mueller, G [University of Florida, Gainesville, FL 32611 (United States); Naticchioni, L [Department of Physics, University of Rome ' Sapienza' , P.le Aldo Moro 2, 00185 Rome (Italy); O' Keefe, T [Saint Louis University, 3450 Lindell Blvd., St. Louis, MO 63103 (United States); Sajeva, A, E-mail: janosch@caltech.ed [Dipartimento di Fisica ' Enrico Fermi' , Universita di Pisa, Largo Bruno Pontecorvo, Pisa (Italy)

    2010-11-21

    An array of seismometers is being developed at the Sanford Underground Laboratory, the former Homestake mine, in South Dakota to study the properties of underground seismic fields and Newtonian noise, and to investigate the possible advantages of constructing a third-generation gravitational-wave detector underground. Seismic data were analyzed to characterize seismic noise and disturbances. External databases were used to identify sources of seismic waves: ocean-wave data to identify sources of oceanic microseisms and surface wind-speed data to investigate correlations with seismic motion as a function of depth. In addition, sources of events contributing to the spectrum at higher frequencies are characterized by studying the variation of event rates over the course of a day. Long-term observations of spectral variations provide further insight into the nature of seismic sources. Seismic spectra at three different depths are compared, establishing the 4100 ft level as a world-class low seismic-noise environment.

  15. Using discrete wavelet transform features to discriminate between noise and phases in seismic waveforms

    Science.gov (United States)

    Forrest, R.; Ray, J.; Hansen, C. W.

    2017-12-01

    Currently, simple polarization metrics such as the horizontal-to-vertical ratio are used to discriminate between noise and various phases in three-component seismic waveform data collected at regional distances. Accurately establishing the identity and arrival of these waves in adverse signal-to-noise environments is helpful in detecting and locating the seismic events. In this work, we explore the use of multiresolution decompositions to discriminate between noise and event arrivals. A segment of the waveform lying inside a time-window that spans the coda of an arrival is subjected to a discrete wavelet decomposition. Multi-resolution classification features as well as statistical tests are derived from these wavelet decomposition quantities to quantify their discriminating power. Furthermore, we move to streaming data and address the problem of false positives by introducing ensembles of classifiers. We describe in detail results of these methods tuned from data obtained from Coronel Fontana, Argentina (CFAA), as well as Stephens Creek, Australia (STKA). Acknowledgement: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  16. Background noise levels in Europe

    OpenAIRE

    Gjestland, Truls

    2008-01-01

    - This report gives a brief overview of typical background noise levels in Europe, and suggests a procedure for the prediction of background noise levels based on population density. A proposal for the production of background noise maps for Europe is included.

  17. Acceptable noise level

    DEFF Research Database (Denmark)

    Olsen, Steen Østergaard; Nielsen, Lars Holme; Lantz, Johannes

    2012-01-01

    The acceptable noise level (ANL) is used to quantify the amount of background noise that subjects can accept while listening to speech, and is suggested for prediction of individual hearing-aid use. The aim of this study was to assess the repeatability of the ANL measured in normal-hearing subjects...... using running Danish and non-semantic speech materials as stimuli and modulated speech-spectrum and multi-talker babble noises as competing stimuli....

  18. Acceptable noise level

    DEFF Research Database (Denmark)

    Olsen, Steen Østergaard; Nielsen, Lars Holme; Lantz, Johannes

    2012-01-01

    The acceptable noise level (ANL) is used to quantify the amount of background noise that subjects can accept while listening to speech, and is suggested for prediction of individual hearing-aid use. The aim of this study was to assess the repeatability of the ANL measured in normal-hearing subjec...... using running Danish and non-semantic speech materials as stimuli and modulated speech-spectrum and multi-talker babble noises as competing stimuli....

  19. Ambient noise tomography across Mount St. Helens using a dense seismic array

    KAUST Repository

    Wang, Yadong

    2017-05-08

    We investigated upper crustal structure with data from a dense seismic array deployed around Mount St. Helens for 2 weeks in the summer of 2014. Interstation cross correlations of ambient seismic noise data from the array were obtained, and clear fundamental mode Rayleigh waves were observed between 2.5 and 5 s periods. In addition, higher-mode signals were observed around 2 s period. Frequency-time analysis was applied to measure fundamental mode Rayleigh wave phase velocities, which were used to invert for 2-D phase velocity maps. An azimuth-dependent traveltime correction was implemented to mitigate potential biases introduced due to an inhomogeneous noise source distribution. Reliable phase velocity maps were only obtained between 3 and 4 s periods due to limitations imposed by the array aperture and higher-mode contamination. The phase velocity tomography results, which are sensitive to structure shallower than 6 km depth, reveal an ~10–15% low-velocity anomaly centered beneath the volcanic edifice and peripheral high-velocity anomalies that likely correspond to cooled igneous intrusions. We suggest that the low-velocity anomaly reflects the high-porosity mixture of lava and ash deposits near the surface of the edifice, a highly fractured magmatic conduit and hydrothermal system beneath the volcano, and possibly a small contribution from silicate melt.

  20. Noise levels in Damascus city

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Maslmani, Y.

    2004-01-01

    Outdoor noise levels were measured at 22 sites in Damascus city. Sound level meter model NC-10 with a 20-140 dBA selectable range was used in the current investigation. At each site noise data were collected from 7 to 21 o'clock. The results showed that the noise levels were higher than WHO (World Health Organization) standard by 5-24.7 dB, 10-16 dB, 10-11 dB and 12-17 dB in residential, commercial, Commercial-industrial, and Heavy traffic streets respectively. Indoor and outdoor noise levels in some hospitals were higher than WHO standard by 15-28 dB and 19-23 dB respectively. The study showed that the authorities administration must take necessary procedures to reduce the noise levels in residential regions and in the regions surrounding the hospitals. (author)

  1. Seismic Structure of Perth Basin (Australia) and surroundings from Passive Seismic Deployments

    Science.gov (United States)

    Issa, N.; Saygin, E.; Lumley, D. E.; Hoskin, T. E.

    2016-12-01

    We image the subsurface structure of Perth Basin, Western Australia and surroundings by using ambient seismic noise data from 14 seismic stations recently deployed by University of Western Australia (UWA) and other available permanent stations from Geoscience Australia seismic network and the Australian Seismometers in Schools program. Each of these 14 UWA seismic stations comprises a broadband sensor and a high fidelity 3-component 10 Hz geophone, recording in tandem at 250 Hz and 1000 Hz. The other stations used in this study are equipped with short period and broadband sensors. In addition, one shallow borehole station is operated with eight 3 component geophones at depths of between 2 and 44 m. The network is deployed to characterize natural seismicity in the basin and to try and identify any microseismic activity across Darling Fault Zone (DFZ), bounding the basin to the east. The DFZ stretches to approximately 1000 km north-south in Western Australia, and is one of the longest fault zones on the earth with a limited number of detected earthquakes. We use seismic noise cross- and auto-correlation methods to map seismic velocity perturbations across the basin and the transition from DFZ to the basin. Retrieved Green's functions are stable and show clear dispersed waveforms. Travel times of the surface wave Green's functions from noise cross-correlations are inverted with a two-step probabilistic framework to map the absolute shear wave velocities as a function of depth. The single station auto-correlations from the seismic noise yields P wave reflectivity under each station, marking the major discontinuities. Resulting images show the shear velocity perturbations across the region. We also quantify the variation of ambient seismic noise at different depths in the near surface using the geophones in the shallow borehole array.

  2. Research on high level radioactive waste repository seismic design criteria

    International Nuclear Information System (INIS)

    Jing Xu

    2012-01-01

    Review seismic hazard analysis principle and method in site suitable assessment process of Yucca Mountain Project, and seismic design criteria and seismic design basis in primary design process. Demonstrated spatial character of seismic hazard by calculated regional seismic hazard map. Contrasted different level seismic design basis to show their differences and relation. Discussed seismic design criteria for preclosure phrase of high level waste repository and preference goal under beyond design basis ground motion. (author)

  3. Using the Moon As A Low-Noise Seismic Detector For Strange Quark Nuggets

    Science.gov (United States)

    Banerdt, W. Bruce; Chui, Talso; Griggs, Cornelius E.; Herrin, Eugene T.; Nakamura, Yosio; Paik, Ho Jung; Penanen, Konstantin; Rosenbaum, Doris; Teplitz, Vigdor L.; Young, Joseph

    2006-01-01

    Strange quark matter made of up, down and strange quarks has been postulated by Witten [1]. Strange quark matter would be nearly charge neutral and would have density of nuclear matter (10(exp 14) gm/cu cm). Witten also suggested that nuggets of strange quark matter, or strange quark nuggets (SQNs), could have formed shortly after the Big Bang, and that they would be viable candidates for cold dark matter. As suggested by de Rujula and Glashow [2], an SQN may pass through a celestial body releasing detectable seismic energy along a straight line. The Moon, being much quieter seismically than the Earth, would be a favorable place to search for such events. We review previous searches for SQNs to illustrate the parameter space explored by using the Moon as a low-noise detector of SQNs. We also discuss possible detection schemes using a single seismometer, and using an International Lunar Seismic Network.

  4. Impact of wind on ambient noise recorded by the "13 BB star" seismic array in northern Poland

    Science.gov (United States)

    Lepore, Simone; Markowicz, Krzysztof; Grad, Marek

    2016-04-01

    Seismic interferometry and beam forming techniques were applied to ambient noise recorded during January 2014 at the "13 BB star" array, composed of thirteen seismic stations located in northern Poland, with the aim of evaluating the azimuth of noise sources and the velocities of surface waves. After normalizing the raw recordings in time and frequency domain, the spectral characteristics of the ambient noise were studied to choose a frequency band suitable for the waves' retrieval. To get the velocity of surface waves by seismic interferometry, the crosscorrelation between all station pairs was analysed for the vertical and horizontal components in the 0.05-0.1 Hz, 0.1-1 Hz and 1 10 Hz frequency bands. For each pair, the crosscorrelation was applied to one hour recordings extracted from the ambient noise. The obtained traces were calculated for a complete day, and then summed together: the daily results were stacked for the whole January 2014. In the lowest frequency range, most of the energy is located around the 3.0 km/s line, meaning that the surface waves coming from the uppermost mantle will be retrieved. The intermediate frequency range shows most of the energy between the 2.0 km/s and 1.5 km/s lines: consequently, surface waves originating from the crust will be retrieved. In the highest frequency range, the surface waves are barely visible on the crosscorrelation traces, implying that the associated energy is strongly attenuated. The azimuth variation associated to the noise field was evaluated by means of the beam forming method, using the data from the whole array for all the three components. To that, the beam power was estimated in a small range of frequencies every day for the whole month. For each day, one hour long results of beam forming applications were stacked together. To avoid aliasing and near field effects, the minimum frequency was set at 0.05 Hz and the maximum to 0.1 Hz. In this frequency band, the amplitude maximum was sought

  5. Seismically observed seiching in the Panama Canal

    Science.gov (United States)

    McNamara, D.E.; Ringler, A.T.; Hutt, C.R.; Gee, L.S.

    2011-01-01

    A large portion of the seismic noise spectrum is dominated by water wave energy coupled into the solid Earth. Distinct mechanisms of water wave induced ground motions are distinguished by their spectral content. For example, cultural noise is generally Panama Canal there is an additional source of long-period noise generated by standing water waves, seiches, induced by disturbances such as passing ships and wind pressure. We compare seismic waveforms to water level records and relate these observations to changes in local tilt and gravity due to an oscillating seiche. The methods and observations discussed in this paper provide a first step toward quantifying the impact of water inundation as recorded by seismometers. This type of quantified understanding of water inundation will help in future estimates of similar phenomena such as the seismic observations of tsunami impact. Copyright 2011 by the American Geophysical Union.

  6. Rayleigh waves from correlation of seismic noise in Great Island of Tierra del Fuego, Argentina: Constraints on upper crustal structure

    Directory of Open Access Journals (Sweden)

    Carolina Buffoni

    2018-01-01

    Full Text Available In this study, the ambient seismic noise cross-correlation technique is applied to estimate the upper structure of the crust beneath Great Island of Tierra del Fuego (TdF, Argentina, by the analysis of short-period Rayleigh wave group velocities. The island, situated in the southernmost South America, is a key area of investigation among the interaction between the South American and Scotia plates and is considered as a very seismically active one. Through cross-correlating the vertical components of ambient seismic noise registered at four broadband stations in TdF, we were able to extract Rayleigh waves which were used to estimate group velocities in the period band of 2.5–16 s using a time-frequency analysis. Although ambient noise sources are distributed inhomogeneously, robust empirical Green's functions could be recovered from the cross-correlation of 12 months of ambient noise. The observed group velocities were inverted considering a non-linear iterative damped least-squares inversion procedure and several 1-D shear wave velocity models of the upper crust were obtained. According to the inversion results, the S-wave velocity ranges between 1.75 and 3.7 km/s in the first 10 km of crust, depending on the pair of stations considered. These results are in agreement to the major known surface and sub-surface geological and tectonic features known in the area. This study represents the first ambient seismic noise analysis in TdF in order to constraint the upper crust beneath this region. It can also be considered as a successful feasibility study for future analyses with a denser station deployment for a more detailed imaging of structure.

  7. Seismic Level 2 PSA

    International Nuclear Information System (INIS)

    Dirksen, Gerben; Pellissetti, Manuel; Duncan-Whiteman, Paul

    2014-01-01

    For most external events, the calculation of the core damage frequency (CDF) in Level 1 PSA is sufficient to be able to show that the contribution of the event to the plant risk is negligible. However, it is not sufficient to compare the CDF due to the external event to the total plant CDF; instead the Level 1 PSA result for the event should be compared to the large early release frequency (LERF), or alternatively arguments should be given why the CDF from the external event will not contribute mostly to LERF. For seismic events in particular, it can often not be easily excluded that sequences leading to core damage would not also result in LERF. Since the confinement function is one of the most essential functions for Level 2 PSA, special care must be taken of the containment penetrations. For example systems with containment penetrations that are normally closed during operation or are designed to withstand more than the maximum containment pressure are normally screened out in the Level 2 PSA for the containment isolation function, however the possibility of LOCA in such systems due to an earthquake may nevertheless lead to containment bypass. Additionally, the functionality of passive features may be compromised in case of a beyond design earthquake. In the present paper, we present crucial ingredients of a methodology for a Level 2 seismic PSA. This methodology consists of the following steps: Extension of the seismic equipment list (SEL) to include Level 2 PSA relevant systems (e.g. containment isolation system, features for core melt stabilization, hydrogen mitigation systems), Determination of the systems within the existing SEL with increased demands in case of severe accidents, Determination of essential components for which a dedicated fragility analysis needs to be performed. (author)

  8. Waveform correlation and coherence of short-period seismic noise within Gauribidanur array with implications for event detection

    International Nuclear Information System (INIS)

    Bhadauria, Y.S.; Arora, S.K.

    1995-01-01

    In continuation with our effort to model the short-period micro seismic noise at the seismic array at Gauribidanur (GBA), we have examined in detail time-correlation and spectral coherence of the noise field within the array space. This has implications of maximum possible improvement in signal-to-noise ratio (SNR) relevant to event detection. The basis of this study is about a hundred representative wide-band noise samples collected from GBA throughout the year 1992. Both time-structured correlation as well as coherence of the noise waveforms are found to be practically independent of the inter element distances within the array, and they exhibit strong temporal and spectral stability. It turns out that the noise is largely incoherent at frequencies ranging upwards from 2 Hz; the coherency coefficient tends to increase in the lower frequency range attaining a maximum of 0.6 close to 0.5 Hz. While the maximum absolute cross-correlation also diminishes with increasing frequency, the zero-lag cross-correlation is found to be insensitive to frequency filtering regardless of the pass band. An extremely small value of -0.01 of the zero-lag correlation and a comparatively higher year-round average estimate at 0.15 of the maximum absolute time-lagged correlation yields an SNR improvement varying between a probable high of 4.1 and a low of 2.3 for the full 20-element array. 19 refs., 6 figs

  9. Determination of Rayleigh wave ellipticity using single-station and array-based processing of ambient seismic noise

    Science.gov (United States)

    Workman, Eli Joseph

    We present a single-station method for the determination of Rayleigh wave ellipticity, or Rayleigh wave horizontal to vertical amplitude ratio (H/V) using Frequency Dependent Polarization Analysis (FDPA). This procedure uses singular value decomposition of 3-by-3 spectral covariance matrices over 1-hr time windows to determine properties of the ambient seismic noise field such as particle motion and dominant wave-type. In FPDA, if the noise is mostly dominated by a primary singular value and the phase difference is roughly 90° between the major horizontal axis and the vertical axis of the corresponding singular vector, we infer that Rayleigh waves are dominant and measure an H/V ratio for that hour and frequency bin. We perform this analysis for all available data from the Earthscope Transportable Array between 2004 and 2014. We compare the observed Rayleigh wave H/V ratios with those previously measured by multicomponent, multistation noise cross-correlation (NCC), as well as classical noise spectrum H/V ratio analysis (NSHV). At 8 sec the results from all three methods agree, suggesting that the ambient seismic noise field is Rayleigh wave dominated. Between 10 and 30 sec, while the general pattern agrees well, the results from FDPA and NSHV are persistently slightly higher ( 2%) and significantly higher (>20%), respectively, than results from the array-based NCC. This is likely caused by contamination from other wave types (i.e., Love waves, body waves, and tilt noise) in the single station methods, but it could also reflect a small, persistent error in NCC. Additionally, we find that the single station method has difficulty retrieving robust Rayleigh wave H/V ratios within major sedimentary basins, such as the Williston Basin and Mississippi Embayment, where the noise field is likely dominated by reverberating Love waves.

  10. Combined GPS and seismic monitoring of a 12-story structure in a region of induced seismicity in Oklahoma

    Science.gov (United States)

    Haase, J. S.; Soliman, M.; Kim, H.; Jaiswal, P.; Saunders, J. K.; Vernon, F.; Zhang, W.

    2017-12-01

    This work focuses on quantifying ground motions and their effects in Oklahoma near the location of the 2016 Mw 5.8 Pawnee earthquake, where seismicity has been increasing due to wastewater injection related to oil and natural gas production. Much of the building inventory in Oklahoma was constructed before the increase in seismicity and before the implementation of earthquake design and detailing provisions for reinforced concrete (RC) structures. We will use combined GPS/seismic monitoring techniques to measure ground motion in the field and the response of structures to this ground motion. Several Oklahoma State University buildings experienced damage due to the Pawnee earthquake. The USGS Shake Map product estimated peak ground acceleration (PGA) ranging from 0.12g to 0.15g at campus locations. We are deploying a high-rate GPS sensor and accelerometer on the roof and another accelerometer at ground level of a 12-story RC structure and at selected field sites in order to collect ambient noise data and nearby seismicity. The longer period recording characteristics of the GPS/seismic system are particularly well adapted to monitoring these large structures in the event of a significant earthquake. Gross characteristics of the structural system are described, which consists of RC columns and RC slabs in all stories. We conducted a preliminary structural analysis including modal analysis and response spectrum analysis based on a finite element (FE) simulation, which indicated that the period associated with the first X-axis bending, first torsional, and first Y-axis bending modes are 2.2 s, 2.1 s, and 1.8 s, respectively. Next, a preliminary analysis was conducted to estimate the range of expected deformation at the roof level for various earthquake excitations. The earthquake analysis shows a maximum roof displacement of 5 and 7 cm in the horizontal directions resulting from earthquake loads with PGA of 0.2g, well above the noise level of the combined GPS/seismic

  11. Noise in restaurants: levels and mathematical model.

    Science.gov (United States)

    To, Wai Ming; Chung, Andy

    2014-01-01

    Noise affects the dining atmosphere and is an occupational hazard to restaurant service employees worldwide. This paper examines the levels of noise in dining areas during peak hours in different types of restaurants in Hong Kong SAR, China. A mathematical model that describes the noise level in a restaurant is presented. The 1-h equivalent continuous noise level (L(eq,1-h)) was measured using a Type-1 precision integral sound level meter while the occupancy density, the floor area of the dining area, and the ceiling height of each of the surveyed restaurants were recorded. It was found that the measured noise levels using Leq,1-h ranged from 67.6 to 79.3 dBA in Chinese restaurants, from 69.1 to 79.1 dBA in fast food restaurants, and from 66.7 to 82.6 dBA in Western restaurants. Results of the analysis of variance show that there were no significant differences between means of the measured noise levels among different types of restaurants. A stepwise multiple regression analysis was employed to determine the relationships between geometrical and operational parameters and the measured noise levels. Results of the regression analysis show that the measured noise levels depended on the levels of occupancy density only. By reconciling the measured noise levels and the mathematical model, it was found that people in restaurants increased their voice levels when the occupancy density increased. Nevertheless, the maximum measured hourly noise level indicated that the noise exposure experienced by restaurant service employees was below the regulated daily noise exposure value level of 85 dBA.

  12. Noise in restaurants: Levels and mathematical model

    Directory of Open Access Journals (Sweden)

    Wai Ming To

    2014-01-01

    Full Text Available Noise affects the dining atmosphere and is an occupational hazard to restaurant service employees worldwide. This paper examines the levels of noise in dining areas during peak hours in different types of restaurants in Hong Kong SAR, China. A mathematical model that describes the noise level in a restaurant is presented. The 1-h equivalent continuous noise level (Leq,1-h was measured using a Type-1 precision integral sound level meter while the occupancy density, the floor area of the dining area, and the ceiling height of each of the surveyed restaurants were recorded. It was found that the measured noise levels using Leq,1-h ranged from 67.6 to 79.3 dBA in Chinese restaurants, from 69.1 to 79.1 dBA in fast food restaurants, and from 66.7 to 82.6 dBA in Western restaurants. Results of the analysis of variance show that there were no significant differences between means of the measured noise levels among different types of restaurants. A stepwise multiple regression analysis was employed to determine the relationships between geometrical and operational parameters and the measured noise levels. Results of the regression analysis show that the measured noise levels depended on the levels of occupancy density only. By reconciling the measured noise levels and the mathematical model, it was found that people in restaurants increased their voice levels when the occupancy density increased. Nevertheless, the maximum measured hourly noise level indicated that the noise exposure experienced by restaurant service employees was below the regulated daily noise exposure value level of 85 dBA.

  13. AcquisitionFootprintAttenuationDrivenbySeismicAttributes

    Directory of Open Access Journals (Sweden)

    Cuellar-Urbano Mayra

    2014-04-01

    Full Text Available Acquisition footprint, one of the major problems that PEMEX faces in seismic imaging, is noise highly correlated to the geometric array of sources and receivers used for onshore and offshore seismic acquisitions. It prevails in spite of measures taken during acquisition and data processing. This pattern, throughout the image, is easily confused with geological features and misguides seismic attribute computation. In this work, we use seismic data from PEMEX Exploración y Producción to show the conditioning process for removing random and coherent noise using linear filters. Geometric attributes used in a workflow were computed for obtaining an acquisition footprint noise model and adaptively subtract it from the seismic data.

  14. Practical ranges of loudness levels of various types of environmental noise, including traffic noise, aircraft noise, and industrial noise

    NARCIS (Netherlands)

    Salomons, E.M.; Janssen, S.A.

    2011-01-01

    In environmental noise control one commonly employs the A-weighted sound level as an approximate measure of the effect of noise on people. A measure that is more closely related to direct human perception of noise is the loudness level. At constant A-weighted sound level, the loudness level of a

  15. Overview of potential issues related to seismic exploration off the north coast of B.C.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.A. [LGL Ltd., King City, ON (Canada)

    2003-07-01

    British Columbia's fisheries industry is worth hundreds of millions of dollars per year and is of great cultural significance to First Nations. While concern about the impact of seismic exploration is relatively recent LGL Limited has been examining the effects of seismic exploration on marine wildlife since 1974 with particular emphasis on the significance of underwater noise from air gun arrays and the effects of seismic hearing in fish and marine mammals such as seals and whales. Research programs have been conducted in the Gulf of Mexico, the west coast of North America, Cook Inlet, Bering Sea, Chukchi Sea and the Beaufort Sea. Studies have also been conducted throughout Arctic Canada, the coastal waters of Newfoundland, the Scotian Shelf, and the Bay of Fundy. This presentation described seismic noise sources, source levels, how source levels are measured, and the path of noise with reference to transmission loss, received levels, and ambient noise. Over the decades, there have not been large-scale demonstrated effects on fisheries in the areas where seismic exploration has occurred. Major collapses have not occurred in fisheries even in the most mature oil and gas fields. It was therefore concluded that seismic exploration can be conducted safely in the northern waters of British Columbia if the programs are carefully planned and if appropriate mitigation measures are in place with good quantitative monitoring by trained biologists. 5 figs.

  16. Background noise levels and correlation with ship traffic in the Gulf of Catania

    Science.gov (United States)

    Viola, Salvatore; Buscaino, Giuseppa; Caruso, Francesco; Chierici, Francesco; Embriaco, Davide; Favali, Paolo; Giovanetti, Gabriele; Grammauta, Roasario; Larosa, Giuseppina; Pavan, Gianni; Pellegrino, Carmelo; Pulvirenti, Sara; Riccobene, Giorgio; Sciacca, Virginia; Simeone, Francesco; Beranzoli, Laura; Marinaro, Giuditta

    2015-04-01

    In the last decades the growing interest in the evaluation of the underwater acoustic noise for studies in the fields of geology, biology and high-energy physics is driving the scientific community to collaborate towards a multidisciplinary approach to the topic. In June 2012 in the framework of the European project EMSO, a multidisciplinary underwater observatory, named NEMO-SN1, was installed 25 km off-shore the port of Catania, at a depth of 2100 m and operated until May 2013 by INFN (Istituto Nazionale di Fisica Nucleare) and INGV (Istituto Nazionale di Geofisica e Vulcanologia). NEMO-SN1 hosted aboard geophysical, oceanographic and acoustic sensors: among these a seismic hydrophone model SMID DT-405D(V). In this work, conducted within the activity of the SMO project, the results on the evaluation of the underwater acoustic pollution in the Gulf of Catania through SMID DT-405D(V) recordings are presented. The seismic hydrophone provided a data set of about 11 months of continuous (24/7) recordings. Underwater sounds have been continuously digitized at a sampling frequency of 2 kHz and the acquired data have been stored in 10min long files for off-line analysis. To describe one-year background noise levels, the mean integrated acoustic noise was measured every second (sampling frequency 2000, NFFT 2048) in the 1/3 octave bands with centre frequency 63 Hz and for each 10 minutes-long file the 5th, the 50th and the 98th percentiles were calculated. Measured noise was correlated with the shipping traffic in the area, thanks to the data provided by an AIS receiver installed at the INFN-Laboratori Nazionali del Sud. An acoustic noise increment was measured in coincidence with the passing of crafts in the area and it was possible to identify the characteristic spectrum of each ship. A simple model for the estimation of the acoustic noise induced by the ships passing through the area was developed. The model was applied by using AIS data acquired during the operation

  17. Seismicity Precursors of the M6.0 2004 Parkfield and M7.0 1989Loma Prieta Earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Korneev, Valeri A.

    2006-03-09

    The M6.0 2004 Parkfield and M7.0 1989 Loma Prietastrike-slip earthquakes on the San Andreas Fault (SAF) were preceded byseismicity peaks occurring several months prior to the main events.Earthquakes directly within the SAF zone were intentionally excluded fromthe analysis because they manifest stress-release processes rather thanstress accumulation. The observed increase in seismicity is interpretedas a signature of the increasing stress level in the surrounding crust,whereas the peaks and the subsequent decrease in seismicity areattributed to damage-induced softening processes. Furthermore, in bothcases there is a distinctive zone of low seismic activity that surroundsthe epicentral region in the pre-event period. The increase of seismicityin the crust surrounding a potential future event and the development ofa low-seismicity epicentral zone can be regarded as promising precursoryinformation that could help signal the arrival of large earthquakes. TheGutenberg-Richter relationship (GRR) should allow extrapolation ofseismicity changes down to seismic noise level magnitudes. Thishypothesis is verified by comparison of seismic noise at 80 Hz with theParkfield M4 1993-1994 series, where noise peaks 5 months before theseries to about twice the background level.

  18. Improvements of Real Time First Motion Focal Mechanism and Noise Characteristics of New Sites at the Puerto Rico Seismic Network

    Science.gov (United States)

    Williams, D. M.; Lopez, A. M.; Huerfano, V.; Lugo, J.; Cancel, J.

    2011-12-01

    Seismic networks need quick and efficient ways to obtain information related to seismic events for the purposes of seismic activity monitoring, risk assessment, and scientific knowledge among others. As part of an IRIS summer internship program, two projects were performed to provide a tool for quick faulting mechanism and improve seismic data at the Puerto Rico Seismic Network (PRSN). First, a simple routine to obtain a focal mechanisms, the geometry of the fault, based on first motions was developed and implemented for data analysts routine operations at PRSN. The new tool provides the analyst a quick way to assess the probable faulting mechanism that occurred while performing the interactive earthquake location procedure. The focal mechanism is generated on-the-fly when data analysts pick P wave arrivals onsets and motions. Once first motions have been identified, an in-house PRSN utility is employed to obtain the double couple representation and later plotted using GMT's psmeca utility. Second, we addressed the issue of seismic noise related to thermal fluctuations inside seismic vaults. Seismic sites can be extremely noisy due to proximity to cultural activities and unattended thermal fluctuations inside sensor housings, thus resulting in skewed readings. In the past, seismologists have used different insulation techniques to reduce the amount of unwanted noise that a seismometers experience due to these thermal changes with items such as Styrofoam, and fiber glass among others. PRSN traditionally uses Styrofoam boxes to cover their seismic sensors, however, a proper procedure to test how these method compare to other new techniques has never been approached. The deficiency of properly testing these techniques in the Caribbean and especially Puerto Rico is that these thermal fluctuations still happen because of the intense sun and humidity. We conducted a test based on the methods employed by the IRIS Transportable Array, based on insulation by sand burial of

  19. Noise levels, noise annoyance, and hearing-related problems in a dental college.

    Science.gov (United States)

    Ahmed, Hafiz Omer; Ali, Wesal Jasim

    2017-05-04

    Through a cross-sectional survey and integrated sound level meter, this research examined noise exposure and auditory- and nonauditory-related problems experienced by students of a dentistry college located in the United Arab Emirates (UAE). A structured interview questionnaire was used to examine hearing-related problems, noise annoyance, and awareness of 114 students toward noise. The results showed that maximum noise levels were between 65 and 79 dB(A) with peak levels (high and low frequencies) ranging between 89 and 93 dB(A). Around 80% of the students experienced a certain degree of noise annoyance; 54% reported one of the hearing-related problems; and about 10% claimed to have hearing loss to a certain extent. It is recommended that sound-absorbent materials be used during the construction of dental clinics and laboratories to reduce the noise levels.

  20. Landslide maps and seismic noise: Rockmass weakening caused by shallow earthquakes

    Science.gov (United States)

    Uchida, Tara; Marc, Odin; Sens-Schönfelder, Christoph; Sawazaki, Kaoru; Hobiger, Manuel; Hovius, Niels

    2015-04-01

    Some studies have suggested that the shaking and deformation associated with earthquake would result in a temporary increased hillslope erodibility. However very few data have been able to clarify such effect. We present integrated geomorphic data constraining an elevated landslide rate following 4 continental shallow earthquakes, the Mw 6.9 Finisterre (1993), the Mw 7.6 ChiChi (1999), the Mw 6.6 Niigata (2004) and the Mw 6.8 Iwate-Miyagi (2008) earthquakes. We constrained the magnitude, the recovery time and somewhat the mechanism at the source of this higher landslide risk. We provide some evidences excluding aftershocks or rain forcing intensity as possible mechanism and leaving subsurface weakening as the most likely. The landslide data suggest that this ground strength weakening is not limited to the soil cover but also affect the shallow bedrock. Additionally, we used ambient noise autocorrelation techniques to monitor shallow subsurface seismic velocity within the epicentral area of three of those earthquakes. For most stations we observe a velocity drop followed by a recovery processes of several years in fair agreement with the recovery time estimated based on landslide observation. Thus a common processes could alter the strength of the first 10m of soil/rock and simultaneously drive the landslide rate increase and the seismic velocity drop. The ability to firmly demonstrate this link require additional constraints on the seismic signal interpretation but would provide a very useful tool for post-earthquake risk managment.

  1. Investigations of internal noise levels for different target sizes, contrasts, and noise structures

    Science.gov (United States)

    Han, Minah; Choi, Shinkook; Baek, Jongduk

    2014-03-01

    To describe internal noise levels for different target sizes, contrasts, and noise structures, Gaussian targets with four different sizes (i.e., standard deviation of 2,4,6 and 8) and three different noise structures(i.e., white, low-pass, and highpass) were generated. The generated noise images were scaled to have standard deviation of 0.15. For each noise type, target contrasts were adjusted to have the same detectability based on NPW, and the detectability of CHO was calculated accordingly. For human observer study, 3 trained observers performed 2AFC detection tasks, and correction rate, Pc, was calculated for each task. By adding proper internal noise level to numerical observer (i.e., NPW and CHO), detectability of human observer was matched with that of numerical observers. Even though target contrasts were adjusted to have the same detectability of NPW observer, detectability of human observer decreases as the target size increases. The internal noise level varies for different target sizes, contrasts, and noise structures, demonstrating different internal noise levels should be considered in numerical observer to predict the detection performance of human observer.

  2. Variations of local seismic response in Benevento (Southern Italy) using earthquakes and ambient noise recordings

    Science.gov (United States)

    Improta, Luigi; di Giulio, Giuseppe; Rovelli, Antonio

    The city of Benevento (Southern Italy) has been repeatedly struck by large historical earthquakes. A heterogeneous geologic structure and widespread soft soil conditions make the estimation of site effects crucial for the seismic hazard assessment of the city. From 2000 until 2004, we installed seismic stations to collect earthquake data over zones with different geological conditions. Despite the high level of urban noise, we recorded more than 150 earthquakes at twelve sites. This data set yields the first, well documented experimental evidence for weak to moderate local amplifications. We investigated site effects primarily by the classical spectral ratio technique (CSR) using a rock station placed on the Benevento hill as reference. All sites in the Calore river valley and in the eastern part of the Benevento hill show a moderate high-frequency (f > 4 Hz) amplification peak. Conversely, sites in the Sabato river valley share weak-to-moderate amplification in a wide frequency band (from 1-2 to 7-10 Hz), without evident frequency peaks. Application of no-reference-site techniques to earthquake and noise data confirms the results of the CSRs in the sites of the Calore river valley and of the eastern part of the Benevento hill, but fails in providing indications for site effects in the Sabato river valley, being the H/V ratios nearly flat. One-dimensional modeling indicates that the ground motion amplification can be essentially explained in terms of a vertically varying geologic structure. High-frequency narrow peaks are caused by the strong impedance contrast existing between near-surface soft deposits and stiff cemented conglomerates. Conversely, broad-band amplifications in the Sabato river valley are likely due to a more complex layering with weak impedance contrasts both in the shallow and deep structure of the valley.

  3. Refinements to the method of epicentral location based on surface waves from ambient seismic noise: introducing Love waves

    Science.gov (United States)

    Levshin, Anatoli L.; Barmin, Mikhail P.; Moschetti, Morgan P.; Mendoza, Carlos; Ritzwoller, Michael H.

    2012-01-01

    The purpose of this study is to develop and test a modification to a previous method of regional seismic event location based on Empirical Green’s Functions (EGFs) produced from ambient seismic noise. Elastic EGFs between pairs of seismic stations are determined by cross-correlating long ambient noise time-series recorded at the two stations. The EGFs principally contain Rayleigh- and Love-wave energy on the vertical and transverse components, respectively, and we utilize these signals between about 5 and 12 s period. The previous method, based exclusively on Rayleigh waves, may yield biased epicentral locations for certain event types with hypocentral depths between 2 and 5 km. Here we present theoretical arguments that show how Love waves can be introduced to reduce or potentially eliminate the bias. We also present applications of Rayleigh- and Love-wave EGFs to locate 10 reference events in the western United States. The separate Rayleigh and Love epicentral locations and the joint locations using a combination of the two waves agree to within 1 km distance, on average, but confidence ellipses are smallest when both types of waves are used.

  4. Seismic Ecology

    Science.gov (United States)

    Seleznev, V. S.; Soloviev, V. M.; Emanov, A. F.

    The paper is devoted to researches of influence of seismic actions for industrial and civil buildings and people. The seismic actions bring influence directly on the people (vibration actions, force shocks at earthquakes) or indirectly through various build- ings and the constructions and can be strong (be felt by people) and weak (be fixed by sensing devices). The great number of work is devoted to influence of violent seismic actions (first of all of earthquakes) on people and various constructions. This work is devoted to study weak, but long seismic actions on various buildings and people. There is a need to take into account seismic oscillations, acting on the territory, at construction of various buildings on urbanized territories. Essential influence, except for violent earthquakes, man-caused seismic actions: the explosions, seismic noise, emitted by plant facilities and moving transport, radiation from high-rise buildings and constructions under action of a wind, etc. can exert. Materials on increase of man- caused seismicity in a number of regions in Russia, which earlier were not seismic, are presented in the paper. Along with maps of seismic microzoning maps to be built indicating a variation of amplitude spectra of seismic noise within day, months, years. The presence of an information about amplitudes and frequencies of oscillations from possible earthquakes and man-caused oscillations in concrete regions allows carry- ing out soundly designing and construction of industrial and civil housing projects. The construction of buildings even in not seismically dangerous regions, which have one from resonance frequencies coincident on magnitude to frequency of oscillations, emitted in this place by man-caused objects, can end in failure of these buildings and heaviest consequences for the people. The practical examples of detail of engineering- seismological investigation of large industrial and civil housing projects of Siberia territory (hydro power

  5. Noise level in a pediatric intensive care unit.

    Science.gov (United States)

    Carvalho, Werther B; Pedreira, Mavilde L G; de Aguiar, Maria Augusta L

    2005-01-01

    The purpose of this study was to verify the noise level at a PICU. This prospective observational study was performed in a 10 bed PICU at a teaching hospital located in a densely populated district within the city of São Paulo, Brazil. Sound pressure levels (dBA) were measured 24 hours during a 6-day period. Noise recording equipment was placed in the PICU access corridor, nursing station, two open wards with three and five beds, and in isolation rooms. The resulting curves were analyzed. A basal noise level variation between 60 and 70 dBA was identified, with a maximum level of 120 dBA. The most significant noise levels were recorded during the day and were produced by the staff. The basal noise level identified exceeds International Noise Council recommendations. Education regarding the effects of noise on human hearing and its relation to stress is the essential basis for the development of a noise reduction program.

  6. Evolution and strengthening of the Calabrian Regional Seismic Network during the Pollino sequence

    Science.gov (United States)

    D'Alessandro, Antonino; Gervasi, Anna; Guerra, Ignazio

    2013-04-01

    noise level at the stations, the precision and accuracy of the hypocenter location and the magnitude detection threshold. The performance of a seismic network is strongly influenced by the noise level of its stations. The accuracy of phase picks depends on the quality of the signals within the frequency range typical of local and regional events. To evaluate the performance of the RSRC we have first estimated the background noise level of each station. The noise spectra was used to mapping the average power of noise and to study the spatial and temporal variability. To determine the location performance of the RSRC we used the Seismic Network Evaluation through Simulation (SNES) method. By means of the SNES method we investigate the improvement of the RSRC after the installation of some stand-alone stations. For this purpose we compare the location errors and the magnitude detection threshold of the RSRC before and after the installation of these temporary stations.

  7. Nuisance levels of noise effects radiologists' performance

    Science.gov (United States)

    McEntee, Mark F.; Coffey, Amina; Ryan, John; O'Beirne, Aaron; Toomey, Rachel; Evanoff, Micheal; Manning, David; Brennan, Patrick C.

    2010-02-01

    This study aimed to measure the sound levels in Irish x-ray departments. The study then established whether these levels of noise have an impact on radiologists performance Noise levels were recorded 10 times within each of 14 environments in 4 hospitals, 11 of which were locations where radiologic images are judged. Thirty chest images were then presented to 26 senior radiologists, who were asked to detect up to three nodular lesions within 30 posteroanterior chest x-ray images in the absence and presence of noise at amplitude demonstrated in the clinical environment. The results demonstrated that noise amplitudes rarely exceeded that encountered with normal conversation with the maximum mean value for an image-viewing environment being 56.1 dB. This level of noise had no impact on the ability of radiologists to identify chest lesions with figure of merits of 0.68, 0.69, and 0.68 with noise and 0.65, 0.68, and 0.67 without noise for chest radiologists, non-chest radiologists, and all radiologists, respectively. the difference in their performance using the DBM MRMC method was significantly better with noise than in the absence of noise at the 90% confidence interval (p=0.077). Further studies are required to establish whether other aspects of diagnosis are impaired such as recall and attention and the effects of more unexpected noise on performance.

  8. Noise pollution levels in the pediatric intensive care unit.

    Science.gov (United States)

    Kramer, Bree; Joshi, Prashant; Heard, Christopher

    2016-12-01

    Patients and staff may experience adverse effects from exposure to noise. This study assessed noise levels in the pediatric intensive care unit and evaluated family and staff opinion of noise. Noise levels were recorded using a NoisePro DLX. The microphone was 1 m from the patient's head. The noise level was averaged each minute and levels above 70 and 80 dBA were recorded. The maximum, minimum, and average decibel levels were calculated and peak noise level great than 100 dBA was also recorded. A parent questionnaire concerning their evaluation of noisiness of the bedside was completed. The bedside nurse also completed a questionnaire. The average maximum dB for all patients was 82.2. The average minimum dB was 50.9. The average daily bedside noise level was 62.9 dBA. The average % time where the noise level was higher than 70 dBA was 2.2%. The average percent of time that the noise level was higher than 80 dBA was 0.1%. Patients experienced an average of 115 min/d where peak noise was greater than 100 dBA. The parents and staff identified the monitors as the major contribution to noise. Patients experienced levels of noise greater than 80 dBA. Patients experience peak noise levels in excess of 100 dB during their pediatric intensive care unit stay. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Constraining the dynamics of 2014-15 Bardarbunga-Holuhraun intrusion and eruption using seismic noise

    Science.gov (United States)

    Caudron, Corentin; Donaldson, Clare; White, Robert

    2016-04-01

    The 2010 Eyjafjallajokull volcanic eruption explosively emitted a large quantity of ash in the atmosphere and paralysed the European airspace for weeks. Several seismic scientific studies already contributed to the understanding of this complex eruption (e.g., Tarasewicz et al., 2012). Although an excellent network of seismometers recorded this eruption, some volcanological and seismological aspects are still poorly understood. In order to gain further constraints on the dynamics of this ground-breaking eruptions, we mine the seismic dataset using the seismic ambient noise technique between pairs of stations and the Seismic Amplitude Ratio Analysis (SARA). Our preliminary results reveal a strong contamination of the Cross Correlation Functions (CCF) by the volcanic tremor, particularly above 0.5 Hz even for station pairs located >50 km from the volcano. Although this volcanic tremor precludes the monitoring of the seismic velocities, it literally illuminated the medium. The two phases of the eruptions (i.e., effusive and explosive) are clearly distinguished in these functions due to their different locations. During the explosive phase, an intriguing shift of the main peaks of the cross correlation functions is evidenced (early May 2010). It is remarkably consistent with the downward migration proposed by Tarasewicz et al. (2012) and is interpreted as a migration of the volcanic tremor. SARA methodology, which is continuously imaging and tracking any significant seismicity at a 10-min time scale (Taisne et al., 2010), is applied in the 5-15 Hz frequency band in order to image to continuously migrating microseismicity. The analysis displays several shallow migrations (above 5 km of depth, in March 2010) preceding the effusive phase of the eruption. Interestingly, the results also evidence a fast and deep migration (> 5 km) starting a few hours before the beginning of the explosive phase (13 April 2010). These preliminary results may shed light on the triggering of

  10. Adaptive EMG noise reduction in ECG signals using noise level approximation

    Science.gov (United States)

    Marouf, Mohamed; Saranovac, Lazar

    2017-12-01

    In this paper the usage of noise level approximation for adaptive Electromyogram (EMG) noise reduction in the Electrocardiogram (ECG) signals is introduced. To achieve the adequate adaptiveness, a translation-invariant noise level approximation is employed. The approximation is done in the form of a guiding signal extracted as an estimation of the signal quality vs. EMG noise. The noise reduction framework is based on a bank of low pass filters. So, the adaptive noise reduction is achieved by selecting the appropriate filter with respect to the guiding signal aiming to obtain the best trade-off between the signal distortion caused by filtering and the signal readability. For the evaluation purposes; both real EMG and artificial noises are used. The tested ECG signals are from the MIT-BIH Arrhythmia Database Directory, while both real and artificial records of EMG noise are added and used in the evaluation process. Firstly, comparison with state of the art methods is conducted to verify the performance of the proposed approach in terms of noise cancellation while preserving the QRS complex waves. Additionally, the signal to noise ratio improvement after the adaptive noise reduction is computed and presented for the proposed method. Finally, the impact of adaptive noise reduction method on QRS complexes detection was studied. The tested signals are delineated using a state of the art method, and the QRS detection improvement for different SNR is presented.

  11. Existing Noise Level at Railway Stations in Malaysia

    Directory of Open Access Journals (Sweden)

    Shahidan Shahiron

    2017-01-01

    Full Text Available Railway transportation known as one of the most environmental friendly transportation mode. However, the significance problems of railway transportation are noise pollution and negatively impact the wellbeing of the whole community. Unfortunately, there has been lack of public awareness about the noise level produce by the railway transportation in Malaysia. This study investigates the noise level produced by railway transportation in Malaysia specifically by Keretapi Tanah Melayu Berhad (KTMB. Methods of collecting existing noise level at railway stations in Malaysia are briefly discussed in this study. The finding indicates that the noise level produced by the railway transportation in Malaysia which is by KTMB is considered as dangerous to human being and also exceed the noise limit that has been assigned by Department of Environment Ministry of Natural Resources and Environment of Malaysia. A better noise barrier and improved material should be developed to mitigate the existing noise level produced by railway transportations in Malaysia.

  12. Time-lapse imaging of fault properties at seismogenic depth using repeating earthquakes, active sources and seismic ambient noise

    Science.gov (United States)

    Cheng, Xin

    2009-12-01

    The time-varying stress field of fault systems at seismogenic depths plays the mort important role in controlling the sequencing and nucleation of seismic events. Using seismic observations from repeating earthquakes, controlled active sources and seismic ambient noise, five studies at four different fault systems across North America, Central Japan, North and mid-West China are presented to describe our efforts to measure such time dependent structural properties. Repeating and similar earthquakes are hunted and analyzed to study the post-seismic fault relaxation at the aftershock zone of the 1984 M 6.8 western Nagano and the 1976 M 7.8 Tangshan earthquakes. The lack of observed repeating earthquakes at western Nagano is attributed to the absence of a well developed weak fault zone, suggesting that the fault damage zone has been almost completely healed. In contrast, the high percentage of similar and repeating events found at Tangshan suggest the existence of mature fault zones characterized by stable creep under steady tectonic loading. At the Parkfield region of the San Andreas Fault, repeating earthquake clusters and chemical explosions are used to construct a scatterer migration image based on the observation of systematic temporal variations in the seismic waveforms across the occurrence time of the 2004 M 6 Parkfield earthquake. Coseismic fluid charge or discharge in fractures caused by the Parkfield earthquake is used to explain the observed seismic scattering properties change at depth. In the same region, a controlled source cross-well experiment conducted at SAFOD pilot and main holes documents two large excursions in the travel time required for a shear wave to travel through the rock along a fixed pathway shortly before two rupture events, suggesting that they may be related to pre-rupture stress induced changes in crack properties. At central China, a tomographic inversion based on the theory of seismic ambient noise and coda wave interferometry

  13. Using Seismic Interferometry to Investigate Seismic Swarms

    Science.gov (United States)

    Matzel, E.; Morency, C.; Templeton, D. C.

    2017-12-01

    Seismicity provides a direct means of measuring the physical characteristics of active tectonic features such as fault zones. Hundreds of small earthquakes often occur along a fault during a seismic swarm. This seismicity helps define the tectonically active region. When processed using novel geophysical techniques, we can isolate the energy sensitive to the fault, itself. Here we focus on two methods of seismic interferometry, ambient noise correlation (ANC) and the virtual seismometer method (VSM). ANC is based on the observation that the Earth's background noise includes coherent energy, which can be recovered by observing over long time periods and allowing the incoherent energy to cancel out. The cross correlation of ambient noise between a pair of stations results in a waveform that is identical to the seismogram that would result if an impulsive source located at one of the stations was recorded at the other, the Green function (GF). The calculation of the GF is often stable after a few weeks of continuous data correlation, any perturbations to the GF after that point are directly related to changes in the subsurface and can be used for 4D monitoring.VSM is a style of seismic interferometry that provides fast, precise, high frequency estimates of the Green's function (GF) between earthquakes. VSM illuminates the subsurface precisely where the pressures are changing and has the potential to image the evolution of seismicity over time, including changes in the style of faulting. With hundreds of earthquakes, we can calculate thousands of waveforms. At the same time, VSM collapses the computational domain, often by 2-3 orders of magnitude. This allows us to do high frequency 3D modeling in the fault region. Using data from a swarm of earthquakes near the Salton Sea, we demonstrate the power of these techniques, illustrating our ability to scale from the far field, where sources are well separated, to the near field where their locations fall within each other

  14. High level white noise generator

    International Nuclear Information System (INIS)

    Borkowski, C.J.; Blalock, T.V.

    1979-01-01

    A wide band, stable, random noise source with a high and well-defined output power spectral density is provided which may be used for accurate calibration of Johnson Noise Power Thermometers (JNPT) and other applications requiring a stable, wide band, well-defined noise power spectral density. The noise source is based on the fact that the open-circuit thermal noise voltage of a feedback resistor, connecting the output to the input of a special inverting amplifier, is available at the amplifier output from an equivalent low output impedance caused by the feedback mechanism. The noise power spectral density level at the noise source output is equivalent to the density of the open-circuit thermal noise or a 100 ohm resistor at a temperature of approximately 64,000 Kelvins. The noise source has an output power spectral density that is flat to within 0.1% (0.0043 db) in the frequency range of from 1 KHz to 100 KHz which brackets typical passbands of the signal-processing channels of JNPT's. Two embodiments, one of higher accuracy that is suitable for use as a standards instrument and another that is particularly adapted for ambient temperature operation, are illustrated in this application

  15. High level white noise generator

    Science.gov (United States)

    Borkowski, Casimer J.; Blalock, Theron V.

    1979-01-01

    A wide band, stable, random noise source with a high and well-defined output power spectral density is provided which may be used for accurate calibration of Johnson Noise Power Thermometers (JNPT) and other applications requiring a stable, wide band, well-defined noise power spectral density. The noise source is based on the fact that the open-circuit thermal noise voltage of a feedback resistor, connecting the output to the input of a special inverting amplifier, is available at the amplifier output from an equivalent low output impedance caused by the feedback mechanism. The noise power spectral density level at the noise source output is equivalent to the density of the open-circuit thermal noise or a 100 ohm resistor at a temperature of approximately 64,000 Kelvins. The noise source has an output power spectral density that is flat to within 0.1% (0.0043 db) in the frequency range of from 1 KHz to 100 KHz which brackets typical passbands of the signal-processing channels of JNPT's. Two embodiments, one of higher accuracy that is suitable for use as a standards instrument and another that is particularly adapted for ambient temperature operation, are illustrated in this application.

  16. Correction of clock errors in seismic data using noise cross-correlations

    Science.gov (United States)

    Hable, Sarah; Sigloch, Karin; Barruol, Guilhem; Hadziioannou, Céline

    2017-04-01

    Correct and verifiable timing of seismic records is crucial for most seismological applications. For seismic land stations, frequent synchronization of the internal station clock with a GPS signal should ensure accurate timing, but loss of GPS synchronization is a common occurrence, especially for remote, temporary stations. In such cases, retrieval of clock timing has been a long-standing problem. The same timing problem applies to Ocean Bottom Seismometers (OBS), where no GPS signal can be received during deployment and only two GPS synchronizations can be attempted upon deployment and recovery. If successful, a skew correction is usually applied, where the final timing deviation is interpolated linearly across the entire operation period. If GPS synchronization upon recovery fails, then even this simple and unverified, first-order correction is not possible. In recent years, the usage of cross-correlation functions (CCFs) of ambient seismic noise has been demonstrated as a clock-correction method for certain network geometries. We demonstrate the great potential of this technique for island stations and OBS that were installed in the course of the Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel (RHUM-RUM) project in the western Indian Ocean. Four stations on the island La Réunion were affected by clock errors of up to several minutes due to a missing GPS signal. CCFs are calculated for each day and compared with a reference cross-correlation function (RCF), which is usually the average of all CCFs. The clock error of each day is then determined from the measured shift between the daily CCFs and the RCF. To improve the accuracy of the method, CCFs are computed for several land stations and all three seismic components. Averaging over these station pairs and their 9 component pairs reduces the standard deviation of the clock errors by a factor of 4 (from 80 ms to 20 ms). This procedure permits a continuous monitoring of clock errors where small clock

  17. Imaging the Iceland Hotspot Track Beneath Greenland with Seismic Noise Correlations

    Science.gov (United States)

    Mordret, A.

    2017-12-01

    During the past 65 million years, the Greenland craton drifted over the Iceland hotspot; however, uncertainties in geodynamic modeling and a lack of geophysical evidence prevent an accurate reconstruction of the hotspot track. I image the Greenland lithosphere down to 300 km depth with seismic noise tomography. The hotspot track is observed as a linear high-velocity anomaly in the middle crust associated with magmatic intrusions. In the upper mantle, the remnant thermal signature of the hotspot manifests as low velocity and low viscosity bodies. This new detailed picture of the Greenland lithosphere will drive more accurate geodynamic reconstructions of tectonic plate motions and prediction of Greenland heat flow, which in turn will enable more precise estimations of the Greenland ice-sheet mass balance.

  18. Seismic response of reinforced concrete frames at different damage levels

    Science.gov (United States)

    Morales-González, Merangeli; Vidot-Vega, Aidcer L.

    2017-03-01

    Performance-based seismic engineering is focused on the definition of limit states to represent different levels of damage, which can be described by material strains, drifts, displacements or even changes in dissipating properties and stiffness of the structure. This study presents a research plan to evaluate the behavior of reinforced concrete (RC) moment resistant frames at different performance levels established by the ASCE 41-06 seismic rehabilitation code. Sixteen RC plane moment frames with different span-to-depth ratios and three 3D RC frames were analyzed to evaluate their seismic behavior at different damage levels established by the ASCE 41-06. For each span-to-depth ratio, four different beam longitudinal reinforcement steel ratios were used that varied from 0.85 to 2.5% for the 2D frames. Nonlinear time history analyses of the frames were performed using scaled ground motions. The impact of different span-to-depth and reinforcement ratios on the damage levels was evaluated. Material strains, rotations and seismic hysteretic energy changes at different damage levels were studied.

  19. Assimilation of ambient seismic noise in hydrological models allows estimation of hydraulic conductivity in unsaturated media

    Science.gov (United States)

    Fores, B.; Champollion, C.; Mainsant, G.; Fort, A.; Albaric, J.

    2016-12-01

    Karstic hydrosystems represent one of the main water resources in the Mediterranean area but are challenging for geophysical methods. The GEK (Geodesy in Karstic Environment) observatory has been setup in 2011 to study the unsaturated zone of a karstic system in the south of France. The unsaturated zone (the epikarst) is thick and up to 100m on the site. Since 2011, gravity, rainfall and evapotranspiration are monitored. Together, they allow precise estimation of the global water storage changes but lack depth resolution. Surface waves velocity variations, obtained from ambient seismic noise monitoring are used here to overcome this lack. Indeed, velocities depend on saturation and the depths where changes occur can be defined as surface waves are dispersive. From October 2014 to November 2015, two seismometers have been recording noise. Velocity changes at a narrow frequency band (6-8 Hz) have shown a clear annual cycle. Minimum velocity is several months late on precipitations, which is coherent with a slow infiltration and a maximum sensitivity at -40m for these frequencies and this site. Models have been made with the Hydrus-1D software which allows modeling 1D-flow in variably saturated media. With a stochastic sampling, we have researched the underground parameters that reproduce the most the different observations (gravity, evapotranspiration and rainfall, and velocity changes). We show that velocity changes clearly constrain the hydraulic conductivity of the medium. Ambient seismic noise is therefore a promising method to study unsaturated zone which are too deep or too heterogeneous for classic methods.

  20. Earthquake Monitoring with the MyShake Global Smartphone Seismic Network

    Science.gov (United States)

    Inbal, A.; Kong, Q.; Allen, R. M.; Savran, W. H.

    2017-12-01

    Smartphone arrays have the potential for significantly improving seismic monitoring in sparsely instrumented urban areas. This approach benefits from the dense spatial coverage of users, as well as from communication and computational capabilities built into smartphones, which facilitate big seismic data transfer and analysis. Advantages in data acquisition with smartphones trade-off with factors such as the low-quality sensors installed in phones, high noise levels, and strong network heterogeneity, all of which limit effective seismic monitoring. Here we utilize network and array-processing schemes to asses event detectability with the MyShake global smartphone network. We examine the benefits of using this network in either triggered or continuous modes of operation. A global database of ground motions measured on stationary phones triggered by M2-6 events is used to establish detection probabilities. We find that the probability of detecting an M=3 event with a single phone located 20 nearby phones closely match the regional catalog locations. We use simulated broadband seismic data to examine how location uncertainties vary with user distribution and noise levels. To this end, we have developed an empirical noise model for the metropolitan Los-Angeles (LA) area. We find that densities larger than 100 stationary phones/km2 are required to accurately locate M 2 events in the LA basin. Given the projected MyShake user distribution, that condition may be met within the next few years.

  1. SHAM: High-level seismic tests of piping at the HDR

    International Nuclear Information System (INIS)

    Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.; Malcher, L.; Schrammel, D.; Steinhilber, H.; Costello, J.F.

    1988-01-01

    As part of the second phase of vibrational/earthquake investigations at the HDR (Heissdampfreaktor) Test Facility in Kahl/Main, FRG, high-level simulated seismic tests (SHAM) were performed during April--May 1988 on the VKL (Versuchskreislauf) in-plant piping system with two servohydraulic actuators, each capable of generating 40 tons of force. The purpose of these experiments was to study the behavior of piping subjected to seismic excitation levels that exceed design levels manifold and may result in failure/plastification of pipe supports and pipe elements, and to establish seismic margins for piping and pipe supports. The performance of six different dynamic pipe support systems was compared in these tests and the response, operability, and fragility of dynamic supports and of a typical US gate valve were investigated. Data obtained in the tests are used to validate analysis methods. Very preliminary evaluations lead to the observation that, in general, failures of dynamic supports (in particular snubbers) occur only at load levels that substantially exceed the design capacity. Pipe strains at load levels exceeding the design level threefold are quite small, and even when exceeding the design level eightfold are quite tolerable. Hence, under seismic loading, even at extreme levels and in spite of multiple support failures, pipe failure is unlikely. 5 refs., 16 figs

  2. Noise reduction by support vector regression with a Ricker wavelet kernel

    International Nuclear Information System (INIS)

    Deng, Xiaoying; Yang, Dinghui; Xie, Jing

    2009-01-01

    We propose a noise filtering technology based on the least-squares support vector regression (LS-SVR), to improve the signal-to-noise ratio (SNR) of seismic data. We modified it by using an admissible support vector (SV) kernel, namely the Ricker wavelet kernel, to replace the conventional radial basis function (RBF) kernel in seismic data processing. We investigated the selection of the regularization parameter for the LS-SVR and derived a concise selecting formula directly from the noisy data. We used the proposed method for choosing the regularization parameter which not only had the advantage of high speed but could also obtain almost the same effectiveness as an optimal parameter method. We conducted experiments using synthetic data corrupted by the random noise of different types and levels, and found that our method was superior to the wavelet transform-based approach and the Wiener filtering. We also applied the method to two field seismic data sets and concluded that it was able to effectively suppress the random noise and improve the data quality in terms of SNR

  3. Noise reduction by support vector regression with a Ricker wavelet kernel

    Science.gov (United States)

    Deng, Xiaoying; Yang, Dinghui; Xie, Jing

    2009-06-01

    We propose a noise filtering technology based on the least-squares support vector regression (LS-SVR), to improve the signal-to-noise ratio (SNR) of seismic data. We modified it by using an admissible support vector (SV) kernel, namely the Ricker wavelet kernel, to replace the conventional radial basis function (RBF) kernel in seismic data processing. We investigated the selection of the regularization parameter for the LS-SVR and derived a concise selecting formula directly from the noisy data. We used the proposed method for choosing the regularization parameter which not only had the advantage of high speed but could also obtain almost the same effectiveness as an optimal parameter method. We conducted experiments using synthetic data corrupted by the random noise of different types and levels, and found that our method was superior to the wavelet transform-based approach and the Wiener filtering. We also applied the method to two field seismic data sets and concluded that it was able to effectively suppress the random noise and improve the data quality in terms of SNR.

  4. Bayesian seismic AVO inversion

    Energy Technology Data Exchange (ETDEWEB)

    Buland, Arild

    2002-07-01

    A new linearized AVO inversion technique is developed in a Bayesian framework. The objective is to obtain posterior distributions for P-wave velocity, S-wave velocity and density. Distributions for other elastic parameters can also be assessed, for example acoustic impedance, shear impedance and P-wave to S-wave velocity ratio. The inversion algorithm is based on the convolutional model and a linearized weak contrast approximation of the Zoeppritz equation. The solution is represented by a Gaussian posterior distribution with explicit expressions for the posterior expectation and covariance, hence exact prediction intervals for the inverted parameters can be computed under the specified model. The explicit analytical form of the posterior distribution provides a computationally fast inversion method. Tests on synthetic data show that all inverted parameters were almost perfectly retrieved when the noise approached zero. With realistic noise levels, acoustic impedance was the best determined parameter, while the inversion provided practically no information about the density. The inversion algorithm has also been tested on a real 3-D dataset from the Sleipner Field. The results show good agreement with well logs but the uncertainty is high. The stochastic model includes uncertainties of both the elastic parameters, the wavelet and the seismic and well log data. The posterior distribution is explored by Markov chain Monte Carlo simulation using the Gibbs sampler algorithm. The inversion algorithm has been tested on a seismic line from the Heidrun Field with two wells located on the line. The uncertainty of the estimated wavelet is low. In the Heidrun examples the effect of including uncertainty of the wavelet and the noise level was marginal with respect to the AVO inversion results. We have developed a 3-D linearized AVO inversion method with spatially coupled model parameters where the objective is to obtain posterior distributions for P-wave velocity, S

  5. Rayleigh wave tomography of the British Isles from ambient seismic noise

    Science.gov (United States)

    Nicolson, Heather; Curtis, Andrew; Baptie, Brian

    2014-08-01

    We present the first Rayleigh wave group speed maps of the British Isles constructed from ambient seismic noise. The maps also constitute the first surface wave tomography study of the crust under the British Isles at a relatively high resolution. We computed interferometric, interstation Rayleigh waves from vertical component records of ambient seismic noise recorded on 63 broad-band and short-period stations across the UK and Ireland. Group velocity measurements were made from the resulting surface wave dispersion curves between 5 and 25 s using a multiple phase-matched filter method. Uncertainties in the group velocities were computed by calculating the standard deviation of four dispersion curves constructed by stacking a random selection of daily cross-correlations. Where an uncertainty could not be obtained for a ray path using this method, we estimated it as a function of the interreceiver distance. Group velocity maps were computed for 5-25-s period using the Fast Marching forward solution of the eikonal equation and iterative, linearized inversion. At short and intermediate periods, the maps show remarkable agreement with the major geological features of the British Isles including: terrane boundaries in Scotland; regions of late Palaeozoic basement uplift; areas of exposed late Proterozoic/early Palaeozoic rocks in southwest Scotland, northern England and northwest Wales and, sedimentary basins formed during the Mesozoic such as the Irish Sea Basin, the Chester Basin, the Worcester Graben and the Wessex Basin. The maps also show a consistent low-velocity anomaly in the region of the Midlands Platform, a Proterozoic crustal block in the English Midlands. At longer periods, which are sensitive velocities in the lower crustal/upper mantle, the maps suggest that the depth of Moho beneath the British Isles decreases towards the north and west. Areas of fast velocity in the lower crust also coincide with areas thought to be associated with underplating of the

  6. Towards a first design of a Newtonian-noise cancellation system for Advanced LIGO

    International Nuclear Information System (INIS)

    Coughlin, M; Mukund, N; Mitra, S; Harms, J; Driggers, J; Adhikari, R

    2016-01-01

    Newtonian gravitational noise from seismic fields is predicted to be a limiting noise source at low frequency for second generation gravitational-wave detectors. Mitigation of this noise will be achieved by Wiener filtering using arrays of seismometers deployed in the vicinity of all test masses. In this work, we present optimized configurations of seismometer arrays using a variety of simplified models of the seismic field based on seismic observations at LIGO Hanford. The model that best fits the seismic measurements leads to noise reduction limited predominantly by seismometer self-noise. A first simplified design of seismic arrays for Newtonian-noise cancellation at the LIGO sites is presented, which suggests that it will be sufficient to monitor surface displacement inside the buildings. (paper)

  7. Teaching hands-on geophysics: examples from the Rū seismic network in New Zealand

    International Nuclear Information System (INIS)

    Van Wijk, Kasper; Simpson, Jonathan; Adam, Ludmila

    2017-01-01

    Education in physics and geosciences can be effectively illustrated by the analysis of earthquakes and the subsequent propagation of seismic waves in the Earth. Educational seismology has matured to a level where both the hard- and software are robust and user friendly. This has resulted in successful implementation of educational networks around the world. Seismic data recorded by students are of such quality that these can be used in classic earthquake location exercises, for example. But even ocean waves weakly coupled into the Earth’s crust can now be recorded on educational seismometers. These signals are not just noise, but form the basis of more recent developments in seismology, such as seismic interferometry, where seismic waves generated by ocean waves—instead of earthquakes—can be used to infer information about the Earth’s interior. Here, we introduce an earthquake location exercise and an analysis of ambient seismic noise, and present examples. Data are provided, and all needed software is freely available. (review)

  8. Pilot survey of subway and bus stop noise levels.

    Science.gov (United States)

    Gershon, Robyn R M; Neitzel, Richard; Barrera, Marissa A; Akram, Muhammad

    2006-09-01

    Excessive noise exposure is a serious global urban health problem, adversely affecting millions of people. One often cited source of urban noise is mass transit, particularly subway systems. As a first step in determining risk within this context, we recently conducted an environmental survey of noise levels of the New York City transit system. Over 90 noise measurements were made using a sound level meter. Average and maximum noise levels were measured on subway platforms, and maximum levels were measured inside subway cars and at several bus stops for comparison purposes. The average noise level measured on the subway platforms was 86 +/- 4 dBA (decibel-A weighting). Maximum levels of 106, 112, and 89 dBA were measured on subway platforms, inside subway cars, and at bus stops, respectively. These results indicate that noise levels in subway and bus stop environments have the potential to exceed recommended exposure guidelines from the World Health Organization (WHO) and U.S. Environmental Protection Agency (EPA), given sufficient exposure duration. Risk reduction strategies following the standard hierarchy of control measures should be applied, where feasible, to reduce subway noise exposure.

  9. Internet-Based Solutions for a Secure and Efficient Seismic Network

    Science.gov (United States)

    Bhadha, R.; Black, M.; Bruton, C.; Hauksson, E.; Stubailo, I.; Watkins, M.; Alvarez, M.; Thomas, V.

    2017-12-01

    The Southern California Seismic Network (SCSN), operated by Caltech and USGS, leverages modern Internet-based computing technologies to provide timely earthquake early warning for damage reduction, event notification, ShakeMap, and other data products. Here we present recent and ongoing innovations in telemetry, security, cloud computing, virtualization, and data analysis that have allowed us to develop a network that runs securely and efficiently.Earthquake early warning systems must process seismic data within seconds of being recorded, and SCSN maintains a robust and resilient network of more than 350 digital strong motion and broadband seismic stations to achieve this goal. We have continued to improve the path diversity and fault tolerance within our network, and have also developed new tools for latency monitoring and archiving.Cyberattacks are in the news almost daily, and with most of our seismic data streams running over the Internet, it is only a matter of time before SCSN is targeted. To ensure system integrity and availability across our network, we have implemented strong security, including encryption and Virtual Private Networks (VPNs).SCSN operates its own data center at Caltech, but we have also installed real-time servers on Amazon Web Services (AWS), to provide an additional level of redundancy, and eventually to allow full off-site operations continuity for our network. Our AWS systems receive data from Caltech-based import servers and directly from field locations, and are able to process the seismic data, calculate earthquake locations and magnitudes, and distribute earthquake alerts, directly from the cloud.We have also begun a virtualization project at our Caltech data center, allowing us to serve data from Virtual Machines (VMs), making efficient use of high-performance hardware and increasing flexibility and scalability of our data processing systems.Finally, we have developed new monitoring of station average noise levels at most stations

  10. Seismicity at Old Faithful Geyser: an isolated source of geothermal noise and possible analogue of volcanic seismicity

    Science.gov (United States)

    Kieffer, Susan Werner

    1984-09-01

    Old Faithful Geyser in Yellowstone National Park, U.S.A., is a relatively isolated source of seismic noise and exhibits seismic behavior similar to that observed at many volcanoes, including "bubblequakes" that resemble B-type "earthquakes", harmonic tremor before and during eruptions, and periods of seismic quiet prior to eruptions. Although Old Faithful differs from volcanoes in that the conduit is continuously open, that rock-fracturing is not a process responsible for seismicity, and that the erupting fluid is inviscid H 2O rather than viscous magma, there are also remarkable similarities in the problems of heat and mass recharge to the system, in the eruption dynamics, and in the seismicity. Water rises irregularly into the immediate reservoir of Old Faithful as recharge occurs, a fact that suggests that there are two enlarged storage regions: one between 18 and 22 m (the base of the immediate reservoir) and one between about 10 and 12 m depth. Transport of heat from hot water or steam entering at the base of the recharging water column into cooler overlying water occurs by migration of steam bubbles upward and their collapse in the cooler water, and by episodes of convective overturn. An eruption occurs when the temperature of the near-surface water exceeds the boiling point if the entire water column is sufficiently close to the boiling curve that the propagation of pressure-release waves (rarefactions) down the column can bring the liquid water onto the boiling curve. The process of conversion of the liquid water in the conduit at the onset of an eruption into a two-phase liquid-vapor mixture takes on the order of 30 s. The seismicity is directly related to the sequence of filling and heating during the recharge cycle, and to the fluid mechanics of the eruption. Short (0.2-0.3 s), monochromatic, high-frequency events (20-60 Hz) resembling unsustained harmonic tremor and, in some instances, B-type volcanic earthquakes, occur when exploding or imploding

  11. [Noise level in a care and teaching hospital institution].

    Science.gov (United States)

    Mendoza-Sánchez, R S; Roque-Sánchez, R H; Moncada-González, B

    1996-01-01

    Noise in the environment is increasing over the years. Disturbances produced by noise are varied, some lead to serious health consequences. Noise level was registered in a teaching hospital. Levels in the wards were between 50 and 59 dB. In the Intensive Care Unit, main hallways and outpatients department levels were higher than 59 dB. Isolated peaks up to 90.0 dB (Pediatrics) were detected. The noise level recommended for a hospital is under 50.0 dB. We found that the principal source of noise came from the medical and nursing staff.

  12. High-level seismic tests of piping at the HDR [Heissdampfreaktor

    International Nuclear Information System (INIS)

    Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.; Costello, J.F.

    1989-01-01

    As part of the second-phase testing at the Heissdampfreaktor (HDR) Test Facility in Kahl/Main, Federal Republic of Germany (FRG), high-level seismic experiments, designated SHAM, were performed on an in-plant piping system during the period of 19 April to 27 May 1988. The objectives of the SHAM experiments were to (1) study the response of piping subjected to seismic excitation levels that exceed design levels manifold and which may result in failure/plastification of pipe supports and pipe elements; (2) provide data for the validation of linear and nonlinear pipe response analyses; (3) compare and evaluate, under identical loading conditions, the performance of various dynamic support system, ranging from very flexible to very stiff support configurations; (4) establish seismic margins for piping, dynamic pipe supports, and pipe anchorages; and (5) investigate the response, operability, and fragility of dynamic supports and of a typical US gate valve under extreme levels of seismic excitation. A brief description of the SHAM tests is provided, followed by highlights of the test results that are given primarily in the form of maximum response values. Also presented are very limited comparisons of experimental data and pretest analytical predictions. 6 refs., 8 figs

  13. Seismic fragility levels of nuclear power plant equipment

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.K.; Hofmayer, C.H.

    1987-01-01

    Seismic fragility levels of safety-related electrical and mechanical equipment used in nuclear power plants are discussed. The fragility level is defined as the vibration level corresponding to initiation of equipment malfunctions. The test response spectrum is used as a measure of this vibration level. The fragility phenomenon of an equipment is represented by a number of response spectra corresponding to various failure modes. Analysis methods are described for determination of the fragility level by use of existing test data. Useful conversion factors are tabulated to transform test response spectra from one damping value to another. Results are presented for switch-gears and motor control centers. The capacity levels of these equipment assemblies are observed to be limited by malfunctioning of contactors, motor starters, relays and/or switches. The applicability of the fragility levels, determined in terms of test response spectra, to Seismic Margin Studies and Probabilistic Risk Assessments is discussed and specific recommendations are provided

  14. Shear-wave velocities beneath the Harrat Rahat volcanic field, Saudi Arabia, using ambient seismic noise analysis

    Science.gov (United States)

    Civilini, F.; Mooney, W.; Savage, M. K.; Townend, J.; Zahran, H. M.

    2017-12-01

    We present seismic shear-velocities for Harrat Rahat, a Cenozoic bimodal alkaline volcanic field in west-central Saudi Arabia, using seismic tomography from natural ambient noise. This project is part of an overall effort by the Saudi Geological Survey and the United States Geological Survey to describe the subsurface structure and assess hazards within the Saudi Arabian shield. Volcanism at Harrat Rahat began approximately 10 Ma, with at least three pulses around 10, 5, and 2 Ma, and at least several pulses in the Quaternary from 1.9 Ma to the present. This area is instrumented by 14 broadband Nanometrics Trillium T120 instruments across an array aperture of approximately 130 kilometers. We used a year of recorded natural ambient noise to determine group and phase velocity surface wave dispersion maps with a 0.1 decimal degree resolution for radial-radial, transverse-transverse, and vertical-vertical components of the empirical Green's function. A grid-search method was used to carry out 1D shear-velocity inversions at each latitude-longitude point and the results were interpolated to produce pseudo-3D shear velocity models. The dispersion maps resolved a zone of slow surface wave velocity south-east of the city of Medina spatially correlated with the 1256 CE eruption. A crustal layer interface at approximately 20 km depth was determined by the inversions for all components, matching the results of prior seismic-refraction studies. Cross-sections of the 3D shear velocity models were compared to gravity measurements obtained in the south-east edge of the field. We found that measurements of low gravity qualitatively correlate with low values of shear-velocity below 20 km along the cross-section profile. We apply these methods to obtain preliminary tomography results on the entire Arabian Shield.

  15. Impact of magnitude uncertainties on seismic catalogue properties

    Science.gov (United States)

    Leptokaropoulos, K. M.; Adamaki, A. K.; Roberts, R. G.; Gkarlaouni, C. G.; Paradisopoulou, P. M.

    2018-05-01

    Catalogue-based studies are of central importance in seismological research, to investigate the temporal, spatial and size distribution of earthquakes in specified study areas. Methods for estimating the fundamental catalogue parameters like the Gutenberg-Richter (G-R) b-value and the completeness magnitude (Mc) are well established and routinely applied. However, the magnitudes reported in seismicity catalogues contain measurement uncertainties which may significantly distort the estimation of the derived parameters. In this study, we use numerical simulations of synthetic data sets to assess the reliability of different methods for determining b-value and Mc, assuming the G-R law validity. After contaminating the synthetic catalogues with Gaussian noise (with selected standard deviations), the analysis is performed for numerous data sets of different sample size (N). The noise introduced to the data generally leads to a systematic overestimation of magnitudes close to and above Mc. This fact causes an increase of the average number of events above Mc, which in turn leads to an apparent decrease of the b-value. This may result to a significant overestimation of seismicity rate even well above the actual completeness level. The b-value can in general be reliably estimated even for relatively small data sets (N < 1000) when only magnitudes higher than the actual completeness level are used. Nevertheless, a correction of the total number of events belonging in each magnitude class (i.e. 0.1 unit) should be considered, to deal with the magnitude uncertainty effect. Because magnitude uncertainties (here with the form of Gaussian noise) are inevitable in all instrumental catalogues, this finding is fundamental for seismicity rate and seismic hazard assessment analyses. Also important is that for some data analyses significant bias cannot necessarily be avoided by choosing a high Mc value for analysis. In such cases, there may be a risk of severe miscalculation of

  16. Robust estimation of seismic coda shape

    Science.gov (United States)

    Nikkilä, Mikko; Polishchuk, Valentin; Krasnoshchekov, Dmitry

    2014-04-01

    We present a new method for estimation of seismic coda shape. It falls into the same class of methods as non-parametric shape reconstruction with the use of neural network techniques where data are split into a training and validation data sets. We particularly pursue the well-known problem of image reconstruction formulated in this case as shape isolation in the presence of a broadly defined noise. This combined approach is enabled by the intrinsic feature of seismogram which can be divided objectively into a pre-signal seismic noise with lack of the target shape, and the remainder that contains scattered waveforms compounding the coda shape. In short, we separately apply shape restoration procedure to pre-signal seismic noise and the event record, which provides successful delineation of the coda shape in the form of a smooth almost non-oscillating function of time. The new algorithm uses a recently developed generalization of classical computational-geometry tool of α-shape. The generalization essentially yields robust shape estimation by ignoring locally a number of points treated as extreme values, noise or non-relevant data. Our algorithm is conceptually simple and enables the desired or pre-determined level of shape detail, constrainable by an arbitrary data fit criteria. The proposed tool for coda shape delineation provides an alternative to moving averaging and/or other smoothing techniques frequently used for this purpose. The new algorithm is illustrated with an application to the problem of estimating the coda duration after a local event. The obtained relation coefficient between coda duration and epicentral distance is consistent with the earlier findings in the region of interest.

  17. Effect of external classroom noise on schoolchildren's reading and mathematics performance: correlation of noise levels and gender.

    Science.gov (United States)

    Papanikolaou, M; Skenteris, N; Piperakis, S M

    2015-02-01

    The present study investigated the effect of low, medium, and high traffic road noise as well as irrelevant background speech noise on primary school children's reading and mathematical performance. A total of 676 participants (324 boys, 47.9% and 352 girls, 52.1%) of the 4th and 5th elementary classes participated in the project. The participants were enrolled in public primary schools from urban areas and had ages ranging from 9 to 10 years and from. Schools were selected on the basis of increasing levels of exposure to road traffic noise and then classified into three categories (Low noise: 55-66 dB, Medium noise: 67-77 dB, and High noise: 72-80 dB). We measured reading comprehension and mathematical skills in accordance with the national guidelines for elementary education, using a test designed specifically for the purpose of this study. On the one hand, children in low-level noise schools showed statistically significant differences from children in medium- and high-level noise schools in reading performance (plevel noise schools differed significantly from children in high-level noise schools but only in mathematics performance (p=0.001). Girls in general did better in reading score than boys, especially in schools with medium- and high-level noise. Finally the levels of noise and gender were found to be two independent factors.

  18. Reducing high Reynolds number hydroacoustic noise using superhydrophobic coating

    International Nuclear Information System (INIS)

    Elboth, Thomas; Reif, Bjørn Anders Pettersson; Andreassen, Øyvind; Martell, Michael B

    2011-01-01

    The objective of this study is to assess and quantify the effect of a superhydrophobic surface coating on turbulence-generated flow noise. The study utilizes results obtained from high Reynolds-number full-scale flow noise measurements taken on a commercial seismic streamer and results from low Reynolds-number direct numerical simulations. It is shown that it is possible to significantly reduce both the frictional drag and the levels of the turbulence generated flow noise even at very high Reynolds-numbers. For instance, frequencies below 10 Hz a reduction in the flow noise level of nearly 50% was measured. These results can be attributed to a reduced level of shear stress and change in the kinematic structure of the turbulence, both of which occur in the immediate vicinity of the superhydrophobic surface.

  19. Analysis of seismic noise to check the mechanical isolation of a medical device

    Directory of Open Access Journals (Sweden)

    Sara Rombetto

    2011-07-01

    Full Text Available We have investigated the mechanical response of a magnetically shielded room that hosts a magnetoencephalography system that is subject to external vibrations. This is a superconducting quantum interference device, which are the most sensitive sensors for magnetic flux variations. When the magnetoencephalography operates with people inside the room, the spectrum of the flux of the magnetic field shows anomalous peaks at several frequencies between 1 Hz and 20 Hz, independent of the experiment that is being run. As the variations in the flux of the magnetic field through the sensors might not only be related to the electrical currents circulating inside the brain, but also to non-damped mechanical oscillations of the room, we installed seismic instrumentation to measure the effective motion inside the room and to compare it to the external motion. For this analysis, we recorded the ambient seismic noise at two very close stations, one inside the magnetically shielded room, the other one outside in the room in which the magnetically shielded room is itself located. Data were collected over four days, including a week-end, to study the response of the magnetically shielded room subjected to different energy levels of external vibrations. The root mean square, Fourier spectra and power spectral density show significant differences between the signal recorded inside and outside the magnetically shielded room, with several anomalous peaks in the frequency band of 1 Hz to 20 Hz. The normalized spectral quantities (horizontal to vertical spectral ratio, and ratio between the internal and external spectra show large amplification at several frequencies, reaching in some cases one order of magnitude. We concluded that the magnetically shielded room does not dampen the external vibrations, but it instead appears to amplify these across a broad frequency range.

  20. 6C polarization analysis - seismic direction finding in coherent noise, automated event identification, and wavefield separation

    Science.gov (United States)

    Schmelzbach, C.; Sollberger, D.; Greenhalgh, S.; Van Renterghem, C.; Robertsson, J. O. A.

    2017-12-01

    Polarization analysis of standard three-component (3C) seismic data is an established tool to determine the propagation directions of seismic waves recorded by a single station. A major limitation of seismic direction finding methods using 3C recordings, however, is that a correct propagation-direction determination is only possible if the wave mode is known. Furthermore, 3C polarization analysis techniques break down in the presence of coherent noise (i.e., when more than one event is present in the analysis time window). Recent advances in sensor technology (e.g., fibre-optical, magnetohydrodynamic angular rate sensors, and ring laser gyroscopes) have made it possible to accurately measure all three components of rotational ground motion exhibited by seismic waves, in addition to the conventionally recorded three components of translational motion. Here, we present an extension of the theory of single station 3C polarization analysis to six-component (6C) recordings of collocated translational and rotational ground motions. We demonstrate that the information contained in rotation measurements can help to overcome some of the main limitations of standard 3C seismic direction finding, such as handling multiple arrivals simultaneously. We show that the 6C polarisation of elastic waves measured at the Earth's free surface does not only depend on the seismic wave type and propagation direction, but also on the local P- and S-wave velocities just beneath the recording station. Using an adaptation of the multiple signal classification algorithm (MUSIC), we demonstrate how seismic events can univocally be identified and characterized in terms of their wave type. Furthermore, we show how the local velocities can be inferred from single-station 6C data, in addition to the direction angles (inclination and azimuth) of seismic arrivals. A major benefit of our proposed 6C method is that it also allows the accurate recovery of the wave type, propagation directions, and phase

  1. Seismic isolation of Advanced LIGO: Review of strategy, instrumentation and performance

    International Nuclear Information System (INIS)

    Matichard, F; Mittleman, R; Mason, K; Biscans, S; Barnum, S; Evans, M; Foley, S; Lantz, B; Celerier, C; Clark, D; DeBra, D; Kissel, J; Allwine, E; Abbott, B; Abbott, R; Abbott, S; Coyne, D; McIver, J; Birch, J; DeRosa, R

    2015-01-01

    The new generation of gravitational waves detectors require unprecedented levels of isolation from seismic noise. This article reviews the seismic isolation strategy and instrumentation developed for the Advanced LIGO observatories. It summarizes over a decade of research on active inertial isolation and shows the performance recently achieved at the Advanced LIGO observatories. The paper emphasizes the scientific and technical challenges of this endeavor and how they have been addressed. An overview of the isolation strategy is given. It combines multiple layers of passive and active inertial isolation to provide suitable rejection of seismic noise at all frequencies. A detailed presentation of the three active platforms that have been developed is given. They are the hydraulic pre-isolator, the single-stage internal isolator and the two-stage internal isolator. The architecture, instrumentation, control scheme and isolation results are presented for each of the three systems. Results show that the seismic isolation sub-system meets Advanced LIGO’s stringent requirements and robustly supports the operation of the two detectors. (paper)

  2. Integration of ambient seismic noise monitoring, displacement and meteorological measurements to infer the temperature-controlled long-term evolution of a complex prone-to-fall cliff

    Science.gov (United States)

    Colombero, C.; Baillet, L.; Comina, C.; Jongmans, D.; Larose, E.; Valentin, J.; Vinciguerra, S.

    2018-06-01

    Monitoring the temporal evolution of resonance frequencies and velocity changes detected from ambient seismic noise recordings can help in recognizing reversible and irreversible modifications within unstable rock volumes. With this aim, the long-term ambient seismic noise data set acquired at the potentially unstable cliff of Madonna delSasso (NW Italian Alps) was analysed in this study, using both spectral analysis and cross-correlation techniques. Noise results were integrated and compared with direct displacement measurements and meteorological data, to understand the long-term evolution of the cliff. No irreversible modifications in the stability of the site were detected over the monitored period. Conversely, daily and seasonal air temperature fluctuations were found to control resonance frequency values, amplitudes and directivities and to induce reversible velocity changes within the fractured rock mass. The immediate modification in the noise parameters due to temperature fluctuations was interpreted as the result of rock mass thermal expansion and contraction, inducing variations in the contact stiffness along the fractures isolating two unstable compartments. Differences with previous case studies were highlighted in the long-term evolution of noise spectral amplitudes and directivities, due to the complex 3-D fracture setting of the site and to the combined effects of the two unstable compartments.

  3. Planetary Seismology : Lander- and Wind-Induced Seismic Signals

    Science.gov (United States)

    Lorenz, Ralph

    2016-10-01

    Seismic measurements are of interest for future geophysical exploration of ocean worlds such as Europa or Titan, as well as Venus, Mars and the Moon. Even when a seismometer is deployed away from a lander (as in the case of Apollo) lander-generated disturbances are apparent. Such signatures may be usefully diagnostic of lander operations (at least for outreach), and may serve as seismic excitation for near-field propagation studies. The introduction of these 'spurious' events may also influence the performance of event detection and data compression algorithms.Examples of signatures in the Viking 2 seismometer record of lander mechanism operations are presented. The coherence of Viking seismometer noise levels and wind forcing is well-established : some detailed examples are examined. Wind noise is likely to be significant on future Mars missions such as InSight, as well as on Titan and Venus.

  4. Traffic background level and signal duration effects on aircraft noise judgment

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, G W; Haasz, A A

    1977-04-22

    The effects of background traffic noise level and signal duration on perceived aircraft noise levels during a flyover event are investigated. Tapes of traffic noise at different levels on which aircraft flyover noise events of different durations were superimposed were played to groups of observers in a room simulating indoor conditions. It is found that the presence of steady background traffic noise reduces the perceived noisiness of aircraft flyovers provided that the duration of the flyover event is sufficiently short in relation to flyover time. For a given event level, a reduction of 21 dB(A) in background noise level leads to the perception of a 5.5 dB(A) increase in peak event level. Regressions of observer response with the noise pollution index show a lower correlation than those with variables based on background noise level and peak signal level, although the data are found to exhibit a number of significant trends associated with noise pollution index variations.

  5. Noise Levels in Dental Offices and Laboratories in Hamedan, Iran

    Directory of Open Access Journals (Sweden)

    F. Mojarad

    2009-12-01

    Full Text Available Objective: Noise pollution is one of the most important situations requiring a solution by the contemporary world. The National Institute for Occupational Safety and Health has identified noise as one of the ten leading causes of work-related diseases and injuries.Dentists and dental auxiliaries are exposed to different noise levels while working in dental offices or laboratories. The purpose of this study was to measure the noise level made by different dental instruments in dental offices and laboratories.Materials and Methods: Measurement of the noise level was performed in 89 dental offices and nine dental laboratories. The noise levels were determined using a sound level meter; type SL-4011(Lutron ,which was placed at the operator’s ear level in dental offices and laboratories and also at two-meter distance from the technician’s ear in laboratories.Results: The maximum sound level was 85.8 dB in dental offices and 92.0 dB in laboratories.In dental clinics, the highest noise was produced by the ultrasonic-scaler (85.8 dB and the lowest noise (49.7 dB by the high-volume aspirator, whereas in the laboratory,the highest noise was caused during grinding by the stonecutter (92.0 dB and the lowest by the denture-polishing unit (41.0 dB.Conclusion: After close evaluation, we believe that the maximum noise level in dental offices, although often beneath the damaging noise level for the human ear, is very close to the limit of hearing loss (85.0 dB. However, laboratory technicians may be at risk ifthey choose not to wear ear protection (earplugs or earmuffs.

  6. Definition of 1992 Technology Aircraft Noise Levels and the Methodology for Assessing Airplane Noise Impact of Component Noise Reduction Concepts

    Science.gov (United States)

    Kumasaka, Henry A.; Martinez, Michael M.; Weir, Donald S.

    1996-01-01

    This report describes the methodology for assessing the impact of component noise reduction on total airplane system noise. The methodology is intended to be applied to the results of individual study elements of the NASA-Advanced Subsonic Technology (AST) Noise Reduction Program, which will address the development of noise reduction concepts for specific components. Program progress will be assessed in terms of noise reduction achieved, relative to baseline levels representative of 1992 technology airplane/engine design and performance. In this report, the 1992 technology reference levels are defined for assessment models based on four airplane sizes - an average business jet and three commercial transports: a small twin, a medium sized twin, and a large quad. Study results indicate that component changes defined as program final goals for nacelle treatment and engine/airframe source noise reduction would achieve from 6-7 EPNdB reduction of total airplane noise at FAR 36 Stage 3 noise certification conditions for all of the airplane noise assessment models.

  7. Detection of very long period solar free oscillations in ambient seismic array noise

    Science.gov (United States)

    Caton, R.; Pavlis, G. L.; Thomson, D. J.; Vernon, F.

    2017-12-01

    For nearly two decades long-period seismologists have been aware that the Earth's free oscillations are in a constant state of excitement, even in the absence of large earthquakes. This phenomenon is now called the "Earth's hum," and much research has been done to determine what generates this hum. Here we examine a hypothesis first put forward by Thomson et al. in 2007 that a portion of the hum's energy comes from the sun. They hypothesized that solar free oscillations couple into the solid Earth, likely through electromagnetic processes, and produce signals that are observable in the frequency domain. If this is true, then at least some measurement of helioseismic oscillations may be possible using relatively cheap, ground-based instruments rather than spacecraft. In this project we attempt to improve upon previous studies by producing spectra from seismic arrays, rather than a single station. We use data from two arrays: The Homestake Mine 3D array in Lead, SD, and the Pinyon Flats array, which has seismometers in boreholes drilled into bedrock. Both have exceptionally low noise levels at ultra long periods and show easily visible earth tides on horizontal component data filtered to below the microseism band. In the Homestake data, below 500 μHz we have found evidence of what we suggest may be closely spaced solar g-mode lines. Such modes are produced by a density inversion at the top of the solar core. There is no sign of these modes in the Pinyon Flats data, but we find this is likely due to the signal-to-noise ratio of those data, which is significantly lower than Homestake. Significance tests of bands below 500 μHz indicate with probability levels as high as 40σ that these lines are not the result of random processes. Critical examination of our processing steps for sources of bias indicate that the observed line structure is not a processing artifact.

  8. Adaptive prediction applied to seismic event detection

    International Nuclear Information System (INIS)

    Clark, G.A.; Rodgers, P.W.

    1981-01-01

    Adaptive prediction was applied to the problem of detecting small seismic events in microseismic background noise. The Widrow-Hoff LMS adaptive filter used in a prediction configuration is compared with two standard seismic filters as an onset indicator. Examples demonstrate the technique's usefulness with both synthetic and actual seismic data

  9. Tracking changes in volcanic systems with seismic Interferometry

    Science.gov (United States)

    Haney, Matt; Alicia J. Hotovec-Ellis,; Bennington, Ninfa L.; Silvio De Angelis,; Clifford Thurber,

    2014-01-01

    The detection and evaluation of time-dependent changes at volcanoes form the foundation upon which successful volcano monitoring is built. Temporal changes at volcanoes occur over all time scales and may be obvious (e.g., earthquake swarms) or subtle (e.g., a slow, steady increase in the level of tremor). Some of the most challenging types of time-dependent change to detect are subtle variations in material properties beneath active volcanoes. Although difficult to measure, such changes carry important information about stresses and fluids present within hydrothermal and magmatic systems. These changes are imprinted on seismic waves that propagate through volcanoes. In recent years, there has been a quantum leap in the ability to detect subtle structural changes systematically at volcanoes with seismic waves. The new methodology is based on the idea that useful seismic signals can be generated “at will” from seismic noise. This means signals can be measured any time, in contrast to the often irregular and unpredictable times of earthquakes. With seismic noise in the frequency band 0.1–1 Hz arising from the interaction of the ocean with the solid Earth known as microseisms, researchers have demonstrated that cross-correlations of passive seismic recordings between pairs of seismometers yield coherent signals (Campillo and Paul 2003; Shapiro and Campillo 2004). Based on this principle, coherent signals have been reconstructed from noise recordings in such diverse fields as helioseismology (Rickett and Claerbout 2000), ultrasound (Weaver and Lobkis 2001), ocean acoustic waves (Roux and Kuperman 2004), regional (Shapiro et al. 2005; Sabra et al. 2005; Bensen et al. 2007) and exploration (Draganov et al. 2007) seismology, atmospheric infrasound (Haney 2009), and studies of the cryosphere (Marsan et al. 2012). Initial applications of ambient seismic noise were to regional surface wave tomography (Shapiro et al. 2005). Brenguier et al. (2007) were the first to

  10. Joint inversion of teleseismic P waveforms and surface-wave group velocities from ambient seismic noise in the Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Růžek, Bohuslav; Plomerová, Jaroslava; Babuška, Vladislav

    2012-01-01

    Roč. 56, č. 1 (2012), s. 107-140 ISSN 0039-3169 R&D Projects: GA ČR GA205/07/1088; GA AV ČR IAA300120709; GA MŠk LM2010008 Institutional research plan: CEZ:AV0Z30120515 Keywords : receiver function * seismic noise * joint inversion * Bohemian Massif * velocity structure Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.975, year: 2012

  11. Seismic and resistivity anisotropy analysis at the Low-Noise Underground Laboratory (LSBB) of Rustrel (France)

    Science.gov (United States)

    Zeyen, H. J.; Bereš, J.; Gaffet, S.; Sénéchal, G.; Rousset, D.; Pessel, M.

    2011-12-01

    Many geological materials exhibit anisotropic behaviour. A limestone massif, especially if cracked with fractures and faults in a predominant orientation is expected to manifest seismic and electric resistivity anisotropy. Seismic velocity within air- or water-filled cracks is smaller than in the rock matrix. Therefore, the velocity parallel to fractures, controlled mainly by the rock matrix, is expected to be faster than perpendicular to the fractures, where waves have to cross fractures and rock matrix. Seismic and resistivity measurements were conducted in three underground galleries of the Low-Noise Underground Gallery (LSBB) in southern France forming a horse-shoe setting. The galleries are located inside a karstic limestone massif. Around 22500 first arrival travel-times were picked and different types of pole-pole and dipole-dipole resistivity measurement were carried out in parallel. Resistivities and velocities vary strongly with direction of observation. The direction of fast velocities is at right angle with the one of slow velocities, a typical sign for anisotropy. Observation of a system of subparallel fractures allows to approximate the actual rock anisotropy by a horizontal transverse isotropy model. The dataset was treated by different approaches, including simple cosine fit, inversion of average anisotropy parameters using a Monte-Carlo approach, isotropic and anisotropic tomography inversion. All of the above confirm the directions of fast and slow velocities (30°N and 120°N respectively) and an anisotropy of about 10%. Common measurements of seismic and resistivity data at different periods of the year will have the potential to determine quantitatively the fracture density and the free water content in this karst massif.

  12. Background Noise of the Aldeia da Serra Region (Portugal) from a temporary broad band network

    Science.gov (United States)

    Wachilala, Piedade; Borges, José; Caldeira, Bento; Bezzeghoud, Mourad

    2017-04-01

    In this study, we analyse seismic background noise to assess the effect of noise based on the detectability of a temporary network constituted by DOCTAR (Deep Ocean Test Array), who have been deployed in a period between 2011 and 2012 in Portugal mainland, and the Évora permanent seismic station. This network is constituted by 14 digital broadband stations (14 CMG-3ESP and one STS2 sensors) with a flat response between the 60 sec to 50 Hz, 24-bit and 120s to 60Hz respectively. The temporary network was operated in continuous recording mode (three-components) in a region located in the north of the region of Évora, within a radius of about 30 km around the village of Aldeia da Serra, region in which there is an important seismic activity in the context of Portugal mainland. We calculated power spectral densities of background noise for each station/component and compare them with high-noise model and low-noise model of Peterson (1993). We consider different for day and night local and for different periods of the year. Power spectral density estimates show moderate noise levels with all stations falling within the high and low bounds of Peterson (1993). Considering the results of the noise, we estimate the detection limit of each station and consequently the detectability of the network. From this information and taking in attention the events recorded during the period of DOCTAR operation we analyse the improvement promoted by this temporary network regarding the existent seismic networks to the local seismicity study. This work was partially supported by COMPETE 2020 program (POCI-01-0145-FEDER-007690 project). We acknowledge GFZ Potsdam for providing part of the data used in this study.

  13. Adaptive prediction applied to seismic event detection

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G.A.; Rodgers, P.W.

    1981-09-01

    Adaptive prediction was applied to the problem of detecting small seismic events in microseismic background noise. The Widrow-Hoff LMS adaptive filter used in a prediction configuration is compared with two standard seismic filters as an onset indicator. Examples demonstrate the technique's usefulness with both synthetic and actual seismic data.

  14. Self-reported sleep disturbances due to railway noise: exposure-response relationships for nighttime equivalent and maximum noise levels.

    Science.gov (United States)

    Aasvang, Gunn Marit; Moum, Torbjorn; Engdahl, Bo

    2008-07-01

    The objective of the present survey was to study self-reported sleep disturbances due to railway noise with respect to nighttime equivalent noise level (L(p,A,eq,night)) and maximum noise level (L(p,A,max)). A sample of 1349 people in and around Oslo in Norway exposed to railway noise was studied in a cross-sectional survey to obtain data on sleep disturbances, sleep problems due to noise, and personal characteristics including noise sensitivity. Individual noise exposure levels were determined outside of the bedroom facade, the most-exposed facade, and inside the respondents' bedrooms. The exposure-response relationships were analyzed by using logistic regression models, controlling for possible modifying factors including the number of noise events (train pass-by frequency). L(p,A,eq,night) and L(p,A,max) were significantly correlated, and the proportion of reported noise-induced sleep problems increased as both L(p,A,eq,night) and L(p,A,max) increased. Noise sensitivity, type of bedroom window, and pass-by frequency were significant factors affecting noise-induced sleep disturbances, in addition to the noise exposure level. Because about half of the study population did not use a bedroom at the most-exposed side of the house, the exposure-response curve obtained by using noise levels for the most-exposed facade underestimated noise-induced sleep disturbance for those who actually have their bedroom at the most-exposed facade.

  15. Unsupervised seismic facies analysis with spatial constraints using regularized fuzzy c-means

    Science.gov (United States)

    Song, Chengyun; Liu, Zhining; Cai, Hanpeng; Wang, Yaojun; Li, Xingming; Hu, Guangmin

    2017-12-01

    Seismic facies analysis techniques combine classification algorithms and seismic attributes to generate a map that describes main reservoir heterogeneities. However, most of the current classification algorithms only view the seismic attributes as isolated data regardless of their spatial locations, and the resulting map is generally sensitive to noise. In this paper, a regularized fuzzy c-means (RegFCM) algorithm is used for unsupervised seismic facies analysis. Due to the regularized term of the RegFCM algorithm, the data whose adjacent locations belong to same classification will play a more important role in the iterative process than other data. Therefore, this method can reduce the effect of seismic data noise presented in discontinuous regions. The synthetic data with different signal/noise values are used to demonstrate the noise tolerance ability of the RegFCM algorithm. Meanwhile, the fuzzy factor, the neighbour window size and the regularized weight are tested using various values, to provide a reference of how to set these parameters. The new approach is also applied to a real seismic data set from the F3 block of the Netherlands. The results show improved spatial continuity, with clear facies boundaries and channel morphology, which reveals that the method is an effective seismic facies analysis tool.

  16. Noise level in neonatal incubators: A comparative study of three models.

    Science.gov (United States)

    Fernández Zacarías, F; Beira Jiménez, J L; Bustillo Velázquez-Gaztelu, P J; Hernández Molina, R; Lubián López, Simón

    2018-04-01

    Preterm infants usually have to spend a long time in an incubator, excessive noise in which can have adverse physiological and psychological effects on neonates. In fact, incubator noise levels typically range from 45 to 70 dB but differences in this respect depend largely on the noise measuring method used. The primary aim of this work was to assess the extent to which noise in an incubator comes from its own fan and how efficiently the incubator can isolate external noise. Three different incubator models were characterized for acoustic performance by measuring their internal noise levels in an anechoic chamber, and also for noise isolation efficiency by using a pink noise source in combination with an internal and an external microphone that were connected to an SVAN958 noise analyzer. The incubators studied produced continuous equivalent noise levels of 53.5-58 dB and reduced external noise by 5.2-10.4 dB. A preterm infant in an incubator is exposed to noise levels clearly exceeding international recommendations even though such levels usually comply with the limit set in the standard IEC60601-2-19: 2009 (60 dBA) under normal conditions of use. Copyright © 2018. Published by Elsevier B.V.

  17. Are the noise levels acceptable in a built environment like Hong Kong?

    Science.gov (United States)

    To, Wai Ming; Mak, Cheuk Ming; Chung, Wai Leung

    2015-01-01

    Governments all over the world have enacted environmental noise directives and noise control ordinances/acts to protect tranquility in residential areas. However, there is a lack of literature on the evaluation of whether the Acceptable Noise Levels (ANLs) stipulated in the directive/ordinance/act are actually achievable. The study aimed at measuring outdoor environmental noise levels in Hong Kong and identifying whether the measured noise levels are lower than the stipulated ANLs at 20 categories of residential areas. Data were gathered from a territory-wide noise survey. Outdoor noise measurements were conducted at 203 residential premises in urban areas, low-density residential areas, rural areas, and other areas. In total, 366 daytime hourly Leq outdoor noise levels, 362 nighttime hourly Leq outdoor noise levels, and 20 sets of daily, that is, 24 Leq,1-h outdoor noise levels were recorded. The mean daytime Leq,1-h values ranged 54.4-70.8 dBA, while the mean nighttime Leq,1-h values ranged 52.6-67.9 dBA. When the measured noise levels were compared with the stipulated ANLs, only three out of the 20 categories of areas had outdoor noise levels below ANLs during daytime. All other areas (and all areas during nighttime) were found to have outdoor noise levels at or above ANLs. PMID:26572703

  18. Period analysis at high noise level

    International Nuclear Information System (INIS)

    Kovacs, G.

    1980-01-01

    Analytical expressions are derived for the variances of some types of the periodograms due to normal-distributed noise present in the data. The equivalence of the Jurkevich and the Warner and Robinson methods is proved. The optimum phase cell number of the Warner and Robinson method is given; this number depends on the data length, signal form and noise level. The results are illustrated by numerical examples. (orig.)

  19. LOW-NOISE PAVEMENT AS A WAY OF LIMITATION OF TRAFFIC NOISE LEVEL

    Directory of Open Access Journals (Sweden)

    Władysław Gardziejczyk

    2014-11-01

    Full Text Available Road surface can significantlyreduce the trafficnoise level. Depending on the characteristic of the upper surface layers the differences between the maximum rolling noise levels from passing vehicles to reach values about 10 dB (A. A special group is low-noise pavements characterized by the presence of voids above 15%. Application the porous asphalt layers or asphalt mixture type BBTM affects a significantreduction the width of land surrounded the roads where permissible equivalent sound level is exceeded. Such solutions in some cases can replace acoustic barriers. Road pavements with a higher content of voids require proper maintenance because their acoustic performances are reduced during operation.

  20. Antarctic ice sheet thickness estimation using the horizontal-to-vertical spectral ratio method with single-station seismic ambient noise

    Directory of Open Access Journals (Sweden)

    P. Yan

    2018-03-01

    Full Text Available We report on a successful application of the horizontal-to-vertical spectral ratio (H / V method, generally used to investigate the subsurface velocity structures of the shallow crust, to estimate the Antarctic ice sheet thickness for the first time. Using three-component, five-day long, seismic ambient noise records gathered from more than 60 temporary seismic stations located on the Antarctic ice sheet, the ice thickness measured at each station has comparable accuracy to the Bedmap2 database. Preliminary analysis revealed that 60 out of 65 seismic stations on the ice sheet obtained clear peak frequencies (f0 related to the ice sheet thickness in the H / V spectrum. Thus, assuming that the isotropic ice layer lies atop a high velocity half-space bedrock, the ice sheet thickness can be calculated by a simple approximation formula. About half of the calculated ice sheet thicknesses were consistent with the Bedmap2 ice thickness values. To further improve the reliability of ice thickness measurements, two-type models were built to fit the observed H / V spectrum through non-linear inversion. The two-type models represent the isotropic structures of single- and two-layer ice sheets, and the latter depicts the non-uniform, layered characteristics of the ice sheet widely distributed in Antarctica. The inversion results suggest that the ice thicknesses derived from the two-layer ice models were in good concurrence with the Bedmap2 ice thickness database, and that ice thickness differences between the two were within 300 m at almost all stations. Our results support previous finding that the Antarctic ice sheet is stratified. Extensive data processing indicates that the time length of seismic ambient noise records can be shortened to two hours for reliable ice sheet thickness estimation using the H / V method. This study extends the application fields of the H / V method and provides an effective and independent way to measure

  1. Anthropogenic noise alters bat activity levels and echolocation calls

    Directory of Open Access Journals (Sweden)

    Jessie P. Bunkley

    2015-01-01

    Full Text Available Negative impacts from anthropogenic noise are well documented for many wildlife taxa. Investigations of the effects of noise on bats however, have not been conducted outside of the laboratory. Bats that hunt arthropods rely on auditory information to forage. Part of this acoustic information can fall within the spectrum of anthropogenic noise, which can potentially interfere with signal reception and processing. Compressor stations associated with natural gas extraction produce broadband noise 24 hours a day, 365 days a year. With over half a million producing gas wells in the U.S. this infrastructure is a major source of noise pollution across the landscape. We conducted a ‘natural experiment’ in the second largest gas extraction field in the U.S. to investigate the potential effects of gas compressor station noise on the activity levels of the local bat assemblage. We used acoustic monitoring to compare the activity level (number of minutes in a night with a bat call of the bat assemblage at sites with compressor stations to sites lacking this infrastructure. We found that activity levels for the Brazilian free-tailed bat (Tadarida brasiliensis were 40% lower at loud compressor sites compared to quieter well pads, whereas the activity levels of four other species (Myotis californicus, M. cillolabrum, M. lucifugus, Parastrellus hesperus were not affected by noise. Furthermore, our results reveal that the assemblage of bat species emitting low frequency (35 kHz echolocation did not exhibit altered activity levels in noise. Lower activity levels of Brazilian free-tailed bats at loud sites indicate a potential reduction in habitat for this species. Additionally, a comparison of echolocation search calls produced by free-tailed bats at sites with and without compressor stations reveal that this species modifies its echolocation search calls in noise—producing longer calls with a narrower bandwidth. Call alterations might affect prey

  2. Rate of Change in Lake Level and its Impact on Reservoir-triggered Seismicity

    Science.gov (United States)

    Simpson, D. W.

    2017-12-01

    With recent interest in increased seismicity related to fluid injection, it is useful to review cases of reservoir-triggered earthquakes to explore common characteristics and seek ways to mitigate the influence of anthropogenic impacts. Three reservoirs - Koyna, India; Nurek, Tajikistan; and Aswan, Egypt - are well-documented cases of triggered earthquakes with recorded time series of seismicity and water levels that extend for more than 30 years. The geological setting, regional tectonics and modes of reservoir utilization, along with the characteristics of the reservoir-seismicity interaction, are distinctly different in each of these three cases. Similarities and differences between these three cases point to regional and local geological and hydrological structures and the rate of changes in reservoir water level as important factors controlling the presence and timing of triggered seismicity. In a manner similar to the way in which the rate of fluid injection influences injection-related seismicity, the rate of change in reservoir water level is a significant factor in determining whether or not reservoir-triggered seismicity occurs. The high rate of annual water level rise may be important in sustaining the exceptionally long sequence of earthquakes at Koyna. In addition to the rate of filling being a determining factor in whether or not earthquakes are triggered, changes in the rate of filling may influence the time of occurrence of individual earthquakes.

  3. First level seismic microzonation map of Chennai city – a GIS approach

    Directory of Open Access Journals (Sweden)

    G. P. Ganapathy

    2011-02-01

    Full Text Available Chennai city is the fourth largest metropolis in India, is the focus of economic, social and cultural development and it is the capital of the State of Tamil Nadu. The city has a multi-dimensional growth in development of its infrastructures and population. The area of Chennai has experienced moderate earthquakes in the historical past. Also the Bureau of Indian Standard upgraded the seismic status of Chennai from Low Seismic Hazard (Zone II to Moderate Seismic Hazard (Zone III–(BIS: 1893 (2001. In this connection, a first level seismic microzonation map of Chennai city has been produced with a GIS platform using the themes, viz, Peak Ground Acceleration (PGA, Shear wave velocity at 3 m, Geology, Ground water fluctuation and bed rock depth. The near potential seismic sources were identified from the remote-sensing study and seismo-tectonic details from published literatures. The peak ground acceleration for these seismic sources were estimated based on the attenuation relationship and the maximum PGA for Chennai is 0.176 g. The groundwater fluctuation of the city varies from 0–4 m below ground level. The depth to bedrock configuration shows trough and ridges in the bedrock topography all over the city. The seismic microzonation analysis involved grid datasets (the discrete datasets from different themes were converted to grids to compute the final seismic hazard grid through integration and weightage analysis of the source themes. The Chennai city has been classified into three broad zones, viz, High, Moderate and Low Seismic Hazard. The High seismic Hazard concentrated in a few places in the western central part of the city. The moderate hazard areas are oriented in NW-SE direction in the Western part. The southern and eastern part will have low seismic hazard. The result of the study may be used as first-hand information in selecting the appropriate earthquake resistant features in designing the forthcoming new buildings against seismic

  4. Site response assessment using borehole seismic records

    Energy Technology Data Exchange (ETDEWEB)

    Park, Donghee; Chang, Chunjoong; Choi, Weonhack [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. The Korea Meteorological Administration (KMA) and the Korea Institute of Geology and Mining (KIGAM) have installed and are operating borehole seismometers at a depth of 70∼100 meters for the precise determination of epicenters. Also, Korea Hydro and Nuclear Power Co., Ltd. (KHNP) has installed and is operating 2 borehole seismic stations near Weolseong area to observe at a depth of 140 meters seismic activities connected to fault activity. KHNP plans to operate in the second half of 2014 a borehole seismic station for depths less than 300 and 600 meters in order to study the seismic response characteristics in deep strata. As a basic study for analyzing ground motion response characteristics at depths of about 300 to 600 meters in connection with the deep geological disposal of spent nuclear fuel, the present study examined the background noise response characteristics of the borehole seismic station operated by KHNP. In order to analyze the depth-dependent impact of seismic waves at deeper depths than in Korea, seismic data collected by Japan's KIK-net seismic stations were used and the seismic wave characteristics analyzed by size and depth. In order to analyze the borehole seismic observation data from the seismic station operated by KHNP, this study analyzed the background noise characteristics by using a probability density function.

  5. Site response assessment using borehole seismic records

    International Nuclear Information System (INIS)

    Park, Donghee; Chang, Chunjoong; Choi, Weonhack

    2014-01-01

    In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. The Korea Meteorological Administration (KMA) and the Korea Institute of Geology and Mining (KIGAM) have installed and are operating borehole seismometers at a depth of 70∼100 meters for the precise determination of epicenters. Also, Korea Hydro and Nuclear Power Co., Ltd. (KHNP) has installed and is operating 2 borehole seismic stations near Weolseong area to observe at a depth of 140 meters seismic activities connected to fault activity. KHNP plans to operate in the second half of 2014 a borehole seismic station for depths less than 300 and 600 meters in order to study the seismic response characteristics in deep strata. As a basic study for analyzing ground motion response characteristics at depths of about 300 to 600 meters in connection with the deep geological disposal of spent nuclear fuel, the present study examined the background noise response characteristics of the borehole seismic station operated by KHNP. In order to analyze the depth-dependent impact of seismic waves at deeper depths than in Korea, seismic data collected by Japan's KIK-net seismic stations were used and the seismic wave characteristics analyzed by size and depth. In order to analyze the borehole seismic observation data from the seismic station operated by KHNP, this study analyzed the background noise characteristics by using a probability density function

  6. A comparative study on seismic response of two unstable rock slopes within same tectonic setting but different activity level

    Czech Academy of Sciences Publication Activity Database

    Kleinbrod, U.; Burjánek, Jan; Hugentobler, M.; Amann, F.; Fäh, D.

    2017-01-01

    Roč. 211, č. 3 (2017), s. 1428-1448 ISSN 0956-540X Institutional support: RVO:67985530 Keywords : seismic noise * site effects * wave propagation Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 2.414, year: 2016

  7. Evaluation of noise pollution level based upon community exposure and response data

    Science.gov (United States)

    Edmiston, R. D.

    1972-01-01

    The results and procedures are reported from an evaluation of noise pollution level as a predictor of annoyance, based on aircraft noise exposure and community response data. The measures of noise exposure presented include composite noise rating, noise exposure forecast, noise and number index. A proposed measure as a universal noise exposure measure for noise pollution level (L sub NP) is discussed.

  8. Profiles of noise exposure levels in South African mining

    CSIR Research Space (South Africa)

    Edwards, A

    2011-05-01

    Full Text Available were exposed to noise levels of above the 85 dBA legislated occupational exposure level. The conclusion was made that information obtained through the study could be developed into a national personal noise exposure database, including audiometric...

  9. Noise suppression in surface microseismic data by τ-p transform

    Science.gov (United States)

    Forghani-Arani, Farnoush; Batzle, Mike; Behura, Jyoti; Willis, Mark; Haines, Seth; Davidson, Michael

    2013-01-01

    Surface passive seismic methods are receiving increased attention for monitoring changes in reservoirs during the production of unconventional oil and gas. However, in passive seismic data the strong cultural and ambient noise (mainly surface-waves) decreases the effectiveness of these techniques. Hence, suppression of surface-waves is a critical step in surface microseismic monitoring. We apply a noise suppression technique, based on the τ — p transform, to a surface passive seismic dataset recorded over a Barnett Shale reservoir undergoing a hydraulic fracturing process. This technique not only improves the signal-to-noise ratios of added synthetic microseismic events, but it also preserves the event waveforms.

  10. Studies on assessment of traffic noise level in Aurangabad city, India

    Directory of Open Access Journals (Sweden)

    B J Bhosale

    2010-01-01

    Full Text Available With the rapid rate of urbanization of Aurangabad city due to the expanding industrialization, the problem of noise pollution has become a concern for urban dwellers and government authority too. Noise pollution due to vehicular traffic is one of the growing environmental problems of urban centers. The study deals with the assessment of traffic noise levels in Aurangabad city. With respect to the total number of vehicles passing the road in unit time, which was surveyed by direct count method, six different sites from Aurangabad city, viz., Nagar Naka, Kranti Chowk, CIDCO bus stand, Railway station area, Dhoot Hospital and Baba petrol pump were selected to study the vehicular noise level. Noise measurements were carried out at these six locations on both working day and holiday during the peak traffic hours, i.e. 8:00 a.m. - 11:a.m., 1:00 p.m. - 4:00 p.m. and 5:00 p.m. - 8:00 p.m., in the morning, afternoon and evening sessions, respectively, after 5 minutes time interval. The noise level was monitored using noise level meter. The results obtained from this investigation showed that the Nagar Naka, Kranti chowk and CIDCO bus stand area have dense traffic zones when compared with the Railway station area, Dhoot Hospital and Baba petrol pump. The minimum and the maximum noise levels are 74 and 86 dB, respectively, on working day and 70 and 81 dB, respectively, on holiday. The measured noise level values exceed the prescribed noise level.

  11. Pilot task-based assessment of noise levels among firefighters.

    Science.gov (United States)

    Neitzel, Rl; Hong, O; Quinlan, P; Hulea, R

    2013-11-01

    Over one million American firefighters are routinely exposed to various occupational hazards agents. While efforts have been made to identify and reduce some causes of injuries and illnesses among firefighters, relatively little has been done to evaluate and understand occupational noise exposures in this group. The purpose of this pilot study was to apply a task-based noise exposure assessment methodology to firefighting operations to evaluate potential noise exposure sources, and to use collected task-based noise levels to create noise exposure estimates for evaluation of risk of noise-induced hearing loss by comparison to the 8-hr and 24-hr recommended exposure limits (RELs) for noise of 85 and 80.3 dBA, respectively. Task-based noise exposures (n=100 measurements) were measured in three different fire departments (a rural department in Southeast Michigan and suburban and urban departments in Northern California). These levels were then combined with time-at-task information collected from firefighters to estimate 8-hr noise exposures for the rural and suburban fire departments (n=6 estimates for each department). Data from 24-hr dosimetry measurements and crude self-reported activity categories from the urban fire department (n=4 measurements) were used to create 24-hr exposure estimates to evaluate the bias associated with the task-based estimates. Task-based noise levels were found to range from 82-109 dBA, with the highest levels resulting from use of saws and pneumatic chisels. Some short (e.g., 30 min) sequences of common tasks were found to result in nearly an entire allowable daily exposure. The majority of estimated 8-hr and 24-hr exposures exceeded the relevant recommended exposure limit. Predicted 24-hr exposures showed substantial imprecision in some cases, suggesting the need for increased task specificity. The results indicate potential for overexposure to noise from a variety of firefighting tasks and equipment, and suggest a need for further

  12. MyShake: Building a smartphone seismic network

    Science.gov (United States)

    Kong, Q.; Allen, R. M.; Schreier, L.

    2014-12-01

    We are in the process of building up a smartphone seismic network. In order to build this network, we did shake table tests to evaluate the performance of the smartphones as seismic recording instruments. We also conducted noise floor test to find the minimum earthquake signal we can record using smartphones. We added phone noises to the strong motion data from past earthquakes, and used these as an analogy dataset to test algorithms and to understand the difference of using the smartphone network and the traditional seismic network. We also built a prototype system to trigger the smartphones from our server to record signals which can be sent back to the server in near real time. The phones can also be triggered by our developed algorithm running locally on the phone, if there's an earthquake occur to trigger the phones, the signal recorded by the phones will be sent back to the server. We expect to turn the prototype system into a real smartphone seismic network to work as a supplementary network to the existing traditional seismic network.

  13. Visualization of volumetric seismic data

    Science.gov (United States)

    Spickermann, Dela; Böttinger, Michael; Ashfaq Ahmed, Khawar; Gajewski, Dirk

    2015-04-01

    Mostly driven by demands of high quality subsurface imaging, highly specialized tools and methods have been developed to support the processing, visualization and interpretation of seismic data. 3D seismic data acquisition and 4D time-lapse seismic monitoring are well-established techniques in academia and industry, producing large amounts of data to be processed, visualized and interpreted. In this context, interactive 3D visualization methods proved to be valuable for the analysis of 3D seismic data cubes - especially for sedimentary environments with continuous horizons. In crystalline and hard rock environments, where hydraulic stimulation techniques may be applied to produce geothermal energy, interpretation of the seismic data is a more challenging problem. Instead of continuous reflection horizons, the imaging targets are often steep dipping faults, causing a lot of diffractions. Without further preprocessing these geological structures are often hidden behind the noise in the data. In this PICO presentation we will present a workflow consisting of data processing steps, which enhance the signal-to-noise ratio, followed by a visualization step based on the use the commercially available general purpose 3D visualization system Avizo. Specifically, we have used Avizo Earth, an extension to Avizo, which supports the import of seismic data in SEG-Y format and offers easy access to state-of-the-art 3D visualization methods at interactive frame rates, even for large seismic data cubes. In seismic interpretation using visualization, interactivity is a key requirement for understanding complex 3D structures. In order to enable an easy communication of the insights gained during the interactive visualization process, animations of the visualized data were created which support the spatial understanding of the data.

  14. Advanced supersonic propulsion study. [with emphasis on noise level reduction

    Science.gov (United States)

    Sabatella, J. A. (Editor)

    1974-01-01

    A study was conducted to determine the promising propulsion systems for advanced supersonic transport application, and to identify the critical propulsion technology requirements. It is shown that noise constraints have a major effect on the selection of the various engine types and cycle parameters. Several promising advanced propulsion systems were identified which show the potential of achieving lower levels of sideline jet noise than the first generation supersonic transport systems. The non-afterburning turbojet engine, utilizing a very high level of jet suppression, shows the potential to achieve FAR 36 noise level. The duct-heating turbofan with a low level of jet suppression is the most attractive engine for noise levels from FAR 36 to FAR 36 minus 5 EPNdb, and some series/parallel variable cycle engines show the potential of achieving noise levels down to FAR 36 minus 10 EPNdb with moderate additional penalty. The study also shows that an advanced supersonic commercial transport would benefit appreciably from advanced propulsion technology. The critical propulsion technology needed for a viable supersonic propulsion system, and the required specific propulsion technology programs are outlined.

  15. Enhancement of the Signal-to-Noise Ratio in Sonic Logging Waveforms by Seismic Interferometry

    KAUST Repository

    Aldawood, Ali

    2012-04-01

    Sonic logs are essential tools for reliably identifying interval velocities which, in turn, are used in many seismic processes. One problem that arises, while logging, is irregularities due to washout zones along the borehole surfaces that scatters the transmitted energy and hence weakens the signal recorded at the receivers. To alleviate this problem, I have extended the theory of super-virtual refraction interferometry to enhance the signal-to-noise ratio (SNR) sonic waveforms. Tests on synthetic and real data show noticeable signal-to-noise ratio (SNR) enhancements of refracted P-wave arrivals in the sonic waveforms. The theory of super-virtual interferometric stacking is composed of two redatuming steps followed by a stacking procedure. The first redatuming procedure is of correlation type, where traces are correlated together to get virtual traces with the sources datumed to the refractor. The second datuming step is of convolution type, where traces are convolved together to dedatum the sources back to their original positions. The stacking procedure following each step enhances the signal to noise ratio of the refracted P-wave first arrivals. Datuming with correlation and convolution of traces introduces severe artifacts denoted as correlation artifacts in super-virtual data. To overcome this problem, I replace the datuming with correlation step by datuming with deconvolution. Although the former datuming method is more robust, the latter one reduces the artifacts significantly. Moreover, deconvolution can be a noise amplifier which is why a regularization term is utilized, rendering the datuming with deconvolution more stable. Tests of datuming with deconvolution instead of correlation with synthetic and real data examples show significant reduction of these artifacts. This is especially true when compared with the conventional way of applying the super-virtual refraction interferometry method.

  16. Characterization of site conditions for selected seismic stations in eastern part of Romania

    Science.gov (United States)

    Grecu, B.; Zaharia, B.; Diaconescu, M.; Bala, A.; Nastase, E.; Constantinescu, E.; Tataru, D.

    2018-02-01

    Strong motion data are essential for seismic hazard assessment. To correctly understand and use this kind of data is necessary to have a good knowledge of local site conditions. Romania has one of the largest strong motion networks in Europe with 134 real-time stations. In this work, we aim to do a comprehensive site characterization for eight of these stations located in the eastern part of Romania. We make use of a various seismological dataset and we perform ambient noise and earthquake-based investigations to estimate the background noise level, the resonance frequencies and amplification of each site. We also derive the Vs30 parameter from the surface shear-wave velocity profiles obtained through the inversion of the Rayleigh waves recorded in active seismic measurements. Our analyses indicate similar results for seven stations: high noise levels for frequencies larger than 1 Hz, well defined fundamental resonance at low frequencies (0.15-0.29 Hz), moderate amplification levels (up to 4 units) for frequencies between 0.15 and 5-7 Hz and same soil class (type C) according to the estimated Vs30 and Eurocode 8. In contrast, the eighth station for which the soil class is evaluated of type B exhibits a very good noise level for a wide range of frequencies (0.01-20 Hz), a broader fundamental resonance at high frequencies ( 8 Hz) and a flat amplification curve between 0.1 and 3-4 Hz.

  17. Analysis of noise pollution level in a University campus in South India

    Science.gov (United States)

    Thattai, D.; Sudarsan, J. S.; Sathyanathan, R.; Ramasamy, Visalatchi

    2017-07-01

    Noise comprises those sounds occurring around us that are not part of the environment under consideration. Noise is also a type of pollution and impacts on our health and wellness. The prevalence of noise is increasing in magnitude and severity because of growing population and urbanization. Noise pollution leads to many chronic and socially significant impacts. This study analyzes the level of noise at different points in SRM University. As the University encompasses a hospital also, it is more important to identify the sources of high noise levels and control them. As per Indian standards the desirable noise pollution for educational institutions and hospitals in daytime is 50 dbA. Noise levels were measured with a sound level meter at 19 points within the campus at three different timings (8-10 am, 12-2 pm, and 3-5 pm) over two cycles of measurements. The preliminary results show higher noise levels during morning and evening. Noise during Cycle 2 (latter half of semester) was 20% more compared to that of Cycle 1 (beginning of semester).

  18. Assessment of Work Zone Noise Levels at a Cement Factory in ...

    African Journals Online (AJOL)

    Assessment of Work Zone Noise Levels at a Cement Factory in Tanga, Tanzania. ... measured in most production sections exceeded the allowed limit value of 85 ... Keywords: Noise levels, Noise exposure, Cement factory, Survey, Tanzania ...

  19. Controlled Noise Seismology

    KAUST Repository

    Hanafy, Sherif M.

    2015-08-19

    We use controlled noise seismology (CNS) to generate surface waves, where we continuously record seismic data while generating artificial noise along the profile line. To generate the CNS data we drove a vehicle around the geophone line and continuously recorded the generated noise. The recorded data set is then correlated over different time windows and the correlograms are stacked together to generate the surface waves. The virtual shot gathers reveal surface waves with moveout velocities that closely approximate those from active source shot gathers.

  20. Controlled Noise Seismology

    KAUST Repository

    Hanafy, Sherif M.; AlTheyab, Abdullah; Schuster, Gerard T.

    2015-01-01

    We use controlled noise seismology (CNS) to generate surface waves, where we continuously record seismic data while generating artificial noise along the profile line. To generate the CNS data we drove a vehicle around the geophone line and continuously recorded the generated noise. The recorded data set is then correlated over different time windows and the correlograms are stacked together to generate the surface waves. The virtual shot gathers reveal surface waves with moveout velocities that closely approximate those from active source shot gathers.

  1. The Effect of Age and Type of Noise on Speech Perception under Conditions of Changing Context and Noise Levels.

    Science.gov (United States)

    Taitelbaum-Swead, Riki; Fostick, Leah

    2016-01-01

    Everyday life includes fluctuating noise levels, resulting in continuously changing speech intelligibility. The study aims were: (1) to quantify the amount of decrease in age-related speech perception, as a result of increasing noise level, and (2) to test the effect of age on context usage at the word level (smaller amount of contextual cues). A total of 24 young adults (age 20-30 years) and 20 older adults (age 60-75 years) were tested. Meaningful and nonsense one-syllable consonant-vowel-consonant words were presented with the background noise types of speech noise (SpN), babble noise (BN), and white noise (WN), with a signal-to-noise ratio (SNR) of 0 and -5 dB. Older adults had lower accuracy in SNR = 0, with WN being the most difficult condition for all participants. Measuring the change in speech perception when SNR decreased showed a reduction of 18.6-61.5% in intelligibility, with age effect only for BN. Both young and older adults used less phonemic context with WN, as compared to other conditions. Older adults are more affected by an increasing noise level of fluctuating informational noise as compared to steady-state noise. They also use less contextual cues when perceiving monosyllabic words. Further studies should take into consideration that when presenting the stimulus differently (change in noise level, less contextual cues), other perceptual and cognitive processes are involved. © 2016 S. Karger AG, Basel.

  2. Subjective annoyance caused by indoor low-level and low frequency noise and control method

    Institute of Scientific and Technical Information of China (English)

    DI Guo-qing; ZHANG Bang-jun; SHANG Qi

    2005-01-01

    The influence of low-level noise has not been widely noticed. This paper discovered that low-level and low frequency noise(Aweighted equivalent level Leq < 45 dB) causes higher probability of subjective annoyance. The fuzzy mathematic principle was applied to deal with the threshold level of subjective annoyance from noise in this study; there is preferable relationship between the indoor noise and noise annoyance at low frequency noise level. Study indicated at the same centered noise level, the change of annoyance probability is mainly caused by the change of the frequency spectrum characteristic of the indoor noise. Under low noise level environment, without change of the medium-low frequency noise, the slight increase of medium-high frequency noise level with the help of noise sheltering effect can significantly reduce the noise annoyance. This discovery brings a new resolution on how to improve the environmental quality of working or living places. A noise control model is given in this study according to the acoustic analysis.

  3. REDUCTION OF CLASSROOM NOISE LEVELS USING GROUP CONTINGENCIES

    OpenAIRE

    Ring, Brandon M.; Sigurdsson, Sigurdur O.; Eubanks, Sean L.; Silverman, Kenneth

    2014-01-01

    The therapeutic workplace is an employment-based abstinence reinforcement intervention for unemployed drug users where trainees receive on-the-job employment skills training in a classroom setting. The study is an extension of prior therapeutic workplace research, which suggested that trainees frequently violated noise standards. Participants received real-time graphed feedback of noise levels and had the opportunity to earn monetary group reinforcement for maintaining a low number of noise v...

  4. Mobile seismic exploration

    Energy Technology Data Exchange (ETDEWEB)

    Dräbenstedt, A., E-mail: a.draebenstedt@polytec.de, E-mail: rembe@iei.tu-clausthal.de, E-mail: ulrich.polom@liag-hannover.de; Seyfried, V. [Research & Development, Polytec GmbH, Waldbronn (Germany); Cao, X.; Rembe, C., E-mail: a.draebenstedt@polytec.de, E-mail: rembe@iei.tu-clausthal.de, E-mail: ulrich.polom@liag-hannover.de [Institute of Electrical Information Technology, TU Clausthal, Clausthal-Zellerfeld (Germany); Polom, U., E-mail: a.draebenstedt@polytec.de, E-mail: rembe@iei.tu-clausthal.de, E-mail: ulrich.polom@liag-hannover.de [Leibniz Institute of Applied Geophysics, Hannover (Germany); Pätzold, F.; Hecker, P. [Institute of Flight Guidance, TU Braunschweig, Braunschweig (Germany); Zeller, T. [Clausthaler Umwelttechnik Institut CUTEC, Clausthal-Zellerfeld (Germany)

    2016-06-28

    Laser-Doppler-Vibrometry (LDV) is an established technique to measure vibrations in technical systems with picometer vibration-amplitude resolution. Especially good sensitivity and resolution can be achieved at an infrared wavelength of 1550 nm. High-resolution vibration measurements are possible over more than 100 m distance. This advancement of the LDV technique enables new applications. The detection of seismic waves is an application which has not been investigated so far because seismic waves outside laboratory scales are usually analyzed at low frequencies between approximately 1 Hz and 250 Hz and require velocity resolutions in the range below 1 nm/s/√Hz. Thermal displacements and air turbulence have critical influences to LDV measurements at this low-frequency range leading to noise levels of several 100 nm/√Hz. Commonly seismic waves are measured with highly sensitive inertial sensors (geophones or Micro Electro-Mechanical Sensors (MEMS)). Approaching a laser geophone based on LDV technique is the topic of this paper. We have assembled an actively vibration-isolated optical table in a minivan which provides a hole in its underbody. The laser-beam of an infrared LDV assembled on the optical table impinges the ground below the car through the hole. A reference geophone has detected remaining vibrations on the table. We present the results from the first successful experimental demonstration of contactless detection of seismic waves from a movable vehicle with a LDV as laser geophone.

  5. Allegro: noise performance and the ongoing search for gravitational waves

    International Nuclear Information System (INIS)

    Heng, I S; Daw, E; Giaime, J; Hamilton, W O; Mchugh, M P; Johnson, W W

    2002-01-01

    The noise performance of Allegro since 1993 is summarized. We show that the noise level of Allegro is, in general, stationary. Non-Gaussian impulse excitations persist despite efforts to isolate the detector from environmental disturbances. Some excitations are caused by seismic activity and flux jumps in the SQUID. Algorithms to identify and automatically veto these events are presented. Also, the contribution of Allegro to collaborations with other resonant-mass detectors via the International Gravitational Event Collaboration and with LIGO is reviewed

  6. Allegro: noise performance and the ongoing search for gravitational waves

    CERN Document Server

    Heng, I S; Giaime, J; Hamilton, W O; McHugh, M P; Johnson, W W

    2002-01-01

    The noise performance of Allegro since 1993 is summarized. We show that the noise level of Allegro is, in general, stationary. Non-Gaussian impulse excitations persist despite efforts to isolate the detector from environmental disturbances. Some excitations are caused by seismic activity and flux jumps in the SQUID. Algorithms to identify and automatically veto these events are presented. Also, the contribution of Allegro to collaborations with other resonant-mass detectors via the International Gravitational Event Collaboration and with LIGO is reviewed.

  7. Rift Structure in Eastern Papua New Guinea From the Joint Inversion of Receiver Functions and Seismic Noise

    Science.gov (United States)

    Abers, G. A.; Obrebski, M. J.; Jin, G.; Eilon, Z.

    2014-12-01

    The recent CDPapua seismic array in the active D'Entrecasteaux-Woodlark Rift provides insights into how continental crust accommodates large extension. Here, >100 km of extension has occurred in the last 4-6 Ma, exhuming rocks from 100 km depth. To better understand the modes of deformation of the crust, we analyze shear wave velocity (Vs) distribution for a set of temporary land and ocean bottom broadband stations. We resolve the depth of the main velocity contrasts using receiver function (RF) analysis, alleviating the intrinsic trade-off between depth and velocity intrinsic by joint inversion with dispersion constraints (10 - 100 s) from earthquake surface waves and ambient noise. A transdimensional Bayesian scheme explores the model space (Vs in each layer, number of interfaces and their respective depths), minimizing the number of layers required to fit the observations given their noise level. Preliminary results suggest that the Moho is sharp in most places, with a depth of 28-38 km and 20-27 km below the Papuan Peninsula and the highly-extended D'Entracasteaux Islands, respectively. The mid-lower crust of these regions appears to be similar and consistent with felsic compositions, 3.25≤Vs≤3.5 km/s, and may represent the Owen-Stanley Metamorphic Belt or underlying continental rocks. A fast layer (3.75≤Vs≤4 km/s) is observed below the Papuan Peninsula in the 20-30 km depth range and may indicate more mafic lower crust. In contrast, faster velocities between 10 and 20km depth are modeled below the Goodenough Basin (3.75≤Vs≤4 km/s) and the Trobriand Basin (3.5≤Vs≤3.75 km/s) where rocks of the Papuan Ultramafic Belt have been suggested, although these results partly depend upon complicated signals from ocean-bottom seismometers. Well-located seismicity shows that active fault systems generally follow the boundaries between regions of different crustal velocity structure. Overall these results confirm a continental velocity structure for the

  8. Automated Processing Workflow for Ambient Seismic Recordings

    Science.gov (United States)

    Girard, A. J.; Shragge, J.

    2017-12-01

    Structural imaging using body-wave energy present in ambient seismic data remains a challenging task, largely because these wave modes are commonly much weaker than surface wave energy. In a number of situations body-wave energy has been extracted successfully; however, (nearly) all successful body-wave extraction and imaging approaches have focused on cross-correlation processing. While this is useful for interferometric purposes, it can also lead to the inclusion of unwanted noise events that dominate the resulting stack, leaving body-wave energy overpowered by the coherent noise. Conversely, wave-equation imaging can be applied directly on non-correlated ambient data that has been preprocessed to mitigate unwanted energy (i.e., surface waves, burst-like and electromechanical noise) to enhance body-wave arrivals. Following this approach, though, requires a significant preprocessing effort on often Terabytes of ambient seismic data, which is expensive and requires automation to be a feasible approach. In this work we outline an automated processing workflow designed to optimize body wave energy from an ambient seismic data set acquired on a large-N array at a mine site near Lalor Lake, Manitoba, Canada. We show that processing ambient seismic data in the recording domain, rather than the cross-correlation domain, allows us to mitigate energy that is inappropriate for body-wave imaging. We first develop a method for window selection that automatically identifies and removes data contaminated by coherent high-energy bursts. We then apply time- and frequency-domain debursting techniques to mitigate the effects of remaining strong amplitude and/or monochromatic energy without severely degrading the overall waveforms. After each processing step we implement a QC check to investigate improvements in the convergence rates - and the emergence of reflection events - in the cross-correlation plus stack waveforms over hour-long windows. Overall, the QC analyses suggest that

  9. Seismic design ampersand analysis considerations for high level nuclear waste repositories

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1993-01-01

    A high level nuclear waste repository, like the one at Nevada's Yucca Mountain that is being investigated for site suitability, will have some unique seismic design and analysis considerations. These are discussed, and a design philosophy that can rationally account for the unique performance objectives of such facilities is presented. A case is made for the use of DOE's performance goal-based seismic design and evaluation methodology that is based on a hybrid open-quotes deterministicclose quotes and open-quotes probabilisticclose quotes concept. How and to what extent this methodology should be modified to adopt it for a potential site like Yucca Mountain is also outlined. Finally, the issue of designing for seismic fault rupture is discussed briefly, and the desirability of using the proposed seismic design philosophy in fault rupture evaluation is described

  10. Seismic design and analysis considerations for high level nuclear waste repositories

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1993-01-01

    A high level nuclear waste repository, like the one at Nevada's Yucca Mountain that is being investigated for site suitability, will have some unique seismic design and analysis considerations. These are discussed, and a design philosophy that can rationally account for the unique performance objectives of such facilities is presented. A case is made for the use of DOE's performance goal-based seismic design and evaluation methodology that is based on a hybrid ''deterministic'' and ''probabilistic'' concept. How and to what extent this methodology should be modified to adopt it for a potential site like Yucca Mountain is also outlined. Finally, the issue of designing for seismic fault rupture is discussed briefly, and the desirability of using the proposed seismic design philosophy in fault rupture evaluation is described

  11. Environmental noise levels affect the activity budget of the Florida manatee

    Science.gov (United States)

    Miksis-Olds, Jennifer L.; Donaghay, Percy L.; Miller, James H.; Tyack, Peter L.

    2005-09-01

    Manatees inhabit coastal bays, lagoons, and estuaries because they are dependent on the aquatic vegetation that grows in shallow waters. Food requirements force manatees to occupy the same areas in which human activities are the greatest. Noise produced from human activities has the potential to affect these animals by eliciting responses ranging from mild behavioral changes to extreme aversion. This study quantifies the behavioral responses of manatees to both changing levels of ambient noise and transient noise sources. Results indicate that elevated environmental noise levels do affect the overall activity budget of this species. The proportion of time manatees spend feeding, milling, and traveling in critical habitats changed as a function of noise level. More time was spent in the directed, goal-oriented behaviors of feeding and traveling, while less time was spent milling when noise levels were highest. The animals also responded to the transient noise of approaching vessels with changes in behavioral state and movements out of the geographical area. This suggests that manatees detect and respond to changes in environmental noise levels. Whether these changes legally constitute harassment and produce biologically significant effects need to be addressed with hypothesis-driven experiments and long-term monitoring. [For Animal Bioacoustics Best Student Paper Award.

  12. Annoyance from Road Traffic, Trains, Airplanes and from Total Environmental Noise Levels.

    Science.gov (United States)

    Ragettli, Martina S; Goudreau, Sophie; Plante, Céline; Perron, Stéphane; Fournier, Michel; Smargiassi, Audrey

    2015-12-29

    There is a lack of studies assessing the exposure-response relationship between transportation noise and annoyance in North America. Our aims were to investigate the prevalence of noise annoyance induced by road traffic, trains and airplanes in relation to distance to transportation noise sources, and to total environmental noise levels in Montreal, Canada; annoyance was assessed as noise-induced disturbance. A telephone-based survey among 4336 persons aged >18 years was conducted. Exposure to total environmental noise (A-weighted outdoor noise levels-LAeq24h and day-evening-night equivalent noise levels-Lden) for each study participant was determined using a statistical noise model (land use regression-LUR) that is based on actual outdoor noise measurements. The proportion of the population annoyed by road traffic, airplane and train noise was 20.1%, 13.0% and 6.1%, respectively. As the distance to major roads, railways and the Montreal International Airport increased, the percentage of people disturbed and highly disturbed due to the corresponding traffic noise significantly decreased. When applying the statistical noise model we found a relationship between noise levels and disturbance from road traffic and total environmental noise, with Prevalence Proportion Ratios (PPR) for highly disturbed people of 1.10 (95% CI: 1.07-1.13) and 1.04 (1.02-1.06) per 1 dB(A) Lden, respectively. Our study provides the first comprehensive information on the relationship between transportation noise levels and disturbance in a Canadian city. LUR models are still in development and further studies on transportation noise induced annoyance are consequently needed, especially for sources other than road traffic.

  13. Combined interpretation of SkyTEM and high-resolution seismic data

    DEFF Research Database (Denmark)

    Høyer, Anne-Sophie; Lykke-Andersen, Holger; Jørgensen, Flemming Voldum

    2011-01-01

    made based on AEM (SkyTEM) and high-resolution seismic data from an area covering 10 km2 in the western part of Denmark. As support for the interpretations, an exploration well was drilled to provide lithological and logging information in the form of resistivity and vertical seismic profiling. Based...... on the resistivity log, synthetic SkyTEM responses were calculated with a varying number of gate-times in order to illustrate the effect of the noise-level. At the exploration well geophysical data were compared to the lithological log; in general there is good agreement. The same tendency was recognised when Sky...

  14. Assessment of noise level and noise propagation generated by light-lift helicopters in mountain natural environments.

    Science.gov (United States)

    Grigolato, Stefano; Mologni, Omar; Proto, Andrea Rosario; Zimbalatti, Giuseppe; Cavalli, Raffaele

    2018-01-20

    The use of helicopter rises discussion about environmental noise propagation especially when it operates in proximity of environmentally sensitive areas (ESAs) for an extended period because of its potential implications in wildlife behaviours. In order to support decisions on helicopter logging operation management in proximity of ESAs, this study focused on (i) analysing the noise spectrum of a light-lift helicopter during logging operations and on (ii) assessing the noise propagation in the surrounding environments. This study investigated a helicopter logging operation for wood fuel extraction in the eastern part of the Italian Alps. The potential disturbance area covered for the entire helicopter logging operation was evaluated by a specific GIS application according to hearing sensitivity of the most sensitive wildlife species in the study area (different strigiform species). The noise level at the ground appeared to be affected by the location regardless both the use of equivalent continuous sound pressures level dB(A) (LAeq) and the single-event level (SEL) noise metrics. The lowest values were recorded when the helicopter was flown over the sound meter level located under the forest canopy, while the highest was recorded when the helicopter was unhooking the loads at the landing. The GIS application highlighted the consistent of the exceeded noise area (weighted to strigiform hearing range and sensitivity) for the lower frequency bands (0.016-0.250 kHz). A more restricted exceeded noise area concerned instead the most sensitive frequency bands" for the strigiform (1-2 kHz). Graphical abstract ᅟ.

  15. Noise and vibration levels in artificial polar bear dens as related to selected petroleum exploration and developmental activities

    International Nuclear Information System (INIS)

    Blix, A.S.; Lentfer, J.W.

    1992-01-01

    Petroleum exploration and development are occurring in various locations in the Arctic, where there are important denning sites for polar bears. Petroleum activities usually coincide with winter denning activities by bears, who may abandon dens if subject to prolonged annoyance. A study was carried out to measure noise and vibration levels in artificial polar bear dens at Prudhoe's Bar, Alaska, resulting from seismic testing, drilling and transport. A microphone and an accelerometer were frozen to the floor of the dens, with leads passed through a consolidated snow filled entrance to a truck, tent or helicopter. Tests were carried out on land, sea ice, and next to a drilling tower on an artificial island, which was also used to measure noise levels resulting from a helicopter taking off. It was concluded that the dry and wind-beaten arctic snow muffles both sound and vibration extremely well, and it is unlikely that polar bears in their dens will be disturbed by the type of petroleum-related activities measured, provided they do not take place within 100 m of the dens. 8 refs., 7 figs., 1 tab

  16. The Analysis and Suppression of the spike noise in vibrator record

    Science.gov (United States)

    Jia, H.; Jiang, T.; Xu, X.; Ge, L.; Lin, J.; Yang, Z.

    2013-12-01

    During the seismic exploration with vibrator, seismic recording systems have often been affected by random spike noise in the background, which leads to strong data distortions as a result of the cross-correlation processing of the vibrator method. Partial or total loss of the desired seismic information is possible if no automatic spike reduction is available in the field prior to correlation of the field record. Generally speaking, original record of vibrator is uncorrelated data, in which the signal is non-wavelet form. In order to obtain the seismic record similar to explosive source, the signal of uncorrelated data needs to use the correlation algorithm to compress into wavelet form. The correlation process results in that the interference of spike in correlated data is not only being suppressed, but also being expanded. So the spike noise suppression of vibrator is indispensable. According to numerical simulation results, the effect of spike in the vibrator record is mainly affected by the amplitude and proportional points in the uncorrelated record. When the spike noise ratio in uncorrelated record reaches 1.5% and the average amplitude exceeds 200, it will make the SNR(signal-to-noise ratio) of the correlated record lower than 0dB, so that it is difficult to separate the signal. While the amplitude and ratio is determined by the intensity of background noise. Therefore, when the noise level is strong, in order to improve SNR of the seismic data, the uncorrelated record of vibrator need to take necessary steps to suppress spike noise. For the sake of reducing the influence of the spike noise, we need to make the detection and suppression of spike noise process for the uncorrelated record. Because vibrator works by inputting sweep signal into the underground long time, ideally, the peak and valley values of each trace have little change. On the basis of the peak and valley values, we can get a reference amplitude value. Then the spike can be detected and

  17. Environmental impact of noise levels in and around opencast bauxite mine.

    Science.gov (United States)

    Kisku, G C; Barman, S C; Kidwai, M M; Bhargava, S K

    2002-01-01

    Until recently, noise pollution has not been paid adequate attention as air, water and land pollution. In order to assess (predict) the impact of bauxite mine noise on employees health and in and around bauxite mine environment, general noise sources and equipment noise were monitored. All these noise sources were compared with prescribed standard noise levels laid down by Central Pollution Control Board (CPCB). Data has also been compared with reference site, north block hill top which is barren and virgin plateau/top covered with grass only and free from human interference. Equipment noise levels were much higher than the other zone of the mine which does not have the corresponding standards. Rock breaker recorded the highest noise level with 73.1 +/- 14.2 to 89.5 +/- 10.1 dB (A) while from ripper dozer it was least with 61.0 +/- 17.3 to 76.2 +/- 6.2 dB (A). Meteorological parameters did not have much influence upon equipment noise up to 100 feet from the source.

  18. Noise sensitivity, rather than noise level, predicts the non-auditory effects of noise in community samples: a population-based survey

    Directory of Open Access Journals (Sweden)

    Jangho Park

    2017-04-01

    Full Text Available Abstract Background Excessive noise affects human health and interferes with daily activities. Although environmental noise may not directly cause mental illness, it may accelerate and intensify the development of latent mental disorders. Noise sensitivity (NS is considered a moderator of non-auditory noise effects. In the present study, we aimed to assess whether NS is associated with non-auditory effects. Methods We recruited a community sample of 1836 residents residing in Ulsan and Seoul, South Korea. From July to November 2015, participants were interviewed regarding their demographic characteristics, socioeconomic status, medical history, and NS. The non-auditory effects of noise were assessed using the Center of Epidemiologic Studies Depression, Insomnia Severity index, State Trait Anxiety Inventory state subscale, and Stress Response Inventory-Modified Form. Individual noise levels were recorded from noise maps. A three-model multivariate logistic regression analysis was performed to identify factors that might affect psychiatric illnesses. Results Participants ranged in age from 19 to 91 years (mean: 47.0 ± 16.1 years, and 37.9% (n = 696 were male. Participants with high NS were more likely to have been diagnosed with diabetes and hyperlipidemia and to use psychiatric medication. The multivariable analysis indicated that even after adjusting for noise-related variables, sociodemographic factors, medical illness, and duration of residence, subjects in the high NS group were more than 2 times more likely to experience depression and insomnia and 1.9 times more likely to have anxiety, compared with those in the low NS group. Noise exposure level was not identified as an explanatory value. Conclusions NS increases the susceptibility and hence moderates there actions of individuals to noise. NS, rather than noise itself, is associated with an elevated susceptibility to non-auditory effects.

  19. Some insights into the relationship between urban air pollution and noise levels.

    Science.gov (United States)

    Kim, Ki-Hyun; Ho, Duy Xuan; Brown, Richard J C; Oh, J-M; Park, Chan Goo; Ryu, In Cheol

    2012-05-01

    The relationship between noise and air pollution was investigated in eight different districts across Seoul, Korea, between September and November 2010. The noise levels in each district were measured at both roadside and non-roadside locations. It was found that the maximum levels of noise were generally at frequencies of around 1000 Hz. The equivalent noise levels (L(eq)), over all districts, averaged 61.4 ± 7.36 dB which is slightly lower than the noise guidelines set by the World Health Organization (WHO) of 70 dB for industrial, commercial, traffic, and outdoor areas. Comparison of L(eq) levels in each district consistently indicates that noise levels are higher at roadside sites than non-roadside sites. In addition the relative dominance of noise during daytime as compared to nighttime was also apparent. Moreover, the results of an analysis relating sound levels with air pollutant levels indicate strongly that the correlation between these two parameters is the strongest at roadside sites (relative to non-roadside sites) and during nighttime (relative to daytime). The results of our data analysis point to a positive, but complex, correlation between noise levels and air pollution. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Reducing Indoor Noise Levels Using People's Perception on Greenery

    Science.gov (United States)

    Mediastika, Christina E.; Binarti, Floriberta

    2013-12-01

    Employees working in cubicles of open-plan offices in Indonesia were studied in regard to their perception on the ability of indoor greenery to reduce noise levels. Sansevieria trifasciata and Scindapsus sp were used. Each was placed in the cubicle and noise levels were measured without plants, with Sansevieria, and with Scindapsus in place. The meters showed very insignificant difference. However, responses to surveys indicated a perception of lower noise in the presence of greenery. This seemed to be supported by prior knowledge and preconception and may be useful in creating a "quieter" indoor environment.

  1. The monterey bay broadband ocean bottom seismic observatory

    Directory of Open Access Journals (Sweden)

    R. Uhrhammer

    2006-06-01

    Full Text Available We report on the installation of a long-term buried ocean-floor broadband seismic station (MOBB in Monterey Bay, California (USA, 40km off-shore, at a water depth of 1000 m. The station was installed in April 2002 using a ship and ROV, in a collaborative effort between the Monterey Bay Aquarium Research Institute (MBARI and the Berkeley Seismological Laboratory (BSL. The station is located on the western side of the San Gregorio Fault, a major fault in the San Andreas plate boundary fault system. In addition to a 3-component CMG-1T seismometer package, the station comprises a current meter and Differential Pressure Gauge, both sampled at high-enough frequency (1 Hz to allow the study of relations between background noise on the seismometers and ocean waves and currents. The proximity of several land-based broadband seismic stations of the Berkeley Digital Seismic Network allows insightful comparisons of land/ocean background seismic noise at periods relevant to regional and teleseismic studies. The station is currently autonomous. Recording and battery packages are exchanged every 3 months during scheduled one day dives. Ultimately, this station will be linked to shore using continuous telemetry (cable and/or buoy and will contribute to the earthquake notification system in Northern California. We present examples of earthquake and noise data recorded during the first 6 months of operation of MOBB. Lessons learned from these and continued recordings will help understand the nature and character of background noise in regional off-shore environments and provide a reference for the installation of future off-shore temporary and permanent broadband seismic stations.

  2. [Equivalent continuous noise level in neonatal intensive care unit associated to burnout syndrome].

    Science.gov (United States)

    Garrido Galindo, A P; Camargo Caicedo, Y; Vélez-Pereira, A M

    2015-01-01

    Noise levels in neonatal intensive care units allow the appearance of symptoms associated with burnout such as stress, irritability, fatigue and emotional instability on health care personnel. The aim of this study was to evaluate the equivalent continuous noise levels in the neonatal intensive care unit and compare the results with noise levels associated with the occurrence of burnout syndrome on the care team. Continuous sampling was conducted for 20 days using a type I sound level meter on the unit. The maximum, the ninetieth percentile and the equivalent continuous noise level (Leq) values were recorded. Noise level is reported in the range of 51.4-77.6 decibels A (dBA) with an average of 64 dBA, 100.6 dBA maximum, and average background noise from 57.9 dBA. Noise levels exceed the standards suggested for neonatal intensive care units, are close to maximum values referred for noise exposure in the occupational standards and to noise levels associated with the onset of burnout; thus allowing to infer the probability of occurrence of high levels of noise present in the unit on the development of burnout in caregivers. Copyright © 2013 Elsevier España, S.L.U. y SEEIUC. All rights reserved.

  3. METHODS OF NOISE LEVEL REDUCTION OF DRIVE IN LATHES

    Directory of Open Access Journals (Sweden)

    Janusz ROGULA

    2014-06-01

    Full Text Available The aim of this work is method presentation to noise level reduction of fixed headstock of the lathe. It is connected with the causes finding of non-uniform work of lathe headstock, description of recent design and its analysis. Problem of the excessive noise level concern to near 35% of the lathes have been produced. In spite of lack of noise reduction possibility there were no system solution of problem. Design optimisation weren’t done after application the electric motor with inverter. New solution of electric motor control let to reduce number of gear wheels in lathe drive system. For this drive solution there weren’t made the analysis of drive particular parts influence on the noise generation.

  4. Seismic considerations in sealing a potential high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Richardson, A.M.; Lin, Ming

    1992-01-01

    The potential repository system is intended to isolate high-level radioactive waste at Yucca Mountain. One subsystem that may contribute to achieving this objective is the sealing subsystem. This subsystem is comprised of sealing components in the shafts, ramps, underground network of drifts, and the exploratory boreholes. Sealing components can be rigid, as in the case of a shaft seal, or can be more compressible, as in the case of drift fill comprised of mined rockfill. This paper presents the preliminary seismic response of discrete sealing components in welded and nonwelded tuff. Special consideration is given to evaluating the stress in the seal, and the behavior of the interface between the seal and the rock. The seismic responses are computed using both static and dynamic analyses. Also presented is an evaluation of the maximum seismic response encountered by a drift seal with respect to the angle of incidence of the seismic wave. Mitigation strategies and seismic design considerations are proposed which can potentially enhance the overall response of the sealing component and subsequently, the performance of the overall repository system

  5. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Payne, Suzette Jackson; Coppersmith, Ryan; Coppersmith, Kevin; Rodriguez-Marek, Adrian; Falero, Valentina Montaldo; Youngs, Robert

    2016-01-01

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Advanced Test Reactor (ATR), and Naval Reactors Facility (NRF) at the Idaho National Laboratory (INL). The PSHA followed the approaches and procedures for Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 study and included a Participatory Peer Review Panel (PPRP) to provide the confident technical basis and mean-centered estimates of the ground motions. A new risk-informed methodology for evaluating the need for an update of an existing PSHA was developed as part of the Seismic Risk Assessment (SRA) project. To develop and implement the new methodology, the SRA project elected to perform two SSHAC Level 1 PSHAs. The first was for the Fuel Manufacturing Facility (FMF), which is classified as a Seismic Design Category (SDC) 3 nuclear facility. The second was for the ATR Complex, which has facilities classified as SDC-4. The new methodology requires defensible estimates of ground motion levels (mean and full distribution of uncertainty) for its criteria and evaluation process. The INL SSHAC Level 1 PSHA demonstrates the use of the PPRP, evaluation and integration through utilization of a small team with multiple roles and responsibilities (four team members and one specialty contractor), and the feasibility of a short duration schedule (10 months). Additionally, a SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels for the Spent Fuel Handling Recapitalization Project (SFHP) process facility.

  6. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Suzette Jackson [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coppersmith, Ryan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coppersmith, Kevin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rodriguez-Marek, Adrian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Falero, Valentina Montaldo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Youngs, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Advanced Test Reactor (ATR), and Naval Reactors Facility (NRF) at the Idaho National Laboratory (INL). The PSHA followed the approaches and procedures for Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 study and included a Participatory Peer Review Panel (PPRP) to provide the confident technical basis and mean-centered estimates of the ground motions. A new risk-informed methodology for evaluating the need for an update of an existing PSHA was developed as part of the Seismic Risk Assessment (SRA) project. To develop and implement the new methodology, the SRA project elected to perform two SSHAC Level 1 PSHAs. The first was for the Fuel Manufacturing Facility (FMF), which is classified as a Seismic Design Category (SDC) 3 nuclear facility. The second was for the ATR Complex, which has facilities classified as SDC-4. The new methodology requires defensible estimates of ground motion levels (mean and full distribution of uncertainty) for its criteria and evaluation process. The INL SSHAC Level 1 PSHA demonstrates the use of the PPRP, evaluation and integration through utilization of a small team with multiple roles and responsibilities (four team members and one specialty contractor), and the feasibility of a short duration schedule (10 months). Additionally, a SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels for the Spent Fuel Handling Recapitalization Project (SFHP) process facility.

  7. Reflection seismic imaging of the upper crystalline crust for characterization of potential repository sites: Fine tuning the seismic source

    Energy Technology Data Exchange (ETDEWEB)

    Juhlin, C.; Palm, H.; Bergman, B. [Uppsala Univ. (Sweden). Dept. of Earth Sciences

    2001-09-01

    SKB is currently carrying out studies to determine which seismic techniques, and how, they will be used for investigations prior to and during the building of a high-level nuclear waste repository. Active seismic methods included in these studies are refraction seismics, reflection seismics, and vertical seismic profiling (VSP). The main goal of the active seismic methods is to locate fracture zones in the crystalline bedrock. Plans are to use longer reflection seismic profiles (3.4 km) in the initial stages of the site investigations. The target depth for these seismic profiles is 100-1500 m. Prior to carrying out the seismic surveys over actual candidate waste repository sites it has been necessary to carry out a number of tests to determine the optimum acquisition parameters. This report constitutes a summary of the tests carried out by Uppsala University. In addition, recommended acquisition and processing parameters are presented at the end of the report. A major goal in the testing has been to develop a methodology for acquiring high-resolution reflection seismic data over crystalline rock in as a cost effective manner as possible. Since the seismic source is generally a major cost in any survey, significant attention has been given to reducing the cost of the source. It was agreed upon early in the study that explosives were the best source from a data quality perspective and, therefore, only explosive source methods have been considered in this study. The charge size and shot hole dimension required to image the upper 1-1.5 km of bedrock is dependent upon the conditions at the surface. In this study two types of shot hole drilling methods have been employed depending upon whether the thickness of the loose sediments at the surface is greater or less than 0.5 m. The charge sizes and shot hole dimensions required are: Loose sediment thickness less than 0.5 m: 15 g in 90 cm deep 12 mm wide uncased shot holes. Loose sediment thickness greater than 0.5 m: 75 g

  8. On the application of Hidden Markov Model and Bayesian Belief Network to seismic noise at Las Canadas Caldera, Tenerife, Spain

    International Nuclear Information System (INIS)

    Quintero Oliveros, Anggi; Carniel, Roberto; Tarraga, Marta; Aspinall, Willy

    2008-01-01

    The Teide-Pico Viejo volcanic complex situated in Tenerife Island (Canary Islands, Spain) has recently shown signs of unrest, long after its last eruptive episode at Chinyero in 1909, and the last explosive episode which happened at Montana Blanca, 2000 years ago. In this paper we study the seismicity of the Teide-Pico Viejo complex recorded between May and December 2004, in order to show the applicability of tools such as Hidden Markov Models and Bayesian Belief Networks which can be used to build a structure for evaluating the probability of given eruptive or volcano-related scenarios. The results support the existence of a bidirectional relationship between volcano-tectonic events and the background seismic noise - in particular its frequency content. This in turn suggests that the two phenomena can be related to one unique process influencing their generation

  9. On the application of Hidden Markov Model and Bayesian Belief Network to seismic noise at Las Canadas Caldera, Tenerife, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Quintero Oliveros, Anggi [Dipartimento di Georisorse e Territorio, Universita di Udine (Italy); Departamento de Ciencias de La Tierra, Universidad Simon Bolivar, Caracas (Venezuela); Carniel, Roberto [Dipartimento di Georisorse e Territorio, Universita di Udine (Italy)], E-mail: roberto.carniel@uniud.it; Tarraga, Marta [Departamento de Volcanologia, Museo Nacional de Ciencias Naturales, CSIC, Madrid (Spain); Aspinall, Willy [Aspinall and Associates, 5 Woodside Close, Beaconsfield, Bucks (United Kingdom)

    2008-08-15

    The Teide-Pico Viejo volcanic complex situated in Tenerife Island (Canary Islands, Spain) has recently shown signs of unrest, long after its last eruptive episode at Chinyero in 1909, and the last explosive episode which happened at Montana Blanca, 2000 years ago. In this paper we study the seismicity of the Teide-Pico Viejo complex recorded between May and December 2004, in order to show the applicability of tools such as Hidden Markov Models and Bayesian Belief Networks which can be used to build a structure for evaluating the probability of given eruptive or volcano-related scenarios. The results support the existence of a bidirectional relationship between volcano-tectonic events and the background seismic noise - in particular its frequency content. This in turn suggests that the two phenomena can be related to one unique process influencing their generation.

  10. Velocity variations associated with the large 2010 eruption of Merapi volcano, Java, retrieved from seismic multiplets and ambient noise cross-correlation

    Science.gov (United States)

    Budi-Santoso, Agus; Lesage, Philippe

    2016-07-01

    We present a study of the seismic velocity variations that occurred in the structure before the large 2010 eruption of Merapi volcano. For the first time to our knowledge, the technique of coda wave interferometry is applied to both families of similar events (multiplets) and to correlation functions of seismic noise. About half of the seismic events recorded at the summit stations belong to one of the ten multiplets identified, including 120 similar events that occurred in the last 20 hr preceding the eruption onset. Daily noise cross-correlation functions (NCF) were calculated for the six pairs of short-period stations available. Using the stretching method, we estimate time-series of apparent velocity variation (AVV) for each multiplet and each pair of stations. No significant velocity change is detected until September 2010. From 10 October to the beginning of the eruption on 26 October, a complex pattern of AVV is observed with amplitude of up to ±1.5 per cent. Velocity decrease is first observed from families of deep events and then from shallow earthquakes. In the same period, AVV with different signs and chronologies are estimated from NCF calculated for various station pairs. The location in the horizontal plane of the velocity perturbations related with the AVV obtained from NCF is estimated by using an approach based on the radiative transfer approximation. Although their spatial resolution is limited, the resulting maps display velocity decrease in the upper part of the edifice in the period 12-25 October. After the eruption onset, the pattern of velocity perturbations is significantly modified with respect to the previous one. We interpret these velocity variations in the framework of a scenario of magmatic intrusion that integrates most observations. The perturbation of the stress field associated with the magma migration can induce both decrease and increase of the seismic velocity of rocks. Thus the detected AVVs can be considered as precursors of

  11. Ambient and at-the-ear occupational noise exposure and serum lipid levels

    DEFF Research Database (Denmark)

    Arlien-Søborg, Mai C; Schmedes, Astrid S; Stokholm, Z A

    2016-01-01

    -the-ear occupational noise exposure and serum levels of total cholesterol, low-density lipoprotein-cholesterol, high-density lipoprotein-cholesterol, and triglycerides when accounting for well-established predictors of lipid levels. METHODS: This cross-sectional study included 424 industrial workers and 84 financial......OBJECTIVES: Occupational and residential noise exposure has been related to increased risk of cardiovascular disease. Alteration of serum lipid levels has been proposed as a possible causal pathway. The objective of this study was to investigate the relation between ambient and at...... workers to obtain contrast in noise exposure levels. They provided a serum sample and wore portable dosimeters that every 5-s recorded ambient noise exposure levels during a 24-h period. We extracted measurements obtained during work and calculated the full-shift mean ambient noise level. For 331 workers...

  12. The Lusi seismic experiment: An initial study to understand the effect of seismic activity to Lusi

    Energy Technology Data Exchange (ETDEWEB)

    Karyono, E-mail: karyonosu@gmail.com [Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta (Indonesia); OSLO University (Norway); Padjadjaran University (UNPAD), Bandung (Indonesia); Mazzini, Adriano; Sugiharto, Anton [OSLO University (Norway); Lupi, Matteo [ETH Zurich (Switzerland); Syafri, Ildrem [Padjadjaran University (UNPAD), Bandung (Indonesia); Masturyono,; Rudiyanto, Ariska; Pranata, Bayu; Muzli,; Widodo, Handi Sulistyo; Sudrajat, Ajat [Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta (Indonesia)

    2015-04-24

    The spectacular Lumpur Sidoarjo (Lusi) eruption started in northeast Java on the 29 of May 2006 following a M6.3 earthquake striking the island [1,2]. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system [3] and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. The Lusi seismic experiment is a project aims to begin a detailed study of seismicity around the Lusi area. In this initial phase we deploy 30 seismometers strategically distributed in the area around Lusi and along the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. The purpose of the initial monitoring is to conduct a preliminary seismic campaign aiming to identify the occurrence and the location of local seismic events in east Java particularly beneath Lusi.This network will locate small event that may not be captured by the existing BMKG network. It will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-AW region and spatial and temporal variations of vp/vs ratios. The goal of this study is to understand how the seismicity occurring along the Sunda subduction zone affects to the behavior of the Lusi eruption. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. In this study, we will extract Green’s functions from ambient seismic noise data in order to image the shallow subsurface structure beneath LUSI area. The waveform cross-correlation technique will be apply to all of recordings of ambient seismic noise at 30 seismographic stations around the LUSI area. We use the dispersive behaviour of the retrieved Rayleigh waves to infer velocity structures in the shallow subsurface.

  13. Advances in Rotational Seismic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Robert [Applied Technology Associates, Albuquerque, NM (United States); Laughlin, Darren [Applied Technology Associates, Albuquerque, NM (United States); Brune, Robert [Applied Technology Associates, Albuquerque, NM (United States)

    2016-10-19

    Rotational motion is increasingly understood to be a significant part of seismic wave motion. Rotations can be important in earthquake strong motion and in Induced Seismicity Monitoring. Rotational seismic data can also enable shear selectivity and improve wavefield sampling for vertical geophones in 3D surveys, among other applications. However, sensor technology has been a limiting factor to date. The US Department of Energy (DOE) and Applied Technology Associates (ATA) are funding a multi-year project that is now entering Phase 2 to develop and deploy a new generation of rotational sensors for validation of rotational seismic applications. Initial focus is on induced seismicity monitoring, particularly for Enhanced Geothermal Systems (EGS) with fracturing. The sensors employ Magnetohydrodynamic (MHD) principles with broadband response, improved noise floors, robustness, and repeatability. This paper presents a summary of Phase 1 results and Phase 2 status.

  14. Novel ST-MUSIC-based spectral analysis for detection of ULF geomagnetic signals anomalies associated with seismic events in Mexico

    Directory of Open Access Journals (Sweden)

    Omar Chavez

    2016-05-01

    Full Text Available Recently, the analysis of ultra-low-frequency (ULF geomagnetic signals in order to detect seismic anomalies has been reported in several works. Yet, they, although having promising results, present problems for their detection since these anomalies are generally too much weak and embedded in high noise levels. In this work, a short-time multiple signal classification (ST-MUSIC, which is a technique with high-frequency resolution and noise immunity, is proposed for the detection of seismic anomalies in the ULF geomagnetic signals. Besides, the energy (E of geomagnetic signals processed by ST-MUSIC is also presented as a complementary parameter to measure the fluctuations between seismic activity and seismic calm period. The usefulness and effectiveness of the proposal are demonstrated through the analysis of a synthetic signal and five real signals with earthquakes. The analysed ULF geomagnetic signals have been obtained using a tri-axial fluxgate magnetometer at the Juriquilla station, which is localized in Queretaro, Mexico (geographic coordinates: longitude 100.45° E and latitude 20.70° N. The results obtained show the detection of seismic perturbations before, during, and after the main shock, making the proposal a suitable tool for detecting seismic precursors.

  15. The influence of subway station design on noise levels.

    Science.gov (United States)

    Shah, Ravi R; Suen, Jonathan J; Cellum, Ilana P; Spitzer, Jaclyn B; Lalwani, Anil K

    2017-05-01

    To investigate the impact of subway station design on platform noise levels. Observational. Continuous A-weighted decibel (dBA) sound levels were recorded in 20 New York City subway stations, where trains entered on either a straight track or curved track in 10 stations each. Equivalent continuous noise levels (L eq ) at various locations on the boarding platform (inbound end, midplatform, and outbound end) during train entry and exit were compared between the straight and curved stations in broadband as well as narrow one-third octave bands. Overall, curved stations trended louder than straight stations, although the difference in broadband L eq did not reach statistical significance (curve, 83.4 dBA; straight, 82.6 dBA; P = .054). Noise levels were significantly louder at the inbound end of the platform during train entry (inbound, 89.7 dBA; mid, 85.5 dBA; outbound, 78.7 dBA; P < .001) and at the outbound end during train exit (inbound, 79.7 dBA; mid, 85.3 dBA; outbound, 89.1 dBA; P < .001). Narrow band analysis showed that curved stations were significantly louder than straight stations at 100 Hz and high frequencies from 8 to 20 kHz. Peak impact levels ranged from 104 to 121 dBA. Curved stations have a different noise profile compared to straight stations and are significantly louder than straight stations at high frequencies. Designing stations with straight tracks within the platform can help reduce commuter noise exposure. NA Laryngoscope, 127:1169-1174, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  16. Anatomy of the high-frequency ambient seismic wave field at the TCDP borehole.

    OpenAIRE

    Hillers , Gregor; Campillo , Michel; Lin , Y.-Y.; Ma , K.F.; Roux , Philippe

    2012-01-01

    International audience; The Taiwan Chelungpu-fault Drilling Project (TCDP) installed a vertical seismic array between 950 and 1270 m depth in an active thrust fault environment. In this paper we analyze continuous noise records of the TCDP array between 1 and 16 Hz. We apply multiple array processing and noise correlation techniques to study the noise source process, properties of the propagation medium, and the ambient seismic wave field. Diurnal amplitude and slowness patterns suggest that ...

  17. evaluation of the environmental noise levels in abuja municipality

    African Journals Online (AJOL)

    ABSTRACT. Background: Noise remains a nuisance which impacts negatively on the ..... Furthermore, Erikson et al postulated that a persistent noise level .... Hessel PA, Sluis-Cremer G K. Hearing loss in ... Ear & Hearing 2006; 27(1): 1-19. 13.

  18. Effects of self-reported sensitivity and road-traffic noise levels on the immune system.

    Directory of Open Access Journals (Sweden)

    Ahra Kim

    Full Text Available Sensitivity to noise, particularly road traffic noise, can increase cortisol levels and result in changes in immune system biomarkers. Therefore, continuous exposure to noise can have an effect on immune function, hormonal levels, and cardiovascular function, leading to hypertension and stress. The purpose of this study was to investigate the changes in stress-and immune system-related biomarkers according to the self-reported sensitivity to noise and exposure to road traffic noise, to ultimately determine the potential effects of noise on health. A survey was conducted through questionnaire (ISO/TS 15666 sent to 172 female subjects in Korea, including 128 from Ulsan and 44 from Seoul. The average noise level was calculated, and blood samples were collected for measurements of cortisol levels, Natural killer (NK / Natural killer T (NKT cell populations, and NK cell activity (through measurements of interleukin-12 (IL-12 and interferon-gamma (INF-γ concentrations. Multivariate linear regression analysis of the measured biomarkers according to the road traffic noise level and self-reported noise sensitivity was conducted adjusting for the effects of age, alcohol status, smoking status, regular exercise, and residence period. IL-12 levels increased, whereas the NKT cell population decreased with increasing noise levels. The results further suggested that cortisol levels are more influenced by the subject's sensitivity to noise than to the level of chronic road traffic noise. Therefore, noise appears to have the largest effect on IL-12 levels as well as the population and activity of NKT cells. In conclusion, our results suggest that low-level road traffic noise and sensitivity to noise can affect health by causing changes in the immune response through mechanisms other than increased cortisol.

  19. A preliminary assessment of noise level during Deepawali festival in Balasore, India.

    Science.gov (United States)

    Goswami, Shreerup; Swain, Bijay Kumar; Mohapatra, Hara Prasad; Bal, Kshirod Kumar

    2013-11-01

    A preliminary assessment of noise levels during Deepawali, was made in the present study. In order to assess the situation of noise levels in and around Balasore during two consecutive Deepawali of the year 2010 and 2011; noise monitoring was carried out in three different specified times (4:30-7:00 p.m., 7:00-10:30 p.m., 10:30 p.m.-1:00 a.m.). Noise descriptors such as L10, L50, L90, Leq, noise pollution level and noise climate were assessed to reveal the extent of noise pollution in this festival of crackers. Permissible limit of noise levels (Leq) prescribed by WHO during the festival was 100 dB and Lmax must not exceed 110 dB during such occasion. However, in all the cases Lmax and NPL values exceeded 110 dB, while Leq values ranged from 92.9 to 101.9 dB during 2010 Deepawali and 81.5 to 100.8 dB during 2011 Deepawali. On the other hand, all the noise monitoring sites belonged to residential areas. The assessed noise levels during such festivity are much more than 55/45 dB i.e. prescribed for residential areas for day/night time by CPCB. However, it was observed that the noise of Deepawali (Leq) decreased considerably and was less during 2011 than 2010. These may be due to increased environmental awareness among the public. Subsequently, the people of Balasore prefered to celebrate Deepawali, the festival of lights without sound and smoke. Noise policy should also be worked out for a better understanding of such local, social and cultural festivals in which annoyance arise.

  20. Seismic signal auto-detecing from different features by using Convolutional Neural Network

    Science.gov (United States)

    Huang, Y.; Zhou, Y.; Yue, H.; Zhou, S.

    2017-12-01

    We try Convolutional Neural Network to detect some features of seismic data and compare their efficience. The features include whether a signal is seismic signal or noise and the arrival time of P and S phase and each feature correspond to a Convolutional Neural Network. We first use traditional STA/LTA to recongnize some events and then use templete matching to find more events as training set for the Neural Network. To make the training set more various, we add some noise to the seismic data and make some synthetic seismic data and noise. The 3-component raw signal and time-frequancy ananlyze are used as the input data for our neural network. Our Training is performed on GPUs to achieve efficient convergence. Our method improved the precision in comparison with STA/LTA and template matching. We will move to recurrent neural network to see if this kind network is better in detect P and S phase.

  1. Seismic considerations in sealing a potential high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Richardson, A.M.; Lin, Ming

    1993-01-01

    The potential repository system is intended to isolate high-level radioactive waste at Yucca Mountain according the performance objective--10 CFR 60.112. One subsystem that may contribute to achieving this objective is the sealing subsystem. This subsystem is comprised of sealing components in the shafts, ramps, underground network of drifts, and the exploratory boreholes. Sealing components can be rigid, as in the case of a shaft seal, or can be more compressible, as in the case of drift fill comprised of mined rockfill. This paper presents the preliminary seismic response of discrete sealing components in welded and nonwelded tuff. Special consideration is given to evaluating the stress in the seal, and the behavior of the interface between the seal and the rock. The seismic responses are computed using both static and dynamic analyses. Also presented is an evaluation of the maximum seismic response encountered by a drift seal with respect to the angle of incidence of the seismic wave. Mitigation strategies and seismic design considerations are proposed which can potentially enhance the overall response of the sealing component and subsequently, the performance of the overall repository system

  2. Noise levels of neonatal high-flow nasal cannula devices--an in-vitro study.

    Science.gov (United States)

    König, Kai; Stock, Ellen L; Jarvis, Melanie

    2013-01-01

    Excessive ambient noise levels have been identified as a potential risk factor for adverse outcome in very preterm infants. Noise level measurements for continuous positive airway pressure (CPAP) devices demonstrated that these constantly exceed current recommendations. The use of high-flow nasal cannula (HFNC) as an alternative non-invasive ventilation modality has become more popular in recent years in neonatal care. To study noise levels of two HFNC devices commonly used in newborns. As a comparison, noise levels of a continuous flow CPAP device were also studied. In-vitro study. The noise levels of two contemporary HFNC devices (Fisher & Paykel NHF™ and Vapotherm Precision Flow®) and one CPAP device (Dräger Babylog® 8000 plus) were measured in the oral cavity of a newborn manikin in an incubator in a quiet environment. HFNC flows of 4-8 l/min and CPAP pressures of 4-8 cm H2O were applied. The CPAP flow was set at 8 l/min as per unit practice. Vapotherm HFNC generated the highest noise levels, measuring 81.2-91.4 dB(A) with increasing flow. Fisher & Paykel HFNC noise levels were between 78.8 and 81.2 dB(A). The CPAP device generated the lowest noise levels between 73.9 and 77.4 dB(A). Both HFNC devices generated higher noise levels than the CPAP device. All noise levels were far above current recommendations of the American Academy of Pediatrics. In light of the long duration of non-invasive respiratory support of very preterm infants, less noisy devices are required to prevent the potentially adverse effects of continuing excessive noise exposure in the neonatal intensive care unit. Copyright © 2013 S. Karger AG, Basel.

  3. High resolution Rayleigh wave group velocity tomography in North-China from ambient seismic noise

    International Nuclear Information System (INIS)

    Fang Lihua; Wu Jianping; Ding Zhifeng; Panza, G.F.

    2009-03-01

    This study presents the results of the Rayleigh wave group velocity tomography in North-China performed using ambient seismic noise observed at 190 broadband and 10 very broadband stations of the North-China Seismic Array. All available vertical component time-series for the 14 months span between January, 2007 and February, 2008 are cross-correlated to obtain empirical Rayleigh wave Green functions that are subsequently processed, with the multiple filter method, to isolate the group velocity dispersion curves of the fundamental mode of Rayleigh wave. Tomographic maps, with a grid spacing of 0.25 deg. x 0.25 deg., are computed at the periods of 4.5s, 12s, 20s, 28s. The maps at short periods reveal an evident lateral heterogeneity in the crust of North-China, quite well in agreement with known geological and tectonic features. The North China Basin is imaged as a broad low velocity area, while the Taihangshan and Yanshan uplifts and Ordos block are imaged as high velocity zones, and the Quaternary intermountain basins show up as small low-velocity anomalies. The group velocity contours at 4.5s, 12s and 20s are consistent with the Bouguer gravity anomalies measured in the area of the Taihangshan fault, that cuts through the lower crust at least. Most of the historical strong earthquakes (M≥6.0) are located where the tomographic maps show zones with moderate velocity gradient. (author)

  4. Investigating impact of motor oil quality on vehicles engine induced noise level

    Directory of Open Access Journals (Sweden)

    I. Arefian

    2015-09-01

    Full Text Available Introduction: Vehicle engine id one of the main sources of noise which its level is influenced by various parameters. The aim of this study was to investigate the impact of motor oils quality before and after oil change on the variability of vehicle engine induced noise level. In this study it is tried to follow-up the efficacy of motor oil quality on engines sound level. Material and Method: First, engine noise of 94 vehicles were recorded for 30 seconds before and after oil change and all the vehicles technical information including mileage, type of motor oil, and type of vehicle were registered. Following, the recorded noises were calibrated in semi-anechoic chamber and the sound pressure levels were measured with A and C-weighting network and main octav bands, using a sound level meters. The obtained results analyzed using SPSS software version 17. Results: The effects of motor oil quality on different noise levels of engines were determined and a significant reduction in noise level of vehicles engine was observed. Investigation of the relationship between mileage and motor oil quality on various engines sound level manifested that vehicles with mileage ranged 100000-150000 miles had significant reduction in their sound pressure levels in comparison with other vehicles. Conclusion: The results revealed that engine oil is among factors reducing the vehicle engine induced noise level. Moreover, the engine oil type and the vehicle mileage are key variables which determine the impact of engine oil quality on reduction of the sound level of vehicles engine.

  5. Accelerometer Sensor Specifications to Predict Hydrocarbon Using Passive Seismic Technique

    Directory of Open Access Journals (Sweden)

    M. H. Md Khir

    2016-01-01

    Full Text Available The ambient seismic ground noise has been investigated in several surveys worldwide in the last 10 years to verify the correlation between observed seismic energy anomalies at the surface and the presence of hydrocarbon reserves beneath. This is due to the premise that anomalies provide information about the geology and potential presence of hydrocarbon. However a technology gap manifested in nonoptimal detection of seismic signals of interest is observed. This is due to the fact that available sensors are not designed on the basis of passive seismic signal attributes and mainly in terms of amplitude and bandwidth. This is because of that fact that passive seismic acquisition requires greater instrumentation sensitivity, noise immunity, and bandwidth, with active seismic acquisition, where vibratory or impulsive sources were utilized to receive reflections through geophones. Therefore, in the case of passive seismic acquisition, it is necessary to select the best monitoring equipment for its success or failure. Hence, concerning sensors performance, this paper highlights the technological gap and motivates developing dedicated sensors for optimal solution at lower frequencies. Thus, the improved passive seismic recording helps in oil and gas industry to perform better fracture mapping and identify more appropriate stratigraphy at low frequencies.

  6. Predictive modelling of noise level generated during sawing of rocks

    Indian Academy of Sciences (India)

    This paper presents an experimental and statistical study on noise level generated during of rock sawing by circular diamond sawblades. Influence of the operating variables and rock properties on the noise level are investigated and analysed. Statistical analyses are then employed and models are built for the prediction of ...

  7. Potential of neuro-fuzzy methodology to estimate noise level of wind turbines

    Science.gov (United States)

    Nikolić, Vlastimir; Petković, Dalibor; Por, Lip Yee; Shamshirband, Shahaboddin; Zamani, Mazdak; Ćojbašić, Žarko; Motamedi, Shervin

    2016-01-01

    Wind turbines noise effect became large problem because of increasing of wind farms numbers since renewable energy becomes the most influential energy sources. However, wind turbine noise generation and propagation is not understandable in all aspects. Mechanical noise of wind turbines can be ignored since aerodynamic noise of wind turbine blades is the main source of the noise generation. Numerical simulations of the noise effects of the wind turbine can be very challenging task. Therefore in this article soft computing method is used to evaluate noise level of wind turbines. The main goal of the study is to estimate wind turbine noise in regard of wind speed at different heights and for different sound frequency. Adaptive neuro-fuzzy inference system (ANFIS) is used to estimate the wind turbine noise levels.

  8. Observations of Near-Field Rotational Motions from Oklahoma Seismicity using Applied Technology Associate Sensors

    Science.gov (United States)

    Ringler, A. T.; Anthony, R. E.; Holland, A. A.; Wilson, D. C.

    2017-12-01

    Characterizing rotational motions from moderate-sized earthquakes in the near-field has the potential to improve earthquake engineering and seismic gradiometry by better characterizing the rotational component of the seismic wavefield, but has remained challenging due to the limited development of portable, low-noise rotational sensors. Here, we test Applied Technology Associate (ATA) Proto-Seismic Magnetohydrodynamic (SMHD) three-component rotational rate sensors at Albuquerque Seismological Laboratory (ASL) for self-noise and sensitivity before deploying them at U.S. Geological Survey (USGS) temporary aftershock station OK38 in Waynoka, Oklahoma. The sensors have low self-noise levels below 2 Hz, making them ideal to record local rotations. From April 11, 2017 to June 6, 2017 we recorded the translational and rotational motions of over 155 earthquakes of ML≥2.0 within 2 degrees of the station. Using the recorded events we compare Peak Ground Velocity (PGV) with Peak Ground Rotation Rate (PG). For example, we measured a maximal PG of 0.00211 radians/s and 0.00186 radians/s for the horizontal components of the two rotational sensors during the Mwr=4.2 event on May 13, 2017 which was 0.5 km from that station. Similarly, our PG for the vertical rotational components were 0.00112 radians/s and 0.00085 radians/s. We also measured Peak Ground Rotations (PGω) as a function of seismic moment, as well as mean vertical Power Spectral Density (PSD) with mean horizontal PSD power levels. We compute apparent phase velocity directly from the rotational data, which may have may improve estimates of local site effects. Finally, by comparing various rotational and translational components we look at potential implications for estimating local event source parameters, which may help in identifying phenomena such as repeating earthquakes by using differences in the rotational components correlation.

  9. Noise-level determination for discrete spectra with Gaussian or Lorentzian probability density functions

    International Nuclear Information System (INIS)

    Moriya, Netzer

    2010-01-01

    A method, based on binomial filtering, to estimate the noise level of an arbitrary, smoothed pure signal, contaminated with an additive, uncorrelated noise component is presented. If the noise characteristics of the experimental spectrum are known, as for instance the type of the corresponding probability density function (e.g., Gaussian), the noise properties can be extracted. In such cases, both the noise level, as may arbitrarily be defined, and a simulated white noise component can be generated, such that the simulated noise component is statistically indistinguishable from the true noise component present in the original signal. In this paper we present a detailed analysis of the noise level extraction when the additive noise is Gaussian or Lorentzian. We show that the statistical parameters in these cases (mainly the variance and the half width at half maximum, respectively) can directly be obtained from the experimental spectrum even when the pure signal is erratic. Further discussion is given for cases where the noise probability density function is initially unknown.

  10. Industrial noise level study in a wheat processing factory in ilorin, nigeria

    Science.gov (United States)

    Ibrahim, I.; Ajao, K. R.; Aremu, S. A.

    2016-05-01

    An industrial process such as wheat processing generates significant noise which can cause adverse effects on workers and the general public. This study assessed the noise level at a wheat processing mill in Ilorin, Nigeria. A portable digital sound level meter HD600 manufactured by Extech Inc., USA was used to determine the noise level around various machines, sections and offices in the factory at pre-determined distances. Subjective assessment was also mode using a World Health Organization (WHO) standard questionnaire to obtain information regarding noise ratings, effect of noise on personnel and noise preventive measures. The result of the study shows that the highest noise of 99.4 dBA was recorded at a pressure blower when compared to other machines. WHO Class-4 hearing protector is recommended for workers on the shop floor and room acoustics should be upgraded to absorb some sounds transmitted to offices.

  11. Search for Long Period Solar Normal Modes in Ambient Seismic Noise

    Science.gov (United States)

    Caton, R.; Pavlis, G. L.

    2016-12-01

    We search for evidence of solar free oscillations (normal modes) in long period seismic data through multitaper spectral analysis of array stacks. This analysis is similar to that of Thomson & Vernon (2015), who used data from the most quiet single stations of the global seismic network. Our approach is to use stacks of large arrays of noisier stations to reduce noise. Arrays have the added advantage of permitting the use of nonparametic statistics (jackknife errors) to provide objective error estimates. We used data from the Transportable Array, the broadband borehole array at Pinyon Flat, and the 3D broadband array in Homestake Mine in Lead, SD. The Homestake Mine array has 15 STS-2 sensors deployed in the mine that are extremely quiet at long periods due to stable temperatures and stable piers anchored to hard rock. The length of time series used ranged from 50 days to 85 days. We processed the data by low-pass filtering with a corner frequency of 10 mHz, followed by an autoregressive prewhitening filter and median stack. We elected to use the median instead of the mean in order to get a more robust stack. We then used G. Prieto's mtspec library to compute multitaper spectrum estimates on the data. We produce delete-one jackknife error estimates of the uncertainty at each frequency by computing median stacks of all data with one station removed. The results from the TA data show tentative evidence for several lines between 290 μHz and 400 μHz, including a recurring line near 379 μHz. This 379 μHz line is near the Earth mode 0T2 and the solar mode 5g5, suggesting that 5g5 could be coupling into the Earth mode. Current results suggest more statistically significant lines may be present in Pinyon Flat data, but additional processing of the data is underway to confirm this observation.

  12. Coherent Waves in Seismic Researches

    Science.gov (United States)

    Emanov, A.; Seleznev, V. S.

    2013-05-01

    Development of digital processing algorithms of seismic wave fields for the purpose of useful event picking to study environment and other objects is the basis for the establishment of new seismic techniques. In the submitted paper a fundamental property of seismic wave field coherence is used. The authors extended conception of coherence types of observed wave fields and devised a technique of coherent component selection from observed wave field. Time coherence and space coherence are widely known. In this paper conception "parameter coherence" has been added. The parameter by which wave field is coherent can be the most manifold. The reason is that the wave field is a multivariate process described by a set of parameters. Coherence in the first place means independence of linear connection in wave field of parameter. In seismic wave fields, recorded in confined space, in building-blocks and stratified mediums time coherent standing waves are formed. In prospecting seismology at observation systems with multiple overlapping head waves are coherent by parallel correlation course or, in other words, by one measurement on generalized plane of observation system. For detail prospecting seismology at observation systems with multiple overlapping on basis of coherence property by one measurement of area algorithms have been developed, permitting seismic records to be converted to head wave time sections which have neither reflected nor other types of waves. Conversion in time section is executed on any specified observation base. Energy storage of head waves relative to noise on basis of multiplicity of observation system is realized within area of head wave recording. Conversion on base below the area of wave tracking is performed with lack of signal/noise ratio relative to maximum of this ratio, fit to observation system. Construction of head wave time section and dynamic plots a basis of automatic processing have been developed, similar to CDP procedure in method of

  13. Seismic test for safety evaluation of low level radioactive wastes containers

    International Nuclear Information System (INIS)

    Ohoka, Makoto; Horikiri, Morito

    1998-08-01

    Seismic safety of three-piled container system used in Tokai reprocessing center was confirmed by seismic test and computational analysis. Two types of container were evaluated, for low level noninflammable radioactive solid wastes, and for used filters wrapped by large plastic bags. Seismic integrity of three-piled containers was confirmed by evaluating response characteristics such as acceleration and displacement under the design earthquake condition S1, which is the maximum earthquake expected at the stored site during the storage time. Computational dynamic analysis was also performed, and several conclusions described below were made. (1) Response characteristics of the bottom board and the side board were different. The number of pile did not affect the response characteristics of the bottom board of each container. They behaved as a rigid body. (2) The response of the side board was larger than that of the bottom board. (3) The response depended on the direction in each board, either side or bottom. The response acceleration became larger to the seismic wave perpendicular to the plane which has the entrance for fork lift and the radioactive warning mark. (4) The maximum horizontal response displacement under the S1 seismic wave was approximately 10 mm. It is so small that it does not affect the seismic safety. (5) The stoppers to prevent fall down had no influence to the response acceleration. (6) There was no fall down to the S1 seismic wave and 2 times of S1 seismic wave, which was the maximum input condition of the test. (7) The response of the bottom board of the containers, which are main elements of fall down, had good agreements both in the test and in the computational analysis. (author)

  14. Statistics of A-weighted road traffic noise levels in shielded urban areas

    NARCIS (Netherlands)

    Forssén, J.; Hornikx, M.C.J.

    2006-01-01

    In the context of community noise and its negative effects, the noise descriptors used are usually long-term equivalent levels and, sometimes, maximum levels. An improved description could be achieved by including the time variations of the noise. Here, the time variations of A-weighted road traffic

  15. Annoyance from Road Traffic, Trains, Airplanes and from Total Environmental Noise Levels

    Directory of Open Access Journals (Sweden)

    Martina S. Ragettli

    2015-12-01

    Full Text Available There is a lack of studies assessing the exposure-response relationship between transportation noise and annoyance in North America. Our aims were to investigate the prevalence of noise annoyance induced by road traffic, trains and airplanes in relation to distance to transportation noise sources, and to total environmental noise levels in Montreal, Canada; annoyance was assessed as noise-induced disturbance. A telephone-based survey among 4336 persons aged >18 years was conducted. Exposure to total environmental noise (A-weighted outdoor noise levels—LAeq24h and day-evening-night equivalent noise levels—Lden for each study participant was determined using a statistical noise model (land use regression—LUR that is based on actual outdoor noise measurements. The proportion of the population annoyed by road traffic, airplane and train noise was 20.1%, 13.0% and 6.1%, respectively. As the distance to major roads, railways and the Montreal International Airport increased, the percentage of people disturbed and highly disturbed due to the corresponding traffic noise significantly decreased. When applying the statistical noise model we found a relationship between noise levels and disturbance from road traffic and total environmental noise, with Prevalence Proportion Ratios (PPR for highly disturbed people of 1.10 (95% CI: 1.07–1.13 and 1.04 (1.02–1.06 per 1 dB(A Lden, respectively. Our study provides the first comprehensive information on the relationship between transportation noise levels and disturbance in a Canadian city. LUR models are still in development and further studies on transportation noise induced annoyance are consequently needed, especially for sources other than road traffic.

  16. Annoyance from Road Traffic, Trains, Airplanes and from Total Environmental Noise Levels

    Science.gov (United States)

    Ragettli, Martina S.; Goudreau, Sophie; Plante, Céline; Perron, Stéphane; Fournier, Michel; Smargiassi, Audrey

    2015-01-01

    There is a lack of studies assessing the exposure-response relationship between transportation noise and annoyance in North America. Our aims were to investigate the prevalence of noise annoyance induced by road traffic, trains and airplanes in relation to distance to transportation noise sources, and to total environmental noise levels in Montreal, Canada; annoyance was assessed as noise-induced disturbance. A telephone-based survey among 4336 persons aged >18 years was conducted. Exposure to total environmental noise (A-weighted outdoor noise levels—LAeq24h and day-evening-night equivalent noise levels—Lden) for each study participant was determined using a statistical noise model (land use regression—LUR) that is based on actual outdoor noise measurements. The proportion of the population annoyed by road traffic, airplane and train noise was 20.1%, 13.0% and 6.1%, respectively. As the distance to major roads, railways and the Montreal International Airport increased, the percentage of people disturbed and highly disturbed due to the corresponding traffic noise significantly decreased. When applying the statistical noise model we found a relationship between noise levels and disturbance from road traffic and total environmental noise, with Prevalence Proportion Ratios (PPR) for highly disturbed people of 1.10 (95% CI: 1.07–1.13) and 1.04 (1.02–1.06) per 1 dB(A) Lden, respectively. Our study provides the first comprehensive information on the relationship between transportation noise levels and disturbance in a Canadian city. LUR models are still in development and further studies on transportation noise induced annoyance are consequently needed, especially for sources other than road traffic. PMID:26729143

  17. Optimizing Seismic Monitoring Networks for EGS and Conventional Geothermal Projects

    Science.gov (United States)

    Kraft, Toni; Herrmann, Marcus; Bethmann, Falko; Stefan, Wiemer

    2013-04-01

    In the past several years, geological energy technologies receive growing attention and have been initiated in or close to urban areas. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential for the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquakes at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. We have developed an optimization algorithm for seismic monitoring networks in urban areas that allows to design and evaluate seismic network geometries for arbitrary geotechnical operation layouts. The algorithm is based on the D-optimal experimental design that aims to minimize the error ellipsoid of the linearized

  18. Two applications of time reversal mirrors: Seismic radio and seismic radar

    KAUST Repository

    Hanafy, Sherif M.

    2011-07-08

    Two seismic applications of time reversal mirrors (TRMs) are introduced and tested with field experiments. The first one is sending, receiving, and decoding coded messages similar to a radio except seismic waves are used. The second one is, similar to radar surveillance, detecting and tracking a moving object(s) in a remote area, including the determination of the objects speed of movement. Both applications require the prior recording of calibrationGreen’s functions in the area of interest. This reference Green’s function will be used as a codebook to decrypt the coded message in the first application and as a moving sensor for the second application. Field tests show that seismicradar can detect the moving coordinates ( x(t), y(t), z(t)) of a person running through a calibration site. This information also allows for a calculation of his velocity as a function of location. Results with the seismic radio are successful in seismically detecting and decoding coded pulses produced by a hammer. Both seismic radio and radar are highly robust to signals in high noise environments due to the super-stacking property of TRMs.

  19. High-resolution 3-D S-wave Tomography of upper crust structures in Yilan Plain from Ambient Seismic Noise

    Science.gov (United States)

    Chen, Kai-Xun; Chen, Po-Fei; Liang, Wen-Tzong; Chen, Li-Wei; Gung, YuanCheng

    2015-04-01

    The Yilan Plain (YP) in NE Taiwan locates on the western YP of the Okinawa Trough and displays high geothermal gradients with abundant hot springs, likely resulting from magmatism associated with the back-arc spreading as attested by the offshore volcanic island (Kueishantao). YP features NS distinctive characteristics that the South YP exhibits thin top sedimentary layer, high on-land seismicity and significant SE movements, relative those of the northern counterpart. A dense network (~2.5 km station interval) of 89 Texan instruments was deployed in Aug. 2014, covering most of the YP and its vicinity. The ray path coverage density of each 0.015 degree cells are greater than 150 km that could provide the robustness assessment of tomographic results. We analyze ambient noise signals to invert a high-resolution 3D S-wave model for shallow velocity structures in and around YP. The aim is to investigate the velocity anomalies corresponding to geothermal resources and the NS geological distinctions aforementioned. We apply the Welch's method to generate empirical Rayleigh wave Green's functions between two stations records of continuous vertical components. The group velocities of thus derived functions are then obtained by the multiple-filter analysis technique measured at the frequency range between 0.25 and 1 Hz. Finally, we implement a wavelet-based multi-scale parameterization technique to construct 3D model of S-wave velocity. Our first month results exhibit low velocity in the plain, corresponding existing sediments, those of whole YP show low velocity offshore YP and those of high-resolution south YP reveal stark velocity contrast across the Sanshin fault. Key words: ambient seismic noises, Welch's method, S-wave, Yilan Plain

  20. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knox, Hunter Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); James, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Rebekah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cole, Chris [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  1. Linking ground motion measurements and macro-seismic observations in France: A case study based on the RAP (accelerometric) and BCSF (macro-seismic) databases

    International Nuclear Information System (INIS)

    Lesueur, Ch.

    2011-01-01

    Comparison between accelerometric and macro-seismic observations is made for three mw∼4.5 earthquakes of eastern France between 2003 and 2005. Scalar and spectral instrumental parameters are processed from the accelerometric data recorded by nine accelerometric stations located between 29 km and 180 km from the epicentres. Macro-seismic data are based on the French internet reports. In addition to the individual macro-seismic intensity, analysis of the internal correlation between the encoded answers highlights four predominant fields of questions, bearing different physical meanings: 1) 'vibratory motions of small objects', 2) 'displacement and fall of objects', 3) 'acoustic noise', and 4) 'personal feelings'. Best correlations between macro-seismic and instrumental observations are obtained when the macro-seismic parameters are averaged over 10 km radius circles around each station. macro-seismic intensities predicted by published pgv-intensity relationships quite agree with the observed intensities, contrary to those based on pga. The correlations between the macro-seismic and instrumental data, for intensities between ii and v (ems-98), show that pgv is the instrumental parameter presenting the best correlation with all macro-seismic parameters. The correlation with response spectra, exhibits clear frequency dependence over a limited frequency range [0.5-33 hz]. Horizontal and vertical components are significantly correlated with macro-seismic parameters between 1 and 10 hz, a range corresponding to both natural frequencies of most buildings and high energy content in the seismic ground motion. Between 10 and 25 hz, a clear lack of correlation between macro-seismic and instrumental data is observed, while beyond 25 hz the correlation coefficient increases, approaching that of the PGA correlation level. (author)

  2. Detection System of Sound Noise Level (SNL) Based on Condenser Microphone Sensor

    Science.gov (United States)

    Rajagukguk, Juniastel; Eka Sari, Nurdieni

    2018-03-01

    The research aims to know the noise level by using the Arduino Uno as data processing input from sensors and called as Sound Noise Level (SNL). The working principle of the instrument is as noise detector with the show notifications the noise level on the LCD indicator and in the audiovisual form. Noise detection using the sensor is a condenser microphone and LM 567 as IC op-amps, which are assembled so that it can detect the noise, which sounds are captured by the sensor will turn the tide of sinusoida voice became sine wave energy electricity (altering sinusoida electric current) that is able to responded to complaints by the Arduino Uno. The tool is equipped with a detector consists of a set indicator LED and sound well as the notification from the text on LCD 16*2. Work setting indicators on the condition that, if the measured noise > 75 dB then sound will beep, the red LED will light up indicating the status of the danger. If the measured value on the LCD is higher than 56 dB, sound indicator will be beep and yellow LED will be on indicating noisy. If the noise measured value <55 dB, sound indicator will be quiet indicating peaceful from noisy. From the result of the research can be explained that the SNL is capable to detecting and displaying noise level with a measuring range 50-100 dB and capable to delivering the notification noise in audiovisual.

  3. Preferred listening levels of mobile phone programs when considering subway interior noise

    Directory of Open Access Journals (Sweden)

    Jyaehyoung Yu

    2016-01-01

    Full Text Available Today, people listen to music loud using personal listening devices. Although a majority of studies have reported that the high volume played on these listening devices produces a latent risk of hearing problems, there is a lack of studies on "double noise exposures" such as environmental noise plus recreational noise. The present study measures the preferred listening levels of a mobile phone program with subway interior noise for 74 normal-hearing participants in five age groups (ranging from 20s to 60s. The speakers presented the subway interior noise at 73.45 dB, while each subject listened to three application programs [Digital Multimedia Broadcasting (DMB, music, game] for 30 min using a tablet personal computer with an earphone. The participants′ earphone volume levels were analyzed using a sound level meter and a 2cc coupler. Overall, the results showed that those in their 20s listened to the three programs significantly louder with DMB set at significantly higher volume levels than for the other programs. Higher volume levels were needed for middle frequency compared to the lower and higher frequencies. We concluded that any potential risk of noise-induced hearing loss for mobile phone users should be communicated when users listen regularly, although the volume level was not high enough that the users felt uncomfortable. When considering individual listening habits on mobile phones, further study to predict total accumulated environmental noise is still needed.

  4. Preferred listening levels of mobile phone programs when considering subway interior noise.

    Science.gov (United States)

    Yu, Jyaehyoung; Lee, Donguk; Han, Woojae

    2016-01-01

    Today, people listen to music loud using personal listening devices. Although a majority of studies have reported that the high volume played on these listening devices produces a latent risk of hearing problems, there is a lack of studies on "double noise exposures" such as environmental noise plus recreational noise. The present study measures the preferred listening levels of a mobile phone program with subway interior noise for 74 normal-hearing participants in five age groups (ranging from 20s to 60s). The speakers presented the subway interior noise at 73.45 dB, while each subject listened to three application programs [Digital Multimedia Broadcasting (DMB), music, game] for 30 min using a tablet personal computer with an earphone. The participants' earphone volume levels were analyzed using a sound level meter and a 2cc coupler. Overall, the results showed that those in their 20s listened to the three programs significantly louder with DMB set at significantly higher volume levels than for the other programs. Higher volume levels were needed for middle frequency compared to the lower and higher frequencies. We concluded that any potential risk of noise-induced hearing loss for mobile phone users should be communicated when users listen regularly, although the volume level was not high enough that the users felt uncomfortable. When considering individual listening habits on mobile phones, further study to predict total accumulated environmental noise is still needed.

  5. Measurement of speech levels in the presence of time varying background noise

    Science.gov (United States)

    Pearsons, K. S.; Horonjeff, R.

    1982-01-01

    Short-term speech level measurements which could be used to note changes in vocal effort in a time varying noise environment were studied. Knowing the changes in speech level would in turn allow prediction of intelligibility in the presence of aircraft flyover noise. Tests indicated that it is possible to use two second samples of speech to estimate long term root mean square speech levels. Other tests were also performed in which people read out loud during aircraft flyover noise. Results of these tests indicate that people do indeed raise their voice during flyovers at a rate of about 3-1/2 dB for each 10 dB increase in background level. This finding is in agreement with other tests of speech levels in the presence of steady state background noise.

  6. Prediction and comparison of noise levels from ground and elevated flare systems

    International Nuclear Information System (INIS)

    Obasi, E.

    2009-01-01

    Flaring is a process to dispose of hydrocarbons during clean-up, emergency shut downs or dispose a small volume waste streams of mixed gasses that cannot easily or safely be separated. This presentation discussed flaring as a noise issue. It focused on flaring noise characterization; flare noise modeling; flare sound power levels; and flare sound pressure level comparison at a distance of 1.5 km. The presentation included a photograph of flaring at a gas plant in Nigeria. The presentation listed some of the potential health effects associated with long term exposure to excessive noise, such as hearing loss; headaches; stress; fatigue; sleep disturbance; and high blood pressure. Companies flare gas to dispose waste gases in a safe and reliable manner through combustion and to depressurize gas lines during maintenance and emergencies. This presentation also discussed ground and elevated flares; components of flare noise characterization; and key factors affecting flare noise. A model to predict flaring noise was also presented. It demonstrated that at the same gas mass flow rate, the noise level from elevated flare stacks are significantly higher than ground flares. tabs., figs.

  7. Prediction and comparison of noise levels from ground and elevated flare systems

    Energy Technology Data Exchange (ETDEWEB)

    Obasi, E. [Stantec Consulting Ltd., Surrey, BC (Canada)

    2009-07-01

    Flaring is a process to dispose of hydrocarbons during clean-up, emergency shut downs or dispose a small volume waste streams of mixed gasses that cannot easily or safely be separated. This presentation discussed flaring as a noise issue. It focused on flaring noise characterization; flare noise modeling; flare sound power levels; and flare sound pressure level comparison at a distance of 1.5 km. The presentation included a photograph of flaring at a gas plant in Nigeria. The presentation listed some of the potential health effects associated with long term exposure to excessive noise, such as hearing loss; headaches; stress; fatigue; sleep disturbance; and high blood pressure. Companies flare gas to dispose waste gases in a safe and reliable manner through combustion and to depressurize gas lines during maintenance and emergencies. This presentation also discussed ground and elevated flares; components of flare noise characterization; and key factors affecting flare noise. A model to predict flaring noise was also presented. It demonstrated that at the same gas mass flow rate, the noise level from elevated flare stacks are significantly higher than ground flares. tabs., figs.

  8. Reducing the uncertainty in the fidelity of seismic imaging results

    Science.gov (United States)

    Zhou, H. W.; Zou, Z.

    2017-12-01

    A key aspect in geoscientific inversion is quantifying the quality of the results. In seismic imaging, we must quantify the uncertainty of every imaging result based on field data, because data noise and methodology limitations may produce artifacts. Detection of artifacts is therefore an important aspect in uncertainty quantification in geoscientific inversion. Quantifying the uncertainty of seismic imaging solutions means assessing their fidelity, which defines the truthfulness of the imaged targets in terms of their resolution, position error and artifact. Key challenges to achieving the fidelity of seismic imaging include: (1) Difficulty to tell signal from artifact and noise; (2) Limitations in signal-to-noise ratio and seismic illumination; and (3) The multi-scale nature of the data space and model space. Most seismic imaging studies of the Earth's crust and mantle have employed inversion or modeling approaches. Though they are in opposite directions of mapping between the data space and model space, both inversion and modeling seek the best model to minimize the misfit in the data space, which unfortunately is not the output space. The fact that the selection and uncertainty of the output model are not judged in the output space has exacerbated the nonuniqueness problem for inversion and modeling. In contrast, the practice in exploration seismology has long established a two-fold approach of seismic imaging: Using velocity modeling building to establish the long-wavelength reference velocity models, and using seismic migration to map the short-wavelength reflectivity structures. Most interestingly, seismic migration maps the data into an output space called imaging space, where the output reflection images of the subsurface are formed based on an imaging condition. A good example is the reverse time migration, which seeks the reflectivity image as the best fit in the image space between the extrapolation of time-reversed waveform data and the prediction

  9. Burar seismic station: evaluation of seismic performance

    International Nuclear Information System (INIS)

    Ghica, Daniela; Popa, Mihaela

    2005-01-01

    A new seismic monitoring system, the Bucovina Seismic Array (BURAR), has been established since July 2002, in the Northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics (NIEP), Romania. The small-aperture array consists of 10 seismic sensors (9 vertical short-period and one three-component broad band) located in boreholes and distributed in a 5 x 5 km 2 area. At present, the seismic data are continuously recorded by the BURAR and transmitted in real-time to the Romanian National Data Center in Bucharest and National Data Center of the USA, in Florida. Based on the BURAR seismic information gathered at the National Data Center, NIEP (ROM N DC), in the August 2002 - December 2004 time interval, analysis and statistical assessments were performed. Following the preliminary processing of the data, several observations on the global performance of the BURAR system were emphasized. Data investigation showed an excellent efficiency of the BURAR system particularly in detecting teleseismic and regional events. Also, a statistical analysis for the BURAR detection capability of the local Vrancea events was performed in terms of depth and magnitude for the year 2004. The high signal detection capability of the BURAR resulted, generally, in improving the location solutions for the Vrancea seismic events. The location solution accuracy is enhanced when adding BURAR recordings, especially in the case of low magnitude events (recorded by few stations). The location accuracy is increased, both in terms of constraining hypocenter depth and epicentral coordinates. Our analysis certifies the importance of the BURAR system in NIEP efforts to elaborate seismic bulletins. Furthermore, the specific procedures for array data processing (beam forming, f-k analysis) increase significantly the signal-to-noise ratio by summing up the coherent signals from the array components, and ensure a better accuracy

  10. Analysis of the relationship between water level fluctuation and seismicity in the Three Gorges Reservoir (China

    Directory of Open Access Journals (Sweden)

    Lifen Zhang

    2017-03-01

    Full Text Available The Three Gorges Reservoir is a good site for the further researches on reservoir induced seismicity due to decades' seismic monitoring. After the first water impounding in 2003, seismic activity becomes more frequent than that before water impoundment. In order to quantitatively study, the relationship between the water level fluctuation and earthquakes in TGR, we introduced statistical methods to attain the goal. First of all, we relocated the earthquakes in TGR region with double difference method and divided the earthquakes into 5 clusters with clustering analysis method. Secondly, to examine the impacts of water level fluctuation in different water filling stages on the seismic activity in the 5 clusters, a series of statistical analyses are applied. Pearson correlation results show that only the 175 m water level fluctuation has significantly positive impacts on the seismic activity in clusters Ⅰ, Ⅱ, Ⅲ and Ⅴ with correlation coefficients of 0.44, 0.38, 0.66 and 0.63. Cross-correlation analysis demonstrates that 0, 1, 0 and 0 month time delay separately for the clusters Ⅰ, Ⅱ, Ⅲ and Ⅴ exists. It illustrated the influences of the water loading and pore pressure diffusion on induced earthquakes. Cointegration tests and impulse response analysis denoted that the 175 m water level only had long term and significant effects just on the seismic events in the intersection region of the Fairy Mount Fault and Nine-brook Fault. One standard deviation shock to 175 m water level increased the seismic activity in cluster Ⅴ for the first 3 months, and then the negative influence was shown. After 7 months, the negative impulse response becomes stable. The long-term effect of the 175 m water impoundment also proved the important role of pore pressure diffusion in RIS with time.

  11. Acceptable noise level with Danish, Swedish, and non-semantic speech materials

    DEFF Research Database (Denmark)

    Brännström, K Jonas; Lantz, Johannes; Nielsen, Lars Holme

    2012-01-01

    reported results from American studies. Generally, significant differences were seen between test conditions using different types of noise within ears in each population. Significant differences were seen for ANL across populations, also when the non-semantic ISTS was used as speech signal. Conclusions......Abstract Objective: Acceptable noise level (ANL) has been established as a method to quantify the acceptance of background noise while listening to speech presented at the most comfortable level. The aim of the present study was to generate Danish, Swedish, and a non-semantic version of the ANL...... test and investigate normal-hearing Danish and Swedish subjects' performance on these tests. Design: ANL was measured using Danish and Swedish running speech with two different noises: Speech-weighted amplitude-modulated noise, and multitalker speech babble. ANL was also measured using the non...

  12. Bowhead whale aggregation areas and their role in the mitigation of seismic noise

    Energy Technology Data Exchange (ETDEWEB)

    Joynt, A.A.; Harwood, L.A. [Department of Fisheries and Oceans, Ottawa, ON (Canada)

    2007-07-01

    Aerial surveys have been conducted to document the distribution and relative abundance of bowhead whales in the offshore Beaufort Sea. They have shown that bowhead feeding aggregations form in traditional areas where oceanographic conditions favour the concentration of zooplankton. However, not all aggregation areas are attractive to bowheads due to varying oceanographic conditions. Some of the feeding aggregation areas are located in offshore waters which have been subject to seismic exploration activity. There is limited knowledge of the effects of underwater noise or industrial activity on Arctic marine mammals in their critical habitat because of the difficulty of studying in a marine Arctic environment. This has presented a challenge regarding the establishment of proper mitigation specific to critical habitats. Data from emerging science and industry's input from experiences in similar environments like the Chukchi Sea is bringing about new data from which to develop better and realistic mitigation. It was concluded that continuing cooperation between regulators, science, and industry is the key to creating innovative approaches to mitigate the effects of industry on marine mammals. figs.

  13. Effects of pedagogical ideology on the perceived loudness and noise levels in preschools.

    Science.gov (United States)

    Jonsdottir, Valdis; Rantala, Leena M; Oskarsson, Gudmundur Kr; Sala, Eeva

    2015-01-01

    High activity noise levels that result in detrimental effects on speech communication have been measured in preschools. To find out if different pedagogical ideologies affect the perceived loudness and levels of noise, a questionnaire study inquiring about the experience of loudness and voice symptoms was carried out in Iceland in eight private preschools, called "Hjalli model", and in six public preschools. Noise levels were also measured in the preschools. Background variables (stress level, age, length of working career, education, smoking, and number of children per teacher) were also analyzed in order to determine how much they contributed toward voice symptoms and the experience of noisiness. Results indicate that pedagogical ideology is a significant factor for predicting noise and its consequences. Teachers in the preschool with tighter pedagogical control of discipline (the "Hjalli model") experienced lower activity noise loudness than teachers in the preschool with a more relaxed control of behavior (public preschool). Lower noise levels were also measured in the "Hjalli model" preschool and fewer "Hjalli model" teachers reported voice symptoms. Public preschool teachers experienced more stress than "Hjalli model" teachers and the stress level was, indeed, the background variable that best explained the voice symptoms and the teacher's perception of a noisy environment. Discipline, structure, and organization in the type of activity predicted the activity noise level better than the number of children in the group. Results indicate that pedagogical ideology is a significant factor for predicting self-reported noise and its consequences.

  14. Amplification and Attenuation across USArray using Ambient Noise Wavefront Tracking

    KAUST Repository

    Bowden, Daniel C.; Tsai, Victor C.; Lin, Fan-Chi

    2017-01-01

    As seismic travel-time tomography continues to be refined using data from the vast USArray dataset, it is advantageous to also exploit the amplitude information carried by seismic waves. We use ambient noise cross correlation to make observations

  15. Evaluation of noise level in architecture department building in University of Sumatera Utara

    Science.gov (United States)

    Amran, Novrial; Damanik, Novita Hillary Christy

    2018-03-01

    Noise is one the comfort factors that need to be noticed, particularly in an educational environment. Hearing a high noise in a period can affect students’ learning performance. The aims of this study were to know the noise level and get an appropriate design to reduce noise in Architecture Department building in the University of Sumatera Utara, considering that architecture students often spend most of their time inside the room. The measurement was conducted in four rooms for two days each from 09:00 – 12:00 and from 13:00 – 16:00 by using Sound Level Meter that placed near the noise source of the room. The result indicated that the average of noise level exceeded the 55 dB(A) so it still needs the appropriate design to reduce the noise that occurs in the building.

  16. 33 CFR 149.697 - What are the requirements for a noise level survey?

    Science.gov (United States)

    2010-07-01

    ... and Equipment Noise Limits § 149.697 What are the requirements for a noise level survey? (a) A survey... measured over 12 hours to derive a time weighted average (TWA) using a sound level meter and an A-weighted filter or equivalent device. (c) If the noise level throughout a space is determined to exceed 85 db(A...

  17. Determination of the level of noise in nurseries and pre-schools and the teachers′ level of annoyance

    Directory of Open Access Journals (Sweden)

    Ozan Gokdogan

    2016-01-01

    Full Text Available Objective: The aim of this article is to determine the level of noise in nurseries and pre-schools and also to compare measured levels with standard levels and evaluate the teachers’ level of annoyance. Materials and Methods: The level of noise was measured in three different schools. A total of 162 students, whose ages were between 3 and 6 years, and 12 teachers were included the study. Every age groups’ level of noise was measured during sleeping, gaming, and eating activity. In addition, teachers’ annoyance was assessed in different age groups. Results: The 4- to 6-year-old groups were found to have higher level of sounds than 3-year-old group. Eating period was found to be the highest level of sound whereas sleeping was found the lowest. Furthermore, teachers’ annoyance was found higher as the age decreased. Conclusion: Nurseries and pre-schools have noisy environment both for the students and the teachers. High level of noise, which has bad effects on health, is a public health problem. Both the students’ families and teachers must be aware of this annoying situation.

  18. Can weekly noise levels of urban road traffic, as predominant noise source, estimate annual ones?

    Science.gov (United States)

    Prieto Gajardo, Carlos; Barrigón Morillas, Juan Miguel; Rey Gozalo, Guillermo; Vílchez-Gómez, Rosendo

    2016-11-01

    The effects of noise pollution on human quality of life and health were recognised by the World Health Organisation a long time ago. There is a crucial dilemma for the study of urban noise when one is looking for proven methodologies that can allow, on the one hand, an increase in the quality of predictions, and on the other hand, saving resources in the spatial and temporal sampling. The temporal structure of urban noise is studied in this work from a different point of view. This methodology, based on Fourier analysis, is applied to several measurements of urban noise, mainly from road traffic and one-week long, carried out in two cities located on different continents and with different sociological life styles (Cáceres, Spain and Talca, Chile). Its capacity to predict annual noise levels from weekly measurements is studied. The relation between this methodology and the categorisation method is also analysed.

  19. Fast noise level estimation algorithm based on principal component analysis transform and nonlinear rectification

    Science.gov (United States)

    Xu, Shaoping; Zeng, Xiaoxia; Jiang, Yinnan; Tang, Yiling

    2018-01-01

    We proposed a noniterative principal component analysis (PCA)-based noise level estimation (NLE) algorithm that addresses the problem of estimating the noise level with a two-step scheme. First, we randomly extracted a number of raw patches from a given noisy image and took the smallest eigenvalue of the covariance matrix of the raw patches as the preliminary estimation of the noise level. Next, the final estimation was directly obtained with a nonlinear mapping (rectification) function that was trained on some representative noisy images corrupted with different known noise levels. Compared with the state-of-art NLE algorithms, the experiment results show that the proposed NLE algorithm can reliably infer the noise level and has robust performance over a wide range of image contents and noise levels, showing a good compromise between speed and accuracy in general.

  20. Noise levels from toys and recreational articles for children and teenagers.

    Science.gov (United States)

    Hellstrom, P A; Dengerink, H A; Axelsson, A

    1992-10-01

    This study examined the noise level emitted by toys and recreational articles used by children and teenagers. The results indicate that many of the items tested emit sufficiently intense noise to be a source of noise induced hearing loss in school-age children. While the baby toys provided noise exposure within the limits of national regulations, they are most intense in a frequency range that corresponds to the resonance frequency of the external auditory canal of very young children. Hobby motors emit noise that may require protection depending upon the length of use. Fire-crackers and cap guns emit impulse noises that exceed even conservative standards for noise exposure.

  1. I'm trying to heal...noise levels in a pediatric intensive care unit.

    Science.gov (United States)

    Milette, Isabelle H; Carnevale, Franco A

    2003-01-01

    The literature demonstrates clearly that most intensive care units exceed the standard recommendations for noise levels in hospitals, and that high noise levels have negative impacts on patients and staff. The purpose of this study was to evaluate the level of noise in a PICU and compare it to the recommendations of international bodies. We outline recommendations to promote the awareness of this problem and suggest strategies to decrease the level of noise in a PICU. The orientations of these strategies are threefold: 1) architectural-acoustic design, 2) equipment design and, most importantly, 3) staff education.

  2. Lateralization of noise bursts in interaurally correlated or uncorrelated background noise using interaural level differences.

    Science.gov (United States)

    Reed, Darrin K; van de Par, Steven

    2015-10-01

    The interaural level difference (ILD) of a lateralized target source may be effectively reduced when the target is presented together with background noise containing zero ILD. It is not certain whether listeners perceive a position congruent with the reduced ILD or the actual target ILD in a lateralization task. Two sets of behavioral experiments revealed that many listeners perceived a position at or even larger than that corresponding to the presented target ILD when a temporal onset/offset asynchrony between the broadband target and the broadband background noise was present. When no temporal asynchrony was present, however, the perceived lateral position indicated a dependency on the coherence of the background noise for several listeners. With interaurally correlated background noise, listeners reported a reduced ILD resulting from the combined target and background noise stimulus. In contrast, several of the listeners made a reasonable estimate of the position corresponding to the target ILD for interaurally uncorrelated, broadband, background noise. No obvious difference in performance was seen between low- or high-frequency stimuli. Extension of a weighting template to the output of a standard equalization-cancellation model was shown to remove a lateral bias on the predicted target ILD resulting from the presence of background noise. Provided that an appropriate weighting template is applied based on knowledge of the background noise coherence, good prediction of the behavioral data is possible.

  3. Estimating the level of dynamical noise in time series by using fractal dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Sase, Takumi, E-mail: sase@sat.t.u-tokyo.ac.jp [Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 153-8505 (Japan); Ramírez, Jonatán Peña [CONACYT Research Fellow, Center for Scientific Research and Higher Education at Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California (Mexico); Kitajo, Keiichi [BSI-Toyota Collaboration Center, RIKEN Brain Science Institute, Wako, Saitama 351-0198 (Japan); Aihara, Kazuyuki; Hirata, Yoshito [Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 153-8505 (Japan); Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505 (Japan)

    2016-03-11

    We present a method for estimating the dynamical noise level of a ‘short’ time series even if the dynamical system is unknown. The proposed method estimates the level of dynamical noise by calculating the fractal dimensions of the time series. Additionally, the method is applied to EEG data to demonstrate its possible effectiveness as an indicator of temporal changes in the level of dynamical noise. - Highlights: • A dynamical noise level estimator for time series is proposed. • The estimator does not need any information about the dynamics generating the time series. • The estimator is based on a novel definition of time series dimension (TSD). • It is demonstrated that there exists a monotonic relationship between the • TSD and the level of dynamical noise. • We apply the proposed method to human electroencephalographic data.

  4. Estimating the level of dynamical noise in time series by using fractal dimensions

    International Nuclear Information System (INIS)

    Sase, Takumi; Ramírez, Jonatán Peña; Kitajo, Keiichi; Aihara, Kazuyuki; Hirata, Yoshito

    2016-01-01

    We present a method for estimating the dynamical noise level of a ‘short’ time series even if the dynamical system is unknown. The proposed method estimates the level of dynamical noise by calculating the fractal dimensions of the time series. Additionally, the method is applied to EEG data to demonstrate its possible effectiveness as an indicator of temporal changes in the level of dynamical noise. - Highlights: • A dynamical noise level estimator for time series is proposed. • The estimator does not need any information about the dynamics generating the time series. • The estimator is based on a novel definition of time series dimension (TSD). • It is demonstrated that there exists a monotonic relationship between the • TSD and the level of dynamical noise. • We apply the proposed method to human electroencephalographic data.

  5. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi; Bao, Jie; Swiler, Laura

    2017-12-01

    In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic amplitude versus angle (AVA) and controlled source electromagnetic (CSEM) data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo (MCMC) sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis (DREAM) and Adaptive Metropolis (AM) samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and CSEM data. The multi-chain MCMC is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic AVA and CSEM joint inversion provides better estimation of reservoir saturations than the seismic AVA-only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated – reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.

  6. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    International Nuclear Information System (INIS)

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi; Bao, Jie; Swiler, Laura

    2017-01-01

    In this paper we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated — reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.

  7. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    Science.gov (United States)

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi; Bao, Jie; Swiler, Laura

    2017-12-01

    In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated - reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.

  8. Seismic scoping evaluation of high level liquid waste tank vaults at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Hashimoto, P.S.; Uldrich, E.D.; McGee, W.D.

    1991-01-01

    A seismic scoping evaluation of buried vaults enclosing high level liquid waste storage tanks at the Idaho Chemical Processing Plant has been performed. The objective of this evaluation was to scope out which of the vaults could be demonstrated to be seismically adequate against the Safe Shutdown Earthquake (SSE). Using approximate analytical methods, earthquake experience data, and engineering judgement, this study determined that one vault configuration would be expected to meet ICPP seismic design criteria, one would not be considered seismically adequate against the SSE, and one could be shown to be seismically adequate against the SSE using nonlinear analysis

  9. An evaluation of primary school students' views about noise levels in school

    Directory of Open Access Journals (Sweden)

    Nermin Bulunuz

    2017-06-01

    Full Text Available Effective education and teaching requires keeping classroom noise levels within specific limits. The purpose of this study is to evaluate students’ views about the noise level in school, its effects, and control of it at two primary schools (one public school and one private school located in a district of Bursa - within the scope of the TÜBİTAK 1001 project numbered 114K738. The research sample consists of 432 third and fourth graders, 223 of whom are from the public school and 209 of whom are from the private school. To collect data, a 20-question survey was administered to the students, and noise measurements were carried out in the schools. According to the findings obtained from the analysis of the answers from the student questionnaire, the students think that the noise level is high especially during break times. In parallel with the student views, the average noise level at break time during recess was found to be 74.56 dBA at the private primary school and 82.18 dBA at the public primary school. These values are much higher than the limits prescribed in the Regulation on Assessment and Management of Environmental Noise in Turkey (RAMEN European Union Harmonization Laws. The research findings show that this important problem must be dealt with urgently, and substantive efforts and activities must be launched to reduce high noise levels in schools.

  10. Automated seismic detection of landslides at regional scales: a Random Forest based detection algorithm

    Science.gov (United States)

    Hibert, C.; Michéa, D.; Provost, F.; Malet, J. P.; Geertsema, M.

    2017-12-01

    Detection of landslide occurrences and measurement of their dynamics properties during run-out is a high research priority but a logistical and technical challenge. Seismology has started to help in several important ways. Taking advantage of the densification of global, regional and local networks of broadband seismic stations, recent advances now permit the seismic detection and location of landslides in near-real-time. This seismic detection could potentially greatly increase the spatio-temporal resolution at which we study landslides triggering, which is critical to better understand the influence of external forcings such as rainfalls and earthquakes. However, detecting automatically seismic signals generated by landslides still represents a challenge, especially for events with small mass. The low signal-to-noise ratio classically observed for landslide-generated seismic signals and the difficulty to discriminate these signals from those generated by regional earthquakes or anthropogenic and natural noises are some of the obstacles that have to be circumvented. We present a new method for automatically constructing instrumental landslide catalogues from continuous seismic data. We developed a robust and versatile solution, which can be implemented in any context where a seismic detection of landslides or other mass movements is relevant. The method is based on a spectral detection of the seismic signals and the identification of the sources with a Random Forest machine learning algorithm. The spectral detection allows detecting signals with low signal-to-noise ratio, while the Random Forest algorithm achieve a high rate of positive identification of the seismic signals generated by landslides and other seismic sources. The processing chain is implemented to work in a High Performance Computers centre which permits to explore years of continuous seismic data rapidly. We present here the preliminary results of the application of this processing chain for years

  11. 3D seismic denoising based on a low-redundancy curvelet transform

    International Nuclear Information System (INIS)

    Cao, Jingjie; Zhao, Jingtao; Hu, Zhiying

    2015-01-01

    Contamination of seismic signal with noise is one of the main challenges during seismic data processing. Several methods exist for eliminating different types of noises, but optimal random noise attenuation remains difficult. Based on multi-scale, multi-directional locality of curvelet transform, the curvelet thresholding method is a relatively new method for random noise elimination. However, the high redundancy of a 3D curvelet transform makes its computational time and memory for massive data processing costly. To improve the efficiency of the curvelet thresholding denoising, a low-redundancy curvelet transform was introduced. The redundancy of the low-redundancy curvelet transform is approximately one-quarter of the original transform and the tightness of the original transform is also kept, thus the low-redundancy curvelet transform calls for less memory and computational resource compared with the original one. Numerical results on 3D synthetic and field data demonstrate that the low-redundancy curvelet denoising consumes one-quarter of the CPU time compared with the original curvelet transform using iterative thresholding denoising when comparable results are obtained. Thus, the low-redundancy curvelet transform is a good candidate for massive seismic denoising. (paper)

  12. Effects of pedagogical ideology on the perceived loudness and noise levels in preschools

    Science.gov (United States)

    Jonsdottir, Valdis; Rantala, Leena M.; Oskarsson, Gudmundur Kr.; Sala, Eeva

    2015-01-01

    High activity noise levels that result in detrimental effects on speech communication have been measured in preschools. To find out if different pedagogical ideologies affect the perceived loudness and levels of noise, a questionnaire study inquiring about the experience of loudness and voice symptoms was carried out in Iceland in eight private preschools, called “Hjalli model”, and in six public preschools. Noise levels were also measured in the preschools. Background variables (stress level, age, length of working career, education, smoking, and number of children per teacher) were also analyzed in order to determine how much they contributed toward voice symptoms and the experience of noisiness. Results indicate that pedagogical ideology is a significant factor for predicting noise and its consequences. Teachers in the preschool with tighter pedagogical control of discipline (the “Hjalli model”) experienced lower activity noise loudness than teachers in the preschool with a more relaxed control of behavior (public preschool). Lower noise levels were also measured in the “Hjalli model” preschool and fewer “Hjalli model” teachers reported voice symptoms. Public preschool teachers experienced more stress than “Hjalli model” teachers and the stress level was, indeed, the background variable that best explained the voice symptoms and the teacher's perception of a noisy environment. Discipline, structure, and organization in the type of activity predicted the activity noise level better than the number of children in the group. Results indicate that pedagogical ideology is a significant factor for predicting self-reported noise and its consequences. PMID:26356370

  13. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Payne, Suzette; Coppersmith, Ryan; Coppersmith, Kevin; Rodriguez-Marek, Adrian; Falero, Valentina Montaldo; Youngs, Robert

    2016-01-01

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Naval Reactors Facility (NRF), and the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) (Figure 1-1). The PSHA followed the approaches and procedures appropriate for a Study Level 1 provided in the guidance advanced by the Senior Seismic Hazard Analysis Committee (SSHAC) in U.S. Nuclear Regulatory Commission (NRC) NUREG/CR-6372 and NUREG-2117 (NRC, 1997; 2012a). The SSHAC Level 1 PSHAs for MFC and ATR were conducted as part of the Seismic Risk Assessment (SRA) project (INL Project number 31287) to develop and apply a new-risk informed methodology, respectively. The SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels. The SRA project is developing a new risk-informed methodology that will provide a systematic approach for evaluating the need for an update of an existing PSHA. The new methodology proposes criteria to be employed at specific analysis, decision, or comparison points in its evaluation process. The first four of seven criteria address changes in inputs and results of the PSHA and are given in U.S. Department of Energy (DOE) Standard, DOE-STD-1020-2012 (DOE, 2012a) and American National Standards Institute/American Nuclear Society (ANSI/ANS) 2.29 (ANS, 2008a). The last three criteria address evaluation of quantitative hazard and risk-focused information of an existing nuclear facility. The seven criteria and decision points are applied to Seismic Design Category (SDC) 3, 4, and 5, which are defined in American Society of Civil Engineers/Structural Engineers Institute (ASCE/SEI) 43-05 (ASCE, 2005). The application of the criteria and decision points could lead to an update or could determine that such update is not necessary.

  14. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Suzette [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coppersmith, Ryan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coppersmith, Kevin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rodriguez-Marek, Adrian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Falero, Valentina Montaldo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Youngs, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Naval Reactors Facility (NRF), and the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) (Figure 1-1). The PSHA followed the approaches and procedures appropriate for a Study Level 1 provided in the guidance advanced by the Senior Seismic Hazard Analysis Committee (SSHAC) in U.S. Nuclear Regulatory Commission (NRC) NUREG/CR-6372 and NUREG-2117 (NRC, 1997; 2012a). The SSHAC Level 1 PSHAs for MFC and ATR were conducted as part of the Seismic Risk Assessment (SRA) project (INL Project number 31287) to develop and apply a new-risk informed methodology, respectively. The SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels. The SRA project is developing a new risk-informed methodology that will provide a systematic approach for evaluating the need for an update of an existing PSHA. The new methodology proposes criteria to be employed at specific analysis, decision, or comparison points in its evaluation process. The first four of seven criteria address changes in inputs and results of the PSHA and are given in U.S. Department of Energy (DOE) Standard, DOE-STD-1020-2012 (DOE, 2012a) and American National Standards Institute/American Nuclear Society (ANSI/ANS) 2.29 (ANS, 2008a). The last three criteria address evaluation of quantitative hazard and risk-focused information of an existing nuclear facility. The seven criteria and decision points are applied to Seismic Design Category (SDC) 3, 4, and 5, which are defined in American Society of Civil Engineers/Structural Engineers Institute (ASCE/SEI) 43-05 (ASCE, 2005). The application of the criteria and decision points could lead to an update or could determine that such update is not necessary.

  15. Seismic Observations in the Taipei Metropolitan Area Using the Downhole Network

    Directory of Open Access Journals (Sweden)

    Win-Gee Huang

    2010-01-01

    Full Text Available Underlain by soft soils, the Taipei Metropolitan Area (TMA experienced major damage due to ground-motion amplification during the Hualien earthquake of 1986, the Chi-Chi earthquake of 1999, the Hualien earthquake of 2002 and the Taitung earthquake of 2003. To study how a local site can substantially change the characteristics of seismic waves as they pass through soft deposits below the free surface, two complementary downhole seismic arrays have been operated in the TMA, since 1991 and 2008. The accelerometer downhole array is composed of eight boreholes at depths in excess of 300 meters. The downhole array velocity sensor collocated with accelerometer composed of four boreholes at depths up to 90 meters. The integrated seismic network monitors potential earthquakes originating from faults in and around the TMA and provides wide-dynamic range measurement of data ranging in amplitude from seismic background noise levels to damage levels as a result of shaking. The data sets can be used to address on the response of soft-soil deposits to ground motions. One of the major considerations is the nonlinear response of soft soil deposits at different levels of excitation. The collocated acceloerometer and velocity sensors at boreholes give the necessary data for studies of non-linearity to be acquired. Such measurements in anticipation of future large, damaging earthquakes will be of special importance for the mitigation of earthquake losses.

  16. Effects of venting on wind noise levels measured at the eardrum.

    Science.gov (United States)

    Chung, King

    2013-01-01

    Wind noise can be a nuisance to hearing aid users. With the advent of sophisticated feedback reduction algorithms, people with higher degrees of hearing loss are fit with larger vents than previously allowed, and more people with lesser degrees of hearing loss are fit with open hearing aids. The purpose of this study was to examine the effects of venting on wind noise levels in the ear canal for hearing aids with omnidirectional and directional microphones. Two behind-the-ear hearing aids were programmed when they were worn on a Knowles Electronics Manikin for Acoustic Research. The hearing aid worn on the right ear was programmed to the omnidirectional microphone mode and the one on the left to the directional microphone mode. The hearing aids were adjusted to linear amplification with flat frequency response in an anechoic chamber. Gains below 10 dB were used to avoid output limiting of wind noise levels at low input levels. Wind noise samples were recorded at the eardrum location in a wind tunnel at wind velocities ranging from a gentle to a strong breeze. The hearing aids were coupled to #13 tubings (i.e., open vent), or conventional skeleton earmolds with no vent, pressure vents, or 3mm vents. Polar and spectral characteristics of wind noise were analyzed off-line using MatLab programs. Wind noise levels in the ear canals were mostly predicted by vent-induced frequency response changes in the conventional earmold conditions for both omnidirectional and directional hearing aids. The open vent condition, however, yielded the lowest levels, which could not be entirely predicted by the frequency response changes of the hearing aids. This indicated that a wind-related vent effect permitted an additional amount of sound reduction in the ear canal, which could not be explained by known vent effects. For the microphone location, form factor, and gain settings tested, open fit hearing aids yielded lower noise levels at the eardrum location than conventional behind

  17. Sea-Level Trend Uncertainty With Pacific Climatic Variability and Temporally-Correlated Noise

    Science.gov (United States)

    Royston, Sam; Watson, Christopher S.; Legrésy, Benoît; King, Matt A.; Church, John A.; Bos, Machiel S.

    2018-03-01

    Recent studies have identified climatic drivers of the east-west see-saw of Pacific Ocean satellite altimetry era sea level trends and a number of sea-level trend and acceleration assessments attempt to account for this. We investigate the effect of Pacific climate variability, together with temporally-correlated noise, on linear trend error estimates and determine new time-of-emergence (ToE) estimates across the Indian and Pacific Oceans. Sea-level trend studies often advocate the use of auto-regressive (AR) noise models to adequately assess formal uncertainties, yet sea level often exhibits colored but non-AR(1) noise. Standard error estimates are over- or under-estimated by an AR(1) model for much of the Indo-Pacific sea level. Allowing for PDO and ENSO variability in the trend estimate only reduces standard errors across the tropics and we find noise characteristics are largely unaffected. Of importance for trend and acceleration detection studies, formal error estimates remain on average up to 1.6 times those from an AR(1) model for long-duration tide gauge data. There is an even chance that the observed trend from the satellite altimetry era exceeds the noise in patches of the tropical Pacific and Indian Oceans and the south-west and north-east Pacific gyres. By including climate indices in the trend analysis, the time it takes for the observed linear sea-level trend to emerge from the noise reduces by up to 2 decades.

  18. Training Methods for Image Noise Level Estimation on Wavelet Components

    Directory of Open Access Journals (Sweden)

    A. De Stefano

    2004-12-01

    Full Text Available The estimation of the standard deviation of noise contaminating an image is a fundamental step in wavelet-based noise reduction techniques. The method widely used is based on the mean absolute deviation (MAD. This model-based method assumes specific characteristics of the noise-contaminated image component. Three novel and alternative methods for estimating the noise standard deviation are proposed in this work and compared with the MAD method. Two of these methods rely on a preliminary training stage in order to extract parameters which are then used in the application stage. The sets used for training and testing, 13 and 5 images, respectively, are fully disjoint. The third method assumes specific statistical distributions for image and noise components. Results showed the prevalence of the training-based methods for the images and the range of noise levels considered.

  19. Projected contributions of future wind farm development to community noise and annoyance levels in Ontario, Canada

    International Nuclear Information System (INIS)

    Whitfield Aslund, Melissa L.; Ollson, Christopher A.; Knopper, Loren D.

    2013-01-01

    Wind turbines produce sound during their operation; therefore, jurisdictions around the world have developed regulations regarding the placement of electricity generating wind farms with the intent of preventing unacceptable levels of ‘community noise’ in their vicinity. However, as survey results indicate that the relationship between wind turbine noise and annoyance may differ from noise-annoyance relationships for other common noise sources (e.g., rail, traffic), there are concerns that the application of general noise guidelines for wind turbines may lead to unacceptably high levels of annoyance in communities. In this study, previously published survey results that quantified wind turbine noise and self-reported annoyance were applied to the predicted noise levels (from turbines and transformers) for over 8000 receptors in the vicinity of 13 planned wind power developments in the province of Ontario, Canada. The results of this analysis indicate that the current wind turbine noise restrictions in Ontario will limit community exposure to wind turbine related noise such that levels of annoyance are unlikely to exceed previously established background levels of noise-related annoyance from other common noise sources. This provides valuable context that should be considered by policy-makers when evaluating the potential impacts of wind turbine noise on the community. -- highlights: •Wind turbine noise-annoyance relationship used to predict annoyance in Ontario. •Noise annoyance predicted to be <8% for non-participants <1 km from turbines. •Predicted levels of wind turbine noise annoyance similar to that from traffic noise. •Wind turbine noise annoyance not expected to exceed existing background levels

  20. A high and low noise model for strong motion accelerometers

    Science.gov (United States)

    Clinton, J. F.; Cauzzi, C.; Olivieri, M.

    2010-12-01

    We present reference noise models for high-quality strong motion accelerometer installations. We use continuous accelerometer data acquired by the Swiss Seismological Service (SED) since 2006 and other international high-quality accelerometer network data to derive very broadband (50Hz-100s) high and low noise models. The proposed noise models are compared to the Peterson (1993) low and high noise models designed for broadband seismometers; the datalogger self-noise; background noise levels at existing Swiss strong motion stations; and typical earthquake signals recorded in Switzerland and worldwide. The standard strong motion station operated by the SED consists of a Kinemetrics Episensor (2g clip level; flat acceleration response from 200 Hz to DC; insulated sensor / datalogger systems placed in vault quality sites. At all frequencies, there is at least one order of magnitude between the ALNM and the AHNM; at high frequencies (> 1Hz) this extends to 2 orders of magnitude. This study provides remarkable confirmation of the capability of modern strong motion accelerometers to record low-amplitude ground motions with seismic observation quality. In particular, an accelerometric station operating at the ALNM is capable of recording the full spectrum of near source earthquakes, out to 100 km, down to M2. Of particular interest for the SED, this study provides acceptable noise limits for candidate sites for the on-going Strong Motion Network modernisation.

  1. Evaluation of noise level at intensive care units in selected hospitals of Sanandaj

    Directory of Open Access Journals (Sweden)

    Nammam Ali Azadi

    2015-08-01

    Conclusion: We found the noise levels were always above the EPA thresholds at all three hospitals both during the day and night. It is recommended to train hospital officials and staffs for keeping noise levels to an acceptable level.

  2. Modeling signal-to-noise ratio of otoacoustic emissions in workers exposed to different industrial noise levels

    Directory of Open Access Journals (Sweden)

    Parvin Nassiri

    2016-01-01

    Full Text Available Introduction: Noise is considered as the most common cause of harmful physical effects in the workplace. A sound that is generated from within the inner ear is known as an otoacoustic emission (OAE. Distortion-product otoacoustic emissions (DPOAEs assess evoked emission and hearing capacity. The aim of this study was to assess the signal-to-noise ratio in different frequencies and at different times of the shift work in workers exposed to various levels of noise. It was also aimed to provide a statistical model for signal-to-noise ratio (SNR of OAEs in different frequencies based on the two variables of sound pressure level (SPL and exposure time. Materials and Methods: This case–control study was conducted on 45 workers during autumn 2014. The workers were divided into three groups based on the level of noise exposure. The SNR was measured in frequencies of 1000, 2000, 3000, 4000, and 6000 Hz in both ears, and in three different time intervals during the shift work. According to the inclusion criterion, SNR of 6 dB or greater was included in the study. The analysis was performed using repeated measurements of analysis of variance, spearman correlation coefficient, and paired samples t-test. Results: The results showed that there was no statistically significant difference between the three exposed groups in terms of the mean values of SNR (P > 0.05. Only in signal pressure levels of 88 dBA with an interval time of 10:30–11:00 AM, there was a statistically significant difference between the right and left ears with the mean SNR values of 3000 frequency (P = 0.038. The SPL had a significant effect on the SNR in both the right and left ears (P = 0.023, P = 0.041. The effect of the duration of measurement on the SNR was statistically significant in both the right and left ears (P = 0.027, P < 0.001. Conclusion: The findings of this study demonstrated that after noise exposure during the shift, SNR of OAEs reduced from the

  3. [Environmental noise levels in 2 intensive care units in a tertiary care centre].

    Science.gov (United States)

    Ornelas-Aguirre, José Manuel; Zárate-Coronado, Olivia; Gaxiola-González, Fabiola; Neyoy-Sombra, Venigna

    2017-04-03

    The World Health Organisation (WHO) has established a maximum noise level of 40 decibels (dB) for an intensive care unit. The aim of this study was to compare the noise levels in 2 different intensive care units at a tertiary care centre. Using a cross-sectional design study, an analysis was made of the maximum noise level was within the intensive coronary care unit and intensive care unit using a digital meter. A measurement was made in 4 different points of each room, with 5minute intervals, for a period of 60minutes 7:30, 14:30, and 20:30. The means of the observations were compared with descriptive statistics and Mann-Whitney U. An analysis with Kruskal-Wallis test was performed to the mean noise level. The noise observed in the intensive care unit had a mean of 64.77±3.33dB (P=.08), which was similar to that in the intensive coronary care unit, with a mean of 60.20±1.58dB (P=.129). Around 25% or more of the measurements exceeded the level recommended by the WHO by up to 20 points. Noise levels measured in intensive care wards exceed the maximum recommended level for a hospital. It is necessary to design and implement actions for greater participation of health personnel in the reduction of environmental noise. Copyright © 2017 Instituto Nacional de Cardiología Ignacio Chávez. Publicado por Masson Doyma México S.A. All rights reserved.

  4. Amplification Factors for Spectral Acceleration Using Borehole Seismic Array in Taiwan

    Science.gov (United States)

    Lai, T. S.; Yih-Min, W.; Chao, W. A.; Chang, C. H.

    2017-12-01

    In order to reduce the noise from surface to get the high-quality seismic recordings, there are 54 borehole seismic arrays have been installed in Taiwan deployed by Central Weather Bureau (CWB) until the end of 2016. Each array includes two force balance accelerometers, one at the surface and other inside the borehole, as well as one broadband seismometer inside the borehole. The downhole instruments are placed at a depth between 120 and 400 m. The background noise level are lower at the borehole stations, but the amplitudes recorded by borehole stations are smaller than surface stations for the same earthquake due to the different geology conditions. Therefore, the earthquake magnitude estimated by borehole station is smaller than surface station. So far, CWB only use the surface stations in the magnitude determination due to this situation. In this study, we investigate the site effects between surface and downhole for borehole seismic arrays. Using the spectral ratio derived by the two-station spectral method as the transfer function, simulated the waveform recorded by borehole stations to the surface stations. In the future, through the transfer function, the borehole stations will be included in the estimation of earthquake magnitude and the results of amplification factors can provide the information of near-surface site effects for the ground motion simulation applications.

  5. Ambient Noise Levels in Acute Neonatal Intensive Care Unit of a Tertiary Referral Hospital

    Directory of Open Access Journals (Sweden)

    Sonia R. B D'Souza

    2017-10-01

    Full Text Available Background: Advances in neonatal care have resulted in improved survival of neonates admitted to the intensive care of the Neonatal Intensive Care Unit (NICU. However, the NCU may be an inappropriate milieu, with presence of overwhelming stimuli, most potent being the continuous presence of noise in the ambience of the NICU. Aim and Objectives: To determine and describe the ambient noise levels in the acute NICU of a tertiary referral hospital. Material and Methods: The ambient noise, in this study was the background sound existing in the environment of the acute NICU of a tertiary referral hospital in South India. The ambient noise levels were analyzed by an audiologist and acoustical engineer using a standardized and calibrated Sound Level Meter (SLM i.e., the Hand Held Analyzer type 2250, Brüel and Kjær, Denmark on a weighted frequency A and reported as dB (A. Results: The ambient noise levels were timed measurements yielded by the SLM in terms of L eq, L as well as L exceeded the standard A 10 Aeqmax levels (Leq< 45 dB, L ≤ 50 dB, and Lmax ≤ 65 10 dB.The L eq ranged from 59.4 to 62.12 dB A. A Ventilators with alarms caused the maximum amount of ambient noise yielding a L Sound Pressure Level AF (SPL of 82.14 dB A. Conclusion: The study has found high levels of ambient noise in the acute NICU. Though there are several measures to reduce the ambient noise levels in the NICU, it is essential to raise awareness among health care personnel regarding the observed ambient noise levels and its effects on neonates admitted to the NICU.

  6. Seismic surveys test on Innerhytta Pingo, Adventdalen, Svalbard Islands

    Science.gov (United States)

    Boaga, Jacopo; Rossi, Giuliana; Petronio, Lorenzo; Accaino, Flavio; Romeo, Roberto; Wheeler, Walter

    2015-04-01

    We present the preliminary results of an experimental full-wave seismic survey test conducted on the Innnerhytta a Pingo, located in the Adventdalen, Svalbard Islands, Norway. Several seismic surveys were adopted in order to study a Pingo inner structure, from classical reflection/refraction arrays to seismic tomography and surface waves analysis. The aim of the project IMPERVIA, funded by Italian PNRA, was the evaluation of the permafrost characteristics beneath this open-system Pingo by the use of seismic investigation, evaluating the best practice in terms of logistic deployment. The survey was done in April-May 2014: we collected 3 seismic lines with different spacing between receivers (from 2.5m to 5m), for a total length of more than 1 km. We collected data with different vertical geophones (with natural frequency of 4.5 Hz and 14 Hz) as well as with a seismic snow-streamer. We tested different seismic sources (hammer, seismic gun, fire crackers and heavy weight drop), and we verified accurately geophone coupling in order to evaluate the different responses. In such peculiar conditions we noted as fire-crackers allow the best signal to noise ratio for refraction/reflection surveys. To ensure the best geophones coupling with the frozen soil, we dug snow pits, to remove the snow-cover effect. On the other hand, for the surface wave methods, the very high velocity of the permafrost strongly limits the generation of long wavelengths both with these explosive sources as with the common sledgehammer. The only source capable of generating low frequencies was a heavy drop weight system, which allows to analyze surface wave dispersion below 10 Hz. Preliminary data analysis results evidence marked velocity inversions and strong velocity contrasts in depth. The combined use of surface and body waves highlights the presence of a heterogeneous soil deposit level beneath a thick layer of permafrost. This is the level that hosts the water circulation from depth controlling

  7. The seismic microzonation of level 3 of Sant’Agata Fossili (northern Italy based on a multidisciplinary approach

    Directory of Open Access Journals (Sweden)

    Giuseppe Di Capua

    2014-03-01

    Full Text Available In this paper the results of a detailed seismic microzonation, performed at Sant’Agata Fossili (Piemonte region, northern Italy are presented. We study the local seismic response of this small village using a level 3, that is the most accurate level following the Italian code of seismic microzonation. The activity steps consist in a gradual widening of knowledge of the different aspects of the amplification phenomena. A multidisciplinary approach has been performed to obtain the local seismic response: including a study of local geology, geophysical and geotechnical characterization of the lithologies, and numerical and experimental analyses. We finally compare the obtained elastic response spectra to the prescribed spectra of the Italian Building Code (in Italian: Norme Tecniche per le Costruzioni. Our results show the geologic and geophysical differences of the subsoil, that produce different local seismic response in terms of amplification factors and acceleration response spectra.

  8. Ambient Noise Tomography and Microseism Directionalities across the Juan de Fuca Plate

    Science.gov (United States)

    Tian, Ye

    Ambient noise tomography has been well developed over the past decade and proven to be effective in studying the crust and upper mantle structure beneath the Earth’s continents. With new seismic array deployments beginning in the oceans, the application of the tomographic methods based on ambient noise observed at ocean bottom seismometers (OBSs) has become an important topic for research. In this thesis, I investigate the application of ambient noise tomography to oceanic bottom seismic data recorded by the Cascadia Initiative experiment across the Juan de Fuca plate. With higher local noise levels recorded by OBSs, I find that traditional data processing procedures used in ambient noise tomography produce measurable Rayleigh wave Green’s functions between deep ocean stations, whereas the shallow water stations are severely contaminated by both tilt noise and compliance noise and require new methods of processing. Because the local noise level varies across the study region, four semi-independent studies are conducted to both utilize the quieter deep-water stations and to address the problem posed by noisy shallow water stations. First, I construct an age-dependent shear wave speed model of the crust and uppermost mantle with 18 deep-water stations near the Juan de Fuca Ridge. The model possess a shallow low shear velocity zone near the ridge and has its sedimentary thickness, lithospheric thickness, and mantle shear wave speeds increase systematically with age Second, I investigate the locations and mechanisms of microseism generation using ambient noise cross-correlations constructed between 61 OBSs and 42 continental stations near the western US coast and find that the primary and secondary microseisms are generated at different locations and possibly have different physical mechanisms. Third, I show that tilt and compliance noise on the vertical components of the OBSs can be reduced substantially using the horizontal components and the differential

  9. An effective approach to attenuate random noise based on compressive sensing and curvelet transform

    International Nuclear Information System (INIS)

    Liu, Wei; Cao, Siyuan; Zu, Shaohuan; Chen, Yangkang

    2016-01-01

    Random noise attenuation is an important step in seismic data processing. In this paper, we propose a novel denoising approach based on compressive sensing and the curvelet transform. We formulate the random noise attenuation problem as an L _1 norm regularized optimization problem. We propose to use the curvelet transform as the sparse transform in the optimization problem to regularize the sparse coefficients in order to separate signal and noise and to use the gradient projection for sparse reconstruction (GPSR) algorithm to solve the formulated optimization problem with an easy implementation and a fast convergence. We tested the performance of our proposed approach on both synthetic and field seismic data. Numerical results show that the proposed approach can effectively suppress the distortion near the edge of seismic events during the noise attenuation process and has high computational efficiency compared with the traditional curvelet thresholding and iterative soft thresholding based denoising methods. Besides, compared with f-x deconvolution, the proposed denoising method is capable of eliminating the random noise more effectively while preserving more useful signals. (paper)

  10. Measuring and Assessment the Noise Level in Different Regions in Baghdad City And Compare it with The Allowable Levels

    Directory of Open Access Journals (Sweden)

    Ibtihaj Abdulwahhab Abdulrazzak

    2017-05-01

    Full Text Available This study includes measurement of the noise level of four regions in the city of Baghdad (industrial region, commercial region, residential region and quiet region and compare the value of noise in each region with the World Health Organization (WHO allowable limits, and the effect of noise on human health was explained. The "sound level meter (SLM" instrument measuring the noise value in the four regions, three measurement per month through one year was recorded (one measurement every ten days from 1/1/2015 to 30/12/2015. The noise level of the industrial region (75dB compared with the World Health Organization level allowable limit (65dB, while the commercial region (76.28dB versus (55dB and the residential region (74.94dB versus (50dB and the quiet region was (62.36dB versus (40dB of the (WHO allowable limit.

  11. Measurement of Acceptable Noise Level with Background Music.

    Science.gov (United States)

    Ahn, Hyun-Jung; Bahng, Junghwa; Lee, Jae Hee

    2015-09-01

    Acceptable noise level (ANL) is a measure of the maximum background noise level (BNL) that a person is willing to tolerate while following a target story. Although researchers have used various sources of target sound in ANL measures, a limited type of background noise has been used. Extending the previous study of Gordon-Hickey & Moore (2007), the current study determined the effect of music genre and tempo on ANLs as possible factors affecting ANLs. We also investigated the relationships between individual ANLs and the familiarity of music samples and between music ANLs and subjective preference. Forty-one participants were seperated into two groups according to their ANLs, 29 low-ANL listeners and 12 high-ANL listeners. Using Korean ANL material, the individual ANLs were measured based on the listeners' most comfortable listening level and BNL. The ANLs were measured in six conditions, with different music tempo (fast, slow) and genre (K-pop, pop, classical) in a counterbalanced order. Overall, ANLs did not differ by the tempo of background music, but music genre significantly affected individual ANLs. We observed relatively higher ANLs with K-pop music and relatively lower ANLs with classical music. This tendency was similar in both low-ANL and high-ANL groups. However, the subjective ratings of music familiarity and preference affected ANLs differently for low-ANL and high-ANL groups. In contrast to the low-ANL listeners, the ANLs of the high-ANL listeners were significantly affected by music familiarity and preference. The genre of background music affected ANLs obtained using background music. The degree of music familiarity and preference appears to be associated with individual susceptibility to background music only for listeners who are greatly annoyed by background noise (high-ANL listeners).

  12. Automated seismic waveform location using Multichannel Coherency Migration (MCM)-I. Theory

    Science.gov (United States)

    Shi, Peidong; Angus, Doug; Rost, Sebastian; Nowacki, Andy; Yuan, Sanyi

    2018-03-01

    With the proliferation of dense seismic networks sampling the full seismic wavefield, recorded seismic data volumes are getting bigger and automated analysis tools to locate seismic events are essential. Here, we propose a novel Multichannel Coherency Migration (MCM) method to locate earthquakes in continuous seismic data and reveal the location and origin time of seismic events directly from recorded waveforms. By continuously calculating the coherency between waveforms from different receiver pairs, MCM greatly expands the available information which can be used for event location. MCM does not require phase picking or phase identification, which allows fully automated waveform analysis. By migrating the coherency between waveforms, MCM leads to improved source energy focusing. We have tested and compared MCM to other migration-based methods in noise-free and noisy synthetic data. The tests and analysis show that MCM is noise resistant and can achieve more accurate results compared with other migration-based methods. MCM is able to suppress strong interference from other seismic sources occurring at a similar time and location. It can be used with arbitrary 3D velocity models and is able to obtain reasonable location results with smooth but inaccurate velocity models. MCM exhibits excellent location performance and can be easily parallelized giving it large potential to be developed as a real-time location method for very large datasets.

  13. Modeling Speech Level as a Function of Background Noise Level and Talker-to-Listener Distance for Talkers Wearing Hearing Protection Devices

    DEFF Research Database (Denmark)

    Bouserhal, Rachel E.; Bockstael, Annelies; MacDonald, Ewen

    2017-01-01

    Purpose: Studying the variations in speech levels with changing background noise level and talker-to-listener distance for talkers wearing hearing protection devices (HPDs) can aid in understanding communication in background noise. Method: Speech was recorded using an intra-aural HPD from 12...... complements the existing model presented by Pelegrín-García, Smits, Brunskog, and Jeong (2011) and expands on it by taking into account the effects of occlusion and background noise level on changes in speech sound level. Conclusions: Three models of the relationship between vocal effort, background noise...

  14. Assessment of noise levels generated by music shops in an urban city in Nigeria.

    Science.gov (United States)

    Ebare, M N; Omuemu, V O; Isah, E C

    2011-09-01

    To assess the level of noise generated by music shops in an urban city in Nigeria. Cross-sectional, descriptive study. The study involved music shops in three out of eight identified clusters of market areas in Benin City. A semi-structured, researcher-administered questionnaire was also used to collect data from music shop owners. Noise levels generated by speakers in the music shops were measured using a sound level meter, and blood pressure measurements were taken with a mercury sphygmomanometer. Of the 250 music shops studied, more than 90.0% generated noise levels >85 dB, and 54.8% had a continuous pattern of noise. Longer duration of working years was significantly associated with decreased hearing (P = 0.01), shouting when talking (P = 0.04) and high blood pressure (P = 0.003). The position of music dealers in relation to the speakers was significantly associated with shouting when talking (P = 0.000). A significant association was found between higher levels of noise and high blood pressure (P = 0.004). This study found very high levels of noise in music shops, which could be a source of occupational noise exposure among music dealers. Enlightenment campaigns on the hazards of exposure to loud noise and periodic audiometry examinations are recommended for this occupational group. Copyright © 2011 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  15. Study on traffic noise level of Sylhet by multiple regression analysis associated with health hazards

    Directory of Open Access Journals (Sweden)

    J. B. Alam, M. Jobair Bin Alam, M. M. Rahman, A. K. Dikshit, S. K. Khan

    Full Text Available The study reports the level of traffic-induced noise pollution in Sylhet City. For this purpose noise levels have been measured at thirty-seven major locations of the city from 7 am to 11 pm during the working days. It was observed that at all the locations the level of noise remains far above the acceptable limit for all the time. The noise level on the main road near residential area, hospital area and educational area were above the recommended level (65dBA. It was found that the predictive equations are in 60-70% correlated with the measured noise level. The study suggests that vulnerable institutions like school and hospital should be located about 60m away from the roadside unless any special arrangement to alleviate sound is used.

  16. Preparation of Ultracold Atom Clouds at the Shot Noise Level

    DEFF Research Database (Denmark)

    Gajdacz, M.; Hilliard, A. J.; Kristensen, Mick

    2016-01-01

    We prepare number stabilized ultracold atom clouds through the real-time analysis of nondestructive images and the application of feedback. In our experiments, the atom number N∼10^6 is determined by high precision Faraday imaging with uncertainty ΔN below the shot noise level, i.e., ΔN... on this measurement, feedback is applied to reduce the atom number to a user-defined target, whereupon a second imaging series probes the number stabilized cloud. By this method, we show that the atom number in ultracold clouds can be prepared below the shot noise level....

  17. Extraction of Pn seismic signals from air-gun shots recorded by the Cascadia Amphibious seismic experiment

    Science.gov (United States)

    Rathnayaka, S.; Gao, H.

    2017-12-01

    The goal of this study is to extract Pn (head wave) seismic waveforms recorded by both offshore and onshore (broadband and short period) seismic stations and evaluate the data quality. Two offshore active-source seismic experiments, MGL 1211 and MGL 1212, were conducted from 13th June to 24th July 2012, during the first year deployment of the Cascadia Initiative Amphibious Array. In total, we choose 110 ocean bottom seismometers and 209 inland stations that are located along the entire Cascadia subduction zone. We first remove the instrument response, and then explore the potential frequency ranges and the diurnal effect. We make the common receiver gathering for each seismic station and filter the seismic waveforms at multiple frequency bands, ranging from 3-5 Hz, 5-10 Hz, 10-20 Hz, to 20-40 Hz, respectively. To quantitatively evaluate the data quality, we calculate the signal-to-noise ratio (SNR) of the waveforms for usable stations that record clear Pn arrivals at multiple frequency bands. Our results show that most offshore stations located at deep water (>1.5 km) record clear air-gun shot signals at frequencies higher than 3 Hz and up to 550 km away from the source. For most stations located on the shallow continental shelf, the seismic recordings appear much noisier at all the frequencies compared to stations at deep water. Three general trends are observed for the SNR distribution; First, the SNR ratio increases from lower to higher frequency bands; Second, the ratio decreases with the increasing source-to-receiver distance; And third, the ratio increases from shallow to deep water. We also observe a rough negative relationship of the signal-to-noise ratio with the thickness of the marine sediment. Only 5 inland stations record clear air-gun shot arrivals up to 200 km away from the source. More detailed data quality analysis with more results will also be present.

  18. Effects of background noise on total noise annoyance

    Science.gov (United States)

    Willshire, K. F.

    1987-01-01

    Two experiments were conducted to assess the effects of combined community noise sources on annoyance. The first experiment baseline relationships between annoyance and noise level for three community noise sources (jet aircraft flyovers, traffic and air conditioners) presented individually. Forty eight subjects evaluated the annoyance of each noise source presented at four different noise levels. Results indicated the slope of the linear relationship between annoyance and noise level for the traffic noise was significantly different from that of aircraft and of air conditioner noise, which had equal slopes. The second experiment investigated annoyance response to combined noise sources, with aircraft noise defined as the major noise source and traffic and air conditioner noise as background noise sources. Effects on annoyance of noise level differences between aircraft and background noise for three total noise levels and for both background noise sources were determined. A total of 216 subjects were required to make either total or source specific annoyance judgements, or a combination of the two, for a wide range of combined noise conditions.

  19. Self-noise models of five commercial strong-motion accelerometers

    Science.gov (United States)

    Ringler, Adam; Evans, John R.; Hutt, Charles R.

    2015-01-01

    Strong‐motion accelerometers provide onscale seismic recordings during moderate‐to‐large ground motions (e.g., up to tens of m/s2 peak). Such instruments have played a fundamental role in improving our understanding of earthquake source physics (Bocketal., 2011), earthquake engineering (Youdet al., 2004), and regional seismology (Zollo et al., 2010). Although strong‐motion accelerometers tend to have higher noise levels than high‐quality broadband velocity seismometers, their higher clip‐levels provide linear recordings at near‐field sites even for the largest of events where a collocated broadband sensor would no longer be able to provide onscale recordings (Clinton and Heaton, 2002).

  20. Noise level estimation in weakly nonlinear slowly time-varying systems

    International Nuclear Information System (INIS)

    Aerts, J R M; Dirckx, J J J; Lataire, J; Pintelon, R

    2008-01-01

    Recently, a method using multisine excitation was proposed for estimating the frequency response, the nonlinear distortions and the disturbing noise of weakly nonlinear time-invariant systems. This method has been demonstrated on the measurement of nonlinear distortions in the vibration of acoustically driven systems such as a latex membrane, which is a good example of a time-invariant system [1]. However, not all systems are perfectly time invariant, e.g. biomechanical systems. This time variation can be misinterpreted as an elevated noise floor, and the classical noise estimation method gives a wrong result. Two improved methods to retrieve the correct noise information from the measurements are presented. Both of them make use of multisine excitations. First, it is demonstrated that the improved methods give the same result as the classical noise estimation method when applied to a time-invariant system (high-quality microphone membrane). Next, it is demonstrated that the new methods clearly give an improved estimate of the noise level on time-varying systems. As an application example results for the vibration response of an eardrum are shown

  1. Noise Levels in Two Emergency Departments Before and After the Introduction of Electronic Whiteboards

    DEFF Research Database (Denmark)

    Hertzum, Morten

    2013-01-01

    . The maximum equivalent continuous noise levels across 1 second were above 80 dB(A) at all four coordination centres. At two of the centres above 80 dB(A) noises also occurred at night. After the introduction of electronic whiteboards the noise level was lowered at one ED but unchanged at the other ED...

  2. Maintaining reduced noise levels in a resource-constrained neonatal intensive care unit by operant conditioning.

    Science.gov (United States)

    Ramesh, A; Denzil, S B; Linda, R; Josephine, P K; Nagapoornima, M; Suman Rao, P N; Swarna Rekha, A

    2013-03-01

    To evaluate the efficacy of operant conditioning in sustaining reduced noise levels in the neonatal intensive care unit (NICU). Quasi-experimental study on quality of care. Level III NICU of a teaching hospital in south India. 26 staff employed in the NICU. (7 Doctors, 13 Nursing staff and 6 Nursing assistants). Operant conditioning of staff activity for 6 months. This method involves positive and negative reinforcement to condition the staff to modify noise generating activities. Comparing noise levels in decibel: A weighted [dB (A)] before conditioning with levels at 18 and 24 months after conditioning. Decibel: A weighted accounts for noise that is audible to human ears. Operant conditioning for 6 months sustains the reduced noise levels to within 62 dB in ventilator room 95% CI: 60.4 - 62.2 and isolation room (95% CI: 55.8 - 61.5). In the preterm room, noise can be maintained within 52 dB (95% CI: 50.8 - 52.6). This effect is statistically significant in all the rooms at 18 months (P = 0.001). At 24 months post conditioning there is a significant rebound of noise levels by 8.6, 6.7 and 9.9 dB in the ventilator, isolation and preterm room, respectively (P =0.001). Operant conditioning for 6 months was effective in sustaining reduced noise levels. At 18 months post conditioning, the noise levels were maintained within 62 dB (A), 60 dB (A) and 52 dB (A) in the ventilator, isolation and pre-term room, respectively. Conditioning needs to be repeated at 12 months in the ventilator room and at 18 months in the other rooms.

  3. Seismic Tomography and the Development of a State Velocity Profile

    Science.gov (United States)

    Marsh, S. J.; Nakata, N.

    2017-12-01

    Earthquakes have been a growing concern in the State of Oklahoma in the last few years and as a result, accurate earthquake location is of utmost importance. This means using a high resolution velocity model with both lateral and vertical variations. Velocity data is determined using ambient noise seismic interferometry and tomography. Passive seismic data was acquired from multiple IRIS networks over the span of eight years (2009-2016) and filtered for earthquake removal to obtain the background ambient noise profile for the state. Seismic Interferometry is applied to simulate ray paths between stations, this is done with each possible station pair for highest resolution. Finally the method of seismic tomography is used to extract the velocity data and develop the state velocity map. The final velocity profile will be a compilation of different network analyses due to changing station availability from year to year. North-Central Oklahoma has a dense seismic network and has been operating for the past few years. The seismic stations are located here because this is the most seismically active region. Other parts of the state have not had consistent coverage from year to year, and as such a reliable and high resolution velocity profile cannot be determined from this network. However, the Transportable Array (TA) passed through Oklahoma in 2014 and provided a much wider and evenly spaced coverage. The goal of this study is to ultimately combine these two arrays over time, and provide a high quality velocity profile for the State of Oklahoma.

  4. The Relationship between Personality Type and Acceptable Noise Levels: A Pilot Study.

    Science.gov (United States)

    Franklin, Cliff; Johnson, Laura V; White, Letitia; Franklin, Clay; Smith-Olinde, Laura

    2013-01-01

    Objectives. This study examined the relationship between acceptable noise level (ANL) and personality. ANL is the difference between a person's most comfortable level for speech and the loudest level of background noise they are willing to accept while listening to speech. Design. Forty young adults with normal hearing participated. ANLs were measured and two personality tests (Big Five Inventory, Myers-Briggs Type Indicator) were administered. Results. The analysis revealed a correlation between ANL and the openness and conscientious personality dimensions from the Big Five Inventory; no correlation emerged between ANL and the Myers-Briggs personality types. Conclusions. Lower ANLs are correlated with full-time hearing aid use and the openness personality dimension; higher ANLs are correlated with part-time or hearing aid nonuse and the conscientious personality dimension. Current data suggest that those more open to new experiences may accept more noise and possibly be good hearing aid candidates, while those more conscientious may accept less noise and reject hearing aids, based on their unwillingness to accept background noise. Knowing something about a person's personality type may help audiologists determine if their patients will likely be good candidates for hearing aids.

  5. Relative Seismic Velocity Variations Correlate with Deformation at Kīlauea Volcano.

    Science.gov (United States)

    Donaldson, C.; Caudron, C.; Green, R. G.; White, R. S.

    2016-12-01

    Passive interferometry using ambient seismic noise is an appealing monitoring tool at volcanoes. The continuous nature of seismic noise provides better temporal resolution than earthquake interferometry and ambient noise may be sensitive to changes at depths that do not deform the volcano surface. Despite this, to our knowledge, no studies have yet comprehensively compared deformation and velocity at a volcano over a significant length of time. We use a volcanic tremor source (approximately 0.3 - 1.0 Hz) at Kīlauea volcano as a source for interferometry to measure relative velocity changes with time. The tremor source that dominates the cross correlations is located under the Halema'uma'u caldera at Kīlauea summit. By cross-correlating the vertical component of day-long seismic records between 200 pairs of stations, we extract coherent and temporally consistent coda wave signals with time lags of up to 70 seconds. Our resulting time series of relative velocity shows a remarkable correlation with the tilt record measured at Kīlauea summit. Kīlauea summit is continually inflating and deflating as the level of the lava lake rises and falls. During these deflation-inflation (DI) events the tilt increases (inflation), as the velocity increases, on the scale of days to weeks. In contrast, we also detect a longer-term velocity decrease between 2011-2015 as the volcano slowly inflates. We suggest that variations in velocity result from opening and closing cracks and pores due to changes in magma pressurization. Early modeling results indicate that pressurizing magma reservoirs at different depths can result in opposite changes in compression/extension at the surface. The consistent correlation of relative velocity and deformation in this study provides an opportunity to better understand the mechanism causing velocity changes, which currently limits the scope of passive interferometry as a monitoring tool.

  6. Pilot study of methods and equipment for in-home noise level measurements.

    Science.gov (United States)

    Neitzel, Richard L; Heikkinen, Maire S A; Williams, Christopher C; Viet, Susan Marie; Dellarco, Michael

    2015-01-15

    Knowledge of the auditory and non-auditory effects of noise has increased dramatically over the past decade, but indoor noise exposure measurement methods have not advanced appreciably, despite the introduction of applicable new technologies. This study evaluated various conventional and smart devices for exposure assessment in the National Children's Study. Three devices were tested: a sound level meter (SLM), a dosimeter, and a smart device with a noise measurement application installed. Instrument performance was evaluated in a series of semi-controlled tests in office environments over 96-hour periods, followed by measurements made continuously in two rooms (a child's bedroom and a most used room) in nine participating homes over a 7-day period with subsequent computation of a range of noise metrics. The SLMs and dosimeters yielded similar A-weighted average noise levels. Levels measured by the smart devices often differed substantially (showing both positive and negative bias, depending on the metric) from those measured via SLM and dosimeter, and demonstrated attenuation in some frequency bands in spectral analysis compared to SLM results. Virtually all measurements exceeded the Environmental Protection Agency's 45 dBA day-night limit for indoor residential exposures. The measurement protocol developed here can be employed in homes, demonstrates the possibility of measuring long-term noise exposures in homes with technologies beyond traditional SLMs, and highlights potential pitfalls associated with measurements made by smart devices.

  7. The Relationship between Personality Type and Acceptable Noise Levels: A Pilot Study

    OpenAIRE

    Franklin, Cliff; Johnson, Laura V.; White, Letitia; Franklin, Clay; Smith-Olinde, Laura

    2013-01-01

    Objectives. This study examined the relationship between acceptable noise level (ANL) and personality. ANL is the difference between a person’s most comfortable level for speech and the loudest level of background noise they are willing to accept while listening to speech. Design. Forty young adults with normal hearing participated. ANLs were measured and two personality tests (Big Five Inventory, Myers-Briggs Type Indicator) were administered. Results. The analysis revealed a correlation bet...

  8. Shallow crustal radial anisotropy beneath the Tehran basin of Iran from seismic ambient noise tomography

    Science.gov (United States)

    Shirzad, Taghi; Shomali, Z. Hossein

    2014-06-01

    We studied the shear wave velocity structure and radial anisotropy beneath the Tehran basin by analyzing the Rayleigh wave and Love wave empirical Green's functions obtained from cross-correlation of seismic ambient noise. Approximately 199 inter-station Rayleigh and Love wave empirical Green's functions with sufficient signal-to-noise ratios extracted from 30 stations with various sensor types were used for phase velocity dispersion analysis of periods ranging from 1 to 7 s using an image transformation analysis technique. Dispersion curves extracted from the phase velocity maps were inverted based on non-linear damped least squares inversion method to obtain a quasi-3D model of crustal shear wave velocities. The data used in this study provide an unprecedented opportunity to resolve the spatial distribution of radial anisotropy within the uppermost crust beneath the Tehran basin. The quasi-3D shear wave velocity model obtained in this analysis delineates several distinct low- and high-velocity zones that are generally separated by geological boundaries. High-shear-velocity zones are located primarily around the mountain ranges and extend to depths of 2.0 km, while the low-shear-velocity zone is located near regions with sedimentary layers. In the shallow subsurface, our results indicate strong radial anisotropy with negative magnitude (VSV > VSH) primarily associated with thick sedimentary deposits, reflecting vertical alignment of cracks. With increasing depth, the magnitude of the radial anisotropy shifts from predominantly negative (less than -10%) to predominantly positive (greater than 5%). Our results show a distinct change in radial anisotropy between the uppermost sedimentary layer and the bedrock.

  9. A seismic hazard overview of the Mitidja Basin (Northern Algeria)

    Science.gov (United States)

    Fontiela, J. F.; Borges, J.; Ouyed, M.; Bezzeghoud, M.; Idres, M.; Caldeira, B.; Boughacha, M. S.; Carvalho, J.; Samai, S.; Aissa, S.; Benfadda, A.; Chimouni, R.; Yalaoui, R.; Dias, R.

    2017-12-01

    The Mitidja Basin (MB) is located in N Algeria and it is filled by quaternary sediments with a length of 100 km on the EW direction and around 20 km width. The S and N limites comprise the Boumerdes-Larbaa-Blida, and the Thenia-Sahel active fault system, respectively. Both fault systems are of the reverse type with opposed dips and accommodate a general slip rate of ˜4 mm/year. In the basin occurred earthquakes that caused severe damage and losses such as the ones of Algiers (1365, Io=X; 1716, Io=X) and the Bourmedes earthquake (Mw 6.9; May 2003) that affected the area of Zemmouri and caused 2.271 deaths. The event was caused by the reactivation of the MB boundary faults. The earthquake generated a max uplift of 0.8m along the coast and a horizontal max. slip of 0.24m.Recent studies show that the Boumerdes earthquake overloaded the adjacent faults system with a stress increase between 0.4 and 1.5 bar. The stress change recommends a detailed study of mentioned faults system due to the increase of the seismic hazard. The high seismogenic potential of the fault system bordering the MB, increases the vulnerability of densely populated areas of Algiers and the amplification effect caused by the basin are the motivation of this project that will focus on the evaluation of the seismic hazard of the region. To achieve seismic hazard assessment on the MB, through realistic predictions of strong ground motion, caused by moderate and large earthquakes, it is important 1) develop a detailed 3D velocity/structure model of the MB that includes geological constraints, seismic reflection data acquired on wells, refraction velocities and seismic noise data, and determination of the attenuation laws based on instrumental records; 2) evaluate the seismic potential and parameters of the main active faults of the MB; 3) develop numerical methods (deterministic and stochastic) to simulate strong ground motions produced by extended seismic sources. To acquire seismic noise were used

  10. BAYESIAN ANALYSIS OF WHITE NOISE LEVELS IN THE FIVE-YEAR WMAP DATA

    International Nuclear Information System (INIS)

    Groeneboom, N. E.; Eriksen, H. K.; Gorski, K.; Huey, G.; Jewell, J.; Wandelt, B.

    2009-01-01

    We develop a new Bayesian method for estimating white noise levels in CMB sky maps, and apply this algorithm to the five-year Wilkinson Microwave Anisotropy Probe (WMAP) data. We assume that the amplitude of the noise rms is scaled by a constant value, α, relative to a pre-specified noise level. We then derive the corresponding conditional density, P(α | s, C l , d), which is subsequently integrated into a general CMB Gibbs sampler. We first verify our code by analyzing simulated data sets, and then apply the framework to the WMAP data. For the foreground-reduced five-year WMAP sky maps and the nominal noise levels initially provided in the five-year data release, we find that the posterior means typically range between α = 1.005 ± 0.001 and α = 1.010 ± 0.001 depending on differencing assembly, indicating that the noise level of these maps are biased low by 0.5%-1.0%. The same problem is not observed for the uncorrected WMAP sky maps. After the preprint version of this letter appeared on astro-ph., the WMAP team has corrected the values presented on their web page, noting that the initially provided values were in fact estimates from the three-year data release, not from the five-year estimates. However, internally in their five-year analysis the correct noise values were used, and no cosmological results are therefore compromised by this error. Thus, our method has already been demonstrated in practice to be both useful and accurate.

  11. Global seismic inversion as the next standard step in the processing sequence

    Energy Technology Data Exchange (ETDEWEB)

    Maver, Kim G.; Hansen, Lars S.; Jepsen, Anne-Marie; Rasmussen, Klaus B.

    1998-12-31

    Seismic inversion of post stack seismic data has until recently been regarded as a reservoir oriented method since the standard inversion techniques rely on extensive well control and a detailed user derived input model. Most seismic inversion techniques further requires a stable wavelet. As a consequence seismic inversion is mainly utilised in mature areas focusing of specific zones only after the seismic data has been interpreted and is well understood. By using an advanced 3-D global technique, seismic inversion is presented as the next standard step in the processing sequence. The technique is robust towards noise within the seismic data, utilizes a time variant wavelet, and derives a low frequency model utilizing the stacking velocities and only limited well control. 4 figs.

  12. Study on structural seismic margin and probabilistic seismic risk. Development of a structural capacity-seismic risk diagram

    International Nuclear Information System (INIS)

    Nakajima, Masato; Ohtori, Yasuki; Hirata, Kazuta

    2010-01-01

    Seismic margin is extremely important index and information when we evaluate and account seismic safety of critical structures, systems and components quantitatively. Therefore, it is required that electric power companies evaluate the seismic margin of each plant in back-check of nuclear power plants in Japan. The seismic margin of structures is usually defined as a structural capacity margin corresponding to design earthquake ground motion. However, there is little agreement as to the definition of the seismic margin and we have no knowledge about a relationship between the seismic margin and seismic risk (annual failure probability) which is obtained in PSA (Probabilistic Safety Assessment). The purpose of this report is to discuss a definition of structural seismic margin and to develop a diagram which can identify a relation between seismic margin and seismic risk. The main results of this paper are described as follows: (1) We develop seismic margin which is defined based on the fact that intensity of earthquake ground motion is more appropriate than the conventional definition (i.e., the response-based seismic margin) for the following reasons: -seismic margin based on earthquake ground motion is invariant where different typed structures are considered, -stakeholders can understand the seismic margin based on the earthquake ground motion better than the response-based one. (2) The developed seismic margin-risk diagram facilitates us to judge easily whether we need to perform detailed probabilistic risk analysis or only deterministic analysis, given that the reference risk level although information on the uncertainty parameter beta is not obtained. (3) We have performed numerical simulations based on the developed method for four sites in Japan. The structural capacity-risk diagram differs depending on each location because the diagram is greatly influenced by seismic hazard information for a target site. Furthermore, the required structural capacity

  13. Critical assessment of day time traffic noise level at curbside open-air microenvironment of Kolkata City, India.

    Science.gov (United States)

    Kundu Chowdhury, Anirban; Debsarkar, Anupam; Chakrabarty, Shibnath

    2015-01-01

    The objective of the research work is to assess day time traffic noise level at curbside open-air microenvironment of Kolkata city, India under heterogeneous environmental conditions. Prevailing traffic noise level in terms of A-weighted equivalent noise level (Leq) at the microenvironment was in excess of 12.6 ± 2.1 dB(A) from the day time standard of 65 dB(A) for commercial area recommended by the Central Pollution Control Board (CPCB) of India. Noise Climate and Traffic Noise Index of the microenvironment were accounted for 13 ± 1.8 dB(A) and 88.8 ± 6.1 dB(A) respectively. A correlation analysis explored that prevailing traffic noise level of the microenvironment had weak negative (-0.21; p air temperature and relative humidity. A Varimax rotated principal component analysis explored that motorized traffic volume had moderate positive loading with background noise component (L90, L95, L99) and prevailing traffic noise level had very strong positive loading with peak noise component (L1, L5, L10). Background and peak noise component cumulatively explained 80.98 % of variance in the data set. Traffic noise level at curbside open-air microenvironment of Kolkata City was higher than the standard recommended by CPCB of India. It was highly annoying also. Air temperature and relative humidity had little influence and the peak noise component had the most significant influence on the prevailing traffic noise level at curbside open-air microenvironment. Therefore, traffic noise level at the microenvironment of the city can be reduced with careful honking and driving.

  14. Time-lapse seismic attribute analysis for a water-flooded reservoir

    International Nuclear Information System (INIS)

    Jin, Long; Sen, M K; Stoffa, P L; Seif, R K

    2008-01-01

    One of the goals of time-lapse seismic monitoring is the direct detection of the fluid front and two-phase contact area. However, several factors affect the quality of time-lapse seismic difference data and decrease detectability. One of these factors is random noise. In this paper, we propose five different methods aimed at improving the quality and detectability of noisy time-lapse seismic difference data. Common to these methods is the transform of the differences to a domain where the time-lapse signal and random noise are well separated. Our proposed methods include direct Fourier transform based spectral decomposition, bispectra, wavelet transform, singular value decomposition and hybrid methods. We also propose a method that combines multiple time-lapse difference data and gives a final difference which enhances the common part and attenuates the differences of the multiple difference images resulting in a better detectability than the original images. A synthetic time-lapse model is used to demonstrate the feasibility of our proposed methods

  15. A Comparative Land Use-Based Analysis of Noise Pollution Levels in Selected Urban Centers of Nigeria.

    Science.gov (United States)

    Baloye, David O; Palamuleni, Lobina G

    2015-09-29

    Growth in the commercialization, mobility and urbanization of human settlements across the globe has greatly exposed world urban population to potentially harmful noise levels. The situation is more disturbing in developing countries like Nigeria, where there are no sacrosanct noise laws and regulations. This study characterized noise pollution levels in Ibadan and Ile-Ife, two urban areas of Southwestern Nigeria that have experienced significant increases in population and land use activities. Eight hundred noise measurements, taken at 20 different positions in the morning, afternoon, and evening of carefully selected weekdays, in each urban area, were used for this study. Findings put the average noise levels in the urban centers at between 53 dB(A) and 89 dB (A), a far cry from the World Health Organization (WHO) permissible limits in all the land use types, with highest noise pollution levels recorded for transportation, commercial, residential and educational land use types. The result of the one-way ANOVA test carried out on the dependent variable noise and fixed factor land use types reveals a statistically significant mean noise levels across the study area (F(3,34) = 15.13, p = 0.000). The study underscores noise pollution monitoring and the urgent need to control urban noise pollution with appropriate and effective policies.

  16. A noise level prediction method based on electro-mechanical frequency response function for capacitors.

    Science.gov (United States)

    Zhu, Lingyu; Ji, Shengchang; Shen, Qi; Liu, Yuan; Li, Jinyu; Liu, Hao

    2013-01-01

    The capacitors in high-voltage direct-current (HVDC) converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF) is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective.

  17. Sedimentary noise and sea levels linked to land-ocean water exchange and obliquity forcing.

    Science.gov (United States)

    Li, Mingsong; Hinnov, Linda A; Huang, Chunju; Ogg, James G

    2018-03-08

    In ancient hothouses lacking ice sheets, the origins of large, million-year (myr)-scale sea-level oscillations remain a mystery, challenging current models of sea-level change. To address this mystery, we develop a sedimentary noise model for sea-level changes that simultaneously estimates geologic time and sea level from astronomically forced marginal marine stratigraphy. The noise model involves two complementary approaches: dynamic noise after orbital tuning (DYNOT) and lag-1 autocorrelation coefficient (ρ 1 ). Noise modeling of Lower Triassic marine slope stratigraphy in South China reveal evidence for global sea-level variations in the Early Triassic hothouse that are anti-phased with continental water storage variations in the Germanic Basin. This supports the hypothesis that long-period (1-2 myr) astronomically forced water mass exchange between land and ocean reservoirs is a missing link for reconciling geological records and models for sea-level change during non-glacial periods.

  18. Obtaining and Estimating Low Noise Floors in Vibration Sensors

    DEFF Research Database (Denmark)

    Brincker, Rune; Larsen, Jesper Abildgaard

    2007-01-01

    For some applications like seismic applications and measuring ambient vibrations in structures, it is essential that the noise floors of the sensors and other system components are low and known to the user. Some of the most important noise sources are reviewed and it is discussed how the sensor...... can be designed in order to obtain a low noise floor. Techniques to estimate the noise floors for sensors are reviewed and are demonstrated on a commercial commonly used sensor for vibration testing. It is illustrated how the noise floor can be calculated using the coherence between simultaneous...

  19. Multi-functional smart aggregate-based structural health monitoring of circular reinforced concrete columns subjected to seismic excitations

    International Nuclear Information System (INIS)

    Gu, Haichang; Song, Gangbing; Moslehy, Yashar; Mo, Y L; Sanders, David

    2010-01-01

    In this paper, a recently developed multi-functional piezoceramic-based device, named the smart aggregate, is used for the health monitoring of concrete columns subjected to shake table excitations. Two circular reinforced concrete columns instrumented with smart aggregates were fabricated and tested with a recorded seismic excitation at the structural laboratory at the University of Nevada—Reno. In the tests, the smart aggregates were used to perform multiple monitoring functions that included dynamic seismic response detection, structural health monitoring and white noise response detection. In the proposed health monitoring approach, a damage index was developed on the basis of the comparison of the transfer function with the baseline function obtained in the healthy state. A sensor-history damage index matrix is developed to monitor the damage evolution process. Experimental results showed that the acceleration level can be evaluated from the amplitude of the dynamic seismic response; the damage statuses at different locations were evaluated using a damage index matrix; the first modal frequency obtained from the white noise response decreased with increase of the damage severity. The proposed multi-functional smart aggregates have great potential for use in the structural health monitoring of large-scale concrete structures

  20. Assessment of ambient noise levels in the intensive care unit of a university hospital

    Directory of Open Access Journals (Sweden)

    Hatem O Qutub

    2009-01-01

    Conclusion : Some sources of environmental noise, such as the use of oxygen, suction equipment or respirators are unavoidable. Nevertheless, hospital ICUs should have measures to minimize the level of exposure to noise in the ICU. Further research in this area might focus on the noise level and other modifiable environmental stress factors in the ICU that affect patients as well as the staff.

  1. Seismic exploration?scale velocities and structure from ambient seismic noise (>1?Hz)

    NARCIS (Netherlands)

    Draganov, D.S.; Campman, X.; Thorbecke, J.W.; Verdel, A.; Wapenaar, C.P.A.

    2013-01-01

    The successful surface waves retrieval in solid?Earth seismology using long?time correlations and subsequent tomographic images of the crust have sparked interest in extraction of subsurface information from noise in the exploration seismology. Subsurface information in exploration seismology is

  2. Seismic exploration-scale velocities and structure from ambient seismic noise (>1 Hz)

    NARCIS (Netherlands)

    Draganov, D.; Campman, X.; Thorbecke, J.; Verdel, A.; Wapenaar, K.

    2013-01-01

    The successful surface waves retrieval in solid-Earth seismology using long-time correlations and subsequent tomographic images of the crust have sparked interest in extraction of subsurface information from noise in the exploration seismology. Subsurface information in exploration seismology is

  3. Level-1 seismic probabilistic risk assessment for a PWR plant

    International Nuclear Information System (INIS)

    Kondo, Keisuke; Nishio, Masahide; Fujimoto, Haruo; Ichitsuka, Akihiro

    2014-01-01

    In Japan, revised Seismic Design Guidelines for the domestic light water reactors was published on September 19, 2006. These new guidelines have introduced the purpose to confirm that residual risk resulting from earthquake that exceeds the design limit seismic ground motion (Ss) is sufficiently small, based on the probabilistic risk assessment (PRA) method, in addition to conventional deterministic design base methodology. In response to this situation, JNES had been working to improve seismic PRA (SPRA) models for individual domestic light water reactors. In case of PWR in Japan, total of 24 plants were grouped into 11 categories to develop individual SPRA model. The new regulatory rules against the Fukushima dai-ichi nuclear power plants' severe accidents occurred on March 11, 2011, are going to be enforced in July 2013 and utilities are necessary to implement additional safety measures to avoid and mitigate severe accident occurrence due to external events such as earthquake and tsunami, by referring to the results of severe accident study including SPRA. In this paper a SPRA model development for a domestic 3-loop PWR plant as part of the above-mentioned 11 categories is described. We paid special attention to how to categorize initiating events that are specific to seismic phenomena and how to confirm the effect of the simultaneous failure probability calculation model for the multiple components on the result of core damage frequency evaluation. Simultaneous failure probability for multiple components has been evaluated by power multiplier method. Then tentative level-1 seismic probabilistic risk assessment (SPRA) has been performed by the developed SPSA model with seismic hazard and fragility data. The base case was evaluated under the condition with calculated fragility data and conventional power multiplier. The difference in CDF between the case of conventional power multiplier and that of power multiplier=1 (complete dependence) was estimated to be

  4. Suspension-thermal noise in spring–antispring systems for future gravitational-wave detectors

    Science.gov (United States)

    Harms, Jan; Mow-Lowry, Conor M.

    2018-01-01

    Spring–antispring systems have been investigated in the context of low-frequency seismic isolation in high-precision optical experiments. These systems provide the possibility to tune the fundamental resonance frequency to, in principle, arbitrarily low values, and at the same time maintain a compact design. It was argued though that thermal noise in spring–antispring systems would not be as small as one may naively expect from lowering the fundamental resonance frequency. In this paper, we present calculations of suspension-thermal noise for spring–antispring systems potentially relevant in future gravitational-wave detectors, i.e. the beam-balance tiltmeter, and the Roberts linkage. We find a concise expression of the suspension-thermal noise spectrum, which assumes a form very similar to the well-known expression for a simple pendulum. For systems such as the Roberts linkage foreseen as passive seismic isolation, we find that while they can provide strong seismic isolation due to a very low fundamental resonance frequency, their thermal noise is determined by the dimension of the system and is insensitive to fine-tunings of the geometry that can strongly influence the resonance frequency. By analogy, i.e. formal similarity of the equations of motion, this is true for all horizontal mechanical isolation systems with spring–antispring dynamics. This imposes strict requirements on mechanical spring–antispring systems for seismic isolation in potential future low-frequency gravitational-wave detectors as we discuss for the four main concepts, atom-interferometric, superconducting, torsion-bars, and conventional laser interferometer, and generally suggests that thermal noise needs to be evaluated carefully for high-precision experiments implementing spring–antispring dynamics.

  5. High-resolution and super stacking of time-reversal mirrors in locating seismic sources

    KAUST Repository

    Cao, Weiping

    2011-07-08

    Time reversal mirrors can be used to backpropagate and refocus incident wavefields to their actual source location, with the subsequent benefits of imaging with high-resolution and super-stacking properties. These benefits of time reversal mirrors have been previously verified with computer simulations and laboratory experiments but not with exploration-scale seismic data. We now demonstrate the high-resolution and the super-stacking properties in locating seismic sources with field seismic data that include multiple scattering. Tests on both synthetic data and field data show that a time reversal mirror has the potential to exceed the Rayleigh resolution limit by factors of 4 or more. Results also show that a time reversal mirror has a significant resilience to strong Gaussian noise and that accurate imaging of source locations from passive seismic data can be accomplished with traces having signal-to-noise ratios as low as 0.001. Synthetic tests also demonstrate that time reversal mirrors can sometimes enhance the signal by a factor proportional to the square root of the product of the number of traces, denoted as N and the number of events in the traces. This enhancement property is denoted as super-stacking and greatly exceeds the classical signal-to-noise enhancement factor of. High-resolution and super-stacking are properties also enjoyed by seismic interferometry and reverse-time migration with the exact velocity model. © 2011 European Association of Geoscientists & Engineers.

  6. Passive seismic investigation of Harrat Rahat

    Energy Technology Data Exchange (ETDEWEB)

    Mellors, Robert J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-04-07

    Ambient noise correlation was applied to 18 months of continuous seismic data from 14 stations. The procedure of Bensen et al [2007] was followed with some changes to optimize signal-to-noise of the results. The 18 months of correlations (representing about 1 week of CPU time on a 12 core machine) were stacked and manually inspected to yield about 40 cross-correlations. These cross-correlations represent the Green’s function between the station pairs and will be analyzed in part two of this project to yield velocity structure.

  7. On the attenuation of the ambient seismic field

    International Nuclear Information System (INIS)

    Weemstra, C.

    2013-01-01

    Although myriad applications exploiting the ambient seismic field have been reported to date, comparatively little attention has been paid to its potential to resolve subsurface attenuation. The ambient seismic field, however, may ultimately prove itself an invaluable asset in constraining subsurface attenuation structure. Especially areas with dense seismometer coverage hold great potential. Moreover, since this coverage continues to grow, significant developments may await in the future. Subsurface structure in terms of attenuation is of great importance for many reasons. For example, knowledge of the attenuation structure may aid in predicting ground motions caused by future large earthquakes. From a scientific perspective, a great deal of new information may be extracted, potentially fostering research in related fields (e.g., geodynamics, hydrology). Both from an environmental and economic point of view, inversion of the ambient seismic wavefield for attenuation structure may in the future provide a means to image hydrocarbon reservoirs. In sufficiently diffuse wavefields, simple cross-correlation of long noise time series recorded by two receivers results in the response at one of the receivers as if there was a source at the position of the other. I present a case study that shows that thus retrieved surface waves can be used to recover attenuation beneath an array of ocean-bottom seismometers. Given the small aperture of the seismic survey, this is unprecedented. Unambiguous interpretation of recovered attenuation values is of major importance. Lack of understanding of the effect that preprocessing has on the amplitude of the noise cross-correlation prevents such unambiguous interpretation. I carefully examine the effect spectral whitening has on the noise cross-correlation. Emphasis is given to the dependence of the amplitudes on the length of the time windows employed in the cross-correlation procedure. Short time-window lengths may require an additional

  8. A comparative study of noise pollution levels in some selected areas in Ilorin Metropolis, Nigeria.

    Science.gov (United States)

    Oyedepo, Olayinka S; Saadu, Abdullahi A

    2009-11-01

    The noise pollution is a major problem for the quality of life in urban areas. This study was conducted to compare the noise pollution levels at busy roads/road junctions, passengers loading parks, commercial, industrial and residential areas in Ilorin metropolis. A total number of 47-locations were selected within the metropolis. Statistical analysis shows significant difference (P noise pollution levels between industrial areas and low density residential areas, industrial areas and high density areas, industrial areas and passengers loading parks, industrial areas and commercial areas, busy roads/road junctions and low density areas, passengers loading parks and commercial areas and commercial areas and low density areas. There is no significant difference (P > 0.05) in noise pollution levels between industrial areas and busy roads/road junctions, busy roads/road junctions and high density areas, busy roads/road junctions and passengers loading parks, busy roads/road junctions and commercial areas, passengers loading parks and high density areas, passengers loading parks and commercial areas and commercial areas and high density areas. The results show that Industrial areas have the highest noise pollution levels (110.2 dB(A)) followed by busy roads/Road junctions (91.5 dB(A)), Passengers loading parks (87.8 dB(A)) and Commercial areas (84.4 dB(A)). The noise pollution levels in Ilorin metropolis exceeded the recommended level by WHO at 34 of 47 measuring points. It can be concluded that the city is environmentally noise polluted and road traffic and industrial machineries are the major sources of it. Noting the noise emission standards, technical control measures, planning and promoting the citizens awareness about the high noise risk may help to relieve the noise problem in the metropolis.

  9. Advantages of binaural amplification to acceptable noise level of directional hearing aid users.

    Science.gov (United States)

    Kim, Ja-Hee; Lee, Jae Hee; Lee, Ho-Ki

    2014-06-01

    The goal of the present study was to examine whether Acceptable Noise Levels (ANLs) would be lower (greater acceptance of noise) in binaural listening than in monaural listening condition and also whether meaningfulness of background speech noise would affect ANLs for directional microphone hearing aid users. In addition, any relationships between the individual binaural benefits on ANLs and the individuals' demographic information were investigated. Fourteen hearing aid users (mean age, 64 years) participated for experimental testing. For the ANL calculation, listeners' most comfortable listening levels and background noise level were measured. Using Korean ANL material, ANLs of all participants were evaluated under monaural and binaural amplification with a counterbalanced order. The ANLs were also compared across five types of competing speech noises, consisting of 1- through 8-talker background speech maskers. Seven young normal-hearing listeners (mean age, 27 years) participated for the same measurements as a pilot testing. The results demonstrated that directional hearing aid users accepted more noise (lower ANLs) with binaural amplification than with monaural amplification, regardless of the type of competing speech. When the background speech noise became more meaningful, hearing-impaired listeners accepted less amount of noise (higher ANLs), revealing that ANL is dependent on the intelligibility of the competing speech. The individuals' binaural advantages in ANLs were significantly greater for the listeners with longer experience of hearing aids, yet not related to their age or hearing thresholds. Binaural directional microphone processing allowed hearing aid users to accept a greater amount of background noise, which may in turn improve listeners' hearing aid success. Informational masking substantially influenced background noise acceptance. Given a significant association between ANLs and duration of hearing aid usage, ANL measurement can be useful for

  10. Judgments of aircraft noise in a traffic noise background

    Science.gov (United States)

    Powell, C. A.; Rice, C. G.

    1975-01-01

    An investigation was conducted to determine subjective response to aircraft noise in different road traffic backgrounds. In addition, two laboratory techniques for presenting the aircraft noise with the background noise were evaluated. For one technique, the background noise was continuous over an entire test session; for the other, the background noise level was changed with each aircraft noise during a session. Subjective response to aircraft noise was found to decrease with increasing background noise level, for a range of typical indoor noise levels. Subjective response was found to be highly correlated with the Noise Pollution Level (NPL) measurement scale.

  11. Wideband noise observed at ground level in the auroral region

    International Nuclear Information System (INIS)

    Benson, R.F.; Desch, M.D.

    1991-01-01

    A sideband noise event was detected at ground level from the Andoya Rocket Range in Norway in January 1989. The signals were observed on four commercial communication receivers (tuned to 159, 515, 905, and 1200 kHz), an ionosonde (200-kHz to 3.5-MHz interference-free observations) and a riometer (32.5 MHz). The event, which occurred during a period of magnetic disturbance near magnetic midnight, was the only one observed during nearly 3 weeks of operations. This low frequency-of-occurrence is attributed partly to high local noise levels. The ease with which this event was identified on the ionograms produced by the local ionosonde suggests that routine ionosonde recordings should be inspected in search for such events. Such an effort would enhance existing research directed toward developing techniques for identifying quiet communication channels and help to identify the origin and frequency-of-occurrence of high-latitude wideband noise events. 20 refs

  12. Photonic microwave signals with zeptosecond-level absolute timing noise

    Science.gov (United States)

    Xie, Xiaopeng; Bouchand, Romain; Nicolodi, Daniele; Giunta, Michele; Hänsel, Wolfgang; Lezius, Matthias; Joshi, Abhay; Datta, Shubhashish; Alexandre, Christophe; Lours, Michel; Tremblin, Pierre-Alain; Santarelli, Giorgio; Holzwarth, Ronald; Le Coq, Yann

    2017-01-01

    Photonic synthesis of radiofrequency (RF) waveforms revived the quest for unrivalled microwave purity because of its ability to convey the benefits of optics to the microwave world. In this work, we perform a high-fidelity transfer of frequency stability between an optical reference and a microwave signal via a low-noise fibre-based frequency comb and cutting-edge photodetection techniques. We demonstrate the generation of the purest microwave signal with a fractional frequency stability below 6.5 × 10-16 at 1 s and a timing noise floor below 41 zs Hz-1/2 (phase noise below -173 dBc Hz-1 for a 12 GHz carrier). This outperforms existing sources and promises a new era for state-of-the-art microwave generation. The characterization is achieved through a heterodyne cross-correlation scheme with the lowermost detection noise. This unprecedented level of purity can impact domains such as radar systems, telecommunications and time-frequency metrology. The measurement methods developed here can benefit the characterization of a broad range of signals.

  13. Theory of deep level trap effects on generation-recombination noise in HgCdTe photoconductors

    International Nuclear Information System (INIS)

    Iverson, A.E.; Smith, D.L.

    1985-01-01

    We present a theory of the effect of deep level centers on the generation-recombination (g-r) noise and responsivity of an intrinsic photoconductor. The deep level centers can influence the g-r noise and responsivity in three main ways: (i) they can shorten the bulk carrier lifetime by Shockley--Read--Hall recombination; (ii) for some values of the capture cross sections, deep level densities, and temperature, the deep levels can trap a significant fraction of the photogenerated minority carriers. This trapping reduces the effective minority carrier mobility and diffusivity and thus reduces the effect of carrier sweep out on both g-r noise and responsivity; (iii) the deep level centers add a new thermal noise source, which results from fluctuations between bound and free carriers. The strength of this new noise source decreases with decreasing temperature at a slower rate than band-to-band thermal g-r noise. Calculations have been performed for a X = 0.21, n-type Hg/sub 1-x/Cd/sub x/Te photoconductor using the parameters of a commonly occurring deep level center in this material. We find that for typical operating conditions photoconductive detector performance begins to degrade as the deep level density begins to exceed 10 16 cm -3

  14. Listening level of music through headphones in train car noise environments.

    Science.gov (United States)

    Shimokura, Ryota; Soeta, Yoshiharu

    2012-09-01

    Although portable music devices are useful for passing time on trains, exposure to music using headphones for long periods carries the risk of damaging hearing acuity. The aim of this study is to examine the listening level of music through headphones in the noisy environment of a train car. Eight subjects adjusted the volume to an optimum level (L(music)) in a simulated noisy train car environment. In Experiment I, the effects of noise level (L(train)) and type of train noise (rolling, squealing, impact, and resonance) were examined. Spectral and temporal characteristics were found to be different according to the train noise type. In Experiment II, the effects of L(train) and type of music (five vocal and five instrumental music) were examined. Each music type had a different pitch strength and spectral centroid, and each was evaluated by φ(1) and W(φ(0)), respectively. These were classified as factors of the autocorrelation function (ACF) of the music. Results showed that L(music) increased as L(train) increased in both experiments, while the type of music greatly influenced L(music). The type of train noise, however, only slightly influenced L(music). L(music) can be estimated using L(train) and the ACF factors φ(1) and W(φ(0)).

  15. Seismic signatures of the Lodgepole fractured reservoir in Utah-Wyoming overthrust belt

    Energy Technology Data Exchange (ETDEWEB)

    Parra, J.; Collier, H.; Angstman, B.

    1997-08-01

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft. For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.

  16. Design and implementation of a low-cost multichannel seismic noise recorder for array measurements

    Science.gov (United States)

    Soler-Llorens, Juan Luis; Juan Giner-Caturla, Jose; Molina-Palacios, Sergio; Galiana-Merino, Juan Jose; Rosa-Herranz, Julio; Agea-Medina, Noelia

    2017-04-01

    Soil characterization is the starting point for seismic hazard studies. Currently, the methods based on ambient noise measurements are very used because they are non-invasive methods and relatively easy to implement in urban areas. Among these methods, the analysis of array measurements provides the dispersion curve and subsequently the shear-wave velocity profile associated to the site under study. In this case, we need several sensors recording simultaneously and a data acquisition system with one channel by sensor, what can become the complete equipment unaffordable for small research groups. In this work, we have designed and implemented a low-cost multichannel ambient noise recorder for array measurements. The complete system is based on Arduino, an open source electronic development platform, which allows recording 12 differential input channels simultaneously. Besides, it is complemented with a conditioning circuit that includes an anti-aliasing filter and a selectable gain between 0 and 40dB. The data acquisition is set up through a user-friendly graphical user interface. It is important to note that the electronic scheme as well as the programming code are open hardware and software, respectively, so it allows other researchers to suite the system to their particular requirements. The developed equipment has been tested at several sites around the province of Alicante (southeast of Spain), where the soil characteristics are well-known from previous studies. Array measurements have been taken and after that, the recorded data have been analysed using the frequency-wavenumber (f-k) and the extended spatial autocorrelation (ESAC) methods. The comparison of the obtained dispersion curves with the ones obtained in previous studies shows the suitability of the implemented low-cost system for array measurements.

  17. Investment strategy due to the minimization of portfolio noise level by observations of coarse-grained entropy

    OpenAIRE

    Krzysztof Urbanowicz; Janusz A. Holyst

    2004-01-01

    Using a recently developed method of noise level estimation that makes use of properties of the coarse grained-entropy we have analyzed the noise level for the Dow Jones index and a few stocks from the New York Stock Exchange. We have found that the noise level ranges from 40 to 80 percent of the signal variance. The condition of a minimal noise level has been applied to construct optimal portfolios from selected shares. We show that implementation of a corresponding threshold investment stra...

  18. A procedure for noise uncoupling in laser interferometry

    CERN Document Server

    Barone, F; Rosa, R D; Eleuteri, A; Milano, L; Qipiani, K

    2002-01-01

    A numerical procedure for noise recognition and uncoupling is described. The procedure is applied to a Michelson interferometer and is effective in seismic and acoustic noise uncoupling from the output signal of the interferometer. Due to the low data flow coming from the instrumentation this uncoupling can be performed in real time and it is useful as a data quality procedure for interferometer data output.

  19. STUDY ON NOISE LEVEL GENERATED BY HUMAN ACTIVITIES IN SIBIU CITY, ROMANIA

    Directory of Open Access Journals (Sweden)

    Cristina STANCA-MOISE

    2014-10-01

    Full Text Available In this paper I have proposed an analysis and monitoring of the noise sources in the open spaces of air traffic, rail and car in Sibiu. From centralizing data obtained from the analysis of the measurements performed with equipment noise levels, we concluded that the noise and vibration produced by means of Transportation (air, road, rail can affect human health if they exceed limits. Noise is present and part of our lives and always a source of pollution as any of modern man is not conscious.

  20. The seismic monitoring network of Mt. Vesuvius

    Directory of Open Access Journals (Sweden)

    Massimo Orazi

    2013-11-01

    Full Text Available Mt. Vesuvius (southern Italy is one of the most hazardous volcanoes in the world. Its activity is currently characterized by moderate seismicity, with hypocenters located beneath the crater zone with depth rarely exceeding 5 km and magnitudes generally less than 3. The current configuration of the seismic monitoring network of Mt. Vesuvius consists of 18 seismic stations and 7 infrasound microphones. During the period 2006-2010 a seismic array with 48 channels was also operative. The station distribution provides appropriate coverage of the area around the volcanic edifice. The current development of the network and its geometry, under conditions of low seismic noise, allows locating seismic events with M<1. Remote instruments continuously transmit data to the main acquisition center in Naples. Data transmission is realized using different technological solutions based on UHF, Wi-Fi radio links, and TCP/IP client-server applications. Data are collected in the monitoring center of the Osservatorio Vesuviano (Italian National Institute of Geophysics and Volcanology, Naples section, which is equipped with systems for displaying and analyzing signals, using both real-time automatic and manual procedures. 24-hour surveillance allows to immediately communicate any significant anomaly to the Civil Protection authorities.

  1. Multiple attenuation to reflection seismic data using Radon filter and Wave Equation Multiple Rejection (WEMR) method

    Energy Technology Data Exchange (ETDEWEB)

    Erlangga, Mokhammad Puput [Geophysical Engineering, Institut Teknologi Bandung, Ganesha Street no.10 Basic Science B Buliding fl.2-3 Bandung, 40132, West Java Indonesia puput.erlangga@gmail.com (Indonesia)

    2015-04-16

    Separation between signal and noise, incoherent or coherent, is important in seismic data processing. Although we have processed the seismic data, the coherent noise is still mixing with the primary signal. Multiple reflections are a kind of coherent noise. In this research, we processed seismic data to attenuate multiple reflections in the both synthetic and real seismic data of Mentawai. There are several methods to attenuate multiple reflection, one of them is Radon filter method that discriminates between primary reflection and multiple reflection in the τ-p domain based on move out difference between primary reflection and multiple reflection. However, in case where the move out difference is too small, the Radon filter method is not enough to attenuate the multiple reflections. The Radon filter also produces the artifacts on the gathers data. Except the Radon filter method, we also use the Wave Equation Multiple Elimination (WEMR) method to attenuate the long period multiple reflection. The WEMR method can attenuate the long period multiple reflection based on wave equation inversion. Refer to the inversion of wave equation and the magnitude of the seismic wave amplitude that observed on the free surface, we get the water bottom reflectivity which is used to eliminate the multiple reflections. The WEMR method does not depend on the move out difference to attenuate the long period multiple reflection. Therefore, the WEMR method can be applied to the seismic data which has small move out difference as the Mentawai seismic data. The small move out difference on the Mentawai seismic data is caused by the restrictiveness of far offset, which is only 705 meter. We compared the real free multiple stacking data after processing with Radon filter and WEMR process. The conclusion is the WEMR method can more attenuate the long period multiple reflection than the Radon filter method on the real (Mentawai) seismic data.

  2. SeismoDome: Sonic and visual representation of earthquakes and seismic waves in the planetarium

    Science.gov (United States)

    Holtzman, B. K.; Candler, J.; Repetto, D.; Pratt, M. J.; Paté, A.; Turk, M.; Gualtieri, L.; Peter, D. B.; Trakinski, V.; Ebel, D. S. S.; Gossmann, J.; Lem, N.

    2017-12-01

    Since 2014, we have produced four "Seismodome" public programs in the Hayden Planetarium at the American Museum of Natural History in New York City. To teach the general public about the dynamics of the Earth, we use a range of seismic data (seismicity catalogs, surface and body wave fields, ambient noise, free oscillations) to generate movies and sounds conveying aspects of the physics of earthquakes and seismic waves. The narrative aims to stretch people's sense of time and scale, starting with 2 billion years of convection, then zooming in seismicity over days to twenty years at different length scales, to hours of global seismic wave propagation, all compressed to minute long movies. To optimize the experience in the planetarium, the 180-degree fisheye screen corresponds directly to the surface of the Earth, such that the audience is inside the planet. The program consists of three main elements (1) Using sonified and animated seismicity catalogs, comparison of several years of earthquakes on different plate boundaries conveys the dramatic differences in their dynamics and the nature of great and "normal" earthquakes. (2) Animations of USArray data (based on "Ground Motion Visualizations" methods from IRIS but in 3D, with added sound) convey the basic observations of seismic wave fields, with which we raise questions about what they tell us about earthquake physics and the Earth's interior structure. (3) Movies of spectral element simulations of global seismic wave fields synchronized with sonified natural data push these questions further, especially when viewed from the interior of the planet. Other elements include (4) sounds of the global ambient noise field coupled to movies of mean ocean wave height (related to the noise source) and (5) three months of free oscillations / normal modes ringing after the Tohoku earthquake. We use and develop a wide range of sonification and animation methods, written mostly in python. Flat-screen versions of these movies

  3. Quality-aware features-based noise level estimator for block matching and three-dimensional filtering algorithm

    Science.gov (United States)

    Xu, Shaoping; Hu, Lingyan; Yang, Xiaohui

    2016-01-01

    The performance of conventional denoising algorithms is usually controlled by one or several parameters whose optimal settings depend on the contents of the processed images and the characteristics of the noises. Among these parameters, noise level is a fundamental parameter that is always assumed to be known by most of the existing denoising algorithms (so-called nonblind denoising algorithms), which largely limits the applicability of these nonblind denoising algorithms in many applications. Moreover, these nonblind algorithms do not always achieve the best denoised images in visual quality even when fed with the actual noise level parameter. To address these shortcomings, in this paper we propose a new quality-aware features-based noise level estimator (NLE), which consists of quality-aware features extraction and optimal noise level parameter prediction. First, considering that image local contrast features convey important structural information that is closely related to image perceptual quality, we utilize the marginal statistics of two local contrast operators, i.e., the gradient magnitude and the Laplacian of Gaussian (LOG), to extract quality-aware features. The proposed quality-aware features have very low computational complexity, making them well suited for time-constrained applications. Then we propose a learning-based framework where the noise level parameter is estimated based on the quality-aware features. Based on the proposed NLE, we develop a blind block matching and three-dimensional filtering (BBM3D) denoising algorithm which is capable of effectively removing additive white Gaussian noise, even coupled with impulse noise. The noise level parameter of the BBM3D algorithm is automatically tuned according to the quality-aware features, guaranteeing the best performance. As such, the classical block matching and three-dimensional algorithm can be transformed into a blind one in an unsupervised manner. Experimental results demonstrate that the

  4. Existing reflection seismic data re-processing

    International Nuclear Information System (INIS)

    Higashinaka, Motonori; Sano, Yukiko; Kozawa, Takeshi

    2005-08-01

    This document is to report the results of existing seismic data re-processing around Horonobe town, Hokkaido, Japan, which is a part of the Horonobe Underground Research Project. The main purpose of this re-processing is to recognize the subsurface structure of Omagari Fault and fold system around Omagari Fault. The seismic lines for re-processing are TYHR-A3 line and SHRB-2 line, which JAPEX surveyed in 1975. Applying weathering static correction using refraction analysis and noise suppression procedure, we have much enhanced seismic profile. Following information was obtained from seismic re-processing results. TYHR-A3 line: There are strong reflections, dipping to the west. These reflections are corresponding western limb of anticline to the west side of Omagari Fault. SHRB-2 line: There are strong reflections, dipping to the west, at CDP 60-140, while there are reflections, dipping to the east, to the east side of CDP 140. These reflections correspond to the western limb and the eastern limb of the anticline, which is parallel to Omagari FAULT. This seismic re-processing provides some useful information to know the geological structure around Omagari Fault. (author)

  5. [Preventive effects of sound insulation windows on the indoor noise levels in a street residential building in Beijing].

    Science.gov (United States)

    Guo, Bin; Huang, Jing; Guo, Xin-biao

    2015-06-18

    To evaluate the preventive effects of sound insulation windows on traffic noise. Indoor noise levels of the residential rooms (on both the North 4th ring road side and the campus side) with closed sound insulation windows were measured using the sound level meter, and comparisons with the simultaneously measured outdoor noise levels were made. In addition, differences of indoor noise levels between rooms with closed sound insulation windows and open sound insulation windows were also compared. The average outdoor noise levels of the North 4th ring road was higher than 70 dB(A), which exceeded the limitation stated in the "Environmental Quality Standard for Noise" (GB 3096-2008) in our country. However, with the sound insulation windows closed, the indoor noise levels reduced significantly to the level under 35 dB(A) (Pwindows had significant influence on the indoor noise levels (Pwindow, when the sound insulation windows were closed, the indoor noise levels reduced 18.8 dB(A) and 8.3 dB(A) in residential rooms facing North 4th ring road side and campus side, respectively. The results indicated that installation of insulation windows had significant noise reduction effects on street residential buildings especially on the rooms facing major traffic roads. Installation of the sound insulation windows has significant preventive effects on indoor noise in the street residential building.

  6. Performance of an island seismic station for recording T-phases

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, J. A., LLNL

    1998-05-01

    As part of the International Monitoring System (IMS) a worldwide hydroacoustic network consisting of 6 hydrophone and 5 island seismic stations has been planned which will monitor for underwater or low altitude atmospheric explosions. Data from this network is to be integrated with other IMS networks monitoring the Comprehensive Nuclear Test-Ban Treaty. The seismic (T-phase) stations are significantly less sensitive than hydrophones to ocean borne acoustic waves. T-phase signal strength at seismic stations depends on the amplitude of the signal in the water column, the hydroacoustic-seismic conversion efficiency, and loss on the seismic portion of the path through the island. In order to understand how these factors influence the performance of T-phase stations seismic and hydroacoustic data are examined from instruments currently deployed on or around Ascension Island in the South Atlantic Ocean. T-phase recordings for the last 3 years have been collected from the GSN seismic station ASCN on Ascension Island. Surrounding the island are 5 hydrophones which are part of the U.S. Air Force Missile Impact Locating System (MILS). Data from this system have been obtained for some of the events observed at ASCN. Four of the hydrophones are located within 30 km of the coast while the fifth instrument is 100 km to the south. Amplitude spectral estimates of the signal-to-noise levels (SNL) are computed and generally peak between 3 and 8 Hz for both the seismometer and hydrophone data. The seismic SNL generally decays to 1 between 10 and 15 Hz while the hydrophone SNL is still large well above 20 Hz. The ratios of the hydrophone-to-seismometer SNL, at their peak in energy, range between 10 and 100 (20-40 dB) unless a hydrophone is partially blocked by the Ascension Island landmass.

  7. Investment strategy due to the minimization of portfolio noise level by observations of coarse-grained entropy

    Science.gov (United States)

    Urbanowicz, Krzysztof; Hołyst, Janusz A.

    2004-12-01

    Using a recently developed method of noise level estimation that makes use of properties of the coarse-grained entropy, we have analyzed the noise level for the Dow Jones index and a few stocks from the New York Stock Exchange. We have found that the noise level ranges from 40% to 80% of the signal variance. The condition of a minimal noise level has been applied to construct optimal portfolios from selected shares. We show that the implementation of a corresponding threshold investment strategy leads to positive returns for historical data.

  8. The Usability of Noise Level from Rock Cutting for the Prediction of Physico-Mechanical Properties of Rocks

    Science.gov (United States)

    Delibalta, M. S.; Kahraman, S.; Comakli, R.

    2015-11-01

    Because the indirect tests are easier and cheaper than the direct tests, the prediction of rock properties from the indirect testing methods is important especially for the preliminary investigations. In this study, the predictability of the physico-mechanical rock properties from the noise level measured during cutting rock with diamond saw was investigated. Noise measurement test, uniaxial compressive strength (UCS) test, Brazilian tensile strength (BTS) test, point load strength (Is) test, density test, and porosity test were carried out on 54 different rock types in the laboratory. The results were statistically analyzed to derive estimation equations. Strong correlations between the noise level and the mechanical rock properties were found. The relations follow power functions. Increasing rock strength increases the noise level. Density and porosity also correlated strongly with the noise level. The relations follow linear functions. Increasing density increases the noise level while increasing porosity decreases the noise level. The developed equations are valid for the rocks with a compressive strength below 150 MPa. Concluding remark is that the physico-mechanical rock properties can reliably be estimated from the noise level measured during cutting the rock with diamond saw.

  9. Assessment of ambient noise levels in the urban residential streets of Eastern Alexandria, Egypt.

    Science.gov (United States)

    Zaki, Gehan R

    2012-12-01

    Street of Alexandria have numerous unplanned, mixed, and noisy activities that may interfere with public health and comfort. The aim of this study was to assess A-weighted ambient noise levels in urban residential streets of Eastern Alexandria, Egypt, from September 2010 to January 2011, with the objective of recommending corrective actions to minimize high noise levels. A descriptive cross-sectional study was carried out, in which A-weighted ambient noise levels were measured on the basis of 24-h periods, using Ono sokki la-5120--precision integrating sound level meter, from September 2010 to January 2011. The measurements were taken on three streets, which were selected using stratified random sampling. Seven measurement sites, along the three streets under study, were selected by site visits according to predetermined criteria. A-weighted ambient noise levels (LAeq) were the highest [70.7 (24.2) dB] on high-traffic-density and high-human-activity streets followed by streets with moderate and low traffic density and human activity [67.5 (31.3) and 62.8 (38.2) dB], respectively. It varied significantly depending on means of transportation (road traffic, train, and/or tram) and human activities (parking lots, shops, and/or street merchants). The A-weighted ambient noise levels on urban residential streets of Eastern Alexandria, Egypt, exceeded the Egyptian National Standards during the three periods of the day (daytime, evening, and night), except in some relatively quiet locations during the night. Consequently, remedial actions to reduce noise levels were recommended.

  10. The Effect of the Cholesterol Levels on Noise-Induced Hearing Loss.

    Science.gov (United States)

    Demir, Mehmet Gokhan; Aydin, Sedat

    2018-01-01

    Introduction  Noise-induced hearing loss (NIHL), which is one of the most common occupational diseases among industrialized populations, is associated with longstanding exposure to high levels of noise. The pathogenesis of NIHL is not clear, but some genes and their activity at the tissue level have been investigated. Hypercholesterolemia, which can disturb the microcirculation, can be one of the underlying pathologies in hearing loss. Objective  To investigate the relationship between NIHL and hypercholesterolemia. Methods  The study group was selected among workers who had an occupational exposure of 85 dB of noise for at least 10 years. The audiologic assessment was recorded at seven frequencies (500 Hz, 1,000 Hz, 2,000 Hz, 3,000 Hz, 4,000 Hz, 6,000 Hz and 8,000 Hz). A total of 456 workers were included in the study and divided into two groups: the control group (252 patients) and the NIHL group (204 patients). After the audiologic measurement, blood samples were taken and investigated for blood cholesterol levels. According to these results, the groups were compared. Results  Both groups were similarly distributed regarding age and occupational exposure time ( p  > 0.05). We could not detect any association between cholesterol levels and noise-induced hearing loss ( p   0.05). Conclusion  Noise-induced hearing loss is still a common occupational problem that can be prevented by hearing conservation programs and occupational health and safety training. Still, we know little about the relationship between NIHL and hypercholesterolemia. According to our findings, we cannot detect any relationship. Controlled studies and studies with human individuals can be made possible in the future with diagnostic innovations in tissue imaging and tissue microcircular sampling.

  11. A survey of acoustic conditions and noise levels in secondary school classrooms in England.

    Science.gov (United States)

    Shield, Bridget; Conetta, Robert; Dockrell, Julie; Connolly, Daniel; Cox, Trevor; Mydlarz, Charles

    2015-01-01

    An acoustic survey of secondary schools in England has been undertaken. Room acoustic parameters and background noise levels were measured in 185 unoccupied spaces in 13 schools to provide information on the typical acoustic environment of secondary schools. The unoccupied acoustic and noise data were correlated with various physical characteristics of the spaces. Room height and the amount of glazing were related to the unoccupied reverberation time and therefore need to be controlled to reduce reverberation to suitable levels for teaching and learning. Further analysis of the unoccupied data showed that the introduction of legislation relating to school acoustics in England and Wales in 2003 approximately doubled the number of school spaces complying with current standards. Noise levels were also measured during 274 lessons to examine typical levels generated during teaching activities in secondary schools and to investigate the influence of acoustic design on working noise levels in the classroom. Comparison of unoccupied and occupied data showed that unoccupied acoustic conditions affect the noise levels occurring during lessons. They were also related to the time spent in disruption to the lessons (e.g., students talking or shouting) and so may also have an impact upon student behavior in the classroom.

  12. Does the acceptable noise level (ANL) predict hearing-aid use?

    DEFF Research Database (Denmark)

    Olsen, Steen Østergaard; Brännström, K Jonas

    2014-01-01

    OBJECTIVE: It has been suggested that individuals have an inherent acceptance of noise in the presence of speech, and that different acceptance of noise results in different hearing-aid (HA) use. The acceptable noise level (ANL) has been proposed for measurement of this property. It has been...... claimed that the ANL magnitude can predict hearing-aid use patterns. Many papers have been published reporting on different aspects of ANL, but none have challenged the predictive power of ANL. The purpose of this study was to discuss whether ANL can predict HA use and how more reliable ANL results can...... reviewed journals as well as a number of papers from trade journals, posters and oral presentations from audiology conventions. CONCLUSIONS: An inherent acceptance of noise in the presence of speech may exist, but no method for precise measurement of ANL is available. The ANL model for prediction of HA use...

  13. Noise level in a neonatal intensive care unit in Santa Marta - Colombia.

    Science.gov (United States)

    Garrido Galindo, Angélica Patricia; Camargo Caicedo, Yiniva; Velez-Pereira, Andres M

    2017-09-30

    The environment of neonatal intensive care units is influenced by numerous sources of noise emission, which contribute to raise the noise levels, and may cause hearing impairment and other physiological and psychological changes on the newborn, as well as problems with care staff. To evaluate the level and sources of noise in the neonatal intensive care unit. Sampled for 20 consecutive days every 60 seconds in A-weighting curves and fast mode with a Type I sound level meter. Recorded the average, maximum and minimum, and the 10th, 50th and 90th percentiles. The values are integrated into hours and work shift, and studied by analysis of variance. The sources were characterized in thirds of octaves. The average level was 64.00 ±3.62 dB(A), with maximum of 76.04 ±5.73 dB(A), minimum of 54.84 ±2.61dB(A), and background noise of 57.95 ±2.83 dB(A). We found four sources with levels between 16.8-63.3 dB(A). Statistical analysis showed significant differences between the hours and work shift, with higher values in the early hours of the day. The values presented exceed the standards suggested by several organizations. The sources identified and measured recorded high values in low frequencies.

  14. Installation of a very broad band borehole seismic station in Ferrara (Emilia)

    OpenAIRE

    Pesaresi, Damiano; Dall'Olio, Lorella; Rovelli, Antonio; Romanelli, Marco; Barnaba, Carla; Abu Zeid, Nasser

    2012-01-01

    The Istituto Nazionale di Geofisica e Vulcanologia (INGV) is the Italian agency devoted to monitor in real time the seismicity on the Italian territory. The seismicity in Italy is of course variable in time and space, being also very much dependant on local noise conditions. Specifically, monitoring seismicity in an alluvial basin like the Po one is a challenge, due to consistent site effects induced by soft alluvial deposits and bad coupling with the deep bedrock (Steidl et al., 1996). This...

  15. The planning of a passive seismic experiment: the Ketzin case

    Science.gov (United States)

    Rossi, G.; Petronio, L.

    2009-04-01

    In the last years, it has been recognized the importance of using microseismic activity data to gain information on the state and dynamics of a reservoir, notwithstanding the difficulties of recording, localizing the events, interpret them correctly, in terms of developing fractures, or thermal effects. The increasing number of CO2 storage experiments, with the necessity of providing efficient, economic, and long-term monitoring methods, both in the injection and post-injection phases, further encourage the development and improvement of recording and processing techniques. Microseismic signals are typically recorded with downhole sensors. Monitoring with surface sensors is problematic due to increased noise levels and signal attenuation particularly in the near surface. The actual detection distance depends on background noise conditions, seismic attenuation and the microseismic source strength. In the frame of the European project Co2ReMoVe and of the European Network of Excellence Co2GeoNet, a passive seismic experiment was planned in the Ketzin site for geological storage of CO2, a former gas store near Potsdam, object of the CO2SINK European project and inserted also in the European project Co2ReMoVe. Aim of the survey is to complement the CO2-SINK active seismic downhole experiments, adding precious information on the microseismicity induced by stress field changes at the reservoir level and in the overburden, due to the CO2 injection. The baseline survey was done in May 2008 by the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale-OGS (Italy), with the support of the Deutsches GeoForschungsZentrum-GFZ (Germany) and the collaboration of the Institut für Geowissenschaftliche Gemeinschaftsaufgaben-GGA (Germany), shortly before the starting of the CO2 injection (June 30th 2008). A continuous monitoring (about 5 days) was performed by 2 downhole 3C geophones, and 3 surface 3C geophones located around the wells. This paper, based on the analysis of

  16. The Analysis of Low Noise Protection Barriers Influence on Tram Traffic Noise Levels

    Directory of Open Access Journals (Sweden)

    Ahac Maja

    2013-07-01

    Full Text Available The paper describes the analysis of tram traffic noise situation in residential areas in the vicinity of Drzic Avenue, one of the major routes between the northern and southern part of the Croatian capital city Zagreb, and the effect of low barriers placed by the tracks on tram noise mitigation. In order to evaluate the effect of planned protection measure, noise models were produced and verified with short-term field measurements. Calculations were conducted by means of noise prediction software, using European interim noise prediction method and 3D model of analyzed area. Finally, the results of noise calculations for existing tram traffic situation and planned measure of protection are presented on noise maps.

  17. Seismic structure of the upper crust in the Albertine Rift from travel-time and ambient-noise tomography - a comparison

    Science.gov (United States)

    Jakovlev, Andrey; Kaviani, Ayoub; Ruempker, Georg

    2017-04-01

    Here we present results of the investigation of the upper crust in the Albertine rift around the Rwenzori Mountains. We use a data set collected from a temporary network of 33 broadband stations operated by the RiftLink research group between September 2009 and August 2011. During this period, 82639 P-wave and 73408 S-wave travel times from 12419 local and regional earthquakes were registered. This presents a very rare opportunity to apply both local travel-time and ambient-noise tomography to analyze data from the same network. For the local travel-time tomographic inversion the LOTOS algorithm (Koulakov, 2009) was used. The algorithm performs iterative simultaneous inversions for 3D models of P- and S-velocity anomalies in combination with earthquake locations and origin times. 28955 P- and S-wave picks from 2769 local earthquakes were used. To estimate the resolution and stability of the results a number of the synthetic and real data tests were performed. To perform the ambient noise tomography we use the following procedure. First, we follow the standard procedure described by Bensen et al. (2007) as modified by Boué et al. (2014) to compute the vertical component cross-correlation functions between all pairs of stations. We also adapted the algorithm introduced by Boué et al. (2014) and use the WHISPER software package (Briand et al., 2013) to preprocess individual daily vertical-component waveforms. On the next step, for each period, we use the method of Barmin et al. (2001) to invert the dispersion measurements along each path for group velocity tomographic maps. Finally, we adapt a modified version of the algorithm suggested by Macquet et al. (2014) to invert the group velocity maps for shear velocity structure. We apply several tests, which show that the best resolution is obtained at a period of 8 seconds, which correspond to a depth of approximately 6 km. Models of the seismic structure obtained by the two methods agree well at shallow depth of about

  18. Adaptive nonlocal means filtering based on local noise level for CT denoising

    International Nuclear Information System (INIS)

    Li, Zhoubo; Trzasko, Joshua D.; Lake, David S.; Blezek, Daniel J.; Manduca, Armando; Yu, Lifeng; Fletcher, Joel G.; McCollough, Cynthia H.

    2014-01-01

    Purpose: To develop and evaluate an image-domain noise reduction method based on a modified nonlocal means (NLM) algorithm that is adaptive to local noise level of CT images and to implement this method in a time frame consistent with clinical workflow. Methods: A computationally efficient technique for local noise estimation directly from CT images was developed. A forward projection, based on a 2D fan-beam approximation, was used to generate the projection data, with a noise model incorporating the effects of the bowtie filter and automatic exposure control. The noise propagation from projection data to images was analytically derived. The analytical noise map was validated using repeated scans of a phantom. A 3D NLM denoising algorithm was modified to adapt its denoising strength locally based on this noise map. The performance of this adaptive NLM filter was evaluated in phantom studies in terms of in-plane and cross-plane high-contrast spatial resolution, noise power spectrum (NPS), subjective low-contrast spatial resolution using the American College of Radiology (ACR) accreditation phantom, and objective low-contrast spatial resolution using a channelized Hotelling model observer (CHO). Graphical processing units (GPU) implementation of this noise map calculation and the adaptive NLM filtering were developed to meet demands of clinical workflow. Adaptive NLM was piloted on lower dose scans in clinical practice. Results: The local noise level estimation matches the noise distribution determined from multiple repetitive scans of a phantom, demonstrated by small variations in the ratio map between the analytical noise map and the one calculated from repeated scans. The phantom studies demonstrated that the adaptive NLM filter can reduce noise substantially without degrading the high-contrast spatial resolution, as illustrated by modulation transfer function and slice sensitivity profile results. The NPS results show that adaptive NLM denoising preserves the

  19. [Comfort and noise level in infants with helmet interface].

    Science.gov (United States)

    Medina, A; Alvarez Fernández, P; Rey Galán, C; Álvarez Mendiola, P; Álvarez Blanco, S; Vivanco Allende, A

    2015-10-01

    To evaluate comfort and noise intensity using the COMFORT scale in infants who receive respiratory support with a helmet interface. An observational descriptive study was conducted on all infants (1 to 12 months of age) admitted to a PICU from November 1st 2013 to March 31st 2014 and who received non-invasive ventilation with a helmet interface. Tolerance to the interface was assessed by use of the COMFORT scale. The intensity of the noise to which the infants were exposed was measured with a TES1350A HIBOK 412 sound-level meter. Three measurements were made every day. Twenty seven patients with bronchiolitis (median age: 54 days; range: 10 to 256) were included. Median COMFORT score in the first day was 21 points (14 - 28). An increase in patient comfort was found with a gradual decrease in the scores, with a maximum reduction of 22% from the first hours (score of 22) to the fifth day (score of 18). The minimum sound intensity registered was 42dB, and the maximum was 78dB. Background noise intensity was associated with noise intensity in the helmet. No differences were observed in COMFORT score and noise intensity between ventilator devices. Helmet interface was well tolerated by infants. COMFORT score results are an indicator that infants were comfortable or very comfortable. The measured noise intensity was in the safe range permitted by World Health Organization. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  20. Variations in the Parameters of Background Seismic Noise during the Preparation Stages of Strong Earthquakes in the Kamchatka Region

    Science.gov (United States)

    Kasimova, V. A.; Kopylova, G. N.; Lyubushin, A. A.

    2018-03-01

    The results of the long (2011-2016) investigation of background seismic noise (BSN) in Kamchatka by the method suggested by Doct. Sci. (Phys.-Math.) A.A. Lyubushin with the use of the data from the network of broadband seismic stations of the Geophysical Survey of the Russian Academy of Sciences are presented. For characterizing the BSN field and its variability, continuous time series of the statistical parameters of the multifractal singularity spectra and wavelet expansion calculated from the records at each station are used. These parameters include the generalized Hurst exponent α*, singularity spectrum support width Δα, wavelet spectral exponent β, minimal normalized entropy of wavelet coefficients En, and spectral measure of their coherent behavior. The peculiarities in the spatiotemporal distribution of the BSN parameters as a probable response to the earthquakes with M w = 6.8-8.3 that occurred in Kamchatka in 2013 and 2016 are considered. It is established that these seismic events were preceded by regular variations in the BSN parameters, which lasted for a few months and consisted in the reduction of the median and mean α*, Δα, and β values estimated over all the stations and in the increase of the En values. Based on the increase in the spectral measure of the coherent behavior of the four-variate time series of the median and mean values of the considered statistics, the effect of the enhancement of the synchronism in the joint (collective) behavior of these parameters during a certain period prior to the mantle earthquake in the Sea of Okhotsk (May 24, 2013, M w = 8.3) is diagnosed. The procedures for revealing the precursory effects in the variations of the BSN parameters are described and the examples of these effects are presented.

  1. seismic-py: Reading seismic data with Python

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available The field of seismic exploration of the Earth has changed
    dramatically over the last half a century. The Society of Exploration
    Geophysicists (SEG has worked to create standards to store the vast
    amounts of seismic data in a way that will be portable across computer
    architectures. However, it has been impossible to predict the needs of the
    immense range of seismic data acquisition systems. As a result, vendors have
    had to bend the rules to accommodate the needs of new instruments and
    experiment types. For low level access to seismic data, there is need for a
    standard open source library to allow access to a wide range of vendor data
    files that can handle all of the variations. A new seismic software package,
    seismic-py, provides an infrastructure for creating and managing drivers for
    each particular format. Drivers can be derived from one of the known formats
    and altered to handle any slight variations. Alternatively drivers can be
    developed from scratch for formats that are very different from any previously
    defined format. Python has been the key to making driver development easy
    and efficient to implement. The goal of seismic-py is to be the base system
    that will power a wide range of experimentation with seismic data and at the
    same time provide clear documentation for the historical record of seismic
    data formats.

  2. Retrieval of reflections from ambient noise using illumination diagnosis

    Science.gov (United States)

    Vidal, C. Almagro; Draganov, D.; van der Neut, J.; Drijkoningen, G.; Wapenaar, K.

    2014-09-01

    Seismic interferometry (SI) enables the retrieval of virtual sources at the location of receivers. In the case of passive SI, no active sources are used for the retrieval of the reflection response of the subsurface, but ambient-noise recordings only. The resulting retrieved response is determined by the illumination characteristics of the recorded ambient noise. Characteristics like geometrical distribution and signature of the noise sources, together with the complexity of the medium and the length of the noise records, determine the quality of the retrieved virtual-shot events. To retrieve body wave reflections, one needs to correlate body-wave noise. A source of such noise might be regional seismicity. In regions with notable human presence, the dominant noise sources are generally located at or close to the surface. In the latter case, the noise will be dominated by surface waves and consequently also the retrieved virtual common-source panels will contain dominant retrieved surface waves, drowning out possible retrieved reflections. In order to retrieve reflection events, suppression of the surface waves becomes the most important pre-processing goal. Because of the reasons mentioned above, we propose a fast method to evaluate the illumination characteristics of ambient noise using the correlation results from ambient-noise records. The method is based on the analysis of the so-called source function of the retrieved virtual-shot panel, and evaluates the apparent slowness of arrivals in the correlation results that pass through the position of the virtual source and at zero time. The results of the diagnosis are used to suppress the retrieval of surface waves and therefore to improve the quality of the retrieved reflection response. We explain the approach using modelled data from transient and continuous noise sources and an example from a passive field data set recorded at Annerveen, Northern Netherlands.

  3. Statistical analysis of laser-interferometric detector Dylkin-1 data and data on seismic activity

    International Nuclear Information System (INIS)

    Kirillov, R S; Bochkarev, V V; Dulkyn, Academy of Sciences of the Republic of Tatarstan (Russian Federation))" data-affiliation=" (Scientific Center of Gravitational-Wave Research Dulkyn, Academy of Sciences of the Republic of Tatarstan (Russian Federation))" >Skochilov, A F

    2014-01-01

    This work presents statistical analysis of data collected from laser interferometric detector ''Dylkin-1'' and nearby seismic stations. The final goal of Dylkin project consists in creating detector of theoretically predicted gravitational waves produced by binary relativistic astrophysical objects. Currently, works are underway to improve sensitivity of detector by 2-3 orders. The goals of this research were to test isolation of detector from noise caused by seismic waves and to find out whether it is sensitive to variations in the gradient of gravitational potential (acceleration of free fall) caused by free Earth oscillations. Noise isolation has been tested by comparing energy of signals during significant seismic events. Sensitivity to variations in acceleration of free fall has been tested by means of cross-spectral analysis

  4. The impact of noise level on students' learning performance at state elementary school in Medan

    Science.gov (United States)

    Buchari, Matondang, Nazaruddin

    2017-06-01

    This study was conducted to determine the level and impact of noise on pupils' learning performance that was observed through a survey at State Elementary School (SDN 060882), which is located on the corner of Abdullah Lubis Street and Pattimura Medan Street. The study was done by measuring the noise level using the Threshold Limit Value (TLV) by taking 24 locations as the measurement points. The results indicated that the noise levels exceeded the standard TLV >55 dBA as regulated in the Decree of the Minister of Environment No. KEP/48/MENLH/11/1996. According to the data processing, the noise level at school was 70.79 dBA. The classrooms were classified into noisy zones based on the Noise Mapping. Those in Red Zone which noise level were in the range of (69-75 dBA) were Class IIIa, Class IVb, and Class VI. In addition, those in Yellow Zone which were in the range of (65-69 dBA) were Class II, Class IIIa, Class IVa and Class V. The noise brought the physiological impact in the forms of dizziness that had the highest percentage of 22% and emotional and uncomfortable feeling of 21%; the communication impact of teacher's explanation disturbance of 22%; and Pupils' learning performance was evidenced to decline of 22%. Some improvements are suggested to reduce the noise such as the reposition of windows, acoustic material to cover the classrooms' wall, and bamboo trees or grasses as the barried around the school area.

  5. Underwater Noise Pollution at the Strait of Istanbul (Bosphorus

    Directory of Open Access Journals (Sweden)

    Cem Gazioğlu

    2016-12-01

    Full Text Available Underwater noise pollution (UNP has become a major concern in marine habitats, which is intense anthropogenic noise in the marine (aquatic environment. It is caused by ship traffic, oceanographic experiments, and use of explosives in geophysical research, underwater construction, active sonars and seismic survey techniques. Oceans are much nosier than 1960s. Narrow and shallow channel noisy aquatic environments where noise levels reach the highest value is not surprising. The Strait of Istanbul (SoI; Bosphorus is one of the most important maritime passages (app. 50 000 vessel/year or 140 vessel/day which is situated between the Black Sea and the Aegean Sea are also biologically extremely important gateway not only it provides access to a channel. Many of the varieties of fish migration hunting value are realized through the TSS. Local maritime traffic is another important acoustic sources which are more than 3 000 elements (Kesgin and Vardar, 2001 of everyday local traffic in SoI, which are causing noise in the 2 and 10 kHz range. Large vessels create signals both in bands below 1 kHz (main engine, electrical instruments cavitation noise creates higher frequency bands. Almost all elements of marine traffic in SoI located therefore encountered UND in all bands.

  6. Seismic Vulnerability and Performance Level of confined brick walls

    International Nuclear Information System (INIS)

    Ghalehnovi, M.; Rahdar, H. A.

    2008-01-01

    There has been an increase on the interest of Engineers and designers to use designing methods based on displacement and behavior (designing based on performance) Regarding to the importance of resisting structure design against dynamic loads such as earthquake, and inability to design according to prediction of nonlinear behavior element caused by nonlinear properties of constructional material.Economically speaking, easy carrying out and accessibility of masonry material have caused an enormous increase in masonry structures in villages, towns and cities. On the other hand, there is a necessity to study behavior and Seismic Vulnerability in these kinds of structures since Iran is located on the earthquake belt of Alpide.Different reasons such as environmental, economic, social, cultural and accessible constructional material have caused different kinds of constructional structures.In this study, some tied walls have been modeled with software and with relevant accelerator suitable with geology conditions under dynamic analysis to research on the Seismic Vulnerability and performance level of confined brick walls. Results from this analysis seem to be satisfactory after comparison of them with the values in Code ATC40, FEMA and standard 2800 of Iran

  7. Seismic Vulnerability and Performance Level of confined brick walls

    Science.gov (United States)

    Ghalehnovi, M.; Rahdar, H. A.

    2008-07-01

    There has been an increase on the interest of Engineers and designers to use designing methods based on displacement and behavior (designing based on performance) Regarding to the importance of resisting structure design against dynamic loads such as earthquake, and inability to design according to prediction of nonlinear behavior element caused by nonlinear properties of constructional material. Economically speaking, easy carrying out and accessibility of masonry material have caused an enormous increase in masonry structures in villages, towns and cities. On the other hand, there is a necessity to study behavior and Seismic Vulnerability in these kinds of structures since Iran is located on the earthquake belt of Alpide. Different reasons such as environmental, economic, social, cultural and accessible constructional material have caused different kinds of constructional structures. In this study, some tied walls have been modeled with software and with relevant accelerator suitable with geology conditions under dynamic analysis to research on the Seismic Vulnerability and performance level of confined brick walls. Results from this analysis seem to be satisfactory after comparison of them with the values in Code ATC40, FEMA and standard 2800 of Iran.

  8. Seismic constraints on magma evolution beneath Mount Baekdu (Changbai) volcano from transdimensional Bayesian inversion of ambient noise data

    Science.gov (United States)

    Kim, Seongryong; Tkalčić, Hrvoje; Rhie, Junkee

    2017-07-01

    The magmatic process of continental intraplate volcanism (CIV) is difficult to understand due to heterogeneous interactions with the crust and the lithospheric upper mantle. Mount Baekdu (Changbai) volcano (MBV) is one of the prominent CIVs in northeast Asia that has shown a complex history of eruptions and associated magmatic structures. In addition, the relationship between the crustal magmatic structures and upper mantle phenomena are enigmatic due to the lack of consistent seismic constraints for the lithospheric structure. To enhance comprehensive understanding of the MBV magma evolution, we image the lithospheric structure beneath the MBV and surrounding regions using ambient noise data and the following two approaches: (1) multiple measures of ambient noise dispersion are acquired through different methods and (2) a transdimensional Bayesian inversion method is utilized to obtain unbiased results in joint analysis of the multiple data sets. The estimated Earth structure shows a thick crust ( 40 km) and a crustal anomaly with relatively high S wave velocity in the depth range 20-40 km. This type of structure extends to 100 km north from the MBV and is accompanied by the shallow and rapid S wave velocity decrease beneath the mantle lid ( 80 km). Through a comparison with previous P wave models, we interpret this structure as a consequence of compositional partitioning by mafic underplating and overlying cooled felsic layers as a result of fractional crystalization.

  9. Noise levels in neonatal intensive care unit and use of sound absorbing panel in the isolette.

    Science.gov (United States)

    Altuncu, E; Akman, I; Kulekci, S; Akdas, F; Bilgen, H; Ozek, E

    2009-07-01

    The purposes of this study were to measure the noise level of a busy neonatal intensive care unit (NICU) and to determine the effect of sound absorbing panel (SAP) on the level of noise inside the isolette. The sound pressure levels (SPL) of background noise, baby crying, alarms and closing of isolette's door/portholes were measured by a 2235-Brüel&Kjaer Sound Level Meter. Readings were repeated after applying SAP (3D pyramidal shaped open cell polyurethane foam) to the three lateral walls and ceiling of the isolette. The median SPL of background noise inside the NICU was 56dBA and it decreased to 47dBA inside the isolette. The median SPL of monitor alarms and baby crying inside the isolette were not different than SPL measured under radiant warmer (p>0.05). With SAP, the median SPL of temperature alarm inside the isolette decreased significantly from 82 to 72dBA, monitor alarm from 64 to 56dBA, porthole closing from 81 to 74dBA, and isolette door closing from 80 to 68dBA (pnoise produced by baby crying when SAP was used in the isolette (79dBA vs 69dBA, respectively) (pnoise. The noise level in our NICU is significantly above the universally recommended levels. Being inside the isolette protects infants from noise sources produced outside the isolette. However, very high noises are produced inside the isolette as well. Sound absorbing panel can be a simple solution and it attenuated the noise levels inside the isolette.

  10. Evaluation of noise pollution level in the operating rooms of hospitals: A study in Iran.

    Science.gov (United States)

    Giv, Masoumeh Dorri; Sani, Karim Ghazikhanlou; Alizadeh, Majid; Valinejadi, Ali; Majdabadi, Hesamedin Askari

    2017-06-01

    Noise pollution in the operating rooms is one of the remaining challenges. Both patients and physicians are exposed to different sound levels during the operative cases, many of which can last for hours. This study aims to evaluate the noise pollution in the operating rooms during different surgical procedures. In this cross-sectional study, sound level in the operating rooms of Hamadan University-affiliated hospitals (totally 10) in Iran during different surgical procedures was measured using B&K sound meter. The gathered data were compared with national and international standards. Statistical analysis was performed using descriptive statistics and one-way ANOVA, t -test, and Pearson's correlation test. Noise pollution level at majority of surgical procedures is higher than national and international documented standards. The highest level of noise pollution is related to orthopedic procedures, and the lowest one related to laparoscopic and heart surgery procedures. The highest and lowest registered sound level during the operation was 93 and 55 dB, respectively. Sound level generated by equipments (69 ± 4.1 dB), trolley movement (66 ± 2.3 dB), and personnel conversations (64 ± 3.9 dB) are the main sources of noise. The noise pollution of operating rooms are higher than available standards. The procedure needs to be corrected for achieving the proper conditions.

  11. EVALUATION OF THE ENVIRONMENTAL NOISE LEVELS IN ABUJA MUNICIPALITY USING MOBILE PHONES.

    Science.gov (United States)

    Ibekwe, T; Folorunso, D; Ebuta, A; Amodu, J; Nwegbu, M; Mairami, Z; Liman, I; Okebaram, C; Chimdi, C; Durogbola, B; Suleiman, H; Mamven, H; Baamlong, N; Dahilo, E; Gbujie, I; Ibekwe, P; Nwaorgu, O

    2016-12-01

    Noise remains a nuisance which impacts negatively on the physical, social and psychological wellbeing of man. It aggravates chronic illnesses like hypertension and other cardiopulmonary diseases. Unfortunately, increased activities from industrialization and technological transfers/drifts have tumultuously led to increased noise pollution in most of our fast growing cities today and hence the need for concerted efforts in monitoring and regulating our environmental noise. To assess the equivalent noise level (Leq) in Abuja municipality and promote a simple method for regular assessment of Leq within our environment. This is a cross-sectional community based study of the environmental Leq of Abuja municipality conducted between January 2014 and January 2016. The city was divided into 12 segments including residential, business and market areas via the Abuja Geographic Information System. The major markets were captured separately on a different scale. Measurements were taken with the mobile phone softwares having validated this with Extech 407730 digital sound level meter, serial no Z310135 . Leq(A) were measured at different points and hours of the day and night. The average Leq(A) were classified according to localities and compared with WHO standard safety levels. LeqD ranged 71-92dB(A); 42-79dB(A) and 69-90dB(A) in business/ parks, residential and market places respectively. The Night measurements were similar 18dB(A)-56dB(A) and the day-night Leq(A)=77.2dB(A) and 90.4dB(A) for residential and business zones. The night noise levels are satisfactory but the day and day-night levels are above the recommended tolerable values by WHO and therefore urgently call for awareness and legislative regulations.

  12. Noise levels of a track-laying tractor during field operations in the vineyard

    Directory of Open Access Journals (Sweden)

    Pietro Catania

    2013-09-01

    Full Text Available Noise in agriculture is one of the risk factors to be taken into account in the assessment of the health and safety of workers; in particular, it is known that the tractor is a source of high noise. The Italian Low Decree 81/2008 defined the requirements for assessing and managing noise risk identifying a number of procedures to be adopted at different noise levels to limit workers exposure. This paper concerns the analysis of the noise risk arising from the use of a tracklaying tractor during field operations carried out in the vineyard. The objective of this study was to evaluate the noise level that comes close to the ear of the operator driving the tractor measuring the values of equivalent sound level (Leq(A and peak sound pressure (LCpk. We considered four options related to the same tractor coupled with the following tools to perform some farming operations: rototilling, chisel plough, flail mowers and vibro farmer. We considered three test conditions: T1 in flat (slope 0%, T2 uphill and T3 downhill (both 30% slope. The instrument used for the measurements is a precision integrating portable sound level meter, class 1, model HD2110L by Delta OHM, Italy. Each survey lasted 2 minutes, with an interval of measurement equal to 0.5 s. The tests were performed in compliance with the standards ISO 9612 and ISO 9432. The results show that the measured sound levels exceed the limits allowed by the regulations in almost all the test conditions; values exceeding the threshold limit of 80 dB(A were recorded coming up to a maximum value of 92.8 dB(A for flail mowers in test T1. When limits imposed by the regulations are exceeded, the operator is obliged to wear the appropriate Personal Protective Equipment.

  13. Assessment and analysis of noise levels in and around Ib river coalfield, Orissa, India.

    Science.gov (United States)

    Mohapatra, Haraprasad; Goswami, Shreerup

    2012-05-01

    Heavy earth moving machineries, different capacities of dumpers and loaders, blasting and drilling make the mining environment noisy. A study was carried out to assess the noise level in different opencast projects in and around Belpahar and Brajarajnagar areas of Ib river coalfield. Noise assessment was carried out in various residential, commercial and industrial places. The noise levels, especially L(eq) values of different wheel loaders, dumpers, shovel and crusher units were also assessed and were more than permissible limit (90dB) in some of their operating conditions. Sound ressure level measurements while drilling into coal and overburden at Lakhanpur opencast project yielded noise levels (L(eq)) of 81.33 to 96.2 dB. Thus, these L(eq) values of drilling machines in most of the operating conditions were above permissible limit. The average noise intensities (6 a.m.-10 p.m.: 51.6-60.875dB and 10 p.m.-6 a.m.: 42.6-49.8dB) and L(eq) values (6 a.m.-10 p.m.: 50.9-67.0dB and 10 p.m.-6 a.m.: 40.8-53.3dB) during both day and night time of the residential areas around the Ib river coalfield were in close proximity or beyond the permissible limit. The L(eq) values at some of the commercial and industrial places were beyond (6 a.m.-10 p.m.: 61.6-88.3 dB and 10 p.m.-6 a.m.: 55.4-64.8dB) permissible limit. However, in most of the cases, the L(max) noise values were more (6 a.m.-10 p.m.: 68.5-91.4 dB and 10 p.m.-6 a.m.: 69.3-76.4dB) than the permissible limit. Analysis of variance was also computed for heavy earth moving machineries in different operating conditions and also for different residential, commercial and industrial places to infer the level of significance. The difference of noise intensity produced by different wheel loaders at Lakhanpur and Lilari opencast projects, drilling machines at Lakhanpur opencast project, 50 tons capacity dumpers at various conditions of Ib river coalfield within the same operating condition was significant at both 5% and 1% levels

  14. Experimental Results on the Level Crossing Intervals of the Phase of Sine Wave Plus Noise

    Science.gov (United States)

    Youssef, Neji; Munakata, Tsutomu; Mimaki, Tadashi

    1993-03-01

    Experimental study was made on the level crossing intervals of a phase process of a sine wave plus narrow-band Gaussian noise. Since successive level crossings of phase do not necessarily occur alternately in the upward and downward direction due to the phase jump beyond 2π, the usual definitions of the probability densities of the level crossing intervals for continuous random processes are not applicable in the case of the phase process. Therefore, the probability densities of level crossing intervals of phase process are newly defined. Measurements of these densities were performed for noise having lowpass spectra of Gaussian and 7th order Butterworth types. Results are given for various values of the signal-to-noise power ratio and of the crossing level, and compared with corresponding approximation developed under the assumption of quasi-independence. The validity of the assumption depends on the spectrum shape of the noise.

  15. Co-seismic response of water level in the Jingle well (China) associated with the Gorkha Nepal (Mw 7.8) earthquake

    Science.gov (United States)

    He, Anhua; Fan, Xuefang; Zhao, Gang; Liu, Yang; Singh, Ramesh P.; Hu, Yuliang

    2017-09-01

    Changes in co-seismic water levels associated with the Gorkha Nepal earthquake (25 April 2015, Mw 7.8) were recorded in the Jingle well in Shanxi Province China (longitude E112.03°, latitude N38.35°, about 2769 km from epicenter). Based on the observed water levels, we clearly identified signals relating to P, S and surface waves. However, the water temperature recorded at a depth of 350 m shows no co-seismic changes. A spectrum analysis of co-seismic variations of water level shows that the oscillation frequency and amplitude of water level in the borehole are determined by the natural frequency of the borehole, which is not associated with the propagation of seismic waves. The borehole-aquifer system shows a large amplification associated with ground vibrations generated by earthquakes. Considering the local hydro-geological map and the temperature gradient of the Jingle well, a large volume ;groundwater reservoir; model can be used to explain these processes. Due to seismic wave propagation, the volume of a well-confined aquifer expands and contracts forming fractures that change the water flow. In the well-confined aquifer, water levels oscillate simultaneously with high amplitude ground shaking during earthquakes. However, the water in the center of the ;underground reservoir; remains relatively stationary, without any changes in the water temperature. In addition, a possible precursor wave is recorded in the water level at the Jingle well prior to the Gorkha earthquake.

  16. More noise, please: How cultural overprinting in the urban environment can be exploited for improved subsurface imaging (Invited)

    Science.gov (United States)

    Weiss, C. J.

    2009-12-01

    A long standing issue for geophysical imaging methods revolves around the proper treatment of "noise": Defining what noise is; separating "noise" for "signal"; filtering and suppressing noise; and recently, challenging the prevailing view that noise is a nuisance to see if, instead, it may contribute favorably toward improving subsurface imaging fidelity. This last point is particularly relevant to geophysical imaging in the urban environment where noise sources are abundant, complex, and logistical constraints on geophysical field procedures prohibit a crude "turning up the volume" approach to simply drown out the noise with powerful sources of electromagnetic and seismic energy. In this contribution I explore the concept passive geophysical imaging which uses uncorrelated ambient noise as the source of geophysical imaging energy to be used in the urban environment. Examples will be presented from seismic and ground penetrating radar methods, in addition to new theoretical results bearing on the feasibility of low-frequency electromagnetic induction techniques.

  17. Full Wavefield Migration of Vertical Seismic Profiling data

    NARCIS (Netherlands)

    Soni, A.K.

    2014-01-01

    Until now, in most seismic imaging technologies, both surface and internal multiples are considered as noise. In today’s industrial practice, we see various methods for suppressing multiples before migration. This means that only a fraction of the recorded wavefield is used in imaging. In this

  18. Noise level in intensive care units of a public university hospital in Santa Marta (Colombia).

    Science.gov (United States)

    Garrido Galindo, A P; Camargo Caicedo, Y; Vélez-Pereira, A M

    2016-10-01

    To evaluate the noise level in adult, pediatric and neonatal intensive care units of a university hospital in the city of Santa Marta (Colombia). A descriptive, observational, non-interventional study with follow-up over time was carried out. Continuous sampling was conducted for 20 days for each unit using a type i sound level meter, filter frequency in A weighting and Fast mode. We recorded the maximum values, the 90th percentile as background noise, and the continuous noise level. The mean hourly levels in the adult unit varied between 57.40±1.14-63.47±2.13dBA, with a maximum between 71.55±2.32-77.22±1.94dBA, and a background noise between 53.51±1.16-60.26±2.10dBA; in the pediatric unit the mean hourly levels varied between 57.07±3.07-65.72±2.46dBA, with a maximum of 68.69±3.57-79.06±2.34dBA, and a background noise between 53.33±3.54-61.96±2.85dBA; the neonatal unit in turn presented mean hourly values between 59.54±2.41-65.33±1.77dBA, with a maximum value between 67.20±2.13-77.65±3.74dBA, and a background noise between 55.02±2.03-58.70±1.95dBA. Analysis of variance revealed a significant difference between the hourly values and between the different units, with the time of day exhibiting a greater influence. The type of unit affects the noise levels in intensive care units, the pediatric unit showing the highest values and the adult unit the lowest values. However, the parameter exerting the greatest influence upon noise level is the time of day, with higher levels in the morning and evening, and lower levels at night and in the early morning. Copyright © 2015 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  19. Application of super-virtual seismic refraction interferometry to enhance first arrivals: A case study from Saudi Arabia

    KAUST Repository

    Alshuhail, Abdulrahman Abdullatif Abdulrahman

    2012-01-01

    Complex near-surface anomalies are one of the main onshore challenges facing seismic data processors. Refraction tomography is becoming a common technology to estimate an accurate near-surface velocity model. This process involves picking the first arrivals of refracted waves. One of the main challenges with refraction tomography is the low signal-to-noise ratio characterizing the first-break waveform arrivals, especially for the far-offset receivers. This is especially evident in data recorded using reflection acquisition geometry. This low signal-to-noise ratio is caused by signal attenuation due to geometrical spreading of the seismic wavefield, near-surface-generated noise, and amplitude absorption. Super-virtual refraction interferometry improves the quality of the first-break picks by enhancing the amplitude of the refracted waves and attenuating the amplitude of the random noise.

  20. Added-value joint source modelling of seismic and geodetic data

    Science.gov (United States)

    Sudhaus, Henriette; Heimann, Sebastian; Walter, Thomas R.; Krueger, Frank

    2013-04-01

    In tectonically active regions earthquake source studies strongly support the analysis of the current faulting processes as they reveal the location and geometry of active faults, the average slip released or more. For source modelling of shallow, moderate to large earthquakes often a combination of geodetic (GPS, InSAR) and seismic data is used. A truly joint use of these data, however, usually takes place only on a higher modelling level, where some of the first-order characteristics (time, centroid location, fault orientation, moment) have been fixed already. These required basis model parameters have to be given, assumed or inferred in a previous, separate and highly non-linear modelling step using one of the these data sets alone. We present a new earthquake rupture model implementation that realizes a fully combined data integration of surface displacement measurements and seismic data in a non-linear optimization of simple but extended planar ruptures. The model implementation allows for fast forward calculations of full seismograms and surface deformation and therefore enables us to use Monte Carlo global search algorithms. Furthermore, we benefit from the complementary character of seismic and geodetic data, e. g. the high definition of the source location from geodetic data and the sensitivity of the resolution of the seismic data on moment releases at larger depth. These increased constraints from the combined dataset make optimizations efficient, even for larger model parameter spaces and with a very limited amount of a priori assumption on the source. A vital part of our approach is rigorous data weighting based on the empirically estimated data errors. We construct full data error variance-covariance matrices for geodetic data to account for correlated data noise and also weight the seismic data based on their signal-to-noise ratio. The estimation of the data errors and the fast forward modelling opens the door for Bayesian inferences of the source

  1. Rat hippocampal alterations could underlie behavioral abnormalities induced by exposure to moderate noise levels.

    Science.gov (United States)

    Uran, S L; Aon-Bertolino, M L; Caceres, L G; Capani, F; Guelman, L R

    2012-08-30

    Noise exposure is known to affect auditory structures in living organisms. However, it should not be ignored that many of the effects of noise are extra-auditory. Previous findings of our laboratory demonstrated that noise was able to induce behavioral alterations that are mainly related to the cerebellum (CE) and the hippocampus (HC). Therefore, the aim of this work was to reveal new data about the vulnerability of developing rat HC to moderate noise levels through the assessment of potential histological changes and hippocampal-related behavioral alterations. Male Wistar rats were exposed to noise (95-97 dB SPL, 2h daily) either for 1 day (acute noise exposure, ANE) or between postnatal days 15 and 30 (sub-acute noise exposure, SANE). Hippocampal histological evaluation as well as short (ST) and long term (LT) habituation and recognition memory assessments were performed. Results showed a mild disruption in the different hippocampal regions after ANE and SANE schemes, along with significant behavioral abnormalities. These data suggest that exposure of developing rats to noise levels of moderate intensity is able to trigger changes in the HC, an extra-auditory structure of the Central Nervous System (CNS), that could underlie the observed behavioral effects. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. The effects of noise-bandwidth, noise-fringe duration, and temporal signal location on the binaural masking-level difference.

    Science.gov (United States)

    Yasin, Ifat; Henning, G Bruce

    2012-07-01

    The effects of forward and backward noise fringes on binaural signal detectability were investigated. Masked thresholds for a 12-ms, 250-Hz, sinusoidal signal masked by Gaussian noise, centered at 250 Hz, with bandwidths from 3 to 201 Hz, were obtained in N(0)S(0) and N(0)S(π) configurations. The signal was (a) temporally centered in a 12-ms noise burst (no fringe), (b) presented at the start of a 600-ms noise burst (backward fringe), or (c) temporally centered in a 600-ms noise burst (forward-plus-backward fringe). For noise bandwidths between 3 and 75 Hz, detection in N(0)S(0) improved with the addition of a backward fringe, improving further with an additional forward fringe; there was little improvement in N(0)S(π). The binaural masking-level difference (BMLD) increased from 0 to 8 dB with a forward-plus-backward fringe as noise bandwidths increased to 100 Hz, increasing slightly to 10 dB at 201 Hz. This two-stage increase was less pronounced with a backward fringe. With no fringe, the BMLD was about 10-14 dB at all bandwidths. Performance appears to result from the interaction of across-time and across-frequency listening strategies and the possible effects of gain reduction and suppression, which combine in complex ways. Current binaural models are, as yet, unable to account fully for these effects.

  3. Predictive modelling of noise level generated during sawing of rocks ...

    Indian Academy of Sciences (India)

    This paper presents an experimental and statistical study on noise level generated .... hardness were determined according to related ISRM (1981) suggested methods. Thin section ..... tistical Package for the Social Sciences). Additionally, the ...

  4. High-resolution surface wave tomography of the European crust and uppermost mantle from ambient seismic noise

    Science.gov (United States)

    Lu, Yang; Stehly, Laurent; Paul, Anne; AlpArray Working Group

    2018-05-01

    Taking advantage of the large number of seismic stations installed in Europe, in particular in the greater Alpine region with the AlpArray experiment, we derive a new high-resolution 3-D shear-wave velocity model of the European crust and uppermost mantle from ambient noise tomography. The correlation of up to four years of continuous vertical-component seismic recordings from 1293 broadband stations (10° W-35° E, 30° N-75° N) provides Rayleigh wave group velocity dispersion data in the period band 5-150 s at more than 0.8 million virtual source-receiver pairs. Two-dimensional Rayleigh wave group velocity maps are estimated using adaptive parameterization to accommodate the strong heterogeneity of path coverage. A probabilistic 3-D shear-wave velocity model, including probability densities for the depth of layer boundaries and S-wave velocity values, is obtained by non-linear Bayesian inversion. A weighted average of the probabilistic model is then used as starting model for the linear inversion step, providing the final Vs model. The resulting S-wave velocity model and Moho depth are validated by comparison with previous geophysical studies. Although surface-wave tomography is weakly sensitive to layer boundaries, vertical cross-sections through our Vs model and the associated probability of presence of interfaces display striking similarities with reference controlled-source (CSS) and receiver-function sections across the Alpine belt. Our model even provides new structural information such as a ˜8 km Moho jump along the CSS ECORS-CROP profile that was not imaged by reflection data due to poor penetration across a heterogeneous upper crust. Our probabilistic and final shear wave velocity models have the potential to become new reference models of the European crust, both for crustal structure probing and geophysical studies including waveform modeling or full waveform inversion.

  5. Children's speech recognition and loudness perception with the Desired Sensation Level v5 Quiet and Noise prescriptions.

    Science.gov (United States)

    Crukley, Jeffery; Scollie, Susan D

    2012-12-01

    To determine whether Desired Sensation Level (DSL) v5 Noise is a viable hearing instrument prescriptive algorithm for children, in comparison with DSL v5 Quiet. In particular, the authors compared children's performance on measures of consonant recognition in quiet, sentence recognition in noise, and loudness perception when fitted with DSL v5 Quiet and Noise. Eleven children (ages 8 to 17 years) with stable, congenital sensorineural hearing losses participated in the study. Participants were fitted bilaterally to DSL v5 prescriptions with behind-the-ear hearing instruments. The order of prescription was counterbalanced across participants. Repeated measures analysis of variance was used to compare performance between prescriptions. Use of the Noise prescription resulted in a significant decrease in consonant perception in Quiet with low-level input, but no difference with average-level input. There was no significant difference in sentence-in-noise recognition between the two prescriptions. Loudness ratings for input levels above 72 dB SPL were significantly lower with the noise prescription. Average-level consonant recognition in quiet was preserved and aversive loudness was alleviated by the Noise prescription relative to the quiet prescription, which suggests that the DSL v5 Noise prescription may be an effective approach to managing the nonquiet listening needs of children with hearing loss.

  6. Evaluation of the environmental noise levels in Abuja Municipality ...

    African Journals Online (AJOL)

    Objectives: To assess the equivalent noise level (Leq) in Abuja municipality and promote a simple method for regular assessment of Leq within our environment. Methods: This is a cross-sectional community based study of the environmental Leq of Abuja municipality conducted between January 2014 and January 2016.

  7. Anomalous Radon Levels in Thermal Water as an Indicator of Seismic Activity

    International Nuclear Information System (INIS)

    Zmazek, B.; Gregoric, A.; Vaupotic, J.; Kobal, I.

    2008-01-01

    Radon can be transported effectively from deep layers of the Earth to the surface by carrier gases and by water. This transport is affected by phenomena accompanying seismic events. If radon is therefore monitored shortly before or during an earthquake, at a thermal water spring, an anomaly, i. e. a sudden increase or decrease in radon level, may be observed. Thermal springs and ground waters in Slovenia have therefore been systematically surveyed for radon. The work presented here is a continuation of our previous radon monitoring related to seismic activity carried out on weekly analyses during 1981-82 in thermal waters of the Ljubljana basin. In this paper, we focus on radon anomalies in thermal springs at Hotavlje and Bled in the period from October 2005 to September 2007

  8. A methodology to calibrate water saturation estimated from 4D seismic data

    International Nuclear Information System (INIS)

    Davolio, Alessandra; Maschio, Célio; José Schiozer, Denis

    2014-01-01

    Time-lapse seismic data can be used to estimate saturation changes within a reservoir, which is valuable information for reservoir management as it plays an important role in updating reservoir simulation models. The process of updating reservoir properties, history matching, can incorporate estimated saturation changes qualitatively or quantitatively. For quantitative approaches, reliable information from 4D seismic data is important. This work proposes a methodology to calibrate the volume of water in the estimated saturation maps, as these maps can be wrongly estimated due to problems with seismic signals (such as noise, errors associated with data processing and resolution issues). The idea is to condition the 4D seismic data to known information provided by engineering, in this case the known amount of injected and produced water in the field. The application of the proposed methodology in an inversion process (previously published) that estimates saturation from 4D seismic data is presented, followed by a discussion concerning the use of such data in a history matching process. The methodology is applied to a synthetic dataset to validate the results, the main of which are: (1) reduction of the effects of noise and errors in the estimated saturation, yielding more reliable data to be used quantitatively or qualitatively and (2) an improvement in the properties update after using this data in a history matching procedure. (paper)

  9. A new event detector designed for the Seismic Research Observatories

    Science.gov (United States)

    Murdock, James N.; Hutt, Charles R.

    1983-01-01

    A new short-period event detector has been implemented on the Seismic Research Observatories. For each signal detected, a printed output gives estimates of the time of onset of the signal, direction of the first break, quality of onset, period and maximum amplitude of the signal, and an estimate of the variability of the background noise. On the SRO system, the new algorithm runs ~2.5x faster than the former (power level) detector. This increase in speed is due to the design of the algorithm: all operations can be performed by simple shifts, additions, and comparisons (floating point operations are not required). Even though a narrow-band recursive filter is not used, the algorithm appears to detect events competitively with those algorithms that employ such filters. Tests at Albuquerque Seismological Laboratory on data supplied by Blandford suggest performance commensurate with the on-line detector of the Seismic Data Analysis Center, Alexandria, Virginia.

  10. In vitro comparison of noise levels produced by different CPAP generators.

    Science.gov (United States)

    Kirchner, Lieselotte; Wald, Martin; Jeitler, Valerie; Pollak, Arnold

    2012-01-01

    Minimization of noise exposure is an important aim of modern neonatal intensive care medicine. Binasal continuous positive airway pressure (CPAP) generators are among the most important sources of continuous noise in neonatal wards. The aim of this study was to find out which CPAP generator creates the least noise. In an experimental setup, two jet CPAP generators (Infant Flow® generator and MediJet®) and two conventional CPAP generators (Bubble CPAP® and Baby Flow®) were compared. Noise production was measured in decibels in an A-weighted scale [dB(A)] in a closed incubator at 2 mm lateral distance from the end of the nasal prongs. Reproduction of constant airway pressure and air leak was achieved by closure of the nasal prongs with a type of adhesive tape that is semipermeable to air. The noise levels produced by the four generators were significantly different (p CPAP® and 55 dB(A) for the Baby Flow®. Conventional CPAP generators work more quietly than the currently available jet CPAP generators. Copyright © 2011 S. Karger AG, Basel.

  11. Seismic Prediction While Drilling (SPWD): Seismic exploration ahead of the drill bit using phased array sources

    Science.gov (United States)

    Jaksch, Katrin; Giese, Rüdiger; Kopf, Matthias

    2010-05-01

    maximize the energy of the seismic source in order to reach a sufficient exploration range. The next step for focusing is to use the method of phased array. Dependent of the seismic wave velocities of the surrounding rock, the distance of the actuators to each other and the used frequencies the signal phases for each actuator can be determined. Since one year several measurements with the prototype have been realized under defined conditions at a test site in a mine. The test site consists of a rock block surrounded from three galleries with a dimension of about 100 by 200 meters. For testing the prototype two horizontal boreholes were drilled. They are directed to one of the gallery to get a strong reflector. The quality of the data of the borehole seismics in amplitude and frequency spectra show overall a good signal-to-noise ratio and correlate strongly with the fracture density along the borehole and are associated with a lower signal-to-noise ratio. Additionally, the geophones of the prototype show reflections from ahead and rearward in the seismic data. In particular, the reflections from the gallery ahead are used for the calibration of focusing. The direct seismic wave field indicates distinct compression and shear waves. The analysis of several seismic measurements with a focus on the direct seismic waves shows that the phased array technology explicit can influence the directional characteristics of the radiated seimic waves. The amplitudes of the seismic waves can be enhanced up to three times more in the desired direction and simultaneously be attenuated in the reverse direction. A major step for the directional investigation in boreholes has accomplished. But the focusing of the seismic waves has to be improved to maximize the energy in the desired direction in more measurements by calibrating the initiating seismic signals of the sources. A next step this year is the development of a wireline prototype for application in vertical boreholes with depths not

  12. Seismic exploration for water on Mars

    International Nuclear Information System (INIS)

    Page, T.

    1987-01-01

    It is proposed to soft-land three seismometers in the Utopia-Elysium region and three or more radio controlled explosive charges at nearby sites that can be accurately located by an orbiter. Seismic signatures of timed explosions, to be telemetered to the orbiter, will be used to detect present surface layers, including those saturated by volatiles such as water and/or ice. The Viking Landers included seismometers that showed that at present Mars is seismically quiet, and that the mean crustal thickness at the site is about 14 to 18 km. The new seismic landers must be designed to minimize wind vibration noise, and the landing sites selected so that each is well formed on the regolith, not on rock outcrops or in craters. The explosive charges might be mounted on penetrators aimed at nearby smooth areas. They must be equipped with radio emitters for accurate location and radio receivers for timed detonation

  13. First analyses of the iOSG-type superconducting gravimeter at the low noise underground laboratory (LSBB URL of Rustrel, France

    Directory of Open Access Journals (Sweden)

    Rosat Séverine

    2016-01-01

    Full Text Available In the last few years, the performance of the cryogenic gravity instruments has been further improved by the development of a new generation of superconducting gravimeter (SG: the so-called iOSG which is a superconducting gravimeter designed for observatory purpose with a heavier sphere than previous SGs. The first iOSG (iOSG-024 has been installed in July 2015 at the LSSB low background noise underground research laboratory in Rustrel (France, funded by the EQUIPEX MIGA (Matter wave-laser based Interferometer Gravitation Antenna project and by the European FEDER 2006-2013 “PFM LSBB – Développement des qualités environnementales du LSBB”. This instrument is operational since September 2015. We present the first tidal analyses of the 7-month time-varying gravity records of this newly installed instrument as well as the calibration results performed by parallel FG5 absolute gravity measurements. We also show the performances of iOSG-024 in terms of noise levels in the seismic (in the millihertz frequency range band using a standardized procedure based on the computation of the residual power spectral densities over a quiet time period. The obtained noise levels are compared with other SG sites and with seismological reference noise models. The combination of the instrumental performance of the iOSG with the LSBB site properties makes this gravimetric station one of the quietest in the world, comparable to the lower sensor of the OSG-56 at BFO, at seismic frequencies.

  14. OGS improvements in 2012 in running the Northeastern Italy Seismic Network: the Ferrara VBB borehole seismic station

    Science.gov (United States)

    Pesaresi, Damiano; Romanelli, Marco; Barnaba, Carla; Bragato, Pier Luigi; Durì, Giorgio

    2013-04-01

    The Centro di Ricerche Sismologiche (CRS, Seismological Research Center) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the Northeastern Italy Seismic Network: it currently consists of 17 very sensitive broad band and 18 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data center in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of Northeastern Italy. The southwestern edge of the OGS seismic network stands on the Po alluvial basin: earthquake localization and characterization in this area is affected by the presence of soft alluvial deposits. OGS ha already experience in running a local seismic network in high noise conditions making use of borehole installations in the case of the micro-seismicity monitoring of a local gas storage site for a private company. Following the ML=5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on May 20, 2012 at 02:03:53 UTC, a cooperation of Istituto Nazionale di Geofisica e Vulcanologia, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of a previously existing very broad band (VBB) borehole seismic station in Ferrara. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-West, including Ferrara and its surroundings, and on the other hand to evaluate the seismic response at the site. We will describe improvements in running the Northeastern Italy Seismic Network, including details of the Ferrara VBB

  15. Noiseonomics: the relationship between ambient noise levels in the sea and global economic trends.

    Science.gov (United States)

    Frisk, George V

    2012-01-01

    In recent years, the topic of noise in the sea and its effects on marine mammals has attracted considerable attention from both the scientific community and the general public. Since marine mammals rely heavily on acoustics as a primary means of communicating, navigating, and foraging in the ocean, any change in their acoustic environment may have an impact on their behavior. Specifically, a growing body of literature suggests that low-frequency, ambient noise levels in the open ocean increased approximately 3.3 dB per decade during the period 1950-2007. Here we show that this increase can be attributed primarily to commercial shipping activity, which in turn, can be linked to global economic growth. As a corollary, we conclude that ambient noise levels can be directly related to global economic conditions. We provide experimental evidence supporting this theory and discuss its implications for predicting future noise levels based on global economic trends.

  16. Effects of a traffic noise background on judgements of aircraft noise

    Science.gov (United States)

    Powell, C. A.; Rice, C. G.

    1974-01-01

    A study was conducted in which subjects judged aircraft noises in the presence of road traffic background noise. Two different techniques for presenting the background noises were evaluated. For one technique, the background noise was continuous over the whole of a test session. For the other, the background noise was changed with each aircraft noise. A range of aircraft noise levels and traffic noise levels were presented to simulate typical indoor levels.

  17. Regression of environmental noise in LIGO data

    International Nuclear Information System (INIS)

    Tiwari, V; Klimenko, S; Mitselmakher, G; Necula, V; Drago, M; Prodi, G; Frolov, V; Yakushin, I; Re, V; Salemi, F; Vedovato, G

    2015-01-01

    We address the problem of noise regression in the output of gravitational-wave (GW) interferometers, using data from the physical environmental monitors (PEM). The objective of the regression analysis is to predict environmental noise in the GW channel from the PEM measurements. One of the most promising regression methods is based on the construction of Wiener–Kolmogorov (WK) filters. Using this method, the seismic noise cancellation from the LIGO GW channel has already been performed. In the presented approach the WK method has been extended, incorporating banks of Wiener filters in the time–frequency domain, multi-channel analysis and regulation schemes, which greatly enhance the versatility of the regression analysis. Also we present the first results on regression of the bi-coherent noise in the LIGO data. (paper)

  18. Effect of background noise on neuronal coding of interaural level difference cues in rat inferior colliculus.

    Science.gov (United States)

    Mokri, Yasamin; Worland, Kate; Ford, Mark; Rajan, Ramesh

    2015-07-01

    Humans can accurately localize sounds even in unfavourable signal-to-noise conditions. To investigate the neural mechanisms underlying this, we studied the effect of background wide-band noise on neural sensitivity to variations in interaural level difference (ILD), the predominant cue for sound localization in azimuth for high-frequency sounds, at the characteristic frequency of cells in rat inferior colliculus (IC). Binaural noise at high levels generally resulted in suppression of responses (55.8%), but at lower levels resulted in enhancement (34.8%) as well as suppression (30.3%). When recording conditions permitted, we then examined if any binaural noise effects were related to selective noise effects at each of the two ears, which we interpreted in light of well-known differences in input type (excitation and inhibition) from each ear shaping particular forms of ILD sensitivity in the IC. At high signal-to-noise ratios (SNR), in most ILD functions (41%), the effect of background noise appeared to be due to effects on inputs from both ears, while for a large percentage (35.8%) appeared to be accounted for by effects on excitatory input. However, as SNR decreased, change in excitation became the dominant contributor to the change due to binaural background noise (63.6%). These novel findings shed light on the IC neural mechanisms for sound localization in the presence of continuous background noise. They also suggest that some effects of background noise on encoding of sound location reported to be emergent in upstream auditory areas can also be observed at the level of the midbrain. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Modeling Speech Level as a Function of Background Noise Level and Talker-to-Listener Distance for Talkers Wearing Hearing Protection Devices

    Science.gov (United States)

    Bouserhal, Rachel E.; Bockstael, Annelies; MacDonald, Ewen; Falk, Tiago H.; Voix, Jérémie

    2017-01-01

    Purpose: Studying the variations in speech levels with changing background noise level and talker-to-listener distance for talkers wearing hearing protection devices (HPDs) can aid in understanding communication in background noise. Method: Speech was recorded using an intra-aural HPD from 12 different talkers at 5 different distances in 3…

  20. Hearing impairment among workers exposed to excessive levels of noise in ginning industries

    Directory of Open Access Journals (Sweden)

    Kamalesh J Dube

    2011-01-01

    Full Text Available Cotton ginning workers have a risk of hearing loss due to excessive noise levels at the workplace environment. In this study, estimates of typical sound levels prevailing at the workplace environment and its effects on hearing ability of the exposed workers were made among cotton ginning workers. Data on self-reported health status was collected by a questionnaire survey at 10 cotton ginning industries located at Jalgaon district of Maharashtra state, India. The cotton ginning workers were exposed to continuous noise levels between 89 and 106 dBA. The hearing ability of the subjects was accessed by pure tone audiometry. The results of audiometry show mild, moderate and moderately severe degree of hearing impairment among the cotton ginning workers. The data generated during the study show that hearing loss was significantly associated with period of exposure to the workplace noise (P <0.0001. The prevalence of audiometric hearing impairment defined as a threshold average greater than 25 dB hearing level was 96% for binaural low-frequency average, 97% for binaural mid frequency average and 94% for binaural high-frequency average in the cotton ginning workers. We recommend the compulsory use of personal protective equipment like ear plug by the cotton ginning workers at the workplace environment. A regular maintenance of ginning and pressing machineries will avoid the emission of excessive noise at the workplace environment of cotton gins. A regular periodic medical examination is necessary to measure the impact of workplace noise on the health of cotton ginning workers.

  1. Noise level and MPEG-2 encoder statistics

    Science.gov (United States)

    Lee, Jungwoo

    1997-01-01

    Most software in the movie and broadcasting industries are still in analog film or tape format, which typically contains random noise that originated from film, CCD camera, and tape recording. The performance of the MPEG-2 encoder may be significantly degraded by the noise. It is also affected by the scene type that includes spatial and temporal activity. The statistical property of noise originating from camera and tape player is analyzed and the models for the two types of noise are developed. The relationship between the noise, the scene type, and encoder statistics of a number of MPEG-2 parameters such as motion vector magnitude, prediction error, and quant scale are discussed. This analysis is intended to be a tool for designing robust MPEG encoding algorithms such as preprocessing and rate control.

  2. Role of seismic PRA in seismic safety decisions of nuclear power plants

    International Nuclear Information System (INIS)

    Ravindra, M.K.; Kennedy, R.P.; Sues, R.H.

    1985-01-01

    This paper highlights the important roles that seismic probabilistic risk assessments (PRAs) can play in the seismic safety decisions of nuclear power plants. If a seismic PRA has been performed for a plant, its results can be utilized to evaluate the seismic capability beyond the safe shutdown event (SSE). Seismic fragilities of key structures and equipment, fragilities of dominant plant damage states and the frequencies of occurrence of these plant damage states are reviewed to establish the seismic safety of the plant beyond the SSE level. Guidelines for seismic margin reviews and upgrading may be developed by first identifying the generic classes of structures and equipment that have been shown to be dominant risk contributors in the completed seismic PRAs, studying the underlying causes for their contribution and examining why certain other items (e.g., piping) have not proved to be high-risk-contributors

  3. Implementation of seismic design and evaluation guidelines for the Department of Energy high-level waste storage tanks and appurtenances

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1993-06-01

    In the fall of 1992, a draft of the Seismic Design and Evaluation Guidelines for the Department of Energy (DOE) High-level Waste Storage Tanks and Appurtenances was issued. The guidelines were prepared by the Tanks Seismic Experts Panel (TSEP) and this task was sponsored by DOE, Environmental Management. The TSEP is comprised of a number of consultants known for their knowledge of seismic ground motion and expertise in the analysis of structures, systems and components subjected to seismic loads. The development of these guidelines was managed by staff from Brookhaven National Laboratory, Engineering Research and Applications Division, Department of Nuclear Energy. This paper describes the process used to incorporate the Seismic Design and Evaluation Guidelines for the DOE High-Level Waste Storage Tanks and Appurtenances into the design criteria for the Multi-Function Waste Tank Project at the Hanford Site. This project will design and construct six new high-level waste tanks in the 200 Areas at the Hanford Site. This paper also discusses the vehicles used to ensure compliance to these guidelines throughout Title 1 and Title 2 design phases of the project as well as the strategy used to ensure consistent and cost-effective application of the guidelines by the structural analysts. The paper includes lessons learned and provides recommendations for other tank design projects which might employ the TSEP guidelines

  4. Implementation of seismic design and evaluation guidelines for the Department of Energy high-level waste storage tanks and appurtenances

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1993-01-01

    In the fall of 1992, a draft of the Seismic Design and Evaluation Guidelines for the U.S. Department of Energy (DOE) High-level Waste Storage Tanks and Appurtenances was issued. The guidelines were prepared by the Tanks Seismic Experts Panel (TSEP) and this task was sponsored by DOE, Environmental Management. The TSEP comprises a number of consultants known for their understanding of seismic ground motion and expertise in the analysis of structures, systems and components subjected to seismic loads. The development of these guidelines was managed by staff from Brookhaven National Laboratory, Engineering Research and Applications Division, Department of Nuclear Energy. This paper describes the process used to incorporate the Seismic Design and Evaluation guidelines for the DOE High-Level Waste Storage Tanks and Appurtenances into the design criteria for the Multi-Function Waste Tank Project at the Hanford Site. This project will design and construct six new high-level waste tanks in the 200 Areas at the Hanford Site. This paper also discusses the vehicles used to ensure compliance to these guidelines throughout Title 1 and Title 2 design phases of the project as well as the strategy used to ensure consistent and cost-effective application of the guidelines by the structural analysts. The paper includes lessons learned and provides recommendations for other tank design projects that might employ the TSEP guidelines

  5. Noise-induced annoyance from transportation noise: short-term responses to a single noise source in a laboratory.

    Science.gov (United States)

    Kim, Jaehwan; Lim, Changwoo; Hong, Jiyoung; Lee, Soogab

    2010-02-01

    An experimental study was performed to compare the annoyances from civil-aircraft noise, military-aircraft noise, railway noise, and road-traffic noise. Two-way within-subjects designs were applied in this research. Fifty-two subjects, who were naive listeners, were given various stimuli with varying levels through a headphone in an anechoic chamber. Regardless of the frequency weighting network, even under the same average energy level, civil-aircraft noise was the most annoying, followed by military-aircraft noise, railway noise, and road-traffic noise. In particular, penalties in the time-averaged, A-weighted sound level (TAL) of about 8, 5, and 5 dB, respectively, were found in the civil-aircraft, military-aircraft, and railway noises. The reason could be clarified through the high-frequency component and the variability in the level. When people were exposed to sounds with the same maximum A-weighted level, a railway bonus of about 3 dB was found. However, transportation noise has been evaluated by the time-averaged A-weighted level in most countries. Therefore, in the present situation, the railway bonus is not acceptable for railway vehicles with diesel-electric engines.

  6. Synchrosqueezing-based Transform and its Application in Seismic Data Analysis

    Directory of Open Access Journals (Sweden)

    Saman Gholtashi

    2015-10-01

    Full Text Available Seismic waves are non-stationary due to its propagation through the earth. Time-frequency transforms are suitable tools for analyzing non-stationary seismic signals. Spectral decomposition can reveal the non-stationary characteristics which cannot be easily observed in the time or frequency representation alone. Various types of spectral decomposition methods have been introduced by some researchers. Conventional spectral decompositions have some restrictions such as Heisenberg uncertainty principle and cross-terms which limit their applications in signal analysis. In this paper, synchrosqueezingbased transforms were used to overcome the mentioned restrictions; also, as an application of this new high resolution time-frequency analysis method, it was applied to random noise removal and the detection of low-frequency shadows in seismic data. The efficiency of this method is evaluated by applying it to both synthetic and real seismic data. The results show that the mentioned transform is a proper tool for seismic data processing and interpretation.

  7. Effects of traffic noise on tree frog stress levels, immunity, and color signaling.

    Science.gov (United States)

    Troïanowski, Mathieu; Mondy, Nathalie; Dumet, Adeline; Arcanjo, Caroline; Lengagne, Thierry

    2017-10-01

    During the last decade, many studies have focused on the detrimental effects of noise pollution on acoustic communication. Surprisingly, although it is known that noise exposure strongly influences health in humans, studies on wildlife remain scarce. In order to gain insight into the consequences of traffic noise exposure, we experimentally manipulated traffic noise exposure as well as the endocrine status of animals to investigate physiological and phenotypic consequences of noise pollution in an anuran species. We showed that noise exposure increased stress hormone level and induced an immunosuppressive effect. In addition, both traffic noise exposure and stress hormone application negatively impacted H. arborea vocal sac coloration. Moreover, our results suggest profound changes in sexual selection processes because the best quality males with initial attractive vocal sac coloration were the most impacted by noise. Hence, our study suggests that the recent increases in anthropogenic noise worldwide might affect a broader range of animal species than previously thought, because of alteration of visual signals and immunity. Generalizing these results to other taxa is crucial for the conservation of biodiversity in an increasingly noisy world. © 2017 Society for Conservation Biology.

  8. Comparison of the Effect of Noise Levels on Stress Response in Two Different Operation Groups in an Orthopedic Surgery Room

    Directory of Open Access Journals (Sweden)

    Hasibe Baytan Yildiz

    2016-09-01

    Full Text Available Aim: The aim of this randomized, single-blinded study was to evaluate the effects of noise on hemodynamic and neuroendocrine stress response by measuring the level of noise in the surgery rooms of patients undergoing knee operations under neuroaxial anesthesia. Gerec ve Yontem: We compared patient responses from two groups of patients: those undergoing knee operations in a surgery room where the noise level (measured in decibels is high, and those undergoing meniscus operations in a surgery room with lower noise levels. The STAI, the State-Trait Anxiety Inventory (STAI-1, and the anxiety test (STAI-2wereperformed at preoperative and postoperative periods. 20 ml of blood sample was taken for basal, intraoperative 30th minute, and postoperative 1st hour measurements. Systolic, diastolic, and mean arterial blood pressures were found to be higher in the high noise level group. ACTH levels were increased during the early postoperative period and became normal during the late postoperative period in the high noise level group whereas ACTH levels were significantly decreased in the low-noise level group. Basal cortisol levels were significantly higher in the high noise level group. HCRP, an inflammatory response mediator was found to be decreased in both groups. Early and late blood glucose levels were significantly higher in the high noise group. There was a greater increase in early and late blood glucose levels in the high noise group. In the postoperative period, although the state-trait anxiety inventory (STAI-2 levels being higher in patients subject to noisier environment determines how people feel independent of the conditions and state they are in, this result made us consider that the noise the patients were subjected to in the intraoperative period may cause a stress response. Discussion: As a result we believe that standard noise levels should be achieved by reducing the factors causing high noise levels in the operating room. This will

  9. Shaking table test study on seismic performance of dehydrogenation fan for nuclear power plants

    International Nuclear Information System (INIS)

    Liu Kaiyan; Shi Weixing; Cao Jialiang; Wang Yang

    2011-01-01

    Seismic performance of the dehydrogenation fan for nuclear power plants was evaluated based on the shaking table test of earthquake simulation. Dynamic characteristics including the orthogonal tri-axial fundamental frequencies and equivalent damping ratios were measured by the white noise scanning method. Artificial seismic waves were generated corresponding to the floor acceleration response spectra for nuclear power plants. Furthermore, five OBE and one SSE shaking table tests for dehydrogenation fan were performed by using the artificial seismic waves as the seismic inputs along the orthogonal axis simultaneity. Operating function of dehydrogenation fan was monitored and observed during all seismic tests, and performance indexes of dehydrogenation fan were compared before and after seismic tests. The results show that the structural integrity and operating function of the dehydrogenation fan are perfect during all seismic tests; and the performance indexes of the dehydrogenation fan can remain consistent before and after seismic tests; the seismic performance of the dehydrogenation fan can satisfy relevant technical requirements. (authors)

  10. Evaluation of noise pollution in oil extracting region of Lavan and the effect of noise enclosure on noise abatement

    Directory of Open Access Journals (Sweden)

    F. Golbabaei

    2007-09-01

    Full Text Available Background and aims   Overexposure to industrial noise pollution induce hearing loss workers. Occupational hearing loss may cause interference whit oral communication, so it may  increase the risk of occupational accidents in workplace as well as affects whit social activities.  This study was conducted on Lavan Island, are of oil extracting regions in the south of Iran. The  object of this study was to evaluate noise pollution and determining the effect of noise enclosure  on noise abatement.   Methods   The noise sources were recognized and noise pressure level was measured by CEL- 440. Noise dose of the exposed workers in high level noise area were measured by CEL 272.   Results   Major noise sources were gas turbines, diesel generators, compressors, fans and gas containing pips, noise contour map revealers that noise level were higher than the recommended national exposure limit. The results of workers noise dose show that their noise exposure were  higher than the recommended value, (p<0.001. Finally, by using the results of noise frequency  analysis of different noise sources, the noise pressure level of each sources was determined in   terms of enclosing them.   Conclusion   By enclosing the noise sources, noise pressure levels can be lowered douse to  acceptable levels but limitation of applying enclosure should be regarded.  

  11. A Survey of the Relationship Between Noised Pollution, Honey and Vitamin E and Plasma Level of Blood Sexual Hormones in Noise-Exposed Rats

    Directory of Open Access Journals (Sweden)

    Kenani

    2015-02-01

    Full Text Available Background This study was conducted to examine the efficacy of honey and vitamin E on fertilization capacity of noise-exposed rats by assessing whether the plasma sexual hormones levels i.e. follicle stimulating hormone (FSH, luteinizing hormone (LH and testosterone are altered in relation with noise stress. Objectives Therefore, this study aimed to evaluate the effects of honey and vitamin E on the levels of sex hormones and male fertilization capacity of noise-exposed rats. Materials and Methods This study targeted 24 male rats that were randomly divided into four equal groups including the control group that were not exposed to noise and experimental groups 1, 2 and 3 that were the untreated, honey treated and vitamin E treated groups, respectively; all of which were exposed to noise for 50 days. Next, in order to measure serum sexual hormones, blood samples of experimental and control groups were taken and analyzed. Also in order to investigate the fertility capacity of rats, the male rats of all groups were coupled with female rats. Results The results showed that in the male rats exposed to the noise stress, the levels of FSH and LH rose and the testosterone secretion fell sharply compared to not exposed rats. Additionally, the continuing effects of noise stress injury could reduce the weight of the fetus and the number of live fetuses and survival rate of the fetus. However, honey and vitamin E improved serum testosterone concentration, while declined plasma FSH and LH secretion in noise-exposed rats and enhanced fertility rate by increasing the rate of healthy alive fetuses. Conclusions It seems that noise pollution has harmful effects on the fertility of males. Also these findings may suggest the use of a natural curative approach rather than pharmaceutical drugs to optimize both neuroendocrine gonadal axis and testicular integrity induced by pathogenesis stress, and enhance fertility capacity in men.

  12. Characterization of Seismic Noise at Selected Non-Urban Sites

    Science.gov (United States)

    2010-03-01

    Field sites for seismic recordings: Scottish moor (upper left), Enfield, NH (upper right), and vicinity of Keele, England (bottom). ERDC...three sites. The sites are: a wind farm on a remote moor in Scotland, a ~13 acre field bounded by woods in a rural Enfield, NH neigh- borhood, and a site...in a rural Enfield, NH, neighborhood, and a site transitional from developed land to farmland within 1 km of the six-lane M6 motorway near Keele

  13. Near surface structure of the North Anatolian Fault Zone near 30°E from Rayleigh and Love wave tomography using ambient seismic noise.

    Science.gov (United States)

    Taylor, G.; Rost, S.; Houseman, G. A.; Hillers, G.

    2017-12-01

    By utilising short period surface waves present in the noise field, we can construct images of shallow structure in the Earth's upper crust: a depth-range that is usually poorly resolved in earthquake tomography. Here, we use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the North Anatolian Fault Zone (NAFZ) in the source region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends 1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We obtain maps of group velocity variation using surface wave tomography applied to short period (1- 6 s) Rayleigh and Love waves to construct high-resolution images of SV and SH-wave velocity in the upper 5 km of a 70 km x 35 km region centred on the eastern end of the fault segment that ruptured in the 1999 Izmit earthquake. The average Rayleigh wave group velocities in the region vary between 1.8 km/s at 1.5 s period, to 2.2 km/s at 6 s period. The NAFZ bifurcates into northern and southern strands in this region; both are active but only the northern strand ruptured in the 1999 event. The signatures of both the northern and southern branches of the NAFZ are clearly associated with strong gradients in seismic velocity that also denote the boundaries of major tectonic units. This observation implies that the fault zone exploits the pre-existing structure of the Intra-Pontide suture zone. To the north of the NAFZ, we observe low S-wave velocities ( 2.0 km/s) associated with the unconsolidated sediments of the Adapazari basin, and blocks of weathered terrigenous clastic sediments. To the south of the northern branch of the NAFZ in the Armutlu block, we detect higher velocities ( 2.9 km/s) associated with a shallow crystalline basement, in particular a block of metamorphosed schists and marbles that bound the northern branch of the NAFZ.

  14. Sources and levels of background noise in the NASA Ames 40- by 80-foot wind tunnel

    Science.gov (United States)

    Soderman, Paul T.

    1988-01-01

    Background noise levels are measured in the NASA Ames Research Center 40- by 80-Foot Wind Tunnel following installation of a sound-absorbent lining on the test-section walls. Results show that the fan-drive noise dominated the empty test-section background noise at airspeeds below 120 knots. Above 120 knots, the test-section broadband background noise was dominated by wind-induced dipole noise (except at lower harmonics of fan blade-passage tones) most likely generated at the microphone or microphone support strut. Third-octave band and narrow-band spectra are presented for several fan operating conditions and test-section airspeeds. The background noise levels can be reduced by making improvements to the microphone wind screen or support strut. Empirical equations are presented relating variations of fan noise with fan speed or blade-pitch angle. An empirical expression for typical fan noise spectra is also presented. Fan motor electric power consumption is related to the noise generation. Preliminary measurements of sound absorption by the test-section lining indicate that the 152 mm thick lining will adequately absorb test-section model noise at frequencies above 300 Hz.

  15. PQLX: A seismic data quality control system description, applications, and users manual

    Science.gov (United States)

    McNamara, Daniel E.; Boaz, Richard I.

    2011-01-01

    We present a detailed description and users manual for a new tool to evaluate seismic station performance and characteristics by providing quick and easy transitions between visualizations of the frequency and time domains. The software is based on the probability density functions (PDF) of power spectral densities (PSD) (McNamara and Buland, 2004) and builds on the original development of the PDF stand-alone software system (McNamara and Boaz, 2005) and the seismological data viewer application PQL (IRIS-PASSCAL Quick Look) and PQLII (available through the IRIS PASSCAL program: http://www.passcal.nmt.edu/content/pql-ii-program-viewing-data). With PQLX (PQL eXtended), computed PSDs are stored in a MySQL database, allowing a user to access specific time periods of PSDs (PDF subsets) and time series segments through a GUI-driven interface. The power of the method and software lies in the fact that there is no need to screen the data for system transients, earthquakes, or general data artifacts, because they map into a background probability level. In fact, examination of artifacts related to station operation and episodic cultural noise allow us to estimate both the overall station quality and a baseline level of Earth noise at each site. The output of this analysis tool is useful for both operational and scientific applications. Operationally, it is useful for characterizing the current and past performance of existing broadband stations, for conducting tests on potential new seismic station locations, for evaluating station baseline noise levels (McNamara and others, 2009), for detecting problems with the recording system or sensors, and for evaluating the overall quality of data and metadata. Scientifically, the tool allows for mining of PSDs for investigations on the evolution of seismic noise (for example, Aster and others, 2008; and Aster and others, 2010) and other phenomena. Currently, PQLX is operational at several organizations including the USGS National

  16. Effect of dewatering on seismic performance of multi-anchor wall due to high ground water level

    Science.gov (United States)

    Kobayashi, Makoto; Miura, Kinya; Konami, Takeharu; Hayashi, Taketo; Sato, Hiroki

    2017-10-01

    Previous research reported that the ground water in the backfill of reinforced soil wall made it deteriorate. According to the damage investigation of Great East Earthquake 2011, the reinforced soil structure due to high ground water level by seismic wave were deformed remarkably. Some of them classified ultimate limit state or restorability limit state. However, more than 90% of reinforced soil structure, which suffered from this earthquake, were classified into no damage condition. Therefore, it is necessary that the seismic behaviors of multi-anchor wall due to seepage flow should be clarified in order to adopt the performance-based design in such reinforced soil structure. In this study, a series of centrifugal shaking table tests were conducted to investigate the seismic behavior of multi-anchor wall due to high ground water level. The reinforced drainage pipes were installed into the backfill in order to verify the dewatering effect and additional reinforcement. Furthermore, to check only the dewatering effect, the model tests was carried out with several ground water table that was modeled the case reinforced drainage pipes installed. The test results show unique behavior of reinforced region that moved integrally. This implies that the reinforced region has been behaved as if it became one mass, and this behavior make this structure increase seismic performance. Thus, the effectiveness of dewatering was observed remarkably because of decreasing the inertial force during earthquake.

  17. 36 CFR 3.15 - What is the maximum noise level for the operation of a vessel?

    Science.gov (United States)

    2010-07-01

    ... level for the operation of a vessel? 3.15 Section 3.15 Parks, Forests, and Public Property NATIONAL PARK... level for the operation of a vessel? (a) A person may not operate a vessel at a noise level exceeding... vessel is being operated in excess of the noise levels established in paragraph (a) of this section may...

  18. Newtonian noise cancellation in tensor gravitational wave detector

    International Nuclear Information System (INIS)

    Paik, Ho Jung; Harms, Jan

    2016-01-01

    Terrestrial gravity noise produced by ambient seismic and infrasound fields poses one of the main sensitivity limitations in low-frequency ground-based gravitational-wave (GW) detectors. This noise needs to be suppressed by 3-5 orders of magnitude in the frequency band 10 mHz to 1 Hz, which is extremely challenging. We present a new approach that greatly facilitates cancellation of gravity noise in full-tensor GW detectors. It makes explicit use of the direction of propagation of a GW, and can therefore either be implemented in directional searches for GWs or in observations of known sources. We show that suppression of the Newtonian-noise foreground is greatly facilitated using the extra strain channels in full-tensor GW detectors. Only a modest number of auxiliary, high-sensitivity environmental sensors is required to achieve noise suppression by a few orders of magnitude. (paper)

  19. modelling traffic noise level on roadside traders at wurukum market

    African Journals Online (AJOL)

    HOD

    . This leads to poor planning and traffic control strategies within the town to reduce ... embark on a study to assess the level of noise pollution .... industrial products such as cement, fuel, timber, water, waste, etc ... used for a manual traffic count.

  20. Sparseness- and continuity-constrained seismic imaging

    Science.gov (United States)

    Herrmann, Felix J.

    2005-04-01

    Non-linear solution strategies to the least-squares seismic inverse-scattering problem with sparseness and continuity constraints are proposed. Our approach is designed to (i) deal with substantial amounts of additive noise (SNR formulating the solution of the seismic inverse problem in terms of an optimization problem. During the optimization, sparseness on the basis and continuity along the reflectors are imposed by jointly minimizing the l1- and anisotropic diffusion/total-variation norms on the coefficients and reflectivity, respectively. [Joint work with Peyman P. Moghaddam was carried out as part of the SINBAD project, with financial support secured through ITF (the Industry Technology Facilitator) from the following organizations: BG Group, BP, ExxonMobil, and SHELL. Additional funding came from the NSERC Discovery Grants 22R81254.

  1. OGS improvements in 2012 in running the North-eastern Italy Seismic Network: the Ferrara VBB borehole seismic station

    Science.gov (United States)

    Pesaresi, D.; Romanelli, M.; Barnaba, C.; Bragato, P. L.; Durì, G.

    2014-07-01

    The Centro di Ricerche Sismologiche (CRS, Seismological Research Centre) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the North-eastern Italy Seismic Network: it currently consists of 17 very sensitive broad band and 18 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data centre in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of North-eastern Italy. The south-we