WorldWideScience

Sample records for seismic network consisting

  1. Processing of seismic signals from a seismometer network

    International Nuclear Information System (INIS)

    Key, F.A.; Warburton, P.J.

    1983-08-01

    A description is given of the Seismometer Network Analysis Computer (SNAC) which processes short period data from a network of seismometers (UKNET). The nine stations of the network are distributed throughout the UK and their outputs are transmitted to a control laboratory (Blacknest) where SNAC monitors the data for seismic signals. The computer gives an estimate of the source location of the detected signals and stores the waveforms. The detection logic is designed to maintain high sensitivity without excessive ''false alarms''. It is demonstrated that the system is able to detect seismic signals at an amplitude level consistent with a network of single stations and, within the limitations of signal onset time measurements made by machine, can locate the source of the seismic disturbance. (author)

  2. Romanian seismic network

    International Nuclear Information System (INIS)

    Ionescu, Constantin; Rizescu, Mihaela; Popa, Mihaela; Grigore, Adrian

    2000-01-01

    The research in the field of seismology in Romania is mainly carried out by the National Institute for Earth Physics (NIEP). The NIEP activities are mainly concerned with the fundamental research financed by research contracts from public sources and the maintenance and operation of the Romanian seismic network. A three stage seismic network is now operating under NIEP, designed mainly to monitor the Vrancea seismic region in a magnitude range from microearthquakes to strong events: - network of 18 short-period seismometers (S13); - Teledyne Geotech Instruments (Texas); - network of 7 stations with local digital recording (PCM-5000) on magnetic tape, made up of, S13 geophone (T=2 s) on vertical component and SH1 geophone (T=5 s) on horizontal components; - network of 28 SMA-1 accelerometers and 30 digital accelerometers (Kinemetrics - K2) installed in the free field conditions in the framework of the joint German-Romanian cooperation program (CRC); the K2 instruments cover a magnitude range from 1.4 to 8.0. Since 1994, MLR (Muntele Rosu) station has become part of the GEOFON network and was provided with high performance broad band instruments. At Bucharest and Timisoara data centers, an automated and networked seismological system performs the on-line digital acquisition and processing of the telemetered data. Automatic processing includes discrimination between local and distant seismic events, earthquake location and magnitude computation, and source parameter determination for local earthquakes. The results are rapidly distributed via Internet, to several seismological services in Europe and USA, to be used in the association/confirmation procedures. Plans for new developments of the network include the upgrade from analog to digital telemetry and new stations for monitoring local seismicity. (authors)

  3. The seismic monitoring network of Mt. Vesuvius

    Directory of Open Access Journals (Sweden)

    Massimo Orazi

    2013-11-01

    Full Text Available Mt. Vesuvius (southern Italy is one of the most hazardous volcanoes in the world. Its activity is currently characterized by moderate seismicity, with hypocenters located beneath the crater zone with depth rarely exceeding 5 km and magnitudes generally less than 3. The current configuration of the seismic monitoring network of Mt. Vesuvius consists of 18 seismic stations and 7 infrasound microphones. During the period 2006-2010 a seismic array with 48 channels was also operative. The station distribution provides appropriate coverage of the area around the volcanic edifice. The current development of the network and its geometry, under conditions of low seismic noise, allows locating seismic events with M<1. Remote instruments continuously transmit data to the main acquisition center in Naples. Data transmission is realized using different technological solutions based on UHF, Wi-Fi radio links, and TCP/IP client-server applications. Data are collected in the monitoring center of the Osservatorio Vesuviano (Italian National Institute of Geophysics and Volcanology, Naples section, which is equipped with systems for displaying and analyzing signals, using both real-time automatic and manual procedures. 24-hour surveillance allows to immediately communicate any significant anomaly to the Civil Protection authorities.

  4. Cooperative New Madrid seismic network

    International Nuclear Information System (INIS)

    Herrmann, R.B.; Johnston, A.C.

    1990-01-01

    The development and installation of components of a U.S. National Seismic Network (USNSN) in the eastern United States provides the basis for long term monitoring of eastern earthquakes. While the broad geographical extent of this network provides a uniform monitoring threshold for the purpose of identifying and locating earthquakes and while it will provide excellent data for defining some seismic source parameters for larger earthquakes through the use of waveform modeling techniques, such as depth and focal mechanism, by itself it will not be able to define the scaling of high frequency ground motions since it will not focus on any of the major seismic zones in the eastern U.S. Realizing this need and making use of a one time availability of funds for studying New Madrid earthquakes, Saint Louis University and Memphis State University successfully competed for funding in a special USGS RFP for New Madrid studies. The purpose of the proposal is to upgrade the present seismic networks run by these institutions in order to focus on defining the seismotectonics and ground motion scaling in the New Madrid Seismic Zone. The proposed network is designed both to complement the U.S. National Seismic Network and to make use of the capabilities of the communication links of that network

  5. Cloud Computing Services for Seismic Networks

    Science.gov (United States)

    Olson, Michael

    This thesis describes a compositional framework for developing situation awareness applications: applications that provide ongoing information about a user's changing environment. The thesis describes how the framework is used to develop a situation awareness application for earthquakes. The applications are implemented as Cloud computing services connected to sensors and actuators. The architecture and design of the Cloud services are described and measurements of performance metrics are provided. The thesis includes results of experiments on earthquake monitoring conducted over a year. The applications developed by the framework are (1) the CSN---the Community Seismic Network---which uses relatively low-cost sensors deployed by members of the community, and (2) SAF---the Situation Awareness Framework---which integrates data from multiple sources, including the CSN, CISN---the California Integrated Seismic Network, a network consisting of high-quality seismometers deployed carefully by professionals in the CISN organization and spread across Southern California---and prototypes of multi-sensor platforms that include carbon monoxide, methane, dust and radiation sensors.

  6. NCSRR digital seismic network in Romania

    International Nuclear Information System (INIS)

    Aldea, A.; Albota, E.; Demetriu, S.; Poiata, N.; Kashima, T.

    2007-01-01

    Digital seismic instrumentation donated by Japan International Cooperation Agency (JICA) to the National Center for Seismic Risk Reduction (NCSRR, Romania) allowed the installation in 2003 of a new Romanian seismic network. In 2005-2006 the network was developed by investments from NCSRR within the budget ensured by Ministry of Transports, Construction and Tourism (MTCT). The NCSRR seismic network contains three types of instrumentation: (i) free-field stations - outside the capital city Bucharest (8 accelerometers), (ii) instrumented buildings - in Bucharest (5 buildings), and (iii) stations with free-field and borehole sensors - in Bucharest (8 sites with ground surface sensor and sensors in 15 boreholes with depths up to 153 m). Since its installation, the NCSRR network recorded more than 170 seismic motions from 26 earthquakes with moment magnitudes ranging from 3.2 to 6.0. The seismic instrumentation was accompanied by investigations of ground conditions and site response: PS logging tests, single-station and array microtremor measurements. The development of seismic monitoring in Romania is a major contribution of JICA Project, creating the premises for a better understanding and modelling of earthquake ground motion, site effects and building response. (authors)

  7. The Great Maule earthquake: seismicity prior to and after the main shock from amphibious seismic networks

    Science.gov (United States)

    Lieser, K.; Arroyo, I. G.; Grevemeyer, I.; Flueh, E. R.; Lange, D.; Tilmann, F. J.

    2013-12-01

    The Chilean subduction zone is among the seismically most active plate boundaries in the world and its coastal ranges suffer from a magnitude 8 or larger megathrust earthquake every 10-20 years. The Constitución-Concepción or Maule segment in central Chile between ~35.5°S and 37°S was considered to be a mature seismic gap, rupturing last in 1835 and being seismically quiet without any magnitude 4.5 or larger earthquakes reported in global catalogues. It is located to the north of the nucleation area of the 1960 magnitude 9.5 Valdivia earthquake and to the south of the 1928 magnitude 8 Talca earthquake. On 27 February 2010 this segment ruptured in a Mw=8.8 earthquake, nucleating near 36°S and affecting a 500-600 km long segment of the margin between 34°S and 38.5°S. Aftershocks occurred along a roughly 600 km long portion of the central Chilean margin, most of them offshore. Therefore, a network of 30 ocean-bottom-seismometers was deployed in the northern portion of the rupture area for a three month period, recording local offshore aftershocks between 20 September 2010 and 25 December 2010. In addition, data of a network consisting of 33 landstations of the GeoForschungsZentrum Potsdam were included into the network, providing an ideal coverage of both the rupture plane and areas affected by post-seismic slip as deduced from geodetic data. Aftershock locations are based on automatically detected P wave onsets and a 2.5D velocity model of the combined on- and offshore network. Aftershock seismicity analysis in the northern part of the survey area reveals a well resolved seismically active splay fault in the accretionary prism of the Chilean forearc. Our findings imply that in the northernmost part of the rupture zone, co-seismic slip most likely propagated along the splay fault and not the subduction thrust fault. In addition, the updip limit of aftershocks along the plate interface can be verified to about 40 km landwards from the deformation front. Prior to

  8. MyShake: Building a smartphone seismic network

    Science.gov (United States)

    Kong, Q.; Allen, R. M.; Schreier, L.

    2014-12-01

    We are in the process of building up a smartphone seismic network. In order to build this network, we did shake table tests to evaluate the performance of the smartphones as seismic recording instruments. We also conducted noise floor test to find the minimum earthquake signal we can record using smartphones. We added phone noises to the strong motion data from past earthquakes, and used these as an analogy dataset to test algorithms and to understand the difference of using the smartphone network and the traditional seismic network. We also built a prototype system to trigger the smartphones from our server to record signals which can be sent back to the server in near real time. The phones can also be triggered by our developed algorithm running locally on the phone, if there's an earthquake occur to trigger the phones, the signal recorded by the phones will be sent back to the server. We expect to turn the prototype system into a real smartphone seismic network to work as a supplementary network to the existing traditional seismic network.

  9. OGS improvements in 2012 in running the Northeastern Italy Seismic Network: the Ferrara VBB borehole seismic station

    Science.gov (United States)

    Pesaresi, Damiano; Romanelli, Marco; Barnaba, Carla; Bragato, Pier Luigi; Durì, Giorgio

    2013-04-01

    The Centro di Ricerche Sismologiche (CRS, Seismological Research Center) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the Northeastern Italy Seismic Network: it currently consists of 17 very sensitive broad band and 18 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data center in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of Northeastern Italy. The southwestern edge of the OGS seismic network stands on the Po alluvial basin: earthquake localization and characterization in this area is affected by the presence of soft alluvial deposits. OGS ha already experience in running a local seismic network in high noise conditions making use of borehole installations in the case of the micro-seismicity monitoring of a local gas storage site for a private company. Following the ML=5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on May 20, 2012 at 02:03:53 UTC, a cooperation of Istituto Nazionale di Geofisica e Vulcanologia, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of a previously existing very broad band (VBB) borehole seismic station in Ferrara. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-West, including Ferrara and its surroundings, and on the other hand to evaluate the seismic response at the site. We will describe improvements in running the Northeastern Italy Seismic Network, including details of the Ferrara VBB

  10. The Canarian Seismic Monitoring Network: design, development and first result

    Science.gov (United States)

    D'Auria, Luca; Barrancos, José; Padilla, Germán D.; García-Hernández, Rubén; Pérez, Aaron; Pérez, Nemesio M.

    2017-04-01

    Tenerife is an active volcanic island which experienced several eruptions of moderate intensity in historical times, and few explosive eruptions in the Holocene. The increasing population density and the consistent number of tourists are constantly raising the volcanic risk. In June 2016 Instituto Volcanologico de Canarias started the deployment of a seismological volcano monitoring network consisting of 15 broadband seismic stations. The network began its full operativity in November 2016. The aim of the network are both volcano monitoring and scientific research. Currently data are continuously recorded and processed in real-time. Seismograms, hypocentral parameters, statistical informations about the seismicity and other data are published on a web page. We show the technical characteristics of the network and an estimate of its detection threshold and earthquake location performances. Furthermore we present other near-real time procedures on the data: analysis of the ambient noise for determining the shallow velocity model and temporal velocity variations, detection of earthquake multiplets through massive data mining of the seismograms and automatic relocation of events through double-difference location.

  11. OGS improvements in 2012 in running the North-eastern Italy Seismic Network: the Ferrara VBB borehole seismic station

    Science.gov (United States)

    Pesaresi, D.; Romanelli, M.; Barnaba, C.; Bragato, P. L.; Durì, G.

    2014-07-01

    The Centro di Ricerche Sismologiche (CRS, Seismological Research Centre) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the North-eastern Italy Seismic Network: it currently consists of 17 very sensitive broad band and 18 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data centre in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of North-eastern Italy. The south-western edge of the OGS seismic network (Fig. 1) stands on the Po alluvial basin: earthquake localization and characterization in this area is affected by the presence of soft alluvial deposits. OGS ha already experience in running a local seismic network in high noise conditions making use of borehole installations in the case of the micro-seismicity monitoring of a local gas storage site for a private company. Following the ML = 5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on 20 May 2012 at 02:03:53 UTC, a cooperation of Istituto Nazionale di Geofisica e Vulcanologia, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of a previously existing very broad band (VBB) borehole seismic station in Ferrara. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-West, including Ferrara and its surroundings, and on the other hand to evaluate the seismic response at the site. We will describe improvements in running the North-eastern Italy Seismic Network, including details of

  12. Building a Smartphone Seismic Network

    Science.gov (United States)

    Kong, Q.; Allen, R. M.

    2013-12-01

    We are exploring to build a new type of seismic network by using the smartphones. The accelerometers in smartphones can be used to record earthquakes, the GPS unit can give an accurate location, and the built-in communication unit makes the communication easier for this network. In the future, these smartphones may work as a supplement network to the current traditional network for scientific research and real-time applications. In order to build this network, we developed an application for android phones and server to record the acceleration in real time. These records can be sent back to a server in real time, and analyzed at the server. We evaluated the performance of the smartphone as a seismic recording instrument by comparing them with high quality accelerometer while located on controlled shake tables for a variety of tests, and also the noise floor test. Based on the daily human activity data recorded by the volunteers and the shake table tests data, we also developed algorithm for the smartphones to detect earthquakes from daily human activities. These all form the basis of setting up a new prototype smartphone seismic network in the near future.

  13. ANZA Seismic Network- From Monitoring to Science

    Science.gov (United States)

    Vernon, F.; Eakin, J.; Martynov, V.; Newman, R.; Offield, G.; Hindley, A.; Astiz, L.

    2007-05-01

    The ANZA Seismic Network (http:eqinfo.ucsd.edu) utilizes broadband and strong motion sensors with 24-bit dataloggers combined with real-time telemetry to monitor local and regional seismicity in southernmost California. The ANZA network provides real-time data to the IRIS DMC, California Integrated Seismic Network (CISN), other regional networks, and the Advanced National Seismic System (ANSS), in addition to providing near real-time information and monitoring to the greater San Diego community. Twelve high dynamic range broadband and strong motion sensors adjacent to the San Jacinto Fault zone contribute data for earthquake source studies and continue the monitoring of the seismic activity of the San Jacinto fault initiated 24 years ago. Five additional stations are located in the San Diego region with one more station on San Clemente Island. The ANZA network uses the advance wireless networking capabilities of the NSF High Performance Wireless Research and Education Network (http:hpwren.ucsd.edu) to provide the communication infrastructure for the real-time telemetry of Anza seismic stations. The ANZA network uses the Antelope data acquisition software. The combination of high quality hardware, communications, and software allow for an annual network uptime in excess of 99.5% with a median annual station real-time data return rate of 99.3%. Approximately 90,000 events, dominantly local sources but including regional and teleseismic events, comprise the ANZA network waveform database. All waveform data and event data are managed using the Datascope relational database. The ANZA network data has been used in a variety of scientific research including detailed structure of the San Jacinto Fault Zone, earthquake source physics, spatial and temporal studies of aftershocks, array studies of teleseismic body waves, and array studies on the source of microseisms. To augment the location, detection, and high frequency observations of the seismic source spectrum from local

  14. A national seismographic network for assessing seismic hazards

    International Nuclear Information System (INIS)

    Masse, R.P.; Murphy, A.J.

    1989-01-01

    To access the seismic hazard of a region and to establish the design and construction criteria for critical facilities such as nuclear power plants, detailed information is required on the frequency of occurrence, geographical distribution, magnitude, and energy spectra of earthquakes. Also important is information on the frequency-dependent attenuation of seismic waves. This information can all be obtained from data recorded by networks of seismograph stations. A new seismograph network for the US which takes advantage of advances in technology is currently under development. This network is the US National Seismograph Network (USNSN). The USNSN is a cooperative effort between the National Earthquake Information Center (NEIC) of the US Geological survey and the Nuclear Regulatory Commission. The USNSN will be installed and operated by the NEIC. The network will consist of approximately 150 seismograph stations distributed across the lower 48 states and across Alaska, Hawaii, Puerto Rico, and the Virgin Islands. The design goal for the network is the on-scale recording by at least five well-distributed stations of any event of magnitude 2.5 or larger in the continental US, Hawaii, and Puerto Rico, and of any event of magnitude 3.5 or larger in Alaska. The rapid access to all USNSN data will be provided by the NEIC. This will be accomplished both via a dial-up capability to the event waveform data base and by satellite transmission in a broadcast mode. All earthquake data will also be distributed on compact disk with read only memory (CD-ROM) to all institutions having an interest in the seismic data

  15. Criteria for the PNE seismic network

    International Nuclear Information System (INIS)

    Pruvost, N.L.

    1978-01-01

    A 1976 treaty between the United States and the Soviet Union permits a local seismic network to be deployed at the site of a peaceful nuclear explosion to monitor the event. Criteria for the design and selection of the data-acquisition equipment for such a network are provided. Constraints imposed by the protocol of the treaty, the environment, and the expected properties of seismic signals (based on experiences at the Nevada Test Site) are discussed. Conclusions are drawn about the desired operating mode. Criteria for a general seismic instrumentation system are described

  16. Local seismic network at the Olkiluoto site. Annual report 2002-2004

    Energy Technology Data Exchange (ETDEWEB)

    Saari, J. [Enprima Oy, Vantaa (Finland)

    2005-09-15

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. In the beginning, the network consisted of six seismic stations. Later, in June 2004, the seismic network was expanded with two new seismic stations. At that time started the excavation of the underground characterisation facility (the ONKALO) and the basic operation procedure was changed more suitable for the demands of the new situation. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of the ONKALO. This report gives the results of microseismic monitoring during the years 2002 - 2004. Also the changes in the structure and the operation procedure of the network are described. The network has operated nearly continuously. The longest interruption occurred 16.-17.6.2004, when two new seismic stations were installed in the network and the operation procedure was changed. Altogether 757 events have been located in the Olkiluoto area. The magnitudes of the observed events range from ML = -3.5 to ML = 1.2. All of them are explosions or other artificial events. So far, none of the 757 observed events can be classified as microearthquakes. Five of the events have characteristics that make the origin of the recorded signal uncertain. They are quite unlikely microearthquakes, but they are not typical examples of artificial seismic signals either. When the experience and the data set of the Olkiluoto microearthquakes increase the identification of events will be more definite. Evidence of activity that would has influence on the safety of the ONKALO, have not found. (orig.)

  17. Local seismic network at the Olkiluoto site. Annual report 2002-2004

    International Nuclear Information System (INIS)

    Saari, J.

    2005-09-01

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. In the beginning, the network consisted of six seismic stations. Later, in June 2004, the seismic network was expanded with two new seismic stations. At that time started the excavation of the underground characterisation facility (the ONKALO) and the basic operation procedure was changed more suitable for the demands of the new situation. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of the ONKALO. This report gives the results of microseismic monitoring during the years 2002 - 2004. Also the changes in the structure and the operation procedure of the network are described. The network has operated nearly continuously. The longest interruption occurred 16.-17.6.2004, when two new seismic stations were installed in the network and the operation procedure was changed. Altogether 757 events have been located in the Olkiluoto area. The magnitudes of the observed events range from ML = -3.5 to ML = 1.2. All of them are explosions or other artificial events. So far, none of the 757 observed events can be classified as microearthquakes. Five of the events have characteristics that make the origin of the recorded signal uncertain. They are quite unlikely microearthquakes, but they are not typical examples of artificial seismic signals either. When the experience and the data set of the Olkiluoto microearthquakes increase the identification of events will be more definite. Evidence of activity that would has influence on the safety of the ONKALO, have not found. (orig.)

  18. Automatic Seismic-Event Classification with Convolutional Neural Networks.

    Science.gov (United States)

    Bueno Rodriguez, A.; Titos Luzón, M.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.

    2017-12-01

    Active volcanoes exhibit a wide range of seismic signals, providing vast amounts of unlabelled volcano-seismic data that can be analyzed through the lens of artificial intelligence. However, obtaining high-quality labelled data is time-consuming and expensive. Deep neural networks can process data in their raw form, compute high-level features and provide a better representation of the input data distribution. These systems can be deployed to classify seismic data at scale, enhance current early-warning systems and build extensive seismic catalogs. In this research, we aim to classify spectrograms from seven different seismic events registered at "Volcán de Fuego" (Colima, Mexico), during four eruptive periods. Our approach is based on convolutional neural networks (CNNs), a sub-type of deep neural networks that can exploit grid structure from the data. Volcano-seismic signals can be mapped into a grid-like structure using the spectrogram: a representation of the temporal evolution in terms of time and frequency. Spectrograms were computed from the data using Hamming windows with 4 seconds length, 2.5 seconds overlapping and 128 points FFT resolution. Results are compared to deep neural networks, random forest and SVMs. Experiments show that CNNs can exploit temporal and frequency information, attaining a classification accuracy of 93%, similar to deep networks 91% but outperforming SVM and random forest. These results empirically show that CNNs are powerful models to classify a wide range of volcano-seismic signals, and achieve good generalization. Furthermore, volcano-seismic spectrograms contains useful discriminative information for the CNN, as higher layers of the network combine high-level features computed for each frequency band, helping to detect simultaneous events in time. Being at the intersection of deep learning and geophysics, this research enables future studies of how CNNs can be used in volcano monitoring to accurately determine the detection and

  19. Building an educational seismic network in Romanian schools

    Science.gov (United States)

    Zaharia, Bogdan; Tataru, Dragos; Grecu, Bogdan; Ionescu, Constantin; Bican-Brisan, Nicoleta; Neagoe, Cristian

    2014-05-01

    Understanding the earthquake phenomena and their effects is an important step toward the education of population and aims to raise the awareness about the earthquake risk and possible mitigation actions. In this sense, The Romanian Educational Seismic Network project represents an efficient communication tool, allowing teaching and learning about the earthquakes and seismic wave impact through experimental practices and educational activities. The seismic network consist of nine SEP seismometers installed in high-schools from the most important seismic areas (Vrancea, Banat, Făgăraş, Dobrogea), vulnerable cities (Bucharest, Iasi) or high populated places (Cluj, Sibiu, Timisoara, Zalău) and is coordinated by the National Institute of Earth Physics from Bucharest. Once installed, the seismic network is the starting point of activities for students through an e-learning platform. Some objectives are aimed: - To train students and teachers how to make analysis and interpretation of seismological data; - To make science more interesting for students; - To improve the participation rates in physical sciences for students; - To raise awareness of geoscience as a scientific discipline for pre-university students; - To promote the installation and effective use of educational seismographs and seismic data; - To reinforce and develop relationships between participating schools and research institutes; - To create an earthquake database this will be used by students and teachers for educational purposes. Different types of practical activities using educational seismometer, designed by researchers for students, are described in educational materials and in the web platform project. Also we encourage the teachers from the participating schools to share their experiences and produce new didactic tools for the classroom. This collaborative work could illustrate the conjugated efforts of researchers and teachers for a better education and awareness of the risk culture

  20. Operations plan for the Regional Seismic Test Network

    International Nuclear Information System (INIS)

    1981-01-01

    The Regional Seismic Test Network program was established to provide a capability for detection of extremely sensitive earth movements. Seismic signals from both natural and man-made earth motions will be analyzed with the ultimate objective of accurately locating underground nuclear explosions. The Sandia National Laboratories, Albuquerque, has designed an unattended seismic station capable of recording seismic information received at the location of the seismometers installed as part of that specific station. A network of stations is required to increase the capability of determining the source of the seismic signal and the location of the source. Current plans are to establish a five-station seismic network in the United States and Canada. The Department of Energy, Nevada Operations Office, has been assigned the responsibility for deploying, installing, and operating these remote stations. This Operation Plan provides the basic information and tasking to accomplish this assignment

  1. The Banat seismic network: Evolution and performance

    International Nuclear Information System (INIS)

    Oros, E.

    2002-01-01

    In the Banat Seismic Region, with its important seismogenic zones (Banat and Danube), operates today the Banat Seismic Network. This network has four short period seismic stations telemetered at the Timisoara Seismological Observatory (since 1995): Siria, Banloc, Buzias and Timisoara. The stations are equipped with short-period S13 seismometers (1 second). The data recorded by the short-period stations are telemetered to Timisoara where they are digitized at 50 samples per second, with 16 bit resolution. At Timisoara works SAPS, an automated system for data acquisition and processing, which performs real-time event detection (based on Allen algorithm), discrimination between local and teleseismic events, automatic P and S waves picking, location and magnitude determination for local events and teleseisms, 'feeding' of an Automatic Data Request Manager with phases, locations and waveforms, sending of earthquake information (as phases and location), by e-mail to Bucharest. The beginning of the seismological observations in Banat is in the 1880's (Timisoara Meteorological Observatory). The first seismograph was installed in Timisoara in 1901, and its systematic observations began in 1902. The World War I interrupted its work. In 1942 Prof. I. Curea founded the Seismic Station Timisoara, and since 1967 until today this station worked into a special building. After 1972 two stations with high amplification were installed in Retezat Mts (Gura Zlata) and on Nera Valey (Susara), as a consequence of the research results. Since 1982 Buzias station began to work completing the Banat Seismic Network. Therefore, the network could detect and locate any local seismic event with M > 2.2. Moreover, up to 20 km distance from each station any seismic event could be detected over M = 0.5. The paper also presents the quality of the locations versus different local seismic sources. (author)

  2. Improving the Detectability of the Catalan Seismic Network for Local Seismic Activity Monitoring

    Science.gov (United States)

    Jara, Jose Antonio; Frontera, Tànit; Batlló, Josep; Goula, Xavier

    2016-04-01

    The seismic survey of the territory of Catalonia is mainly performed by the regional seismic network operated by the Cartographic and Geologic Institute of Catalonia (ICGC). After successive deployments and upgrades, the current network consists of 16 permanent stations equipped with 3 component broadband seismometers (STS2, STS2.5, CMG3ESP and CMG3T), 24 bits digitizers (Nanometrics Trident) and VSAT telemetry. Data are continuously sent in real-time via Hispasat 1D satellite to the ICGC datacenter in Barcelona. Additionally, data from other 10 stations of neighboring areas (Spain, France and Andorra) are continuously received since 2011 via Internet or VSAT, contributing both to detect and to locate events affecting the region. More than 300 local events with Ml ≥ 0.7 have been yearly detected and located in the region. Nevertheless, small magnitude earthquakes, especially those located in the south and south-west of Catalonia may still go undetected by the automatic detection system (DAS), based on Earthworm (USGS). Thus, in order to improve the detection and characterization of these missed events, one or two new stations should be installed. Before making the decision about where to install these new stations, the performance of each existing station is evaluated taking into account the fraction of detected events using the station records, compared to the total number of events in the catalogue, occurred during the station operation time from January 1, 2011 to December 31, 2014. These evaluations allow us to build an Event Detection Probability Map (EDPM), a required tool to simulate EDPMs resulting from different network topology scenarios depending on where these new stations are sited, and becoming essential for the decision-making process to increase and optimize the event detection probability of the seismic network.

  3. Reliability of lifeline networks under seismic hazard

    International Nuclear Information System (INIS)

    Selcuk, A. Sevtap; Yuecemen, M. Semih

    1999-01-01

    Lifelines, such as pipelines, transportation, communication and power transmission systems, are networks which extend spatially over large geographical regions. The quantification of the reliability (survival probability) of a lifeline under seismic threat requires attention, as the proper functioning of these systems during or after a destructive earthquake is vital. In this study, a lifeline is idealized as an equivalent network with the capacity of its elements being random and spatially correlated and a comprehensive probabilistic model for the assessment of the reliability of lifelines under earthquake loads is developed. The seismic hazard that the network is exposed to is described by a probability distribution derived by using the past earthquake occurrence data. The seismic hazard analysis is based on the 'classical' seismic hazard analysis model with some modifications. An efficient algorithm developed by Yoo and Deo (Yoo YB, Deo N. A comparison of algorithms for terminal pair reliability. IEEE Transactions on Reliability 1988; 37: 210-215) is utilized for the evaluation of the network reliability. This algorithm eliminates the CPU time and memory capacity problems for large networks. A comprehensive computer program, called LIFEPACK is coded in Fortran language in order to carry out the numerical computations. Two detailed case studies are presented to show the implementation of the proposed model

  4. Strong Motion Network of Medellín and Aburrá Valley: technical advances, seismicity records and micro-earthquake monitoring

    Science.gov (United States)

    Posada, G.; Trujillo, J. C., Sr.; Hoyos, C.; Monsalve, G.

    2017-12-01

    The tectonics setting of Colombia is determined by the interaction of Nazca, Caribbean and South American plates, together with the Panama-Choco block collision, which makes a seismically active region. Regional seismic monitoring is carried out by the National Seismological Network of Colombia and the Accelerometer National Network of Colombia. Both networks calculate locations, magnitudes, depths and accelerations, and other seismic parameters. The Medellín - Aburra Valley is located in the Northern segment of the Central Cordillera of Colombia, and according to the Colombian technical seismic norm (NSR-10), is a region of intermediate hazard, because of the proximity to seismic sources of the Valley. Seismic monitoring in the Aburra Valley began in 1996 with an accelerometer network which consisted of 38 instruments. Currently, the network consists of 26 stations and is run by the Early Warning System of Medellin and Aburra Valley (SIATA). The technical advances have allowed the real-time communication since a year ago, currently with 10 stations; post-earthquake data is processed through operationally near-real-time, obtaining quick results in terms of location, acceleration, spectrum response and Fourier analysis; this information is displayed at the SIATA web site. The strong motion database is composed by 280 earthquakes; this information is the basis for the estimation of seismic hazards and risk for the region. A basic statistical analysis of the main information was carried out, including the total recorded events per station, natural frequency, maximum accelerations, depths and magnitudes, which allowed us to identify the main seismic sources, and some seismic site parameters. With the idea of a more complete seismic monitoring and in order to identify seismic sources beneath the Valley, we are in the process of installing 10 low-cost shake seismometers for micro-earthquake monitoring. There is no historical record of earthquakes with a magnitude

  5. Seismic network at the Olkiluoto site and microearthquake observations in 2002-2013

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2014-05-01

    This report describes the structure and operation of Posiva's seismic network after the comprehensive upgrade performed in 2013 and presents a summary of its micro-earthquake observations in 2002 - 2013. Excavation of the underground rock characterisation facility called ONKALO started in 2004. Before that, in February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto. The number of seismic stations has increased gradually and communication, hardware and software have developed in over ten years. The upgrade in 2013 included data transmission, the equipment in several seismic stations, the server responsible for the data processing in Olkiluoto and software applied in operation and analysis of observations. After the upgrade Posiva's permanent seismic network consists of 17 seismic stations and 21 triaxial sensors. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas, of which the larger one, the seismic semi-regional area, includes the Olkiluoto island and its surroundings. The aim is to monitor explosions and tectonic earthquakes in regional scale inside that area. All the expected excavation induced events are assumed to occur inside the smaller target area, the seismic ONKALO block, which is a 2 km x 2 km x 2 km cube surrounding the ONKALO. An additional task of monitoring is related to safeguarding of the construction of the ONKALO.In the beginning the network monitored tectonic earthquakes in order to characterise the undisturbed baseline of seismicity in Olkiluoto. After August 2004, the network also monitored excavation induced seismicity. The first three excavation induced earthquakes were recorded in September 2005. At the moment the total number of excavation induced earthquakes is 17. During the same time about 10 000 excavation blasts were located. The

  6. Improved Seismic Acquisition System and Data Processing for the Italian National Seismic Network

    Science.gov (United States)

    Badiali, L.; Marcocci, C.; Mele, F.; Piscini, A.

    2001-12-01

    A new system for acquiring and processing digital signals has been developed in the last few years at the Istituto Nazionale di Geofisica e Vulcanologia (INGV). The system makes extensive use of the internet communication protocol standards such as TCP and UDP which are used as the transport highway inside the Italian network, and possibly in a near future outside, to share or redirect data among processes. The Italian National Seismic Network has been working for about 18 years equipped with vertical short period seismometers and transmitting through analog lines, to the computer center in Rome. We are now concentrating our efforts on speeding the migration towards a fully digital network based on about 150 stations equipped with either broad band or 5 seconds sensors connected to the data center partly through wired digital communication and partly through satellite digital communication. The overall process is layered through intranet and/or internet. Every layer gathers data in a simple format and provides data in a processed format, ready to be distributed towards the next layer. The lowest level acquires seismic data (raw waveforms) coming from the remote stations. It handshakes, checks and sends data in LAN or WAN according to a distribution list where other machines with their programs are waiting for. At the next level there are the picking procedures, or "pickers", on a per instrument basis, looking for phases. A picker spreads phases, again through the LAN or WAN and according to a distribution list, to one or more waiting locating machines tuned to generate a seismic event. The event locating procedure itself, the higher level in this stack, can exchange information with other similar procedures. Such a layered and distributed structure with nearby targets allows other seismic networks to join the processing and data collection of the same ongoing event, creating a virtual network larger than the original one. At present we plan to cooperate with other

  7. Application of consistent fluid added mass matrix to core seismic

    International Nuclear Information System (INIS)

    Koo, K. H.; Lee, J. H.

    2003-01-01

    In this paper, the application algorithm of a consistent fluid added mass matrix including the coupling terms to the core seismic analysis is developed and installed at SAC-CORE3.0 code. As an example, we assumed the 7-hexagon system of the LMR core and carried out the vibration modal analysis and the nonlinear time history seismic response analysis using SAC-CORE3.0. Used consistent fluid added mass matrix is obtained by using the finite element program of the FAMD(Fluid Added Mass and Damping) code. From the results of the vibration modal analysis, the core duct assemblies reveal strongly coupled vibration modes, which are so different from the case of in-air condition. From the results of the time history seismic analysis, it was verified that the effects of the coupled terms of the consistent fluid added mass matrix are significant in impact responses and the dynamic responses

  8. Local seismic network at the Olkiluoto site. Annual Report for 2007

    International Nuclear Information System (INIS)

    Saari, J.; Lakio, A.

    2008-05-01

    magnitude in local Richter's scale). All these events are explosions. According to seismic monitoring the rockmass surrounding the ONKALO has been stable in 2007. One of the recorded events was a local microearthquake (M L 1.9) outside the target area of the network. That earthquake occurred 3.1.2007 in Laitila about 40 km from Olkiluoto. Joint interpretation of recordings of three seismic networks (Posiva, Finnish and Swedish national networks) was used when the preliminary fault plane solution of the Laitila earthquake was calculated: The reverse faulting occurred in a nearly vertical N-S oriented fault, which can be associated with mafic dykes in the area.The orientation of the compressional axis related to the microearthquake on (NWSE) is consistent with the estimated maximum in-situ stress field in Olkiluoto and elsewhere in Finland. (orig.)

  9. Modernization of the Caltech/USGS Southern California Seismic Network

    Science.gov (United States)

    Bhadha, R.; Devora, A.; Hauksson, E.; Johnson, D.; Thomas, V.; Watkins, M.; Yip, R.; Yu, E.; Given, D.; Cone, G.; Koesterer, C.

    2009-12-01

    The USGS/ANSS/ARRA program is providing Government Furnished Equipment (GFE), and two year funding for upgrading the Caltech/USGS Southern California Seismic Network (SCSN). The SCSN is the modern digital ground motion seismic network in southern California that monitors seismicity and provides real-time earthquake information products such as rapid notifications, moment tensors, and ShakeMap. The SCSN has evolved through the years and now consists of several well-integrated components such as Short-Period analog, TERRAscope, digital stations, and real-time strong motion stations, or about 300 stations. In addition, the SCSN records data from about 100 stations provided by partner networks. To strengthen the ability of SCSN to meet the ANSS performance standards, we will install GFE and carry out the following upgrades and improvements of the various components of the SCSN: 1) Upgrade of dataloggers at seven TERRAscope stations; 2) Upgrade of dataloggers at 131 digital stations and upgrade broadband sensors at 25 stations; 3) Upgrade of SCSN metadata capabilities; 4) Upgrade of telemetry capabilities for both seismic and GPS data; and 5) Upgrade balers at stations with existing Q330 dataloggers. These upgrades will enable the SCSN to meet the ANSS Performance Standards more consistently than before. The new equipment will improve station uptimes and reduce maintenance costs. The new equipment will also provide improved waveform data quality and consequently superior data products. The data gaps due to various outages will be minimized, and ‘late’ data will be readily available through retrieval from on-site storage. Compared to the outdated equipment, the new equipment will speed up data delivery by about 10 sec, which is fast enough for earthquake early warning applications. The new equipment also has about a factor of ten lower consumption of power. We will also upgrade the SCSN data acquisition and data center facilities, which will improve the SCSN

  10. Local seismic network at the Olkiluoto site. Annual report for 2011

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2012-06-01

    This report gives the results of microseismic monitoring during 2011. Excavation of the underground characterisation facility called ONKALO started in 2004. Before that, in February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto. After that the number of seismic stations has increased gradually. In 2011 Posiva's permanent seismic network consists of 15 seismic stations and 20 triaxial sensors. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas. The larger target area, called seismic semiregional area, covers the Olkiluoto Island and its surroundings. The purpose is to monitor explosions and tectonic earthquakes in regional scale inside that area. The smaller target area is called the seismic ONKALO block, which is a 2 km x 2 km x 2 km cube surrounding ONKALO. It is assumed that all the expected excavation induced events occur within this volume. At the moment the seismic ONKALO block includes ten seismic stations. An additional task of monitoring is related to safeguarding of the construction of ONKALO. The configuration of the seismic network as well as the software packages applied in data processing and analyses have remained during the previous year. The design model of ONKALO and the brittle fault zone model of the Olkiluoto of the seismic visualization package Jdi were upgraded in 2011. The network has operated nearly continuously. There was a 14 minutes and 30 second long operation failure in December 2011. That was the first network operation failure in five years. Altogether 1223 events have been located in the Olkiluoto area, in the reported time period. Most of them (1098) are explosions that occurred inside the seismic semiregional area and especially inside the seismic ONKALO block (1064 events). The magnitudes of the observed explosions inside the semi

  11. Local seismic network at the Olkiluoto site. Annual report for 2011

    Energy Technology Data Exchange (ETDEWEB)

    Saari, J.; Malm, M. [AF-Consult Oy, Espoo (Finland)

    2012-06-15

    This report gives the results of microseismic monitoring during 2011. Excavation of the underground characterisation facility called ONKALO started in 2004. Before that, in February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto. After that the number of seismic stations has increased gradually. In 2011 Posiva's permanent seismic network consists of 15 seismic stations and 20 triaxial sensors. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas. The larger target area, called seismic semiregional area, covers the Olkiluoto Island and its surroundings. The purpose is to monitor explosions and tectonic earthquakes in regional scale inside that area. The smaller target area is called the seismic ONKALO block, which is a 2 km x 2 km x 2 km cube surrounding ONKALO. It is assumed that all the expected excavation induced events occur within this volume. At the moment the seismic ONKALO block includes ten seismic stations. An additional task of monitoring is related to safeguarding of the construction of ONKALO. The configuration of the seismic network as well as the software packages applied in data processing and analyses have remained during the previous year. The design model of ONKALO and the brittle fault zone model of the Olkiluoto of the seismic visualization package Jdi were upgraded in 2011. The network has operated nearly continuously. There was a 14 minutes and 30 second long operation failure in December 2011. That was the first network operation failure in five years. Altogether 1223 events have been located in the Olkiluoto area, in the reported time period. Most of them (1098) are explosions that occurred inside the seismic semiregional area and especially inside the seismic ONKALO block (1064 events). The magnitudes of the observed explosions inside the

  12. Local seismic network at the Olkiluoto site. Annual report for 2010

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2011-11-01

    Excavation of the underground characterisation facility (the ONKALO) started in 2004. Before that, in February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto. After that the number of seismic stations has increased gradually. In 2010 Posiva's permanent seismic network consists of 15 seismic stations and 20 triaxial sensors. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas. The larger target area, called seismic semiregional area, covers the Olkiluoto Island and its surroundings. The purpose is to monitor explosions and tectonic earthquakes in regional scale inside that area. The smaller target area is called the seismic ONKALO block, which is a 2 km *2 km *2 km cube surrounding the ONKALO. It is assumed that all the expected excavation induced events occur within this volume. At the moment the seismic ONKALO block includes ten seismic stations. An additional task of monitoring is related to safeguarding of the ONKALO. This report gives the results of microseismic monitoring during 2010. In March 2010, the seismic network was upgraded by a new triaxial borehole seismometer in order to improve the sensitivity and the depth resolution inside the ONKALO block. The sensor is the second one inside the ONKALO. New PC for data processing and analysis with the new version of Linux operating system was installed. Also all software packages for data processing and analysis and for visualization were upgraded. The network has operated continuously in 2010. Altogether 1089 events have been located in the Olkiluoto area, in reported time period. Most of them (943) are explosions occurred inside the seismic semi-regional area and especially inside the seismic ONKALO block (895 events). The magnitudes of the observed explosions inside the semi-regional area range from M L = -1

  13. Connection with seismic networks and construction of real time earthquake monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Heon Cheol; Lee, H. I.; Shin, I. C.; Lim, I. S.; Park, J. H.; Lee, B. K.; Whee, K. H.; Cho, C. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2000-12-15

    It is natural to use the nuclear power plant seismic network which have been operated by KEPRI(Korea Electric Power Research Institute) and local seismic network by KIGAM(Korea Institute of Geology, Mining and Material). The real time earthquake monitoring system is composed with monitoring module and data base module. Data base module plays role of seismic data storage and classification and the other, monitoring module represents the status of acceleration in the nuclear power plant area. This research placed the target on the first, networking the KIN's seismic monitoring system with KIGAM and KEPRI seismic network and the second, construction the KIN's Independent earthquake monitoring system.

  14. Connection with seismic networks and construction of real time earthquake monitoring system

    International Nuclear Information System (INIS)

    Chi, Heon Cheol; Lee, H. I.; Shin, I. C.; Lim, I. S.; Park, J. H.; Lee, B. K.; Whee, K. H.; Cho, C. S.

    2000-12-01

    It is natural to use the nuclear power plant seismic network which have been operated by KEPRI(Korea Electric Power Research Institute) and local seismic network by KIGAM(Korea Institute of Geology, Mining and Material). The real time earthquake monitoring system is composed with monitoring module and data base module. Data base module plays role of seismic data storage and classification and the other, monitoring module represents the status of acceleration in the nuclear power plant area. This research placed the target on the first, networking the KIN's seismic monitoring system with KIGAM and KEPRI seismic network and the second, construction the KIN's Independent earthquake monitoring system

  15. Romanian Educational Seismic Network Project

    Science.gov (United States)

    Tataru, Dragos; Ionescu, Constantin; Zaharia, Bogdan; Grecu, Bogdan; Tibu, Speranta; Popa, Mihaela; Borleanu, Felix; Toma, Dragos; Brisan, Nicoleta; Georgescu, Emil-Sever; Dobre, Daniela; Dragomir, Claudiu-Sorin

    2013-04-01

    Romania is one of the most active seismic countries in Europe, with more than 500 earthquakes occurring every year. The seismic hazard of Romania is relatively high and thus understanding the earthquake phenomena and their effects at the earth surface represents an important step toward the education of population in earthquake affected regions of the country and aims to raise the awareness about the earthquake risk and possible mitigation actions. In this direction, the first national educational project in the field of seismology has recently started in Romania: the ROmanian EDUcational SEISmic NETwork (ROEDUSEIS-NET) project. It involves four partners: the National Institute for Earth Physics as coordinator, the National Institute for Research and Development in Construction, Urban Planning and Sustainable Spatial Development " URBAN - INCERC" Bucharest, the Babeş-Bolyai University (Faculty of Environmental Sciences and Engineering) and the software firm "BETA Software". The project has many educational, scientific and social goals. The main educational objectives are: training students and teachers in the analysis and interpretation of seismological data, preparing of several comprehensive educational materials, designing and testing didactic activities using informatics and web-oriented tools. The scientific objective is to introduce into schools the use of advanced instruments and experimental methods that are usually restricted to research laboratories, with the main product being the creation of an earthquake waveform archive. Thus a large amount of such data will be used by students and teachers for educational purposes. For the social objectives, the project represents an effective instrument for informing and creating an awareness of the seismic risk, for experimentation into the efficacy of scientific communication, and for an increase in the direct involvement of schools and the general public. A network of nine seismic stations with SEP seismometers

  16. Southern Appalachian Regional Seismic Network

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, S.C.C.; Johnston, A.C.; Chiu, J.M. [Memphis State Univ., TN (United States). Center for Earthquake Research and Information

    1994-08-01

    The seismic activity in the southern Appalachian area was monitored by the Southern Appalachian Regional Seismic Network (SARSN) since late 1979 by the Center for Earthquake Research and Information (CERI) at Memphis State University. This network provides good spatial coverage for earthquake locations especially in east Tennessee. The level of activity concentrates more heavily in the Valley and Ridge province of eastern Tennessee, as opposed to the Blue Ridge or Inner Piedmont. The large majority of these events lie between New York - Alabama lineament and the Clingman/Ocoee lineament, magnetic anomalies produced by deep-seated basement structures. Therefore SARSN, even with its wide station spacing, has been able to define the essential first-order seismological characteristics of the Southern Appalachian seismic zone. The focal depths of the southeastern U.S. earthquakes concentrate between 8 and 16 km, occurring principally beneath the Appalachian overthrust. In cross-sectional views, the average seismicity is shallower to the east beneath the Blue Ridge and Piedmont provinces and deeper to the west beneath the Valley and Ridge and the North American craton. Results of recent focal mechanism studies by using the CERI digital earthquake catalog between October, 1986 and December, 1991, indicate that the basement of the Valley and Ridge province is under a horizontal, NE-SW compressive stress. Right-lateral strike-slip faulting on nearly north-south fault planes is preferred because it agrees with the trend of the regional magnetic anomaly pattern.

  17. Southern Appalachian Regional Seismic Network

    International Nuclear Information System (INIS)

    Chiu, S.C.C.; Johnston, A.C.; Chiu, J.M.

    1994-08-01

    The seismic activity in the southern Appalachian area was monitored by the Southern Appalachian Regional Seismic Network (SARSN) since late 1979 by the Center for Earthquake Research and Information (CERI) at Memphis State University. This network provides good spatial coverage for earthquake locations especially in east Tennessee. The level of activity concentrates more heavily in the Valley and Ridge province of eastern Tennessee, as opposed to the Blue Ridge or Inner Piedmont. The large majority of these events lie between New York - Alabama lineament and the Clingman/Ocoee lineament, magnetic anomalies produced by deep-seated basement structures. Therefore SARSN, even with its wide station spacing, has been able to define the essential first-order seismological characteristics of the Southern Appalachian seismic zone. The focal depths of the southeastern U.S. earthquakes concentrate between 8 and 16 km, occurring principally beneath the Appalachian overthrust. In cross-sectional views, the average seismicity is shallower to the east beneath the Blue Ridge and Piedmont provinces and deeper to the west beneath the Valley and Ridge and the North American craton. Results of recent focal mechanism studies by using the CERI digital earthquake catalog between October, 1986 and December, 1991, indicate that the basement of the Valley and Ridge province is under a horizontal, NE-SW compressive stress. Right-lateral strike-slip faulting on nearly north-south fault planes is preferred because it agrees with the trend of the regional magnetic anomaly pattern

  18. Optimal Retrofit Scheme for Highway Network under Seismic Hazards

    Directory of Open Access Journals (Sweden)

    Yongxi Huang

    2014-06-01

    Full Text Available Many older highway bridges in the United States (US are inadequate for seismic loads and could be severely damaged or collapsed in a relatively small earthquake. According to the most recent American Society of Civil Engineers’ infrastructure report card, one-third of the bridges in the US are rated as structurally deficient and many of these structurally deficient bridges are located in seismic zones. To improve this situation, at-risk bridges must be identified and evaluated and effective retrofitting programs should be in place to reduce their seismic vulnerabilities. In this study, a new retrofit strategy decision scheme for highway bridges under seismic hazards is developed and seamlessly integrate the scenario-based seismic analysis of bridges and the traffic network into the proposed optimization modeling framework. A full spectrum of bridge retrofit strategies is considered based on explicit structural assessment for each seismic damage state. As an empirical case study, the proposed retrofit strategy decision scheme is utilized to evaluate the bridge network in one of the active seismic zones in the US, Charleston, South Carolina. The developed modeling framework, on average, will help increase network throughput traffic capacity by 45% with a cost increase of only $15million for the Mw 5.5 event and increase the capacity fourfold with a cost of only $32m for the Mw 7.0 event.

  19. Optimizing Seismic Monitoring Networks for EGS and Conventional Geothermal Projects

    Science.gov (United States)

    Kraft, Toni; Herrmann, Marcus; Bethmann, Falko; Stefan, Wiemer

    2013-04-01

    In the past several years, geological energy technologies receive growing attention and have been initiated in or close to urban areas. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential for the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquakes at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. We have developed an optimization algorithm for seismic monitoring networks in urban areas that allows to design and evaluate seismic network geometries for arbitrary geotechnical operation layouts. The algorithm is based on the D-optimal experimental design that aims to minimize the error ellipsoid of the linearized

  20. Recent Progress of Seismic Observation Networks in Japan

    Science.gov (United States)

    Okada, Y.

    2013-04-01

    Before the occurrence of disastrous Kobe earthquake in 1995, the number of high sensitivity seismograph stations operated in Japan was nearly 550 and was concentrated in the Kanto and Tokai districts, central Japan. In the wake of the Kobe earthquake, Japanese government has newly established the Headquarters for Earthquake Research Promotion and started the reconstruction of seismic networks to evenly cover the whole Japan. The basic network is composed of three seismographs, i.e. high sensitivity seismograph (Hi-net), broadband seismograph (F-net), and strong motion seismograph (K-NET). A large majority of Hi-net stations are also equipped with a pair of strong motion sensors at the bottom of borehole and the ground surface (KiK-net). A plenty of high quality data obtained from these networks are circulated at once and is producing several new seismological findings as well as providing the basis for the Earthquake Early Warning system. In March 11, 2011, "Off the Pacific coast of Tohoku Earthquake" was generated with magnitude 9.0, which records the largest in the history of seismic observation in Japan. The greatest disaster on record was brought by huge tsunami with nearly 20 thousand killed or missing people. We are again noticed that seismic observation system is quite poor in the oceanic region compared to the richness of it in the inland region. In 2012, NIED has started the construction of ocean bottom seismic and tsunami observation network along the Japan Trench. It is planned to layout 154 stations with an average spacing of 30km, each of which is equipped with an accelerometer for seismic observation and a water pressure gauge for tsunami observation. We are expecting that more rapid and accurate warning of earthquake and tsunami becomes possible by this observing network.

  1. Recent Progress of Seismic Observation Networks in Japan

    International Nuclear Information System (INIS)

    Okada, Y

    2013-01-01

    Before the occurrence of disastrous Kobe earthquake in 1995, the number of high sensitivity seismograph stations operated in Japan was nearly 550 and was concentrated in the Kanto and Tokai districts, central Japan. In the wake of the Kobe earthquake, Japanese government has newly established the Headquarters for Earthquake Research Promotion and started the reconstruction of seismic networks to evenly cover the whole Japan. The basic network is composed of three seismographs, i.e. high sensitivity seismograph (Hi-net), broadband seismograph (F-net), and strong motion seismograph (K-NET). A large majority of Hi-net stations are also equipped with a pair of strong motion sensors at the bottom of borehole and the ground surface (KiK-net). A plenty of high quality data obtained from these networks are circulated at once and is producing several new seismological findings as well as providing the basis for the Earthquake Early Warning system. In March 11, 2011, 'Off the Pacific coast of Tohoku Earthquake' was generated with magnitude 9.0, which records the largest in the history of seismic observation in Japan. The greatest disaster on record was brought by huge tsunami with nearly 20 thousand killed or missing people. We are again noticed that seismic observation system is quite poor in the oceanic region compared to the richness of it in the inland region. In 2012, NIED has started the construction of ocean bottom seismic and tsunami observation network along the Japan Trench. It is planned to layout 154 stations with an average spacing of 30km, each of which is equipped with an accelerometer for seismic observation and a water pressure gauge for tsunami observation. We are expecting that more rapid and accurate warning of earthquake and tsunami becomes possible by this observing network.

  2. Detection capability of the IMS seismic network based on ambient seismic noise measurements

    Science.gov (United States)

    Gaebler, Peter J.; Ceranna, Lars

    2016-04-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection threshold can be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  3. Development of real time monitor system displaying seismic waveform data observed at seafloor seismic network, DONET, for disaster management information

    Science.gov (United States)

    Horikawa, H.; Takaesu, M.; Sueki, K.; Takahashi, N.; Sonoda, A.; Miura, S.; Tsuboi, S.

    2014-12-01

    Mega-thrust earthquakes are anticipated to occur in the Nankai Trough in southwest Japan. In the source areas, we have deployed seafloor seismic network, DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis), in 2010 in order to monitor seismicity, crustal deformations, and tsunamis. DONET system consists of totally 20 stations, which is composed of six kinds of sensors, including strong-motion seismometers and quartz pressure gauges. Those stations are densely distributed with an average spatial interval of 15-20 km and cover near the trench axis to coastal areas. Observed data are transferred to a land station through a fiber-optical cable and then to JAMSTEC (Japan Agency for Marine-Earth Science and Technology) data management center through a private network in real time. After 2011 off the Pacific coast of Tohoku Earthquake, each local government close to Nankai Trough try to plan disaster prevention scheme. JAMSTEC will disseminate DONET data combined with research accomplishment so that they will be widely recognized as important earthquake information. In order to open DONET data observed for research to local government, we have developed a web application system, REIS (Real-time Earthquake Information System). REIS is providing seismic waveform data to some local governments close to Nankai Trough as a pilot study. As soon as operation of DONET is ready, REIS will start full-scale operation. REIS can display seismic waveform data of DONET in real-time, users can select strong motion and pressure data, and configure the options of trace view arrangement, time scale, and amplitude. In addition to real-time monitoring, REIS can display past seismic waveform data and show earthquake epicenters on the map. In this presentation, we briefly introduce DONET system and then show our web application system. We also discuss our future plans for further developments of REIS.

  4. Earthquake Monitoring: SeisComp3 at the Swiss National Seismic Network

    Science.gov (United States)

    Clinton, J. F.; Diehl, T.; Cauzzi, C.; Kaestli, P.

    2011-12-01

    The Swiss Seismological Service (SED) has an ongoing responsibility to improve the seismicity monitoring capability for Switzerland. This is a crucial issue for a country with low background seismicity but where a large M6+ earthquake is expected in the next decades. With over 30 stations with spacing of ~25km, the SED operates one of the densest broadband networks in the world, which is complimented by ~ 50 realtime strong motion stations. The strong motion network is expected to grow with an additional ~80 stations over the next few years. Furthermore, the backbone of the network is complemented by broadband data from surrounding countries and temporary sub-networks for local monitoring of microseismicity (e.g. at geothermal sites). The variety of seismic monitoring responsibilities as well as the anticipated densifications of our network demands highly flexible processing software. We are transitioning all software to the SeisComP3 (SC3) framework. SC3 is a fully featured automated real-time earthquake monitoring software developed by GeoForschungZentrum Potsdam in collaboration with commercial partner, gempa GmbH. It is in its core open source, and becoming a community standard software for earthquake detection and waveform processing for regional and global networks across the globe. SC3 was originally developed for regional and global rapid monitoring of potentially tsunamagenic earthquakes. In order to fulfill the requirements of a local network recording moderate seismicity, SED has tuned configurations and added several modules. In this contribution, we present our SC3 implementation strategy, focusing on the detection and identification of seismicity on different scales. We operate several parallel processing "pipelines" to detect and locate local, regional and global seismicity. Additional pipelines with lower detection thresholds can be defined to monitor seismicity within dense subnets of the network. To be consistent with existing processing

  5. A seismic network to investigate the sedimentary hosted hydrothermal Lusi system

    Science.gov (United States)

    Javad Fallahi, Mohammad; Mazzini, Adriano; Lupi, Matteo; Obermann, Anne; Karyono, Karyono

    2016-04-01

    The 29th of May 2006 marked the beginning of the sedimentary hosted hydrothermal Lusi system. During the last 10 years we witnessed numerous alterations of the Lusi system behavior that coincide with the frequent seismic and volcanic activity occurring in the region. In order to monitor the effect that the seismicity and the activity of the volcanic arc have on Lusi, we deployed a ad hoc seismic network. This temporary network consist of 10 broadband and 21 short period stations and is currently operating around the Arjuno-Welirang volcanic complex, along the Watukosek fault system and around Lusi, in the East Java basin since January 2015. We exploit this dataset to investigate surface wave and shear wave velocity structure of the upper-crust beneath the Arjuno-Welirang-Lusi complex in the framework of the Lusi Lab project (ERC grant n° 308126). Rayleigh and Love waves travelling between each station-pair are extracted by cross-correlating long time series of ambient noise data recorded at the stations. Group and phase velocity dispersion curves are obtained by time-frequency analysis of cross-correlation functions, and are tomographically inverted to provide 2D velocity maps corresponding to different sampling depths. 3D shear wave velocity structure is then acquired by inverting the group velocity maps.

  6. Seismic signal auto-detecing from different features by using Convolutional Neural Network

    Science.gov (United States)

    Huang, Y.; Zhou, Y.; Yue, H.; Zhou, S.

    2017-12-01

    We try Convolutional Neural Network to detect some features of seismic data and compare their efficience. The features include whether a signal is seismic signal or noise and the arrival time of P and S phase and each feature correspond to a Convolutional Neural Network. We first use traditional STA/LTA to recongnize some events and then use templete matching to find more events as training set for the Neural Network. To make the training set more various, we add some noise to the seismic data and make some synthetic seismic data and noise. The 3-component raw signal and time-frequancy ananlyze are used as the input data for our neural network. Our Training is performed on GPUs to achieve efficient convergence. Our method improved the precision in comparison with STA/LTA and template matching. We will move to recurrent neural network to see if this kind network is better in detect P and S phase.

  7. Studies of infrasound propagation using the USArray seismic network (Invited)

    Science.gov (United States)

    Hedlin, M. A.; Degroot-Hedlin, C. D.; Walker, K. T.

    2010-12-01

    Although there are currently ~ 100 infrasound arrays worldwide, more than ever before, the station density is still insufficient to provide validation for detailed propagation modeling. Much structure in the atmosphere is short-lived and occurs at spatial scales much smaller than the average distance between infrasound stations. Relatively large infrasound signals can be observed on seismic channels due to coupling at the Earth's surface. Recent research, using data from the 70-km spaced 400-station USArray and other seismic network deployments, has shown the value of dense seismic network data for filling in the gaps between infrasound arrays. The dense sampling of the infrasound wavefield has allowed us to observe complete travel-time branches of infrasound signals and shed more light on the nature of infrasound propagation. We present early results from our studies of impulsive atmospheric sources, such as series of UTTR rocket motor detonations in Utah. The Utah blasts have been well recorded by USArray seismic stations and infrasound arrays in Nevada and Washington State. Recordings of seismic signals from a series of six events in 2007 are used to pinpoint the shot times to < 1 second. Variations in the acoustic branches and signal arrival times at the arrays are used to probe variations in atmospheric structure. Although we currently use coupled signals we anticipate studying dense acoustic network recordings as the USArray is currently being upgraded with infrasound microphones. These new sensors will allow us to make semi-continental scale network recordings of infrasound signals free of concerns about how the signals observed on seismic channels were modified when being coupled to seismic.

  8. Automatic Classification of volcano-seismic events based on Deep Neural Networks.

    Science.gov (United States)

    Titos Luzón, M.; Bueno Rodriguez, A.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.

    2017-12-01

    Seismic monitoring of active volcanoes is a popular remote sensing technique to detect seismic activity, often associated to energy exchanges between the volcano and the environment. As a result, seismographs register a wide range of volcano-seismic signals that reflect the nature and underlying physics of volcanic processes. Machine learning and signal processing techniques provide an appropriate framework to analyze such data. In this research, we propose a new classification framework for seismic events based on deep neural networks. Deep neural networks are composed by multiple processing layers, and can discover intrinsic patterns from the data itself. Internal parameters can be initialized using a greedy unsupervised pre-training stage, leading to an efficient training of fully connected architectures. We aim to determine the robustness of these architectures as classifiers of seven different types of seismic events recorded at "Volcán de Fuego" (Colima, Mexico). Two deep neural networks with different pre-training strategies are studied: stacked denoising autoencoder and deep belief networks. Results are compared to existing machine learning algorithms (SVM, Random Forest, Multilayer Perceptron). We used 5 LPC coefficients over three non-overlapping segments as training features in order to characterize temporal evolution, avoid redundancy and encode the signal, regardless of its duration. Experimental results show that deep architectures can classify seismic events with higher accuracy than classical algorithms, attaining up to 92% recognition accuracy. Pre-training initialization helps these models to detect events that occur simultaneously in time (such explosions and rockfalls), increase robustness against noisy inputs, and provide better generalization. These results demonstrate deep neural networks are robust classifiers, and can be deployed in real-environments to monitor the seismicity of restless volcanoes.

  9. Earthquake location determination using data from DOMERAPI and BMKG seismic networks: A preliminary result of DOMERAPI project

    Energy Technology Data Exchange (ETDEWEB)

    Ramdhan, Mohamad [Study Program of Earth Science, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung, 40132 (Indonesia); Agency for Meteorology, Climatology and Geophysics of Indonesia (BMKG) Jl. Angkasa 1 No. 2 Kemayoran, Jakarta Pusat, 10720 (Indonesia); Nugraha, Andri Dian; Widiyantoro, Sri [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institut TeknologiBandung, Jl. Ganesa 10, Bandung, 40132 (Indonesia); Métaxian, Jean-Philippe [Institut de Recherche pour le Développement (IRD) (France); Valencia, Ayunda Aulia, E-mail: mohamad.ramdhan@bmkg.go.id [Study Program of Geophysical Engineering, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung, 40132 (Indonesia)

    2015-04-24

    DOMERAPI project has been conducted to comprehensively study the internal structure of Merapi volcano, especially about deep structural features beneath the volcano. DOMERAPI earthquake monitoring network consists of 46 broad-band seismometers installed around the Merapi volcano. Earthquake hypocenter determination is a very important step for further studies, such as hypocenter relocation and seismic tomographic imaging. Ray paths from earthquake events occurring outside the Merapi region can be utilized to delineate the deep magma structure. Earthquakes occurring outside the DOMERAPI seismic network will produce an azimuthal gap greater than 180{sup 0}. Owing to this situation the stations from BMKG seismic network can be used jointly to minimize the azimuthal gap. We identified earthquake events manually and carefully, and then picked arrival times of P and S waves. The data from the DOMERAPI seismic network were combined with the BMKG data catalogue to determine earthquake events outside the Merapi region. For future work, we will also use the BPPTKG (Center for Research and Development of Geological Disaster Technology) data catalogue in order to study shallow structures beneath the Merapi volcano. The application of all data catalogues will provide good information as input for further advanced studies and volcano hazards mitigation.

  10. Caltech/USGS Southern California Seismic Network: Recent Developments

    Science.gov (United States)

    Bhadha, R.; Chen, S.; Crummey, J.; Hauksson, E.; Solanki, K.; Thomas, V. I.; Watkins, M.; Yip, R.; Yu, E.; Given, D.; Peats, R.; Schwarz, S.

    2010-12-01

    The SCSN is the modern digital ground motion seismic network in Southern California and performs the following tasks: 1) Operates remote seismic stations and the central data processing systems in Pasadena; 2) Generates and reports real-time products including location, magnitude, ShakeMap, and others; 3) Responds to FEMA, CalEMA, media, and public inquiries about earthquakes; 4) Manages the production, archival, and distribution of waveforms, phase picks, and other data at the SCEDC; 5) Contributes to development and maintenance of the ANSS Quake Monitoring System (AQMS) software to add new features and improve robustness; 6) Supports the deployment of AQMS to other ANSS member regional seismic networks. The public regularly accesses the CISN, SCSN, and SCEDC web pages for up-to-date quake info and more than 230,000 users subscribe to the Electronic Notification System (ENS) which sends rapid notifications via email and cell phones. We distribute our products via Internet (EIDS), email, and paging, to USGS in Reston and Golden, FEMA, CalEMA, local governments, partner members, and other subscribers. We have developed CISN Display and provide ShakeCast for customers who require real-time earthquake information. The SCSN also exchanges waveform, phase pick, and amplitude data in real-time with several other partner networks, including Menlo Park, UCB, UNR, Anza network, the Tsunami Warning Centers, IRIS, and the NEIC. We operate a number of 24/7 on-call rotations to provide quick response to verify seismic events as well as addressing systems and telemetry issues. As part of our goals to improve quality, robustness, and coverage, some of our recent efforts include: 1) Converting the digital stations in the network to Q330 dataloggers; 2) Developing command and control capabilities such as automated mass re-centering; 3) Migration from serial to Ethernet communications; 4) Clustering of data acquisition servers for fail-over to improve data availability; 5) Use of

  11. Local seismic network at the Olkiluoto site. Annual report for 2009

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2010-06-01

    Excavation of the underground characterisation facility (the ONKALO) started in 2004. Before that, in February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto. After that the number of seismic stations has increased gradually. In 2009 Posiva's seismic network consists of 14 seismic stations and 19 triaxial sensors. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas. The larger target area, called seismic semiregional area, covers the Olkiluoto Island and its surroundings. The purpose is to monitor explosions and tectonic earthquakes in regional scale inside that area. The smaller target area is called the seismic ONKALO block, which is a 2 km *2 km *2 km cube surrounding the ONKALO. It is assumed that all the expected excavation induced events occur within this volume. At the moment the seismic ONKALO block includes ten seismic stations. An additional task of monitoring is related to safeguarding of the ONKALO. This report gives the results of microseismic monitoring during 2009. Also the changes in the structure and the operation procedure of the network are described. The upgrades in 2009 are limited to the processing, interpretation and reporting practices. The latest upgrades of the equipment were done in November 2008. The final technical tuning and tests related to the upgrade were done in the beginning of 2009. The network has operated continuously in 2009. Altogether 1256 events have been located in the Olkiluoto area, in reported time period. Most of them (1161) are explosions occurred inside the seismic semi-regional area and especially inside the seismic ONKALO block (1135 events). The magnitudes of the observed events inside the semi-regional area range from ML = -1.5 to ML = 1.6 (ML = magnitude in local Richter's scale). Most of them are explosions. Two

  12. Swedish National Seismic Network (SNSN). A short report on recorded earthquakes during the fourth quarter of the year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Boedvarsson, Reynir (Uppsala Univ. (Sweden), Dept. of Earth Sciences)

    2011-01-15

    According to an agreement with Swedish Nuclear Fuel and Waste Management Company (SKB) and Uppsala Univ., the Dept. of Earth Sciences has continued to carry out observations of seismic events at seismic stations within the Swedish National Seismic Network (SNSN). This short report gives brief information about the recorded seismicity during October through December 2010. The Swedish National Seismic Network consists of 62 stations. During October through December, 2,241 events were located whereof 158 are estimated as real earthquakes, 1,457 are estimated as explosions, 444 are induced earthquakes in the vicinity of the mines in Kiruna and Malmberget and 182 events are still considered as uncertain but these are most likely explosions and are mainly located outside the network. One earthquake had a magnitude above M{sub L} = 2.0 during the period. In November one earthquake was located 13 km SW of Haernoesand with a magnitude of M{sub L} = 2.1. The largest earthquake in October had a magnitude of M{sub L} = 1.7 and was located 12 km NE of Eksjoe and in December an earthquake with a magnitude of M{sub L} = 1.8 was located 19 km north of Motala

  13. Management of seismic data on network

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Bu Heung [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    KIGAM has managed magnetic tapes written in seismic data acquired in Korea offshore and abroad since 1979. For now, it amounts about 13,000 tapes and other documents of seismic data are reserved by KIGAM also. For handling with them, FOX-PRO database management system has been used since 1993. In case of one user, it seems useful and convenient because the program is very easy to use and many well done utility was provided. In contrast with that, it has many problems also. For example, a user who wants to query information of these magnetic tapes must go magnetic tape room where the system is installed and he must know how to use the utilities of the FOX-PRO database management system. For the reason of above, the seismic data processing team attempted to change the FOX-PRO system with other client-server system supports networking on internet. After many testing and considering, they selected like as following hardware and software( System: PC with networking, OS: Linux and Unix, Software: Just Logic/SQL). The main reasons for selecting above system, first, any kinds of personal computer are available and easy to get. Secondly, Linux and Unix OS are good for using network. Especially, Linux is free and easy to get on many internet ftp sites. Lastly Just Logic/SQL is for client-server system, supports Linux OS and the programming style is very similar to C language. The contents of this report are as follows. In chapter 2, the Just Logic/SQL system structure and existing files through the sub-directories are showed and commented. In chapter 3, the statements using in Just Logic/SQL are explained and some examples are showed. In chapter 4, shows two example programs making seismic database including rack list, optical disk table respectively. The rack list table is the database of magnetic tapes managed by KIGAM. The optical disk table is the information record about how many, what tapes are converted to optical disk. (author). 4 tabs.

  14. Internet-Based Solutions for a Secure and Efficient Seismic Network

    Science.gov (United States)

    Bhadha, R.; Black, M.; Bruton, C.; Hauksson, E.; Stubailo, I.; Watkins, M.; Alvarez, M.; Thomas, V.

    2017-12-01

    The Southern California Seismic Network (SCSN), operated by Caltech and USGS, leverages modern Internet-based computing technologies to provide timely earthquake early warning for damage reduction, event notification, ShakeMap, and other data products. Here we present recent and ongoing innovations in telemetry, security, cloud computing, virtualization, and data analysis that have allowed us to develop a network that runs securely and efficiently.Earthquake early warning systems must process seismic data within seconds of being recorded, and SCSN maintains a robust and resilient network of more than 350 digital strong motion and broadband seismic stations to achieve this goal. We have continued to improve the path diversity and fault tolerance within our network, and have also developed new tools for latency monitoring and archiving.Cyberattacks are in the news almost daily, and with most of our seismic data streams running over the Internet, it is only a matter of time before SCSN is targeted. To ensure system integrity and availability across our network, we have implemented strong security, including encryption and Virtual Private Networks (VPNs).SCSN operates its own data center at Caltech, but we have also installed real-time servers on Amazon Web Services (AWS), to provide an additional level of redundancy, and eventually to allow full off-site operations continuity for our network. Our AWS systems receive data from Caltech-based import servers and directly from field locations, and are able to process the seismic data, calculate earthquake locations and magnitudes, and distribute earthquake alerts, directly from the cloud.We have also begun a virtualization project at our Caltech data center, allowing us to serve data from Virtual Machines (VMs), making efficient use of high-performance hardware and increasing flexibility and scalability of our data processing systems.Finally, we have developed new monitoring of station average noise levels at most stations

  15. UMTS rapid response real-time seismic networks: implementation and strategies at INGV

    Science.gov (United States)

    Govoni, A.; Margheriti, L.; Moretti, M.; Lauciani, V.; Sensale, G.; Bucci, A.; Criscuoli, F.

    2015-12-01

    Universal Mobile Telecommunications System (UMTS) and its evolutions are nowadays the most affordable and widespread data communication infrastructure available almost world wide. Moreover the always growing cellular phone market is pushing the development of new devices with higher performances and lower power consumption. All these characteristics make UMTS really useful for the implementation of an "easy to deploy" temporary real-time seismic station. Despite these remarkable features, there are many drawbacks that must be properly taken in account to effectively transmit the seismic data: Internet security, signal and service availability, power consumption. - Internet security: exposing seismological data services and seismic stations to the Internet is dangerous, attack prone and can lead to downtimes in the services, so we setup a dedicated Virtual Private Network (VPN) service to protect all the connected devices. - Signal and service availability: while for temporary experiment a carefull planning and an accurate site selection can minimize the problem, this is not always the case with rapid response networks. Moreover, as with any other leased line, the availability of the UMTS service during a seismic crisis is basically unpredictable. Nowadays in Italy during a major national emergency a Committee of the Italian Civil Defense ensures unified management and coordination of emergency activities. Inside it the telecom companies are committed to give support to the crisis management improving the standards in their communication networks. - Power consumption: it is at least of the order of that of the seismic station and, being related to data flow and signal quality is largely unpredictable. While the most secure option consists in adding a second independent solar power supply to the seismic station, this is not always a very convenient solution since it doubles the cost and doubles the equipment on site. We found that an acceptable trade-off is to add an

  16. GeoNetGIS: a Geodetic Network Geographical Information System to manage GPS networks in seismic and volcanic areas

    Science.gov (United States)

    Cristofoletti, P.; Esposito, A.; Anzidei, M.

    2003-04-01

    This paper presents the methodologies and issues involved in the use of GIS techniques to manage geodetic information derived from networks in seismic and volcanic areas. Organization and manipulation of different geodetical, geological and seismic database, give us a new challenge in interpretation of information that has several dimensions, including spatial and temporal variations, also the flexibility and brand range of tools available in GeoNetGIS, make it an attractive platform for earthquake risk assessment. During the last decade the use of geodetic networks based on the Global Positioning System, devoted to geophysical applications, especially for crustal deformation monitoring in seismic and volcanic areas, increased dramatically. The large amount of data provided by these networks, combined with different and independent observations, such as epicentre distribution of recent and historical earthquakes, geological and structural data, photo interpretation of aerial and satellite images, can aid for the detection and parameterization of seismogenic sources. In particular we applied our geodetic oriented GIS to a new GPS network recently set up and surveyed in the Central Apennine region: the CA-GeoNet. GeoNetGIS is designed to analyze in three and four dimensions GPS sources and to improve crustal deformation analysis and interpretation related with tectonic structures and seismicity. It manages many database (DBMS) consisting of different classes, such as Geodesy, Topography, Seismicity, Geology, Geography and Raster Images, administrated according to Thematic Layers. GeoNetGIS represents a powerful research tool allowing to join the analysis of all data layers to integrate the different data base which aid for the identification of the activity of known faults or structures and suggesting the new evidences of active tectonics. A new approach to data integration given by GeoNetGIS capabilities, allow us to create and deliver a wide range of maps, digital

  17. Evolution and strengthening of the Calabrian Regional Seismic Network during the Pollino sequence

    Science.gov (United States)

    D'Alessandro, Antonino; Gervasi, Anna; Guerra, Ignazio

    2013-04-01

    In the last three years the Calabria-Lucania border area is affected by an intense seismic activity generated by the activation of geological structures which be seat of clusters of microearthquakes, with energy release sufficient to be felt and to generate alarm and bother. Besides to the historical memory of the inhabitants of Mormanno (the town most affected of macroseismic effects) there are some historical documents that indicate the occurrence of a similar seismic crisis in 1888. A more recent seismic sequence, the first monitored by seismic instruments, occurred in 1973-1974. In the last case, the activity started in early 2010 and is still ongoing. The two shocks of ML = 4.3 and 5.0 and the the very long time duration differs this crisis from the previous ones. Given this background, in 1981 was installed at Mormanno a seismic station (MMN) belonging to Regional Seismic Network of the University of Calabria (RSRC), now also a station of the Italian National Seismic Network of the Istituto Nazionale di Geofisica Vulcanolgia (INSN-INGV). This seismic station made it possible to follow the evolution of seismicity in this area and in particular the progressive increase in seismic activity started in 2010. Since 2010, some 3D stand-alone, was installed by the University of Calabria. Further stations of INGV were installed in November 2011 after a sharp increase of the energy release and subsequently by the INGV and the GeoForschungsZentrum (Potsdam) after the main shock of the whole sequence. Seismic networks are powerful tools for understanding active tectonic processes in a monitored seismically active region. However, the optimal monitoring of a seismic region requires the assessment of the seismic network capabilities to identify seismogenic areas that are not adequately covered and to quantify measures that will allow the network improvement. In this paper we examine in detail the evolution and the strengthening of the RSRC in the last years analyzing the

  18. Monitoring Instrument Performance in Regional Broadband Seismic Network Using Ambient Seismic Noise

    Science.gov (United States)

    Ye, F.; Lyu, S.; Lin, J.

    2017-12-01

    In the past ten years, the number of seismic stations has increased significantly, and regional seismic networks with advanced technology have been gradually developed all over the world. The resulting broadband data help to improve the seismological research. It is important to monitor the performance of broadband instruments in a new network in a long period of time to ensure the accuracy of seismic records. Here, we propose a method that uses ambient noise data in the period range 5-25 s to monitor instrument performance and check data quality in situ. The method is based on an analysis of amplitude and phase index parameters calculated from pairwise cross-correlations of three stations, which provides multiple references for reliable error estimates. Index parameters calculated daily during a two-year observation period are evaluated to identify stations with instrument response errors in near real time. During data processing, initial instrument responses are used in place of available instrument responses to simulate instrument response errors, which are then used to verify our results. We also examine feasibility of the tailing noise using data from stations selected from USArray in different locations and analyze the possible instrumental errors resulting in time-shifts used to verify the method. Additionally, we show an application that effects of instrument response errors that experience pole-zeros variations on monitoring temporal variations in crustal properties appear statistically significant velocity perturbation larger than the standard deviation. The results indicate that monitoring seismic instrument performance helps eliminate data pollution before analysis begins.

  19. Co-Seismic Effect of the 2011 Japan Earthquake on the Crustal Movement Observation Network of China

    Directory of Open Access Journals (Sweden)

    Shaomin Yang

    2013-01-01

    Full Text Available Great earthquakes introduce measurable co-seismic displacements over regions of hundreds and thousands of kilometers in width, which, if not accounted for, may significantly bias the long-term surface velocity field constrained by GPS observations performed during a period encompassing that event. Here, we first present an estimation of the far-field co-seismic off-sets associated with the 2011 Japan Mw 9.0 earthquake using GPS measurements from the Crustal Movement Observation Network of China (CMONOC in North China. The uncertainties of co-seismic off-set, either at cGPS stations or at campaign sites, are better than 5 - 6 mm on average. We compare three methods to constrain the co-seismic off-sets at the campaign sites in northeastern China 1 interpolating cGPS coseismic offsets, 2 estimating in terms of sparsely sampled time-series, and 3 predicting by using a well-constrained slip model. We show that the interpolation of cGPS co-seismic off-sets onto the campaign sites yield the best co-seismic off-set solution for these sites. The source model gives a consistent prediction based on finite dislocation in a layered spherical Earth, which agrees with the best prediction with discrepancies of 2 - 10 mm for 32 campaign sites. Thus, the co-seismic off-set model prediction is still a reasonable choice if a good coverage cGPS network is not available for a very active region like the Tibetan Plateau in which numerous campaign GPS sites were displaced by the recent large earthquakes.

  20. Earthquake Monitoring with the MyShake Global Smartphone Seismic Network

    Science.gov (United States)

    Inbal, A.; Kong, Q.; Allen, R. M.; Savran, W. H.

    2017-12-01

    Smartphone arrays have the potential for significantly improving seismic monitoring in sparsely instrumented urban areas. This approach benefits from the dense spatial coverage of users, as well as from communication and computational capabilities built into smartphones, which facilitate big seismic data transfer and analysis. Advantages in data acquisition with smartphones trade-off with factors such as the low-quality sensors installed in phones, high noise levels, and strong network heterogeneity, all of which limit effective seismic monitoring. Here we utilize network and array-processing schemes to asses event detectability with the MyShake global smartphone network. We examine the benefits of using this network in either triggered or continuous modes of operation. A global database of ground motions measured on stationary phones triggered by M2-6 events is used to establish detection probabilities. We find that the probability of detecting an M=3 event with a single phone located 20 nearby phones closely match the regional catalog locations. We use simulated broadband seismic data to examine how location uncertainties vary with user distribution and noise levels. To this end, we have developed an empirical noise model for the metropolitan Los-Angeles (LA) area. We find that densities larger than 100 stationary phones/km2 are required to accurately locate M 2 events in the LA basin. Given the projected MyShake user distribution, that condition may be met within the next few years.

  1. UMTS rapid response real-time seismic networks: implementation and strategies at INGV

    Science.gov (United States)

    Govoni, Aladino; Margheriti, Lucia; Moretti, Milena; Lauciani, Valentino; Sensale, Gianpaolo; Bucci, Augusto; Criscuoli, Fabio

    2015-04-01

    The benefits of portable real-time seismic networks are several and well known. During the management of a temporary experiment from the real-time data it is possible to detect and fix rapidly problems with power supply, time synchronization, disk failures and, most important, seismic signal quality degradation due to unexpected noise sources or sensor alignment/tampering. This usually minimizes field maintenance trips and maximizes both the quantity and the quality of the acquired data. When the area of the temporary experiment is not well monitored by the local permanent network, the real-time data from the temporary experiment can be fed to the permanent network monitoring system improving greatly both the real-time hypocentral locations and the final revised bulletin. All these benefits apply also in case of seismic crises when rapid deployment stations can significantly contribute to the aftershock analysis. Nowadays data transmission using meshed radio networks or satellite systems is not a big technological problem for a permanent seismic network where each site is optimized for the device power consumption and is usually installed by properly specialized technicians that can configure transmission devices and align antennas. This is not usually practical for temporary networks and especially for rapid response networks where the installation time is the main concern. These difficulties are substantially lowered using the now widespread UMTS technology for data transmission. A small (but sometimes power hungry) properly configured device with an omnidirectional antenna must be added to the station assembly. All setups are usually configured before deployment and this allows for an easy installation also by untrained personnel. We describe here the implementation of a UMTS based portable seismic network for both temporary experiments and rapid response applications developed at INGV. The first field experimentation of this approach dates back to the 2009 L

  2. Rock property estimates using multiple seismic attributes and neural networks; Pegasus Field, West Texas

    Energy Technology Data Exchange (ETDEWEB)

    Schuelke, J.S.; Quirein, J.A.; Sarg, J.F.

    1998-12-31

    This case study shows the benefit of using multiple seismic trace attributes and the pattern recognition capabilities of neural networks to predict reservoir architecture and porosity distribution in the Pegasus Field, West Texas. The study used the power of neural networks to integrate geologic, borehole and seismic data. Illustrated are the improvements between the new neural network approach and the more traditional method of seismic trace inversion for porosity estimation. Comprehensive statistical methods and interpretational/subjective measures are used in the prediction of porosity from seismic attributes. A 3-D volume of seismic derived porosity estimates for the Devonian reservoir provide a very detailed estimate of porosity, both spatially and vertically, for the field. The additional reservoir porosity detail provided, between the well control, allows for optimal placement of horizontal wells and improved field development. 6 refs., 2 figs.

  3. New strong motion network in Georgia: basis for specifying seismic hazard

    Science.gov (United States)

    Kvavadze, N.; Tsereteli, N. S.

    2017-12-01

    Risk created by hazardous natural events is closely related to sustainable development of the society. Global observations have confirmed tendency of growing losses resulting from natural disasters, one of the most dangerous and destructive if which are earthquakes. Georgia is located in seismically active region. So, it is imperative to evaluate probabilistic seismic hazard and seismic risk with proper accuracy. National network of Georgia includes 35 station all of which are seismometers. There are significant gaps in strong motion recordings, which essential for seismic hazard assessment. To gather more accelerometer recordings, we have built a strong motion network distributed on the territory of Georgia. The network includes 6 stations for now, with Basalt 4x datalogger and strong motion sensor Episensor ES-T. For each site, Vs30 and soil resonance frequencies have been measured. Since all but one station (Tabakhmelam near Tbilisi), are located far from power and internet lines special system was created for instrument operation. Solar power is used to supply the system with electricity and GSM/LTE modems for internet access. VPN tunnel was set up using Raspberry pi, for two-way communication with stations. Tabakhmela station is located on grounds of Ionosphere Observatory, TSU and is used as a hub for the network. This location also includes a broadband seismometer and VLF electromagnetic waves observation antenna, for possible earthquake precursor studies. On server, located in Tabakhmela, the continues data is collected from all the stations, for later use. The recordings later will be used in different seismological and engineering problems, namely selecting and creating GMPE model for Caucasus, for probabilistic seismic hazard and seismic risk evaluation. These stations are a start and in the future expansion of strong motion network is planned. Along with this, electromagnetic wave observations will continue and additional antennas will be implemented

  4. The Global Detection Capability of the IMS Seismic Network in 2013 Inferred from Ambient Seismic Noise Measurements

    Science.gov (United States)

    Gaebler, P. J.; Ceranna, L.

    2016-12-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection thresholdcan be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  5. The Central and Eastern U.S. Seismic Network: Legacy of USArray

    Science.gov (United States)

    Eakins, J. A.; Astiz, L.; Benz, H.; Busby, R. W.; Hafner, K.; Reyes, J. C.; Sharer, G.; Vernon, F.; Woodward, R.

    2014-12-01

    As the USArray Transportable Array entered the central and eastern United States, several Federal agencies (National Science Foundation, U.S. Geological Survey, U.S. Nuclear Regulatory Commission, and Department of Energy) recognized the unique opportunity to retain TA stations beyond the original timeline. The mission of the CEUSN is to produce data that enables researchers and Federal agencies alike to better understand the basic geologic questions, background earthquake rates and distribution, seismic hazard potential, and associated societal risks of this region. The selected long-term sub-array from Transportable Array (TA) stations includes nearly 200 sites, complemented by 100 broadband stations from the existing regional seismic networks to form the Central and Eastern United States Network (CEUSN). Multiple criteria for site selection were weighed by an inter-agency TA Station Selection (TASS) Working Group: seismic noise characteristics, data availability in real time, proximity to nuclear power plants, and homogeneous distribution throughout the region. The Array Network Facility (ANF) started collecting data for CEUSN network stations since late 2013, with all stations collected since May 2014. Regional seismic data streams are collected in real-time from the IRIS Data Management Center (DMC). TA stations selected to be part of CEUSN, retain the broadband sensor to which a 100 sps channel is added, the infrasound and environmental channels, and, at some stations, accelerometers are deployed. The upgraded sites become part of the N4 network for which ANF provides metadata and can issue remote commands to the station equipment. Stations still operated by TA, but planned for CEUSN, are included in the virtual network so all stations are currently available now. By the end of 2015, the remaining TA stations will be upgraded. Data quality control procedures developed for TA stations at ANF and at the DMC are currently performed on N4 data. However

  6. SISMIKO: emergency network deployment and data sharing for the 2016 central Italy seismic sequence

    Directory of Open Access Journals (Sweden)

    Milena Moretti

    2016-12-01

    Full Text Available At 01:36 UTC (03:36 local time on August 24th 2016, an earthquake Mw 6.0 struck an extensive sector of the central Apennines (coordinates: latitude 42.70° N, longitude 13.23° E, 8.0 km depth. The earthquake caused about 300 casualties and severe damage to the historical buildings and economic activity in an area located near the borders of the Umbria, Lazio, Abruzzo and Marche regions. The Istituto Nazionale di Geofisica e Vulcanologia (INGV located in few minutes the hypocenter near Accumoli, a small town in the province of Rieti. In the hours after the quake, dozens of events were recorded by the National Seismic Network (Rete Sismica Nazionale, RSN of the INGV, many of which had a ML > 3.0. The density and coverage of the RSN in the epicentral area meant the epicenter and magnitude of the main event and subsequent shocks that followed it in the early hours of the seismic sequence were well constrained. However, in order to better constrain the localizations of the aftershock hypocenters, especially the depths, a denser seismic monitoring network was needed. Just after the mainshock, SISMIKO, the coordinating body of the emergency seismic network at INGV, was activated in order to install a temporary seismic network integrated with the existing permanent network in the epicentral area. From August the 24th to the 30th, SISMIKO deployed eighteen seismic stations, generally six components (equipped with both velocimeter and accelerometer, with thirteen of the seismic station transmitting in real-time to the INGV seismic monitoring room in Rome. The design and geometry of the temporary network was decided in consolation with other groups who were deploying seismic stations in the region, namely EMERSITO (a group studying site-effects, and the emergency Italian strong motion network (RAN managed by the National Civil Protection Department (DPC. Further 25 BB temporary seismic stations were deployed by colleagues of the British Geological Survey

  7. Community Seismic Network (CSN)

    Science.gov (United States)

    Clayton, R. W.; Heaton, T. H.; Kohler, M. D.; Cheng, M.; Guy, R.; Chandy, M.; Krause, A.; Bunn, J.; Olson, M.; Faulkner, M.; Liu, A.; Strand, L.

    2012-12-01

    We report on developments in sensor connectivity, architecture, and data fusion algorithms executed in Cloud computing systems in the Community Seismic Network (CSN), a network of low-cost sensors housed in homes and offices by volunteers in the Pasadena, CA area. The network has over 200 sensors continuously reporting anomalies in local acceleration through the Internet to a Cloud computing service (the Google App Engine) that continually fuses sensor data to rapidly detect shaking from earthquakes. The Cloud computing system consists of data centers geographically distributed across the continent and is likely to be resilient even during earthquakes and other local disasters. The region of Southern California is partitioned in a multi-grid style into sets of telescoping cells called geocells. Data streams from sensors within a geocell are fused to detect anomalous shaking across the geocell. Temporal spatial patterns across geocells are used to detect anomalies across regions. The challenge is to detect earthquakes rapidly with an extremely low false positive rate. We report on two data fusion algorithms, one that tessellates the surface so as to fuse data from a large region around Pasadena and the other, which uses a standard tessellation of equal-sized cells. Since September 2011, the network has successfully detected earthquakes of magnitude 2.5 or higher within 40 Km of Pasadena. In addition to the standard USB device, which connects to the host's computer, we have developed a stand-alone sensor that directly connects to the internet via Ethernet or wifi. This bypasses security concerns that some companies have with the USB-connected devices, and allows for 24/7 monitoring at sites that would otherwise shut down their computers after working hours. In buildings we use the sensors to model the behavior of the structures during weak events in order to understand how they will perform during strong events. Visualization models of instrumented buildings ranging

  8. Network similarity and statistical analysis of earthquake seismic data

    OpenAIRE

    Deyasi, Krishanu; Chakraborty, Abhijit; Banerjee, Anirban

    2016-01-01

    We study the structural similarity of earthquake networks constructed from seismic catalogs of different geographical regions. A hierarchical clustering of underlying undirected earthquake networks is shown using Jensen-Shannon divergence in graph spectra. The directed nature of links indicates that each earthquake network is strongly connected, which motivates us to study the directed version statistically. Our statistical analysis of each earthquake region identifies the hub regions. We cal...

  9. Third Quarter Hanford Seismic Report for Fiscal Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Reidel, Steve P.; Rohay, Alan C.; Hartshorn, Donald C.; Clayton, Ray E.; Sweeney, Mark D.

    2005-09-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the Hanford Seismic Network, there were 337 triggers during the third quarter of fiscal year 2005. Of these triggers, 20 were earthquakes within the Hanford Seismic Network. The largest earthquake within the Hanford Seismic Network was a magnitude 1.3 event May 25 near Vantage, Washington. During the third quarter, stratigraphically 17 (85%) events occurred in the Columbia River basalt (approximately 0-5 km), no events in the pre-basalt sediments (approximately 5-10 km), and three (15%) in the crystalline basement (approximately 10-25 km). During the first quarter, geographically five (20%) earthquakes occurred in swarm areas, 10 (50%) earthquakes were associated with a major geologic structure, and 5 (25%) were classified as random events.

  10. Optimization of Broadband Seismic Network in the Kingdom of Saudi Arabia

    KAUST Repository

    Alshuhail, Abdulrahman

    2011-05-01

    Saudi Arabia covers a large portion of the Arabian plate, a region characterized by seismic activity, along complex divergent and convergent plate boundaries. In order to understand these plate boundaries it is essential to optimize the design of the broadband seismic station network to accurately locate earthquakes. In my study, I apply an optimization method to design the broadband station distribution in Saudi Arabia. This method is based on so called D-optimal planning criterion that optimizes the station distribution for locating the hypocenters of earthquakes. Two additional adjustments were implemented: to preferentially acquire direct and refracted wave, and to account for geometric spreading of seismic waves (and thus increases the signal to noise ratio). The method developed in this study for optimizing the geographical location of broadband stations uses the probability of earthquake occurrence and a 1-D velocity model of the region, and minimizes the ellipsoid volume of the earthquake location errors. The algorithm was applied to the current seismic network, operated by the Saudi Geologic Survey (SGS). Based on the results, I am able to make recommendations on, how to expand the existing network. Furthermore, I quantify the efficiency of our method by computing the standard error of epicenter and depth before and after adding the proposed stations.

  11. Pennsylvania seismic monitoring network and related tectonic studies

    International Nuclear Information System (INIS)

    Alexander, S.S.

    1991-06-01

    This report summarizes the results of the operation of the Pennsylvania Seismic Monitoring Network during the interval May 1, 1983--March 31, 1985 to monitor seismic activity in Pennsylvania and surrounding areas, to characterize the earthquake activity in terms of controlling tectonic structures and related tectonic stress conditions in the crust, and to obtain improved crustal velocity models for hypocentral determinations. Most of the earthquake activity was concentrated in the Lancaster, PA area. The magnitude 4.2 mainshock that occurred there on April 23, 1984 was the largest ever recorded instrumentally and its intensity of VI places it among the largest in the historic record for that area. Other activity during the monitoring interval of this report was confined to eastern Pennsylvania. The very large number of quarry explosions that occur regularly in Pennsylvania account for most of the seismic events recorded and they provide important crustal velocity data that are needed to obtain accurate hypocenter estimates. In general the earthquakes that occurred are located in areas of past historic seismicity. Block-tectonic structures resulting from pre-Ordovician tectonic displacements appear to influence the distribution of contemporary seismicity in Pennsylvania and surrounding areas. 17 refs., 5 figs

  12. PG&E's Seismic Network Goes Digital With Strong Motion: Successes and Challenges

    Science.gov (United States)

    Stanton, M. A.; Cullen, J.; McLaren, M. K.

    2008-12-01

    Pacific Gas and Electric Company (PG&E) is in year 3 of a 5-year project to upgrade the Central Coast Seismic Network (CCSN) from analog to digital. Located along the south-central California coast, the CCSN began operation in 1987, with 20 analog stations; 15 vertical component and 5 dual gain 3-component S-13 sensors. The analog signals travel over FM radio telemetry links and voice channels via PG&E's microwave network to our facility in San Francisco (SF), where the A/D conversion is performed on a computer running Earthworm v7.1, which also transmits the data to the USGS in Menlo Park. At the conversion point the dynamic ranges of the vertical and dual-gain sensors are 40-50dB and 60-70dB, respectively. Dynamic range exceedance (data clipping) generally occurs for a M2.5 or greater event within about 40 km of a station. The motivations to upgrade the seismic network were the need for higher dynamic range and to retire obsolete analog transmission equipment. The upgraded digital stations consist of the existing velocity sensors, a 131A-02/3 accelerometer and a Reftek 130-01 Broadband Seismic Recorder for digital data recording and transmission to SF. Vertical only stations have one component of velocity and 3 components of acceleration. Dual gain sites have 3 components of velocity and 3 of acceleration. To date we have successfully upgraded 6 sites; 3 more will be installed by the end of 2008. Some of the advantages of going digital are 1) data is recorded at each site and in SF, 2) substantially increased dynamic range of the velocity sensors to 120dB, as observed by on scale, close-by recordings from a M3.9 San Simeon aftershock on 04/29/2008, 3) accelerometers for on scale recording of large earthquakes, and 4) ability to contribute our strong motion data to USGS ShakeMaps. A significant challenge has been consistent radio communications. To resolve this issue we are installing point-to-multipoint Motorola Canopy spread spectrum radios at the stations and

  13. Urban MEMS based seismic network for post-earthquakes rapid disaster assessment

    Science.gov (United States)

    D'Alessandro, Antonino; Luzio, Dario; D'Anna, Giuseppe

    2014-05-01

    Life losses following disastrous earthquake depends mainly by the building vulnerability, intensity of shaking and timeliness of rescue operations. In recent decades, the increase in population and industrial density has significantly increased the exposure to earthquakes of urban areas. The potential impact of a strong earthquake on a town center can be reduced by timely and correct actions of the emergency management centers. A real time urban seismic network can drastically reduce casualties immediately following a strong earthquake, by timely providing information about the distribution of the ground shaking level. Emergency management centers, with functions in the immediate post-earthquake period, could be use this information to allocate and prioritize resources to minimize loss of human life. However, due to the high charges of the seismological instrumentation, the realization of an urban seismic network, which may allow reducing the rate of fatalities, has not been achieved. Recent technological developments in MEMS (Micro Electro-Mechanical Systems) technology could allow today the realization of a high-density urban seismic network for post-earthquakes rapid disaster assessment, suitable for the earthquake effects mitigation. In the 1990s, MEMS accelerometers revolutionized the automotive-airbag system industry and are today widely used in laptops, games controllers and mobile phones. Due to their great commercial successes, the research into and development of MEMS accelerometers are actively pursued around the world. Nowadays, the sensitivity and dynamics of these sensors are such to allow accurate recording of earthquakes with moderate to strong magnitude. Due to their low cost and small size, the MEMS accelerometers may be employed for the realization of high-density seismic networks. The MEMS accelerometers could be installed inside sensitive places (high vulnerability and exposure), such as schools, hospitals, public buildings and places of

  14. Mednet: the very broad-band seismic network for the Mediterranean

    International Nuclear Information System (INIS)

    Boschi, E.; Giardini, D.; Morelli, A.

    1991-01-01

    Mednet is the very broad-band seismic network installed by the Istituto Nazionale di Geofisica (ING) in countries of the mediterranean area, with a final goal of 12-15 stations and a spacing of about 1000 km between stations. The project started in 1987 and will be completed within 1992. Mednet is motivated both by research interest and by seismic hazard monitoring; it will allow to define the structure of the mediterranean region to a high detail, to study properties of the seismic source for intermediate and large events, and to apply this knowledge to procedures of civil protection. To reach its goals, the network has been designed following the highest technical standards: STS-1/VBB sensors, Quanterra 24 bits A/D converters with 140 dB dynamic range, real-time telemetry. Five sites are now operational in Italy (L'Aquila, Bardonecchia and Villasalto) and in northern african countries (Midelt, Morocco; Gafsa, Tunisia); other sites are under construction in Pakistan (Islamabad), Irak (Rutba) and Egypt (Kottamya), while locations are examined for stations in Greece, Jugoslavia and Algeria. The centre of the mednet network is the data center (MDC) in Rome; its tasks include data collection, verification, quality control, archivial and dissemination, monitoring of station performance, event detection, routine determination of source parameters. Data distribution will follow the guidelines set by FDSN, and will be coordinated with other international network projects

  15. A new seismic station in Romania the Bucovina seismic array

    International Nuclear Information System (INIS)

    Grigore, Adrian; Grecu, Bogdan; Ionescu, Constantin; Ghica, Daniela; Popa, Mihaela; Rizescu, Mihaela

    2002-01-01

    Recently, a new seismic monitoring station, the Bucovina Seismic Array, has been established in the northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics, Romania. The array consists of 10 seismic sensors (9 short-period and one broad band) located in boreholes and distributed in a 5 x 5 km area. On July 24, 2002 the official Opening Ceremony of Bucovina Seismic Array took place in the area near the city of Campulung Moldovenesc in the presence of Romanian Prime Minister, Adrian Nastase. Starting with this date, the new seismic monitoring system became fully operational by continuous recording and transmitting data in real-time to the National Data Center of Romania, in Bucharest and to the National Data Center of USA, in Florida. Bucovina Seismic Array, added to the present Seismic Network, will provide much better seismic monitoring coverage of Romania's territory, on-scale recording for weak-to-strong events, and will contribute to advanced seismological studies on seismic hazard and risk, local effects and microzonation, seismic source physics, Earth structure. (authors)

  16. Local seismic network at the Olkiluoto site. Annual report for 2013

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2014-06-01

    This report gives the results of microseismic monitoring during 2013. Excavation of the underground rock characterisation facility called ONKALO started in 2004. Before that, in February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto, where there are currently 17 seismic stations and 21 triaxial sensors. The network has operated continuously in 2013. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas, of which the larger one, the seismic semiregional area, includes the Olkiluoto island and its surroundings. The purpose is to monitor explosions and tectonic earthquakes in regional scale inside that area. All the expected excavation induced events are assumed to occur inside the smaller target area, the seismic ONKALO block, which is a 2 km x 2 km x 2 km cube surrounding the ONKALO and includes 13 seismic stations. An additional task of monitoring is related to safeguarding of the construction of ONKALO. Upgrade and unification of the whole seismic network was done in August 2013. The upgrade included communication, data acquisition, server equipment in Olkiluoto, network configuration and software. The bedrock models and the ONKALO design model applied in the visualisation of the seismicity remained the same in 2013. The number of located events was much smaller than during previous years due to break in the excavation. Altogether 436 events have been located in the Olkiluoto area, in the reported time period. Nearly half of the observed explosions (237) in 2013 occurred inside the seismic semi-regional area and especially inside the seismic ONKALO block (137). The magnitudes of the explosions inside the semi-regional area range from M L = -1.6 to M L = 1.5 (M L = magnitude in local Richter's scale). One small induced earthquake (ML = -1.8) was detected on 9 May 2013

  17. Studies Of Infrasonic Propagation Using Dense Seismic Networks

    Science.gov (United States)

    Hedlin, M. A.; deGroot-Hedlin, C. D.; Drob, D. P.

    2011-12-01

    Although there are approximately 100 infrasonic arrays worldwide, more than ever before, the station density is still insufficient to provide validation for detailed propagation modeling. Relatively large infrasonic signals can be observed on seismic channels due to coupling at the Earth's surface. Recent research, using data from the 70-km spaced 400-station USArray and other seismic network deployments, has shown the value of dense seismic network data for filling in the gaps between infrasonic arrays. The dense sampling of the infrasonic wavefield has allowed us to observe complete travel-time branches of infrasound and address important research problems in infrasonic propagation. We present our analysis of infrasound created by a series of rocket motor detonations that occurred at the UTTR facility in Utah in 2007. These data were well recorded by the USArray seismometers. We use the precisely located blasts to assess the utility of G2S mesoscale models and methods to synthesize infrasonic propagation. We model the travel times of the branches using a ray-based approach and the complete wavefield using a FDTD algorithm. Although results from both rays and FDTD approaches predict the travel times to within several seconds, only about 40% of signals are predicted using rays largely due to penetration of sound into shadow zones. FDTD predicts some sound penetration into the shadow zone, but the observed shadow zones, as defined by the seismic data, have considerably narrower spatial extent than either method predicts, perhaps due to un-modeled small-scale structure in the atmosphere.

  18. One Decade of Induced Seismicity in Basel, Switzerland: A Consistent High-Resolution Catalog Obtained by Template Matching

    Science.gov (United States)

    Herrmann, M.; Kraft, T.; Tormann, T.; Scarabello, L.; Wiemer, S.

    2017-12-01

    Induced seismicity at the site of the Basel Enhanced Geothermal System (EGS) continuously decayed for six years after injection had been stopped in December 2006. Starting in May 2012, the Swiss Seismological Service was detecting a renewed increase of induced seismicity in the EGS reservoir to levels last seen in 2007 and reaching magnitudes up to ML2.0. Seismic monitoring at this EGS site is running for more than ten years now, but the details of the long-term behavior of its induced seismicity remained unexplored because a seismic event catalog that is consistent in detection sensitivity and magnitude estimation did not exist.We have created such a catalog by applying our matched filter detector to the 11-year-long seismic recordings of a borehole station at 2.7km depth. Based on 3'600 located earthquakes of the operator's borehole-network catalog, we selected about 2'500 reasonably dissimilar templates using waveform clustering. This large template set ensures an adequate coverage of the diversity of event waveforms which is due to the reservoir's highly complex fault system and the close observation distance. To cope with the increased computational demand of scanning 11-years of data with 2'500 templates, we parallelized our detector to run on a high-performance computer of the Swiss National Supercomputing Centre.We detect more than 200'000 events down to ML-2.5 during the six-day-long stimulation in December 2006 alone. Previously, only 13'000 detections found by an amplitude-threshold-based detector were known for this period. The high temporal and spatial resolution of this new catalog allows us to analyze the statistics of the induced Basel earthquakes in great detail. We resolve spatio-temporal variations of the seismicity parameters (a- and b-value) that have not been identified before and derive the first high-resolution temporal evolution of the seismic hazard for the Basel EGS reservoir.In summer 2017, our detector monitored the 10-week pressure

  19. Alaska Seismic Network Upgrade and Expansion

    Science.gov (United States)

    Sandru, J. M.; Hansen, R. A.; Estes, S. A.; Fowler, M.

    2009-12-01

    such as ANSS, Alaska Volcano Observatory, Bradley Lake Dam, Red Dog Mine, The Plate Boundary Observatory (PBO), Alaska Tsunami Warning Center, and City and State Emergency Managers has helped link vast networks together so that the overall data transition can be varied. This lessens the likelihood of having a single point of failure for an entire network. Robust communication is key to retrieving seismic data. AEIC has gone through growing pains learning how to harden our network and encompassing the many types of telemetry that can be utilized in today's world. Redundant telemetry paths are a goal that is key to retrieving data, however at times this is not feasible with the vast size and terrain in Alaska. We will demonstrate what has worked for us and what our network consists of.

  20. Detection and localization capability of an urban seismic sinkhole monitoring network

    Science.gov (United States)

    Becker, Dirk; Dahm, Torsten; Schneider, Fabian

    2017-04-01

    Microseismic events linked to underground processes in sinkhole areas might serve as precursors to larger mass dislocation or rupture events which can cause felt ground shaking or even structural damage. To identify these weak and shallow events, a sensitive local seismic monitoring network is needed. In case of an urban environment the performance of local monitoring networks is severely compromised by the high anthropogenic noise level. We study the detection and localization capability of such a network, which is already partly installed in the urban area of the city of Hamburg, Germany, within the joint project SIMULTAN (http://www.gfz-potsdam.de/en/section/near-surface-geophysics/projects/simultan/). SIMULTAN aims to monitor a known sinkhole structure and gain a better understanding of the underlying processes. The current network consists of six surface stations installed in the basement of private houses and underground structures of a research facility (DESY - Deutsches Elektronen Synchrotron). During the started monitoring campaign since 2015, no microseismic events could be unambiguously attributed to the sinkholes. To estimate the detection and location capability of the network, we calculate synthetic waveforms based on the location and mechanism of former events in the area. These waveforms are combined with the recorded urban seismic noise at the station sites. As detection algorithms a simple STA/LTA trigger and a more sophisticated phase detector are used. While the STA/LTA detector delivers stable results and is able to detect events with a moment magnitude as low as 0.35 at a distance of 1.3km from the source even under the present high noise conditions the phase detector is more sensitive but also less stable. It should be stressed that due to the local near surface conditions of the wave propagation the detections are generally performed on S- or surface waves and not on P-waves, which have a significantly lower amplitude. Due to the often

  1. Detecting earthquakes over a seismic network using single-station similarity measures

    Science.gov (United States)

    Bergen, Karianne J.; Beroza, Gregory C.

    2018-06-01

    New blind waveform-similarity-based detection methods, such as Fingerprint and Similarity Thresholding (FAST), have shown promise for detecting weak signals in long-duration, continuous waveform data. While blind detectors are capable of identifying similar or repeating waveforms without templates, they can also be susceptible to false detections due to local correlated noise. In this work, we present a set of three new methods that allow us to extend single-station similarity-based detection over a seismic network; event-pair extraction, pairwise pseudo-association, and event resolution complete a post-processing pipeline that combines single-station similarity measures (e.g. FAST sparse similarity matrix) from each station in a network into a list of candidate events. The core technique, pairwise pseudo-association, leverages the pairwise structure of event detections in its network detection model, which allows it to identify events observed at multiple stations in the network without modeling the expected moveout. Though our approach is general, we apply it to extend FAST over a sparse seismic network. We demonstrate that our network-based extension of FAST is both sensitive and maintains a low false detection rate. As a test case, we apply our approach to 2 weeks of continuous waveform data from five stations during the foreshock sequence prior to the 2014 Mw 8.2 Iquique earthquake. Our method identifies nearly five times as many events as the local seismicity catalogue (including 95 per cent of the catalogue events), and less than 1 per cent of these candidate events are false detections.

  2. Tectonic implications of seismic activity recorded by the northern Ontario seismograph network

    International Nuclear Information System (INIS)

    Wetmiller, R.J.; Cajka, M.G.

    1989-01-01

    The northern Ontario seismograph network, which has operated under the Canadian Nuclear Fuel Waste Management Program since 1982, has provided valuable data to supplement those recorded by the Canadian national networks on earthquake activity, rockburst activity, the distribution of regional seismic velocities, and the contemporary stress field in northern Ontario. The combined networks recorded the largest earthquake known in northwestern Ontario, M 3.9 near Sioux Lookout on February 11, 1984, and many smaller earthquakes in northeastern Ontario. Focal mechanism solutions of these and older events showed high horizontal stress and thrust faulting to be dominant features of the contemporary tectonics of northern Ontario. The zone of more intense earthquake activity in western Quebec appeared to extend northwestward into the Kapuskasing area of northeastern Ontario, where an area of persistent microearthquake activity had been identified by a seismograph station near Kapuskasing. Controlled explosions of the 1984 Kapuskasing Uplift seismic profile experiment recorded on the northern Ontario seismograph network showed the presence of anomalously high LG velocities in northeastern Ontario (3.65 km/s) that when properly taken into account reduced the mislocation errors of well-recorded seismic events by 50% on average

  3. Second Quarter Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-06-26

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, seven local earthquakes were recorded during the second quarter of fiscal year 2008. The largest event recorded by the network during the second quarter (February 3, 2008 - magnitude 2.3 Mc) was located northeast of Richland in Franklin County at a depth of 22.5 km. With regard to the depth distribution, two earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), three earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and two earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, five earthquakes occurred in swarm areas and two earthquakes were classified as random events.

  4. Consistence of Network Filtering Rules

    Institute of Scientific and Technical Information of China (English)

    SHE Kun; WU Yuancheng; HUANG Juncai; ZHOU Mingtian

    2004-01-01

    The inconsistence of firewall/VPN(Virtual Private Network) rule makes a huge maintainable cost.With development of Multinational Company,SOHO office,E-government the number of firewalls/VPN will increase rapidly.Rule table in stand-alone or network will be increased in geometric series accordingly.Checking the consistence of rule table manually is inadequate.A formal approach can define semantic consistence,make a theoretic foundation of intelligent management about rule tables.In this paper,a kind of formalization of host rules and network ones for auto rule-validation based on SET theory were proporsed and a rule validation scheme was defined.The analysis results show the superior performance of the methods and demonstrate its potential for the intelligent management based on rule tables.

  5. Computer-Aided Analysis of Flow in Water Pipe Networks after a Seismic Event

    Directory of Open Access Journals (Sweden)

    Won-Hee Kang

    2017-01-01

    Full Text Available This paper proposes a framework for a reliability-based flow analysis for a water pipe network after an earthquake. For the first part of the framework, we propose to use a modeling procedure for multiple leaks and breaks in the water pipe segments of a network that has been damaged by an earthquake. For the second part, we propose an efficient system-level probabilistic flow analysis process that integrates the matrix-based system reliability (MSR formulation and the branch-and-bound method. This process probabilistically predicts flow quantities by considering system-level damage scenarios consisting of combinations of leaks and breaks in network pipes and significantly reduces the computational cost by sequentially prioritizing the system states according to their likelihoods and by using the branch-and-bound method to select their partial sets. The proposed framework is illustrated and demonstrated by examining two example water pipe networks that have been subjected to a seismic event. These two examples consist of 11 and 20 pipe segments, respectively, and are computationally modeled considering their available topological, material, and mechanical properties. Considering different earthquake scenarios and the resulting multiple leaks and breaks in the water pipe segments, the water flows in the segments are estimated in a computationally efficient manner.

  6. Application of neural networks to seismic active control

    International Nuclear Information System (INIS)

    Tang, Yu.

    1995-01-01

    An exploratory study on seismic active control using an artificial neural network (ANN) is presented in which a singledegree-of-freedom (SDF) structural system is controlled by a trained neural network. A feed-forward neural network and the backpropagation training method are used in the study. In backpropagation training, the learning rate is determined by ensuring the decrease of the error function at each training cycle. The training patterns for the neural net are generated randomly. Then, the trained ANN is used to compute the control force according to the control algorithm. The control strategy proposed herein is to apply the control force at every time step to destroy the build-up of the system response. The ground motions considered in the simulations are the N21E and N69W components of the Lake Hughes No. 12 record that occurred in the San Fernando Valley in California on February 9, 1971. Significant reduction of the structural response by one order of magnitude is observed. Also, it is shown that the proposed control strategy has the ability to reduce the peak that occurs during the first few cycles of the time history. These promising results assert the potential of applying ANNs to active structural control under seismic loads

  7. An Intelligent Network Proposed for Assessing Seismic Vulnerability Index of Sewerage Networks within a GIS Framework (A Case Study of Shahr-e-Kord

    Directory of Open Access Journals (Sweden)

    Mohamadali Rahgozar

    2016-01-01

    Full Text Available Due to their vast spread, sewerage networks are exposed to considerable damages during severe earthquakes, which may lead to catastrophic environmental contamination. Multiple repairs in the pipelines, including pipe and joint fractures, could be costly and time-consuming. In seismic risk management, it is of utmost importance to have an intelligent tool for assessing seismic vulnerability index at any given point in time for such important utilities as sewerage networks. This study uses a weight-factor methodology and proposes an online GIS-based intelligent algorithm to evaluate the seismic vulnerability index (VI for metropolitan sewerage networks. The proposed intelligent tool is capable of updating VI as the sewerage network conditions may change with time and at different locations. The city of Shahr-e-Kord located on the high risk seismic belt is selected for a case study to which the proposed methodology is applied for zoning the vulnerability index in GIS. Results show that the overall seismic vulnerability index for the selected study area ranges from low to medium but that it increases in the southern parts of the city, especially in the old town where brittle pipes have been laid

  8. Design and commissioning of the Seismicity Network of Darkhovein Nuclear Power Plant (IR360)

    International Nuclear Information System (INIS)

    Aram, M. R.

    2012-01-01

    The study of micro seismicity and monitoring the micro seismic for the purpose of surveying the existing faults treatments and recognition of blind faults and other active tectonic structures in various phases of constructing the important structures, specially nuclear power plants, is unavoidable. According to IAEA safety guides and US-NRC regulatory guides, suitable instrumentation must be provided so that the seismic response of nuclear power plant features importantly from the safety point of view. According to R.G. 1.165 seismic monitoring by a network of seismic stations in the site area should be established as soon as possible after the site selection. Also, it is necessary to shutdown the nuclear power plant if vibratory ground motion exceeds the operating basis earthquake. The current research demonstrates the field works and studies for locating the local seismograph network in Darkhovein nuclear power plant. After the official studies and the primary visit of the old seismograph stations it was found that the mentioned network doesn't cover completely the geological structures around the power plant. Therefore, new locations have been introduced through the field investigation and computational methods of optimization. In positioning the new stations, places with the least amount of noise and the best coverage for seismic sources were selected. The modeling with considering an imaginative station at the selected places shows that the thresholds of the complete records of earthquakes around Darkhovein site is under the magnitude 1 (about 0.8).

  9. Local seismic network at the Olkiluoto site. Annual Report for 2006

    International Nuclear Information System (INIS)

    Saari, J.; Lakio, A.

    2007-05-01

    In February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto. Later, in June 2004, the seismic network was expanded with two new seismic stations. At that time started the excavation of the underground characterisation facility (the ONKALO) and the basic operation procedure was changed more suitable for the demands of the new situation. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of the ONKALO. This report gives the results of microseismic monitoring during the year 2006. Also the changes in the structure and the operation procedure of the network are described. The network has operated continuously in 2006. In the beginning of 2006, the target area of the seismic monitoring expanded to semi-regional scale. Four new seismic stations started in the beginning of February 2006. At the end of the year, two new borehole geophones were installed in order to improve the sensitivity and the depth resolution of the measurements inside the ONKALO block. This report presents also new interpretations of the excavation induced earthquakes that occurred in the ONKALO in 2005. Altogether 2041 events have been located in the Olkiluoto area, in reported time period. The magnitudes of the observed events range from ML = -1.1 to ML = 3.1 (ML magnitude in local Richter's scale). Most of them are explosions. Two of the observed events are be classified as microearthquakes. Evidence of activity that would have influence on the safety of the ONKALO, have not been found. The observed earthquakes occurred in 2006 were small, ML = -0.6 and ML= -0.9. The earthquakes relate to small movements in brittle deformation zones OL-BFZ043 and OL-BFZ034 presented in the geological model of the Olkiluoto site

  10. xQuake: A Modern Approach to Seismic Network Analytics

    Science.gov (United States)

    Johnson, C. E.; Aikin, K. E.

    2017-12-01

    While seismic networks have expanded over the past few decades, and social needs for accurate and timely information has increased dramatically, approaches to the operational needs of both global and regional seismic observatories have been slow to adopt new technologies. This presentation presents the xQuake system that provides a fresh approach to seismic network analytics based on complexity theory and an adaptive architecture of streaming connected microservices as diverse data (picks, beams, and other data) flow into a final, curated catalog of events. The foundation for xQuake is the xGraph (executable graph) framework that is essentially a self-organizing graph database. An xGraph instance provides both the analytics as well as the data storage capabilities at the same time. Much of the analytics, such as synthetic annealing in the detection process and an evolutionary programing approach for event evolution, draws from the recent GLASS 3.0 seismic associator developed by and for the USGS National Earthquake Information Center (NEIC). In some respects xQuake is reminiscent of the Earthworm system, in that it comprises processes interacting through store and forward rings; not surprising as the first author was the lead architect of the original Earthworm project when it was known as "Rings and Things". While Earthworm components can easily be integrated into the xGraph processing framework, the architecture and analytics are more current (e.g. using a Kafka Broker for store and forward rings). The xQuake system is being released under an unrestricted open source license to encourage and enable sthe eismic community support in further development of its capabilities.

  11. OGS improvements in the year 2011 in running the Northeastern Italy Seismic Network

    Science.gov (United States)

    Bragato, P. L.; Pesaresi, D.; Saraò, A.; Di Bartolomeo, P.; Durı, G.

    2012-04-01

    The Centro di Ricerche Sismologiche (CRS, Seismological Research Center) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the Northeastern Italy Seismic Network: it currently consists of 15 very sensitive broad band and 21 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data center in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of Northeastern Italy. Since 2002 OGS-CRS is using the Antelope software suite on several workstations plus a SUN Cluster as the main tool for collecting, analyzing, archiving and exchanging seismic data, initially in the framework of the EU Interreg IIIA project "Trans-national seismological networks in the South-Eastern Alps". SeisComP is also used as a real time data exchange server tool. In order to improve the seismological monitoring of the Northeastern Italy area, at OGS-CRS we tuned existing programs and created ad hoc ones like: a customized web server named PickServer to manually relocate earthquakes, a script for automatic moment tensor determination, scripts for web publishing of earthquake parametric data, waveforms, state of health parameters and shaking maps, noise characterization by means of automatic spectra analysis, and last but not least scripts for email/SMS/fax alerting. The OGS-CRS Real Time Seismological website (RTS, http://rts.crs.inogs.it/) operative since several years was initially developed in the framework of the Italian DPC-INGV S3 Project: the RTS website shows classic earthquake locations

  12. The RING and Seismic Network: Data Acquisition of Co-located Stations

    Science.gov (United States)

    Falco, L.; Avallone, A.; Cattaneo, M.; Cecere, G.; Cogliano, R.; D'Agostino, N.; D'Ambrosio, C.; D'Anastasio, E.; Selvaggi, G.

    2007-12-01

    The plate boundary between Africa and Eurasia represents an interesting geodynamical region characterized by a complex pattern of deformation. First-order scientific problems regarding the existence of rigid blocks within the plate boundary, the present-day activity of the Calabrian subduction zone and the modes of release of seismic deformation are still awaiting for a better understanding. To address these issues, the INGV (Istituto Nazionale Geofisica e Vulcanlogia) deployed a permanent, integrated and real-time monitoring GPS network (RING) all over Italy. RING is now constituted by about 120 stations. The CGPS sites, acquiring at 1Hz and 30s sampling rate, are integrated either with broad band or very broad band seismometers and accelerometers for an improved definition of the seismically active regions. Most of the sites are connected to the acquisition centre (located in Rome and duplicated in Grottaminarda) through a satellite system (VSAT), while the remaining sites transmit data by Internet and classical phone connections. The satellite data transmission and the integration with seismic instruments makes this network one of the most innovative CGPS networks in Europe. The heterogeneity of the installed instrumentation, the transmission types and the increasing number of stations needed a central monitoring and acquisition system. A central acquisition system has been developed in Grottaminarda in southern Italy. Regarding the seismic monitoring we chose to use the open source system Earthworm, developed by USGS, with which we store waveforms and implement automatic localization of the seismic events occurring in the area. As most of the GPS sites are acquired by means of Nanometrics satellite technology, we developed a specific software (GpsView), written in Java, to monitor the state of health of those CGPS. This software receives GPS data from NaqsServer (Nanometrics acquisition system) and outputs information about the sites (i.e. approx position

  13. First Quarter Hanford Seismic Report for Fiscal Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Clayton, Ray E.; Devary, Joseph L.

    2011-03-31

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 16 local earthquakes during the first quarter of FY 2011. Six earthquakes were located at shallow depths (less than 4 km), seven earthquakes at intermediate depths (between 4 and 9 km), most likely in the pre-basalt sediments, and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, thirteen earthquakes were located in known swarm areas and three earthquakes were classified as random events. The highest magnitude event (1.8 Mc) was recorded on October 19, 2010 at depth 17.5 km with epicenter located near the Yakima River between the Rattlesnake Mountain and Horse Heaven Hills swarm areas.

  14. Third Quarter Hanford Seismic Report for Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-09-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its con-tractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (E WRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 818 triggers on two parallel detection and recording systems during the third quarter of fiscal year (FY) 2000. Thirteen seismic events were located by the Hanford Seismic Network within the reporting region of 46-47{degree} N latitude and 119-120{degree} W longitude; 7 were earthquakes in the Columbia River Basalt Group, 1 was an earthquake in the pre-basalt sediments, and 5 were earthquakes in the crystalline basement. Three earthquakes occurred in known swarm areas, and 10 earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers during the third quarter of FY 2000.

  15. First Quarter Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-03-21

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, forty-four local earthquakes were recorded during the first quarter of fiscal year 2008. A total of thirty-one micro earthquakes were recorded within the Rattlesnake Mountain swarm area at depths in the 5-8 km range, most likely within the pre-basalt sediments. The largest event recorded by the network during the first quarter (November 25, 2007 - magnitude 1.5 Mc) was located within this swarm area at a depth of 4.3 km. With regard to the depth distribution, three earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), thirty-six earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and five earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, thirty-eight earthquakes occurred in swarm areas and six earth¬quakes were classified as random events.

  16. Aspects regarding the use of the INFREP network for identifying possible seismic precursors

    Science.gov (United States)

    Dolea, Paul; Cristea, Octavian; Dascal, Paul Vladut; Moldovan, Iren-Adelina; Biagi, Pier Francesco

    In the last decades, one of the main research directions in identifying seismic precursors involved monitoring VLF (Very Low Frequency) and LF (Low Frequency) radio waves and analysing their propagation characteristics. Essentially this method consists of monitoring different available VLF and LF transmitters from long distance reception points. The received signal has two major components: the ground wave and the sky wave, where the sky wave propagates by reflection on the lower layers of the ionosphere. It is assumed that before and during major earthquakes, unusual changes may occur in the lower layers of the ionosphere, such as the modification of the charged particles number density and the altitude of the reflection zone. Therefore, these unusual changes in the ionosphere may generate unusual variations in the received signal level. The International Network for Frontier Research on Earthquake Precursors (INFREP) was developed starting with 2009 and consists of several dedicated VLF and LF radio receivers used for monitoring various radio transmitters located throughout Europe. The receivers' locations were chosen so that the propagation path from these VLF/LF stations would pass over high seismicity regions while others were chosen to obtain different control paths. The monitoring receivers are capable of continuously measuring the received signal amplitude from the VLF/LF stations of interest. The recorded data is then stored and sent to an INFREP database, which is available on the Internet for scientific researchers. By processing and analysing VLF and LF data samples, collected at different reception points and at different periods of the year, one may be able to identify some distinct patterns in the envelope of the received signal level over time. Significant deviations from these patterns may have local causes such as the electromagnetic pollution at the monitoring point, regional causes like existing electrical storms over the propagation path or

  17. Incorporating Low-Cost Seismometers into the Central Weather Bureau Seismic Network for Earthquake Early Warning in Taiwan

    Directory of Open Access Journals (Sweden)

    Da-Yi Chen

    2015-01-01

    Full Text Available A dense seismic network can increase Earthquake Early Warning (EEW system capability to estimate earthquake information with higher accuracy. It is also critical for generating fast, robust earthquake alarms before strong-ground shaking hits the target area. However, building a dense seismic network via traditional seismometers is too expensive and may not be practical. Using low-cost Micro-Electro Mechanical System (MEMS accelerometers is a potential solution to quickly deploy a large number of sensors around the monitored region. An EEW system constructed using a dense seismic network with 543 MEMS sensors in Taiwan is presented. The system also incorporates the official seismic network of _ Central Weather Bureau (CWB. The real-time data streams generated by the two networks are integrated using the Earthworm software. This paper illustrates the methods used by the integrated system for estimating earthquake information and evaluates the system performance. We applied the Earthworm picker for the seismograms recorded by the MEMS sensors (Chen et al. 2015 following new picking constraints to accurately detect P-wave arrivals and use a new regression equation for estimating earthquake magnitudes. An off-line test was implemented using 46 earthquakes with magnitudes ranging from ML 4.5 - 6.5 to calibrate the system. The experimental results show that the integrated system has stable source parameter results and issues alarms much faster than the current system run by the CWB seismic network (CWBSN.

  18. Monitoring of geothermal fields by seismic networks. Guidelines and chances; Monitoring geothermaler Felder durch seismische Netzwerke. Vorgaben und Chancen

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Andreas [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Geophysikalisches Inst.; Gaucher, Emmanuel [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Abt. Geothermie

    2012-07-01

    The monitoring of geothermal power plants requires seismic networks in order to quantify ground motions at the earth's surface in the case of a possible micro seismicity or to describe spatio-temporal seismicity distribution in the reservoir. The first case requires official needs. The second case may help to develop the reservoirs. An optimal configuration of the seismic network may adequate for both tasks. It also can be a chance for a long-term investment for the overall benefit.

  19. Consistency analysis of network traffic repositories

    NARCIS (Netherlands)

    Lastdrager, Elmer; Lastdrager, E.E.H.; Pras, Aiko

    Traffic repositories with TCP/IP header information are very important for network analysis. Researchers often assume that such repositories reliably represent all traffic that has been flowing over the network; little thoughts are made regarding the consistency of these repositories. Still, for

  20. A dense microseismic monitoring network in Korea for uncovering relationship between seismic activity and neotectonic features

    Science.gov (United States)

    Kang, T.; Lee, J. M.; Kim, W.; Jo, B. G.; Chung, T.; Choi, S.

    2012-12-01

    A few tens of surface traces indicating movements in Quaternary were found in the southeastern part of the Korean Peninsula. Following both the geological and engineering definitions, those features are classified into "active", in geology, or "capable", in engineering, faults. On the other hand, the present-day seismicity of the region over a couple of thousand years is indistinguishable on the whole with the rest of the Korean Peninsula. It is therefore of great interest whether the present seismic activity is related to the neotectonic features or not. Either of conclusions is not intuitive in terms of the present state of seismic monitoring network in the region. Thus much interest in monitoring seismicity to provide an improved observation resolution and to lower the event-detection threshold has increased with many observations of the Quaternary faults. We installed a remote, wireless seismograph network which is composed of 20 stations with an average spacing of 10 km. Each station is equipped with a three-component Trillium Compact seismometer and Taurus digitizer. Instrumentation and analysis advancements are now offering better tools for this monitoring. This network is scheduled to be in operation over about one and a half year. In spite of the relatively short observation period, we expect that the high density of the network enables us to monitor seismic events with much lower magnitude threshold compared to the preexisting seismic network in the region. Following the Gutenberg-Richter relationship, the number of events with low magnitude is logarithmically larger than that with high magnitude. Following this rule, we can expect that many of microseismic events may reveal behavior of their causative faults, if any. We report the results of observation which has been performed over a year up to now.

  1. Peru Subduction Zone Seismic Experiment (PeruSZE): Preliminary Results From a Seismic Network Between Mollendo and Lake Titicaca, Peru.

    Science.gov (United States)

    Guy, R.; Stubailo, I.; Skinner, S.; Phillips, K.; Foote, E.; Lukac, M.; Aguilar, V.; Tavera, H.; Audin, L.; Husker, A.; Clayton, R.; Davis, P. M.

    2008-12-01

    This work describes preliminary results from a 50 station broadband seismic network recently installed from the coast to the high Andes in Peru. UCLA's Center for Embedded Network Sensing (CENS) and Caltech's Tectonic Observatory are collaborating with the IRD (French L'Institut de Recherche pour le Developpement) and the Institute of Geophysics, in Lima Peru in a broadband seismic experiment that will study the transition from steep to shallow slab subduction. The currently installed line has stations located above the steep subduction zone at a spacing of about 6 km. In 2009 we plan to install a line of 50 stations north from this line along the crest of the Andes, crossing the transition from steep to shallow subduction. A further line from the end of that line back to the coast, completing a U shaped array, is in the planning phase. The network is wirelessly linked using multi-hop network software designed by computer scientists in CENS in which data is transmitted from station to station, and collected at Internet drops, from where it is transmitted over the Internet to CENS each night. The instrument installation in Peru is almost finished and we have been receiving data daily from 10 stations (out of total 50) since June 2008. The rest are recording on-site while the RF network is being completed. The software system provides dynamic link quality based routing, reliable data delivery, and a disruption tolerant shell interface for managing the system from UCLA without the need to travel to Peru. The near real-time data delivery also allows immediate detection of any problems at the sites. We are building a seismic data and GPS quality control toolset that would greatly minimize the station's downtime by alerting the users of any possible problems.

  2. Design and Implementation of the National Seismic Monitoring Network in the Kingdom of Bhutan

    Science.gov (United States)

    Ohmi, S.; Inoue, H.; Chophel, J.; Pelgay, P.; Drukpa, D.

    2017-12-01

    Bhutan-Himalayan district is located along the plate collision zone between Indian and Eurasian plates, which is one of the most seismically active region in the world. Recent earthquakes such as M7.8 Gorkha Nepal earthquake in April 25, 2015 and M6.7 Imphal, India earthquake in January 3, 2016 are examples of felt earthquakes in Bhutan. However, there is no permanent seismic monitoring system ever established in Bhutan, whose territory is in the center of the Bhutan-Himalayan region. We started establishing permanent seismic monitoring network of minimum requirements and intensity meter network over the nation. The former is composed of six (6) observation stations in Bhutan with short period weak motion and strong motion seismometers as well as three (3) broad-band seismometers, and the latter is composed of twenty intensity meters located in every provincial government office. Obtained data are transmitted to the central processing system in the DGM office in Thimphu in real time. In this project, DGM will construct seismic vault with their own budget which is approved as the World Bank project, and Japan team assists the DGM for site survey of observation site, designing the observation vault, and designing the data telemetry system as well as providing instruments for the observation such as seismometers and digitizers. We already started the operation of the six (6) weak motion stations as well as twenty (20) intensity meter stations. Additionally, the RIMES (Regional Integrated Multi-hazard Early Warning System for Africa and Asia) is also providing eight (8) weak motion stations and we are keeping close communication to operate them as one single seismic monitoring network composed of fourteen (14) stations. This network will be definitely utilized for not only for seismic disaster mitigation of the country but also for studying the seismotectonics in the Bhutan-Himalayan region which is not yet precisely revealed due to the lack of observation data in the

  3. Seismic and Geodetic Monitoring of the Nicoya, Costa Rica, Seismic Gap

    Science.gov (United States)

    Protti, M.; Gonzalez, V.; Schwartz, S.; Dixon, T.; Kato, T.; Kaneda, Y.; Simila, G.; Sampson, D.

    2007-05-01

    The Nicoya segment of the Middle America Trench has been recognized as a mature seismic gap with potential to generate a large earthquake in the near future (it ruptured with large earthquakes in 1853, 1900 and 1950). Low level of background seismicity and fast crustal deformation of the forearc are indicatives of strong coupling along the plate interface. Given its high seismic potential, the available data and especially the fact that the Nicoya peninsula extends over large part of the rupture area, this gap was selected as one of the two sites for a MARGINS-SEIZE experiment. With the goal of documenting the evolution of loading and stress release along this seismic gap, an international effort involving several institutions from Costa Rica, the United States and Japan is being carried out for over a decade in the region. This effort involves the installation of temporary and permanent seismic and geodetic networks. The seismic network includes short period, broad band and strong motion instruments. The seismic monitoring has provided valuable information on the geometry and characteristics of the plate interface. The geodetic network includes temporary and permanent GPS stations as well as surface and borehole tiltmeters. The geodetic networks have helped quantify the extend and degree of coupling. A continuously recording, three- station GPS network on the Nicoya Peninsula, Costa Rica, recorded what we believe is the first slow slip event observed along the plate interface of the Costa Rica subduction zone. We will present results from these monitoring networks. Collaborative international efforts are focused on expanding these seismic and geodetic networks to provide improved resolution of future creep events, to enhanced understanding of the mechanical behavior of the Nicoya subduction segment of the Middle American Trench and possibly capture the next large earthquake and its potential precursor deformation.

  4. First Quarter Hanford Seismic Report for Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-03-15

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. This includes three recently acquired Transportable Array stations located at Cold Creek, Didier Farms, and Phinney Hill. For the Hanford Seismic Network, ten local earthquakes were recorded during the first quarter of fiscal year 2009. All earthquakes were considered as “minor” with magnitudes (Mc) less than 1.0. Two earthquakes were located at shallow depths (less than 4 km), most likely in the Columbia River basalts; five earthquakes at intermediate depths (between 4 and 9 km), most likely in the sub-basalt sediments); and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, four earthquakes occurred in known swarm areas and six earthquakes were classified as random events.

  5. MyShake: A smartphone seismic network for earthquake early warning and beyond.

    Science.gov (United States)

    Kong, Qingkai; Allen, Richard M; Schreier, Louis; Kwon, Young-Woo

    2016-02-01

    Large magnitude earthquakes in urban environments continue to kill and injure tens to hundreds of thousands of people, inflicting lasting societal and economic disasters. Earthquake early warning (EEW) provides seconds to minutes of warning, allowing people to move to safe zones and automated slowdown and shutdown of transit and other machinery. The handful of EEW systems operating around the world use traditional seismic and geodetic networks that exist only in a few nations. Smartphones are much more prevalent than traditional networks and contain accelerometers that can also be used to detect earthquakes. We report on the development of a new type of seismic system, MyShake, that harnesses personal/private smartphone sensors to collect data and analyze earthquakes. We show that smartphones can record magnitude 5 earthquakes at distances of 10 km or less and develop an on-phone detection capability to separate earthquakes from other everyday shakes. Our proof-of-concept system then collects earthquake data at a central site where a network detection algorithm confirms that an earthquake is under way and estimates the location and magnitude in real time. This information can then be used to issue an alert of forthcoming ground shaking. MyShake could be used to enhance EEW in regions with traditional networks and could provide the only EEW capability in regions without. In addition, the seismic waveforms recorded could be used to deliver rapid microseism maps, study impacts on buildings, and possibly image shallow earth structure and earthquake rupture kinematics.

  6. The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen

    Science.gov (United States)

    Hetényi, György; Molinari, Irene; Clinton, John; Bokelmann, Götz; Bondár, István; Crawford, Wayne C.; Dessa, Jean-Xavier; Doubre, Cécile; Friederich, Wolfgang; Fuchs, Florian; Giardini, Domenico; Gráczer, Zoltán; Handy, Mark R.; Herak, Marijan; Jia, Yan; Kissling, Edi; Kopp, Heidrun; Korn, Michael; Margheriti, Lucia; Meier, Thomas; Mucciarelli, Marco; Paul, Anne; Pesaresi, Damiano; Piromallo, Claudia; Plenefisch, Thomas; Plomerová, Jaroslava; Ritter, Joachim; Rümpker, Georg; Šipka, Vesna; Spallarossa, Daniele; Thomas, Christine; Tilmann, Frederik; Wassermann, Joachim; Weber, Michael; Wéber, Zoltán; Wesztergom, Viktor; Živčić, Mladen

    2018-04-01

    The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.

  7. Adding seismic broadband analysis to characterize Andean backarc seismicity in Argentina

    Science.gov (United States)

    Alvarado, P.; Giuliano, A.; Beck, S.; Zandt, G.

    2007-05-01

    Characterization of the highly seismically active Andean backarc is crucial for assessment of earthquake hazards in western Argentina. Moderate-to-large crustal earthquakes have caused several deaths, damage and drastic economic consequences in Argentinean history. We have studied the Andean backarc crust between 30°S and 36°S using seismic broadband data available from a previous ("the CHARGE") IRIS-PASSCAL experiment. We collected more than 12 terabytes of continuous seismic data from 22 broadband instruments deployed across Chile and Argentina during 1.5 years. Using free software we modeled full regional broadband waveforms and obtained seismic moment tensor inversions of crustal earthquakes testing for the best focal depth for each event. We also mapped differences in the Andean backarc crustal structure and found a clear correlation with different types of crustal seismicity (i.e. focal depths, focal mechanisms, magnitudes and frequencies of occurrence) and previously mapped terrane boundaries. We now plan to use the same methodology to study other regions in Argentina using near-real time broadband data available from the national seismic (INPRES) network and global seismic networks operating in the region. We will re-design the national seismic network to optimize short-period and broadband seismic station coverage for different network purposes. This work is an international effort that involves researchers and students from universities and national government agencies with the goal of providing more information about earthquake hazards in western Argentina.

  8. Second Quarter Hanford Seismic Report for Fiscal Year 2000

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    2000-01-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 506 triggers on two parallel detection and recording systems during the second quarter of fiscal year (FY) 2000. Twenty-seven seismic events were located by the Hanford Seismic Network within the reporting region of 46--47degree N latitude and 119--120degree W longitude; 12 were earthquakes in the Columbia River Basalt Group, 2 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 5 were quarry blasts. Three earthquakes appear to be related to geologic structures, eleven earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion

  9. Second Quarter Hanford Seismic Report for Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-07-17

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 506 triggers on two parallel detection and recording systems during the second quarter of fiscal year (FY) 2000. Twenty-seven seismic events were located by the Hanford Seismic Network within the reporting region of 46--47{degree} N latitude and 119--120{degree} W longitude; 12 were earthquakes in the Columbia River Basalt Group, 2 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 5 were quarry blasts. Three earthquakes appear to be related to geologic structures, eleven earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion

  10. First quarter Hanford seismic report for fiscal year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-02-23

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EW uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 311 triggers on two parallel detection and recording systems during the first quarter of fiscal year (FY) 2000. Twelve seismic events were located by the Hanford Seismic Network within the reporting region of 46--47{degree}N latitude and 119--120{degree}W longitude; 2 were earthquakes in the Columbia River Basalt Group, 3 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 1 was a quarry blast. Two earthquakes appear to be related to a major geologic structure, no earthquakes occurred in known swarm areas, and 9 earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers

  11. Forecasting of Energy Expenditure of Induced Seismicity with Use of Artificial Neural Network

    Science.gov (United States)

    Cichy, Tomasz; Banka, Piotr

    2017-12-01

    Coal mining in many Polish mines in the Upper Silesian Coal Basin is accompanied by high levels of induced seismicity. In mining plants, the methods of shock monitoring are improved, allowing for more accurate localization of the occurring phenomena and determining their seismic energy. Equally important is the development of ways of forecasting seismic hazards that may occur while implementing mine design projects. These methods, depending on the length of time for which the forecasts are made, can be divided into: longterm, medium-term, short-term and so-called alarm. Long-term forecasts are particularly useful for the design of seam exploitations. The paper presents a method of predicting changes in energy expenditure of shock using a properly trained artificial neural network. This method allows to make long-term forecasts at the stage of the mine’s exploitation design, thus enabling the mining work plans to be reviewed to minimize the potential for tremors. The information given at the input of the neural network is indicative of the specific energy changes of the elastic deformation occurring in the selected, thick, resistant rock layers (tremor-prone layers). Energy changes, taking place in one or more tremor-prone layers are considered. These indicators describe only the specific energy changes of the elastic deformation accumulating in the rock as a consequence of the mining operation, but does not determine the amount of energy released during the destruction of a given volume of rock. In this process, the potential energy of elastic strain transforms into other, non-measurable energy types, including the seismic energy of recorded tremors. In this way, potential energy changes affect the observed induced seismicity. The parameters used are characterized by increases (declines) of specific energy with separation to occur before the hypothetical destruction of the rock and after it. Additional input information is an index characterizing the rate of

  12. Automatic reconstruction of fault networks from seismicity catalogs including location uncertainty

    International Nuclear Information System (INIS)

    Wang, Y.

    2013-01-01

    Within the framework of plate tectonics, the deformation that arises from the relative movement of two plates occurs across discontinuities in the earth's crust, known as fault zones. Active fault zones are the causal locations of most earthquakes, which suddenly release tectonic stresses within a very short time. In return, fault zones slowly grow by accumulating slip due to such earthquakes by cumulated damage at their tips, and by branching or linking between pre-existing faults of various sizes. Over the last decades, a large amount of knowledge has been acquired concerning the overall phenomenology and mechanics of individual faults and earthquakes: A deep physical and mechanical understanding of the links and interactions between and among them is still missing, however. One of the main issues lies in our failure to always succeed in assigning an earthquake to its causative fault. Using approaches based in pattern-recognition theory, more insight into the relationship between earthquakes and fault structure can be gained by developing an automatic fault network reconstruction approach using high resolution earthquake data sets at largely different scales and by considering individual event uncertainties. This thesis introduces the Anisotropic Clustering of Location Uncertainty Distributions (ACLUD) method to reconstruct active fault networks on the basis of both earthquake locations and their estimated individual uncertainties. This method consists in fitting a given set of hypocenters with an increasing amount of finite planes until the residuals of the fit compare with location uncertainties. After a massive search through the large solution space of possible reconstructed fault networks, six different validation procedures are applied in order to select the corresponding best fault network. Two of the validation steps (cross-validation and Bayesian Information Criterion (BIC)) process the fit residuals, while the four others look for solutions that

  13. Automatic reconstruction of fault networks from seismicity catalogs including location uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.

    2013-07-01

    Within the framework of plate tectonics, the deformation that arises from the relative movement of two plates occurs across discontinuities in the earth's crust, known as fault zones. Active fault zones are the causal locations of most earthquakes, which suddenly release tectonic stresses within a very short time. In return, fault zones slowly grow by accumulating slip due to such earthquakes by cumulated damage at their tips, and by branching or linking between pre-existing faults of various sizes. Over the last decades, a large amount of knowledge has been acquired concerning the overall phenomenology and mechanics of individual faults and earthquakes: A deep physical and mechanical understanding of the links and interactions between and among them is still missing, however. One of the main issues lies in our failure to always succeed in assigning an earthquake to its causative fault. Using approaches based in pattern-recognition theory, more insight into the relationship between earthquakes and fault structure can be gained by developing an automatic fault network reconstruction approach using high resolution earthquake data sets at largely different scales and by considering individual event uncertainties. This thesis introduces the Anisotropic Clustering of Location Uncertainty Distributions (ACLUD) method to reconstruct active fault networks on the basis of both earthquake locations and their estimated individual uncertainties. This method consists in fitting a given set of hypocenters with an increasing amount of finite planes until the residuals of the fit compare with location uncertainties. After a massive search through the large solution space of possible reconstructed fault networks, six different validation procedures are applied in order to select the corresponding best fault network. Two of the validation steps (cross-validation and Bayesian Information Criterion (BIC)) process the fit residuals, while the four others look for solutions that

  14. Pre-, Co-, and Post-Seismic Fault Slip in the Northern Chile Seismic Gap Associated with the April 1, 2014 (Mw 8.2) Pisagua Earthquake.

    Science.gov (United States)

    Simons, M.; Duputel, Z.; Fielding, E. J.; Galetzka, J.; Genrich, J. F.; Jiang, J.; Jolivet, R.; Kanamori, H.; Moore, A. W.; Ortega Culaciati, F. H.; Owen, S. E.; Riel, B. V.; Rivera, L. A.; Carrizo, D.; Cotte, N.; Jara, J.; Klotz, J.; Norabuena, E. O.; Ortega, I.; Socquet, A.; Samsonov, S. V.; Valderas Bermejo, M.

    2014-12-01

    The April 1, 2014 (Mw 8.2) Pisagua Earthquake occurred in Northern Chile, within a long recognized seismic gap in the Central Andean region that last experienced major megathrust events in 1868 and 1877. We built a continuous GPS network starting in 2005, with the ultimate goal of understanding the kinematics and dynamics of this portion of the subduction zone. Using observations from this network, as well as others in the region, combined with InSAR, seismic and tsunami observations, we obtain estimates of inter-seismic, co-seismic and initial post-seismic fault slip using an internally consistent Bayesian unregularized approach. We evaluate the extent of spatial overlap between regions of fault slip during this different time periods. Of particular interest to this event is the extent and nature of any geodetic evidence for transient slow fault slip preceding the Pisagua Earthquake mainshock. To this end, we compare daily and high rate GPS solutions, the former of which shows long period transient motion started about 15 days before the mainshock and with maximum registered amplitude of 14.2 +/- 2 [mm] at site PSGA. Contrary to published findings, we find that pre-seismic deformation seen by the GPS network can be explained as coseismic motion associated with the multiple foreshocks.

  15. Seismic structural response analysis using consistent mass matrices having dynamic coupling

    International Nuclear Information System (INIS)

    Shaw, D.E.

    1977-01-01

    The basis for the theoretical development of this paper is the linear matrix equations of motion for an unconstrained structure subject to support excitation. The equations are formulated in terms of absolute displacement, velocity and acceleration vectors. By means of a transformation of the absolute response vectors into displacements, velocities and accelerations relative to the support motions, the homogeneous equations become non-homogeneous and the non-homogeneous boundary conditions become homogeneous with relative displacements, velocities and accelerations being zero at support points. The forcing function or inertial loading vector is shown to consist of two parts. The first part is comprised of the mass matrix times the suppport acceleration function times a vector of structural displacements resulting from a unit vector of support displacements in the direction of excitation. This inertial loading corresponds to the classical seismic loading vector and is indeed the only loading vector for lumped-mass systems. The second part of he inertial loading vectors consists of the mass matrix times the support acceleration function times a vector of structural accelerations resulting from unit support accelerations in the direction of excitation. This term is not present in classical seismic analysis formulations and results from the presence of off-diagonal terms in the mass matrices which give rise to dynamic coupling through the mass matrix. Thus, for lumped-mass models, the classical formulation of the inertial loading vector is correct. However, if dynamic coupling terms are included through off-diagonal terms in the mass matrix, an additional inertia loading vector must be considered

  16. Seismic network based detection, classification and location of volcanic tremors

    Science.gov (United States)

    Nikolai, S.; Soubestre, J.; Seydoux, L.; de Rosny, J.; Droznin, D.; Droznina, S.; Senyukov, S.; Gordeev, E.

    2017-12-01

    Volcanic tremors constitute an important attribute of volcanic unrest in many volcanoes, and their detection and characterization is a challenging issue of volcano monitoring. The main goal of the present work is to develop a network-based method to automatically classify volcanic tremors, to locate their sources and to estimate the associated wave speed. The method is applied to four and a half years of seismic data continuously recorded by 19 permanent seismic stations in the vicinity of the Klyuchevskoy volcanic group (KVG) in Kamchatka (Russia), where five volcanoes were erupting during the considered time period. The method is based on the analysis of eigenvalues and eigenvectors of the daily array covariance matrix. As a first step, following Seydoux et al. (2016), most coherent signals corresponding to dominating tremor sources are detected based on the width of the covariance matrix eigenvalues distribution. With this approach, the volcanic tremors of the two volcanoes known as most active during the considered period, Klyuchevskoy and Tolbachik, are efficiently detected. As a next step, we consider the array covariance matrix's first eigenvectors computed every day. The main hypothesis of our analysis is that these eigenvectors represent the principal component of the daily seismic wavefield and, for days with tremor activity, characterize the dominant tremor sources. Those first eigenvectors can therefore be used as network-based fingerprints of tremor sources. A clustering process is developed to analyze this collection of first eigenvectors, using correlation coefficient as a measure of their similarity. Then, we locate tremor sources based on cross-correlations amplitudes. We characterize seven tremor sources associated with different periods of activity of four volcanoes: Tolbachik, Klyuchevskoy, Shiveluch, and Kizimen. The developed method does not require a priori knowledge, is fully automatic and the database of network-based tremor fingerprints

  17. Teaching hands-on geophysics: examples from the Rū seismic network in New Zealand

    International Nuclear Information System (INIS)

    Van Wijk, Kasper; Simpson, Jonathan; Adam, Ludmila

    2017-01-01

    Education in physics and geosciences can be effectively illustrated by the analysis of earthquakes and the subsequent propagation of seismic waves in the Earth. Educational seismology has matured to a level where both the hard- and software are robust and user friendly. This has resulted in successful implementation of educational networks around the world. Seismic data recorded by students are of such quality that these can be used in classic earthquake location exercises, for example. But even ocean waves weakly coupled into the Earth’s crust can now be recorded on educational seismometers. These signals are not just noise, but form the basis of more recent developments in seismology, such as seismic interferometry, where seismic waves generated by ocean waves—instead of earthquakes—can be used to infer information about the Earth’s interior. Here, we introduce an earthquake location exercise and an analysis of ambient seismic noise, and present examples. Data are provided, and all needed software is freely available. (review)

  18. Oklahoma seismic network

    International Nuclear Information System (INIS)

    Luza, K.V.; Lawson, J.E. Jr.; Univ. of Oklahoma, Norman, OK

    1993-07-01

    The US Nuclear Regulatory Commission has established rigorous guidelines that must be adhered to before a permit to construct a nuclear-power plant is granted to an applicant. Local as well as regional seismicity and structural relationships play an integral role in the final design criteria for nuclear power plants. The existing historical record of seismicity is inadequate in a number of areas of the Midcontinent region because of the lack of instrumentation and (or) the sensitivity of the instruments deployed to monitor earthquake events. The Nemaha Uplift/Midcontinent Geophysical Anomaly is one of five principal areas east of the Rocky Mountain front that has a moderately high seismic-risk classification. The Nemaha uplift, which is common to the states of Oklahoma, Kansas, and Nebraska, is approximately 415 miles long and 12-14 miles wide. The Midcontinent Geophysical Anomaly extends southward from Minnesota across Iowa and the southeastern corner of Nebraska and probably terminates in central Kansas. A number of moderate-sized earthquakes--magnitude 5 or greater--have occurred along or west of the Nemaha uplift. The Oklahoma Geological Survey, in cooperation with the geological surveys of Kansas, Nebraska, and Iowa, conducted a 5-year investigation of the seismicity and tectonic relationships of the Nemaha uplift and associated geologic features in the Midcontinent. This investigation was intended to provide data to be used to design nuclear-power plants. However, the information is also being used to design better large-scale structures, such as dams and high-use buildings, and to provide the necessary data to evaluate earthquake-insurance rates in the Midcontinent

  19. Knowledge discovery from seismic data using neural networks; Descoberta de conhecimento a partir de dados sismicos utilizando redes neurais

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Wesley R. de; Costa, Bruno A.D.; Gomes, Herman M. [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2004-07-01

    The analysis and interpretation of seismic data is of fundamental importance to the Oil Industry, since it helps discover geologic formations that are conducive to hydrocarbon accumulation. The use of seismic data in reservoir characterization may be performed through localized data inspections and clustering based on features of common seismic responses. This clustering or classification can be performed in two basic ways: visually, with the help of graphical tools; or using automatic classification techniques, such as statistical models and artificial neural networks. Neural network based methods are generally superior to rule- or knowledge-based systems, since they have a better generalization capability and are fault tolerant. Within this context, the main objective of this work is to describe methods that employ the two main neural network based approaches (supervised and unsupervised) in knowledge discovery from seismic data. Initially, the implementation and experiments were focused on the problem of seismic facies recognition using the unsupervised approach, but in future works, the implementation of the supervised approach, an application to fault detection and a parallel implementation of the proposed methods are planned. (author)

  20. Seismic Tomography and the Development of a State Velocity Profile

    Science.gov (United States)

    Marsh, S. J.; Nakata, N.

    2017-12-01

    Earthquakes have been a growing concern in the State of Oklahoma in the last few years and as a result, accurate earthquake location is of utmost importance. This means using a high resolution velocity model with both lateral and vertical variations. Velocity data is determined using ambient noise seismic interferometry and tomography. Passive seismic data was acquired from multiple IRIS networks over the span of eight years (2009-2016) and filtered for earthquake removal to obtain the background ambient noise profile for the state. Seismic Interferometry is applied to simulate ray paths between stations, this is done with each possible station pair for highest resolution. Finally the method of seismic tomography is used to extract the velocity data and develop the state velocity map. The final velocity profile will be a compilation of different network analyses due to changing station availability from year to year. North-Central Oklahoma has a dense seismic network and has been operating for the past few years. The seismic stations are located here because this is the most seismically active region. Other parts of the state have not had consistent coverage from year to year, and as such a reliable and high resolution velocity profile cannot be determined from this network. However, the Transportable Array (TA) passed through Oklahoma in 2014 and provided a much wider and evenly spaced coverage. The goal of this study is to ultimately combine these two arrays over time, and provide a high quality velocity profile for the State of Oklahoma.

  1. Quantifying capability of a local seismic network in terms of locations and focal mechanism solutions of weak earthquakes

    Science.gov (United States)

    Fojtíková, Lucia; Kristeková, Miriam; Málek, Jiří; Sokos, Efthimios; Csicsay, Kristián; Zahradník, Jiří

    2016-01-01

    Extension of permanent seismic networks is usually governed by a number of technical, economic, logistic, and other factors. Planned upgrade of the network can be justified by theoretical assessment of the network capability in terms of reliable estimation of the key earthquake parameters (e.g., location and focal mechanisms). It could be useful not only for scientific purposes but also as a concrete proof during the process of acquisition of the funding needed for upgrade and operation of the network. Moreover, the theoretical assessment can also identify the configuration where no improvement can be achieved with additional stations, establishing a tradeoff between the improvement and additional expenses. This paper presents suggestion of a combination of suitable methods and their application to the Little Carpathians local seismic network (Slovakia, Central Europe) monitoring epicentral zone important from the point of seismic hazard. Three configurations of the network are considered: 13 stations existing before 2011, 3 stations already added in 2011, and 7 new planned stations. Theoretical errors of the relative location are estimated by a new method, specifically developed in this paper. The resolvability of focal mechanisms determined by waveform inversion is analyzed by a recent approach based on 6D moment-tensor error ellipsoids. We consider potential seismic events situated anywhere in the studied region, thus enabling "mapping" of the expected errors. Results clearly demonstrate that the network extension remarkably decreases the errors, mainly in the planned 23-station configuration. The already made three-station extension of the network in 2011 allowed for a few real data examples. Free software made available by the authors enables similar application in any other existing or planned networks.

  2. Consistency of Network Traffic Repositories: An Overview

    NARCIS (Netherlands)

    Lastdrager, E.; Lastdrager, E.E.H.; Pras, Aiko

    2009-01-01

    Traffc repositories with TCP/IP header information are very important for network analysis. Researchers often assume that such repositories reliably represent all traffc that has been flowing over the network; little thoughts are made regarding the consistency of these repositories. Still, for

  3. Cross-correlation analysis of 2012-2014 seismic events in Central-Northern Italy: insights from the geochemical monitoring network of Tuscany

    Science.gov (United States)

    Pierotti, Lisa; Facca, Gianluca; Gherardi, Fabrizio

    2015-04-01

    Since late 2002, a geochemical monitoring network is operating in Tuscany, Central Italy, to collect data and possibly identify geochemical anomalies that characteristically occur before regionally significant (i.e. with magnitude > 3) seismic events. The network currently consists of 6 stations located in areas already investigated in detail for their geological setting, hydrogeological and geochemical background and boundary conditions. All these stations are equipped for remote, continuous monitoring of selected physicochemical parameters (temperature, pH, redox potential, electrical conductivity), and dissolved concentrations of CO2 and CH4. Additional information are obtained through in situ discrete monitoring. Field surveys are periodically performed to guarantee maintenance and performance control of the sensors of the automatic stations, and to collect water samples for the determination of the chemical and stable isotope composition of all the springs investigated for seismic precursors. Geochemical continuous signals are numerically processed to remove outliers, monitoring errors and aseismic effects from seasonal and climatic fluctuations. The elaboration of smoothed, long-term time series (more than 200000 data available today for each station) allows for a relatively accurate definition of geochemical background values. Geochemical values out of the two-sigma relative standard deviation domain are inspected as possible indicators of physicochemical changes related to regional seismic activity. Starting on November 2011, four stations of the Tuscany network located in two separate mountainous areas of Northern Apennines separating Tuscany from Emilia-Romagna region (Equi Terme and Gallicano), and Tuscany from Emilia-Romagna and Umbria regions (Vicchio and Caprese Michelangelo), started to register anomalous values in pH and CO2 partial pressure (PCO2). Cross-correlation analysis indicates an apparent relationship between the most important seismic

  4. Crowd-Sourcing Seismic Data for Education and Research Opportunities with the Quake-Catcher Network

    Science.gov (United States)

    Sumy, D. F.; DeGroot, R. M.; Benthien, M. L.; Cochran, E. S.; Taber, J. J.

    2016-12-01

    The Quake Catcher Network (QCN; quakecatcher.net) uses low cost micro-electro-mechanical system (MEMS) sensors hosted by volunteers to collect seismic data. Volunteers use accelerometers internal to laptop computers, phones, tablets or small (the size of a matchbox) MEMS sensors plugged into desktop computers using a USB connector to collect scientifically useful data. Data are collected and sent to a central server using the Berkeley Open Infrastructure for Network Computing (BOINC) distributed computing software. Since 2008, sensors installed in museums, schools, offices, and residences have collected thousands of earthquake records, including the 2010 M8.8 Maule, Chile, the 2010 M7.1 Darfield, New Zealand, and 2015 M7.8 Gorkha, Nepal earthquakes. In 2016, the QCN in the United States transitioned to the Incorporated Research Institutions for Seismology (IRIS) Consortium and the Southern California Earthquake Center (SCEC), which are facilities funded through the National Science Foundation and the United States Geological Survey, respectively. The transition has allowed for an influx of new ideas and new education related efforts, which include focused installations in several school districts in southern California, on Native American reservations in North Dakota, and in the most seismically active state in the contiguous U.S. - Oklahoma. We present and describe these recent educational opportunities, and highlight how QCN has engaged a wide sector of the public in scientific data collection, particularly through the QCN-EPIcenter Network and NASA Mars InSight teacher programs. QCN provides the public with information and insight into how seismic data are collected, and how researchers use these data to better understand and characterize seismic activity. Lastly, we describe how students use data recorded by QCN sensors installed in their classrooms to explore and investigate felt earthquakes, and look towards the bright future of the network.

  5. Contribution of the Surface and Down-Hole Seismic Networks to the Location of Earthquakes at the Soultz-sous-Forêts Geothermal Site (France)

    Science.gov (United States)

    Kinnaert, X.; Gaucher, E.; Kohl, T.; Achauer, U.

    2018-03-01

    Seismicity induced in geo-reservoirs can be a valuable observation to image fractured reservoirs, to characterize hydrological properties, or to mitigate seismic hazard. However, this requires accurate location of the seismicity, which is nowadays an important seismological task in reservoir engineering. The earthquake location (determination of the hypocentres) depends on the model used to represent the medium in which the seismic waves propagate and on the seismic monitoring network. In this work, location uncertainties and location inaccuracies are modeled to investigate the impact of several parameters on the determination of the hypocentres: the picking uncertainty, the numerical precision of picked arrival times, a velocity perturbation and the seismic network configuration. The method is applied to the geothermal site of Soultz-sous-Forêts, which is located in the Upper Rhine Graben (France) and which was subject to detailed scientific investigations. We focus on a massive water injection performed in the year 2000 to enhance the productivity of the well GPK2 in the granitic basement, at approximately 5 km depth, and which induced more than 7000 earthquakes recorded by down-hole and surface seismic networks. We compare the location errors obtained from the joint or the separate use of the down-hole and surface networks. Besides the quantification of location uncertainties caused by picking uncertainties, the impact of the numerical precision of the picked arrival times as provided in a reference catalogue is investigated. The velocity model is also modified to mimic possible effects of a massive water injection and to evaluate its impact on earthquake hypocentres. It is shown that the use of the down-hole network in addition to the surface network provides smaller location uncertainties but can also lead to larger inaccuracies. Hence, location uncertainties would not be well representative of the location errors and interpretation of the seismicity

  6. Seismicity and seismic monitoring in the Asse salt mine

    International Nuclear Information System (INIS)

    Flach, D.; Gommlich, G.; Hente, B.

    1987-01-01

    Seismicity analyses are made in order to assess the safety of candidate sites for ultimate disposal of hazardous wastes. The report in hand reviews the seismicity history of the Asse salt mine and presents recent results of a measuring campaign made in the area. The monitoring network installed at the site supplies data and information on the regional seismicity, on seismic amplitudes under ground and above ground, and on microseismic activities. (DG) [de

  7. The Lusi seismic experiment: An initial study to understand the effect of seismic activity to Lusi

    Energy Technology Data Exchange (ETDEWEB)

    Karyono, E-mail: karyonosu@gmail.com [Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta (Indonesia); OSLO University (Norway); Padjadjaran University (UNPAD), Bandung (Indonesia); Mazzini, Adriano; Sugiharto, Anton [OSLO University (Norway); Lupi, Matteo [ETH Zurich (Switzerland); Syafri, Ildrem [Padjadjaran University (UNPAD), Bandung (Indonesia); Masturyono,; Rudiyanto, Ariska; Pranata, Bayu; Muzli,; Widodo, Handi Sulistyo; Sudrajat, Ajat [Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta (Indonesia)

    2015-04-24

    The spectacular Lumpur Sidoarjo (Lusi) eruption started in northeast Java on the 29 of May 2006 following a M6.3 earthquake striking the island [1,2]. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system [3] and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. The Lusi seismic experiment is a project aims to begin a detailed study of seismicity around the Lusi area. In this initial phase we deploy 30 seismometers strategically distributed in the area around Lusi and along the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. The purpose of the initial monitoring is to conduct a preliminary seismic campaign aiming to identify the occurrence and the location of local seismic events in east Java particularly beneath Lusi.This network will locate small event that may not be captured by the existing BMKG network. It will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-AW region and spatial and temporal variations of vp/vs ratios. The goal of this study is to understand how the seismicity occurring along the Sunda subduction zone affects to the behavior of the Lusi eruption. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. In this study, we will extract Green’s functions from ambient seismic noise data in order to image the shallow subsurface structure beneath LUSI area. The waveform cross-correlation technique will be apply to all of recordings of ambient seismic noise at 30 seismographic stations around the LUSI area. We use the dispersive behaviour of the retrieved Rayleigh waves to infer velocity structures in the shallow subsurface.

  8. Recent developments in seismic seabed oil reservoir monitoring applications using fibre-optic sensing networks

    International Nuclear Information System (INIS)

    De Freitas, J M

    2011-01-01

    This review looks at recent developments in seismic seabed oil reservoir monitoring techniques using fibre-optic sensing networks. After a brief introduction covering the background and scope of the review, the following section focuses on state-of-the-art fibre-optic hydrophones and accelerometers used for seismic applications. Related metrology aspects of the sensor such as measurement of sensitivity, noise and cross-axis performance are addressed. The third section focuses on interrogation systems. Two main phase-based competing systems have emerged over the past two decades for seismic applications, with a third technique showing much promise; these have been compared in terms of general performance. (topical review)

  9. Installation of a digital, wireless, strong-motion network for monitoring seismic activity in a western Colorado coal mining region

    Energy Technology Data Exchange (ETDEWEB)

    Peter Swanson; Collin Stewart; Wendell Koontz [NIOSH, Spokane, WA (USA). Spokane Research Laboratory

    2007-01-15

    A seismic monitoring network has recently been installed in the North Fork Valley coal mining region of western Colorado as part of a NIOSH mine safety technology transfer project with two longwall coal mine operators. Data recorded with this network will be used to characterize mining related and natural seismic activity in the vicinity of the mines and examine potential hazards due to ground shaking near critical structures such as impoundment dams, reservoirs, and steep slopes. Ten triaxial strong-motion accelerometers have been installed on the surface to form the core of a network that covers approximately 250 square kilometers (100 sq. miles) of rugged canyon-mesa terrain. Spread-spectrum radio networks are used to telemeter continuous streams of seismic waveform data to a central location where they are converted to IP data streams and ported to the Internet for processing, archiving, and analysis. 4 refs.

  10. Automation of seismic network signal interpolation: an artificial intelligence approach

    International Nuclear Information System (INIS)

    Chiaruttini, C.; Roberto, V.

    1988-01-01

    After discussing the current status of the automation in signal interpretation from seismic networks, a new approach, based on artificial-intelligence tecniques, is proposed. The knowledge of the human expert analyst is examined, with emphasis on its objects, strategies and reasoning techniques. It is argued that knowledge-based systems (or expert systems) provide the most appropriate tools for designing an automatic system, modelled on the expert behaviour

  11. Third Quarter Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-09-01

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, fourteen local earthquakes were recorded during the third quarter of fiscal year 2008. The largest event recorded by the network during the third quarter (May 18, 2008 - magnitude 3.7 Mc) was located approximately 17 km east of Prosser at a depth of 20.5 km. With regard to the depth distribution, five earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), six earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and three earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, eight earthquakes occurred in swarm areas and six earthquakes were classified as random events. The largest event recorded by the network during the third quarter occurred on May 18 (magnitude 3.7 Mc) and was located approximately 17 km east of Prosser at a depth of 20.5 km. This earthquake was the highest magnitude event recorded in the 46-47 N. latitude / 119-120 W. longitude sector since 1975

  12. Propagation of Regional Seismic Phases in Western Europe

    Science.gov (United States)

    1991-03-08

    and Southeastern France recorded at short period stations of the LDG (Laboratoire de Detection Geophysique , France) and IGG (Istituto Geofisico di...here were provided by the L.D.G. (Laboratoire de Geophysique ). The french seismic network consists of 27 stations with the same features : the

  13. The Community Seismic Network: Enabling Observations Through Citizen Science Participation

    Science.gov (United States)

    Kohler, M. D.; Clayton, R. W.; Heaton, T. H.; Bunn, J.; Guy, R.; Massari, A.; Chandy, K. M.

    2017-12-01

    The Community Seismic Network is a dense accelerometer array deployed in the greater Los Angeles area and represents the future of densely instrumented urban cities where localized vibration measurements are collected continuously throughout the free-field and built environment. The hardware takes advantage of developments in the semiconductor industry in the form of inexpensive MEMS accelerometers that are each coupled with a single board computer. The data processing and archival architecture borrows from developments in cloud computing and network connectedness. The ability to deploy densely in the free field and in upper stories of mid/high-rise buildings is enabled by community hosts for sensor locations. To this end, CSN has partnered with the Los Angeles Unified School District (LAUSD), the NASA-Jet Propulsion Laboratory (JPL), and commercial and civic building owners to host sensors. At these sites, site amplification estimates from RMS noise measurements illustrate the lateral variation in amplification over length scales of 100 m or less, that correlate with gradients in the local geology such as sedimentary basins that abut crystalline rock foothills. This is complemented by high-resolution, shallow seismic velocity models obtained using an H/V method. In addition, noise statistics are used to determine the reliability of sites for ShakeMap and earthquake early warning data. The LAUSD and JPL deployments are examples of how situational awareness and centralized warning products such as ShakeMap and ShakeCast are enabled by citizen science participation. Several buildings have been instrumented with at least one triaxial accelerometer per floor, providing measurements for real-time structural health monitoring through local, customized displays. For real-time and post-event evaluation, the free-field and built environment CSN data and products illustrate the feasibility of order-of-magnitude higher spatial resolution mapping compared to what is currently

  14. Hanford quarterly seismic report - 97B seismicity on and near the Hanford Site, Pasco Basin, Washington, January 1, 1997--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.

    1997-05-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organizations works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 97.23% and for stations of the EWRN was 99.93%. For fiscal year (FY) 1997 second quarter (97B), the acquisition computer triggered two hundred and forth-eight times. Of these triggers three were local earthquakes: one in the pre-basalt sediments, and two in the crystalline basement. The geologic and tectonic environments are discussed in the report.

  15. Hanford quarterly seismic report - 97B seismicity on and near the Hanford Site, Pasco Basin, Washington, January 1, 1997 - March 31, 1997

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.

    1997-05-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organizations works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 97.23% and for stations of the EWRN was 99.93%. For fiscal year (FY) 1997 second quarter (97B), the acquisition computer triggered two hundred and forth-eight times. Of these triggers three were local earthquakes: one in the pre-basalt sediments, and two in the crystalline basement. The geologic and tectonic environments are discussed in the report

  16. Hanford annual second quarter seismic report, fiscal year 1998: Seismicity on and near the Hanford Site, Pasco, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1998-06-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (ENN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the second quarter of FY98 for stations in the HSN was 99.92%. The operational rate for the second quarter of FY98 for stations of the EWRN was 99.46%. For the second quarter of FY98, the acquisition computer triggered 159 times. Of these triggers 14 were local earthquakes: 7 (50%) in the Columbia River Basalt Group, 3 (21%) in the pre-basalt sediments, and 4 (29%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report. The most significant seismic event for the second quarter was on March 23, 1998 when a 1.9 Mc occurred near Eltopia, WA and was felt by local residents. Although this was a small event, it was felt at the surface and is an indication of the potential impact on Hanford of seismic events that are common to the Site.

  17. Detection of rainfall-induced landslides on regional seismic networks

    Science.gov (United States)

    Manconi, Andrea; Coviello, Velio; Gariano, Stefano Luigi; Picozzi, Matteo

    2017-04-01

    Seismic techniques are increasingly adopted to detect signals induced by mass movements and to quantitatively evaluate geo-hydrological hazards at different spatial and temporal scales. By analyzing landslide-induced seismicity, it is possible obtaining significant information on the source of the mass wasting, as well as on its dynamics. However, currently only few studies have performed a systematic back analysis on comprehensive catalogues of events to evaluate the performance of proposed algorithms. In this work, we analyze a catalogue of 1058 landslides induced by rainfall in Italy. Among these phenomena, there are 234 rock falls, 55 debris flows, 54 mud flows, and 715 unspecified shallow landslides. This is a subset of a larger catalogue collected by the Italian research institute for geo-hydrological protection (CNR IRPI) during the period 2000-2014 (Brunetti et al., 2015). For each record, the following information are available: the type of landslide; the geographical location of the landslide (coordinates, site, municipality, province, and 3 classes of geographic accuracy); the temporal information on the landslide occurrence (day, month, year, time, date, and 3 classes of temporal accuracy); the rainfall conditions (rainfall duration and cumulated event rainfall) that have resulted in the landslide. We consider here only rainfall-induced landslides for which exact date and time were known from chronicle information. The analysis of coeval seismic data acquired by regional seismic networks show clear signals in at least 3 stations for 64 events (6% of the total dataset). Among them, 20 are associated to local earthquakes and 2 to teleseisms; 10 are anomalous signals characterized by irregular and impulsive waveforms in both time and frequency domains; 33 signals are likely associated to the landslide occurrence, as they have a cigar-shaped waveform characterized by emerging onsets, duration of several tens of seconds, and low frequencies (1-10 Hz). For

  18. SKS splitting observed at Romanian broad-band seismic network

    Science.gov (United States)

    Ivan, Marian; Popa, Mihaela; Ghica, Daniela

    2008-12-01

    Shear-wave splitting results are presented for the broad-band stations of the Romanian seismic network. For stations BUC1 and CRAR (located in Moesian Platform), IAS (in East-European Platform), TIRR and CVD (in Central Dobrudja-Black Sea microplate), TIM and DRGR (in Dacia-Tisza plate, including Apuseni Mts.), BURAR, BZS and GZR (in, or very close to the Carpathian Arc), the fast directions ( φ) are around 135°. The mean delay values ( δt) of the slow wave are slightly greater for the stations placed in platform areas ( δt ~ 1.5 s) than for the stations situated in the (proximity) of Carpathians ( δt ~ 1.2 s). For the MLR station located in the South-Western part of Vrancea area, at the Carpathian Bend, the fast direction is 48°, similar to VOIR station (located in Southern Carpathians, 70 km West of MLR). At VRI and PLOR, located in the North-Eastern part of Vrancea, the fast axis is oriented approximately on North-South direction, with a possible dependence of the splitting parameters with back azimuth. At least for some stations, the splitting results are not consistent with vertical coherent lithospheric anisotropy.

  19. Hanford Quarter Seismic Report - 98C Seismicity On and Near the Hanford Site, Pasco Basin, Washington: April 1, 1998 Through June 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn, SP Reidel, AC Rohay

    1998-10-23

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. The staff also locates aud identifies sources of seismic activity and monitors changes in the hi~orical pattern of seismic activity at the Hanford Site. The data are. compiled archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of zin earthquake on the Hanford Site. The HSN and Ihe Eastern Washington Regional Network (EN/RN) consist-of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the third quarter of FY 1998 for stations in the HSN was 99.99%. The operational rate for the third quarter of FY 1998 for stations of the EWRN was 99.95%. For the third quarter of FY 1998, the acquisition computer triggered 133 times. Of these triggers 11 were local earthquakes: 5 (45Yo) in the Columbia River Basalt Group, 2(1 8%) in the pre-basalt sediments, and 4 (36%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report.

  20. Neural network approach to the prediction of seismic events based on low-frequency signal monitoring of the Kuril-Kamchatka and Japanese regions

    Directory of Open Access Journals (Sweden)

    Irina Popova

    2013-08-01

    Full Text Available Very-low-frequency/ low-frequency (VLF/LF sub-ionospheric radiowave monitoring has been widely used in recent years to analyze earthquake preparatory processes. The connection between earthquakes with M ≥5.5 and nighttime disturbances of signal amplitude and phase has been established. Thus, it is possible to use nighttime anomalies of VLF/LF signals as earthquake precursors. Here, we propose a method for estimation of the VLF/LF signal sensitivity to seismic processes using a neural network approach. We apply the error back-propagation technique based on a three-level perceptron to predict a seismic event. The back-propagation technique involves two main stages to solve the problem; namely, network training, and recognition (the prediction itself. To train a neural network, we first create a so-called ‘training set’. The ‘teacher’ specifies the correspondence between the chosen input and the output data. In the present case, a representative database includes both the LF data received over three years of monitoring at the station in Petropavlovsk-Kamchatsky (2005-2007, and the seismicity parameters of the Kuril-Kamchatka and Japanese regions. At the first stage, the neural network established the relationship between the characteristic features of the LF signal (the mean and dispersion of a phase and an amplitude at nighttime for a few days before a seismic event and the corresponding level of correlation with a seismic event, or the absence of a seismic event. For the second stage, the trained neural network was applied to predict seismic events from the LF data using twelve time intervals in 2004, 2005, 2006 and 2007. The results of the prediction are discussed.

  1. MyShake - Smartphone seismic network powered by citizen scientists

    Science.gov (United States)

    Kong, Q.; Allen, R. M.; Schreier, L.; Strauss, J. A.

    2017-12-01

    MyShake is a global smartphone seismic network that harnesses the power of crowdsourcing. It is driven by the citizen scientists that run MyShake on their personal smartphones. It has two components: an android application running on the smartphones to detect earthquake-like motion, and a network detection algorithm to aggregate results from multiple smartphones to confirm when an earthquake occurs. The MyShake application was released to the public on Feb 12th 2016. Within the first year, more than 250,000 people downloaded MyShake app around the world. There are more than 500 earthquakes recorded by the smartphones in this period, including events in Chile, Argentina, Mexico, Morocco, Greece, Nepal, New Zealand, Taiwan, Japan, and across North America. Currently, we are working on earthquake early warning with MyShake network and the shaking data provided by MyShake is a unique dataset that can be used for the research community.

  2. Linkages of fracture network geometry and hydro-mechanical properties to spatio-temporal variations of seismicity in Koyna-Warna Seismic Zone

    Science.gov (United States)

    Selles, A.; Mikhailov, V. O.; Arora, K.; Ponomarev, A.; Gopinadh, D.; Smirnov, V.; Srinu, Y.; Satyavani, N.; Chadha, R. K.; Davulluri, S.; Rao, N. P.

    2017-12-01

    Well logging data and core samples from the deep boreholes in the Koyna-Warna Seismic Zone (KWSZ) provided a glimpse of the 3-D fracture network responsible for triggered earthquakes in the region. The space-time pattern of earthquakes during the last five decades show strong linkage of favourably oriented fractures system deciphered from airborne LiDAR and borehole structural logging to the seismicity. We used SAR interferometry data on surface displacements to estimate activity of the inferred faults. The failure in rocks at depths is largely governed by overlying lithostatic and pore fluid pressure in the rock matrix which are subject to change in space and time. While lithostatic pressure tends to increase with depth pore pressure is prone to fluctuations due to any change in the hydrological regime. Based on the earthquake catalogue data, the seasonal variations in seismic activity associated with annual fluctuations in the reservoir water level were analyzed over the time span of the entire history of seismological observations in this region. The regularities in the time changes in the structure of seasonal variations are revealed. An increase in pore fluid pressure can result in rock fracture and oscillating pore fluid pressures due to a reservoir loading and unloading cycles can cause iterative and cumulative damage, ultimately resulting in brittle failure under relatively low effective mean stress conditions. These regularities were verified by laboratory physical modeling. Based on our observations of main trends of spatio-temporal variations in seismicity as well as the spatial distribution of fracture network a conceptual model is presented to explain the triggered earthquakes in the KWSZ. The work was supported under the joint Russian-Indian project of the Russian Science Foundation (RSF) and the Department of Science and Technology (DST) of India (RSF project no. 16-47-02003 and DST project INT/RUS/RSF/P-13).

  3. Hanford quarterly seismic report - 97C seismicity on and near the Hanford Site, Pasco Basin, Washington. Quarterly report, April 1, 1997--June 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1997-08-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 100% and for stations of the EWRN was 99.99%. For fiscal year (FY) 1997 third quarter (97C), the acquisition computer triggered 183. Of these triggers twenty one were local earthquakes: sixteen in the Columbus River Basalt Group, one in the pre-basalt sediments, and four in the crystalline basement. The geologic and tectonic environments are discussed in the report.

  4. Exploiting IoT Technologies and Open Source Components for Smart Seismic Network Instrumentation

    Science.gov (United States)

    Germenis, N. G.; Koulamas, C. A.; Foundas, P. N.

    2017-12-01

    The data collection infrastructure of any seismic network poses a number of requirements and trade-offs related to accuracy, reliability, power autonomy and installation & operational costs. Having the right hardware design at the edge of this infrastructure, embedded software running inside the instruments is the heart of pre-processing and communication services implementation and their integration with the central storage and processing facilities of the seismic network. This work demonstrates the feasibility and benefits of exploiting software components from heterogeneous sources in order to realize a smart seismic data logger, achieving higher reliability, faster integration and less development and testing costs of critical functionality that is in turn responsible for the cost and power efficient operation of the device. The instrument's software builds on top of widely used open source components around the Linux kernel with real-time extensions, the core Debian Linux distribution, the earthworm and seiscomp tooling frameworks, as well as components from the Internet of Things (IoT) world, such as the CoAP and MQTT protocols for the signaling planes, besides the widely used de-facto standards of the application domain at the data plane, such as the SeedLink protocol. By using an innovative integration of features based on lower level GPL components of the seiscomp suite with higher level processing earthworm components, coupled with IoT protocol extensions to the latter, the instrument can implement smart functionality such as network controlled, event triggered data transmission in parallel with edge archiving and on demand, short term historical data retrieval.

  5. RAPID DETERMINATION OF FOCAL DEPTH USING A GLOBAL NETWORK OF SMALL-APERTURE SEISMIC ARRAYS

    Science.gov (United States)

    Seats, K.; Koper, K.; Benz, H.

    2009-12-01

    The National Earthquake Information Center (NEIC) of the United States Geological Survey (USGS) operates 24 hours a day, 365 days a year with the mission of locating and characterizing seismic events around the world. A key component of this task is quickly determining the focal depth of each seismic event, which has a first-order effect on estimates of ground shaking used in the impact assessment applications of emergency response activities. Current methods of depth estimation used at the NEIC include arrival time inversion both with and without depth phases, a Bayesian depth constraint based on historical seismicity (1973-present), and moment tensor inversion primarily using P- and S-wave waveforms. In this study, we explore the possibility of automated modeling of waveforms from vertical-component arrays of the International Monitoring System (IMS) to improve rapid depth estimation at NEIC. Because these arrays are small-aperture, they are effective at increasing signal to noise ratios for frequencies of 1 Hz and higher. Currently, NEIC receives continuous real-time data from 23 IMS arrays. Following work done by previous researchers, we developed a technique that acts as an array of arrays. For a given epicentral location we calculate fourth root beams for each IMS array in the distance range of 30 to 95 degrees at the expected slowness vector of the first arrival. Because the IMS arrays are small-aperture, these beams highlight energy that has slowness similar to the first arrival, such as depth phases. The beams are rectified by taking the envelope and then automatically aligned on the largest peak within 5 seconds of the expected arrival time. The station beams are then combined into network beams assuming a range of depths varying from 10 km to 700 km in increments of 1 km. The network beams are computed assuming both pP and sP propagation, and a measure of beam power is output as a function of depth for both propagation models, as well as their sum. We

  6. Automated classification of seismic sources in a large database: a comparison of Random Forests and Deep Neural Networks.

    Science.gov (United States)

    Hibert, Clement; Stumpf, André; Provost, Floriane; Malet, Jean-Philippe

    2017-04-01

    In the past decades, the increasing quality of seismic sensors and capability to transfer remotely large quantity of data led to a fast densification of local, regional and global seismic networks for near real-time monitoring of crustal and surface processes. This technological advance permits the use of seismology to document geological and natural/anthropogenic processes (volcanoes, ice-calving, landslides, snow and rock avalanches, geothermal fields), but also led to an ever-growing quantity of seismic data. This wealth of seismic data makes the construction of complete seismicity catalogs, which include earthquakes but also other sources of seismic waves, more challenging and very time-consuming as this critical pre-processing stage is classically done by human operators and because hundreds of thousands of seismic signals have to be processed. To overcome this issue, the development of automatic methods for the processing of continuous seismic data appears to be a necessity. The classification algorithm should satisfy the need of a method that is robust, precise and versatile enough to be deployed to monitor the seismicity in very different contexts. In this study, we evaluate the ability of machine learning algorithms for the analysis of seismic sources at the Piton de la Fournaise volcano being Random Forest and Deep Neural Network classifiers. We gather a catalog of more than 20,000 events, belonging to 8 classes of seismic sources. We define 60 attributes, based on the waveform, the frequency content and the polarization of the seismic waves, to parameterize the seismic signals recorded. We show that both algorithms provide similar positive classification rates, with values exceeding 90% of the events. When trained with a sufficient number of events, the rate of positive identification can reach 99%. These very high rates of positive identification open the perspective of an operational implementation of these algorithms for near-real time monitoring of

  7. The Devil in the Dark: A Fully Self-Consistent Seismic Model for Venus

    Science.gov (United States)

    Unterborn, C. T.; Schmerr, N. C.; Irving, J. C. E.

    2017-12-01

    The bulk composition and structure of Venus is unknown despite accounting for 40% of the mass of all the terrestrial planets in our Solar System. As we expand the scope of planetary science to include those planets around other stars, the lack of measurements of basic planetary properties such as moment of inertia, core-size and thermal profile for Venus hinders our ability to compare the potential uniqueness of the Earth and our Solar System to other planetary systems. Here we present fully self-consistent, whole-planet density and seismic velocity profiles calculated using the ExoPlex and BurnMan software packages for various potential Venusian compositions. Using these models, we explore the seismological implications of the different thermal and compositional initial conditions, taking into account phase transitions due to changes in pressure, temperature as well as composition. Using mass-radius constraints, we examine both the centre frequencies of normal mode oscillations and the waveforms and travel times of body waves. Seismic phases which interact with the core, phase transitions in the mantle, and shallower parts of Venus are considered. We also consider the detectability and transmission of these seismic waves from within the dense atmosphere of Venus. Our work provides coupled compositional-seismological reference models for the terrestrial planet in our Solar System of which we know the least. Furthermore, these results point to the potential wealth of fundamental scientific insights into Venus and Earth, as well as exoplanets, which could be gained by including a seismometer on future planetary exploration missions to Venus, the devil in the dark.

  8. Epistemic uncertainty in California-wide synthetic seismicity simulations

    Science.gov (United States)

    Pollitz, Fred F.

    2011-01-01

    The generation of seismicity catalogs on synthetic fault networks holds the promise of providing key inputs into probabilistic seismic-hazard analysis, for example, the coefficient of variation, mean recurrence time as a function of magnitude, the probability of fault-to-fault ruptures, and conditional probabilities for foreshock–mainshock triggering. I employ a seismicity simulator that includes the following ingredients: static stress transfer, viscoelastic relaxation of the lower crust and mantle, and vertical stratification of elastic and viscoelastic material properties. A cascade mechanism combined with a simple Coulomb failure criterion is used to determine the initiation, propagation, and termination of synthetic ruptures. It is employed on a 3D fault network provided by Steve Ward (unpublished data, 2009) for the Southern California Earthquake Center (SCEC) Earthquake Simulators Group. This all-California fault network, initially consisting of 8000 patches, each of ∼12 square kilometers in size, has been rediscretized into Graphic patches, each of ∼1 square kilometer in size, in order to simulate the evolution of California seismicity and crustal stress at magnitude M∼5–8. Resulting synthetic seismicity catalogs spanning 30,000 yr and about one-half million events are evaluated with magnitude-frequency and magnitude-area statistics. For a priori choices of fault-slip rates and mean stress drops, I explore the sensitivity of various constructs on input parameters, particularly mantle viscosity. Slip maps obtained for the southern San Andreas fault show that the ability of segment boundaries to inhibit slip across the boundaries (e.g., to prevent multisegment ruptures) is systematically affected by mantle viscosity.

  9. Georgia-Armenia Transboarder seismicity studies

    Science.gov (United States)

    Godoladze, T.; Tvaradze, N.; Javakishvili, Z.; Elashvili, M.; Durgaryan, R.; Arakelyan, A.; Gevorgyan, M.

    2012-12-01

    In the presented study we performed Comprehensive seismic analyses for the Armenian-Georgian transboarder active seismic fault starting on Armenian territory, cutting the state boarder and having possibly northern termination on Adjara-Triealeti frontal structure in Georgia. In the scope of International projects: ISTC A-1418 "Open network of scientific Centers for mitigation risk of natural hazards in the Southern Caucasus and Central Asia" and NATO SfP- 983284 Project "Caucasus Seismic Emergency Response" in Akhalkalaki (Georgia) seismic center, Regional Summer school trainings and intensive filed investigations were conducted. Main goal was multidisciplinary study of the Javakheti fault structure and better understanding seismicity of the area. Young scientists from Turkey, Armenia, Azerbaijan and Georgia were participated in the deployment of temporal seismic network in order to monitor seisimity on the Javakheti highland and particularly delineate fault scarf and identify active seismic structures. In the scope of international collaboration the common seismic database has been created in the southern Caucasus and collected data from the field works is available now online. Javakheti highland, which is located in the central part of the Caucasus, belongs to the structure of the lesser Caucasus and represents a history of neotectonic volcanism existed in the area. Jasvakheti highland is seismicalu active region devastating from several severe earthquakes(1088, 1283, 1899…). Hypocenters located during analogue network were highly scattered and did not describe real pattern of seismicity of the highland. We relocated hypocenters of the region and improved local velocity model. The hypocenters derived from recently deployed local seismic network in the Javakheti highland, clearly identified seismically active structures. Fault plane solutions of analogue data of the Soviet times have been carefully analyzed and examined. Moment tensor inversion were preformed

  10. First Quarter Hanford Seismic Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    1999-05-26

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. They also locate and identify sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consists of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the first quarter of FY99 for stations in the HSN was 99.8%. There were 121 triggers during the first quarter of fiscal year 1999. Fourteen triggers were local earthquakes; seven (50%) were in the Columbia River Basalt Group, no earthquakes occurred in the pre-basalt sediments, and seven (50%) were in the crystalline basement. One earthquake (7%) occurred near or along the Horn Rapids anticline, seven earthquakes (50%) occurred in a known swarm area, and six earthquakes (43%) were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometer during the first quarter of FY99.

  11. Seismic Observations in the Taipei Metropolitan Area Using the Downhole Network

    Directory of Open Access Journals (Sweden)

    Win-Gee Huang

    2010-01-01

    Full Text Available Underlain by soft soils, the Taipei Metropolitan Area (TMA experienced major damage due to ground-motion amplification during the Hualien earthquake of 1986, the Chi-Chi earthquake of 1999, the Hualien earthquake of 2002 and the Taitung earthquake of 2003. To study how a local site can substantially change the characteristics of seismic waves as they pass through soft deposits below the free surface, two complementary downhole seismic arrays have been operated in the TMA, since 1991 and 2008. The accelerometer downhole array is composed of eight boreholes at depths in excess of 300 meters. The downhole array velocity sensor collocated with accelerometer composed of four boreholes at depths up to 90 meters. The integrated seismic network monitors potential earthquakes originating from faults in and around the TMA and provides wide-dynamic range measurement of data ranging in amplitude from seismic background noise levels to damage levels as a result of shaking. The data sets can be used to address on the response of soft-soil deposits to ground motions. One of the major considerations is the nonlinear response of soft soil deposits at different levels of excitation. The collocated acceloerometer and velocity sensors at boreholes give the necessary data for studies of non-linearity to be acquired. Such measurements in anticipation of future large, damaging earthquakes will be of special importance for the mitigation of earthquake losses.

  12. Southern California Seismic Network: New Design and Implementation of Redundant and Reliable Real-time Data Acquisition Systems

    Science.gov (United States)

    Saleh, T.; Rico, H.; Solanki, K.; Hauksson, E.; Friberg, P.

    2005-12-01

    The Southern California Seismic Network (SCSN) handles more than 2500 high-data rate channels from more than 380 seismic stations distributed across southern California. These data are imported real-time from dataloggers, earthworm hubs, and partner networks. The SCSN also exports data to eight different partner networks. Both the imported and exported data are critical for emergency response and scientific research. Previous data acquisition systems were complex and difficult to operate, because they grew in an ad hoc fashion to meet the increasing needs for distributing real-time waveform data. To maximize reliability and redundancy, we apply best practices methods from computer science for implementing the software and hardware configurations for import, export, and acquisition of real-time seismic data. Our approach makes use of failover software designs, methods for dividing labor diligently amongst the network nodes, and state of the art networking redundancy technologies. To facilitate maintenance and daily operations we seek to provide some separation between major functions such as data import, export, acquisition, archiving, real-time processing, and alarming. As an example, we make waveform import and export functions independent by operating them on separate servers. Similarly, two independent servers provide waveform export, allowing data recipients to implement their own redundancy. The data import is handled differently by using one primary server and a live backup server. These data import servers, run fail-over software that allows automatic role switching in case of failure from primary to shadow. Similar to the classic earthworm design, all the acquired waveform data are broadcast onto a private network, which allows multiple machines to acquire and process the data. As we separate data import and export away from acquisition, we are also working on new approaches to separate real-time processing and rapid reliable archiving of real-time data

  13. Performance of an island seismic station for recording T-phases

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, J. A., LLNL

    1998-05-01

    As part of the International Monitoring System (IMS) a worldwide hydroacoustic network consisting of 6 hydrophone and 5 island seismic stations has been planned which will monitor for underwater or low altitude atmospheric explosions. Data from this network is to be integrated with other IMS networks monitoring the Comprehensive Nuclear Test-Ban Treaty. The seismic (T-phase) stations are significantly less sensitive than hydrophones to ocean borne acoustic waves. T-phase signal strength at seismic stations depends on the amplitude of the signal in the water column, the hydroacoustic-seismic conversion efficiency, and loss on the seismic portion of the path through the island. In order to understand how these factors influence the performance of T-phase stations seismic and hydroacoustic data are examined from instruments currently deployed on or around Ascension Island in the South Atlantic Ocean. T-phase recordings for the last 3 years have been collected from the GSN seismic station ASCN on Ascension Island. Surrounding the island are 5 hydrophones which are part of the U.S. Air Force Missile Impact Locating System (MILS). Data from this system have been obtained for some of the events observed at ASCN. Four of the hydrophones are located within 30 km of the coast while the fifth instrument is 100 km to the south. Amplitude spectral estimates of the signal-to-noise levels (SNL) are computed and generally peak between 3 and 8 Hz for both the seismometer and hydrophone data. The seismic SNL generally decays to 1 between 10 and 15 Hz while the hydrophone SNL is still large well above 20 Hz. The ratios of the hydrophone-to-seismometer SNL, at their peak in energy, range between 10 and 100 (20-40 dB) unless a hydrophone is partially blocked by the Ascension Island landmass.

  14. Development of a Real-Time GPS/Seismic Displacement Meter: Seismic Component and Communications

    Science.gov (United States)

    Vernon, F.; Bock, Y.

    2002-12-01

    In two abstracts, we report on an ongoing effort to develop an Integrated Real-Time GPS/Seismic System for Orange and Western Riverside Counties, California, spanning three major strike-slip faults in southern California (San Andreas, San Jacinto, and Elsinore) and significant populations and civilian infrastructure. The system relying on existing GPS and seismic networks will collect and analyze GPS and seismic data for the purpose of estimating and disseminating real-time positions and total ground displacements (dynamic, as well as static) covering all phases of the seismic cycle, from fractions of seconds to years. Besides its intrinsic scientific use as a real-time displacement meter (transducer), the GPS/Seismic System will be a powerful tool for local and state decision makers for risk mitigation, disaster management, and structural monitoring (dams, bridges, and buildings). Furthermore, the GPS/Seismic System will become an integral part of California's spatial referencing and positioning infrastructure, which is complicated by tectonic motion, seismic displacements, and land subsidence. This development is taking place under the umbrella of the California Spatial Reference Center, in partnership with local (The Counties, Riverside County Flood and Water Conservation District, Southern California Metropolitan Water District), state (Caltrans), and Federal agencies (NGS, NASA, USGS), the geophysics community (SCEC2/SCIGN), and the private sector (RBF Consulting). The project is leveraging considerable funding, resources, and research and development from SCIGN, CSRC and two NSF-funded IT projects at UCSD and SDSU: RoadNet (Real-Time Observatories, Applications and Data Management Network) and the High Performance Wireless Research and Education Network (HPWREN). These two projects are funded to develop both the wireless networks and the integrated, seamless, and transparent information management system that will deliver seismic, geodetic, oceanographic

  15. An Experimental Seismic Data and Parameter Exchange System for Interim NEAMTWS

    Science.gov (United States)

    Hanka, W.; Hoffmann, T.; Weber, B.; Heinloo, A.; Hoffmann, M.; Müller-Wrana, T.; Saul, J.

    2009-04-01

    In 2008 GFZ Potsdam has started to operate its global earthquake monitoring system as an experimental seismic background data centre for the interim NEAMTWS (NE Atlantic and Mediterranean Tsunami Warning System). The SeisComP3 (SC3) software, developed within the GITEWS (German Indian Ocean Tsunami Early Warning System) project was extended to test the export and import of individual processing results within a cluster of SC3 systems. The initiated NEAMTWS SC3 cluster consists presently of the 24/7 seismic services at IMP, IGN, LDG/EMSC and KOERI, whereas INGV and NOA are still pending. The GFZ virtual real-time seismic network (GEOFON Extended Virtual Network - GEVN) was substantially extended by many stations from Western European countries optimizing the station distribution for NEAMTWS purposes. To amend the public seismic network (VEBSN - Virtual European Broadband Seismic Network) some attached centres provided additional private stations for NEAMTWS usage. In parallel to the data collection by Internet the GFZ VSAT hub for the secured data collection of the EuroMED GEOFON and NEAMTWS backbone network stations became operational and the first data links were established. In 2008 the experimental system could already prove its performance since a number of relevant earthquakes have happened in NEAMTWS area. The results are very promising in terms of speed as the automatic alerts (reliable solutions based on a minimum of 25 stations and disseminated by emails and SMS) were issued between 2 1/2 and 4 minutes for Greece and 5 minutes for Iceland. They are also promising in terms of accuracy since epicenter coordinates, depth and magnitude estimates were sufficiently accurate from the very beginning, usually don't differ substantially from the final solutions and provide a good starting point for the operations of the interim NEAMTWS. However, although an automatic seismic system is a good first step, 24/7 manned RTWCs are mandatory for regular manual verification

  16. Annual Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-12-29

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. During fiscal year 2008, the Hanford Seismic Network recorded 1431 triggers on the seismometer system, which included 112 seismic events in the southeast Washington area and an additional 422 regional and teleseismic events. There were 74 events determined to be local earthquakes relevant to the Hanford Site. The highest-magnitude event (3.7 Mc) occurred on May 18, 2008, and was located approximately 17 km east of Prosser at a depth of 20.5 km. With regard to the depth distribution, 13 earthquakes were located at shallow depths (less than 4 km, most likely in the Columbia River basalts), 45 earthquakes were located at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and 16 earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, 54 earthquakes were located in swarm areas and 20 earthquakes were classified as random events. The May 18 earthquake was the highest magnitude event recorded since 1975 in the vicinity of the Hanford Site (between 46 degrees and 47 degrees north latitude and

  17. Extending Resolution of Fault Slip With Geodetic Networks Through Optimal Network Design

    Science.gov (United States)

    Sathiakumar, Sharadha; Barbot, Sylvain Denis; Agram, Piyush

    2017-12-01

    Geodetic networks consisting of high precision and high rate Global Navigation Satellite Systems (GNSS) stations continuously monitor seismically active regions of the world. These networks measure surface displacements and the amount of geodetic strain accumulated in the region and give insight into the seismic potential. SuGar (Sumatra GPS Array) in Sumatra, GEONET (GNSS Earth Observation Network System) in Japan, and PBO (Plate Boundary Observatory) in California are some examples of established networks around the world that are constantly expanding with the addition of new stations to improve the quality of measurements. However, installing new stations to existing networks is tedious and expensive. Therefore, it is important to choose suitable locations for new stations to increase the precision obtained in measuring the geophysical parameters of interest. Here we describe a methodology to design optimal geodetic networks that augment the existing system and use it to investigate seismo-tectonics at convergent and transform boundaries considering land-based and seafloor geodesy. The proposed network design optimization would be pivotal to better understand seismic and tsunami hazards around the world. Land-based and seafloor networks can monitor fault slip around subduction zones with significant resolution, but transform faults are more challenging to monitor due to their near-vertical geometry.

  18. Seismic Noise Analysis and Reduction through Utilization of Collocated Seismic and Atmospheric Sensors at the GRO Chile Seismic Network

    Science.gov (United States)

    Farrell, M. E.; Russo, R. M.

    2013-12-01

    The installation of Earthscope Transportable Array-style geophysical observatories in Chile expands open data seismic recording capabilities in the southern hemisphere by nearly 30%, and has nearly tripled the number of seismic stations providing freely-available data in southern South America. Through the use of collocated seismic and atmospheric sensors at these stations we are able to analyze how local atmospheric conditions generate seismic noise, which can degrade data in seismic frequency bands at stations in the ';roaring forties' (S latitudes). Seismic vaults that are climate-controlled and insulated from the local environment are now employed throughout the world in an attempt to isolate seismometers from as many noise sources as possible. However, this is an expensive solution that is neither practical nor possible for all seismic deployments; and also, the increasing number and scope of temporary seismic deployments has resulted in the collection and archiving of terabytes of seismic data that is affected to some degree by natural seismic noise sources such as wind and atmospheric pressure changes. Changing air pressure can result in a depression and subsequent rebound of Earth's surface - which generates low frequency noise in seismic frequency bands - and even moderate winds can apply enough force to ground-coupled structures or to the surface above the seismometers themselves, resulting in significant noise. The 10 stations of the permanent Geophysical Reporting Observatories (GRO Chile), jointly installed during 2011-12 by IRIS and the Chilean Servicio Sismológico, include instrumentation in addition to the standard three seismic components. These stations, spaced approximately 300 km apart along the length of the country, continuously record a variety of atmospheric data including infrasound, air pressure, wind speed, and wind direction. The collocated seismic and atmospheric sensors at each station allow us to analyze both datasets together, to

  19. Structural covariance networks across healthy young adults and their consistency.

    Science.gov (United States)

    Guo, Xiaojuan; Wang, Yan; Guo, Taomei; Chen, Kewei; Zhang, Jiacai; Li, Ke; Jin, Zhen; Yao, Li

    2015-08-01

    To investigate structural covariance networks (SCNs) as measured by regional gray matter volumes with structural magnetic resonance imaging (MRI) from healthy young adults, and to examine their consistency and stability. Two independent cohorts were included in this study: Group 1 (82 healthy subjects aged 18-28 years) and Group 2 (109 healthy subjects aged 20-28 years). Structural MRI data were acquired at 3.0T and 1.5T using a magnetization prepared rapid-acquisition gradient echo sequence for these two groups, respectively. We applied independent component analysis (ICA) to construct SCNs and further applied the spatial overlap ratio and correlation coefficient to evaluate the spatial consistency of the SCNs between these two datasets. Seven and six independent components were identified for Group 1 and Group 2, respectively. Moreover, six SCNs including the posterior default mode network, the visual and auditory networks consistently existed across the two datasets. The overlap ratios and correlation coefficients of the visual network reached the maximums of 72% and 0.71. This study demonstrates the existence of consistent SCNs corresponding to general functional networks. These structural covariance findings may provide insight into the underlying organizational principles of brain anatomy. © 2014 Wiley Periodicals, Inc.

  20. RMT focal plane sensitivity to seismic network geometry and faulting style

    Science.gov (United States)

    Johnson, Kendra L.; Hayes, Gavin; Herrmann, Robert B.; Benz, Harley M.; McNamara, Daniel E.; Bergman, Eric A.

    2016-01-01

    Modern tectonic studies often use regional moment tensors (RMTs) to interpret the seismotectonic framework of an earthquake or earthquake sequence; however, despite extensive use, little existing work addresses RMT parameter uncertainty. Here, we quantify how network geometry and faulting style affect RMT sensitivity. We examine how data-model fits change with fault plane geometry (strike and dip) for varying station configurations. We calculate the relative data fit for incrementally varying geometries about a best-fitting solution, applying our workflow to real and synthetic seismograms for both real and hypothetical station distributions and earthquakes. Initially, we conduct purely observational tests, computing RMTs from synthetic seismograms for hypothetical earthquakes and a series of well-behaved network geometries. We then incorporate real data and station distributions from the International Maule Aftershock Deployment (IMAD), which recorded aftershocks of the 2010 MW 8.8 Maule earthquake, and a set of regional stations capturing the ongoing earthquake sequence in Oklahoma and southern Kansas. We consider RMTs computed under three scenarios: (1) real seismic records selected for high data quality; (2) synthetic seismic records with noise computed for the observed source-station pairings and (3) synthetic seismic records with noise computed for all possible station-source pairings. To assess RMT sensitivity for each test, we observe the ‘fit falloff’, which portrays how relative fit changes when strike or dip varies incrementally; we then derive the ranges of acceptable strikes and dips by identifying the span of solutions with relative fits larger than 90 per cent of the best fit. For the azimuthally incomplete IMAD network, Scenario 3 best constrains fault geometry, with average ranges of 45° and 31° for strike and dip, respectively. In Oklahoma, Scenario 3 best constrains fault dip with an average range of 46°; however, strike is best constrained

  1. First Quarter Hanford Seismic Report for Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, Donald C.; Reidel, Stephen P.; Rohay, Alan C.; Valenta, Michelle M.

    2001-02-27

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the HSN, there were 477 triggers during the first quarter of fiscal year (FY) 2001 on the data acquisition system. Of these triggers, 176 were earthquakes. Forty-five earthquakes were located in the HSN area; 1 earthquake occurred in the Columbia River Basalt Group, 43 were earthquakes in the pre-basalt sediments, and 1 was earthquakes in the crystalline basement. Geographically, 44 earthquakes occurred in swarm areas, 1 earthquake was on a major structure, and no earthquakes were classified as random occurrences. The Horse Heaven Hills earthquake swarm area recorded all but one event during the first quarter of FY 2001. The peak of the activity occurred over December 12th, 13th, and 14th when 35 events occurred. No earthquakes triggered the Hanford Strong Motion Accelerometers during the first quarter of FY 2001.

  2. Seismic Hazard Analysis on a Complex, Interconnected Fault Network

    Science.gov (United States)

    Page, M. T.; Field, E. H.; Milner, K. R.

    2017-12-01

    In California, seismic hazard models have evolved from simple, segmented prescriptive models to much more complex representations of multi-fault and multi-segment earthquakes on an interconnected fault network. During the development of the 3rd Uniform California Earthquake Rupture Forecast (UCERF3), the prevalence of multi-fault ruptures in the modeling was controversial. Yet recent earthquakes, for example, the Kaikora earthquake - as well as new research on the potential of multi-fault ruptures (e.g., Nissen et al., 2016; Sahakian et al. 2017) - have validated this approach. For large crustal earthquakes, multi-fault ruptures may be the norm rather than the exception. As datasets improve and we can view the rupture process at a finer scale, the interconnected, fractal nature of faults is revealed even by individual earthquakes. What is the proper way to model earthquakes on a fractal fault network? We show multiple lines of evidence that connectivity even in modern models such as UCERF3 may be underestimated, although clustering in UCERF3 mitigates some modeling simplifications. We need a methodology that can be applied equally well where the fault network is well-mapped and where it is not - an extendable methodology that allows us to "fill in" gaps in the fault network and in our knowledge.

  3. Multi-parameter observations in the Ibero-Moghrebian region: the Western Mediterranean seismic network (WM) and ROA GPS geodynamic network

    Science.gov (United States)

    Pazos, Antonio; Martín Davila, José; Buforn, Elisa; Gárate Pasquín, Jorge; Catalán Morollón, Manuel; Hanka, Winfried; Udías, Agustín.; Benzzeghoud, Mourad; Harnafi, Mimoun

    2010-05-01

    The plate boundary between Eurasia and Africa plates crosses the called "Ibero-Maghrebian" region from the San Vicente Cape (SW Portugal) to Tunisia including the South of Iberia, Alboran Sea, and northern Morocco and Algeria. In this area, the convergence, with a low rate, is accommodated over a wide and diffuse deformation zone, characterized by a significant and widespread moderate seismic activity [Buforn et al., 1995], and the occurrence of large earthquakes is separated by long time intervals. Since more than hundred years ago San Fernando Naval Observatory (ROA), in collaboration with other Institutes, has deployed different geophysical and geodetic equipment in the Southern Spain - North-western Africa area in order to study this broad deformation zone. Currently a Broad Band seismic net (Western Mediterranean, WM net) is deployed, in collaboration with other institutions, around the Gulf of Cádiz and the Alboran sea, with stations in the South of Iberia and in North Africa (at Spanish places and Morocco), together with the seismic stations a permanent geodetic GPS net is co-installed at the same sites. Also, other geophysical instruments have been installed: a Satellite Laser Ranging (SLR) station at San Fernando Observatory Headquarter, a Geomagnetic Observatory in Cádiz bay area and some meteorological stations. These networks have been recently improved with the deployment of a new submarine and on-land geophysical observatory in the Alboran island (ALBO Observatory), where a permanent GPS, a meteorological station were installed on land and a permanent submarine observatory in 50 meters depth was also deploy in last October (with a broad band seismic sensor, a 3 C accelerometer and a DPG). This work shows the present status and the future plans of these networks and some results.

  4. A Dense Small-Scale Seismic Network in the Ngorongoro Conservation Area (Northern Tanzania)

    Science.gov (United States)

    Parisi, L.; Lombardo, L.; Rodriguez-Mustafa, M.; Mai, P. M.

    2017-12-01

    A temporary deployment consisting of sixteen broadband seismic stations is conducted for the first time in the Ngorongoro Conservation Area (NCA, Northern Tanzania), located at the boundary between the Tanzanian Craton and East African Rift. A deep knowledge of the faulting systems and tectonics of the area is needed to better understand the contribution of the synsedimentary faults to the deposition of the Olduvai and surrounding basins affecting the landscapes of the Homo Habilis first settlements. Complex fault systems have been mapped in the field but their connection, especially at depth, is not well known. A first batch of ten instruments was installed in June 2016. In June 2017 two stations were dismissed and a second batch of six stations was installed in new locations. The current network of fourteen stations will record until May 2018. Stations are equipped with Nanometrics Trillium Compact Posthole 120 s sensor and Centaur digitiser recording continuously at 200 Hz. The whole network covers 1400 km2 and station interspace ranges from 8 to 15 km. We analyse probabilistic power spectra densities of the seismic noise to obtain insights of its origin and test the performances of the stations. Although factories do not exist in the area and most of the stations are far from roads, ambient noise in the range 0.01 - 1 s is relatively high (between -120 dB and -100dB at 0.1 s) probably because of the abundance of livestock living in the NCA. Ambient noise in the period range 1 - 10 s (secondary microseisms) decreases from east to west. Although the main source of the microseisms is located in the Indian Ocean (east of the study area), a contribution from the low period tremors coming from the nearby active volcano Ol Doinyo Lengai (north-east of the study area) is expected. Whereas the longer period noise (10 - 100 s) is very low in the vertical component seismograms, it is higher than the high noise model in the horizontal components for most of the stations

  5. Romanian Data Center: A modern way for seismic monitoring

    Science.gov (United States)

    Neagoe, Cristian; Marius Manea, Liviu; Ionescu, Constantin

    2014-05-01

    The main seismic survey of Romania is performed by the National Institute for Earth Physics (NIEP) which operates a real-time digital seismic network. The NIEP real-time network currently consists of 102 stations and two seismic arrays equipped with different high quality digitizers (Kinemetrics K2, Quanterra Q330, Quanterra Q330HR, PS6-26, Basalt), broadband and short period seismometers (CMG3ESP, CMG40T, KS2000, KS54000, KS2000, CMG3T,STS2, SH-1, S13, Mark l4c, Ranger, gs21, Mark l22) and acceleration sensors (Episensor Kinemetrics). The data are transmitted at the National Data Center (NDC) and Eforie Nord (EFOR) Seismic Observatory. EFOR is the back-up for the NDC and also a monitoring center for the Black Sea tsunami events. NIEP is a data acquisition node for the seismic network of Moldova (FDSN code MD) composed of five seismic stations. NIEP has installed in the northern part of Bulgaria eight seismic stations equipped with broadband sensors and Episensors and nine accelerometers (Episensors) installed in nine districts along the Danube River. All the data are acquired at NIEP for Early Warning System and for primary estimation of the earthquake parameters. The real-time acquisition (RT) and data exchange is done by Antelope software and Seedlink (from Seiscomp3). The real-time data communication is ensured by different types of transmission: GPRS, satellite, radio, Internet and a dedicated line provided by a governmental network. For data processing and analysis at the two data centers Antelope 5.2 TM is being used running on 3 workstations: one from a CentOS platform and two on MacOS. Also a Seiscomp3 server stands as back-up for Antelope 5.2 Both acquisition and analysis of seismic data systems produce information about local and global parameters of earthquakes. In addition, Antelope is used for manual processing (event association, calculation of magnitude, creating a database, sending seismic bulletins, calculation of PGA and PGV, etc.), generating

  6. Sources of high frequency seismic noise: insights from a dense network of ~250 stations in northern Alsace (France)

    Science.gov (United States)

    Vergne, Jerome; Blachet, Antoine; Lehujeur, Maximilien

    2015-04-01

    Monitoring local or regional seismic activity requires stations having a low level of background seismic noise at frequencies higher than few tenths of Hertz. Network operators are well aware that the seismic quality of a site depends on several aspects, among them its geological setting and the proximity of roads, railways, industries or trees. Often, the impact of each noise source is only qualitatively known which precludes estimating the quality of potential future sites before they are tested or installed. Here, we want to take advantage of a very dense temporary network deployed in Northern Alsace (France) to assess the effect of various kinds of potential sources on the level of seismic noise observed in the frequency range 0.2-50 Hz. In September 2014, more than 250 seismic stations (FairfieldNodal@ Zland nodes with 10Hz vertical geophone) have been installed every 1.5 km over a ~25km diameter disc centred on the deep geothermal sites of Soultz-sous-Forêts and Rittershoffen. This region exhibits variable degrees of human imprints from quite remote areas to sectors with high traffic roads and big villages. It also encompasses both the deep sedimentary basin of the Rhine graben and the piedmont of the Vosges massif with exposed bedrock. For each site we processed the continuous data to estimate probability density functions of the power spectral densities. At frequencies higher than 1 Hz most sites show a clear temporal modulation of seismic noise related to human activity with the well-known variations between day and night and between weekdays and weekends. Moreover we observe a clear evolution of the spatial distribution of seismic noise levels with frequency. Basically, between 0.5 and 4 Hz the geological setting modulates the level of seismic noise. At higher frequencies, the amplitude of seismic noise appears mostly related to the distance to nearby roads. Based on road maps and traffic estimation, a forward approach is performed to model the induced

  7. Technique and the scheme of engineering-seismometric supervision over seismic events on large dams

    Energy Technology Data Exchange (ETDEWEB)

    Karapetyan, S.; Babayan, T.; Mkrtchyan, G. [National Academy of Sciences of the Republic of Armenia (Armenia). Inst. of Geophysics and Engineering Seismology

    2004-07-01

    A network of engineering-seismometric monitoring stations have been installed at the Tavshout dam in a seismically active region of Armenia. The 37 meter high embankment dam consists of gravel-pebbles with a core of sandy clay. Recent earthquakes have presented a direct hazard for the dam and its water reservoir. In order to determine the degree of seismic hazard and prevention, it is necessary to study the interaction between the ground and the foundation of the dam. The seismometers were fixed at three points both on the foundation and the ground to obtain information on the whole route of seismic waves and to define the geology based amplification factors using empirical equations. The system of engineering-seismometric observations included a network of seismometric instruments, communications and a recording complex. 4 refs., 14 figs.

  8. Modern Adaptive Analytics Approach to Lowering Seismic Network Detection Thresholds

    Science.gov (United States)

    Johnson, C. E.

    2017-12-01

    Modern seismic networks present a number of challenges, but perhaps most notably are those related to 1) extreme variation in station density, 2) temporal variation in station availability, and 3) the need to achieve detectability for much smaller events of strategic importance. The first of these has been reasonably addressed in the development of modern seismic associators, such as GLASS 3.0 by the USGS/NEIC, though some work still remains to be done in this area. However, the latter two challenges demand special attention. Station availability is impacted by weather, equipment failure or the adding or removing of stations, and while thresholds have been pushed to increasingly smaller magnitudes, new algorithms are needed to achieve even lower thresholds. Station availability can be addressed by a modern, adaptive architecture that maintains specified performance envelopes using adaptive analytics coupled with complexity theory. Finally, detection thresholds can be lowered using a novel approach that tightly couples waveform analytics with the event detection and association processes based on a principled repicking algorithm that uses particle realignment for enhanced phase discrimination.

  9. Seismic instrumentation plan for the Hawaiian Volcano Observatory

    Science.gov (United States)

    Thelen, Weston A.

    2014-01-01

    The seismic network operated by the U.S. Geological Survey’s Hawaiian Volcano Observatory (HVO) is the main source of authoritative data for reporting earthquakes in the State of Hawaii, including those that occur on the State’s six active volcanoes (Kīlauea, Mauna Loa, Hualālai, Mauna Kea, Haleakalā, Lō‘ihi). Of these volcanoes, Kīlauea and Mauna Loa are considered “very high threat” in a report on the rationale for a National Volcanic Early Warning System (NVEWS) (Ewert and others, 2005). This seismic instrumentation plan assesses the current state of HVO’s seismic network with respect to the State’s active volcanoes and calculates the number of stations that are needed to upgrade the current network to provide a seismic early warning capability for forecasting volcanic activity. Further, the report provides proposed priorities for upgrading the seismic network and a cost assessment for both the installation costs and maintenance costs of the improved network that are required to fully realize the potential of the early warning system.

  10. Pulsed neural networks consisting of single-flux-quantum spiking neurons

    International Nuclear Information System (INIS)

    Hirose, T.; Asai, T.; Amemiya, Y.

    2007-01-01

    An inhibitory pulsed neural network was developed for brain-like information processing, by using single-flux-quantum (SFQ) circuits. It consists of spiking neuron devices that are coupled to each other through all-to-all inhibitory connections. The network selects neural activity. The operation of the neural network was confirmed by computer simulation. SFQ neuron devices can imitate the operation of the inhibition phenomenon of neural networks

  11. Serviceability Assessment for Cascading Failures in Water Distribution Network under Seismic Scenario

    Directory of Open Access Journals (Sweden)

    Qing Shuang

    2016-01-01

    Full Text Available The stability of water service is a hot point in industrial production, public safety, and academic research. The paper establishes a service evaluation model for the water distribution network (WDN. The serviceability is measured in three aspects: (1 the functionality of structural components under disaster environment; (2 the recognition of cascading failure process; and (3 the calculation of system reliability. The node and edge failures in WDN are interrelated under seismic excitations. The cascading failure process is provided with the balance of water supply and demand. The matrix-based system reliability (MSR method is used to represent the system events and calculate the nonfailure probability. An example is used to illustrate the proposed method. The cascading failure processes with different node failures are simulated. The serviceability is analyzed. The critical node can be identified. The result shows that the aged network has a greater influence on the system service under seismic scenario. The maintenance could improve the antidisaster ability of WDN. Priority should be given to controlling the time between the initial failure and the first secondary failure, for taking postdisaster emergency measures within this time period can largely cut down the spread of cascade effect in the whole WDN.

  12. Data Analysis of Seismic Sequence in Central Italy in 2016 using CTBTO- International Monitoring System

    Science.gov (United States)

    Mumladze, Tea; Wang, Haijun; Graham, Gerhard

    2017-04-01

    The seismic network that forms the International Monitoring System (IMS) of the Comprehensive Nuclear-test-ban Treaty Organization (CTBTO) will ultimately consist of 170 seismic stations (50 primary and 120 auxiliary) in 76 countries around the world. The Network is still under the development, but currently more than 80% of the network is in operation. The objective of seismic monitoring is to detect and locate underground nuclear explosions. However, the data from the IMS also can be widely used for scientific and civil purposes. In this study we present the results of data analysis of the seismic sequence in 2016 in Central Italy. Several hundred earthquakes were recorded for this sequence by the seismic stations of the IMS. All events were accurately located the analysts of the International Data Centre (IDC) of the CTBTO. In this study we will present the epicentral and magnitude distribution, station recordings and teleseismic phases as obtained from the Reviewed Event Bulletin (REB). We will also present a comparison of the database of the IDC with the databases of the European-Mediterranean Seismological Centre (EMSC) and U.S. Geological Survey (USGS). Present work shows that IMS data can be used for earthquake sequence analyses and can play an important role in seismological research.

  13. Seismic risk assessment for road in Indonesia

    Science.gov (United States)

    Toyfur, Mona Foralisa; Pribadi, Krishna S.

    2016-05-01

    Road networks in Indonesia consist of 446,000 km of national, provincial and local roads as well as toll highways. Indonesia is one of countries that exposed to various natural hazards, such as earthquakes, floods, landslides, etc. Within the Indonesian archipelago, several global tectonic plates interact, such as the Indo-Australian, Pacific, Eurasian, resulting in a complex geological setting, characterized by the existence of seismically active faults and subduction zones and a chain of more than one hundred active volcanoes. Roads in Indonesia are vital infrastructure needed for people and goods movement, thus supporting community life and economic activities, including promoting regional economic development. Road damages and losses due to earthquakes have not been studied widely, whereas road disruption caused enormous economic damage. The aim of this research is to develop a method to analyse risk caused by seismic hazard to roads. The seismic risk level of road segment is defined using an earthquake risk index, adopting the method of Earthquake Disaster Risk Index model developed by Davidson (1997). Using this method, road segments' risk level can be defined and compared, and road risk map can be developed as a tool for prioritizing risk mitigation programs for road networks in Indonesia.

  14. Second and Third Quarters Hanford Seismic Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    1999-11-09

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the HSN, there were 270 triggers during the second quarter of fiscal year (FY) 1999 and 229 triggers during the third quarter on the primary recording system. During the second quarter, 22 seismic events were located; 11 were earthquakes in the Columbia River Basalt Group, 6 were earthquakes in the crystalline basement, and 5 were quarry blasts. Two earthquakes appear to be related to major geologic structures, eight earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. During the third quarter, 23 seismic events were located; 11 were earthquakes in the Columbia River Basalt Group, 4 were earthquakes in the pre-basalt sediments, 4 were earthquakes in the crystalline basement, and 4 were quarry blasts. Five earthquakes occurred in known swarm areas, six earthquakes formed a new swarm near the Horse Heavens Hills and Presser, Washington, and eight earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers during the second or third quarters of FY 1999.

  15. Real-Time Seismic Data from the Bottom Sea

    Directory of Open Access Journals (Sweden)

    Xavier Roset

    2018-04-01

    Full Text Available An anchored marine seismometer, acquiring real-time seismic data, has been built and tested. The system consists of an underwater seismometer, a surface buoy, and a mooring line that connects them. Inductive communication through the mooring line provides an inexpensive, reliable, and flexible solution. Prior to the deployment the dynamics of the system have been simulated numerically in order to find optimal materials, cables, buoys, and connections under critical marine conditions. The seismometer used is a high sensitivity triaxial broadband geophone able to measure low vibrational signals produced by the underwater seismic events. The power to operate the surface buoy is provided by solar panels. Additional batteries are needed for the underwater unit. In this paper we also present the first results and an earthquake detection of a prototype system that demonstrates the feasibility of this concept. The seismometer transmits continuous data at a rate of 1000 bps to a controller equipped with a radio link in the surface buoy. A GPS receiver on the surface buoy has been configured to perform accurate timestamps on the seismic data, which makes it possible to integrate the seismic data from these marine seismometers into the existing seismic network.

  16. Real-Time Seismic Data from the Bottom Sea.

    Science.gov (United States)

    Roset, Xavier; Trullols, Enric; Artero-Delgado, Carola; Prat, Joana; Del Río, Joaquin; Massana, Immaculada; Carbonell, Montserrat; Barco de la Torre, Jaime; Toma, Daniel Mihai

    2018-04-08

    An anchored marine seismometer, acquiring real-time seismic data, has been built and tested. The system consists of an underwater seismometer, a surface buoy, and a mooring line that connects them. Inductive communication through the mooring line provides an inexpensive, reliable, and flexible solution. Prior to the deployment the dynamics of the system have been simulated numerically in order to find optimal materials, cables, buoys, and connections under critical marine conditions. The seismometer used is a high sensitivity triaxial broadband geophone able to measure low vibrational signals produced by the underwater seismic events. The power to operate the surface buoy is provided by solar panels. Additional batteries are needed for the underwater unit. In this paper we also present the first results and an earthquake detection of a prototype system that demonstrates the feasibility of this concept. The seismometer transmits continuous data at a rate of 1000 bps to a controller equipped with a radio link in the surface buoy. A GPS receiver on the surface buoy has been configured to perform accurate timestamps on the seismic data, which makes it possible to integrate the seismic data from these marine seismometers into the existing seismic network.

  17. Dynamic characteristics of background seismic noise according to records of nuclear monitoring seismic stations in Kazakstan

    International Nuclear Information System (INIS)

    Belyashova, N.N.; Sinyova, Z.I.; Komarov, I.I.; Mikhailova, N.N.

    1998-01-01

    The seismic stations of Kazakstan, included into nuclear monitoring network (see fig.1) are equipped with broad hand seismometers; seismic data are recorded in digital format. All this allows to investigate spectral and time characteristics of seismic background noise in very large frequency diapason (more than 3-5 orders), for all three components of oscillation vector. The spectral density of background seismic noise for vertical and both horizontal components (fig.2) was calculated for all of the observation points. The regular features of structure of noise spectra, inherent for all of the studied observation points, as well as some features, specific for studied places were found. The curves of spectral noise density were compared with global noise model, determined by the data of Global Seismological Network (GSN)

  18. Hanford annual first quarter seismic report, fiscal year 1998: Seismicity on and near the Hanford Site, Pasco Basin, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1998-02-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the first quarter of FY98 for stations in the HSN was 98.5%. The operational rate for the first quarter of FY98 for stations of the EWRN was 99.1%. For the first quarter of FY98, the acquisition computer triggered 184 times. Of these triggers 23 were local earthquakes: 7 in the Columbia River Basalt Group, and 16 in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report. The most significant earthquakes in this quarter were a series of six events which occurred in the Cold Creek depression (approximately 4 km SW of the 200 West Area), between November 6 and November 11, 1997. All events were deep (> 15 km) and were located in the crystalline basement. The first event was the largest, having a magnitude of 3.49 M{sub c}. Two events on November 9, 1997 had magnitudes of 2.81 and 2.95 M{sub c}, respectively. The other events had magnitudes between 0.7 and 1.2 M{sub c}.

  19. Seismicity within the Irpinia Fault System As Monitored By Isnet (Irpinia Seismic Network) and Its Possible Relation with Fluid Storage

    Science.gov (United States)

    Festa, G.; Zollo, A.; Amoroso, O.; Ascione, A.; Colombelli, S.; Elia, L.; Emolo, A.; Martino, C.; Mazzoli, S.; Orefice, A.; Russo, G.

    2014-12-01

    ISNet (http://isnet.fisica.unina.it) is deployed in Southern Apennines along the active fault system responsible for the 1980, M 6.9 Irpinia earthquake. ISNet consists of 32 seismic stations equipped with both strong motion and velocimetric instruments (either broadband or short-period), with the aim of capture a broad set of seismic signals, from ambient noise to strong motion. Real time and near real time procedures run at ISNet with the goal of monitoring the seismicity, check possible space-time anomalies, detect seismic sequences and launch an earthquake early warning in the case of potential significant ground shaking in the area. To understand the role of fluids on the seismicity of the area, we investigated velocity and attenuation models. The former is built from accurate cross-correlation picking and S wave detection based onto polarization analysis. Joint inversion of both P and S arrival times is then based on a linearized multi-scale tomographic approach. Attenuation is instead obtained from inversion of displacement spectra, deconvolving for the source effect. High VP/VS and QS/QP >1 were found within a ~15 km wide rock volume where intense microseismicity is located. This indicates that concentration of seismicity is possibly controlled by high pore fluid pressure. This earthquake reservoir may come from a positive feedback between the seismic pumping that controls the fluid transmission through the fractured damage zone and the low permeability of cross fault barrier, increasing the fluid pore pressure within the fault bounded block. In this picture, sequences mostly occur at the base of this fluid rich layer. They show an anomalous pattern in the earthquake occurrence per magnitude classes; main events evolve with a complex source kinematics, as obtained from backprojection of apparent source time functions, indicating possible directivity effects. In this area sequences might be the key for understanding the transition between the deep

  20. Seismic Readings from the Deepest Borehole in the New Madrid Seismic Zone

    Energy Technology Data Exchange (ETDEWEB)

    Woolery, Edward W [KY Geological Survey, Univ of KY; Wang, Zhenming [KY Geological Survey, Univ of KY; Sturchio, Neil C [Dept of earth and Env. Sciences, Univ of Ill at Chicago

    2006-03-01

    Since the 1980s, the research associated with the UK network has been primarily strong-motion seismology of engineering interest. Currently the University of Kentucky operates a strong-motion network of nine stations in the New Madrid Seismic Zone. A unique feature of the network is the inclusions of vertical strong-motion arrays, each with one or two downhole accelerometers. The deepest borehole array is 260 m below the surfaces at station VASA in Fulton County, Kentucky. A preliminary surface seismic refraction survey was conducted at the site before drilling the hole at VSAS (Woolery and Wang, 2002). The depth to the Paleozoic bedrock at the site was estimated to be approximately 595 m, and the depth to the first very stiff layer (i.e. Porters Creek Clay) was found to be about 260 m. These depths and stratigraphic interpretation correlated well with a proprietary seismic reflection line and the Ken-Ten Oil Exploration No. 1 Sanger hole (Schwalb, 1969), as well as our experience in the area (Street et al., 1995; Woolery et al., 1999).

  1. Third Quarter Hanford Seismic Report for Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-09-30

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 771 local earthquakes during the third quarter of FY 2009. Nearly all of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this quarter is a continuation of the swarm events observed during the January – March 2009 time period and reported in the previous quarterly report (Rohay et al, 2009). The frequency of Wooded Island events has subsided with 16 events recorded during June 2009. Most of the events were considered minor (magnitude (Mc) less than 1.0) with 25 events in the 2.0-3.0 range. The estimated depths of the Wooded Island events are shallow (averaging less than 1.0 km deep) with a maximum depth estimated at 2.2 km. This places the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude of the Wooded Island events has made them undetectable to all but local area residents. However, some Hanford employees working within a few miles of the area of highest activity

  2. Seismic Structure of Perth Basin (Australia) and surroundings from Passive Seismic Deployments

    Science.gov (United States)

    Issa, N.; Saygin, E.; Lumley, D. E.; Hoskin, T. E.

    2016-12-01

    We image the subsurface structure of Perth Basin, Western Australia and surroundings by using ambient seismic noise data from 14 seismic stations recently deployed by University of Western Australia (UWA) and other available permanent stations from Geoscience Australia seismic network and the Australian Seismometers in Schools program. Each of these 14 UWA seismic stations comprises a broadband sensor and a high fidelity 3-component 10 Hz geophone, recording in tandem at 250 Hz and 1000 Hz. The other stations used in this study are equipped with short period and broadband sensors. In addition, one shallow borehole station is operated with eight 3 component geophones at depths of between 2 and 44 m. The network is deployed to characterize natural seismicity in the basin and to try and identify any microseismic activity across Darling Fault Zone (DFZ), bounding the basin to the east. The DFZ stretches to approximately 1000 km north-south in Western Australia, and is one of the longest fault zones on the earth with a limited number of detected earthquakes. We use seismic noise cross- and auto-correlation methods to map seismic velocity perturbations across the basin and the transition from DFZ to the basin. Retrieved Green's functions are stable and show clear dispersed waveforms. Travel times of the surface wave Green's functions from noise cross-correlations are inverted with a two-step probabilistic framework to map the absolute shear wave velocities as a function of depth. The single station auto-correlations from the seismic noise yields P wave reflectivity under each station, marking the major discontinuities. Resulting images show the shear velocity perturbations across the region. We also quantify the variation of ambient seismic noise at different depths in the near surface using the geophones in the shallow borehole array.

  3. A GIS-based multi-criteria seismic vulnerability assessment using the integration of granular computing rule extraction and artificial neural networks

    NARCIS (Netherlands)

    Sheikhian, Hossein; Delavar, Mahmoud Reza; Stein, Alfred

    2017-01-01

    This study proposes multi‐criteria group decision‐making to address seismic physical vulnerability assessment. Granular computing rule extraction is combined with a feed forward artificial neural network to form a classifier capable of training a neural network on the basis of the rules provided by

  4. Third Quarter Hanford Seismic Report for Fiscal Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2010-09-29

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 23 local earthquakes during the third quarter of FY 2010. Sixteen earthquakes were located at shallow depths (less than 4 km), five earthquakes at intermediate depths (between 4 and 9 km), most likely in the pre-basalt sediments, and two earthquakes were located at depths greater than 9 km, within the basement. Geographically, twelve earthquakes were located in known swarm areas, 3 earthquakes occurred near a geologic structure (Saddle Mountain anticline), and eight earthquakes were classified as random events. The highest magnitude event (3.0 Mc) was recorded on May 8, 2010 at depth 3.0 km with epicenter located near the Saddle Mountain anticline. Later in the quarter (May 24 and June 28) two additional earthquakes were also recorded nearly at the same location. These events are not considered unusual in that earthquakes have been previously recorded at this location, for example, in October 2006 (Rohay et al; 2007). Six earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just

  5. Annual Hanford Seismic Report for Fiscal Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Clayton, Ray E.; Sweeney, Mark D.; Devary, Joseph L.; Hartshorn, Donald C.

    2010-12-27

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. During FY 2010, the Hanford Seismic Network recorded 873 triggers on the seismometer system, which included 259 seismic events in the southeast Washington area and an additional 324 regional and teleseismic events. There were 210 events determined to be local earthquakes relevant to the Hanford Site. One hundred and fifty-five earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this fiscal year were a continuation of the swarm events observed during fiscal year 2009 and reported in previous quarterly and annual reports (Rohay et al. 2009a, 2009b, 2009c, 2010a, 2010b, and 2010c). Most events were considered minor (coda-length magnitude [Mc] less than 1.0) with the largest event recorded on February 4, 2010 (3.0Mc). The estimated depths of the Wooded Island events are shallow (averaging approximately 1.5 km deep) placing the swarm within the Columbia River Basalt Group. Based upon the last two quarters (Q3 and Q4) data, activity at the Wooded Island

  6. Travel time tomography of the crust and the mantle beneath Ecuador from data of the national seismic network.

    OpenAIRE

    Araujo , Sebastián

    2016-01-01

    Although there have been numerous studies on the geodynamics and the tectonics in Ecuador based on the seismic activity, there has not been to date a comprehensive tomography study using the entire database of the National Seismic Network (RENSIG). Only a preliminary limited study was performed by Prevot et al. to infer a simple P velocity model in central Ecuador, and several profiles in the South-Colombian-Ecuador margin were also investigated by using travel time inversion of wide-angle se...

  7. Consistently Trained Artificial Neural Network for Automatic Ship Berthing Control

    Directory of Open Access Journals (Sweden)

    Y.A. Ahmed

    2015-09-01

    Full Text Available In this paper, consistently trained Artificial Neural Network controller for automatic ship berthing is discussed. Minimum time course changing manoeuvre is utilised to ensure such consistency and a new concept named ‘virtual window’ is introduced. Such consistent teaching data are then used to train two separate multi-layered feed forward neural networks for command rudder and propeller revolution output. After proper training, several known and unknown conditions are tested to judge the effectiveness of the proposed controller using Monte Carlo simulations. After getting acceptable percentages of success, the trained networks are implemented for the free running experiment system to judge the network’s real time response for Esso Osaka 3-m model ship. The network’s behaviour during such experiments is also investigated for possible effect of initial conditions as well as wind disturbances. Moreover, since the final goal point of the proposed controller is set at some distance from the actual pier to ensure safety, therefore a study on automatic tug assistance is also discussed for the final alignment of the ship with actual pier.

  8. Seismicity Pattern and Fault Structure in the Central Himalaya Seismic Gap Using Precise Earthquake Hypocenters and their Source Parameters

    Science.gov (United States)

    Mendoza, M.; Ghosh, A.; Rai, S. S.

    2017-12-01

    The devastation brought on by the Mw 7.8 Gorkha earthquake in Nepal on 25 April 2015, reconditioned people to the high earthquake risk along the Himalayan arc. It is therefore imperative to learn from the Gorkha earthquake, and gain a better understanding of the state of stress in this fault regime, in order to identify areas that could produce the next devastating earthquake. Here, we focus on what is known as the "central Himalaya seismic gap". It is located in Uttarakhand, India, west of Nepal, where a large (> Mw 7.0) earthquake has not occurred for over the past 200 years [Rajendran, C.P., & Rajendran, K., 2005]. This 500 - 800 km long along-strike seismic gap has been poorly studied, mainly due to the lack of modern and dense instrumentation. It is especially concerning since it surrounds densely populated cities, such as New Delhi. In this study, we analyze a rich seismic dataset from a dense network consisting of 50 broadband stations, that operated between 2005 and 2012. We use the STA/LTA filter technique to detect earthquake phases, and the latest tools contributed to the Antelope software environment, to develop a large and robust earthquake catalog containing thousands of precise hypocentral locations, magnitudes, and focal mechanisms. By refining those locations in HypoDD [Waldhauser & Ellsworth, 2000] to form a tighter cluster of events using relative relocation, we can potentially illustrate fault structures in this region with high resolution. Additionally, using ZMAP [Weimer, S., 2001], we perform a variety of statistical analyses to understand the variability and nature of seismicity occurring in the region. Generating a large and consistent earthquake catalog not only brings to light the physical processes controlling the earthquake cycle in an Himalayan seismogenic zone, it also illustrates how stresses are building up along the décollment and the faults that stem from it. With this new catalog, we aim to reveal fault structure, study

  9. Consistency of GPS and strong-motion records: case study of the Mw9.0 Tohoku-Oki 2011 earthquake

    Science.gov (United States)

    Psimoulis, Panos; Houlié, Nicolas; Michel, Clotaire; Meindl, Michael; Rothacher, Markus

    2014-05-01

    High-rate GPS data are today commonly used to supplement seismic data for the Earth surface motions focusing on earthquake characterisation and rupture modelling. Processing of GPS records using Precise Point Positioning (PPP) can provide real-time information of seismic wave propagation, tsunami early-warning and seismic rupture. Most studies have shown differences between the GPS and seismic systems at very long periods (e.g. >100sec) and static displacements. The aim of this study is the assessment of the consistency of GPS and strong-motion records by comparing their respective displacement waveforms for several frequency bands. For this purpose, the records of the GPS (GEONET) and the strong-motion (KiK-net and K-NET) networks corresponding to the Mw9.0 Tohoku 2011 earthquake were analysed. The comparison of the displacement waveforms of collocated (distance<100m) GPS and strong-motion sites show that the consistency between the two datasets depends on the frequency of the excitation. Differences are mainly due to the GPS noise at relatively short-periods (<3-4 s) and the saturation of the strong-motion sensors for relatively long-periods (40-80 s). Furthermore the agreement between the GPS and strong-motion records also depends on the direction of the excitation signal and the distance from the epicentre. In conclusion, velocities and displacements recovered from GPS and strong-motion records are consistent for long-periods (3-100 s), proving that GPS networks can contribute to the real-time estimation of the long-period ground motion map of an earthquake.

  10. Seismic sequences in the Sombrero Seismic Zone

    Science.gov (United States)

    Pulliam, J.; Huerfano, V. A.; ten Brink, U.; von Hillebrandt, C.

    2007-05-01

    The northeastern Caribbean, in the vicinity of Puerto Rico and the Virgin Islands, has a long and well-documented history of devastating earthquakes and tsunamis, including major events in 1670, 1787, 1867, 1916, 1918, and 1943. Recently, seismicity has been concentrated to the north and west of the British Virgin Islands, in the region referred to as the Sombrero Seismic Zone by the Puerto Rico Seismic Network (PRSN). In the combined seismicity catalog maintained by the PRSN, several hundred small to moderate magnitude events can be found in this region prior to 2006. However, beginning in 2006 and continuing to the present, the rate of seismicity in the Sombrero suddenly increased, and a new locus of activity developed to the east of the previous location. Accurate estimates of seismic hazard, and the tsunamigenic potential of seismic events, depend on an accurate and comprehensive understanding of how strain is being accommodated in this corner region. Are faults locked and accumulating strain for release in a major event? Or is strain being released via slip over a diffuse system of faults? A careful analysis of seismicity patterns in the Sombrero region has the potential to both identify faults and modes of failure, provided the aggregation scheme is tuned to properly identify related events. To this end, we experimented with a scheme to identify seismic sequences based on physical and temporal proximity, under the assumptions that (a) events occur on related fault systems as stress is refocused by immediately previous events and (b) such 'stress waves' die out with time, so that two events that occur on the same system within a relatively short time window can be said to have a similar 'trigger' in ways that two nearby events that occurred years apart cannot. Patterns that emerge from the identification, temporal sequence, and refined locations of such sequences of events carry information about stress accommodation that is obscured by large clouds of

  11. Supports for shock, vibration and seismic isolation for tube networks

    International Nuclear Information System (INIS)

    Prisecaru, Ilie; Serban, Viorel; Sandrea Madalina

    2005-01-01

    The paper presents a solution for diminishing the shocks, vibrations and seismic movements in pipe networks, with a simultaneous reduction in the general stress conditions in piping and supports. Total removal or reduction of vibrations is a hard problem which was not yet tackled either theoretically, in the sense of an analytical procedure for the analysis of occurrence and development of shocks and vibrations in complex systems, or practically, since the current supports and dampers cannot provide enough damping within all the frequency ranges met in the technical domain. Stiffness of classical supports do not allow always satisfactory source isolation to prevent propagation from environment of shocks and vibrations, Considering the actual condition met in the nuclear power plants, power plants and thermal power plants, etc. this paper represents a major practical aid because it provides new solutions for diminishing shocks, vibrations and seismic movements. Aiming at diminishing the effects of vibrations in pipe networks, this paper presents the results obtained in the design, construction and testing of new types of supports that include sandwich type components made up of elastic blade packages with controlled distortion provided by the central and peripheral stiff parts called SERB. With the new type of supports, the control of the distortion at static and dynamic loads and the thermal displacements is achieved by the relative movement among the sandwich structure subassemblies and by the sandwich structure distortion controlled by the central and peripheral distorting parts that generate a non - linear geometric response which has an easily controllable stiffness and damping, due to their non - linear geometric behavior. The supports of the new type are adjustable to the load and distortion level without overstressing the component material, due to a non - linear geometric behavior while the contact pressure among the blades is limited to pre-set values. Due

  12. Hanford Seismic Annual Report and Fourth Quarter Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    AC Rohay; DC Hartshorn; SP Reidel

    1999-12-07

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network. (EWRN) consist of 40 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. A major reconfiguration of the HSN was initiated at the end of this quarter and the results will be reported in the first quarter report for next fiscal year (FY2000). For the HSN, there were 390 triggers during the fourth quarter of fiscal year(FY) 1999 on the primary recording system. With the implementation of dual backup systems during the second quarter of the fiscal year and an overall increase observed in sensitivity, a total of 1632 triggers were examined, identified, and processed during this fiscal year. During the fourth quarter, 24 seismic events were located by the HSN within the reporting region of 46 degrees to 47 degrees north latitude and 119 degrees to 120 degrees west longitude 9 were earthquakes in the Columbia River Basalt Group, 2 were earthquakes in the pre-basalt sediments, 10 were earthquakes in the crystalline basement; and 2 were quarry blasts. One earthquake appears to be related to a major geologic structure, 14 earthquakes occurred in known swarm areas, and 7 earthquakes were random occurrences.

  13. Teacher Directed Design: Content Knowledge, Pedagogy and Assessment under the Nevada K-12 Real-Time Seismic Network

    Science.gov (United States)

    Cantrell, P.; Ewing-Taylor, J.; Crippen, K. J.; Smith, K. D.; Snelson, C. M.

    2004-12-01

    Education professionals and seismologists under the emerging SUN (Shaking Up Nevada) program are leveraging the existing infrastructure of the real-time Nevada K-12 Seismic Network to provide a unique inquiry based science experience for teachers. The concept and effort are driven by teacher needs and emphasize rigorous content knowledge acquisition coupled with the translation of that knowledge into an integrated seismology based earth sciences curriculum development process. We are developing a pedagogical framework, graduate level coursework, and materials to initiate the SUN model for teacher professional development in an effort to integrate the research benefits of real-time seismic data with science education needs in Nevada. A component of SUN is to evaluate teacher acquisition of qualified seismological and earth science information and pedagogy both in workshops and in the classroom and to assess the impact on student achievement. SUN's mission is to positively impact earth science education practices. With the upcoming EarthScope initiative, the program is timely and will incorporate EarthScope real-time seismic data (USArray) and educational materials in graduate course materials and teacher development programs. A number of schools in Nevada are contributing real-time data from both inexpensive and high-quality seismographs that are integrated with Nevada regional seismic network operations as well as the IRIS DMC. A powerful and unique component of the Nevada technology model is that schools can receive "stable" continuous live data feeds from 100's seismograph stations in Nevada, California and world (including live data from Earthworm systems and the IRIS DMC BUD - Buffer of Uniform Data). Students and teachers see their own networked seismograph station within a global context, as participants in regional and global monitoring. The robust real-time Internet communications protocols invoked in the Nevada network provide for local data acquisition

  14. Hydraulic fracturing and the Crooked Lake Sequences: Insights gleaned from regional seismic networks

    Science.gov (United States)

    Schultz, Ryan; Stern, Virginia; Novakovic, Mark; Atkinson, Gail; Gu, Yu Jeffrey

    2015-04-01

    Within central Alberta, Canada, a new sequence of earthquakes has been recognized as of 1 December 2013 in a region of previous seismic quiescence near Crooked Lake, ~30 km west of the town of Fox Creek. We utilize a cross-correlation detection algorithm to detect more than 160 events to the end of 2014, which is temporally distinguished into five subsequences. This observation is corroborated by the uniqueness of waveforms clustered by subsequence. The Crooked Lake Sequences have come under scrutiny due to its strong temporal correlation (>99.99%) to the timing of hydraulic fracturing operations in the Duvernay Formation. We assert that individual subsequences are related to fracturing stimulation and, despite adverse initial station geometry, double-difference techniques allow us to spatially relate each cluster back to a unique horizontal well. Overall, we find that seismicity in the Crooked Lake Sequences is consistent with first-order observations of hydraulic fracturing induced seismicity.

  15. How prepared were the Puerto Rico Seismic Network sites for the arrival of Hurricane Maria? Lessons learned on communications, power and infrastructure.

    Science.gov (United States)

    Vanacore, E. A.; Lopez, A. M.; Huerfano, V.; Lugo, J.; Baez-Sanchez, G.

    2017-12-01

    For exactly 85 years the island of Puerto Rico in the northeastern Caribbean was spared from catastrophic category 4 hurricane winds. Then Hurricane Maria arrived on September 20, 2017 with maximum sustained winds of up to 155 mph. The eye of the hurricane crossed the island from southeast to northwest in eight hours leaving almost a meter of rainfall on its path. Sustained winds, gusts and precipitation were most certainly going to affect the seismic and geodetic equipment the Puerto Rico Seismic Network (PRSN) use for locating earthquakes in the region. PRSN relies on 35 seismic stations (velocity and strong-motion) to characterize the seismic behavior of the island and 15 geodetic (GNSS) stations to determine crustal deformation of the Puerto Rico - Virgin Islands microplate. PRSN stations have been designed to withstand earthquakes. However, the equipment suffered considerable damage due to the strong winds especially station communication towers. This coupled with catastrophic damage to the telecommunication and power grids of the island had severe effects on the network. Additionally, the level of devastation was such that it hampered the ability of PRSN staff to visit the sites for assessment and repair. Here we present the effects of category 4 hurricane had on our seismic and geodetic sites, examine the susceptibility of the PRSN stations' power and communications, and discuss future plans to recuperate and improve station resiliency for future catastrophic events. These lessons learned hopefully will help harden sites of networks, agencies and/or institutions that rely on similar infrastructure.

  16. Geophysical monitoring of a complex geologic framework: the multi-disciplinary sensor networks in Sicily (Italy)

    Science.gov (United States)

    Cantarero, M.; Di Prima, S.; Mattia, M.; Patanè, D.; Rossi, M.

    2012-04-01

    Since 2004 the Osservatorio Etneo INGV has begun a new approach to the geophysical monitoring of volcanic and seismic areas of Sicily (Italy) where the core is a new type of remote infrastructure able to efficiently accommodate different kinds of sensor. In particular our multi-parametric network is mainly focused on the monitoring of different geophysical parameters (seismic ground velocity and acceleration, infrasound and ground deformation GPS).The whole seismic network consists of 66 broad band digital stations, 19 analog stations, 13 accelerometric stations and 12 infrasonic stations, for a total of 110 stations while the Continuous GPS network consist of 80 stations. Every station is equipped with solar panels in order to satisfy the power requirements of the instruments and with satellite-based communication systems. In this work we show both the technical solutions of this integrated network and its main advantages, if compared with older kinds of remote stations. Moreover we show some examples of the more interesting scientific results achieved thank to this technologically advanced network.

  17. Second Quarter Hanford Seismic Report for Fiscal Year 2009

    International Nuclear Information System (INIS)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-01-01

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded over 800 local earthquakes during the second quarter of FY 2009. Nearly all of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. Most of the events were considered minor (magnitude (Mc) less than 1.0) with 19 events in the 2.0-2.9 range. The estimated depths of the Wooded Island events are shallow (averaging less than 1.0 km deep) with a maximum depth estimated at 1.9 km. This places the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude and the shallowness of the Wooded Island events have made them undetectable to most area residents. However, some Hanford employees working within a few miles of the area of highest activity, and individuals living in homes directly across the Columbia River from the swarm center, have reported feeling some movement. The Hanford SMA network was triggered numerous times by the Wooded Island swarm events. The maximum acceleration values recorded by the SMA network were

  18. Second Quarter Hanford Seismic Report for Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-07-31

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded over 800 local earthquakes during the second quarter of FY 2009. Nearly all of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. Most of the events were considered minor (magnitude (Mc) less than 1.0) with 19 events in the 2.0-2.9 range. The estimated depths of the Wooded Island events are shallow (averaging less than 1.0 km deep) with a maximum depth estimated at 1.9 km. This places the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude and the shallowness of the Wooded Island events have made them undetectable to most area residents. However, some Hanford employees working within a few miles of the area of highest activity, and individuals living in homes directly across the Columbia River from the swarm center, have reported feeling some movement. The Hanford SMA network was triggered numerous times by the Wooded Island swarm events. The maximum acceleration values recorded by the SMA network were

  19. Correlation Between Electromagnetic Signals and Seismic Events on Central Colombia Region to Establish Seismic Precursors Existence

    Science.gov (United States)

    Caneva, A.; Vargas Jiménez, C. A.; Solano Fino, J. M.

    2017-12-01

    It was already shown by several authors around the world some kinds of correlation between electric and magnetic signals and seismic events looking for precursors to the last ones emitted from the seismic source. This investigation tends to establish a correlation between electro-magnetic (EM) signals on the ground surface and seismic events on the Colombian lithospheric system. The events correlation was made with data from the Seismological Network of the Sabana de Bogotá (RSSB for its acronym in Spanish), a temporal seismological network on Chichimene (Acacías, Meta, Colombia) and the National Seismological Network of Colombia (RSNC, for its acronym in Spanish). The project involved the design, construction and preliminary tests for the necessary instruments added to the RSSB as multi-parameter stations with seismic broadband, electric polarizing and non-polarizing dipoles and Earth's magnetic field sensors. Correlations were made considering time, frequency and `natural time' domains with filtering and preprocessing algorithms. Among the main results are the almost complete lack of electric disturbances known as Seismic Electric Signals (SES) and very few of the magnetic kind. However, another kind of long period magnetic disturbances for some stations and events where found. More instruments have to be deployed in order to get a better understanding of these disturbances and develop a robust model.

  20. Decentralized Consistent Network Updates in SDN with ez-Segway

    KAUST Repository

    Nguyen, Thanh Dang; Chiesa, Marco; Canini, Marco

    2017-01-01

    We present ez-Segway, a decentralized mechanism to consistently and quickly update the network state while preventing forwarding anomalies (loops and black-holes) and avoiding link congestion. In our design, the centralized SDN controller only pre-computes

  1. A high-resolution ambient seismic noise model for Europe

    Science.gov (United States)

    Kraft, Toni

    2014-05-01

    measurement precision (i.e. earthquake location), while considering this extremely complex boundary condition. To solve this problem I have developed a high-resolution ambient seismic noise model for Europe. The model is based on land-use data derived from satellite imagery by the EU-project CORINE in a resolution of 100x100m. The the CORINE data consists of several land-use classes, which, besides others, contain: industrial areas, mines, urban fabric, agricultural areas, permanent corps, forests and open spaces. Additionally, open GIS data for highways, and major and minor roads and railway lines were included from the OpenStreetMap project (www.openstreetmap.org). This data was divided into three classes that represent good, intermediate and bad ambient conditions of the corresponding land-use class based on expert judgment. To account for noise propagation away from its source a smoothing operator was applied to individual land-use noise-fields. Finally, the noise-fields were stacked to obtain an European map of ambient noise conditions. A calibration of this map with data of existing seismic stations Europe allowed me to estimate the expected noise level in actual ground motion units for the three ambient noise condition classes of the map. The result is a high-resolution ambient seismic noise map, that allows the network designer to make educated predictions on the expected noise level for arbitrary location in Europe. The ambient noise model was successfully tested in several network optimization projects in Switzerland and surrounding countries and will hopefully be a valuable contribution to improving the data quality of microseismic monitoring networks in Europe.

  2. Post-seismic relaxation from geodetic and seismic data

    Directory of Open Access Journals (Sweden)

    Mikhail V. Rodkin

    2017-01-01

    Full Text Available We have examined the aftershock sequence and the post-seismic deformation process of the Parkfield earthquake (2004, M = 6, California, USA source area using GPS data. This event was chosen because of the possibility of joint analysis of data from the rather dense local GPS network (from SOPAC Internet archive and of the availability of the rather detailed aftershock sequence data (http://www.ncedc.org/ncedc/catalog-search.html. The relaxation process of post-seismic deformation prolongs about the same 400 days as the seismic aftershock process does. Thus, the aftershock process and the relaxation process in deformation could be the different sides of the same process. It should be noted that the ratio of the released seismic energy and of the GPS obtained deformation is quite different for the main shock and for the aftershock stage. The ratio of the released seismic energy to the deformation value decreases essentially for the post-shock process. The similar change in the seismic energy/deformation value ratio is valid in a few other strong earthquakes. Thus, this decrease seems typical of aftershock sequences testifying for decrease of ratio of elastic to inelastic deformation in the process of post-shock relaxation when the source area appears to be mostly fractured after the main shock occurs, but the healing process had no yet sufficient time to develop.

  3. Seismic Tomography in Reykjanes , SW Iceland

    NARCIS (Netherlands)

    Jousset, Philippe; Blanck, Hanna; Franke, Steven; Metz, M.; Águstsson, K.; Verdel, Arie; Ryberg, T.; Hersir, Gylfi Páll; Weemstra, C.; Bruhn, D.F.; Flovenz, Olafur G

    2016-01-01

    We present tomographic results obtained around geothermal reservoirs using seismic data recorded both on-land Reykjanes, SW-Iceland and offshore along Reykjanes Ridge. We gathered records from a network of 83 seismic stations (including 21 Ocean Bottom Seismometers) deployed between April 2014 and

  4. A filter circuit board for the Earthworm Seismic Data Acquisition System

    Science.gov (United States)

    Jensen, Edward Gray

    2000-01-01

    The Earthworm system is a seismic network data acquisition and processing system used by the Northern California Seismic Network as well as many other seismic networks. The input to the system is comprised of many realtime electronic waveforms fed to a multi-channel digitizer on a PC platform. The digitizer consists of one or more National Instruments Corp. AMUX–64T multiplexer boards attached to an A/D converter board located in the computer. Originally, passive filters were installed on the multiplexers to eliminate electronic noise picked up in cabling. It was later discovered that a small amount of crosstalk occurred between successive channels in the digitizing sequence. Though small, this crosstalk will cause what appear to be small earthquake arrivals at the wrong time on some channels. This can result in erroneous calculation of earthquake arrival times, particularly by automated algorithms. To deal with this problem, an Earthworm filter board was developed to provide the needed filtering while eliminating crosstalk. This report describes the tests performed to find a suitable solution, and the design of the circuit board. Also included are all the details needed to build and install this board in an Earthworm system or any other system using the AMUX–64T board. Available below is the report in PDF format as well as an archive file containing the circuit board manufacturing information.

  5. Seismic monitoring experiment of raise boring in 2014

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2015-01-01

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of ONKALO. The possibility to excavate an illegal access to ONKALO has been concerned when the safeguards are discussed. Therefore all recorded explosions in the Olkiluoto area and in ONKALO are located. If a concentration of explosions is observed, the origin of that is found out. Also a concept of hidden illegal explosions, detonated at the same time as the real excavation blasts, has been examined. According to the experience gained in Olkiluoto, it can be concluded that, as long the seismic network is in operation and the results are analysed by a skilled person, it is practically impossible to do illegal undetected excavation by blasting within the Olkiluoto seismic network area. In this report a possibility of seismic monitoring of undeclared excavation done by tunnel boring machine (TBM) has been investigated. In the earlier investigations the instruments were at the ground surface and the sensors were triaxial short period (1 Hz) geophones or broadband geophones. The characteristics (frequency content, polarity and amplitude) of the continuous seismic vibration generated by TMB were studied. The onset time of the seismic signal were not distinguished. Altogether 16 new 10 kHz accelerometers were installed in boreholes inside ONKALO March 2012. The sensors comprised a new subnetwork that monitored the raise boring of two shafts done 2014, from the level -455 m to the level -290 m. The aim was to record the seismic signal generated when the drill bit hits the rock at the moment the tunnel boring begins. Altogether 113 seismic signals generated by the drill bit were located during the

  6. Seismic monitoring experiment of raise boring in 2014

    Energy Technology Data Exchange (ETDEWEB)

    Saari, J.; Malm, M. [AaF-Consult Oy, Espoo (Finland)

    2015-01-15

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of ONKALO. The possibility to excavate an illegal access to ONKALO has been concerned when the safeguards are discussed. Therefore all recorded explosions in the Olkiluoto area and in ONKALO are located. If a concentration of explosions is observed, the origin of that is found out. Also a concept of hidden illegal explosions, detonated at the same time as the real excavation blasts, has been examined. According to the experience gained in Olkiluoto, it can be concluded that, as long the seismic network is in operation and the results are analysed by a skilled person, it is practically impossible to do illegal undetected excavation by blasting within the Olkiluoto seismic network area. In this report a possibility of seismic monitoring of undeclared excavation done by tunnel boring machine (TBM) has been investigated. In the earlier investigations the instruments were at the ground surface and the sensors were triaxial short period (1 Hz) geophones or broadband geophones. The characteristics (frequency content, polarity and amplitude) of the continuous seismic vibration generated by TMB were studied. The onset time of the seismic signal were not distinguished. Altogether 16 new 10 kHz accelerometers were installed in boreholes inside ONKALO March 2012. The sensors comprised a new subnetwork that monitored the raise boring of two shafts done 2014, from the level -455 m to the level -290 m. The aim was to record the seismic signal generated when the drill bit hits the rock at the moment the tunnel boring begins. Altogether 113 seismic signals generated by the drill bit were located during the

  7. Composite Earthquake Catalog of the Yellow Sea for Seismic Hazard Studies

    Science.gov (United States)

    Kang, S. Y.; Kim, K. H.; LI, Z.; Hao, T.

    2017-12-01

    The Yellow Sea (a.k.a West Sea in Korea) is an epicontinental and semi-closed sea located between Korea and China. Recent earthquakes in the Yellow Sea including, but not limited to, the Seogyuckryulbi-do (1 April 2014, magnitude 5.1), Heuksan-do (21 April 2013, magnitude 4.9), Baekryung-do (18 May 2013, magnitude 4.9) earthquakes, and the earthquake swarm in the Boryung offshore region in 2013, remind us of the seismic hazards affecting east Asia. This series of earthquakes in the Yellow Sea raised numerous questions. Unfortunately, both governments have trouble in monitoring seismicity in the Yellow Sea because earthquakes occur beyond their seismic networks. For example, the epicenters of the magnitude 5.1 earthquake in the Seogyuckryulbi-do region in 2014 reported by the Korea Meteorological Administration and China Earthquake Administration differed by approximately 20 km. This illustrates the difficulty with seismic monitoring and locating earthquakes in the region, despite the huge effort made by both governments. Joint effort is required not only to overcome the limits posed by political boundaries and geographical location but also to study seismicity and the underground structures responsible. Although the well-established and developing seismic networks in Korea and China have provided unprecedented amount and quality of seismic data, high quality catalog is limited to the recent 10s of years, which is far from major earthquake cycle. It is also noticed the earthquake catalog from either country is biased to its own and cannot provide complete picture of seismicity in the Yellow Sea. In order to understand seismic hazard and tectonics in the Yellow Sea, a composite earthquake catalog has been developed. We gathered earthquake information during last 5,000 years from various sources. There are good reasons to believe that some listings account for same earthquake, but in different source parameters. We established criteria in order to provide consistent

  8. Seismic hazard estimation based on the distributed seismicity in northern China

    Science.gov (United States)

    Yang, Yong; Shi, Bao-Ping; Sun, Liang

    2008-03-01

    In this paper, we have proposed an alternative seismic hazard modeling by using distributed seismicites. The distributed seismicity model does not need delineation of seismic source zones, and simplify the methodology of probabilistic seismic hazard analysis. Based on the devastating earthquake catalogue, we established three seismicity model, derived the distribution of a-value in northern China by using Gaussian smoothing function, and calculated peak ground acceleration distributions for this area with 2%, 5% and 10% probability of exceedance in a 50-year period by using three attenuation models, respectively. In general, the peak ground motion distribution patterns are consistent with current seismic hazard map of China, but in some specific seismic zones which include Shanxi Province and Shijiazhuang areas, our results indicated a little bit higher peak ground motions and zonation characters which are in agreement with seismicity distribution patterns in these areas. The hazard curves have been developed for Beijing, Tianjin, Taiyuan, Tangshan, and Ji’nan, the metropolitan cities in the northern China. The results showed that Tangshan, Taiyuan, Beijing has a higher seismic hazard than that of other cities mentioned above.

  9. Synchronization in node of complex networks consist of complex chaotic system

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Qiang, E-mail: qiangweibeihua@163.com [Beihua University computer and technology College, BeiHua University, Jilin, 132021, Jilin (China); Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin (China); Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024 (China); Xie, Cheng-jun [Beihua University computer and technology College, BeiHua University, Jilin, 132021, Jilin (China); Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin (China); Liu, Hong-jun [School of Information Engineering, Weifang Vocational College, Weifang, 261041 (China); Li, Yan-hui [The Library, Weifang Vocational College, Weifang, 261041 (China)

    2014-07-15

    A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.

  10. North Korea nuclear test analysis results using KMA seismic and infrasound networks

    Science.gov (United States)

    Jeon, Y. S.; Park, E.; Lee, D.; Min, K.; CHO, S.

    2017-12-01

    Democratic People's Republic of Korea(DPRK) carried out 6th nuclear test on 3 Sep. 2017 at 03:30 UTC. Seismic and infrasound network operated by Korea Meteorological Administration(KMA) successfully detected signals took place in the DPRK's test site, Punggye-ri. First, we checked that Pg/Lg spectral amplitude ratio greater than 1 in the frequency range from 1.0 to 10.0 Hz is useful to discriminate between DPRK test signals and natural earthquakes. KMA's infrasound stations of Cheorwon(CW) and Yanggu(YG) successfully monitored the azimuth direction of the arrival of the infrasound signals generated from DPRK underground nuclear explosions, including the recent test on September 03, 2017. The azimuthal direction of 210(CW) and 130 (YG) point out Punggye-ri test site. Complete waveforms at stations MDJ, CHC2, YNCB in long period(0.05 to 0.1 HZ) are jointly inverted with local P-wave polarities to generate moment tensor inversion result of the explosive moment 1.20e+24 dyne cm(Mw 5.31) and 65% of ISO. The moment magnitude of 5th, 4th and 3rd are 4.61, 4.69 and 4.46 respectively. Source type moment tensor inversion result of DPRK nuclear tests show that the event is significantly away from the deviatoric line of the Hudson et at. (1989) source-type diagram and identifies as having a significant explosive component. Analysis results using seismic and infrasound network verify that the DPRK's explosion tests classified as nuclear test.

  11. An automated multi-scale network-based scheme for detection and location of seismic sources

    Science.gov (United States)

    Poiata, N.; Aden-Antoniow, F.; Satriano, C.; Bernard, P.; Vilotte, J. P.; Obara, K.

    2017-12-01

    We present a recently developed method - BackTrackBB (Poiata et al. 2016) - allowing to image energy radiation from different seismic sources (e.g., earthquakes, LFEs, tremors) in different tectonic environments using continuous seismic records. The method exploits multi-scale frequency-selective coherence in the wave field, recorded by regional seismic networks or local arrays. The detection and location scheme is based on space-time reconstruction of the seismic sources through an imaging function built from the sum of station-pair time-delay likelihood functions, projected onto theoretical 3D time-delay grids. This imaging function is interpreted as the location likelihood of the seismic source. A signal pre-processing step constructs a multi-band statistical representation of the non stationary signal, i.e. time series, by means of higher-order statistics or energy envelope characteristic functions. Such signal-processing is designed to detect in time signal transients - of different scales and a priori unknown predominant frequency - potentially associated with a variety of sources (e.g., earthquakes, LFE, tremors), and to improve the performance and the robustness of the detection-and-location location step. The initial detection-location, based on a single phase analysis with the P- or S-phase only, can then be improved recursively in a station selection scheme. This scheme - exploiting the 3-component records - makes use of P- and S-phase characteristic functions, extracted after a polarization analysis of the event waveforms, and combines the single phase imaging functions with the S-P differential imaging functions. The performance of the method is demonstrated here in different tectonic environments: (1) analysis of the one year long precursory phase of 2014 Iquique earthquake in Chile; (2) detection and location of tectonic tremor sources and low-frequency earthquakes during the multiple episodes of tectonic tremor activity in southwestern Japan.

  12. Annual Hanford Seismic Report for Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-12-31

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. During FY 2009, the Hanford Seismic Network recorded nearly 3000 triggers on the seismometer system, which included over 1700 seismic events in the southeast Washington area and an additional 370 regional and teleseismic events. There were 1648 events determined to be local earthquakes relevant to the Hanford Site. Nearly all of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. Recording of the Wooded Island events began in January with over 250 events per month through June 2009. The frequency of events decreased starting in July 2009 to approximately 10-15 events per month through September 2009. Most of the events were considered minor (coda-length magnitude [Mc] less than 1.0) with 47 events in the 2.0-3.0 range. The estimated depths of the Wooded Island events are shallow (averaging less than 1.0 km deep) with a maximum depth estimated at 2.3 km. This places the Wooded Island events within the Columbia River Basalt Group (CRBG). The highest-magnitude event (3.0Mc

  13. Man-caused seismicity of Kuzbass

    Science.gov (United States)

    Emanov, Alexandr; Emanov, Alexey; Leskova, Ekaterina; Fateyev, Alexandr

    2010-05-01

    A natural seismicity of Kuznetsk Basin is confined in the main to mountain frame of Kuznetsk hollow. In this paper materials of experimental work with local station networks within sediment basin are presented. Two types of seismicity display within Kuznetsk hollow have been understood: first, man-caused seismic processes, confined to mine working and concentrated on depths up to one and a half of km; secondly, seismic activations on depths of 2-56 km, not coordinated in plan with coal mines. Every of studied seismic activations consists of large quantity of earthquakes of small powers (Ms=1-3). From one to first tens of earthquakes were recorded in a day. The earthquakes near mine working shift in space along with mine working, and seismic process become stronger at the instant a coal-plough machine is operated, and slacken at the instant the preventive works are executed. The seismic processes near three lavas in Kuznetsk Basin have been studied in detail. Uplift is the most typical focal mechanism. Activated zone near mine working reach in diameter 1-1,5 km. Seismic activations not linked with mine working testify that the subsoil of Kuznetsk hollow remain in stress state in whole. The most probable causes of man-caused action on hollow are processes, coupled with change of physical state of rocks at loss of methane from large volume or change by mine working of rock watering in large volume. In this case condensed rocks, lost gas and water, can press out upwards, realizing the reverse fault mechanism of earthquakes. A combination of stress state of hollow with man-caused action at deep mining may account for incipient activations in Kuznetsk Basin. Today earthquakes happen mainly under mine workings, though damages of workings themselves do not happen, but intensive shaking on surface calls for intent study of so dangerous phenomena. In 2009 replicates of the experiment on research of seismic activations in area of before investigated lavas have been conducted

  14. Decentralized Consistent Network Updates in SDN with ez-Segway

    KAUST Repository

    Nguyen, Thanh Dang

    2017-03-06

    We present ez-Segway, a decentralized mechanism to consistently and quickly update the network state while preventing forwarding anomalies (loops and black-holes) and avoiding link congestion. In our design, the centralized SDN controller only pre-computes information needed by the switches during the update execution. This information is distributed to the switches, which use partial knowledge and direct message passing to efficiently realize the update. This separation of concerns has the key benefit of improving update performance as the communication and computation bottlenecks at the controller are removed. Our evaluations via network emulations and large-scale simulations demonstrate the efficiency of ez-Segway, which compared to a centralized approach, improves network update times by up to 45% and 57% at the median and the 99th percentile, respectively. A deployment of a system prototype in a real OpenFlow switch and an implementation in P4 demonstrate the feasibility and low overhead of implementing simple network update functionality within switches.

  15. Second and Third Quarters Hanford Seismic Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, Donald C.; Reidel, Stephen P.; Rohay, Alan C.

    1999-10-08

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site.

  16. Southern California Seismic Network: Caltech/USGS Element of TriNet 1997-2001

    OpenAIRE

    Hauksson, Egill; Small, Patrick; Hafner, Katrin; Busby, Robert; Clayton, Robert; Goltz, James; Heaton, Tom; Hutton, Kate; Kanamori, Hiroo; Polet, Jascha

    2001-01-01

    The California Institute of Technology (Caltech), the United States Geological Survey (USGS), and the California Department of Conservation, Division of Mines and Geology (CDMG) are completing the implementation of TriNet, a modern seismic information system for southern California. TriNet consists of two elements, the Caltech-USGS element and the CDMG element (Mori et al., 1998). The Caltech-USGS element (Caltech-USGS TriNet) concentrates on rapid notification and archiving...

  17. Seismic hazard analysis of Sinop province, Turkey using ...

    Indian Academy of Sciences (India)

    1997-01-11

    Jan 11, 1997 ... 2008 in the Sinop province of Turkey this study presents a seismic hazard analysis based on ... Considering the development and improvement ... It is one of the most populated cities in the coun- ... done as reliably as the seismic hazard of region per- .... Seismic safety work of underground networks was.

  18. Performances of the UNDERground SEISmic array for the analysis of seismicity in Central Italy

    Directory of Open Access Journals (Sweden)

    R. Scarpa

    2006-06-01

    Full Text Available This paper presents the first results from the operation of a dense seismic array deployed in the underground Physics Laboratories at Gran Sasso (Central Italy. The array consists of 13 short-period, three-component seismometers with an aperture of about 550 m and average sensor spacing of 90 m. The reduced sensor spacing, joined to the spatially-white character of the background noise allows for quick and reliable detection of coherent wavefront arrivals even under very poor SNR conditions. We apply high-resolution frequency-slowness and polarization analyses to a set of 27 earthquakes recorded between November, 2002, and September, 2003, at epicentral distances spanning the 20-140 km interval. We locate these events using inversion of P- and S-wave backazimuths and S-P delay times, and compare the results with data from the Centralized National Seismic Network catalog. For the case of S-wave, the discrepancies among the two set of locations never exceed 10 km; the largest errors are instead observed for the case of P-waves. This observation may be due to the fact that the small array aperture does not allow for robust assessment of waves propagating at high apparent velocities. This information is discussed with special reference to the directions of future studies aimed at elucidating the location of seismogenetic structures in Central Italy from extended analysis of the micro-seismicity.

  19. Real-time monitoring of seismic data using satellite telemetry

    Directory of Open Access Journals (Sweden)

    L. Merucci

    1997-06-01

    Full Text Available This article describes the ARGO Satellite Seismic Network (ARGO SSN as a reliable system for monitoring, collection, visualisation and analysis of seismic and geophysical low-frequency data, The satellite digital telemetry system is composed of peripheral geophysical stations, a centraI communications node (master sta- tion located in CentraI Italy, and a data collection and processing centre located at ING (Istituto Nazionale di Geofisica, Rome. The task of the peripheral stations is to digitalise and send via satellite the geophysical data collected by the various sensors to the master station. The master station receives the data and forwards them via satellite to the ING in Rome; it also performs alI the monitoring functions of satellite communications. At the data collection and processing centre of ING, the data are received and analysed in real time, the seismic events are identified and recorded, the low-frequency geophysical data are stored. In addition, the generaI sta- tus of the satellite network and of each peripheral station connected, is monitored. The procedure for analysjs of acquired seismic signals allows the automatic calculation of local magnitude and duration magnitude The communication and data exchange between the seismic networks of Greece, Spain and Italy is the fruit of a recent development in the field of technology of satellite transmission of ARGO SSN (project of European Community "Southern Europe Network for Analysis of Seismic Data"

  20. Improvements of Real Time First Motion Focal Mechanism and Noise Characteristics of New Sites at the Puerto Rico Seismic Network

    Science.gov (United States)

    Williams, D. M.; Lopez, A. M.; Huerfano, V.; Lugo, J.; Cancel, J.

    2011-12-01

    Seismic networks need quick and efficient ways to obtain information related to seismic events for the purposes of seismic activity monitoring, risk assessment, and scientific knowledge among others. As part of an IRIS summer internship program, two projects were performed to provide a tool for quick faulting mechanism and improve seismic data at the Puerto Rico Seismic Network (PRSN). First, a simple routine to obtain a focal mechanisms, the geometry of the fault, based on first motions was developed and implemented for data analysts routine operations at PRSN. The new tool provides the analyst a quick way to assess the probable faulting mechanism that occurred while performing the interactive earthquake location procedure. The focal mechanism is generated on-the-fly when data analysts pick P wave arrivals onsets and motions. Once first motions have been identified, an in-house PRSN utility is employed to obtain the double couple representation and later plotted using GMT's psmeca utility. Second, we addressed the issue of seismic noise related to thermal fluctuations inside seismic vaults. Seismic sites can be extremely noisy due to proximity to cultural activities and unattended thermal fluctuations inside sensor housings, thus resulting in skewed readings. In the past, seismologists have used different insulation techniques to reduce the amount of unwanted noise that a seismometers experience due to these thermal changes with items such as Styrofoam, and fiber glass among others. PRSN traditionally uses Styrofoam boxes to cover their seismic sensors, however, a proper procedure to test how these method compare to other new techniques has never been approached. The deficiency of properly testing these techniques in the Caribbean and especially Puerto Rico is that these thermal fluctuations still happen because of the intense sun and humidity. We conducted a test based on the methods employed by the IRIS Transportable Array, based on insulation by sand burial of

  1. Establishing seismic design criteria to achieve an acceptable seismic margin

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1997-01-01

    In order to develop a risk based seismic design criteria the following four issues must be addressed: (1) What target annual probability of seismic induced unacceptable performance is acceptable? (2). What minimum seismic margin is acceptable? (3) Given the decisions made under Issues 1 and 2, at what annual frequency of exceedance should the Safe Shutdown Earthquake ground motion be defined? (4) What seismic design criteria should be established to reasonably achieve the seismic margin defined under Issue 2? The first issue is purely a policy decision and is not addressed in this paper. Each of the other three issues are addressed. Issues 2 and 3 are integrally tied together so that a very large number of possible combinations of responses to these two issues can be used to achieve the target goal defined under Issue 1. Section 2 lays out a combined approach to these two issues and presents three potentially attractive combined resolutions of these two issues which reasonably achieves the target goal. The remainder of the paper discusses an approach which can be used to develop seismic design criteria aimed at achieving the desired seismic margin defined in resolution of Issue 2. Suggestions for revising existing seismic design criteria to more consistently achieve the desired seismic margin are presented

  2. Investigating subduction reversal in Papua New Guinea from automatic analysis of seismicity recorded on a temporary local network

    Science.gov (United States)

    Hicks, S. P.; Harmon, N.; Rychert, C.; Tharimena, S.; Bogiatzis, P.; Savage, B.; Shen, Y.; Baillard, C.

    2017-12-01

    The area of Papua New Guinea is one of the most seismically active regions on the planet. Seismicity in the region results from oblique convergence between the Pacific and India-Australia plates, with deformation occurring across a broad region involving several microplates. The region gives an excellent natural laboratory to test geodynamic models of subduction polarity reversal, microplate interaction, and to delineate the structure of subducting plates and relic structures at depth. However, a lack of permanent seismic stations means that routine earthquake locations for small to intermediate sized earthquakes have significant location errors. In 2014, we deployed a temporary network of eight broadband stations on islands in eastern Papua New Guinea to record ongoing seismic deformation. The network straddles a complex region where subduction of the Solomon plate occurs to the south and possible subduction of the Ontong-Java plateau occurs to the north. The stations were installed for 27 months. During the deployment period, there were 13 M>6.5 earthquakes in the area, including M7.5 doublet events in 2015, giving a rich seismic dataset. A high-quality catalogue of local events was formed by a multi-step process. Using the scanloc module of SeisComp3, we first detect P-onsets using a STA/LTA detection. Once clusters of P onsets are found, S-wave picks are incorporated based on a pre-defined window length of maximum S-P time. Groups of onsets are then associated to events, giving us a starting catalogue of 269 events (1765 P-onsets) with minimum magnitude of M 3.5. In a second step, we refine onset times using a Kurtosis picker to improve location accuracy. To form robust hypocentral locations using an appropriate structural model for the area and to constrain crust and mantle structure in the region, we derive a minimum 1-D velocity model using the VELEST program. We use a starting model from Abers et al. (1991) and we restrict our catalogue to events with an

  3. Seismic Studies

    Energy Technology Data Exchange (ETDEWEB)

    R. Quittmeyer

    2006-09-25

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground

  4. Seismic Studies

    International Nuclear Information System (INIS)

    R. Quittmeyer

    2006-01-01

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at

  5. The 2017 Maple Creek Seismic Swarm in Yellowstone National Park

    Science.gov (United States)

    Pang, G.; Hale, J. M.; Farrell, J.; Burlacu, R.; Koper, K. D.; Smith, R. B.

    2017-12-01

    The University of Utah Seismograph Stations (UUSS) performs near-real-time monitoring of seismicity in the region around Yellowstone National Park in partnership with the United States Geological Survey and the National Park Service. UUSS operates and maintains 29 seismic stations with network code WY (short-period, strong-motion, and broadband) and records data from five other seismic networks—IW, MB, PB, TA, and US—to enhance the location capabilities in the Yellowstone region. A seismic catalog is produced using a conventional STA/LTA detector and single-event location techniques (Hypoinverse). On June 12, 2017, a seismic swarm began in Yellowstone National Park about 5 km east of Hebgen Lake. The swarm is adjacent to the source region of the 1959 MW 7.3 Hebgen Lake earthquake, in an area corresponding to positive Coulumb stress change from that event. As of Aug. 1, 2017, the swarm consists of 1481 earthquakes with 1 earthquake above magnitude 4, 8 earthquakes in the magnitude 3 range, 115 earthquakes in the magnitude 2 range, 469 earthquakes in the magnitude 1 range, 856 earthquakes in the magnitude 0 range, 22 earthquakes with negative magnitudes, and 10 earthquakes with no magnitude. Earthquake depths are mostly between 3 and 10 km and earthquake depth increases toward the northwest. Moment tensors for the 2 largest events (3.6 MW and 4.4. MW) show strike-slip faulting with T axes oriented NE-SW, consistent with the regional stress field. We are currently using waveform cross-correlation methods to measure differential travel times that are being used with the GrowClust program to generate high-accuracy relative relocations. Those locations will be used to identify structures in the seismicity and make inferences about the tectonic and magmatic processes causing the swarm.

  6. Regional seismic observations of the Non-Proliferation Experiment at the Livermore NTS Network

    Energy Technology Data Exchange (ETDEWEB)

    Walter, W.R.; Mayeda, K.; Patton, H.J. [Lawrence Livermore National Lab., CA (United States)] [and others

    1994-12-31

    The Non-Proliferation Experiment (NPE), a 1-kiloton chemical explosion in N-tunnel at Rainier Mesa on the Nevada Test Site (NTS), was recorded by the four station, regional seismic Livermore NTS Network, (LNN). In this study we compare the NPE`s seismic yield, frequency content, and discrimination performance with other NTS events recorded at LNN. Preliminary findings include: The NPE LNN average magnitudes are 4.16 for m{sub b}(P{sub n}) and 4.59 for m{sub b}(L{sub g}). Using published magnitude-yield relations gives nuclear equivalent yields of 2.3 and 2.2 kilotons respectively, implying enhanced coupling of chemical relative to nuclear explosions. A comparison of the NPE seismograms with those with similar magnitude N-tunnel nuclear explosions shows remarkable similarity over the frequency band 0.5 to 5.0 Hz. Outside this band the explosions show more variability, with the NPE having the least relative energy below 0.5 Hz and the most energy above 5 Hz when scaled by magnitude. Considering the variability within the N-tunnel nuclear explosions, these low- and high-frequency NPE-nuclear differences may not reflect chemical-nuclear source differences. The NPE was compared to a large number of NTS nuclear explosions and earthquakes as part of an ongoing short-period discrimination study of P{sub N}/L{sub g},P{sub g}/L{sub g}, and spectral ratios in the P{sub n}, P{sub g},L{sub g}, and coda phases. For these discriminants, the NPE looks very similar to N-tunnel nuclear explosions and other NTS nuclear explosions, implying seismic identification of contained, non-ripple-fired, chemical explosions as non-nuclear may not be possible. However, such blasts might serve as surrogate nuclear explosions when calibrating seismic discriminants in regions where nuclear testing has not occurred.

  7. Preferential attachment in evolutionary earthquake networks

    Science.gov (United States)

    Rezaei, Soghra; Moghaddasi, Hanieh; Darooneh, Amir Hossein

    2018-04-01

    Earthquakes as spatio-temporal complex systems have been recently studied using complex network theory. Seismic networks are dynamical networks due to addition of new seismic events over time leading to establishing new nodes and links to the network. Here we have constructed Iran and Italy seismic networks based on Hybrid Model and testified the preferential attachment hypothesis for the connection of new nodes which states that it is more probable for newly added nodes to join the highly connected nodes comparing to the less connected ones. We showed that the preferential attachment is present in the case of earthquakes network and the attachment rate has a linear relationship with node degree. We have also found the seismic passive points, the most probable points to be influenced by other seismic places, using their preferential attachment values.

  8. Seismic behavior and design of a primary shield structure consisting of steel-plate composite (SC) walls

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Peter N., E-mail: boothpn@purdue.edu [Lyles School of Civil Engineering, Purdue University, W. Lafayette, IN (United States); Varma, Amit H., E-mail: ahvarma@purdue.edu [Lyles School of Civil Engineering, Purdue University, W. Lafayette, IN (United States); Sener, Kadir C., E-mail: ksener@purdue.edu [Lyles School of Civil Engineering, Purdue University, W. Lafayette, IN (United States); Mori, Kentaro, E-mail: kentaro_mori@mhi.co.jp [Mitsubishi Heavy Industries, Ltd, Kobe (Japan)

    2015-12-15

    This paper presents an analytical evaluation of the seismic behavior and design of a unique primary shield (PSW) structure consisting of steel-plate composite (SC) walls designed for a typical pressurized water reactor (PWR) nuclear power plant. Researchers in Japan have previously conducted a reduced (1/6th) scale test of a PSW structure to evaluate its seismic (lateral) load-deformation behavior. This paper presents the development and benchmarking of a detailed 3D nonlinear inelastic finite element (NIFE) model to predict the lateral load-deformation response and behavior of the 1/6th scale test structure. The PSW structure consists of thick SC wall segments with complex and irregular geometry that surround the central reactor vessel cavity. The wall segments have three layers of steel plates (one each on the interior and exterior surfaces and one embedded in the middle) that are anchored to the concrete infill with stud anchors. The results from the 3D NIFE analyses include: (i) the lateral load-deformation behavior of the PSW structure, (ii) the progression of yielding in the steel plates, concrete cracking, formation of compression struts, and (iii) the final failure mode. These results are compared and benchmarked using experimental measurements and observations reported by Shodo et al. (2003). The analytical results provide significant insight into the lateral behavior and strength of the PSW structure, and are used for developing a design approach. This design approach starts with ACI 349 code equations for reinforced concrete shear walls and modifies them for application to the PSW structure. A simplified 3D linear elastic finite element (LEFE) model of the PSW structure is also proposed as a conventional structural analysis tool for estimating the design force demands for various load combinations.

  9. Seismic behavior and design of a primary shield structure consisting of steel-plate composite (SC) walls

    International Nuclear Information System (INIS)

    Booth, Peter N.; Varma, Amit H.; Sener, Kadir C.; Mori, Kentaro

    2015-01-01

    This paper presents an analytical evaluation of the seismic behavior and design of a unique primary shield (PSW) structure consisting of steel-plate composite (SC) walls designed for a typical pressurized water reactor (PWR) nuclear power plant. Researchers in Japan have previously conducted a reduced (1/6th) scale test of a PSW structure to evaluate its seismic (lateral) load-deformation behavior. This paper presents the development and benchmarking of a detailed 3D nonlinear inelastic finite element (NIFE) model to predict the lateral load-deformation response and behavior of the 1/6th scale test structure. The PSW structure consists of thick SC wall segments with complex and irregular geometry that surround the central reactor vessel cavity. The wall segments have three layers of steel plates (one each on the interior and exterior surfaces and one embedded in the middle) that are anchored to the concrete infill with stud anchors. The results from the 3D NIFE analyses include: (i) the lateral load-deformation behavior of the PSW structure, (ii) the progression of yielding in the steel plates, concrete cracking, formation of compression struts, and (iii) the final failure mode. These results are compared and benchmarked using experimental measurements and observations reported by Shodo et al. (2003). The analytical results provide significant insight into the lateral behavior and strength of the PSW structure, and are used for developing a design approach. This design approach starts with ACI 349 code equations for reinforced concrete shear walls and modifies them for application to the PSW structure. A simplified 3D linear elastic finite element (LEFE) model of the PSW structure is also proposed as a conventional structural analysis tool for estimating the design force demands for various load combinations.

  10. Consistent Steering System using SCTP for Bluetooth Scatternet Sensor Network

    Science.gov (United States)

    Dhaya, R.; Sadasivam, V.; Kanthavel, R.

    2012-12-01

    Wireless communication is the best way to convey information from source to destination with flexibility and mobility and Bluetooth is the wireless technology suitable for short distance. On the other hand a wireless sensor network (WSN) consists of spatially distributed autonomous sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants. Using Bluetooth piconet wireless technique in sensor nodes creates limitation in network depth and placement. The introduction of Scatternet solves the network restrictions with lack of reliability in data transmission. When the depth of the network increases, it results in more difficulties in routing. No authors so far focused on the reliability factors of Scatternet sensor network's routing. This paper illustrates the proposed system architecture and routing mechanism to increase the reliability. The another objective is to use reliable transport protocol that uses the multi-homing concept and supports multiple streams to prevent head-of-line blocking. The results show that the Scatternet sensor network has lower packet loss even in the congestive environment than the existing system suitable for all surveillance applications.

  11. Seismic excitation by space shuttles

    Science.gov (United States)

    Kanamori, H.; Mori, J.; Sturtevant, B.; Anderson, D.L.; Heaton, T.

    1992-01-01

    Shock waves generated by the space shuttles Columbia (August 13, 1989), Atlantis (April 11, 1991) and Discovery (September 18, 1991) on their return to Edwards Air Force Base, California, were recorded by TERRAscope (Caltech's broadband seismic network), the Caltech-U.S.G.S Southern California Seismic Network (SCSN), and the University of Southern California (USC) Los Angeles Basin Seismic Network. The spatial pattern of the arrival times exhibits hyperbolic shock fronts from which the path, velocity and altitude of the space shuttle could be determined. The shock wave was acoustically coupled to the ground, converted to a seismic wave, and recorded clearly at the broadband TERRAscope stations. The acoustic coupling occurred very differently depending on the conditions of the Earth's surface surrounding the station. For a seismic station located on hard bedrock, the shock wave (N wave) was clearly recorded with little distortion. Aside from the N wave, very little acoustic coupling of the shock wave energy to the ground occurred at these sites. The observed N wave record was used to estimate the overpressure of the shock wave accurately; a pressure change of 0.5 to 2.2 mbars was obtained. For a seismic station located close to the ocean or soft sedimentary basins, a significant amount of shock wave energy was transferred to the ground through acoustic coupling of the shock wave and the oceanic Rayleigh wave. A distinct topography such as a mountain range was found effective to couple the shock wave energy to the ground. Shock wave energy was also coupled to the ground very effectively through large man made structures such as high rise buildings and offshore oil drilling platforms. For the space shuttle Columbia, in particular, a distinct pulse having a period of about 2 to 3 seconds was observed, 12.5 s before the shock wave, with a broadband seismograph in Pasadena. This pulse was probably excited by the high rise buildings in downtown Los Angeles which were

  12. Second Quarter Hanford Seismic Report for Fiscal Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2010-06-30

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 90 local earthquakes during the second quarter of FY 2010. Eighty-one of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this quarter were a continuation of the swarm events observed during the 2009 and 2010 fiscal years and reported in previous quarterly and annual reports (Rohay et al; 2009a, 2009b, 2009c, and 2010). Most of the events were considered minor (coda-length magnitude [Mc] less than 1.0) with only 1 event in the 2.0-3.0 range; the maximum magnitude event (3.0 Mc) occurred February 4, 2010 at depth 2.4 km. The average depth of the Wooded Island events during the quarter was 1.6 km with a maximum depth estimated at 3.5 km. This placed the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude of the Wooded Island events has made them undetectable to all but local area residents. The Hanford Strong Motion Accelerometer (SMA) network was triggered several times

  13. Seismic Energy Generation and Partitioning into Various Regional Phases from Different Seismic Sources in the Middle East Region

    Science.gov (United States)

    2007-09-20

    a), a 3C SP seismic station (b) and a sensor BlastMateIII, Oron quarry (c)............................... 9 Figure 7. Seismic Array MMAI (AS49) of... seismic stations of Jordan network at distance range 22-285 km (a), and at IMS array MMAI (AS49) at 350 km, BP filtered 2-8 Hz (b...sites and portable stations, inserts show detailed location of the tripartite array elements (st.6) and configuration of the explosion boreholes and

  14. The recent seismicity of Teide volcano, Tenerife (Canary Islands, Spain)

    Science.gov (United States)

    D'Auria, L.; Albert, G. W.; Calvert, M. M.; Gray, A.; Vidic, C.; Barrancos, J.; Padilla, G.; García-Hernández, R.; Perez, N. M.

    2017-12-01

    Tenerife is an active volcanic island which experienced several eruptions of moderate intensity in historical times, and few explosive eruptions in the Holocene. The increasing population density and the consistent number of tourists are constantly raising the volcanic risk of the island.On 02/10/2016 a remarkable swarm of long-period events was recorded and was interpreted as the effect of a transient massive fluid discharge episode occurring within the deep hydrothermal system of Teide volcano. Actually, since Oct. 2016, the hydrothermal system of the volcano underwent a progressive pressurization, testified by the marked variation of different geochemical parameters. The most striking observation is the increase in the diffuse CO2 emission from the summit crater of Teide volcano which started increasing from a background value of about 20 tons/day and reaching a peak of 175 tons/day in Feb. 2017.The pressurization process has been accompanied by an increase in the volcano-tectonic seismicity of. Teide volcano, recorded by the Red Sísmica Canaria, managed by Instituto Volcanológico de Canarias (INVOLCAN). The network began its full operativity in Nov. 2016 and currently consists of 15 broadband seismic stations. Since Nov. 2016 the network detected more than 100 small magnitude earthquakes, located beneath Teide volcano at depths usually ranging between 5 and 15 km. On January 6th 2017 a M=2.5 earthquake was recorded in the area, being one of the strongest ever recorded since decades. Most of the events show typical features of the microseismicity of hydrothermal systems: high spatial and temporal clustering and similar waveforms of individual events which often are overlapped.We present the spatial and temporal distribution of the seismicity of Teide volcano since Nov. 2016, comparing it also with the past seismicity of the volcano. Furthermore we analyze the statistical properties of the numerous swarms recorded until now with the aid of a template

  15. The seismic project of the National Tsunami Hazard Mitigation Program

    Science.gov (United States)

    Oppenheimer, D.H.; Bittenbinder, A.N.; Bogaert, B.M.; Buland, R.P.; Dietz, L.D.; Hansen, R.A.; Malone, S.D.; McCreery, C.S.; Sokolowski, T.J.; Whitmore, P.M.; Weaver, C.S.

    2005-01-01

    In 1997, the Federal Emergency Management Agency (FEMA), National Oceanic and Atmospheric Administration (NOAA), U.S. Geological Survey (USGS), and the five western States of Alaska, California, Hawaii, Oregon, and Washington joined in a partnership called the National Tsunami Hazard Mitigation Program (NTHMP) to enhance the quality and quantity of seismic data provided to the NOAA tsunami warning centers in Alaska and Hawaii. The NTHMP funded a seismic project that now provides the warning centers with real-time seismic data over dedicated communication links and the Internet from regional seismic networks monitoring earthquakes in the five western states, the U.S. National Seismic Network in Colorado, and from domestic and global seismic stations operated by other agencies. The goal of the project is to reduce the time needed to issue a tsunami warning by providing the warning centers with high-dynamic range, broadband waveforms in near real time. An additional goal is to reduce the likelihood of issuing false tsunami warnings by rapidly providing to the warning centers parametric information on earthquakes that could indicate their tsunamigenic potential, such as hypocenters, magnitudes, moment tensors, and shake distribution maps. New or upgraded field instrumentation was installed over a 5-year period at 53 seismic stations in the five western states. Data from these instruments has been integrated into the seismic network utilizing Earthworm software. This network has significantly reduced the time needed to respond to teleseismic and regional earthquakes. Notably, the West Coast/Alaska Tsunami Warning Center responded to the 28 February 2001 Mw 6.8 Nisqually earthquake beneath Olympia, Washington within 2 minutes compared to an average response time of over 10 minutes for the previous 18 years. ?? Springer 2005.

  16. Annual Hanford seismic report - fiscal year 1996

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.

    1996-12-01

    Seismic monitoring (SM) at the Hanford Site was established in 1969 by the US Geological Survey (USGS) under a contract with the US Atomic Energy Commission. Since 1980, the program has been managed by several contractors under the US Department of Energy (USDOE). Effective October 1, 1996, the Seismic Monitoring workscope, personnel, and associated contracts were transferred to the USDOE Pacific Northwest National Laboratory (PNNL). SM is tasked to provide an uninterrupted collection and archives of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) located on and encircling the Hanford Site. SM is also tasked to locate and identify sources of seismic activity and monitor changes in the historical pattern of seismic activity at the Hanford Site. The data compiled are used by SM, Waste Management, and engineering activities at the Hanford Site to evaluate seismic hazards and seismic design for the Site

  17. Discriminating Induced-Microearthquakes Using New Seismic Features

    Science.gov (United States)

    Mousavi, S. M.; Horton, S.

    2016-12-01

    We studied characteristics of induced-microearthquakes on the basis of the waveforms recorded on a limited number of surface receivers using machine-learning techniques. Forty features in the time, frequency, and time-frequency domains were measured on each waveform, and several techniques such as correlation-based feature selection, Artificial Neural Networks (ANNs), Logistic Regression (LR) and X-mean were used as research tools to explore the relationship between these seismic features and source parameters. The results show that spectral features have the highest correlation to source depth. Two new measurements developed as seismic features for this study, spectral centroids and 2D cross-correlations in the time-frequency domain, performed better than the common seismic measurements. These features can be used by machine learning techniques for efficient automatic classification of low energy signals recorded at one or more seismic stations. We applied the technique to 440 microearthquakes-1.7Reference: Mousavi, S.M., S.P. Horton, C. A. Langston, B. Samei, (2016) Seismic features and automatic discrimination of deep and shallow induced-microearthquakes using neural network and logistic regression, Geophys. J. Int. doi: 10.1093/gji/ggw258.

  18. First results of cross-correlation analysis of ambient seismic noise from the Hellenic Unified Seismic Network

    NARCIS (Netherlands)

    Panou, Areti; Paulssen, Hanneke; Hatzidimitriou, Panagiotis

    2015-01-01

    In this study we present phase velocity maps that were obtained from the cross-correlation analysis of ambient seismic noise recorded in the region of Greece.We used one year (2013) of ambient seismic data obtained from the vertical component of 64 broadband permanent seismological stations that are

  19. Development of a time synchronization methodology for a wireless seismic array

    Science.gov (United States)

    Moure-García, David; Torres-González, Pedro; del Río, Joaquín; Mihai, Daniel; Domínguez Cerdeña, Itahiza

    2017-04-01

    Seismic arrays have multiple applications. In the past, the main use was nuclear tests monitoring that began in mid-twentieth century. The major difference with a seismic network is the hypocenter location procedure. With a seismic network the hypocenter's 3D coordinates are calculated while using an array, the source direction of the seismic signal is determined. Seismic arrays are used in volcanology to obtain the source azimuth of volcanic signals related to fluids movement, magma and/or gases, that do not show a clear seismic phases' onset. A key condition in the seismic array operativity is the temporal synchronization of all the sensors, better than 1 microsecond. Because of that, usually all sensors are connected to the acquisition system by cable to ensure an identical sampling time. In this work we present the design of a wireless low-cost and low-power consumption volcanic monitoring seismic array where all nodes (sensors) acquire data synchronously and transmit them to the center node where a coherent signal is pursued in near real time.

  20. Neural network analysis of crosshole tomographic images: The seismic signature of gas hydrate bearing sediments in the Mackenzie Delta (NW Canada)

    Science.gov (United States)

    Bauer, K.; Pratt, R. G.; Haberland, C.; Weber, M.

    2008-10-01

    Crosshole seismic experiments were conducted to study the in-situ properties of gas hydrate bearing sediments (GHBS) in the Mackenzie Delta (NW Canada). Seismic tomography provided images of P velocity, anisotropy, and attenuation. Self-organizing maps (SOM) are powerful neural network techniques to classify and interpret multi-attribute data sets. The coincident tomographic images are translated to a set of data vectors in order to train a Kohonen layer. The total gradient of the model vectors is determined for the trained SOM and a watershed segmentation algorithm is used to visualize and map the lithological clusters with well-defined seismic signatures. Application to the Mallik data reveals four major litho-types: (1) GHBS, (2) sands, (3) shale/coal interlayering, and (4) silt. The signature of seismic P wave characteristics distinguished for the GHBS (high velocities, strong anisotropy and attenuation) is new and can be used for new exploration strategies to map and quantify gas hydrates.

  1. Seismic investigations for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Barrows, L.J.

    1984-01-01

    Evaporite rocks in the Delaware Basin in southeastern New Mexico are being investigated as a possible site for nuclear waste disposal. Seismic studies have been conducted to establish seismic design criteria and to investigate relations between seismicity and geologic structures. In the initial phase of this study, historical and available seismic data were interpreted with respect to geology. Local instrumentation became available in 1974 when New Mexico Tech installed and began operating a seismic station in the area. Data and interpretation for 1974 through 1979 have been published. In 1980 seismic monitoring of the Northern Delaware Basin was extended to include a six station network of self-contained radio-telemetered seismometers. 9 references, 13 figures

  2. Data Delivery Latency Improvements And First Steps Towards The Distributed Computing Of The Caltech/USGS Southern California Seismic Network Earthquake Early Warning System

    Science.gov (United States)

    Stubailo, I.; Watkins, M.; Devora, A.; Bhadha, R. J.; Hauksson, E.; Thomas, V. I.

    2016-12-01

    The USGS/Caltech Southern California Seismic Network (SCSN) is a modern digital ground motion seismic network. It develops and maintains Earthquake Early Warning (EEW) data collection and delivery systems in southern California as well as real-time EEW algorithms. Recently, Behr et al., SRL, 2016 analyzed data from several regional seismic networks deployed around the globe. They showed that the SCSN was the network with the smallest data communication delays or latency. Since then, we have reduced further the telemetry delays for many of the 330 current sites. The latency has been reduced on average from 2-6 sec to 0.4 seconds by tuning the datalogger parameters and/or deploying software upgrades. Recognizing the latency data as one of the crucial parameters in EEW, we have started archiving the per-packet latencies in mseed format for all the participating sites in a similar way it is traditionally done for the seismic waveform data. The archived latency values enable us to understand and document long-term changes in performance of the telemetry links. We can also retroactively investigate how latent the waveform data were during a specific event or during a specific time period. In addition the near-real time latency values are useful for monitoring and displaying the real-time station latency, in particular to compare different telemetry technologies. A future step to reduce the latency is to deploy the algorithms on the dataloggers at the seismic stations and transmit either the final solutions or intermediate parameters to a central processing center. To implement this approach, we are developing a stand-alone version of the OnSite algorithm to run on the dataloggers in the field. This will increase the resiliency of the SCSN to potential telemetry restrictions in the immediate aftermath of a large earthquake, either by allowing local alarming by the single station, or permitting transmission of lightweight parametric information rather than continuous

  3. Quantifying capability of a local seismic network in terms of locations and focal mechanism solutions of weak earthquakes

    Czech Academy of Sciences Publication Activity Database

    Fojtíková, Lucia; Kristeková, M.; Málek, Jiří; Sokos, E.; Csicsay, K.; Zahradník, J.

    2016-01-01

    Roč. 20, č. 1 (2016), 93-106 ISSN 1383-4649 R&D Projects: GA ČR GAP210/12/2336 Institutional support: RVO:67985891 Keywords : Focal-mechanism uncertainty * Little Carpathians * Relative location uncertainty * Seismic network * Uncertainty mapping * Waveform inversion * Weak earthquake s Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.089, year: 2016

  4. Data quality control and tools in passive seismic experiments exemplified on the Czech broadband seismic pool MOBNET in the AlpArray collaborative project

    Science.gov (United States)

    Vecsey, Luděk; Plomerová, Jaroslava; Jedlička, Petr; Munzarová, Helena; Babuška, Vladislav; AlpArray Working Group

    2017-12-01

    This paper focuses on major issues related to the data reliability and network performance of 20 broadband (BB) stations of the Czech (CZ) MOBNET (MOBile NETwork) seismic pool within the AlpArray seismic experiments. Currently used high-resolution seismological applications require high-quality data recorded for a sufficiently long time interval at seismological observatories and during the entire time of operation of the temporary stations. In this paper we present new hardware and software tools we have been developing during the last two decades while analysing data from several international passive experiments. The new tools help to assure the high-quality standard of broadband seismic data and eliminate potential errors before supplying data to seismological centres. Special attention is paid to crucial issues like the detection of sensor misorientation, timing problems, interchange of record components and/or their polarity reversal, sensor mass centring, or anomalous channel amplitudes due to, for example, imperfect gain. Thorough data quality control should represent an integral constituent of seismic data recording, preprocessing, and archiving, especially for data from temporary stations in passive seismic experiments. Large international seismic experiments require enormous efforts from scientists from different countries and institutions to gather hundreds of stations to be deployed in the field during a limited time period. In this paper, we demonstrate the beneficial effects of the procedures we have developed for acquiring a reliable large set of high-quality data from each group participating in field experiments. The presented tools can be applied manually or automatically on data from any seismic network.

  5. Seismic data classification and artificial neural networks: can software replace eyeballs?

    Science.gov (United States)

    Reusch, D. B.; Larson, A. M.

    2006-05-01

    Modern seismic datasets are providing many new opportunities for furthering our understanding of our planet, ranging from the deep earth to the sub-ice sheet interface. With many geophysical applications, the large volume of these datasets raises issues of manageability in areas such as quality control (QC) and event identification (EI). While not universally true, QC can be a labor intensive, subjective (and thus not entirely reproducible) and uninspiring task when such datasets are involved. The EI process shares many of these drawbacks but has the benefit of (usually) being closer to interesting science-based questions. Here we explore two techniques from the field of artificial neural networks (ANNs) that seek to reduce the time requirements and increase the objectivity of QC and EI on seismic datasets. In particular, we focus on QC of receiver functions from broadband seismic data collected by the 2000-2003 Transantarctic Mountains Seismic Experiment (TAMSEIS). Self-organizing maps (SOMs) enable unsupervised classification of large, complex geophysical data sets (e.g., time series of the atmospheric circulation) into a fixed number of distinct generalized patterns or modes representing the probability distribution function of the input data. These patterns are organized spatially as a two-dimensional grid such that distances represent similarity (adjacent patterns will be most similar). After training, input data are matched to their most similar generalized pattern to produce frequency maps, i.e., what fraction of the data is represented best by each individual SOM pattern. Given a priori information on data quality (from previous manual grading) or event type, a probabilistic classification can be developed that gives a likelihood for each category of interest for each SOM pattern. New data are classified by identifying the closest matching pattern (without retraining) and examining the associated probabilities. Feed-forward ANNs (FFNNs) are a supervised

  6. Spatial clustering and repeating of seismic events observed along the 1976 Tangshan fault, north China

    Science.gov (United States)

    Li, Le; Chen, Qi-Fu; Cheng, Xin; Niu, Fenglin

    2007-12-01

    Spatial and temporal features of the seismicity occurring along the Tangshan fault in 2001-2006 were investigated with data recorded by the Beijing metropolitan digital Seismic Network. The relocated seismicity with the double difference method clearly exhibits a dextral bend in the middle of the fault. More than 85% of the earthquakes were found in the two clusters forming the northern segment where relatively small coseismic slips were observed during the 1976 M7.8 earthquake. The b values calculated from the seismicity occurring in the northern and southern segment are 1.03 +/- 0.02 and 0.85 +/- 0.03, respectively. The distinct seismicity and b values are probably the collective effect of the fault geometry and the regional stress field that has an ENE-WSW oriented compression. Using cross-correlation and fine relocation analyses, we also identified a total of 21 doublets and 25 multiplets that make up >50% of the total seismicity. Most of the sequences are aperiodic with recurrence intervals varying from a few minutes to hundreds of days. Based on a quasi-periodic sequence, we obtained a fault slip rate of <=2.6 mm/yr at ~15 km, which is consistent with surface GPS measurements.

  7. Learnings from the Monitoring of Induced Seismicity in Western Canada over the Past Three Years

    Science.gov (United States)

    Yenier, E.; Moores, A. O.; Baturan, D.; Spriggs, N.

    2017-12-01

    In response to induced seismicity observed in western Canada, existing public networks have been densified and a number of private networks have been deployed to closely monitor the earthquakes induced by hydraulic fracturing operations in the region. These networks have produced an unprecedented volume of seismic data, which can be used to map pre-existing geological structures and understand their activation mechanisms. Here, we present insights gained over the past three years from induced seismicity monitoring (ISM) for some of the most active operators in Canada. First, we discuss the benefits of high-quality ISM data sets for making operational decisions and how their value largely depends on choice of instrumentation, seismic network design and data processing techniques. Using examples from recent research studies, we illustrate the key role of robust modeling of regional source, attenuation and site attributes on the accuracy of event magnitudes, ground motion estimates and induced seismicity hazard assessment. Finally, acknowledging that the ultimate goal of ISM networks is assisting operators to manage induced seismic risk, we share some examples of how ISM data products can be integrated into existing protocols for developing effective risk management strategies.

  8. Toward a consistent model for strain accrual and release for the New Madrid Seismic Zone, central United States

    Science.gov (United States)

    Hough, S.E.; Page, M.

    2011-01-01

    At the heart of the conundrum of seismogenesis in the New Madrid Seismic Zone is the apparently substantial discrepancy between low strain rate and high recent seismic moment release. In this study we revisit the magnitudes of the four principal 1811–1812 earthquakes using intensity values determined from individual assessments from four experts. Using these values and the grid search method of Bakun and Wentworth (1997), we estimate magnitudes around 7.0 for all four events, values that are significantly lower than previously published magnitude estimates based on macroseismic intensities. We further show that the strain rate predicted from postglacial rebound is sufficient to produce a sequence with the moment release of one Mmax6.8 every 500 years, a rate that is much lower than previous estimates of late Holocene moment release. However, Mw6.8 is at the low end of the uncertainty range inferred from analysis of intensities for the largest 1811–1812 event. We show that Mw6.8 is also a reasonable value for the largest main shock given a plausible rupture scenario. One can also construct a range of consistent models that permit a somewhat higher Mmax, with a longer average recurrence rate. It is thus possible to reconcile predicted strain and seismic moment release rates with alternative models: one in which 1811–1812 sequences occur every 500 years, with the largest events being Mmax∼6.8, or one in which sequences occur, on average, less frequently, with Mmax of ∼7.0. Both models predict that the late Holocene rate of activity will continue for the next few to 10 thousand years.

  9. Seismic activity prediction using computational intelligence techniques in northern Pakistan

    Science.gov (United States)

    Asim, Khawaja M.; Awais, Muhammad; Martínez-Álvarez, F.; Iqbal, Talat

    2017-10-01

    Earthquake prediction study is carried out for the region of northern Pakistan. The prediction methodology includes interdisciplinary interaction of seismology and computational intelligence. Eight seismic parameters are computed based upon the past earthquakes. Predictive ability of these eight seismic parameters is evaluated in terms of information gain, which leads to the selection of six parameters to be used in prediction. Multiple computationally intelligent models have been developed for earthquake prediction using selected seismic parameters. These models include feed-forward neural network, recurrent neural network, random forest, multi layer perceptron, radial basis neural network, and support vector machine. The performance of every prediction model is evaluated and McNemar's statistical test is applied to observe the statistical significance of computational methodologies. Feed-forward neural network shows statistically significant predictions along with accuracy of 75% and positive predictive value of 78% in context of northern Pakistan.

  10. Seismicity related to geothermal development in Dixie Valley, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Ryall, A.S.; Vetter, U.R.

    1982-07-08

    A ten-station seismic network was operated in and around the Dixie Valley area from January 1980 to November 1981; three of these stations are still in operation. Data from the Dixie Valley network were analyzed through 30 Jun 1981, and results of analysis were compared with analysis of somewhat larger events for the period 1970-1979. The seismic cycle in the Western Great Basic, the geologic structural setting, and the instrumentation are also described.

  11. Kinematics and Seismotectonics of the Montello Thrust Fault (Southeastern Alps, Italy) Revealed by Local GPS and Seismic Networks

    Science.gov (United States)

    Serpelloni, E.; Anderlini, L.; Cavaliere, A.; Danesi, S.; Pondrelli, S.; Salimbeni, S.; Danecek, P.; Massa, M.; Lovati, S.

    2014-12-01

    The southern Alps fold-and-thrust belt (FTB) in northern Italy is a tectonically active area accommodating large part of the ~N-S Adria-Eurasia plate convergence, that in the southeastern Alps ranges from 1.5 to 2.5 mm/yr, as constrained by a geodetically defined rotation pole. Because of the high seismic hazard of northeastern Italy, the area is well monitored at a regional scale by seismic and GPS networks. However, more localized seismotectonic and kinematic features, at the scale of the fault segments, are not yet resolved, limiting our knowledge about the seismic potential of the different fault segments belonging to the southeastern Alps FTB. Here we present the results obtained from the analysis of data collected during local seismic and geodetic experiments conducted installing denser geophysical networks across the Montello-Bassano-Belluno system, a segment of the FTB that is presently characterized by a lower sismicity rate with respect to the surrounding domains. The Montello anticline, which is the southernmost tectonic features of the southeastern Alps FTB (located ~15 km south of the mountain front), is a nice example of growing anticline associated with a blind thrust fault. However, how the Adria-Alps convergence is partitioned across the FTB and the seismic potential of the Montello thrust (the area has been struck by a Mw~6.5 in 1695 but the causative fault is still largely debated) remained still unresolved. The new, denser, GPS data show that this area is undergoing among the highest geodetic deformation rates of the entire south Alpine chain, with a steep velocity gradient across the Montello anticline. The earthquakes recorded during the experiment, precisely relocated with double difference methods, and the new earthquake focal mechanisms well correlate with available information about sub-surface geological structures and highlight the seismotectonic activity of the Montello thrust fault. We model the GPS velocities using elastic

  12. Products and Services Available from the Southern California Earthquake Data Center (SCEDC) and the Southern California Seismic Network (SCSN)

    Science.gov (United States)

    Yu, E.; Bhaskaran, A.; Chen, S.; Chowdhury, F. R.; Meisenhelter, S.; Hutton, K.; Given, D.; Hauksson, E.; Clayton, R. W.

    2010-12-01

    Currently the SCEDC archives continuous and triggered data from nearly 5000 data channels from 425 SCSN recorded stations, processing and archiving an average of 12,000 earthquakes each year. The SCEDC provides public access to these earthquake parametric and waveform data through its website www.data.scec.org and through client applications such as STP and DHI. This poster will describe the most significant developments at the SCEDC in the past year. Updated hardware: ● The SCEDC has more than doubled its waveform file storage capacity by migrating to 2 TB disks. New data holdings: ● Waveform data: Beginning Jan 1, 2010 the SCEDC began continuously archiving all high-sample-rate strong-motion channels. All seismic channels recorded by SCSN are now continuously archived and available at SCEDC. ● Portable data from El Mayor Cucapah 7.2 sequence: Seismic waveforms from portable stations installed by researchers (contributed by Elizabeth Cochran, Jamie Steidl, and Octavio Lazaro-Mancilla) have been added to the archive and are accessible through STP either as continuous data or associated with events in the SCEDC earthquake catalog. This additional data will help SCSN analysts and researchers improve event locations from the sequence. ● Real time GPS solutions from El Mayor Cucapah 7.2 event: Three component 1Hz seismograms of California Real Time Network (CRTN) GPS stations, from the April 4, 2010, magnitude 7.2 El Mayor-Cucapah earthquake are available in SAC format at the SCEDC. These time series were created by Brendan Crowell, Yehuda Bock, the project PI, and Mindy Squibb at SOPAC using data from the CRTN. The El Mayor-Cucapah earthquake demonstrated definitively the power of real-time high-rate GPS data: they measure dynamic displacements directly, they do not clip and they are also able to detect the permanent (coseismic) surface deformation. ● Triggered data from the Quake Catcher Network (QCN) and Community Seismic Network (CSN): The SCEDC in

  13. Waveform through the subducted plate under the Tokyo region in Japan observed by a ultra-dense seismic network (MeSO-net) and seismic activity around mega-thrust earthquakes area

    Science.gov (United States)

    Sakai, S.; Kasahara, K.; Nanjo, K.; Nakagawa, S.; Tsuruoka, H.; Morita, Y.; Kato, A.; Iidaka, T.; Hirata, N.; Tanada, T.; Obara, K.; Sekine, S.; Kurashimo, E.

    2009-12-01

    In central Japan, the Philippine Sea plate (PSP) subducts beneath the Tokyo Metropolitan area, the Kanto region, where it causes mega-thrust earthquakes, such as the 1703 Genroku earthquake (M8.0) and the 1923 Kanto earthquake (M7.9) which had 105,000 fatalities. A M7 or greater earthquake in this region at present has high potential to produce devastating loss of life and property with even greater global economic repercussions. The Central Disaster Management Council of Japan estimates the next great earthquake will cause 11,000 fatalities and 112 trillion yen (1 trillion US$) economic loss. This great earthquake is evaluated to occur with a probability of 70 % in 30 years by the Earthquake Research Committee of Japan. We had started the Special Project for Earthquake Disaster Mitigation in Tokyo Metropolitan area (2007-2012). Under this project, the construction of the Metropolitan Seismic Observation network (MeSO-net) that consists of about 400 observation sites was started [Kasahara et al., 2008; Nakagawa et al., 2008]. Now, we had 178 observation sites. The correlation of the wave is high because the observation point is deployed at about 2 km intervals, and the identification of the later phase is recognized easily thought artificial noise is very large. We also discuss the relation between a deformation of PSP and intra-plate M7+ earthquakes: the PSP is subducting beneath the Honshu arc and also colliding with the Pacific plate. The subduction and collision both contribute active seismicity in the Kanto region. We are going to present a high resolution tomographic image to show low velocity zone which suggests a possible internal failure of the plate; a source region of the M7+ intra-plate earthquake. Our study will contribute a new assessment of the seismic hazard at the Metropolitan area in Japan. Acknowledgement: This study was supported by the Earthquake Research Institute cooperative research program.

  14. Seismic isolation in New Zealand

    International Nuclear Information System (INIS)

    Skinner, R.I.; Robinson, W.H.; McVerry, G.H.

    1989-01-01

    Bridges, buildings, and industrial equipment can be given increased protection from earthquake damage by limiting the earthquake attack through seismic isolation. A broad summary of the seismic responses of base-isolated structures is of considerable assistance for their preliminary design. Seismic isolation as already used in New Zealand consists of a flexible base or support combined with some form of energy-dissipating device, usually involving the hysteretic working of steel or lead. This paper presents examples of the New Zealand experience, where seismic isolation has been used for 42 bridges, 3 buildings, a tall chimney, and high-voltage capacitor banks. Additional seismic response factors, which may be important for nuclear power plants, are also discussed briefly

  15. "Geo-statistics methods and neural networks in geophysical applications: A case study"

    Science.gov (United States)

    Rodriguez Sandoval, R.; Urrutia Fucugauchi, J.; Ramirez Cruz, L. C.

    2008-12-01

    The study is focus in the Ebano-Panuco basin of northeastern Mexico, which is being explored for hydrocarbon reservoirs. These reservoirs are in limestones and there is interest in determining porosity and permeability in the carbonate sequences. The porosity maps presented in this study are estimated from application of multiattribute and neural networks techniques, which combine geophysics logs and 3-D seismic data by means of statistical relationships. The multiattribute analysis is a process to predict a volume of any underground petrophysical measurement from well-log and seismic data. The data consist of a series of target logs from wells which tie a 3-D seismic volume. The target logs are neutron porosity logs. From the 3-D seismic volume a series of sample attributes is calculated. The objective of this study is to derive a set of attributes and the target log values. The selected set is determined by a process of forward stepwise regression. The analysis can be linear or nonlinear. In the linear mode the method consists of a series of weights derived by least-square minimization. In the nonlinear mode, a neural network is trained using the select attributes as inputs. In this case we used a probabilistic neural network PNN. The method is applied to a real data set from PEMEX. For better reservoir characterization the porosity distribution was estimated using both techniques. The case shown a continues improvement in the prediction of the porosity from the multiattribute to the neural network analysis. The improvement is in the training and the validation, which are important indicators of the reliability of the results. The neural network showed an improvement in resolution over the multiattribute analysis. The final maps provide more realistic results of the porosity distribution.

  16. Plateau subduction, intraslab seismicity, and the Denali (Alaska) volcanic gap

    Science.gov (United States)

    Chuang, Lindsay Yuling; Bostock, Michael; Wech, Aaron; Plourde, Alexandre

    2018-01-01

    Tectonic tremors in Alaska (USA) are associated with subduction of the Yakutat plateau, but their origins are unclear due to lack of depth constraints. We have processed tremor recordings to extract low-frequency earthquakes (LFEs), and generated a set of six LFE waveform templates via iterative network matched filtering and stacking. The timing of impulsive P (compressional) wave and S (shear) wave arrivals on template waveforms places LFEs at 40–58 km depth, near the upper envelope of intraslab seismicity and immediately updip of increased levels of intraslab seismicity. S waves at near-epicentral distances display polarities consistent with shear slip on the plate boundary. We compare characteristics of LFEs, seismicity, and tectonic structures in central Alaska with those in warm subduction zones, and propose a new model for the region’s unusual intraslab seismicity and the enigmatic Denali volcanic gap (i.e., an area of no volcanism where expected). We argue that fluids in the Yakutat plate are confined to its upper crust, and that shallow subduction leads to hydromechanical conditions at the slab interface in central Alaska akin to those in warm subduction zones where similar LFEs and tremor occur. These conditions lead to fluid expulsion at shallow depths, explaining strike-parallel alignment of tremor occurrence with the Denali volcanic gap. Moreover, the lack of double seismic zone and restriction of deep intraslab seismicity to a persistent low-velocity zone are simple consequences of anhydrous conditions prevailing in the lower crust and upper mantle of the Yakutat plate.

  17. The Seismic Broad Band Western Mediterranean (wm) Network and the Obs Fomar Pool: Current state and Obs activities.

    Science.gov (United States)

    Pazos, Antonio; Davila, Jose Martin; Buforn, Elisa; Bezzeghoud, Mourad; Harnafi, Mimoun; Mattesini, Mauricio; Caldeira, Bento; Hanka, Winfried; El Moudnib, Lahcen; Strollo, Angelo; Roca, Antoni; Lopez de Mesa, Mireya; Dahm, Torsten; Cabieces, Roberto

    2016-04-01

    The Western Mediterranean (WM) seismic network started in 1996 as an initiative of the Royal Spanish Navy Observatory (ROA) and the Universidad Complutense de Madrid (UCM), with the collaboration of the GeoForschungsZentrum (GFZ) of Potsdam. A first broad band seismic station (SFUC) was installed close to Cádiz (South Spain). Since then, additional stations have been installed in the Ibero-Moghrebian region. In 2005, the "WM" code was assigned by the FDSN and new partners were jointed: Evora University (UEVO, Portugal), the Scientifique Institute of Rabat (ISRABAT, Morocco), and GFZ. Now days, the WM network is composed by 15 BB stations, all of them with Streckaisen STS-2 or STS-2.5 sensors, Quanterra or Earthdata digitizers and SeiscomP. Most them have co-installed a permanent geodetic GPS stations, and some them also have an accelerometer. There are 10 stations deployed in Spanish territory (5 in the Iberian peninsula, 1 in Balearic islands and 4 in North Africa Spanish places) with VSAT or Internet communications, 2 in Portugal (one of them without real time), and 3 in Morocco (2 VSAT and 1 ADSL). Additionally, 2 more stations (one in South Spain and one in Morocco) will be installed along this year. Additionally ROA has deployed a permanent real time VBB (CMG-3T: 360s) station at the Alboran Island. Due to the fact that part of the seismic activity is located at marine areas, and also because of the poor geographic azimuthal coverage at some zones provided by the land stations (specially in the SW of the San Vicente Cape area), ROA and UCM have acquired six broad band "LOBSTERN" OBS, manufactured by KUM (Kiel, Germany), conforming the OBS FOMAR pool. Three of them with CMG-40T sensor and the other with Trillium 120. These OBS were deployed along the Gibraltar strait since January to November 2014 to study the microseismicity in the Gibraltar strait area. In September 2015 FOMAR network has been deployed in SW of the San Vicente Cape for 8 months as a part of

  18. Time-reversibility in seismic sequences: Application to the seismicity of Mexican subduction zone

    Science.gov (United States)

    Telesca, L.; Flores-Márquez, E. L.; Ramírez-Rojas, A.

    2018-02-01

    In this paper we investigate the time-reversibility of series associated with the seismicity of five seismic areas of the subduction zone beneath the Southwest Pacific Mexican coast, applying the horizontal visibility graph method to the series of earthquake magnitudes, interevent times, interdistances and magnitude increments. We applied the Kullback-Leibler divergence D that is a metric for quantifying the degree of time-irreversibility in time series. Our findings suggest that among the five seismic areas, Jalisco-Colima is characterized by time-reversibility in all the four seismic series. Our results are consistent with the peculiar seismo-tectonic characteristics of Jalisco-Colima, which is the closest to the Middle American Trench and belongs to the Mexican volcanic arc.

  19. Seismic response of buried pipelines: a state-of-the-art review

    International Nuclear Information System (INIS)

    Datta, T.K.

    1999-01-01

    A state-of-the-art review of the seismic response of buried pipelines is presented. The review includes modeling of soil-pipe system and seismic excitation, methods of response analysis of buried pipelines, seismic behavior of buried pipelines under different parametric variations, seismic stresses at the bends and intersections of network of pipelines. pipe damage in earthquakes and seismic risk analysis of buried pipelines. Based on the review, the future scope of work on the subject is outlined. (orig.)

  20. Bulgarian National Digital Seismological Network

    Science.gov (United States)

    Dimitrova, L.; Solakov, D.; Nikolova, S.; Stoyanov, S.; Simeonova, S.; Zimakov, L. G.; Khaikin, L.

    2011-12-01

    The Bulgarian National Digital Seismological Network (BNDSN) consists of a National Data Center (NDC), 13 stations equipped with RefTek High Resolution Broadband Seismic Recorders - model DAS 130-01/3, 1 station equipped with Quanterra 680 and broadband sensors and accelerometers. Real-time data transfer from seismic stations to NDC is realized via Virtual Private Network of the Bulgarian Telecommunication Company. The communication interruptions don't cause any data loss at the NDC. The data are backed up in the field station recorder's 4Mb RAM memory and are retransmitted to the NDC immediately after the communication link is re-established. The recorders are equipped with 2 compact flash disks able to save more than 1 month long data. The data from the flash disks can be downloaded remotely using FTP. The data acquisition and processing hardware redundancy at the NDC is achieved by two clustered SUN servers and two Blade Workstations. To secure the acquisition, processing and data storage processes a three layer local network is designed at the NDC. Real-time data acquisition is performed using REFTEK's full duplex error-correction protocol RTPD. Data from the Quanterra recorder and foreign stations are fed into RTPD in real-time via SeisComP/SeedLink protocol. Using SeisComP/SeedLink software the NDC transfers real-time data to INGV-Roma, NEIC-USA, ORFEUS Data Center. Regional real-time data exchange with Romania, Macedonia, Serbia and Greece is established at the NDC also. Data processing is performed by the Seismic Network Data Processor (SNDP) software package running on the both Servers. SNDP includes subsystems: Real-time subsystem (RTS_SNDP) - for signal detection; evaluation of the signal parameters; phase identification and association; source estimation; Seismic analysis subsystem (SAS_SNDP) - for interactive data processing; Early warning subsystem (EWS_SNDP) - based on the first arrived P-phases. The signal detection process is performed by

  1. Along-strike Variations in the Himalayas Illuminated by the Aftershock Sequence of the 2015 Mw 7.8 Gorkha Earthquake Using the NAMASTE Local Seismic Network

    Science.gov (United States)

    Mendoza, M.; Ghosh, A.; Karplus, M. S.; Nabelek, J.; Sapkota, S. N.; Adhikari, L. B.; Klemperer, S. L.; Velasco, A. A.

    2016-12-01

    As a result of the 2015 Mw 7.8 Gorkha earthquake, more than 8,000 people were killed from a combination of infrastructure failure and triggered landslides. This earthquake produced 4 m of peak co-seismic slip as the fault ruptured 130 km east under densely populated cities, such as Kathmandu. To understand earthquake dynamics in this part of the Himalayas and help mitigate similar future calamities by the next destructive event, it is imperative to study earthquake activities in detail and improve our understanding of the source and structural complexities. In response to the Gorkha event, multiple institutions developed and deployed a 10-month long dense seismic network called NAMASTE. It blanketed a 27,650 km2 area, mainly covering the rupture area of the Gorkha earthquake, in order to capture the dynamic sequence of aftershock behavior. The network consisted of a mix of 45 broadband, short-period, and strong motion sensors, with an average spacing of 20 km. From the first 6 months of data, starting approximately 1.5 after the mainshock, we develop a robust catalog containing over 3,000 precise earthquake locations, and local magnitudes that range between 0.3 and 4.9. The catalog has a magnitude of completeness of 1.5, and an overall low b-value of 0.78. Using the HypoDD algorithm, we relocate earthquake hypocenters with high precision, and thus illustrate the fault geometry down to depths of 25 km where we infer the location of the gently-dipping Main Frontal Thrust (MFT). Above the MFT, the aftershocks illuminate complex structure produced by relatively steeply dipping faults. Interestingly, we observe sharp along-strike change in the seismicity pattern. The eastern part of the aftershock area is significantly more active than the western part. The change in seismicity may reflect structural and/or frictional lateral heterogeneity in this part of the Himalayan fault system. Such along-strike variations play an important role in rupture complexities and

  2. An assessment of seismic monitoring in the United States; requirement for an Advanced National Seismic System

    Science.gov (United States)

    ,

    1999-01-01

    This report assesses the status, needs, and associated costs of seismic monitoring in the United States. It sets down the requirement for an effective, national seismic monitoring strategy and an advanced system linking national, regional, and urban monitoring networks. Modernized seismic monitoring can provide alerts of imminent strong earthquake shaking; rapid assessment of distribution and severity of earthquake shaking (for use in emergency response); warnings of a possible tsunami from an offshore earthquake; warnings of volcanic eruptions; information for correctly characterizing earthquake hazards and for improving building codes; and data on response of buildings and structures during earthquakes, for safe, cost-effective design, engineering, and construction practices in earthquake-prone regions.

  3. Vertical seismic profiling and integration with reflection seismic studies at Laxemar, 2000

    International Nuclear Information System (INIS)

    Juhlin, C.; Bergman, B.; Cosma, C.; Keskinen, J.; Enescu, N.

    2002-02-01

    Vertical seismic profile (VSP) data were acquired in October 2000 in the 1700 m deep KLX02 borehole, near Laxemar in southeastern Sweden. The objectives of the VSP were to image reflectors in the borehole for correlation with surface seismic and borehole data, study the signal penetration of explosive versus mechanical sources and determine the seismic velocity as a function of depth. Five principal source points were used, one located close to the KLX02 wellhead and 4 others that were offset by about 200 m to 400 m. An explosive source was only used at the wellhead and consisted of 15 grams of dynamite in 90 cm deep shot holes in bedrock. A swept impact seismic source (SIST) was also used at the wellhead, as well as at the other four offset source points. The primary SIST source consisted of a computer controlled mechanical hammer mounted on a tractor. By activating the hammer over a 15 second sweep length, the total energy transferred to the ground is on the same order as that produced by the dynamite. The recorded data are then processed to generate seismic records that are equivalent to a single impact source. A smaller hand held SIST source was also tested at the wellhead. Tests of both the tractor mounted source and dynamite were made at a location offset somewhat from the wellhead at a site containing loose sediments at the surface. Full waveform sonic, resistivity and gamma logs were also acquired in conjunction the VSP survey. A comparison between the explosive and large SIST source shows that comparable energy levels are produced by the two methods. The SIST source appears to be more stable in terms of the energy level, although the frequency content of data are somewhat lower. However, its most significant advantage is the low cost of preparation of the source points and the speed of the acquisition. Numerous reflections are observed on the VSP, as is the case on the surface seismic, implying a complex structure in the vicinity of the KLX02 borehole

  4. Vertical seismic profiling and integration with reflection seismic studies at Laxemar, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Juhlin, C.; Bergman, B. [Uppsala Univ. (Sweden); Cosma, C.; Keskinen, J.; Enescu, N. [Vibrometric Oy, Helsinki (Finland)

    2002-02-01

    Vertical seismic profile (VSP) data were acquired in October 2000 in the 1700 m deep KLX02 borehole, near Laxemar in southeastern Sweden. The objectives of the VSP were to image reflectors in the borehole for correlation with surface seismic and borehole data, study the signal penetration of explosive versus mechanical sources and determine the seismic velocity as a function of depth. Five principal source points were used, one located close to the KLX02 wellhead and 4 others that were offset by about 200 m to 400 m. An explosive source was only used at the wellhead and consisted of 15 grams of dynamite in 90 cm deep shot holes in bedrock. A swept impact seismic source (SIST) was also used at the wellhead, as well as at the other four offset source points. The primary SIST source consisted of a computer controlled mechanical hammer mounted on a tractor. By activating the hammer over a 15 second sweep length, the total energy transferred to the ground is on the same order as that produced by the dynamite. The recorded data are then processed to generate seismic records that are equivalent to a single impact source. A smaller hand held SIST source was also tested at the wellhead. Tests of both the tractor mounted source and dynamite were made at a location offset somewhat from the wellhead at a site containing loose sediments at the surface. Full waveform sonic, resistivity and gamma logs were also acquired in conjunction the VSP survey. A comparison between the explosive and large SIST source shows that comparable energy levels are produced by the two methods. The SIST source appears to be more stable in terms of the energy level, although the frequency content of data are somewhat lower. However, its most significant advantage is the low cost of preparation of the source points and the speed of the acquisition. Numerous reflections are observed on the VSP, as is the case on the surface seismic, implying a complex structure in the vicinity of the KLX02 borehole

  5. An Assessment of the Seismicity of the Bursa Region from a Temporary Seismic Network

    Science.gov (United States)

    Gok, Elcin; Polat, Orhan

    2012-04-01

    A temporary earthquake station network of 11 seismological recorders was operated in the Bursa region, south of the Marmara Sea in the northwest of Turkey, which is located at the southern strand of the North Anatolian Fault Zone (NAFZ). We located 384 earthquakes out of a total of 582 recorded events that span the study area between 28.50-30.00°E longitudes and 39.75-40.75°N latitudes. The depth of most events was found to be less than 29 km, and the magnitude interval ranges were between 0.3 ≤ ML ≤ 5.4, with RMS less than or equal to 0.2. Seismic activities were concentrated southeast of Uludag Mountain (UM), in the Kestel-Igdir area and along the Gemlik Fault (GF). In the study, we computed 10 focal mechanisms from temporary and permanents networks. The predominant feature of the computed focal mechanisms is the relatively widespread near horizontal northwest-southeast (NW-SE) T-axis orientation. These fault planes have been used to obtain the orientation and shape factor (R, magnitude stress ratio) of the principal stress tensors (σ1, σ2, σ3). The resulting stress tensors reveal σ1 closer to the vertical (oriented NE-SW) and σ2, σ3 horizontal with R = 0.5. These results confirm that Bursa and its vicinity could be defined by an extensional regime showing a primarily normal to oblique-slip motion character. It differs from what might be expected from the stress tensor inversion for the NAFZ. Different fault patterns related to structural heterogeneity from the north to the south in the study area caused a change in the stress regime from strike-slip to normal faulting.

  6. Burar seismic station: evaluation of seismic performance

    International Nuclear Information System (INIS)

    Ghica, Daniela; Popa, Mihaela

    2005-01-01

    A new seismic monitoring system, the Bucovina Seismic Array (BURAR), has been established since July 2002, in the Northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics (NIEP), Romania. The small-aperture array consists of 10 seismic sensors (9 vertical short-period and one three-component broad band) located in boreholes and distributed in a 5 x 5 km 2 area. At present, the seismic data are continuously recorded by the BURAR and transmitted in real-time to the Romanian National Data Center in Bucharest and National Data Center of the USA, in Florida. Based on the BURAR seismic information gathered at the National Data Center, NIEP (ROM N DC), in the August 2002 - December 2004 time interval, analysis and statistical assessments were performed. Following the preliminary processing of the data, several observations on the global performance of the BURAR system were emphasized. Data investigation showed an excellent efficiency of the BURAR system particularly in detecting teleseismic and regional events. Also, a statistical analysis for the BURAR detection capability of the local Vrancea events was performed in terms of depth and magnitude for the year 2004. The high signal detection capability of the BURAR resulted, generally, in improving the location solutions for the Vrancea seismic events. The location solution accuracy is enhanced when adding BURAR recordings, especially in the case of low magnitude events (recorded by few stations). The location accuracy is increased, both in terms of constraining hypocenter depth and epicentral coordinates. Our analysis certifies the importance of the BURAR system in NIEP efforts to elaborate seismic bulletins. Furthermore, the specific procedures for array data processing (beam forming, f-k analysis) increase significantly the signal-to-noise ratio by summing up the coherent signals from the array components, and ensure a better accuracy

  7. Seismic monitoring at Deception Island volcano (Antarctica): the 2010-2011 survey

    Science.gov (United States)

    Martín, R.; Carmona, E.; Almendros, J.; Serrano, I.; Villaseñor, A.; Galeano, J.

    2012-04-01

    As an example of the recent advances introduced in seismic monitoring of Deception Island volcano (Antarctica) during recent years, we describe the instrumental network deployed during the 2010-2011 survey by the Instituto Andaluz de Geofísica of University of Granada, Spain (IAG-UGR). The period of operation extended from December 19, 2010 to March 5, 2011. We deployed a wireless seismic network composed by four three-component seismic stations. These stations are based on 24-bit SL04 SARA dataloggers sampling at 100 sps. They use a PC with embedded linux and SEISLOG data acquisition software. We use two types of three-component seismometers: short-period Mark L4C with natural frequency of 1 Hz and medium-period Lennartz3D/5s with natural frequency of 0.2 Hz. The network was designed for an optimum spatial coverage of the northern half of Deception, where a magma chamber has been reported. Station locations include the vicinity of the Spanish base "Gabriel de Castilla" (GdC), Obsidianas Beach, a zone near the craters from the 1970 eruptions, and the Chilean Shelter located south of Pendulum Cove. Continuous data from the local seismic network are received in real-time in the base by wifi transmission. We used Ubiquiti Networks Nanostation2 antennas with 2.4 GHz, dual-polarity, 10 dBi gain, and 54 Mbps transmission rate. They have shown a great robustness and speed for real-time applications. To prioritize data acquisition when the battery level is low, we have designed a circuit that allows independent power management for the seismic station and wireless transmission system. The reception antenna located at GdC is connected to a computer running SEISCOMP. This software supports several transmission protocols and manages the visualization and recording of seismic data, including the generation of summary plots to show the seismic activity. These twelve data channels are stored in miniseed format and displayed in real time, which allows for a rapid evaluation of

  8. Consistent initial conditions for the Saint-Venant equations in river network modeling

    Directory of Open Access Journals (Sweden)

    C.-W. Yu

    2017-09-01

    Full Text Available Initial conditions for flows and depths (cross-sectional areas throughout a river network are required for any time-marching (unsteady solution of the one-dimensional (1-D hydrodynamic Saint-Venant equations. For a river network modeled with several Strahler orders of tributaries, comprehensive and consistent synoptic data are typically lacking and synthetic starting conditions are needed. Because of underlying nonlinearity, poorly defined or inconsistent initial conditions can lead to convergence problems and long spin-up times in an unsteady solver. Two new approaches are defined and demonstrated herein for computing flows and cross-sectional areas (or depths. These methods can produce an initial condition data set that is consistent with modeled landscape runoff and river geometry boundary conditions at the initial time. These new methods are (1 the pseudo time-marching method (PTM that iterates toward a steady-state initial condition using an unsteady Saint-Venant solver and (2 the steady-solution method (SSM that makes use of graph theory for initial flow rates and solution of a steady-state 1-D momentum equation for the channel cross-sectional areas. The PTM is shown to be adequate for short river reaches but is significantly slower and has occasional non-convergent behavior for large river networks. The SSM approach is shown to provide a rapid solution of consistent initial conditions for both small and large networks, albeit with the requirement that additional code must be written rather than applying an existing unsteady Saint-Venant solver.

  9. Bridging the Gap - Networking Educators using Real-Time Seismic Data

    Science.gov (United States)

    Ortiz, A. M.; Renwald, M. D.; Baldwin, T. K.; Hall, M. K.

    2004-12-01

    After nearly a decade, the seismology community has made critical advances in identifying what is effective and what is needed for success in incorporating real-time seismic data in the classroom. Today's K-16 classroom teachers have many options and opportunities for incorporating short- and long-term inquiry activities for monitoring earthquakes and analyzing seismic data in their daily instruction. Through the SpiNet program, we are providing web-based tools that support educators working with real-time seismic data (http://www.scieds.com/spinet/). Our site includes a Recent Seismicity section, which allows users to share seismic data in real-time, and provides near real-time information about global seismicity. Our Activities section provides data and lessons to assist educators who wish to integrate seismology into their classroom. The Research section, currently under development, will allow educators to share general information about how they teach seismology in their classroom through a discussion board and by posting lesson plans. In addition, we are developing a user-friendly tool for students to post results of their research projects. Designing a website which targets a range of users requires a working knowledge of both user needs and website programming and design. User needs include providing a logical navigational structure and accounting for differences in browser functionality, internet access, and users' abilities. Using website development tools, such as PHP, MySQL, RDF feeds, and specialized geoscience applications, we are automating site maintenance; incorporating databases for information storage and retrieval; and providing accessibility for users with a range of skills and physical limitations. By incorporating these features, we have built a dynamic interface for a broad range of users interested in educational seismology.

  10. Seismological investigation of earthquakes in the New Madrid Seismic Zone

    International Nuclear Information System (INIS)

    Herrmann, R.B.; Nguyen, B.

    1993-08-01

    Earthquake activity in the New Madrid Seismic Zone had been monitored by regional seismic networks since 1975. During this time period, over 3,700 earthquakes have been located within the region bounded by latitudes 35 degrees--39 degrees N and longitudes 87 degrees--92 degrees W. Most of these earthquakes occur within a 1.5 degrees x 2 degrees zone centered on the Missouri Bootheel. Source parameters of larger earthquakes in the zone and in eastern North America are determined using surface-wave spectral amplitudes and broadband waveforms for the purpose of determining the focal mechanism, source depth and seismic moment. Waveform modeling of broadband data is shown to be a powerful tool in defining these source parameters when used complementary with regional seismic network data, and in addition, in verifying the correctness of previously published focal mechanism solutions

  11. Operating a global seismic network - perspectives from the USGS GSN

    Science.gov (United States)

    Gee, L. S.; Derr, J. S.; Hutt, C. R.; Bolton, H.; Ford, D.; Gyure, G. S.; Storm, T.; Leith, W.

    2007-05-01

    The Global Seismographic Network (GSN) is a permanent digital network of state-of-the-art seismological and geophysical sensors connected by a global telecommunications network, serving as a multi-use scientific facility used for seismic monitoring for response applications, basic and applied research in solid earthquake geophysics, and earth science education. A joint program of the U.S. Geological Survey (USGS), the National Science Foundation, and Incorporated Research Institutions in Seismology (IRIS), the GSN provides near- uniform, worldwide monitoring of the Earth through 144 modern, globally distributed seismic stations. The USGS currently operates 90 GSN or GSN-affiliate stations. As a US government program, the USGS GSN is evaluated on several performance measures including data availability, data latency, and cost effectiveness. The USGS-component of the GSN, like the GSN as a whole, is in transition from a period of rapid growth to steady- state operations. The program faces challenges of aging equipment and increased operating costs at the same time that national and international earthquake and tsunami monitoring agencies place an increased reliance on GSN data. Data acquisition of the USGS GSN is based on the Quanterra Q680 datalogger, a workhorse system that is approaching twenty years in the field, often in harsh environments. An IRIS instrumentation committee recently selected the Quanterra Q330 HR as the "next generation" GSN data acquisition system, and the USGS will begin deploying the new equipment in the middle of 2007. These new systems will address many of the issues associated with the ageing Q680 while providing a platform for interoperability across the GSN.. In order to address the challenge of increasing operational costs, the USGS employs several tools. First, the USGS benefits from the contributions of local host institutions. The station operators are the first line of defense when a station experiences problems, changing boards

  12. Along-Strike Differences of the Main Himalayan Thrust and Deformation within the Indian Crust: Insights from Seismicity and Seismic Velocities in Bhutan and its Foreland

    Science.gov (United States)

    Diehl, T.; Singer, J.; Hetényi, G.; Kissling, E. H.; Clinton, J. F.

    2015-12-01

    The seismicity of Bhutan is characterized by the apparent lack of great earthquakes and a significantly lower activity compared to most other parts of the Himalayan arc. To better understand the underlying mechanisms of this anomalously low activity and to relate it with possible along-strike differences in the structure of the orogenic belt, a temporary network with up to 38 broadband seismometers was installed in Bhutan between January 2013 and November 2014. In this work we present a catalog of local and regional earthquakes detected and located with the GANSSER network complemented by regional stations in India, Bangladesh, and China. State-of-the-art data analysis and earthquake location procedures were applied to derive a high-precision earthquake catalog of Bhutan and surrounding regions. Focal mechanisms from regional moment tensor inversions and first-motion polarities complement the earthquake catalog. In the vicinity of the Shumar-Kuru Chu Spur in East Bhutan, seismicity forms a moderately dipping structure at about 12 km depth, which we associate with the Main Himalayan Thrust (MHT). North of 27.6°N the dip of the structure steepens, which can be interpreted as a ramp along the MHT. In West Bhutan seismicity occurs at depths of 20 to 40 km and receiver function images indicate that seismicity occurs in the underthrusting Indian crust rather than on the MHT. The highest seismic activity is clustered along the Goalpara Lineament, a dextral NE-SW striking shear zone in southwest Bhutan, which appears to connect to the western edge of the Shillong Plateau in the foreland. Focal depths indicate that this shear zone is located at depths of 20-30 km and therefore in the underthrusting Indian crust. Preliminary results of a 3D local earthquake tomography show substantial differences in the uppermost crust between east and west Bhutan. Consistent with our receiver function images, the results also indicate a thinning of the crustal root towards eastern Bhutan.

  13. Puerto Rico Seismic Network Operations During and After the Hurricane Maria: Response, Continuity of Operations, and Experiences

    Science.gov (United States)

    Vanacore, E. A.; Baez-Sanchez, G.; Huerfano, V.; Lopez, A. M.; Lugo, J.

    2017-12-01

    The Puerto Rico Seismic Network (PRSN) is an integral part of earthquake and tsunami monitoring in Puerto Rico and the Virgin Islands. The PRSN conducts scientific research as part of the University of Puerto Rico Mayaguez, conducts the earthquake monitoring for the region, runs extensive earthquake and tsunami education and outreach programs, and acts as a Tsunami Warning Focal Point Alternate for Puerto Rico. During and in the immediate aftermath of Hurricane Maria, the PRSN duties and responsibilities evolved from a seismic network to a major information and communications center for the western side of Puerto Rico. Hurricane Maria effectively destroyed most communications on island, critically between the eastern side of the island where Puerto Rico's Emergency Management's (PREMA) main office and the National Weather Service (NWS) is based and the western side of the island. Additionally, many local emergency management agencies on the western side of the island lost a satellite based emergency management information system called EMWIN which provides critical tsunami and weather information. PRSN's EMWIN system remained functional and consequently via this system and radio communications PRSN became the only information source for NWS warnings and bulletins, tsunami alerts, and earthquake information for western Puerto Rico. Additionally, given the functional radio and geographic location of the PRSN, the network became a critical communications relay for local emergency management. Here we will present the PRSN response in relation to Hurricane Maria including the activation of the PRSN devolution plan, adoption of duties, experiences and lessons learned for continuity of operations and adoption of responsibilities during future catastrophic events.

  14. Preliminary results of characteristic seismic anisotropy beneath Sunda-Banda subduction-collision zone

    Energy Technology Data Exchange (ETDEWEB)

    Wiyono, Samsul H., E-mail: samsul.wiyono@bmkg.go.id [Study Program of Earth Sciences, Faculty of Earth Sciences and Technology, Institute of Technology Bandung, Bandung 40132 (Indonesia); Indonesia’s Agency for Meteorology Climatology and Geophysics, Jakarta 10610 (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Indonesia’s Agency for Meteorology Climatology and Geophysics, Jakarta 10610 (Indonesia); Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Bandung 40132, Indonesia, Phone: +62-22 2534137 (Indonesia)

    2015-04-24

    Determining of seismic anisotropy allowed us for understanding the deformation processes that occured in the past and present. In this study, we performed shear wave splitting to characterize seismic anisotropy beneath Sunda-Banda subduction-collision zone. For about 1,610 XKS waveforms from INATEWS-BMKG networks have been analyzed. From its measurements showed that fast polarization direction is consistent with trench-perpendicular orientation but several stations presented different orientation. We also compared between fast polarization direction with absolute plate motion in the no net rotation and hotspot frame. Its result showed that both absolute plate motion frame had strong correlation with fast polarization direction. Strong correlation between the fast polarization direction and the absolute plate motion can be interpreted as the possibility of dominant anisotropy is in the asthenosphere.

  15. Absolute earthquake locations using 3-D versus 1-D velocity models below a local seismic network: example from the Pyrenees

    Science.gov (United States)

    Theunissen, T.; Chevrot, S.; Sylvander, M.; Monteiller, V.; Calvet, M.; Villaseñor, A.; Benahmed, S.; Pauchet, H.; Grimaud, F.

    2018-03-01

    Local seismic networks are usually designed so that earthquakes are located inside them (primary azimuthal gap 180° and distance to the first station higher than 15 km). Errors on velocity models and accuracy of absolute earthquake locations are assessed based on a reference data set made of active seismic, quarry blasts and passive temporary experiments. Solutions and uncertainties are estimated using the probabilistic approach of the NonLinLoc (NLLoc) software based on Equal Differential Time. Some updates have been added to NLLoc to better focus on the final solution (outlier exclusion, multiscale grid search, S-phases weighting). Errors in the probabilistic approach are defined to take into account errors on velocity models and on arrival times. The seismicity in the final 3-D catalogue is located with a horizontal uncertainty of about 2.0 ± 1.9 km and a vertical uncertainty of about 3.0 ± 2.0 km.

  16. Connectome-scale group-wise consistent resting-state network analysis in autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    2016-01-01

    Full Text Available Understanding the organizational architecture of human brain function and its alteration patterns in diseased brains such as Autism Spectrum Disorder (ASD patients are of great interests. In-vivo functional magnetic resonance imaging (fMRI offers a unique window to investigate the mechanism of brain function and to identify functional network components of the human brain. Previously, we have shown that multiple concurrent functional networks can be derived from fMRI signals using whole-brain sparse representation. Yet it is still an open question to derive group-wise consistent networks featured in ASD patients and controls. Here we proposed an effective volumetric network descriptor, named connectivity map, to compactly describe spatial patterns of brain network maps and implemented a fast framework in Apache Spark environment that can effectively identify group-wise consistent networks in big fMRI dataset. Our experiment results identified 144 group-wisely common intrinsic connectivity networks (ICNs shared between ASD patients and healthy control subjects, where some ICNs are substantially different between the two groups. Moreover, further analysis on the functional connectivity and spatial overlap between these 144 common ICNs reveals connectomics signatures characterizing ASD patients and controls. In particular, the computing time of our Spark-enabled functional connectomics framework is significantly reduced from 240 hours (C++ code, single core to 20 hours, exhibiting a great potential to handle fMRI big data in the future.

  17. Seismicity and crustal structure at the Mendocino triple junction, Northern California

    Energy Technology Data Exchange (ETDEWEB)

    Dicke, M.

    1998-12-01

    A high level of seismicity at the Mendocino triple junction in Northern California reflects the complex active tectonics associated with the junction of the Pacific, North America, and Gorda plates. To investigate seismicity patterns and crustal structure, 6193 earthquakes recorded by the Northern California Seismic Network (NCSN) are relocated using a one-dimensional crustal velocity model. A near vertical truncation of the intense seismic activity offshore Cape Mendocino follows the strike of the Mattole Canyon fault and is interpreted to define the Pacific plate boundary. Seismicity along this boundary displays a double seismogenic layer that is attributed to interplate activity with the North America plate and Gorda plate. The interpretation of the shallow seismogenic zone as the North America - Pacific plate boundary implies that the Mendocino triple junction is situated offshore at present. Seismicity patterns and focal mechanisms for events located within the subducting Gorda pl ate are consistent with internal deformation on NE-SW and NW-SE trending rupture planes in response to north-south compression. Seismic sections indicate that the top of the Gorda plate locates at a depth of about 18 Km beneath Cape Mendocino and dips gently east-and southward. Earthquakes that are located in the Wadati-Benioff zone east of 236{sup o}E show a change to an extensional stress regime indicative of a slab pull force. This slab pull force and scattered seismicity within the contractional forearc region of the Cascadia subduction zone suggest that the subducting Gorda plate and the overriding North America plate are strongly coupled. The 1992 Cape Mendocino thrust earthquake is believed to have ruptured a blind thrust fault in the forearc region, suggesting that strain is accumulating that must ultimately be released in a potential M 8+ subduction earthquake.

  18. Development and seismic evaluation of the seismic monitoring analysis system for HANARO

    International Nuclear Information System (INIS)

    Ryu, J. S.; Youn, D. B.; Kim, H. G.; Woo, J. S.

    2003-01-01

    Since the start of operation, the seismic monitoring system has been utilized for monitoring an earthquake at the HANARO site. The existing seismic monitoring system consists of field sensors and monitoring panel. The analog-type monitoring system with magnetic tape recorder is out-of-date model. In addition, the disadvantage of the existing system is that it does not include signal-analyzing equipment. Therefore, we have improved the analog seismic monitoring system except the field sensors into a new digital Seismic Monitoring Analysis System(SMAS) that can monitor and analyze earthquake signals. To achieve this objective for HANARO, the digital type hardware of the SMAS has been developed. The seismic monitoring and analysis programs that can provide rapid and precise information for an earthquake were developed. After the installation of the SMAS, we carried out the Site Acceptance Test (SAT) to confirm the functional capability of the newly developed system. The results of the SAT satisfy the requirements of the fabrication technical specifications. In addition, the seismic characteristics and structural integrity of the SMAS were evaluated. The results show that the cabinet of SMAS can withstand the effects of seismic loads and remain functional. This new SMAS is operating in the HANARO instrument room to acquire and analyze the signal of an earthquake

  19. Centrality in earthquake multiplex networks

    Science.gov (United States)

    Lotfi, Nastaran; Darooneh, Amir Hossein; Rodrigues, Francisco A.

    2018-06-01

    Seismic time series has been mapped as a complex network, where a geographical region is divided into square cells that represent the nodes and connections are defined according to the sequence of earthquakes. In this paper, we map a seismic time series to a temporal network, described by a multiplex network, and characterize the evolution of the network structure in terms of the eigenvector centrality measure. We generalize previous works that considered the single layer representation of earthquake networks. Our results suggest that the multiplex representation captures better earthquake activity than methods based on single layer networks. We also verify that the regions with highest seismological activities in Iran and California can be identified from the network centrality analysis. The temporal modeling of seismic data provided here may open new possibilities for a better comprehension of the physics of earthquakes.

  20. Seismicity and seismogenic structures of Central Apennines (Italy): constraints on the present-day stress field from focal mechanisms - The SLAM (Seismicity of Lazio-Abruzzo and Molise) project

    Science.gov (United States)

    Frepoli, Alberto; Battista Cimini, Giovanni; De Gori, Pasquale; De Luca, Gaetano; Marchetti, Alessandro; Montuori, Caterina; Pagliuca, Nicola

    2016-04-01

    We present new results for the microseismic activity in the Central Apennines recorded from a total of 81seismic stations. The large number of recording sites derives from the combination of temporary and permanent seismic networks operating in the study region. Between January 2009 and October 2013 we recorded 6923 earthquakes with local magnitudes ML ranging from 0.1 to 4.8. We located hypocentres by using a refined 1D crustal velocity model. The majority of the hypocenters are located beneath the axes of the Apenninic chain, while the seismic activity observed along the peri-Tyrrhenian margin is lower. The seismicity extends to a depth of 32 km; the hypocentral depth distribution exhibits a pronounced peak of seismic energy release in the depth range between 8 and 20 km. During the observation period we recorded two major seismic swarms and one seismic sequence in the Marsica-Sorano area in which we have had the largest detected magnitude (ML = 4.8). Fault plane solutions for a total of 600 earthquakes were derived from P-polarities. This new data set consists of a number of focal plane solutions that is about four times the data so far available for regional stress field study. The majority of the focal mechanisms show predominantly normal fault solutions. T-axis trends are oriented NE-SW confirming that the area is in extension. We also derived the azimuths of the principal stress axes by inverting the fault plane solutions and calculated the direction of the maximum horizontal stress, which is mainly sub-vertical oriented. The study region has been historically affected by many strong earthquakes, some of them very destructive. This work can give an important contribution to the seismic hazard assessment in an area densely populated as the city of Rome which is distant around 60 km from the main seismogenic structures of Central Apennine.

  1. On the reliability of Quake-Catcher Network earthquake detections

    Science.gov (United States)

    Yildirim, Battalgazi; Cochran, Elizabeth S.; Chung, Angela I.; Christensen, Carl M.; Lawrence, Jesse F.

    2015-01-01

    Over the past two decades, there have been several initiatives to create volunteer‐based seismic networks. The Personal Seismic Network, proposed around 1990, used a short‐period seismograph to record earthquake waveforms using existing phone lines (Cranswick and Banfill, 1990; Cranswicket al., 1993). NetQuakes (Luetgert et al., 2010) deploys triaxial Micro‐Electromechanical Systems (MEMS) sensors in private homes, businesses, and public buildings where there is an Internet connection. Other seismic networks using a dense array of low‐cost MEMS sensors are the Community Seismic Network (Clayton et al., 2012; Kohler et al., 2013) and the Home Seismometer Network (Horiuchi et al., 2009). One main advantage of combining low‐cost MEMS sensors and existing Internet connection in public and private buildings over the traditional networks is the reduction in installation and maintenance costs (Koide et al., 2006). In doing so, it is possible to create a dense seismic network for a fraction of the cost of traditional seismic networks (D’Alessandro and D’Anna, 2013; D’Alessandro, 2014; D’Alessandro et al., 2014).

  2. Designing a low-cost effective network for monitoring large scale regional seismicity in a soft-soil region (Alsace, France)

    Science.gov (United States)

    Bès de Berc, M.; Doubre, C.; Wodling, H.; Jund, H.; Hernandez, A.; Blumentritt, H.

    2015-12-01

    The Seismological Observatory of the North-East of France (ObSNEF) is developing its monitoring network within the framework of several projects. Among these project, RESIF (Réseau sismologique et géodésique français) allows the instrumentation of broad-band seismic stations, separated by 50-100 km. With the recent and future development of geothermal industrial projects in the Alsace region, the ObSNEF is responsible for designing, building and operating a dense regional seismic network in order to detect and localize earthquakes with both a completeness magnitude of 1.5 and no clipping for M6.0. The realization of the project has to be done prior to the summer 2016Several complex technical and financial constraints constitute such a projet. First, most of the Alsace Région (150x150 km2), particularly the whole Upper Rhine Graben, is a soft-soil plain where seismic signals are dominated by a high frequency noise level. Second, all the signals have to be transmitted in near real-time. And finally, the total cost of the project must not exceed $450,000.Regarding the noise level in Alsace, in order to make a reduction of 40 dB for frequencies above 1Hz, we program to instrument into 50m deep well with post-hole sensor for 5 stations out of 8 plane new stations. The 3 remaining would be located on bedrock along the Vosges piedmont. In order to be sensitive to low-magnitude regional events, we plan to install a low-noise short-period post-hole velocimeter. In order to avoid saturation for high potentiel local events (M6.0 at 10km), this velocimeter will be coupled with a surface strong-motion sensor. Regarding the connectivity, these stations will have no wired network, which reduces linking costs and delays. We will therefore use solar panels and a 3G/GPRS network. The infrastructure will be minimal and reduced to an outdoor box on a secured parcel of land. In addition to the data-logger, we will use a 12V ruggedized computer, hosting a seed-link server for near

  3. Micro-seismic earthquakes characteristics at natural and exploited hydrothermal systems in West Java, Indonesia

    Science.gov (United States)

    Jousset, P. G.; Jaya, M. S.; Sule, R.; Diningrat, W.; Gassner, A.; Akbar, F.; Ryannugroho, R.; Hendryana, A.; Kusnadi, Y.; Syahbana, D.; Nugraha, A. D.; Umar, M.; Indrinanto, Y.; Erbas, K.

    2013-12-01

    The assessment of geothermal resources requires the understanding of the structure and the dynamics of geothermal reservoirs. We deployed a multidisciplinary geophysical network around geothermal areas in the south of Bandung, West Java, Indonesia. The first deployment included a network of 30 broadband and 4 short-period seismic stations with Güralp and Trillium sensors (0.008 - 100 Hz) since October 2012. In a second step, we extended the network in June 2013 with 16 short-period (1 Hz) seismometers. We describe the set-up of the seismic networks and discuss first observations and results. The co-existence of a large variety of intense surface manifestations like geysers, hot-steaming grounds, hot water pools, and active volcanoes suggest an intimate coupling between volcanic, tectonic and hydrothermal processes in this area. Preliminary location of earthquakes is performed using a non-linear algorithm, which allows us to define at least 3 seismic clusters. We discuss this seismic pattern within the geothermal fields.

  4. Source and path parameters determination based on data from the digital accelerometer and CALIXTO networks to assess the seismic hazard

    International Nuclear Information System (INIS)

    Radulian, M.; Anghel, M.; Ardeleanu, L.; Bazacliu, O.; Grecu, B.; Popa, M.; Popescu, E.; Rizescu, M.

    2002-01-01

    For any strategy of seismic risk mitigation, it is essential to have a realistic description of the seismic input that means of the source and structure parameters. The present project is focused on the problem of determining accurate source and structure parameters and to analyze the way these parameters influence the seismic hazard distribution. The main objectives of the project are: determination of seismic source parameters, scaling properties, database of recent earthquakes, seismic source effects on the seismic hazard distribution, seismic attenuation, site effects, realistic scenarios for Vrancea earthquakes. To this purpose, we valorize the data provided by the instruments installed recently on the Romanian territory, in the framework of multiple international cooperation programs. Thus, a new digital accelerometer network was installed between 1996 and 1999 in cooperation with the Institute of Geophysics of the University of Karlsruhe (Germany), and an ample tomography experiment deployed for a 6-month time window (May - November 1999).The results obtained up to now refer to the determination of seismic source parameters and scaling. The source parameters are constrained using the spectral ratio technique and the seismic moment tensor inversion. The spectral ratio method is efficient when pairs of co-located earthquakes recorded at common stations are available. In this case the spectral ratio depends essentially on source only, and corrections for path, local response and instrument are not required. Another advantage of the method is the possibility to determine simultaneously source parameters for both selected events of a pair, if the instrument has a broadband frequency response and the signal/noise ratio is sufficiently high in the frequency domain of interest. The spectral ratio method is applied for 37 events, occurred between 1996 and 2000, with magnitudes between 3.0 and 5.3 in the intermediate-depth range. Seismic moment, source dimension and

  5. Using complex networks to quantify consistency in the use of words

    International Nuclear Information System (INIS)

    Amancio, D R; Oliveira Jr, O N; Costa, L da F

    2012-01-01

    In this paper we have quantified the consistency of word usage in written texts represented by complex networks, where words were taken as nodes, by measuring the degree of preservation of the node neighborhood. Words were considered highly consistent if the authors used them with the same neighborhood. When ranked according to the consistency of use, the words obeyed a log-normal distribution, in contrast to Zipf's law that applies to the frequency of use. Consistency correlated positively with the familiarity and frequency of use, and negatively with ambiguity and age of acquisition. An inspection of some highly consistent words confirmed that they are used in very limited semantic contexts. A comparison of consistency indices for eight authors indicated that these indices may be employed for author recognition. Indeed, as expected, authors of novels could be distinguished from those who wrote scientific texts. Our analysis demonstrated the suitability of the consistency indices, which can now be applied in other tasks, such as emotion recognition

  6. GPS on Every Roof, GPS Sensor Network for Post-Seismic Building-Wise Damage Identification

    Directory of Open Access Journals (Sweden)

    Kenji Oguni

    2013-12-01

    Full Text Available Development of wireless sensor network equipped with GPS for post-seismic building-wise damage identification is presented in this paper. This system is called GPS on Every Roof. Sensor node equipped with GPS antenna and receiver is installed on the top of the roof of each and every building. The position of this sensor node is measured before and after earthquake. The final goal of this system is to i identify the displacement of the roof of each house and ii collect the information of displacement of the roof of the houses through wireless communication. Superposing this information on GIS, building-wise damage distribution due to earthquake can be obtained. The system overview, hardware and some of the key components of the system such as on-board GPS relative positioning algorithm to achieve the accuracy in the order of several centimeters are described in detail. Also, the results from a field experiment using a wireless sensor network with 39 sensor nodes are presented.

  7. Real-time Seismic Alert System of NIED

    Science.gov (United States)

    Horiuchi, S.; Fujinawa, Y.; Negishi, H.; Matsumoto, T.; Fujiwara, H.; Kunugi, T.; Hayashi, Y.

    2001-12-01

    An extensive seismic network has been constructed nationwide composed of hi-sensitivity seismographic network, broadband seismographic network and strong motion seismographic network. All these data from some 3,000 sites belonging to NIED, JMA and universities are to be accumulated and distributed through NIED to any scientists and engineering through INTERNET under the coordination of the National Seismic Research Committee of MEXT. As a practical application of those data we are now developing a real-time seismic alert information system for the purpose of providing short-term warning of imminent strong grounds motions from major earthquakes from several seconds to a few days. The contents of information are seismic focal parameters (several seconds), seismic fault plane solutions (some 10 seconds), after-shock activities (several minutes-a few days ). The fundamental fault parameters are used to build specific information at sites for particular users for use of triggering automated and /or half-automated responses. The most important application is an immediate estimate of expected shaking distribution and damages in a district using synthetic database and site effects for local governments to initial proper measures of hazard mitigation. Another application is estimation of arrival time and shaking strength at any individual site for human lives to be safeguarded. The system could also start an automatic electrical isolation and protection of computer systems, protection of hazardous chronic systems, transportation systems and so on. The information are corrected successively as seismic ground motion are received at a larger number of sites in time with the result that more accurate and more sophisticated earthquake information is transmitted to any user. Besides the rapid determination of seismic parameters, one of essential items in this alert system is the data transmission means. The data transmission is chosen to assure negligibly small delay of data

  8. Probabilistic seismic hazard assessment of NW and central ...

    Indian Academy of Sciences (India)

    The Himalayan region has undergone significant development and to ensure safe and secure progress in such a seismically vulnerable region there is a need for hazard assessment. For seismic hazard assessment, it is important to assess the quality, consistency, and homogeneity of the seismicity data collected from ...

  9. Context-specific metabolic networks are consistent with experiments.

    Directory of Open Access Journals (Sweden)

    Scott A Becker

    2008-05-01

    Full Text Available Reconstructions of cellular metabolism are publicly available for a variety of different microorganisms and some mammalian genomes. To date, these reconstructions are "genome-scale" and strive to include all reactions implied by the genome annotation, as well as those with direct experimental evidence. Clearly, many of the reactions in a genome-scale reconstruction will not be active under particular conditions or in a particular cell type. Methods to tailor these comprehensive genome-scale reconstructions into context-specific networks will aid predictive in silico modeling for a particular situation. We present a method called Gene Inactivity Moderated by Metabolism and Expression (GIMME to achieve this goal. The GIMME algorithm uses quantitative gene expression data and one or more presupposed metabolic objectives to produce the context-specific reconstruction that is most consistent with the available data. Furthermore, the algorithm provides a quantitative inconsistency score indicating how consistent a set of gene expression data is with a particular metabolic objective. We show that this algorithm produces results consistent with biological experiments and intuition for adaptive evolution of bacteria, rational design of metabolic engineering strains, and human skeletal muscle cells. This work represents progress towards producing constraint-based models of metabolism that are specific to the conditions where the expression profiling data is available.

  10. Recognition and detection of seismic phases by artificial neural network detector; Jinko neural network ni yoru jishinha no ninshiki to kenshutsu

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, K; Wang, W [Tokyo Gakugei University, Tokyo (Japan)

    1997-05-27

    Initial parts of P-waves, medium or high in intensity, are detected using an artificial neural network (ANN). The ANN is the generic name given to information processing systems of the non-Neumann type configured to human brain in point of information processing function, and is packaged into computers in the form of software capable of parallel processing, self-organizing, learning, etc. In this paper, a hierarchical ANN-assisted seismic motion recognition system is constructed on the basis of an error reverse propagation algorithm. It is reported here, with a remark that this study wants much more data from tests for the evaluation of the quality of the recognition, that P-wave recognition has been achieved. When this technique is applied to the S-wave, much more real-time information will become available. For the improvement of the system, a number of problems have to be solved, including the establishment of automatic refurbishment through adaptation-and-learning and configuration that incorporates frequency-related matters. It is found that this system is effective in seismic wave phase recognition but that it is not suitable for precision measurement. 7 refs., 4 figs.

  11. Risk based seismic design criteria

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1999-01-01

    In order to develop a risk based seismic design criteria the following four issues must be addressed: (1) What target annual probability of seismic induced unacceptable performance is acceptable? (2) What minimum seismic margin is acceptable? (3) Given the decisions made under Issues 1 and 2, at what annual frequency of exceedance should the safe-shutdown-earthquake (SSE) ground motion be defined? (4) What seismic design criteria should be established to reasonably achieve the seismic margin defined under Issue 2? The first issue is purely a policy decision and is not addressed in this paper. Each of the other three issues are addressed. Issues 2 and 3 are integrally tied together so that a very large number of possible combinations of responses to these two issues can be used to achieve the target goal defined under Issue 1. Section 2 lays out a combined approach to these two issues and presents three potentially attractive combined resolutions of these two issues which reasonably achieves the target goal. The remainder of the paper discusses an approach which can be used to develop seismic design criteria aimed at achieving the desired seismic margin defined in resolution of Issue 2. Suggestions for revising existing seismic design criteria to more consistently achieve the desired seismic margin are presented. (orig.)

  12. ACED devices and SECAF supports for the control of structure, pipe network and equipment behaviour at seismic movements in order to enhance the safety margin

    International Nuclear Information System (INIS)

    Serban, Viorel; Prisecaru, I.; Cretu, D.; Moldoveanu, T.

    2002-01-01

    In order to enhance the safety margin of structure, pipe networks and equipment associated to the existing NPPs, the classic consolidation solutions are very expensive and many times, impossible to be implemented. Structures, pipe networks, systems and equipment have geometries imposed by the basic construction requirements, operating and safety requirements and their modifications is not always possible. In order to enhance the strength capacity of (new or old) structures, systems and equipment mechanical devices with controlled elasticity and damping (ACED) have been designed, constructed and experimented. These devices are capable to support very large static loads over which dynamic loads (shock, vibration and seismic movements) overlap (which are damped). To increase the strength capacity of (new or existing) pipe networks and equipment connecting with pipes, SECAF supports that allow displacements from thermal expansions with low reaction force have been designed, constructed and experimented. SECAF supports are capable elastically to take permanent loads over which shocks, vibrations and seismic movements (which are damp) overlap. ACED devices and SECAF supports can be used to rehabilitate the existing NPPs with law financial costs and an increase of their strength capacity up to 100% under seismic movements, shocks and vibrations. ACED devices and SECAF supports do not require maintenance, are not affected by presence of a radiation field and their estimated service-life is similar to the NPPs

  13. Seismic Imaging of the Source Physics Experiment Site with the Large-N Seismic Array

    Science.gov (United States)

    Chen, T.; Snelson, C. M.; Mellors, R. J.

    2017-12-01

    The Source Physics Experiment (SPE) consists of a series of chemical explosions at the Nevada National Security Site. The goal of SPE is to understand seismic wave generation and propagation from these explosions. To achieve this goal, we need an accurate geophysical model of the SPE site. A Large-N seismic array that was deployed at the SPE site during one of the chemical explosions (SPE-5) helps us construct high-resolution local geophysical model. The Large-N seismic array consists of 996 geophones, and covers an area of approximately 2 × 2.5 km. The array is located in the northern end of the Yucca Flat basin, at a transition from Climax Stock (granite) to Yucca Flat (alluvium). In addition to the SPE-5 explosion, the Large-N array also recorded 53 weight drops. Using the Large-N seismic array recordings, we perform body wave and surface wave velocity analysis, and obtain 3D seismic imaging of the SPE site for the top crust of approximately 1 km. The imaging results show clear variation of geophysical parameter with local geological structures, including heterogeneous weathering layer and various rock types. The results of this work are being incorporated in the larger 3D modeling effort of the SPE program to validate the predictive models developed for the site.

  14. Automated seismic detection of landslides at regional scales: a Random Forest based detection algorithm

    Science.gov (United States)

    Hibert, C.; Michéa, D.; Provost, F.; Malet, J. P.; Geertsema, M.

    2017-12-01

    Detection of landslide occurrences and measurement of their dynamics properties during run-out is a high research priority but a logistical and technical challenge. Seismology has started to help in several important ways. Taking advantage of the densification of global, regional and local networks of broadband seismic stations, recent advances now permit the seismic detection and location of landslides in near-real-time. This seismic detection could potentially greatly increase the spatio-temporal resolution at which we study landslides triggering, which is critical to better understand the influence of external forcings such as rainfalls and earthquakes. However, detecting automatically seismic signals generated by landslides still represents a challenge, especially for events with small mass. The low signal-to-noise ratio classically observed for landslide-generated seismic signals and the difficulty to discriminate these signals from those generated by regional earthquakes or anthropogenic and natural noises are some of the obstacles that have to be circumvented. We present a new method for automatically constructing instrumental landslide catalogues from continuous seismic data. We developed a robust and versatile solution, which can be implemented in any context where a seismic detection of landslides or other mass movements is relevant. The method is based on a spectral detection of the seismic signals and the identification of the sources with a Random Forest machine learning algorithm. The spectral detection allows detecting signals with low signal-to-noise ratio, while the Random Forest algorithm achieve a high rate of positive identification of the seismic signals generated by landslides and other seismic sources. The processing chain is implemented to work in a High Performance Computers centre which permits to explore years of continuous seismic data rapidly. We present here the preliminary results of the application of this processing chain for years

  15. National Earthquake Information Center Seismic Event Detections on Multiple Scales

    Science.gov (United States)

    Patton, J.; Yeck, W. L.; Benz, H.; Earle, P. S.; Soto-Cordero, L.; Johnson, C. E.

    2017-12-01

    The U.S. Geological Survey National Earthquake Information Center (NEIC) monitors seismicity on local, regional, and global scales using automatic picks from more than 2,000 near-real time seismic stations. This presents unique challenges in automated event detection due to the high variability in data quality, network geometries and density, and distance-dependent variability in observed seismic signals. To lower the overall detection threshold while minimizing false detection rates, NEIC has begun to test the incorporation of new detection and picking algorithms, including multiband (Lomax et al., 2012) and kurtosis (Baillard et al., 2014) pickers, and a new bayesian associator (Glass 3.0). The Glass 3.0 associator allows for simultaneous processing of variably scaled detection grids, each with a unique set of nucleation criteria (e.g., nucleation threshold, minimum associated picks, nucleation phases) to meet specific monitoring goals. We test the efficacy of these new tools on event detection in networks of various scales and geometries, compare our results with previous catalogs, and discuss lessons learned. For example, we find that on local and regional scales, rapid nucleation of small events may require event nucleation with both P and higher-amplitude secondary phases (e.g., S or Lg). We provide examples of the implementation of a scale-independent associator for an induced seismicity sequence (local-scale), a large aftershock sequence (regional-scale), and for monitoring global seismicity. Baillard, C., Crawford, W. C., Ballu, V., Hibert, C., & Mangeney, A. (2014). An automatic kurtosis-based P-and S-phase picker designed for local seismic networks. Bulletin of the Seismological Society of America, 104(1), 394-409. Lomax, A., Satriano, C., & Vassallo, M. (2012). Automatic picker developments and optimization: FilterPicker - a robust, broadband picker for real-time seismic monitoring and earthquake early-warning, Seism. Res. Lett. , 83, 531-540, doi: 10

  16. Based on records of Three Gorge Telemetric Seismic Network to analyze Vibration process of micro fracture of rock landslide

    Science.gov (United States)

    WANG, Q.

    2017-12-01

    Used the finite element analysis software GeoStudio to establish vibration analysis model of Qianjiangping landslide, which locates at the Three Gorges Reservoir area. In QUAKE/W module, we chosen proper Dynamic elasticity modulus and Poisson's ratio of soil layer and rock stratum. When loading, we selected the waveform data record of Three Gorge Telemetric Seismic Network as input ground motion, which includes five rupture events recorded of Lujiashan seismic station. In dynamic simulating, we mainly focused on sliding process when the earthquake date record was applied. The simulation result shows that Qianjiangping landslide wasn't not only affected by its own static force, but also experienced the dynamic process of micro fracture-creep-slip rupture-creep-slip.it provides a new approach for the early warning feasibility of rock landslide in future research.

  17. Post-seismic velocity changes following the 2010 Mw 7.1 Darfield earthquake, New Zealand, revealed by ambient seismic field analysis

    Science.gov (United States)

    Heckels, R. EG; Savage, M. K.; Townend, J.

    2018-05-01

    Quantifying seismic velocity changes following large earthquakes can provide insights into fault healing and reloading processes. This study presents temporal velocity changes detected following the 2010 September Mw 7.1 Darfield event in Canterbury, New Zealand. We use continuous waveform data from several temporary seismic networks lying on and surrounding the Greendale Fault, with a maximum interstation distance of 156 km. Nine-component, day-long Green's functions were computed for frequencies between 0.1 and 1.0 Hz for continuous seismic records from immediately after the 2010 September 04 earthquake until 2011 January 10. Using the moving-window cross-spectral method, seismic velocity changes were calculated. Over the study period, an increase in seismic velocity of 0.14 ± 0.04 per cent was determined near the Greendale Fault, providing a new constraint on post-seismic relaxation rates in the region. A depth analysis further showed that velocity changes were confined to the uppermost 5 km of the subsurface. We attribute the observed changes to post-seismic relaxation via crack healing of the Greendale Fault and throughout the surrounding region.

  18. Observations and modeling of seismic background noise

    Science.gov (United States)

    Peterson, Jon R.

    1993-01-01

    The preparation of this report had two purposes. One was to present a catalog of seismic background noise spectra obtained from a worldwide network of seismograph stations. The other purpose was to refine and document models of seismic background noise that have been in use for several years. The second objective was, in fact, the principal reason that this study was initiated and influenced the procedures used in collecting and processing the data.With a single exception, all of the data used in this study were extracted from the digital data archive at the U.S. Geological Survey's Albuquerque Seismological Laboratory (ASL). This archive dates from 1972 when ASL first began deploying digital seismograph systems and collecting and distributing digital data under the sponsorship of the Defense Advanced Research Projects Agency (DARPA). There have been many changes and additions to the global seismograph networks during the past twenty years, but perhaps none as significant as the current deployment of very broadband seismographs by the U.S. Geological Survey (USGS) and the University of California San Diego (UCSD) under the scientific direction of the IRIS consortium. The new data acquisition systems have extended the bandwidth and resolution of seismic recording, and they utilize high-density recording media that permit the continuous recording of broadband data. The data improvements and continuous recording greatly benefit and simplify surveys of seismic background noise.Although there are many other sources of digital data, the ASL archive data were used almost exclusively because of accessibility and because the data systems and their calibration are well documented for the most part. Fortunately, the ASL archive contains high-quality data from other stations in addition to those deployed by the USGS. Included are data from UCSD IRIS/IDA stations, the Regional Seismic Test Network (RSTN) deployed by Sandia National Laboratories (SNL), and the TERRAscope network

  19. Hydrocarbon Induced Seismicity in Northern Netherlands

    Science.gov (United States)

    Dost, B.; Spetzler, J.; Kraaijpoel, D.; Caccavale, M.

    2015-12-01

    The northern Netherlands has been regarded aseismic until the first earthquakes started in 1986, after more than 25 years of gas production from the one of the largest on-shore gas-fields in the World, the Groningen field, and accompanying smaller gas fields. Due to the shallow sources, at approximately 3 km depth, even small magnitude events cause considerable damage to buildings in the region. Since the largest recorded event in the Groningen field in 2012 with ML= 3,6, more than 30.000 damage claims were received by the mining company. Since 1995 a seismic monitoring network is operational in the region, consisting of 8 200m deep boreholes with 4 levels of 3C 4,5 Hz geophones. The network was designed for a location threshold of ML=1,5 over a 40x 80 km region. Average station separation was 20 km. At the end of 2014, 245 events have been recorded with ML ≥ 1,5, out of a total of 1100. Since 2003 a new mining law is in place in the Netherlands, which requires for each gas field in production a seismic risk analysis. Initially, due to the small number of events for specific fields, a general hazard (PSHA) was calculated for all gas-fields and a maximum magnitude was estimated at ML = 3,9. Since 2003 an increase in the activity rate is observed for the Groningen field, leading to the development of new models and a re-assessment of parameters like the maximum magnitude. More recently these models are extended to seismic risk, where also the fragility of the regional buildings is taken into account. Understanding the earthquake process is essential in taking mitigation measures. Continued research is focused on reducing the uncertainties in the hazard and risk models and is accompanied by an upgrade of the monitoring network. In 2014 a new dense network was designed to monitor the Groningen gas field in this region (30*40 km) with an average separation of 4 km. This allows an improved location threshold (M>0,5) and location accuracy (50-100m). A detailed P- and S

  20. Multi-Use seismic stations offer strong deterrent to clandestine nuclear weapons testing

    Science.gov (United States)

    Hennet, C. B.; Van der Vink, G. E.; Richards, P. G.; Adushkin, V. V.; Kopnichev, Y. F.; Geary, R.

    As the United States and other nations push for the signing of a Comprehensive Test Ban Treaty, representatives are meeting in Geneva this year to develop an International Seismic Monitoring System to verify compliance with the treaty's restrictions. In addition to the official monitoring system, regional networks developed for earthquake studies and basic research can provide a strong deterrent against clandestine testing. The recent release of information by the U.S. Department of Energy (DoE) on previously unannounced nuclear tests provides an opportunity to assess the ability of multi-use seismic networks to help monitor nuclear testing across the globe.Here we look at the extent to which the formerly unannounced tests were recorded and identified on the basis of publicly available seismographic data recorded by five seismic networks. The data were recorded by networks in southern Nevada and northern California at stations less than 1500 km from the Nevada Test Site (NTS), and two networks in the former Soviet Union at stations farther than 1500 km from the NTS.

  1. Seismic properties of fluid bearing formations in magmatic geothermal systems: can we directly detect geothermal activity with seismic methods?

    Science.gov (United States)

    Grab, Melchior; Scott, Samuel; Quintal, Beatriz; Caspari, Eva; Maurer, Hansruedi; Greenhalgh, Stewart

    2016-04-01

    Seismic methods are amongst the most common techniques to explore the earth's subsurface. Seismic properties such as velocities, impedance contrasts and attenuation enable the characterization of the rocks in a geothermal system. The most important goal of geothermal exploration, however, is to describe the enthalpy state of the pore fluids, which act as the main transport medium for the geothermal heat, and to detect permeable structures such as fracture networks, which control the movement of these pore fluids in the subsurface. Since the quantities measured with seismic methods are only indirectly related with the fluid state and the rock permeability, the interpretation of seismic datasets is difficult and usually delivers ambiguous results. To help overcome this problem, we use a numerical modeling tool that quantifies the seismic properties of fractured rock formations that are typically found in magmatic geothermal systems. We incorporate the physics of the pore fluids, ranging from the liquid to the boiling and ultimately vapor state. Furthermore, we consider the hydromechanics of permeable structures at different scales from small cooling joints to large caldera faults as are known to be present in volcanic systems. Our modeling techniques simulate oscillatory compressibility and shear tests and yield the P- and S-wave velocities and attenuation factors of fluid saturated fractured rock volumes. To apply this modeling technique to realistic scenarios, numerous input parameters need to be indentified. The properties of the rock matrix and individual fractures were derived from extensive literature research including a large number of laboratory-based studies. The geometries of fracture networks were provided by structural geologists from their published studies of outcrops. Finally, the physical properties of the pore fluid, ranging from those at ambient pressures and temperatures up to the supercritical conditions, were taken from the fluid physics

  2. Spots of Seismic Danger Extracted by Properties of Low-Frequency Seismic Noise

    Science.gov (United States)

    Lyubushin, Alexey

    2013-04-01

    A new method of seismic danger estimate is presented which is based on using properties of low-frequency seismic noise from broadband networks. Two statistics of noise waveforms are considered: multi-fractal singularity spectrum support width D and minimum normalized entropy En of squared orthogonal wavelet coefficients. The maps of D and En are plotted in the moving time window. Let us call the regions extracted by low values of D and high values of En as "spots of seismic danger" - SSD. Mean values of D and En are strongly anti-correlated - that is why statistics D and En extract the same SSD. Nevertheless their mutual considering is expedient because these parameters are based on different approaches. The physical mechanism which underlies the method is consolidation of small blocks of the Earth's crust into the large one before the strong earthquake. This effect has a consequence that seismic noise does not include spikes which are connected with mutual movements of small blocks. The absence of irregular spikes in the noise follows the decreasing of D and increasing of entropy En. The stability in space and size of the SSD provides estimates of the place and energy of the probable future earthquake. The increasing or decreasing of SSD size and minimum or maximum values of D and En within SSD allows estimate the trend of seismic danger. The method is illustrating by the analysis of seismic noise from broadband seismic network F-net in Japan [1-5]. Statistically significant decreasing of D allowed a hypothesis about approaching Japan to a future seismic catastrophe to be formulated at the middle of 2008. The peculiarities of correlation coefficient estimate within 1 year time window between median values of D and generalized Hurst exponent allowed to make a decision that starting from July of 2010 Japan come to the state of waiting strong earthquake [3]. The method extracted a huge SSD near Japan which includes the region of future Tohoku mega-earthquake and the

  3. Attractive target wave patterns in complex networks consisting of excitable nodes

    International Nuclear Information System (INIS)

    Zhang Li-Sheng; Mi Yuan-Yuan; Liao Xu-Hong; Qian Yu; Hu Gang

    2014-01-01

    This review describes the investigations of oscillatory complex networks consisting of excitable nodes, focusing on the target wave patterns or say the target wave attractors. A method of dominant phase advanced driving (DPAD) is introduced to reveal the dynamic structures in the networks supporting oscillations, such as the oscillation sources and the main excitation propagation paths from the sources to the whole networks. The target center nodes and their drivers are regarded as the key nodes which can completely determine the corresponding target wave patterns. Therefore, the center (say node A) and its driver (say node B) of a target wave can be used as a label, (A,B), of the given target pattern. The label can give a clue to conveniently retrieve, suppress, and control the target waves. Statistical investigations, both theoretically from the label analysis and numerically from direct simulations of network dynamics, show that there exist huge numbers of target wave attractors in excitable complex networks if the system size is large, and all these attractors can be labeled and easily controlled based on the information given by the labels. The possible applications of the physical ideas and the mathematical methods about multiplicity and labelability of attractors to memory problems of neural networks are briefly discussed. (topical review - statistical physics and complex systems)

  4. Modernization of the USGS Hawaiian Volcano Observatory Seismic Processing Infrastructure

    Science.gov (United States)

    Antolik, L.; Shiro, B.; Friberg, P. A.

    2016-12-01

    The USGS Hawaiian Volcano Observatory (HVO) operates a Tier 1 Advanced National Seismic System (ANSS) seismic network to monitor, characterize, and report on volcanic and earthquake activity in the State of Hawaii. Upgrades at the observatory since 2009 have improved the digital telemetry network, computing resources, and seismic data processing with the adoption of the ANSS Quake Management System (AQMS) system. HVO aims to build on these efforts by further modernizing its seismic processing infrastructure and strengthen its ability to meet ANSS performance standards. Most notably, this will also allow HVO to support redundant systems, both onsite and offsite, in order to provide better continuity of operation during intermittent power and network outages. We are in the process of implementing a number of upgrades and improvements on HVO's seismic processing infrastructure, including: 1) Virtualization of AQMS physical servers; 2) Migration of server operating systems from Solaris to Linux; 3) Consolidation of AQMS real-time and post-processing services to a single server; 4) Upgrading database from Oracle 10 to Oracle 12; and 5) Upgrading to the latest Earthworm and AQMS software. These improvements will make server administration more efficient, minimize hardware resources required by AQMS, simplify the Oracle replication setup, and provide better integration with HVO's existing state of health monitoring tools and backup system. Ultimately, it will provide HVO with the latest and most secure software available while making the software easier to deploy and support.

  5. Current Induced Seismicity in the Paskov Mine Field

    Czech Academy of Sciences Publication Activity Database

    Holub, Karel; Rušajová, Jana; Holečko, J.

    2013-01-01

    Roč. 10, č. 2 (2013), s. 181-187 ISSN 1214-9705 R&D Projects: GA MŠk LM2010008 Institutional support: RVO:68145535 Keywords : Ostrava-Karviná coal mines * seismic network * induced seismicity * location plot Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.667, year: 2013 http://www.irsm.cas.cz/materialy/acta_content/2013_02/acta_170_07_%20Holub_181-187.pdf

  6. The seismicity related to the southern part of the Kenya Rift

    Science.gov (United States)

    Hollnack, D.; Stangl, R.

    1998-04-01

    In 1990 the Geology Department of the University of Nairobi started to build up a seismological network for Kenya, which has been operating since 1993. In this paper the actual state of this seismological network is described. Additionally, the first results on the seismic activity in the southern part of Kenya and adjacent areas between October 1993 and August 1996 are presented and are compared with historical data. Out of more than 2000 recorded local earthquakes 435 could be localised within the study area with local magnitudes of up to 5. The distribution of the events shows three areas of prominent seismicity: the Rift Valley between Nakuru and northern Tanzania; the area northeast of Kilimanjaro; and the Nyanza Rift in western Kenya. In a first attempt to assess the seismic hazard for the study area, a seismic energy map for the period of observation is given.

  7. Evaluation and optimization of seismic networks and algorithms for earthquake early warning – the case of Istanbul (Turkey)

    OpenAIRE

    Oth, Adrien; Böse, Maren; Wenzel, Friedemann; Köhler, Nina; Erdik, Mustafa

    2010-01-01

    Earthquake early warning (EEW) systems should provide reliable warnings as quickly as possible with a minimum number of false and missed alarms. Using the example of the megacity Istanbul and based on a set of simulated scenario earthquakes, we present a novel approach for evaluating and optimizing seismic networks for EEW, in particular in regions with a scarce number of instrumentally recorded earthquakes. We show that, while the current station locations of the existing Istanbul EEW system...

  8. Earthquakes and Volcanic Processes at San Miguel Volcano, El Salvador, Determined from a Small, Temporary Seismic Network

    Science.gov (United States)

    Hernandez, S.; Schiek, C. G.; Zeiler, C. P.; Velasco, A. A.; Hurtado, J. M.

    2008-12-01

    The San Miguel volcano lies within the Central American volcanic chain in eastern El Salvador. The volcano has experienced at least 29 eruptions with Volcano Explosivity Index (VEI) of 2. Since 1970, however, eruptions have decreased in intensity to an average of VEI 1, with the most recent eruption occurring in 2002. Eruptions at San Miguel volcano consist mostly of central vent and phreatic eruptions. A critical challenge related to the explosive nature of this volcano is to understand the relationships between precursory surface deformation, earthquake activity, and volcanic activity. In this project, we seek to determine sub-surface structures within and near the volcano, relate the local deformation to these structures, and better understand the hazard that the volcano presents in the region. To accomplish these goals, we deployed a six station, broadband seismic network around San Miguel volcano in collaboration with researchers from Servicio Nacional de Estudios Territoriales (SNET). This network operated continuously from 23 March 2007 to 15 January 2008 and had a high data recovery rate. The data were processed to determine earthquake locations, magnitudes, and, for some of the larger events, focal mechanisms. We obtained high precision locations using a double-difference approach and identified at least 25 events near the volcano. Ongoing analysis will seek to identify earthquake types (e.g., long period, tectonic, and hybrid events) that occurred in the vicinity of San Miguel volcano. These results will be combined with radar interferometric measurements of surface deformation in order to determine the relationship between surface and subsurface processes at the volcano.

  9. Analysis of induced seismicity in geothermal reservoirs – An overview

    Science.gov (United States)

    Zang, Arno; Oye, Volker; Jousset, Philippe; Deichmann, Nicholas; Gritto, Roland; McGarr, Arthur F.; Majer, Ernest; Bruhn, David

    2014-01-01

    In this overview we report results of analysing induced seismicity in geothermal reservoirs in various tectonic settings within the framework of the European Geothermal Engineering Integrating Mitigation of Induced Seismicity in Reservoirs (GEISER) project. In the reconnaissance phase of a field, the subsurface fault mapping, in situ stress and the seismic network are of primary interest in order to help assess the geothermal resource. The hypocentres of the observed seismic events (seismic cloud) are dependent on the design of the installed network, the used velocity model and the applied location technique. During the stimulation phase, the attention is turned to reservoir hydraulics (e.g., fluid pressure, injection volume) and its relation to larger magnitude seismic events, their source characteristics and occurrence in space and time. A change in isotropic components of the full waveform moment tensor is observed for events close to the injection well (tensile character) as compared to events further away from the injection well (shear character). Tensile events coincide with high Gutenberg-Richter b-values and low Brune stress drop values. The stress regime in the reservoir controls the direction of the fracture growth at depth, as indicated by the extent of the seismic cloud detected. Stress magnitudes are important in multiple stimulation of wells, where little or no seismicity is observed until the previous maximum stress level is exceeded (Kaiser Effect). Prior to drilling, obtaining a 3D P-wave (Vp) and S-wave velocity (Vs) model down to reservoir depth is recommended. In the stimulation phase, we recommend to monitor and to locate seismicity with high precision (decametre) in real-time and to perform local 4D tomography for velocity ratio (Vp/Vs). During exploitation, one should use observed and model induced seismicity to forward estimate seismic hazard so that field operators are in a position to adjust well hydraulics (rate and volume of the

  10. High-resolution seismic data regularization and wavefield separation

    Science.gov (United States)

    Cao, Aimin; Stump, Brian; DeShon, Heather

    2018-04-01

    We present a new algorithm, non-equispaced fast antileakage Fourier transform (NFALFT), for irregularly sampled seismic data regularization. Synthetic tests from 1-D to 5-D show that the algorithm may efficiently remove leaked energy in the frequency wavenumber domain, and its corresponding regularization process is accurate and fast. Taking advantage of the NFALFT algorithm, we suggest a new method (wavefield separation) for the detection of the Earth's inner core shear wave with irregularly distributed seismic arrays or networks. All interfering seismic phases that propagate along the minor arc are removed from the time window around the PKJKP arrival. The NFALFT algorithm is developed for seismic data, but may also be used for other irregularly sampled temporal or spatial data processing.

  11. Characterizing Geological Facies using Seismic Waveform Classification in Sarawak Basin

    Science.gov (United States)

    Zahraa, Afiqah; Zailani, Ahmad; Prasad Ghosh, Deva

    2017-10-01

    Numerous effort have been made to build relationship between geology and geophysics using different techniques throughout the years. The integration of these two most important data in oil and gas industry can be used to reduce uncertainty in exploration and production especially for reservoir productivity enhancement and stratigraphic identification. This paper is focusing on seismic waveform classification to different classes using neural network and to link them according to the geological facies which are established using the knowledge on lithology and log motif of well data. Seismic inversion is used as the input for the neural network to act as the direct lithology indicator reducing dependency on well calibration. The interpretation of seismic facies classification map provides a better understanding towards the lithology distribution, depositional environment and help to identify significant reservoir rock

  12. Rescaled Range analysis of Induced Seismicity: rapid classification of clusters in seismic crisis

    Science.gov (United States)

    Bejar-Pizarro, M.; Perez Lopez, R.; Benito-Parejo, M.; Guardiola-Albert, C.; Herraiz, M.

    2017-12-01

    Different underground fluid operations, mainly gas storing, fracking and water pumping, can trigger Induced Seismicity (IS). This seismicity is normally featured by small-sized earthquakes (M<2.5), although particular cases reach magnitude as great as 5. It has been up for debate whether earthquakes greater than 5 can be triggered by IS or this level of magnitude only corresponds to tectonic earthquakes caused by stress change. Whatever the case, the characterization of IS for seismic clusters and seismic series recorded close but not into the gas storage, is still under discussion. Time-series of earthquakes obey non-linear patterns where the Hurst exponent describes the persistency or anti-persistency of the sequence. Natural seismic sequences have an H-exponent close to 0.7, which combined with the b-value time evolution during the time clusters, give us valuable information about the stationarity of the phenomena. Tectonic earthquakes consist in a main shock with a decay of time-occurrence of seismic shocks obeying the Omori's empirical law. On the contrary, IS does not exhibit a main shock and the time occurrence depends on the injection operations instead of on the tectonic energy released. In this context, the H-exponent can give information about the origin of the sequence. In 2013, a seismic crisis was declared from the Castor underground gas storing located off-shore in the Mediterranean Sea, close to the Northeastern Spanish cost. The greatest induced earthquake was 3.7. However, a 4.2 earthquake, probably of tectonic origin, occurred few days after the operations stopped. In this work, we have compared the H-exponent and the b-value time evolution according to the timeline of gas injection. Moreover, we have divided the seismic sequence into two groups: (1) Induced Seismicity and (2) Triggered Seismicity. The rescaled range analysis allows the differentiation between natural and induced seismicity and gives information about the persistency and long

  13. Statistical determination of significant curved I-girder bridge seismic response parameters

    Science.gov (United States)

    Seo, Junwon

    2013-06-01

    Curved steel bridges are commonly used at interchanges in transportation networks and more of these structures continue to be designed and built in the United States. Though the use of these bridges continues to increase in locations that experience high seismicity, the effects of curvature and other parameters on their seismic behaviors have been neglected in current risk assessment tools. These tools can evaluate the seismic vulnerability of a transportation network using fragility curves. One critical component of fragility curve development for curved steel bridges is the completion of sensitivity analyses that help identify influential parameters related to their seismic response. In this study, an accessible inventory of existing curved steel girder bridges located primarily in the Mid-Atlantic United States (MAUS) was used to establish statistical characteristics used as inputs for a seismic sensitivity study. Critical seismic response quantities were captured using 3D nonlinear finite element models. Influential parameters from these quantities were identified using statistical tools that incorporate experimental Plackett-Burman Design (PBD), which included Pareto optimal plots and prediction profiler techniques. The findings revealed that the potential variation in the influential parameters included number of spans, radius of curvature, maximum span length, girder spacing, and cross-frame spacing. These parameters showed varying levels of influence on the critical bridge response.

  14. Seismic activity in northeastern Brazill-new perspectives

    Science.gov (United States)

    Ferreira, J. M.; Do Nascimento, A. F.; Vilar, C. S.; Bezerra, F. H.; Assumpcao, M.; Berrocal, J.; Fuck, R. A.

    2007-05-01

    Northeastern Brazil is the most seismic active region in the country. Some earthquakes with magnitude above 5.0 and intensity VII MM associated with swam-like seismic activity lasting for many years are a serious social concern. Since the 1980's macroseismic and instrumental surveys have been carried out in this region and they are an important data archive which allows the composition of a reliable catalogue of seismic activity for this region. Among the many scientific results it was possible to identify the main seismogenic areas, obtain reliable hypocentres and focal mechanisms. As a consequence, it was possible also to analyse the relationship between seismicity and geological features. It was also possible to determined maximum horizontal stress direction for the region. An important induced seismic activity case has also been reported in the area as being a classical example of pore pressure diffusion triggering mechanism. The majority of the results were obtained using analogic data. Recently, a new research project is being conducted and will allow us to provide a regional scale monitoring with 6 broad-band stations and a new portable six station digital seismic network equipped with short- period sensors. Thus, with the continuous seismic activity in the area we trust that the results of this project will increase the present knowledge of seismic activity in northeastern Brazil.

  15. Detecting Seismic Infrasound Signals on Balloon Platforms

    Science.gov (United States)

    Krishnamoorthy, S.; Komjathy, A.; Cutts, J. A.; Pauken, M.; Garcia, R.; Mimoun, D.; Jackson, J. M.; Kedar, S.; Smrekar, S. E.; Hall, J. L.

    2017-12-01

    The determination of the interior structure of a planet requires detailed seismic investigations - a process that entails the detection and characterization of seismic waves due to geological activities (e.g., earthquakes, volcanoes, etc.). For decades, this task has primarily been performed on Earth by an ever-expanding network of terrestrial seismic stations. However, on planets such as Venus, where the surface pressure and temperature can reach as high as 90 atmospheres and 450 degrees Celsius respectively, placing seismometers on the planet's surface poses a vexing technological challenge. However, the upper layers of the Venusian atmosphere are more benign and capable of hosting geophysical payloads for longer mission lifetimes. In order to achieve the aim of performing geophysical experiments from an atmospheric platform, JPL and its partners (ISAE-SUPAERO and California Institute of Technology) are in the process of developing technologies for detection of infrasonic waves generated by earthquakes from a balloon. The coupling of seismic energy into the atmosphere critically depends on the density differential between the surface of the planet and the atmosphere. Therefore, the successful demonstration of this technique on Earth would provide ample reason to expect success on Venus, where the atmospheric impedance is approximately 60 times that of Earth. In this presentation, we will share results from the first set of Earth-based balloon experiments performed in Pahrump, Nevada in June 2017. These tests involved the generation of artificial sources of known intensity using a seismic hammer and their detection using a complex network of sensors, including highly sensitive micro-barometers suspended from balloons, GPS receivers, geophones, microphones, and seismometers. This experiment was the first of its kind and was successful in detecting infrasonic waves from the earthquakes generated by the seismic hammer. We will present the first comprehensive analysis

  16. Seismic facies; Facies sismicas

    Energy Technology Data Exchange (ETDEWEB)

    Johann, Paulo Roberto Schroeder [PETROBRAS, Rio de Janeiro, RJ (Brazil). Exploracao e Producao Corporativo. Gerencia de Reservas e Reservatorios]. E-mail: johann@petrobras.com.br

    2004-11-01

    The method presented herein describes the seismic facies as representations of curves and vertical matrixes of the lithotypes proportions. The seismic facies are greatly interested in capturing the spatial distributions (3D) of regionalized variables, as for example, lithotypes, sedimentary facies groups and/ or porosity and/or other properties of the reservoirs and integrate them into the 3D geological modeling (Johann, 1997). Thus when interpreted as curves or vertical matrixes of proportions, seismic facies allow us to build a very important tool for structural analysis of regionalized variables. The matrixes have an important application in geostatistical modeling. In addition, this approach provides results about the depth and scale of the wells profiles, that is, seismic data is integrated to the characterization of reservoirs in depth maps and in high resolution maps. The link between the different necessary technical phases involved in the classification of the segments of seismic traces is described herein in groups of predefined traces of two approaches: a) not supervised and b) supervised by the geological knowledge available on the studied reservoir. The multivariate statistical methods used to obtain the maps of the seismic facies units are interesting tools to be used to provide a lithostratigraphic and petrophysical understanding of a petroleum reservoir. In the case studied these seismic facies units are interpreted as representative of the depositional system as a part of the Namorado Turbiditic System, Namorado Field, Campos Basin.Within the scope of PRAVAP 19 (Programa Estrategico de Recuperacao Avancada de Petroleo - Strategic Program of Advanced Petroleum Recovery) some research work on algorithms is underway to select new optimized attributes to apply seismic facies. One example is the extraction of attributes based on the wavelet transformation and on the time-frequency analysis methodology. PRAVAP is also carrying out research work on an

  17. MRI Study on the Functional and Spatial Consistency of Resting State-Related Independent Components of the Brain Network

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Bum Seok [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Choi, Jee Wook [Daejeon St. Mary' s Hospital, The Catholic University of Korea College of Medicine, Daejeon (Korea, Republic of); Kim, Ji Woong [College of Medical Science, Konyang University, Daejeon(Korea, Republic of)

    2012-06-15

    Resting-state networks (RSNs), including the default mode network (DMN), have been considered as markers of brain status such as consciousness, developmental change, and treatment effects. The consistency of functional connectivity among RSNs has not been fully explored, especially among resting-state-related independent components (RSICs). This resting-state fMRI study addressed the consistency of functional connectivity among RSICs as well as their spatial consistency between 'at day 1' and 'after 4 weeks' in 13 healthy volunteers. We found that most RSICs, especially the DMN, are reproducible across time, whereas some RSICs were variable in either their spatial characteristics or their functional connectivity. Relatively low spatial consistency was found in the basal ganglia, a parietal region of left frontoparietal network, and the supplementary motor area. The functional connectivity between two independent components, the bilateral angular/supramarginal gyri/intraparietal lobule and bilateral middle temporal/occipital gyri, was decreased across time regardless of the correlation analysis method employed, (Pearson's or partial correlation). RSICs showing variable consistency are different between spatial characteristics and functional connectivity. To understand the brain as a dynamic network, we recommend further investigation of both changes in the activation of specific regions and the modulation of functional connectivity in the brain network.

  18. MRI Study on the Functional and Spatial Consistency of Resting State-Related Independent Components of the Brain Network

    International Nuclear Information System (INIS)

    Jeong, Bum Seok; Choi, Jee Wook; Kim, Ji Woong

    2012-01-01

    Resting-state networks (RSNs), including the default mode network (DMN), have been considered as markers of brain status such as consciousness, developmental change, and treatment effects. The consistency of functional connectivity among RSNs has not been fully explored, especially among resting-state-related independent components (RSICs). This resting-state fMRI study addressed the consistency of functional connectivity among RSICs as well as their spatial consistency between 'at day 1' and 'after 4 weeks' in 13 healthy volunteers. We found that most RSICs, especially the DMN, are reproducible across time, whereas some RSICs were variable in either their spatial characteristics or their functional connectivity. Relatively low spatial consistency was found in the basal ganglia, a parietal region of left frontoparietal network, and the supplementary motor area. The functional connectivity between two independent components, the bilateral angular/supramarginal gyri/intraparietal lobule and bilateral middle temporal/occipital gyri, was decreased across time regardless of the correlation analysis method employed, (Pearson's or partial correlation). RSICs showing variable consistency are different between spatial characteristics and functional connectivity. To understand the brain as a dynamic network, we recommend further investigation of both changes in the activation of specific regions and the modulation of functional connectivity in the brain network.

  19. The Apollo passive seismic experiment

    Science.gov (United States)

    Latham, G. V.; Dorman, H. J.; Horvath, P.; Ibrahim, A. K.; Koyama, J.; Nakamura, Y.

    1979-01-01

    The completed data set obtained from the 4-station Apollo seismic network includes signals from approximately 11,800 events of various types. Four data sets for use by other investigators, through the NSSDC, are in preparation. Some refinement of the lunar model based on seismic data can be expected, but its gross features remain as presented two years ago. The existence of a small, molten core remains dependent upon the analysis of signals from a single, far-side impact. Analysis of secondary arrivals from other sources may eventually resolve this issue, as well as continued refinement of the magnetic field measurements. Evidence of considerable lateral heterogeneity within the moon continues to build. The mystery of the much meteoroid flux estimate derived from lunar seismic measurements, as compared with earth-based estimates, remains; although, significant correlations between terrestrial and lunar observations are beginning to emerge.

  20. Seismic forecast using geostatistics

    International Nuclear Information System (INIS)

    Grecu, Valeriu; Mateiciuc, Doru

    2007-01-01

    The main idea of this research direction consists in the special way of constructing a new type of mathematical function as being a correlation between a computed statistical quantity and another physical quantity. This type of function called 'position function' was taken over by the authors of this study in the field of seismology with the hope of solving - at least partially - the difficult problem of seismic forecast. The geostatistic method of analysis focuses on the process of energy accumulation in a given seismic area, completing this analysis by a so-called loading function. This function - in fact a temporal function - describes the process of energy accumulation during a seismic cycle from a given seismic area. It was possible to discover a law of evolution of the seismic cycles that was materialized in a so-called characteristic function. This special function will help us to forecast the magnitude and the occurrence moment of the largest earthquake in the analysed area. Since 2000, the authors have been evolving to a new stage of testing: real - time analysis, in order to verify the quality of the method. There were five large earthquakes forecasts. (authors)

  1. Numerical modeling of landslides and generated seismic waves: The Bingham Canyon Mine landslides

    Science.gov (United States)

    Miallot, H.; Mangeney, A.; Capdeville, Y.; Hibert, C.

    2016-12-01

    Landslides are important natural hazards and key erosion processes. They create long period surface waves that can be recorded by regional and global seismic networks. The seismic signals are generated by acceleration/deceleration of the mass sliding over the topography. They consist in a unique and powerful tool to detect, characterize and quantify the landslide dynamics. We investigate here the processes at work during the two massive landslides that struck the Bingham Canyon Mine on the 10th April 2013. We carry a combined analysis of the generated seismic signals and the landslide processes computed with a 3D modeling on a complex topography. Forces computed by broadband seismic waveform inversion are used to constrain the study and particularly the force-source and the bulk dynamic. The source time function are obtained by a 3D model (Shaltop) where rheological parameters can be adjusted. We first investigate the influence of the initial shape of the sliding mass which strongly affects the whole landslide dynamic. We also see that the initial shape of the source mass of the first landslide constrains pretty well the second landslide source mass. We then investigate the effect of a rheological parameter, the frictional angle, that strongly influences the resulted computed seismic source function. We test here numerous friction laws as the frictional Coulomb law and a velocity-weakening friction law. Our results show that the force waveform fitting the observed data is highly variable depending on these different choices.

  2. A network architecture supporting consistent rich behavior in collaborative interactive applications.

    Science.gov (United States)

    Marsh, James; Glencross, Mashhuda; Pettifer, Steve; Hubbold, Roger

    2006-01-01

    Network architectures for collaborative virtual reality have traditionally been dominated by client-server and peer-to-peer approaches, with peer-to-peer strategies typically being favored where minimizing latency is a priority, and client-server where consistency is key. With increasingly sophisticated behavior models and the demand for better support for haptics, we argue that neither approach provides sufficient support for these scenarios and, thus, a hybrid architecture is required. We discuss the relative performance of different distribution strategies in the face of real network conditions and illustrate the problems they face. Finally, we present an architecture that successfully meets many of these challenges and demonstrate its use in a distributed virtual prototyping application which supports simultaneous collaboration for assembly, maintenance, and training applications utilizing haptics.

  3. Stabilizer for seismically exposed bridge cranes

    International Nuclear Information System (INIS)

    Engelke, M.; Kuhr, H.

    1982-01-01

    The invention concerns a stabilizer for seismically exposed bridge cranes in reactor buildings. The trolley and the crane bridge are fitted with the stabilizer consisting of a bipartite safety catch which is connected with a joint and able to take up the vertical loads during an earthquake. This stabilizer is suitable for all kinds of bridge cranes operated in seismically active regions

  4. The unique contribution of the IDC Reviewed Event Bulletin to global seismicity catalogues

    Science.gov (United States)

    Koch, Karl; Kebede, Fekadu

    2010-05-01

    For monitoring the Comprehensive Nuclear-Test-Ban Treaty (CTBT) the International Monitoring System (IMS) network is currently being established that will eventually consists of 241 seismic, hydroacoustic and infrasound stations. The final result of processing and analysis of seismological and other waveform technology data from these stations is the Reviewed Event Bulletin (REB), which has been issued by the International Data Center (IDC) under provisional operation since February 2000 on a daily basis, except for a total of 28 days. The nearly 300,000 events produced since then correspond to more than 25,000 events per year. As an accompanying effort to the bulletin production at the IDC, quality assurance work has been carried out for the REB for the years from 2000 to 2008 through comparisons to similar bulletins of global seismicity, issued by the ISC and the National Earthquake Information Center (NEIC) of the United States Geological Survey. The comparisons with the NEIC bulletin concentrate on a timely identification of larger events that were either missed during interactive analysis at the IDC or which have been significantly mislocated. For the scope of this study the comparisons with the ISC bulletin are the focus, as this bulletin provides the most complete reference to global seismicity, even though it becomes available only after about two years of event occurrence. In our quality assessments we aimed at evaluating the consistency of event locations for common events, i.e. found in both the REB and the ISC bulletin having been relocated by ISC; the degree and the geospatial location of the events only produced in the REB and verified not being bogus, and those ISC relocated events not contained in the REB and which were missed during IDC analysis. Even though the seismic component of the IMS network with its maximum 170 seismometer stations is a sparse teleseismic network, locations differences of less than 1° (0.5° ) are observed, on average, for

  5. Dominant seismic sources for the cities in South Sumatra

    Science.gov (United States)

    Sunardi, Bambang; Sakya, Andi Eka; Masturyono, Murjaya, Jaya; Rohadi, Supriyanto; Sulastri, Putra, Ade Surya

    2017-07-01

    Subduction zone along west of Sumatra and Sumatran fault zone are active seismic sources. Seismotectonically, South Sumatra could be affected by earthquakes triggered by these seismic sources. This paper discussed contribution of each seismic source to earthquake hazards for cities of Palembang, Prabumulih, Banyuasin, OganIlir, Ogan Komering Ilir, South Oku, Musi Rawas and Empat Lawang. These hazards are presented in form of seismic hazard curves. The study was conducted by using Probabilistic Seismic Hazard Analysis (PSHA) of 2% probability of exceedance in 50 years. Seismic sources used in analysis included megathrust zone M2 of Sumatra and South Sumatra, background seismic sources and shallow crustal seismic sources consist of Ketaun, Musi, Manna and Kumering faults. The results of the study showed that for cities relatively far from the seismic sources, subduction / megathrust seismic source with a depth ≤ 50 km greatly contributed to the seismic hazard and the other areas showed deep background seismic sources with a depth of more than 100 km dominate to seismic hazard respectively.

  6. Optimal design of water supply networks for enhancing seismic reliability

    International Nuclear Information System (INIS)

    Yoo, Do Guen; Kang, Doosun; Kim, Joong Hoon

    2016-01-01

    The goal of the present study is to construct a reliability evaluation model of a water supply system taking seismic hazards and present techniques to enhance hydraulic reliability of the design into consideration. To maximize seismic reliability with limited budgets, an optimal design model is developed using an optimization technique called harmony search (HS). The model is applied to actual water supply systems to determine pipe diameters that can maximize seismic reliability. The reliabilities between the optimal design and existing designs were compared and analyzed. The optimal design would both enhance reliability by approximately 8.9% and have a construction cost of approximately 1.3% less than current pipe construction cost. In addition, the reinforcement of the durability of individual pipes without considering the system produced ineffective results in terms of both cost and reliability. Therefore, to increase the supply ability of the entire system, optimized pipe diameter combinations should be derived. Systems in which normal status hydraulic stability and abnormal status available demand could be maximally secured if configured through the optimal design. - Highlights: • We construct a seismic reliability evaluation model of water supply system. • We present technique to enhance hydraulic reliability in the aspect of design. • Harmony search algorithm is applied in optimal designs process. • The effects of the proposed optimal design are improved reliability about by 9%. • Optimized pipe diameter combinations should be derived indispensably.

  7. Robust estimation of seismic coda shape

    Science.gov (United States)

    Nikkilä, Mikko; Polishchuk, Valentin; Krasnoshchekov, Dmitry

    2014-04-01

    We present a new method for estimation of seismic coda shape. It falls into the same class of methods as non-parametric shape reconstruction with the use of neural network techniques where data are split into a training and validation data sets. We particularly pursue the well-known problem of image reconstruction formulated in this case as shape isolation in the presence of a broadly defined noise. This combined approach is enabled by the intrinsic feature of seismogram which can be divided objectively into a pre-signal seismic noise with lack of the target shape, and the remainder that contains scattered waveforms compounding the coda shape. In short, we separately apply shape restoration procedure to pre-signal seismic noise and the event record, which provides successful delineation of the coda shape in the form of a smooth almost non-oscillating function of time. The new algorithm uses a recently developed generalization of classical computational-geometry tool of α-shape. The generalization essentially yields robust shape estimation by ignoring locally a number of points treated as extreme values, noise or non-relevant data. Our algorithm is conceptually simple and enables the desired or pre-determined level of shape detail, constrainable by an arbitrary data fit criteria. The proposed tool for coda shape delineation provides an alternative to moving averaging and/or other smoothing techniques frequently used for this purpose. The new algorithm is illustrated with an application to the problem of estimating the coda duration after a local event. The obtained relation coefficient between coda duration and epicentral distance is consistent with the earlier findings in the region of interest.

  8. Stress distribution and seismicity patterns of the 2011 seismic swarm in the Messinia basin, (South-Western Peloponnesus, Greece

    Directory of Open Access Journals (Sweden)

    G. Chouliaras

    2013-01-01

    Full Text Available In this investigation we examine the local stress field and the seismicity patterns associated with the 2011–2012 seismicity swarm in the Messinia basin, south-western Peloponnesus, Greece, using the seismological data of the National Observatory of Athens (NOA. During this swarm more than 2000 events were recorded in a 12 month period by the Hellenic Unified Seismological Network (HUSN and also by the additional local installation of four portable broadband seismographic stations by NOA.

    The results indicate a Gaussian distribution of swarm activity and the development of a seismicity cluster in a pre-existing seismic gap within the Messinia basin. Centroid Moment Tensor solutions demonstrate a normal fault trending northwest–southeast and dipping to the southwest primarily due to an extensional stress field. During this seismicity swarm an epicentre migration of the three largest shocks is observed, from one end of the rupture zone in the north-western part of the cluster, towards the other edge of the rupture in the south-eastern part of the cluster. This migration is found to follow the Coulomb failure criterion that predicts the advancement and retardation of the stress field and the patterns of increases and decreases of the seismicity rate (b-value of the frequency–magnitude relation.

  9. Revision of IRIS/IDA Seismic Station Metadata

    Science.gov (United States)

    Xu, W.; Davis, P.; Auerbach, D.; Klimczak, E.

    2017-12-01

    Trustworthy data quality assurance has always been one of the goals of seismic network operators and data management centers. This task is considerably complex and evolving due to the huge quantities as well as the rapidly changing characteristics and complexities of seismic data. Published metadata usually reflect instrument response characteristics and their accuracies, which includes zero frequency sensitivity for both seismometer and data logger as well as other, frequency-dependent elements. In this work, we are mainly focused studying the variation of the seismometer sensitivity with time of IRIS/IDA seismic recording systems with a goal to improve the metadata accuracy for the history of the network. There are several ways to measure the accuracy of seismometer sensitivity for the seismic stations in service. An effective practice recently developed is to collocate a reference seismometer in proximity to verify the in-situ sensors' calibration. For those stations with a secondary broadband seismometer, IRIS' MUSTANG metric computation system introduced a transfer function metric to reflect two sensors' gain ratios in the microseism frequency band. In addition, a simulation approach based on M2 tidal measurements has been proposed and proven to be effective. In this work, we compare and analyze the results from three different methods, and concluded that the collocated-sensor method is most stable and reliable with the minimum uncertainties all the time. However, for epochs without both the collocated sensor and secondary seismometer, we rely on the analysis results from tide method. For the data since 1992 on IDA stations, we computed over 600 revised seismometer sensitivities for all the IRIS/IDA network calibration epochs. Hopefully further revision procedures will help to guarantee that the data is accurately reflected by the metadata of these stations.

  10. Seismic monitoring at the Decatur, Ill., CO2 sequestration demonstration site

    Science.gov (United States)

    Kaven, Joern; Hickman, Stephen H.; McGarr, Arthur F.; Walter, Steve R.; Ellsworth, William L.

    2014-01-01

    The viability of carbon capture and storage (CCS) to reduce emissions of greenhouse gases depends on the ability to safely sequester large quantities of CO2 over geologic time scales. One concern with CCS is the potential of induced seismicity. We report on ongoing seismic monitoring by the U.S. Geological Survey (USGS) at a CCS demonstration site in Decatur, IL, in an effort to understand the potential hazards posed by injection-induced seismicity associated with geologic CO2 sequestration. At Decatur, super-critical CO2 is injected at 2.1 km depth into the 550-m-thick Mt. Simon Sandstone, which directly overlies granitic basement. The primary sealing cap rock is the Eau Claire Shale, a 100- to 150-m-thick unit at a depth of roughly 1.5 km. The USGS seismic network consists of 12 stations, three of which have surface accelerometers and three-component borehole geophones. We derived a one-dimensional velocity models from a vertical seismic profile acquired by Archer-Daniels-Midland (ADM) and the Illinois State Geological Survey (ISGS) to a depth of 2.2 km, tied into shallow acoustic logs from our borehole stations and assuming a 6 km/sec P-wave velocity for granite below 2.2 km. We further assume a constant ratio of P- to S-wave velocities of 1.83, as derived from velocity model inversions. We use this velocity model to locate seismic events, all of which are within the footprint of our network. So far magnitudes of locatable events range from Mw = -1.52 to 1.07. We further improved the hypocentral precision of microseismic events when travel times and waveforms are sufficiently similar by employing double-difference relocation techniques, with relative location errors less than 80 m horizontally and 100 m vertically. We observe tend to group in three distinct clusters: ∼0.4 to 1.0 km NE, 1.6 to 2.4 km N, and ∼1.8 to 2.6 km WNW from the injection well. The first cluster of microseismicity forms a roughly linear trend, which may represent a pre-existing geologic

  11. Information system evolution at the French National Network of Seismic Survey (BCSF-RENASS)

    Science.gov (United States)

    Engels, F.; Grunberg, M.

    2013-12-01

    The aging information system of the French National Network of Seismic Survey (BCSF-RENASS), located in Strasbourg (EOST), needed to be updated to satisfy new practices from Computer science world. The latter means to evolve our system at different levels : development method, datamining solutions, system administration. The new system had to provide more agility for incoming projects. The main difficulty was to maintain old system and the new one in parallel the time to validate new solutions with a restricted team. Solutions adopted here are coming from standards used by the seismological community and inspired by the state of the art of devops community. The new system is easier to maintain and take advantage of large community to find support. This poster introduces the new system and choosen solutions like Puppet, Fabric, MongoDB and FDSN Webservices.

  12. Seismicity Characterization and Velocity Structure of Northeast Russia

    National Research Council Canada - National Science Library

    Mackey, Kevin G; Fujita, Kazuya

    2005-01-01

    A seismicity catalog and associated list of phases for many events has been compiled for northeast Russia using published and unpublished data from the regional networks operating in eastern Russia...

  13. On the application of Hidden Markov Model and Bayesian Belief Network to seismic noise at Las Canadas Caldera, Tenerife, Spain

    International Nuclear Information System (INIS)

    Quintero Oliveros, Anggi; Carniel, Roberto; Tarraga, Marta; Aspinall, Willy

    2008-01-01

    The Teide-Pico Viejo volcanic complex situated in Tenerife Island (Canary Islands, Spain) has recently shown signs of unrest, long after its last eruptive episode at Chinyero in 1909, and the last explosive episode which happened at Montana Blanca, 2000 years ago. In this paper we study the seismicity of the Teide-Pico Viejo complex recorded between May and December 2004, in order to show the applicability of tools such as Hidden Markov Models and Bayesian Belief Networks which can be used to build a structure for evaluating the probability of given eruptive or volcano-related scenarios. The results support the existence of a bidirectional relationship between volcano-tectonic events and the background seismic noise - in particular its frequency content. This in turn suggests that the two phenomena can be related to one unique process influencing their generation

  14. On the application of Hidden Markov Model and Bayesian Belief Network to seismic noise at Las Canadas Caldera, Tenerife, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Quintero Oliveros, Anggi [Dipartimento di Georisorse e Territorio, Universita di Udine (Italy); Departamento de Ciencias de La Tierra, Universidad Simon Bolivar, Caracas (Venezuela); Carniel, Roberto [Dipartimento di Georisorse e Territorio, Universita di Udine (Italy)], E-mail: roberto.carniel@uniud.it; Tarraga, Marta [Departamento de Volcanologia, Museo Nacional de Ciencias Naturales, CSIC, Madrid (Spain); Aspinall, Willy [Aspinall and Associates, 5 Woodside Close, Beaconsfield, Bucks (United Kingdom)

    2008-08-15

    The Teide-Pico Viejo volcanic complex situated in Tenerife Island (Canary Islands, Spain) has recently shown signs of unrest, long after its last eruptive episode at Chinyero in 1909, and the last explosive episode which happened at Montana Blanca, 2000 years ago. In this paper we study the seismicity of the Teide-Pico Viejo complex recorded between May and December 2004, in order to show the applicability of tools such as Hidden Markov Models and Bayesian Belief Networks which can be used to build a structure for evaluating the probability of given eruptive or volcano-related scenarios. The results support the existence of a bidirectional relationship between volcano-tectonic events and the background seismic noise - in particular its frequency content. This in turn suggests that the two phenomena can be related to one unique process influencing their generation.

  15. Probabilistic Seismic Hazard Analysis for Yemen

    Directory of Open Access Journals (Sweden)

    Rakesh Mohindra

    2012-01-01

    Full Text Available A stochastic-event probabilistic seismic hazard model, which can be used further for estimates of seismic loss and seismic risk analysis, has been developed for the territory of Yemen. An updated composite earthquake catalogue has been compiled using the databases from two basic sources and several research publications. The spatial distribution of earthquakes from the catalogue was used to define and characterize the regional earthquake source zones for Yemen. To capture all possible scenarios in the seismic hazard model, a stochastic event set has been created consisting of 15,986 events generated from 1,583 fault segments in the delineated seismic source zones. Distribution of horizontal peak ground acceleration (PGA was calculated for all stochastic events considering epistemic uncertainty in ground-motion modeling using three suitable ground motion-prediction relationships, which were applied with equal weight. The probabilistic seismic hazard maps were created showing PGA and MSK seismic intensity at 10% and 50% probability of exceedance in 50 years, considering local soil site conditions. The resulting PGA for 10% probability of exceedance in 50 years (return period 475 years ranges from 0.2 g to 0.3 g in western Yemen and generally is less than 0.05 g across central and eastern Yemen. The largest contributors to Yemen’s seismic hazard are the events from the West Arabian Shield seismic zone.

  16. BUILDING 341 Seismic Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Halle, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-15

    The Seismic Evaluation of Building 341 located at Lawrence Livermore National Laboratory in Livermore, California has been completed. The subject building consists of a main building, Increment 1, and two smaller additions; Increments 2 and 3.

  17. Testing seismic amplitude source location for fast debris-flow detection at Illgraben, Switzerland

    Science.gov (United States)

    Walter, Fabian; Burtin, Arnaud; McArdell, Brian W.; Hovius, Niels; Weder, Bianca; Turowski, Jens M.

    2017-06-01

    Heavy precipitation can mobilize tens to hundreds of thousands of cubic meters of sediment in steep Alpine torrents in a short time. The resulting debris flows (mixtures of water, sediment and boulders) move downstream with velocities of several meters per second and have a high destruction potential. Warning protocols for affected communities rely on raising awareness about the debris-flow threat, precipitation monitoring and rapid detection methods. The latter, in particular, is a challenge because debris-flow-prone torrents have their catchments in steep and inaccessible terrain, where instrumentation is difficult to install and maintain. Here we test amplitude source location (ASL) as a processing scheme for seismic network data for early warning purposes. We use debris-flow and noise seismograms from the Illgraben catchment, Switzerland, a torrent system which produces several debris-flow events per year. Automatic in situ detection is currently based on geophones mounted on concrete check dams and radar stage sensors suspended above the channel. The ASL approach has the advantage that it uses seismometers, which can be installed at more accessible locations where a stable connection to mobile phone networks is available for data communication. Our ASL processing uses time-averaged ground vibration amplitudes to estimate the location of the debris-flow front. Applied to continuous data streams, inversion of the seismic amplitude decay throughout the network is robust and efficient, requires no manual identification of seismic phase arrivals and eliminates the need for a local seismic velocity model. We apply the ASL technique to a small debris-flow event on 19 July 2011, which was captured with a temporary seismic monitoring network. The processing rapidly detects the debris-flow event half an hour before arrival at the outlet of the torrent and several minutes before detection by the in situ alarm system. An analysis of continuous seismic records furthermore

  18. Testing seismic amplitude source location for fast debris-flow detection at Illgraben, Switzerland

    Directory of Open Access Journals (Sweden)

    F. Walter

    2017-06-01

    Full Text Available Heavy precipitation can mobilize tens to hundreds of thousands of cubic meters of sediment in steep Alpine torrents in a short time. The resulting debris flows (mixtures of water, sediment and boulders move downstream with velocities of several meters per second and have a high destruction potential. Warning protocols for affected communities rely on raising awareness about the debris-flow threat, precipitation monitoring and rapid detection methods. The latter, in particular, is a challenge because debris-flow-prone torrents have their catchments in steep and inaccessible terrain, where instrumentation is difficult to install and maintain. Here we test amplitude source location (ASL as a processing scheme for seismic network data for early warning purposes. We use debris-flow and noise seismograms from the Illgraben catchment, Switzerland, a torrent system which produces several debris-flow events per year. Automatic in situ detection is currently based on geophones mounted on concrete check dams and radar stage sensors suspended above the channel. The ASL approach has the advantage that it uses seismometers, which can be installed at more accessible locations where a stable connection to mobile phone networks is available for data communication. Our ASL processing uses time-averaged ground vibration amplitudes to estimate the location of the debris-flow front. Applied to continuous data streams, inversion of the seismic amplitude decay throughout the network is robust and efficient, requires no manual identification of seismic phase arrivals and eliminates the need for a local seismic velocity model. We apply the ASL technique to a small debris-flow event on 19 July 2011, which was captured with a temporary seismic monitoring network. The processing rapidly detects the debris-flow event half an hour before arrival at the outlet of the torrent and several minutes before detection by the in situ alarm system. An analysis of continuous seismic

  19. Seismic monitoring of the unstable rock slope at Aaknes, Norway

    Science.gov (United States)

    Roth, M.; Blikra, L. H.

    2009-04-01

    The unstable rock slope at Aaknes has an estimated volume of about 70 million cubic meters, and parts of the slope are moving at a rate between 2-15 cm/year. Amongst many other direct monitoring systems we have installed a small-scale seismic network (8 three-component geophones over an area of 250 x 150 meters) in order to monitor microseismic events related to the movement of the slope. The network has been operational since November 2005 with only a few short-term outages. Seismic data are transferred in real-time from the site to NORSAR for automatic detection processing. The resulting detection lists and charts and the associated waveform are forwarded immediately to the early warning centre of the Municipality of Stranda. Furthermore, we make them available after a delay of about 10-15 minutes on our public project web page (http://www.norsar.no/pc-47-48-Latest-Data.aspx). Seismic monitoring provides independent and complementary data to the more direct monitoring systems at Aaknes. We observe increased seismic activity in periods of heavy rain fall or snow melt, when laser ranging data and extensometer readings indicate temporary acceleration phases of the slope. The seismic network is too small and the velocity structure is too heterogeneous in order to obtain reliable localizations of the microseismic events. In summer 2009 we plan to install a high-sensitive broadband seismometer (60 s - 100 Hz) in the middle of the unstable slope. This will allow us to better constrain the locations of the microseismic events and to investigate potential low-frequency signals associated with the slope movement.

  20. Seismic noise level variation in South Korea

    Science.gov (United States)

    Sheen, D.; Shin, J.

    2008-12-01

    The variations of seismic background noise in South Korea have been investigated by means of power spectral analysis. The Korea Institute of Geoscience and Mineral Resources (KIGAM) and the Korea Meteorological Administation (KMA) have national wide seismic networks in South Korea, and, in the end of 2007, there are 30 broadband stations which have been operating for more than a year. In this study, we have estimated the power spectral density of seismic noise for 30 broadband stations from 2005 to 2007. Since we estimate PSDs from a large dataset of continuous waveform in this study, a robust PSD estimate of McNamara and Buland (2004) is used. In the frequency range 1-5 Hz, the diurnal variations of noise are observed at most of stations, which are especially larger at coastal stations and at insular than at inland. Some stations shows daily difference of diurnal variations, which represents that cultural activities contribute to the noise level of a station. The variation of number of triggered stations, however, shows that cultural noise has little influence on the detection capability of seismic network in South Korea. Seasonal variations are observed well in the range 0.1-0.5 Hz, while much less found in the frequency range 1-5 Hz. We observed that strong peaks in the range 0.1-0.5 Hz occur at the summer when Pacific typhoons are close to the Korean Peninsula.

  1. Simulations of seismic acquisition footprint

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J.; Margrave, G.; Lawton, D. [Calgary Univ., AB (Canada)

    2008-07-01

    Numerical simulations were performed to investigate the causes of commonly observed artefacts in seismic field data. These seismic acquisition footprints typically consist of modulations in recorded amplitudes that are spatially correlated to the surface locations of sources and receivers used in a survey. Two broad classes of footprint were considered, notably amplitude variations related to the edges of the survey and the amplitude variations in the interior of the survey. The variations in amplitude obscure the true reflection response of the subsurface. The MATLAB numerical modelling code was used to produce the synthetic seismic data and create a thorough dataset using a survey design incorporating dense grids of sources and receivers. The footprint consisting of periodic amplitude variations in the interior of the surveys, similar to that observed in field data and likely produced by poor sampling, was observed in the decimated dataset. This type of footprint varied in strength between images produced with different processing algorithms. The observed footprint in these simulations was most organized in the unmigrated stack and was somewhat randomized after poststack. 2 refs., 1 tab., 3 figs.

  2. Seismotectonic significance of the 2008–2010 Walloon Brabant seismic swarm in the Brabant Massif, Belgium

    Science.gov (United States)

    Van Noten, Koen; Lecocq, Thomas; Shah, Anjana K.; Camelbeeck, Thierry

    2015-01-01

    Between 12 July 2008 and 18 January 2010 a seismic swarm occurred close to the town of Court-Saint-Etienne, 20 km SE of Brussels (Belgium). The Belgian network and a temporary seismic network covering the epicentral area established a seismic catalogue in which magnitude varies between ML -0.7 and ML 3.2. Based on waveform cross-correlation of co-located earthquakes, the spatial distribution of the hypocentre locations was improved considerably and shows a dense cluster displaying a 200 m-wide, 1.5-km long, NW-SE oriented fault structure at a depth range between 5 and 7 km, located in the Cambrian basement rocks of the Lower Palaeozoic Anglo-Brabant Massif. Waveform comparison of the largest events of the 2008–2010 swarm with an ML 4.0 event that occurred during swarm activity between 1953 and 1957 in the same region shows similar P- and S-wave arrivals at the Belgian Uccle seismic station. The geometry depicted by the hypocentral distribution is consistent with a nearly vertical, left-lateral strike-slip fault taking place in a current local WNW–ESE oriented local maximum horizontal stress field. To determine a relevant tectonic structure, a systematic matched filtering approach of aeromagnetic data, which can approximately locate isolated anomalies associated with hypocentral depths, has been applied. Matched filtering shows that the 2008–2010 seismic swarm occurred along a limited-sized fault which is situated in slaty, low-magnetic rocks of the Mousty Formation. The fault is bordered at both ends with obliquely oriented magnetic gradients. Whereas the NW end of the fault is structurally controlled, its SE end is controlled by a magnetic gradient representing an early-orogenic detachment fault separating the low-magnetic slaty Mousty Formation from the high-magnetic Tubize Formation. The seismic swarm is therefore interpreted as a sinistral reactivation of an inherited NW–SE oriented isolated fault in a weakened crust within the Cambrian core of

  3. Earthquake Complex Network applied along the Chilean Subduction Zone.

    Science.gov (United States)

    Martin, F.; Pasten, D.; Comte, D.

    2017-12-01

    In recent years the earthquake complex networks have been used as a useful tool to describe and characterize the behavior of seismicity. The earthquake complex network is built in space, dividing the three dimensional space in cubic cells. If the cubic cell contains a hypocenter, we call this cell like a node. The connections between nodes follows the time sequence of the occurrence of the seismic events. In this sense, we have a spatio-temporal configuration of a specific region using the seismicity in that zone. In this work, we are applying complex networks to characterize the subduction zone along the coast of Chile using two networks: a directed and an undirected network. The directed network takes in consideration the time-direction of the connections, that is very important for the connectivity of the network: we are considering the connectivity, ki of the i-th node, like the number of connections going out from the node i and we add the self-connections (if two seismic events occurred successive in time in the same cubic cell, we have a self-connection). The undirected network is the result of remove the direction of the connections and the self-connections from the directed network. These two networks were building using seismic data events recorded by CSN (Chilean Seismological Center) in Chile. This analysis includes the last largest earthquakes occurred in Iquique (April 2014) and in Illapel (September 2015). The result for the directed network shows a change in the value of the critical exponent along the Chilean coast. The result for the undirected network shows a small-world behavior without important changes in the topology of the network. Therefore, the complex network analysis shows a new form to characterize the Chilean subduction zone with a simple method that could be compared with another methods to obtain more details about the behavior of the seismicity in this region.

  4. Data Quality Control of the French Permanent Broadband Network in the RESIF Framework

    Science.gov (United States)

    Grunberg, Marc; Lambotte, Sophie; Engels, Fabien; Dretzen, Remi; Hernandez, Alain

    2014-05-01

    In the framework of the RESIF (Réseau Sismologique et géodésique Français) project, a new information system is being setting up, allowing the improvement of the management and the distribution of high quality data from the different elements of RESIF and the associated networks. Within this information system, EOST (in Strasbourg) is in charge of collecting real-time permanent broadband seismic waveform, and performing Quality Control on these data. The real-time and validated data set are pushed to the French National Distribution Center (Isterre/Grenoble) in order to make them publicly available. Furthermore EOST hosts the BCSF-ReNaSS, in charge of the French metropolitan seismic bulletin. This allows to benefit from some high-end quality control based on the national and world-wide seismicity. Here we present first the real-time seismic data flow from the stations of the French National Broad Band Network to EOST, and then, the data Quality Control procedures that were recently installed, including some new developments. The data Quality Control consists in applying a variety of subprocesses to check the consistency of the whole system and process from the stations to the data center. This allows us to verify that instruments and data transmission are operating correctly. Moreover analysis of the ambient noise helps to characterize intrinsic seismic quality of the stations and to identify other kind of disturbances. The deployed Quality Control consist in a pipeline that starts with low-level procedures : check the real-time miniseed data file (file naming convention, data integrity), check for inconsistencies between waveform and meta-data (channel name, sample rate, etc.), compute waveform statistics (data availability, gap/overlap, mean, rms, time quality, spike). It is followed by some high-level procedures such as : power spectral density computation (PSD), STA/LTA computation to be correlated to the seismicity, phases picking and stations magnitudes

  5. A new tool for rapid and automatic estimation of earthquake source parameters and generation of seismic bulletins

    Science.gov (United States)

    Zollo, Aldo

    2016-04-01

    of the equivalent Wood-Anderson displacement recordings. The moment magnitude (Mw) is then estimated from the inversion of displacement spectra. The duration magnitude (Md) is rapidly computed, based on a simple and automatic measurement of the seismic wave coda duration. Starting from the magnitude estimates, other relevant pieces of information are also computed, such as the corner frequency, the seismic moment, the source radius and the seismic energy. The ground-shaking maps on a Google map are produced, for peak ground acceleration (PGA), peak ground velocity (PGV) and instrumental intensity (in SHAKEMAP® format), or a plot of the measured peak ground values. Furthermore, based on a specific decisional scheme, the automatic discrimination between local earthquakes occurred within the network and regional/teleseismic events occurred outside the network is performed. Finally, for largest events, if a consistent number of P-wave polarity reading are available, the focal mechanism is also computed. For each event, all of the available pieces of information are stored in a local database and the results of the automatic analyses are published on an interactive web page. "The Bulletin" shows a map with event location and stations, as well as a table listing all the events, with the associated parameters. The catalogue fields are the event ID, the origin date and time, latitude, longitude, depth, Ml, Mw, Md, the number of triggered stations, the S-displacement spectra, and shaking maps. Some of these entries also provide additional information, such as the focal mechanism (when available). The picked traces are uploaded in the database and from the web interface of the Bulletin the traces can be download for more specific analysis. This innovative software represents a smart solution, with a friendly and interactive interface, for high-level analysis of seismic data analysis and it may represent a relevant tool not only for seismologists, but also for non

  6. Seismic verification of underground explosions

    International Nuclear Information System (INIS)

    Glenn, L.A.

    1986-01-01

    The principal tools for monitoring compliance with a comprehensive test ban treaty (CTBT), prohibiting all testing of nuclear weapons, are seismic networks and surveillance satellites. On-site inspections might also be required to resolve ambiguous events. The critical element of the monitoring system is the network of seismic stations, and in particular the in-country station. Internal stations provide much more useful data than do stations outside the borders of testing nations. For large events that are not eliminated by depth or location, one of the most useful discriminants is based on the ratio of surface-wave to body-wave magnitudes (M /sub s/ :m /sub b/ ). If an explosion and an earthquake have the same body-wave magnitude, the surface-wave magnitude for the earthquake is generally larger. It has yet to be proven that M /sub s/ :m /sub b/ is useful at low magnitudes, expecially when explosions are set off in long tunnels or odd-shaped cavities. A number of other promising regional discriminants have been suggested. Evasion opportunities and cavity decoupling are discussed

  7. The Future of Seismic Data Quality Assurance at the IRIS DMC

    Science.gov (United States)

    Templeton, M. E.; Sharer, G.; Ashmore, S.; Casey, R. E.; Ahern, T. K.

    2014-12-01

    The IRIS Data Management Center (DMC) hosts a large and ever-growing archive of data from seismic stations around the world. One of the challenges in maintaining this archive is the need for providing Quality Assurance (QA) on its contents so that the data can be most effectively used by the scientific community. In the past, IRIS has focussed its QA efforts on improving data quality for a targeted subset of seismic networks, most notably the Earthscope USArray Transportable Array and the Global Seismic Network (GSN). Now with the rollout of MUSTANG, the DMC's new automated data quality metrics system, we are embarking on an ambitious effort to bring QA to the entirety of the DMC seismic data archive. Analysts at the DMC are in the process of developing improved techniques to find data problems, document significant issues, and communicate our results. Our initial efforts are directed at creating a prototype of a scalable QA process using GSN data and MUSTANG metrics. We will show how MUSTANG metrics, both as single measurements and aggregates of multiple measurements, can be used to quickly flag potential problems and demonstrate how analysts can use visualization tools to track changes in data quality at stations and across networks. Communication between IRIS, network operators, and data users will be crucial to the success of any QA effort. To that end, we are also improving our web presence with the aim of increasing data quality awareness within the seismological community and providing a place where people can report issues they encounter with either data or metrics measurements.

  8. Ambient Seismic Noise Interferometry on the Island of Hawai`i

    Science.gov (United States)

    Ballmer, Silke

    Ambient seismic noise interferometry has been successfully applied in a variety of tectonic settings to gain information about the subsurface. As a passive seismic technique, it extracts the coherent part of ambient seismic noise in-between pairs of seismic receivers. Measurements of subtle temporal changes in seismic velocities, and high-resolution tomographic imaging are then possible - two applications of particular interest for volcano monitoring. Promising results from other volcanic settings motivate its application in Hawai'i, with this work being the first to explore its potential. The dataset used for this purpose was recorded by the Hawaiian Volcano Observatory's permanent seismic network on the Island of Hawai'i. It spans 2.5 years from 5/2007 to 12/2009 and covers two distinct sources of volcanic tremor. After applying standard processing for ambient seismic noise interferometry, we find that volcanic tremor strongly affects the extracted noise information not only close to the tremor source, but unexpectedly, throughout the island-wide network. Besides demonstrating how this long-range observability of volcanic tremor can be used to monitor volcanic activity in the absence of a dense seismic array, our results suggest that care must be taken when applying ambient seismic noise interferometry in volcanic settings. In a second step, we thus exclude days that show signs of volcanic tremor, reducing the dataset to three months, and perform ambient seismic noise tomography. The resulting two-dimensional Rayleigh wave group velocity maps for 0.1 - 0.9 Hz compare very well with images from previous travel time tomography, both, for the main volcanic structures at low frequencies as well as for smaller features at mid-to-high frequencies - a remarkable observation for the temporally truncated dataset. These robust results suggest that ambient seismic noise tomography in Hawai'i is suitable 1) to provide a three-dimensional S-wave model for the volcanoes and 2

  9. The 2012 Ferrara seismic sequence: Regional crustal structure, earthquake sources, and seismic hazard

    Science.gov (United States)

    Malagnini, Luca; Herrmann, Robert B.; Munafò, Irene; Buttinelli, Mauro; Anselmi, Mario; Akinci, Aybige; Boschi, E.

    2012-10-01

    Inadequate seismic design codes can be dangerous, particularly when they underestimate the true hazard. In this study we use data from a sequence of moderate-sized earthquakes in northeast Italy to validate and test a regional wave propagation model which, in turn, is used to understand some weaknesses of the current design spectra. Our velocity model, while regionalized and somewhat ad hoc, is consistent with geophysical observations and the local geology. In the 0.02-0.1 Hz band, this model is validated by using it to calculate moment tensor solutions of 20 earthquakes (5.6 ≥ MW ≥ 3.2) in the 2012 Ferrara, Italy, seismic sequence. The seismic spectra observed for the relatively small main shock significantly exceeded the design spectra to be used in the area for critical structures. Observations and synthetics reveal that the ground motions are dominated by long-duration surface waves, which, apparently, the design codes do not adequately anticipate. In light of our results, the present seismic hazard assessment in the entire Pianura Padana, including the city of Milan, needs to be re-evaluated.

  10. Induced Seismicity Monitoring System

    Science.gov (United States)

    Taylor, S. R.; Jarpe, S.; Harben, P.

    2014-12-01

    There are many seismological aspects associated with monitoring of permanent storage of carbon dioxide (CO2) in geologic formations. Many of these include monitoring underground gas migration through detailed tomographic studies of rock properties, integrity of the cap rock and micro seismicity with time. These types of studies require expensive deployments of surface and borehole sensors in the vicinity of the CO2 injection wells. Another problem that may exist in CO2 sequestration fields is the potential for damaging induced seismicity associated with fluid injection into the geologic reservoir. Seismic hazard monitoring in CO2 sequestration fields requires a seismic network over a spatially larger region possibly having stations in remote settings. Expensive observatory-grade seismic systems are not necessary for seismic hazard deployments or small-scale tomographic studies. Hazard monitoring requires accurate location of induced seismicity to magnitude levels only slightly less than that which can be felt at the surface (e.g. magnitude 1), and the frequencies of interest for tomographic analysis are ~1 Hz and greater. We have developed a seismo/acoustic smart sensor system that can achieve the goals necessary for induced seismicity monitoring in CO2 sequestration fields. The unit is inexpensive, lightweight, easy to deploy, can operate remotely under harsh conditions and features 9 channels of recording (currently 3C 4.5 Hz geophone, MEMS accelerometer and microphone). An on-board processor allows for satellite transmission of parameter data to a processing center. Continuous or event-detected data is kept on two removable flash SD cards of up to 64+ Gbytes each. If available, data can be transmitted via cell phone modem or picked up via site visits. Low-power consumption allows for autonomous operation using only a 10 watt solar panel and a gel-cell battery. The system has been successfully tested for long-term (> 6 months) remote operations over a wide range

  11. Preliminary consideration on the seismic actions recorded during the 2016 Central Italy seismic sequence

    Science.gov (United States)

    Carlo Ponzo, Felice; Ditommaso, Rocco; Nigro, Antonella; Nigro, Domenico S.; Iacovino, Chiara

    2017-04-01

    After the Mw 6.0 mainshock of August 24, 2016 at 03.36 a.m. (local time), with the epicenter located between the towns of Accumoli (province of Rieti), Amatrice (province of Rieti) and Arquata del Tronto (province of Ascoli Piceno), several activities were started in order to perform some preliminary evaluations on the characteristics of the recent seismic sequence in the areas affected by the earthquake. Ambient vibration acquisitions have been performed using two three-directional velocimetric synchronized stations, with a natural frequency equal to 0.5Hz and a digitizer resolution of equal to 24bit. The activities are continuing after the events of the seismic sequence of October 26 and October 30, 2016. In this paper, in order to compare recorded and code provision values in terms of peak (PGA, PGV and PGD), spectral and integral (Housner Intensity) seismic parameters, several preliminary analyses have been performed on accelerometric time-histories acquired by three near fault station of the RAN (Italian Accelerometric Network): Amatrice station (station code AMT), Norcia station (station code NRC) and Castelsantangelo sul Nera station (station code CNE). Several comparisons between the elastic response spectra derived from accelerometric recordings and the elastic demand spectra provided by the Italian seismic code (NTC 2008) have been performed. Preliminary results retrieved from these analyses highlight several apparent difference between experimental data and conventional code provision. Then, the ongoing seismic sequence appears compatible with the historical seismicity in terms of integral parameters, but not in terms of peak and spectral values. It seems appropriate to reconsider the necessity to revise the simplified design approach based on the conventional spectral values. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and

  12. A Dynamic Linear Hashing Method for Redundancy Management in Train Ethernet Consist Network

    Directory of Open Access Journals (Sweden)

    Xiaobo Nie

    2016-01-01

    Full Text Available Massive transportation systems like trains are considered critical systems because they use the communication network to control essential subsystems on board. Critical system requires zero recovery time when a failure occurs in a communication network. The newly published IEC62439-3 defines the high-availability seamless redundancy protocol, which fulfills this requirement and ensures no frame loss in the presence of an error. This paper adopts these for train Ethernet consist network. The challenge is management of the circulating frames, capable of dealing with real-time processing requirements, fast switching times, high throughout, and deterministic behavior. The main contribution of this paper is the in-depth analysis it makes of network parameters imposed by the application of the protocols to train control and monitoring system (TCMS and the redundant circulating frames discarding method based on a dynamic linear hashing, using the fastest method in order to resolve all the issues that are dealt with.

  13. Approaches that use seismic hazard results to address topics of nuclear power plant seismic safety, with application to the Charleston earthquake issue

    International Nuclear Information System (INIS)

    Sewell, R.T.; McGuire, R.K.; Toro, G.R.; Stepp, J.C.; Cornell, C.A.

    1990-01-01

    Plant seismic safety indicators include seismic hazard at the SSE (safe shut-down earthquake) acceleration, seismic margin, reliability against core damage, and reliability against offsite consequences. This work examines the key role of hazard analysis in evaluating these indicators and in making rational decisions regarding plant safety. The paper outlines approaches that use seismic hazard results as a basis for plant seismic safety evaluation and applies one of these approaches to the Charleston earthquake issue. This approach compares seismic hazard results that account for the Charleston tectonic interpretation, using the EPRI-Seismicity Owners Group (SOG) methodology, with hazard results that are consistent with historical tectonic interpretations accepted in regulation. Based on hazard results for a set of 21 eastern U.S. nuclear power plant sites, the comparison shows that no systematic 'plant-to-plant' increase in hazard accompanies the Charleston hypothesis; differences in mean hazards for the two interpretations are generally insignificant relative to current uncertainties in seismic hazard. (orig.)

  14. Local seismic monitoring east and north of Toronto - Volume 1

    International Nuclear Information System (INIS)

    Mohajer, A.A.; Doughty, M.

    1996-08-01

    Monitoring of small magnitude ('micro') earthquakes in a dense local network is one of the techniques used to delineate currently active faults and seismic sources. The conventional wisdom is that smaller, but more frequent, seismic events normally occur on active fault planes and a log linear empirical relation between frequency and magnitude can be used to estimate the magnitude and recurrence (frequency) of the larger events. A program of site-specific seismic monitoring has been supported by the AECB since 1991, to investigate the feasibility of microearthquake detection in suburban areas of east Toronto in order to assess the rate activity of local events in the vicinity of the nuclear power plants at Pickering and Darlington. For deployment of the seismic stations at the most favorable locations an extensive background noise survey was carried out. This survey involved measuring and comparing the amplitude response of the ambient vibration caused by natural phenomena (e.g. wind blow, water flow, wave action) or human activities such as farming, mining and industrial work at 25 test sites. Subsequently, a five-station seismic network, with a 30 km aperture, was selected between the Pickering and Darlington nuclear power plants on Lake Ontario, to the south, and Lake Scugog to the north. The detection threshold obtained for two of the stations allows recording of local events M L =0-2, a magnitude range which is usually not detected by regional seismic networks. An analysis of several thousand triggered signals resulted in the identification of about 120 local events, which can not be assigned to any source other than the natural release of crustal stresses. The recurrence frequency of these microearthquakes shows a linear relationship which matches that of larger events in the last two centuries in this region. The preliminary results indicate that the stress is currently accumulating and is being released within clusters of small earthquakes

  15. A neural network based methodology to predict site-specific spectral acceleration values

    Science.gov (United States)

    Kamatchi, P.; Rajasankar, J.; Ramana, G. V.; Nagpal, A. K.

    2010-12-01

    A general neural network based methodology that has the potential to replace the computationally-intensive site-specific seismic analysis of structures is proposed in this paper. The basic framework of the methodology consists of a feed forward back propagation neural network algorithm with one hidden layer to represent the seismic potential of a region and soil amplification effects. The methodology is implemented and verified with parameters corresponding to Delhi city in India. For this purpose, strong ground motions are generated at bedrock level for a chosen site in Delhi due to earthquakes considered to originate from the central seismic gap of the Himalayan belt using necessary geological as well as geotechnical data. Surface level ground motions and corresponding site-specific response spectra are obtained by using a one-dimensional equivalent linear wave propagation model. Spectral acceleration values are considered as a target parameter to verify the performance of the methodology. Numerical studies carried out to validate the proposed methodology show that the errors in predicted spectral acceleration values are within acceptable limits for design purposes. The methodology is general in the sense that it can be applied to other seismically vulnerable regions and also can be updated by including more parameters depending on the state-of-the-art in the subject.

  16. Self-Consistent Scheme for Spike-Train Power Spectra in Heterogeneous Sparse Networks.

    Science.gov (United States)

    Pena, Rodrigo F O; Vellmer, Sebastian; Bernardi, Davide; Roque, Antonio C; Lindner, Benjamin

    2018-01-01

    Recurrent networks of spiking neurons can be in an asynchronous state characterized by low or absent cross-correlations and spike statistics which resemble those of cortical neurons. Although spatial correlations are negligible in this state, neurons can show pronounced temporal correlations in their spike trains that can be quantified by the autocorrelation function or the spike-train power spectrum. Depending on cellular and network parameters, correlations display diverse patterns (ranging from simple refractory-period effects and stochastic oscillations to slow fluctuations) and it is generally not well-understood how these dependencies come about. Previous work has explored how the single-cell correlations in a homogeneous network (excitatory and inhibitory integrate-and-fire neurons with nearly balanced mean recurrent input) can be determined numerically from an iterative single-neuron simulation. Such a scheme is based on the fact that every neuron is driven by the network noise (i.e., the input currents from all its presynaptic partners) but also contributes to the network noise, leading to a self-consistency condition for the input and output spectra. Here we first extend this scheme to homogeneous networks with strong recurrent inhibition and a synaptic filter, in which instabilities of the previous scheme are avoided by an averaging procedure. We then extend the scheme to heterogeneous networks in which (i) different neural subpopulations (e.g., excitatory and inhibitory neurons) have different cellular or connectivity parameters; (ii) the number and strength of the input connections are random (Erdős-Rényi topology) and thus different among neurons. In all heterogeneous cases, neurons are lumped in different classes each of which is represented by a single neuron in the iterative scheme; in addition, we make a Gaussian approximation of the input current to the neuron. These approximations seem to be justified over a broad range of parameters as

  17. Self-Consistent Scheme for Spike-Train Power Spectra in Heterogeneous Sparse Networks

    Directory of Open Access Journals (Sweden)

    Rodrigo F. O. Pena

    2018-03-01

    Full Text Available Recurrent networks of spiking neurons can be in an asynchronous state characterized by low or absent cross-correlations and spike statistics which resemble those of cortical neurons. Although spatial correlations are negligible in this state, neurons can show pronounced temporal correlations in their spike trains that can be quantified by the autocorrelation function or the spike-train power spectrum. Depending on cellular and network parameters, correlations display diverse patterns (ranging from simple refractory-period effects and stochastic oscillations to slow fluctuations and it is generally not well-understood how these dependencies come about. Previous work has explored how the single-cell correlations in a homogeneous network (excitatory and inhibitory integrate-and-fire neurons with nearly balanced mean recurrent input can be determined numerically from an iterative single-neuron simulation. Such a scheme is based on the fact that every neuron is driven by the network noise (i.e., the input currents from all its presynaptic partners but also contributes to the network noise, leading to a self-consistency condition for the input and output spectra. Here we first extend this scheme to homogeneous networks with strong recurrent inhibition and a synaptic filter, in which instabilities of the previous scheme are avoided by an averaging procedure. We then extend the scheme to heterogeneous networks in which (i different neural subpopulations (e.g., excitatory and inhibitory neurons have different cellular or connectivity parameters; (ii the number and strength of the input connections are random (Erdős-Rényi topology and thus different among neurons. In all heterogeneous cases, neurons are lumped in different classes each of which is represented by a single neuron in the iterative scheme; in addition, we make a Gaussian approximation of the input current to the neuron. These approximations seem to be justified over a broad range of

  18. Canadian seismic agreement

    International Nuclear Information System (INIS)

    Wetmiller, R.J.; Lyons, J.A.; Shannon, W.E.; Munro, P.S.; Thomas, J.T.; Andrew, M.D.; Lamontagne, M.; Wong, C.; Anglin, F.M.; Plouffe, M.; Lapointe, S.P.; Adams, J.; Drysdale, J.A.

    1990-04-01

    This is the twenty-first progress report under the agreement entitled Canadian Seismic Agreement between the US Nuclear Regulatory Commission (NRC) and the Canadian Commercial Corporation. Activities undertaken by the Geophysics Division of the Geological Survey of Canada (GD/GSC) during the period from July 01, 1988 to June 30, 1989 and supported in part by the NRC agreement are described below under four headings; Eastern Canada Telemetred Network and local network developments, Datalab developments, strong motion network developments and earthquake activity. In this time period eastern Canada experienced its largest earthquake in over 50 years. This earthquake, which has been christened the Saguenay earthquake, has provided a wealth of new data pertinent to earthquake engineering studies in eastern North America and is the subject of many continuing studies, which are presently being carried out at GD and elsewhere. 41 refs., 21 figs., 7 tabs

  19. A basis for standardized seismic design (SSD) for nuclear power plants/critical facilities

    International Nuclear Information System (INIS)

    O'Hara, T.F.; Jacobson, J.P.; Bellini, F.X.

    1991-01-01

    US Nuclear Power Plants (NPP's) are designed, engineered and constructed to stringent standards. Their seismic adequacy is assured by compliance with regulatory standards and demonstrated by both probabilistic risk assessments (PRAs) and seismic margin studies. However, present seismic siting criteria requires improvement. Proposed changes to siting criteria discussed here will provide a predictable licensing process and a stable regulatory environment. Two recent state-of-the-art studies evaluate the seismic design for all eastern US (EUS) NPP'S: a Lawrence Livermore National Labs study (LLNL, 1989) funded by the NRC and similar research by the Electric Power Research Institute (EPRI, 1989) supported by the utilities. Both confirm that Appendix A 10CFR Part 100 has not provided consistent seismic design levels for all sites. Standardized Seismic Design (SSD) uses a probabilistic framework to accommodate alternative deterministic interpretations. It uses seismic hazard input from EPRI or LLNL to produce consistent bases for future seismic design. SSD combines deterministic and probabilistic insights to provide a comprehensive approach for determining a future site's acceptable seismic design basis

  20. Microseismic Monitoring Using Sparse Surface Network of Broadband Instruments: Western Canada Shale Play Case Study

    Science.gov (United States)

    Yenier, E.; Baturan, D.; Karimi, S.

    2016-12-01

    Monitoring of seismicity related to oil and gas operations is routinely performed nowadays using a number of different surface and downhole seismic array configurations and technologies. Here, we provide a hydraulic fracture (HF) monitoring case study that compares the data set generated by a sparse local surface network of broadband seismometers to a data set generated by a single downhole geophone string. Our data was collected during a 5-day single-well HF operation, by a temporary surface network consisting of 10 stations deployed within 5 km of the production well. The downhole data was recorded by a 20 geophone string deployed in an observation well located 15 m from the production well. Surface network data processing included standard STA/LTA event triggering enhanced by template-matching subspace detection, grid search locations which was improved using the double-differencing re-location technique, as well as Richter (ML) and moment (Mw) magnitude computations for all detected events. In addition, moment tensors were computed from first motion polarities and amplitudes for the subset of highest SNR events. The resulting surface event catalog shows a very weak spatio-temporal correlation to HF operations with only 43% of recorded seismicity occurring during HF stages times. This along with source mechanisms shows that the surface-recorded seismicity delineates the activation of several pre-existing structures striking NNE-SSW and consistent with regional stress conditions as indicated by the orientation of SHmax. Comparison of the sparse-surface and single downhole string datasets allows us to perform a cost-benefit analysis of the two monitoring methods. Our findings show that although the downhole array recorded ten times as many events, the surface network provides a more coherent delineation of the underlying structure and more accurate magnitudes for larger magnitude events. We attribute this to the enhanced focal coverage provided by the surface

  1. Seismic cycle and seismic risk of an active faults network: the Corinth rift case (Greece)

    International Nuclear Information System (INIS)

    Boiselet, Aurelien

    2014-01-01

    The Corinth rift (Greece) is one of the regions with the highest strain rates (16 mm/y extension rate) in the Euro-Mediterranean area and as such it has long been identified as a site of major importance for earthquake studies in Europe (20 years of research by the Corinth Rift Laboratory and 4 years of in-depth studies by the ANR-SISCOR project). This enhanced knowledge, acquired in particular, in the western part of the Gulf of Corinth (CRL region), an area about 50 by 40 km 2 , between the city of Patras to the west and the city of Aigion to the east, provides an excellent opportunity to compare fault-based (FB) and classical seismo-tectonic (ST) approaches currently used in seismic hazard assessment studies. An homogeneous earthquake catalogue was thus constructed for the purpose of this study along with a comprehensive database of all relevant geological, geodetic and geophysical information available in the literature and recently collected within the ANR-SISCOR project. The homogenized Mw earthquake catalogue is composed of data from the National Observatory of Athens and from the university of Thessaloniki as well as data acquired through historical and instrumental work performed within the ANR-SISCOR group for the CRL region. A frequency magnitude analysis confirms that seismicity rates are governed by Gutenberg-Richter (GR) statistic for 1.2 =6 earthquakes were computed for the region of study. Time dependent models (Brownian Passage time and Weibull probability distributions) were also explored. The probability (normalized by area) of a M≥6.0 earthquake is found to be greater in the CRL region compared to the eastern part of the Corinth rift. Probability estimates corresponding to the 16. and 84. percentile are also provided, as a means of representing the range of uncertainties in the results. Probability estimates based on the ST-approach are then compared to those based on the FB approach approach. In general ST tends to overestimate probabilities

  2. Duration of Tsunami Generation Longer than Duration of Seismic Wave Generation in the 2011 Mw 9.0 Tohoku-Oki Earthquake

    Science.gov (United States)

    Fujihara, S.; Korenaga, M.; Kawaji, K.; Akiyama, S.

    2013-12-01

    We try to compare and evaluate the nature of tsunami generation and seismic wave generation in occurrence of the 2011 Tohoku-Oki earthquake (hereafter, called as TOH11), in terms of two type of moment rate functions, inferred from finite source imaging of tsunami waveforms and seismic waveforms. Since 1970's, the nature of "tsunami earthquakes" has been discussed in many researches (e.g. Kanamori, 1972; Kanamori and Kikuchi, 1993; Kikuchi and Kanamori, 1995; Ide et al., 1993; Satake, 1994) mostly based on analysis of seismic waveform data , in terms of the "slow" nature of tsunami earthquakes (e.g., the 1992 Nicaragura earthquake). Although TOH11 is not necessarily understood as a tsunami earthquake, TOH11 is one of historical earthquakes that simultaneously generated large seismic waves and tsunami. Also, TOH11 is one of earthquakes which was observed both by seismic observation network and tsunami observation network around the Japanese islands. Therefore, for the purpose of analyzing the nature of tsunami generation, we try to utilize tsunami waveform data as much as possible. In our previous studies of TOH11 (Fujihara et al., 2012a; Fujihara et al., 2012b), we inverted tsunami waveforms at GPS wave gauges of NOWPHAS to image the spatio-temporal slip distribution. The "temporal" nature of our tsunami source model is generally consistent with the other tsunami source models (e.g., Satake et al, 2013). For seismic waveform inversion based on 1-D structure, here we inverted broadband seismograms at GSN stations based on the teleseismic body-wave inversion scheme (Kikuchi and Kanamori, 2003). Also, for seismic waveform inversion considering the inhomogeneous internal structure, we inverted strong motion seismograms at K-NET and KiK-net stations, based on 3-D Green's functions (Fujihara et al., 2013a; Fujihara et al., 2013b). The gross "temporal" nature of our seismic source models are generally consistent with the other seismic source models (e.g., Yoshida et al

  3. IAEA specialists' meeting on seismic isolation technology. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-07-01

    The objective of the Meeting on Seismic Isolation Technology was to provide a forum for review and discussion of seismic isolation technology applicable to thermal and fast reactors. The meeting was conducted consistent with the recommendations of the IAEA Working Group Meeting on Fast Breeder Reactor-Block Antiseismic Design and Verification in October 1987, to augment a coordinated research program with specific recommendations and an assessment of technology in the area of seismic isolation. Seismic isolation has become an attractive means for mitigating the consequences of severe earthquakes. Although the general idea of seismic isolation has been considered since the turn of the century, real practical applications have evolved, at an accelerating pace, over the last fifteen years aided by several key developments: (1) recent advances in hardware developments in the form of reliable elastomer bearings, (2) development of reliable analytical methods for the prediction of dynamic responses of structures (3) construction of large bearing test machines and large shake tables to simulate earthquake effects on structures for validation analytical models and demonstration of performance characteristics, and (4) advances in seismological engineering. Although the applications and developments of seismic isolation technology have mainly benefited commercial facilities and structures, including office buildings, research laboratories, hospitals, museums, bridges, ship loaders, etc., several seismically isolated nuclear facilities were implemented: the four 900 MWe pressurized water reactor units of the Cruas plant in France, the two Framatome units in Koeberg, South Africa, a nuclear waste storage facility in France and a nuclear fuel reprocessing plant in England. The scope of this specialists' meeting was to review the state-of-the-art technology related to the performance of seismic isolator elements and systems, performance limits and margins, criteria for the

  4. IAEA specialists' meeting on seismic isolation technology. Proceedings

    International Nuclear Information System (INIS)

    1992-01-01

    The objective of the Meeting on Seismic Isolation Technology was to provide a forum for review and discussion of seismic isolation technology applicable to thermal and fast reactors. The meeting was conducted consistent with the recommendations of the IAEA Working Group Meeting on Fast Breeder Reactor-Block Antiseismic Design and Verification in October 1987, to augment a coordinated research program with specific recommendations and an assessment of technology in the area of seismic isolation. Seismic isolation has become an attractive means for mitigating the consequences of severe earthquakes. Although the general idea of seismic isolation has been considered since the turn of the century, real practical applications have evolved, at an accelerating pace, over the last fifteen years aided by several key developments: (1) recent advances in hardware developments in the form of reliable elastomer bearings, (2) development of reliable analytical methods for the prediction of dynamic responses of structures (3) construction of large bearing test machines and large shake tables to simulate earthquake effects on structures for validation analytical models and demonstration of performance characteristics, and (4) advances in seismological engineering. Although the applications and developments of seismic isolation technology have mainly benefited commercial facilities and structures, including office buildings, research laboratories, hospitals, museums, bridges, ship loaders, etc., several seismically isolated nuclear facilities were implemented: the four 900 MWe pressurized water reactor units of the Cruas plant in France, the two Framatome units in Koeberg, South Africa, a nuclear waste storage facility in France and a nuclear fuel reprocessing plant in England. The scope of this specialists' meeting was to review the state-of-the-art technology related to the performance of seismic isolator elements and systems, performance limits and margins, criteria for the

  5. Generalized Fragility Relationships with Local Site Conditions for Probabilistic Performance-based Seismic Risk Assessment of Bridge Inventories

    Directory of Open Access Journals (Sweden)

    Sivathayalan S.

    2012-01-01

    Full Text Available The current practice of detailed seismic risk assessment cannot be easily applied to all the bridges in a large transportation networks due to limited resources. This paper presents a new approach for seismic risk assessment of large bridge inventories in a city or national bridge network based on the framework of probabilistic performance based seismic risk assessment. To account for the influences of local site effects, a procedure to generate site-specific hazard curves that includes seismic hazard microzonation information has been developed for seismic risk assessment of bridge inventories. Simulated ground motions compatible with the site specific seismic hazard are used as input excitations in nonlinear time history analysis of representative bridges for calibration. A normalizing procedure to obtain generalized fragility relationships in terms of structural characteristic parameters of bridge span and size and longitudinal and transverse reinforcement ratios is presented. The seismic risk of bridges in a large inventory can then be easily evaluated using the normalized fragility relationships without the requirement of carrying out detailed nonlinear time history analysis.

  6. Dark Fiber and Distributed Acoustic Sensing: Applications to Monitoring Seismicity and Near-Surface Properties

    Science.gov (United States)

    Ajo Franklin, J. B.; Lindsey, N.; Dou, S.; Freifeld, B. M.; Daley, T. M.; Tracy, C.; Monga, I.

    2017-12-01

    "Dark Fiber" refers to the large number of fiber-optic lines installed for telecommunication purposes but not currently utilized. With the advent of distributed acoustic sensing (DAS), these unused fibers have the potential to become a seismic sensing network with unparalleled spatial extent and density with applications to monitoring both natural seismicity as well as near-surface soil properties. While the utility of DAS for seismic monitoring has now been conclusively shown on built-for-purpose networks, dark fiber deployments have been challenged by the heterogeneity of fiber installation procedures in telecommunication as well as access limitations. However, the potential of telecom networks to augment existing broadband monitoring stations provides a strong incentive to explore their utilization. We present preliminary results demonstrating the application of DAS to seismic monitoring on a 20 km run of "dark" telecommunications fiber between West Sacramento, CA and Woodland CA, part of the Dark Fiber Testbed maintained by the DOE's ESnet user facility. We show a small catalog of local and regional earthquakes detected by the array and evaluate fiber coupling by using variations in recorded frequency content. Considering the low density of broadband stations across much of the Sacramento Basin, such DAS recordings could provide a crucial data source to constrain small-magnitude local events. We also demonstrate the application of ambient noise interferometry using DAS-recorded waveforms to estimate soil properties under selected sections of the dark fiber transect; the success of this test suggests that the network could be utilized for environmental monitoring at the basin scale. The combination of these two examples demonstrates the exciting potential for combining DAS with ubiquitous dark fiber to greatly extend the reach of existing seismic monitoring networks.

  7. Fundamental aspects of seismic event detection, magnitude estimation and their interrelation

    International Nuclear Information System (INIS)

    Ringdal, F.

    1977-01-01

    The main common subject of the papers forming this thesis is statistical model development within the seismological disciplines of seismic event detection and event magnitude estimation. As more high quality seismic data become available as a result of recent seismic network developments, the opportunity will exist for large scale application and further refinement of these models. It is hoped that the work presented here will facilitate improved understanding of the basic issues, both within earthquake-explosion discrimination, in the framework of which most of this work originated, and in seismology in general. (Auth.)

  8. Hanford strong motion accelerometer network: A summary of the first months of operation

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1997-01-01

    The Hanford Seismic Monitoring Network consists of two designs of equipment and sites: seismometer sites and strong motion accelerometer (SMA) sites. Seismometer sites are designed to locate earthquakes on and near the Hanford Site and determine their magnitude and hypocenter location. The US Department of Energy (DOE) Order 5480.28, Natural Phenomena Hazards (DOE 1993) requires that facilities or sites that have structures or components in Performance Category 2 with hazardous material, and all Performance Category 3 and 4 facilities shall have instrumentation or other means to detect and record the occurrence and severity of seismic events. In order to comply with DOE Order 5480.28, the Hanford Seismic Monitoring Network seismometer sites needed to be complemented with strong motion accelerometers to record the ground motion at specific sites. The combined seismometer sites and strong motion accelerometer sites provide the Hanford Site with earthquake information to comply with DOE Order 5480.28. The data from these instruments will be used by the PHMC staff to assess the damage to facilities following a significant earthquake

  9. Focal mechanisms in the southern Aegean from temporary seismic networks – implications for the regional stress field and ongoing deformation processes

    OpenAIRE

    Friederich, W.; Brüstle, A.; Küperkoch, L.; Meier, T.; Lamara, S.; Working Group, Egelados

    2014-01-01

    The lateral variation of the stress field in the southern Aegean plate and the subducting Hellenic slab is determined from recordings of seismicity obtained with the CYCNET and EGELADOS networks in the years from 2002 to 2007. First motions from 7000 well-located microearthquakes were analysed to produce 540 well-constrained focal mechanisms. They were complemented by another 140 derived by waveform matching of records from larger events. Most of these earth...

  10. Improvement of seismic observation systems in JOYO

    International Nuclear Information System (INIS)

    Sumino, Kozo; Suto, Masayoshi; Tanaka, Akihiro

    2013-01-01

    In the experimental fast reactor 'Joyo' in order to perform the seismic observation in and around the building block and ground, SMAC type seismographs had continuously been used for about 38 years. However, this equipment aged, and the 2011 off the Pacific Coast of Tohoku Earthquake on Mach 11, 2011 increased the importance of seismic data of the reactor facilities from the viewpoint of earthquake-proof safety. For these reasons, Joyo updated the system to the seismic observation system reflecting the latest technology/information, while keeping consistency with the observation data of the former seismographs (SMAC type seismograph). This updating improved various problems on the former observation seismographs. In addition, the installation of now observation points in the locations that are important in seismic safety evaluation expanded the data, and further improved the reliability of the seismic observation and evaluation on 'Joyo'. (A.O.)

  11. Hierarchical Bayesian Modeling of Fluid-Induced Seismicity

    Science.gov (United States)

    Broccardo, M.; Mignan, A.; Wiemer, S.; Stojadinovic, B.; Giardini, D.

    2017-11-01

    In this study, we present a Bayesian hierarchical framework to model fluid-induced seismicity. The framework is based on a nonhomogeneous Poisson process with a fluid-induced seismicity rate proportional to the rate of injected fluid. The fluid-induced seismicity rate model depends upon a set of physically meaningful parameters and has been validated for six fluid-induced case studies. In line with the vision of hierarchical Bayesian modeling, the rate parameters are considered as random variables. We develop both the Bayesian inference and updating rules, which are used to develop a probabilistic forecasting model. We tested the Basel 2006 fluid-induced seismic case study to prove that the hierarchical Bayesian model offers a suitable framework to coherently encode both epistemic uncertainty and aleatory variability. Moreover, it provides a robust and consistent short-term seismic forecasting model suitable for online risk quantification and mitigation.

  12. The ANSS Station Information System: A Centralized Station Metadata Repository for Populating, Managing and Distributing Seismic Station Metadata

    Science.gov (United States)

    Thomas, V. I.; Yu, E.; Acharya, P.; Jaramillo, J.; Chowdhury, F.

    2015-12-01

    Maintaining and archiving accurate site metadata is critical for seismic network operations. The Advanced National Seismic System (ANSS) Station Information System (SIS) is a repository of seismic network field equipment, equipment response, and other site information. Currently, there are 187 different sensor models and 114 data-logger models in SIS. SIS has a web-based user interface that allows network operators to enter information about seismic equipment and assign response parameters to it. It allows users to log entries for sites, equipment, and data streams. Users can also track when equipment is installed, updated, and/or removed from sites. When seismic equipment configurations change for a site, SIS computes the overall gain of a data channel by combining the response parameters of the underlying hardware components. Users can then distribute this metadata in standardized formats such as FDSN StationXML or dataless SEED. One powerful advantage of SIS is that existing data in the repository can be leveraged: e.g., new instruments can be assigned response parameters from the Incorporated Research Institutions for Seismology (IRIS) Nominal Response Library (NRL), or from a similar instrument already in the inventory, thereby reducing the amount of time needed to determine parameters when new equipment (or models) are introduced into a network. SIS is also useful for managing field equipment that does not produce seismic data (eg power systems, telemetry devices or GPS receivers) and gives the network operator a comprehensive view of site field work. SIS allows users to generate field logs to document activities and inventory at sites. Thus, operators can also use SIS reporting capabilities to improve planning and maintenance of the network. Queries such as how many sensors of a certain model are installed or what pieces of equipment have active problem reports are just a few examples of the type of information that is available to SIS users.

  13. Visualization of volumetric seismic data

    Science.gov (United States)

    Spickermann, Dela; Böttinger, Michael; Ashfaq Ahmed, Khawar; Gajewski, Dirk

    2015-04-01

    Mostly driven by demands of high quality subsurface imaging, highly specialized tools and methods have been developed to support the processing, visualization and interpretation of seismic data. 3D seismic data acquisition and 4D time-lapse seismic monitoring are well-established techniques in academia and industry, producing large amounts of data to be processed, visualized and interpreted. In this context, interactive 3D visualization methods proved to be valuable for the analysis of 3D seismic data cubes - especially for sedimentary environments with continuous horizons. In crystalline and hard rock environments, where hydraulic stimulation techniques may be applied to produce geothermal energy, interpretation of the seismic data is a more challenging problem. Instead of continuous reflection horizons, the imaging targets are often steep dipping faults, causing a lot of diffractions. Without further preprocessing these geological structures are often hidden behind the noise in the data. In this PICO presentation we will present a workflow consisting of data processing steps, which enhance the signal-to-noise ratio, followed by a visualization step based on the use the commercially available general purpose 3D visualization system Avizo. Specifically, we have used Avizo Earth, an extension to Avizo, which supports the import of seismic data in SEG-Y format and offers easy access to state-of-the-art 3D visualization methods at interactive frame rates, even for large seismic data cubes. In seismic interpretation using visualization, interactivity is a key requirement for understanding complex 3D structures. In order to enable an easy communication of the insights gained during the interactive visualization process, animations of the visualized data were created which support the spatial understanding of the data.

  14. Southern San Andreas Fault seismicity is consistent with the Gutenberg-Richter magnitude-frequency distribution

    Science.gov (United States)

    Page, Morgan T.; Felzer, Karen

    2015-01-01

    The magnitudes of any collection of earthquakes nucleating in a region are generally observed to follow the Gutenberg-Richter (G-R) distribution. On some major faults, however, paleoseismic rates are higher than a G-R extrapolation from the modern rate of small earthquakes would predict. This, along with other observations, led to formulation of the characteristic earthquake hypothesis, which holds that the rate of small to moderate earthquakes is permanently low on large faults relative to the large-earthquake rate (Wesnousky et al., 1983; Schwartz and Coppersmith, 1984). We examine the rate difference between recent small to moderate earthquakes on the southern San Andreas fault (SSAF) and the paleoseismic record, hypothesizing that the discrepancy can be explained as a rate change in time rather than a deviation from G-R statistics. We find that with reasonable assumptions, the rate changes necessary to bring the small and large earthquake rates into alignment agree with the size of rate changes seen in epidemic-type aftershock sequence (ETAS) modeling, where aftershock triggering of large earthquakes drives strong fluctuations in the seismicity rates for earthquakes of all magnitudes. The necessary rate changes are also comparable to rate changes observed for other faults worldwide. These results are consistent with paleoseismic observations of temporally clustered bursts of large earthquakes on the SSAF and the absence of M greater than or equal to 7 earthquakes on the SSAF since 1857.

  15. Recent Seismicity in the Ceboruco Volcano, Western Mexico

    Science.gov (United States)

    Nunez, D.; Chávez-Méndez, M. I.; Nuñez-Cornu, F. J.; Sandoval, J. M.; Rodriguez-Ayala, N. A.; Trejo-Gomez, E.

    2017-12-01

    The Ceboruco volcano is the largest (2280 m.a.s.l) of several volcanoes along the Tepic-Zacoalco rift zone in Nayarit state (Mexico). During the last 1000 years, this volcano had effusive-explosive episodes with eight eruptions providing an average of one eruption each 125 years. Since the last eruption occurred in 1870, 147 years ago, a new eruption likelihood is really high and dangerous due to nearby population centers, important roads and lifelines that traverse the volcano's slopes. This hazards indicates the importance of monitoring the seismicity associated with the Ceboruco volcano whose ongoing activity is evidenced by fumaroles and earthquakes. During 2003 and 2008, this region was registered by just one Lennartz Marslite seismograph featuring a Lennartz Le3D sensor (1 Hz) [Rodríguez Uribe et al. (2013)] where they observed that seismicity rates and stresses appear to be increasing indicating higher levels of activity within the volcano. Until July 2017, a semi-permanent network with three Taurus (Nanometrics) and one Q330 Quanterra (Kinemetrics) digitizers with Lennartz 3Dlite sensors of 1 Hz natural frequency was registering in the area. In this study, we present the most recent seismicity obtained by the semi-permanent network and a temporary network of 21 Obsidians 4X and 8X (Kinemetrics) covering an area of 16 km x 16 km with one station every 2.5-3 km recording from November 2016 to July 2017.

  16. New Technology Changing The Face of Mobile Seismic Networks

    Science.gov (United States)

    Brisbourne, A.; Denton, P.; Seis-Uk

    SEIS-UK, a seismic equipment pool and data management facility run by a consortium of four UK universities (Leicester, Leeds, Cambridge and Royal Holloway, London) completed its second phase in 2001. To compliment the existing broadband equipment pool, which has been deployed to full capacity to date, the consortium undertook a tender evaluation process for low-power, lightweight sensors and recorders, for use on both controlled source and passive seismic experiments. The preferred option, selected by the consortium, was the Guralp CMG-6TD system, with 150 systems ordered. The CMG-6TD system is a new concept in temporary seismic equipment. A 30s- 100Hz force-feedback sensor, integral 24bit digitiser and 3-4Gbyte of solid-state memory are all housed in a single unit. Use of the most recent technologies has kept the power consumption to below 1W and the weight to 3.5Kg per unit. The concept of the disk-swap procedure for obtaining data from the field has been usurped by a fast data download technique using firewire technology. This allows for rapid station servicing, essential when 150 stations are in use, and also ensures the environmental integrity of the system by removing the requirement for a disk access port and envi- ronmentally exposed data disk. The system therefore meets the criteria for controlled source and passive seismic experiments: (1) the single unit concept and low-weight is designed for rapid deployment on short-term projects; (2) the low power consumption reduces the power-supply requirements facilitating deployment; (3) the low self-noise and bandwidth of the sensor make it applicable to passive experiments involving nat- ural sources. Further to this acquisition process, in collaboration with external groups, the SEIS- UK data management procedures have been streamlined with the integration of the Guralp GCF format data into the PASSCAL PDB software. This allows for rapid dissemination of field data and the production of archive-ready datasets

  17. OBS Technologies and permanent seismic Stations at Sea

    Science.gov (United States)

    Makris, J.; Nikolova, S. B.

    2003-04-01

    An off-shore telemetric system was developed during last 2 years. It consists of a buoy unit, OBS with seismic sensor and digitizer at the sea floor and coaxial cable for transferring data from the sea. The buoy unit includes all components for recording and transmitting data to the base station. A solar panel and wind generator are the sources of energy that charge the batteries in the buoy. An Omni directional antenna and a radio modem are used for data transfer. The buoy can be connected also to mobile network or satellite. The Seismic recording unit is SEDIS IV developed in GeoPro GmbH which is a 6 channel data logger equipped with a hard disk of 30 GByte capacity and a flash memory of 0.5 Gbyte which can continuously record at different sampling rate (from 31.25 to 1000sps). The operating system for SEDIS IV is LINUX, with possible data compression, event location and extraction. The data transfer and supply of the power to seismometer and ADC unit in OBS sphere is done through coaxial cable, connecting the buoy unit and OBS. The whole system was tested for a period of one month (October 2002) within frame of Nestor program in Pilos (Greece) and worked successfully.

  18. An Experimental Seismic Data and Parameter Exchange System for Tsunami Warning Systems

    Science.gov (United States)

    Hoffmann, T. L.; Hanka, W.; Saul, J.; Weber, B.; Becker, J.; Heinloo, A.; Hoffmann, M.

    2009-12-01

    For several years GFZ Potsdam is operating a global earthquake monitoring system. Since the beginning of 2008, this system is also used as an experimental seismic background data center for two different regional Tsunami Warning Systems (TWS), the IOTWS (Indian Ocean) and the interim NEAMTWS (NE Atlantic and Mediterranean). The SeisComP3 (SC3) software, developed within the GITEWS (German Indian Ocean Tsunami Early Warning System) project, capable to acquire, archive and process real-time data feeds, was extended for export and import of individual processing results within the two clusters of connected SC3 systems. Therefore not only real-time waveform data are routed to the attached warning centers through GFZ but also processing results. While the current experimental NEAMTWS cluster consists of SC3 systems in six designated national warning centers in Europe, the IOTWS cluster presently includes seven centers, with another three likely to join in 2009/10. For NEAMTWS purposes, the GFZ virtual real-time seismic network (GEOFON Extended Virtual Network -GEVN) in Europe was substantially extended by adding many stations from Western European countries optimizing the station distribution. In parallel to the data collection over the Internet, a GFZ VSAT hub for secured data collection of the EuroMED GEOFON and NEAMTWS backbone network stations became operational and first data links were established through this backbone. For the Southeast Asia region, a VSAT hub has been established in Jakarta already in 2006, with some other partner networks connecting to this backbone via the Internet. Since its establishment, the experimental system has had the opportunity to prove its performance in a number of relevant earthquakes. Reliable solutions derived from a minimum of 25 stations were very promising in terms of speed. For important events, automatic alerts were released and disseminated by emails and SMS. Manually verified solutions are added as soon as they become

  19. DEMT experimental and analytical studies on seismic isolation

    International Nuclear Information System (INIS)

    Gantenbein, F.; Buland, P.

    1989-01-01

    Work on seismic isolation has been performed in France for many years, and the isolation device developed by SPIE-BATIGNOLLES in collaboration with Electricite de France (EDF) has been incorporated in the design of pressurized-water reactor (PWR) nuclear power plants. This paper reviews the experimental and theoretical studies performed at CEA/DEMT related to the overall behavior of isolated structures. The experimental work consists of the seismic shaking-table tests of a concrete cylinder isolated by neoprene sliding pads, and the vibrational tests on the reaction mass of the TAMARIS seismic facility. The analytical work consists of the development of procedures for dynamic calculation methods: for soil-structure interaction where pads are placed between an upper raft and pedestals, for time-history calculations where sliding plates are used, and for fluid-structure interaction where coupled fluid and structure motions and sloshing modes are important. Finally, this paper comments on the consequences of seismic isolation for the analysis of fast breeder reactor (FBR) vessels. The modes can no longer be considered independent (SRSS Method leads to important errors), and the sloshing increases

  20. The ING Seismic Network Databank (ISND : a friendly parameters and waveform database

    Directory of Open Access Journals (Sweden)

    G. Smriglio

    1995-06-01

    Full Text Available he Istituto Nazionale di Geofisica (ING Seismic Network Database (ISND includes over 300000 arrivaI times of Italian, Mediterranean and teleseismic earthquakes from 1983 to date. This database is a useful tool for Italian and foreign seismologists ( over 1000 data requests in the first 6 months of this year. Recently (1994 the ING began storing in the ISND, the digital waveforms associated with arri,Tal times and experimen- tally allowed users to retrieve waveforms recorded by the ING acquisition system. In this paper we describe the types of data stored and the interactive and batch procedures available to obtain arrivaI times and/or asso- ciated waveforms. The ISND is reachable via telephone line, P.S.I., Internet and DecNet. Users can read and send to their E-mail address alI selected earthquakes locations, parameters, arrivaI times and associated digital waveforms (in SAC, SUDS or ASCII format. For r;aedium or large amounts of data users can ask to receive data by means of magnetic media (DAT, Video 8, floppy disk.

  1. Seismic Amplitude Ratio Analysis of the 2014-2015 Bár∂arbunga-Holuhraun Dike Propagation and Eruption

    Science.gov (United States)

    Caudron, Corentin; White, Robert S.; Green, Robert G.; Woods, Jennifer; Ágústsdóttir, Thorbjörg; Donaldson, Clare; Greenfield, Tim; Rivalta, Eleonora; Brandsdóttir, Bryndís.

    2018-01-01

    Magma is transported in brittle rock through dikes and sills. This movement may be accompanied by the release of seismic energy that can be tracked from the Earth's surface. Locating dikes and deciphering their dynamics is therefore of prime importance in understanding and potentially forecasting volcanic eruptions. The Seismic Amplitude Ratio Analysis (SARA) method aims to track melt propagation using the amplitudes recorded across a seismic network without picking the arrival times of individual earthquake phases. This study validates this methodology by comparing SARA locations (filtered between 2 and 16 Hz) with the earthquake locations (same frequency band) recorded during the 2014-2015 Bár∂arbunga-Holuhraun dike intrusion and eruption in Iceland. Integrating both approaches also provides the opportunity to investigate the spatiotemporal characteristics of magma migration during the dike intrusion and ensuing eruption. During the intrusion SARA locations correspond remarkably well to the locations of earthquakes. Several exceptions are, however, observed. (1) A low-frequency signal was possibly associated with a subglacial eruption on 23 August. (2) A systematic retreat of the seismicity was also observed to the back of each active segment during stalled phases and was associated with a larger spatial extent of the seismic energy source. This behavior may be controlled by the dike's shape and/or by dike inflation. (3) During the eruption SARA locations consistently focused at the eruptive site. (4) Tremor-rich signal close to ice cauldrons occurred on 3 September. This study demonstrates the power of the SARA methodology, provided robust site amplification; Quality Factors and seismic velocities are available.

  2. Could the IMS Infrasound Stations Support a Global Network of Small Aperture Seismic Arrays?

    OpenAIRE

    Kværna, Tormod; Gibbons, Steven; Mykkeltveit, Svein

    2017-01-01

    The IMS infrasound arrays have up to 15 sites with apertures up to 3 km. They are distributed remarkably uniformly over the globe, providing excellent coverage of South America, Africa, and Antarctica. Therefore, many infrasound arrays are in regions thousands of kilometers from the closest seismic array. Existing 3-component seismic stations, co-located with infrasound arrays, show how typical seismic signals look at these locations. We estimate a theoretical array response assuming a seismo...

  3. Impact of the 2001 Tohoku-oki earthquake to Tokyo Metropolitan area observed by the Metropolitan Seismic Observation network (MeSO-net)

    Science.gov (United States)

    Hirata, N.; Hayashi, H.; Nakagawa, S.; Sakai, S.; Honda, R.; Kasahara, K.; Obara, K.; Aketagawa, T.; Kimura, H.; Sato, H.; Okaya, D. A.

    2011-12-01

    The March 11, 2011 Tohoku-oki earthquake brought a great impact to the Tokyo metropolitan area in both seismological aspect and seismic risk management although Tokyo is located 340 km from the epicenter. The event generated very strong ground motion even in the metropolitan area and resulted severe requifaction in many places of Kanto district. National and local governments have started to discuss counter measurement for possible seismic risks in the area taking account for what they learned from the Tohoku-oki event which is much larger than ever experienced in Japan Risk mitigation strategy for the next greater earthquake caused by the Philippine Sea plate (PSP) subducting beneath the Tokyo metropolitan area is of major concern because it caused past mega-thrust earthquakes, such as the 1703 Genroku earthquake (M8.0) and the 1923 Kanto earthquake (M7.9). An M7 or greater (M7+) earthquake in this area at present has high potential to produce devastating loss of life and property with even greater global economic repercussions. The Central Disaster Management Council of Japan estimates that an M7+ earthquake will cause 11,000 fatalities and 112 trillion yen (about 1 trillion US$) economic loss. In order to mitigate disaster for greater Tokyo, the Special Project for Earthquake Disaster Mitigation in the Tokyo Metropolitan Area was launched in collaboration with scientists, engineers, and social-scientists in nationwide institutions. We will discuss the main results that are obtained in the respective fields which have been integrated to improve information on the strategy assessment for seismic risk mitigation in the Tokyo metropolitan area; the project has been much improved after the Tohoku event. In order to image seismic structure beneath the Metropolitan Tokyo area we have developed Metropolitan Seismic Observation network (MeSO-net; Hirata et al., 2009). We have installed 296 seismic stations every few km (Kasahara et al., 2011). We conducted seismic

  4. Shear-wave velocity of marine sediments offshore Taiwan using ambient seismic noise

    Science.gov (United States)

    Lin, Yu-Tse; Lin, Jing-Yi; Kuo-Chen, Hao; Yeh, Yi-Chin; Cheng, Win-Bin

    2017-04-01

    Seismic ambient noise technology has many advantages over the traditional two-station method. The most important one is that noise is happening all the time and it can be widely and evenly distributed. Thus, the Green's Function of any station pair can be obtained through the data cross-correlation process. Many related studies have been performed to estimate the velocity structures based on the inland area. Only a few studies were reported for the marine area due to the relatively shorter recording time of ocean bottom seismometers (OBS) deployment and the high cost of the marine experiment. However, the understanding about the shear-wave velocity (Vs) of the marine sediments is very crucial for the hazard assessment related to submarine landslides, particularly with the growing of submarine resources exploration. In this study, we applied the ambient noise technique to four OBS seismic networks located offshore Taiwan in the aim of getting more information about the noise sources and having the preliminary estimation for the Vs of the marine sediments. Two of the seismic networks were deployed in the NE part of Taiwan, near the Ryukyu subduction system, whereas the others were in the SW area, on the continental margin rich in gas hydrate. Generally, ambient seismic noise could be associated with wind, ocean waves, rock fracturing and anthropogenic activity. In the southwestern Taiwan, the cross-correlation function obtained from two seismic networks indicate similar direction, suggestion that the source from the south part of the network could be the origin of the noise. However, the two networks in the northeastern Taiwan show various source direction, which could be caused by the abrupt change of bathymetry or the volcanic degassing effect frequently observed by the marine geophysical method in the area. The Vs determined from the dispersion curve shows a relatively higher value for the networks in the Okinawa Trough (OT) off NE Taiwan than that in the

  5. Upper mantle seismic structure beneath southwest Africa from finite-frequency P- and S-wave tomography

    DEFF Research Database (Denmark)

    Soliman, Mohammad Youssof Ahmad; Yuan, Xiaohui; Tilmann, Frederik

    2015-01-01

    We present a 3D high-resolution seismic model of the southwestern Africa region from teleseismic tomographic inversion of the P- and S- wave data recorded by the amphibious WALPASS network. We used 40 temporary stations in southwestern Africa with records for a period of 2 years (the OBS operated...... for 1 year), between November 2010 and November 2012. The array covers a surface area of approximately 600 by 1200 km and is located at the intersection of the Walvis Ridge, the continental margin of northern Namibia, and extends into the Congo craton. Major questions that need to be understood......, probably related to surficial suture zones and the presence of fertile material. A shallower depth extent of the lithospheric plate of ∼100 km was observed beneath the ocean, consistent with plate-cooling models. In addition to tomographic images, the seismic anisotropy measurements within the upper mantle...

  6. Fractal behaviour of the seismicity in the Southern Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    X. Lana

    2005-01-01

    Full Text Available The fractal behaviour of the seismicity in the Southern Iberian Peninsula is analysed by considering two different series of data: the distance and the elapsed time between consecutive seismic events recorded by the seismic network of the Andalusian Institute of Geophysics (AIG. The fractal analyses have been repeated by considering four threshold magnitudes of 2.5, 3.0, 3.5 and 4.0. The re-scaled analysis lets to determine if the seismicity shows strong randomness or if it is characterised by time-persistence and the cluster dimension indicates the degree of time and spatial clustering of the seismicity. Another analysis, based on the reconstruction theorem, permits to evaluate the minimum number of nonlinear equations describing the dynamical mechanism of the seismicity, its 'loss of memory', its chaotic character and the instability of a possible predicting algorithm. The results obtained depict some differences depending on distances or elapsed times and the different threshold levels of magnitude also lead to slightly different results. Additionally, only a part of the fractal tools, the re-scaled analysis, have been applied to five seismic crises in the same area.

  7. A Bayesian theory for seismic foreshocks and aftershocks

    International Nuclear Information System (INIS)

    Apostol, B.-F.

    2006-01-01

    Statistical distributions in time, magnitude and energy are derived for seismic foreshocks and aftershocks accompanying a main seismic shock, as based on the Bayesian theory of probabilities and on a model introduced recently for the accumulation of energy in a seismic focus. Omori's law is obtained as a self-replication of a generating distribution, the self-consistency of the process requiring an exponential law for this generating distribution. The two distributions are interrelated by Euler's transform, which provides also a generalized form of Omori's law. The regime of the accompanying seismic events is characterized as fully as possible, including the time dependence of the magnitude and the rate of released energy. (author)

  8. GUI program to compute probabilistic seismic hazard analysis

    International Nuclear Information System (INIS)

    Shin, Jin Soo; Chi, H. C.; Cho, J. C.; Park, J. H.; Kim, K. G.; Im, I. S.

    2006-12-01

    The development of program to compute probabilistic seismic hazard is completed based on Graphic User Interface(GUI). The main program consists of three part - the data input processes, probabilistic seismic hazard analysis and result output processes. The probabilistic seismic hazard analysis needs various input data which represent attenuation formulae, seismic zoning map, and earthquake event catalog. The input procedure of previous programs based on text interface take a much time to prepare the data. The data cannot be checked directly on screen to prevent input erroneously in existing methods. The new program simplifies the input process and enable to check the data graphically in order to minimize the artificial error within limits of the possibility

  9. The Iquique 2014 sequence: understanding its nucleation and propagation from the seismicity evolution

    Science.gov (United States)

    Fuenzalida, A.; Rietbrock, A.; Woollam, J.; Tavera, H.; Ruiz, S.

    2017-12-01

    The Northern Chile and Southern Peru region is well known for its high seismic hazard due to the lack of recent major ruptures along long segments of the subduction interface. For this reason the 2014 Iquique Mw 8.1 earthquake that occurred in the Northern Chile seismic gap was expected and high quality seismic and geodetic networks were operating at the time of the event recording the precursory phase of a mega-thrust event with unprecedented detail. In this study we used seismic data collected during the 2014 Iquique sequence to generate a detailed earthquake catalogue. This catalogue consists of more than 15,000 events identified in Northern Chile during the period between 1/3/14 and 31/5/14 and provides full coverage of the immediate foreshock sequence, the main-shock and early after-shock series. The initial catalogue was obtained by automatic data processing and only selecting events with at least two associate S phases to improve the reliability of initial locations. Subsequently, this subset of events was automatically processed again using an optimized STA/LTA triggering algorithm for both P and S-waves and constraining the detection times by estimated arrival times at each station calculated for the preliminary locations. Finally, all events were relocated using a recently developed 1D velocity model and associated station corrections. For events Mw 4 or larger that occurred between the 15/3/14 and 10/04/14, we estimated it regional moment tensor by full-waveform inversion. Our results confirm the seismic activation of the upper plate during the foreshock sequence, as well highlight a crustal activity on the fore-arc during the aftershock series. The seismicity distribution was compared to the previous inter-seismic coupling studies obtained in the region, in which we observe interplay between high and low coupling areas, which are correlated to the seismicity rate. The spatial distribution of the seismicity and the complexities on the mechanisms observed

  10. Reservoir characterization using artificial neural network; Neural network wo mochiita choryuso tokusei kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, N; Kozawa, T [Japan National Oil Corp., Tokyo (Japan); Nishikawa, N; Tani, A [Fuji Research Institute Corp., Tokyo (Japan)

    1997-05-27

    Neural network is used for the prediction of porosity and permeability using logging data as reservoir characteristics, and the validity of this method is verified. For the prediction of reservoir characteristics by the use of seismic survey data, composite seismic survey records obtained by density logging and acoustic logging are used to experiment the prediction of porosity and permeability continuous along lines of wells. A 3-output back propagation network is used for analysis. There is a possibility that this technique when optimized will improve on prediction accuracy. Furthermore, in the case of characteristics mapping, 3-dimensional seismic data is applied to a carbonate rock reservoir for predicting spatial porosity and permeability. This technique facilitates the comprehensive analysis of core data, well data, and seismic survey data, enabling the derivation of a high-precision spatial distribution of reservoir characteristics. Efforts will continue for further improvement on prediction accuracy. 6 refs., 7 figs., 3 tabs.

  11. Earthquake hazard in Northeast India – A seismic microzonation ...

    Indian Academy of Sciences (India)

    microzonation approach with typical case studies from .... the other hand, Guwahati city represents a case of well-formed basin with ... earthquake prone regions towards developing its ... tonic network and the observed seismicity has been.

  12. The Colombia Seismological Network

    Science.gov (United States)

    Blanco Chia, J. F.; Poveda, E.; Pedraza, P.

    2013-05-01

    The latest seismological equipment and data processing instrumentation installed at the Colombia Seismological Network (RSNC) are described. System configuration, network operation, and data management are discussed. The data quality and the new seismological products are analyzed. The main purpose of the network is to monitor local seismicity with a special emphasis on seismic activity surrounding the Colombian Pacific and Caribbean oceans, for early warning in case a Tsunami is produced by an earthquake. The Colombian territory is located at the South America northwestern corner, here three tectonic plates converge: Nazca, Caribbean and the South American. The dynamics of these plates, when resulting in earthquakes, is continuously monitored by the network. In 2012, the RSNC registered in 2012 an average of 67 events per day; from this number, a mean of 36 earthquakes were possible to be located well. In 2010 the network was also able to register an average of 67 events, but it was only possible to locate a mean of 28 earthquakes daily. This difference is due to the expansion of the network. The network is made up of 84 stations equipped with different kind of broadband 40s, 120s seismometers, accelerometers and short period 1s sensors. The signal is transmitted continuously in real-time to the Central Recording Center located at Bogotá, using satellite, telemetry, and Internet. Moreover, there are some other stations which are required to collect the information in situ. Data is recorded and processed digitally using two different systems, EARTHWORM and SEISAN, which are able to process and share the information between them. The RSNC has designed and implemented a web system to share the seismological data. This innovative system uses tools like Java Script, Oracle and programming languages like PHP to allow the users to access the seismicity registered by the network almost in real time as well as to download the waveform and technical details. The coverage

  13. Self-consistent determination of the spike-train power spectrum in a neural network with sparse connectivity

    Directory of Open Access Journals (Sweden)

    Benjamin eDummer

    2014-09-01

    Full Text Available A major source of random variability in cortical networks is the quasi-random arrival of presynaptic action potentials from many other cells. In network studies as well as in the study of the response properties of single cells embedded in a network, synaptic background input is often approximated by Poissonian spike trains. However, the output statistics of the cells is in most cases far from being Poisson. This is inconsistent with the assumption of similar spike-train statistics for pre- and postsynaptic cells in a recurrent network. Here we tackle this problem for the popular class of integrate-and-fire neurons and study a self-consistent statistics of input and output spectra of neural spike trains. Instead of actually using a large network, we use an iterative scheme, in which we simulate a single neuron over several generations. In each of these generations, the neuron is stimulated with surrogate stochastic input that has a similar statistics as the output of the previous generation. For the surrogate input, we employ two distinct approximations: (i a superposition of renewal spike trains with the same interspike interval density as observed in the previous generation and (ii a Gaussian current with a power spectrum proportional to that observed in the previous generation. For input parameters that correspond to balanced input in the network, both the renewal and the Gaussian iteration procedure converge quickly and yield comparable results for the self-consistent spike-train power spectrum. We compare our results to large-scale simulations of a random sparsely connected network of leaky integrate-and-fire neurons (Brunel, J. Comp. Neurosci. 2000 and show that in the asynchronous regime close to a state of balanced synaptic input from the network, our iterative schemes provide excellent approximations to the autocorrelation of spike trains in the recurrent network.

  14. Intelligent seismic risk mitigation system on structure building

    Science.gov (United States)

    Suryanita, R.; Maizir, H.; Yuniorto, E.; Jingga, H.

    2018-01-01

    Indonesia located on the Pacific Ring of Fire, is one of the highest-risk seismic zone in the world. The strong ground motion might cause catastrophic collapse of the building which leads to casualties and property damages. Therefore, it is imperative to properly design the structural response of building against seismic hazard. Seismic-resistant building design process requires structural analysis to be performed to obtain the necessary building responses. However, the structural analysis could be very difficult and time consuming. This study aims to predict the structural response includes displacement, velocity, and acceleration of multi-storey building with the fixed floor plan using Artificial Neural Network (ANN) method based on the 2010 Indonesian seismic hazard map. By varying the building height, soil condition, and seismic location in 47 cities in Indonesia, 6345 data sets were obtained and fed into the ANN model for the learning process. The trained ANN can predict the displacement, velocity, and acceleration responses with up to 96% of predicted rate. The trained ANN architecture and weight factors were later used to build a simple tool in Visual Basic program which possesses the features for prediction of structural response as mentioned previously.

  15. The exponential rise of induced seismicity with increasing stress levels in the Groningen gas field and its implications for controlling seismic risk

    Science.gov (United States)

    Bourne, S. J.; Oates, S. J.; van Elk, J.

    2018-06-01

    Induced seismicity typically arises from the progressive activation of recently inactive geological faults by anthropogenic activity. Faults are mechanically and geometrically heterogeneous, so their extremes of stress and strength govern the initial evolution of induced seismicity. We derive a statistical model of Coulomb stress failures and associated aftershocks within the tail of the distribution of fault stress and strength variations to show initial induced seismicity rates will increase as an exponential function of induced stress. Our model provides operational forecasts consistent with the observed space-time-magnitude distribution of earthquakes induced by gas production from the Groningen field in the Netherlands. These probabilistic forecasts also match the observed changes in seismicity following a significant and sustained decrease in gas production rates designed to reduce seismic hazard and risk. This forecast capability allows reliable assessment of alternative control options to better inform future induced seismic risk management decisions.

  16. Seismic Investigations of the Crust and Upper Mantle Structure in Antarctica and Madagascar

    Science.gov (United States)

    Ramirez, Cristo

    In the three studies that form this dissertation, seismic data from Antarctica and Madagascar have been analyzed to obtain new insights into crustal structure and mantle flow. Until recently, there have been little seismic data available from these areas for interrogating Earth structure and processes. In Antarctica, I analyzed datasets from temporary deployments of broadband seismic stations in both East and West Antarctica. In Madagascar, I analyzed data from a temporary network of broadband stations, along with data from three permanent stations. The seismic data have been processed and modeled using a wide range of techniques to characterize crust and mantle structure. Crustal structure in the East Antarctic Craton resembles Precambrian terrains around the world in its thickness and shear wave velocities. The West Antarctic Rift System has thinner crust, consistent with crustal thickness beneath other Cretaceous rifts. The Transantarctic Mountains show thickening of the crust from the costal regions towards the interior of the mountain range, and high velocities in the lower crust at several locations, possibly resulting from the Ferrar magmatic event. Ross Island and Marie Byrd Land Dome have elevated crustal Vp/Vs ratios, suggesting the presence of partial melt and/or volcaniclastic material within the crust. The pattern of seismic anisotropy in Madagascar is complex and cannot arise solely due to mantle flow from the African superplume, as previously proposed. To explain the complex pattern of anisotropy, a combination of mechanisms needs to be invoked, including mantle flow from the African superplume, mantle flow from the Comoros hotspot, small scale upwelling in the mantle induced by lithospheric delamination, and fossil anisotropy in the lithospheric mantle along Precambrian shear zones.

  17. Geothermal Heat Flux and Upper Mantle Viscosity across West Antarctica: Insights from the UKANET and POLENET Seismic Networks

    Science.gov (United States)

    O'Donnell, J. P.; Dunham, C.; Stuart, G. W.; Brisbourne, A.; Nield, G. A.; Whitehouse, P. L.; Hooper, A. J.; Nyblade, A.; Wiens, D.; Aster, R. C.; Anandakrishnan, S.; Huerta, A. D.; Wilson, T. J.; Winberry, J. P.

    2017-12-01

    Quantifying the geothermal heat flux at the base of ice sheets is necessary to understand their dynamics and evolution. The heat flux is a composite function of concentration of upper crustal radiogenic elements and flow of heat from the mantle into the crust. Radiogenic element concentration varies with tectonothermal age, while heat flow across the crust-mantle boundary depends on crustal and lithospheric thicknesses. Meanwhile, accurately monitoring current ice mass loss via satellite gravimetry or altimetry hinges on knowing the upper mantle viscosity structure needed to account for the superimposed glacial isostatic adjustment (GIA) signal in the satellite data. In early 2016 the UK Antarctic Network (UKANET) of 10 broadband seismometers was deployed for two years across the southern Antarctic Peninsula and Ellsworth Land. Using UKANET data in conjunction with seismic records from our partner US Polar Earth Observing Network (POLENET) and the Antarctic Seismographic Argentinian Italian Network (ASAIN), we have developed a 3D shear wave velocity model of the West Antarctic crust and uppermost mantle based on Rayleigh and Love wave phase velocity dispersion curves extracted from ambient noise cross-correlograms. We combine seismic receiver functions with the shear wave model to help constrain the depth to the crust-mantle boundary across West Antarctica and delineate tectonic domains. The shear wave model is subsequently converted to temperature using a database of densities and elastic properties of minerals common in crustal and mantle rocks, while the various tectonic domains are assigned upper crustal radiogenic element concentrations based on their inferred tectonothermal ages. We combine this information to map the basal geothermal heat flux variation across West Antarctica. Mantle viscosity depends on factors including temperature, grain size, the hydrogen content of olivine and the presence of melt. Using published mantle xenolith and magnetotelluric

  18. Background noise spectra of global seismic stations

    Energy Technology Data Exchange (ETDEWEB)

    Wada, M.M.; Claassen, J.P.

    1996-08-01

    Over an extended period of time station noise spectra were collected from various sources for use in estimating the detection and location performance of global networks of seismic stations. As the database of noise spectra enlarged and duplicate entries became available, an effort was mounted to more carefully select station noise spectra while discarding others. This report discusses the methodology and criteria by which the noise spectra were selected. It also identifies and illustrates the station noise spectra which survived the selection process and which currently contribute to the modeling efforts. The resulting catalog of noise statistics not only benefits those who model network performance but also those who wish to select stations on the basis of their noise level as may occur in designing networks or in selecting seismological data for analysis on the basis of station noise level. In view of the various ways by which station noise were estimated by the different contributors, it is advisable that future efforts which predict network performance have available station noise data and spectral estimation methods which are compatible with the statistics underlying seismic noise. This appropriately requires (1) averaging noise over seasonal and/or diurnal cycles, (2) averaging noise over time intervals comparable to those employed by actual detectors, and (3) using logarithmic measures of the noise.

  19. Seismic attribute detection of faults and fluid pathways within an active strike-slip shear zone: New insights from high-resolution 3D P-Cable™ seismic data along the Hosgri Fault, offshore California

    Science.gov (United States)

    Kluesner, Jared W.; Brothers, Daniel

    2016-01-01

    Poststack data conditioning and neural-network seismic attribute workflows are used to detect and visualize faulting and fluid migration pathways within a 13.7 km2 13.7 km2 3D P-Cable™ seismic volume located along the Hosgri Fault Zone offshore central California. The high-resolution 3D volume used in this study was collected in 2012 as part of Pacific Gas and Electric’s Central California Seismic Imaging Project. Three-dimensional seismic reflection data were acquired using a triple-plate boomer source (1.75 kJ) and a short-offset, 14-streamer, P-Cable system. The high-resolution seismic data were processed into a prestack time-migrated 3D volume and publically released in 2014. Postprocessing, we employed dip-steering (dip and azimuth) and structural filtering to enhance laterally continuous events and remove random noise and acquisition artifacts. In addition, the structural filtering was used to enhance laterally continuous edges, such as faults. Following data conditioning, neural-network based meta-attribute workflows were used to detect and visualize faults and probable fluid-migration pathways within the 3D seismic volume. The workflow used in this study clearly illustrates the utility of advanced attribute analysis applied to high-resolution 3D P-Cable data. For example, results from the fault attribute workflow reveal a network of splayed and convergent fault strands within an approximately 1.3 km wide shear zone that is characterized by distinctive sections of transpressional and transtensional dominance. Neural-network chimney attribute calculations indicate that fluids are concentrated along discrete faults in the transtensional zones, but appear to be more broadly distributed amongst fault bounded anticlines and structurally controlled traps in the transpressional zones. These results provide high-resolution, 3D constraints on the relationships between strike-slip fault mechanics, substrate deformation, and fluid migration along an active

  20. Opto-mechanical lab-on-fibre seismic sensors detected the Norcia earthquake.

    Science.gov (United States)

    Pisco, Marco; Bruno, Francesco Antonio; Galluzzo, Danilo; Nardone, Lucia; Gruca, Grzegorz; Rijnveld, Niek; Bianco, Francesca; Cutolo, Antonello; Cusano, Andrea

    2018-04-27

    We have designed and developed lab-on-fibre seismic sensors containing a micro-opto-mechanical cavity on the fibre tip. The mechanical cavity is designed as a double cantilever suspended on the fibre end facet and connected to a proof mass to tune its response. Ground acceleration leads to displacement of the cavity length, which in turn can be remotely detected using an interferometric interrogation technique. After the sensors characterization, an experimental validation was conducted at the Italian National Institute of Geophysics and Volcanology (INGV), which is responsible for seismic surveillance over the Italian country. The fabricated sensors have been continuously used for long periods to demonstrate their effectiveness as seismic accelerometer sensors. During the tests, fibre optic seismic accelerometers clearly detected the seismic sequence that culminated in the severe Mw6.5 Norcia earthquake that struck central Italy on October 30, 2016. The seismic data provided by the optical sensors were analysed by specialists at the INGV. The wave traces were compared with state-of-the-art traditional sensors typically incorporated into the INGV seismic networks. The comparison verifies the high fidelity of the optical sensors in seismic wave detection, indicating their suitability for a novel class of seismic sensors to be employed in practical scenarios.

  1. Monitoring and Characterizing the Geysering and Seismic Activity at the Lusi Mud Eruption Site, East Java, Indonesia

    Science.gov (United States)

    Karyono, Karyono; Obermann, Anne; Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Abdurrokhim, Abdurrokhim; Masturyono, Masturyono; Hadi, Soffian

    2016-04-01

    The Lusi eruption began on May 29, 2006 in the northeast of Java Island, Indonesia, and to date is still active. Lusi is a newborn sedimentary-hosted hydrothermal system characterized by continuous expulsion of liquefied mud and breccias and geysering activity. Lusi is located upon the Watukosek fault system, a left lateral wrench system connecting the volcanic arc and the bakarc basin. This fault system is still periodically reactivated as shown by field data. In the framework of the Lusi Lab project (ERC grant n° 308126) we conducted several types of monitoring. Based on camera observations, we characterized the Lusi erupting activity by four main behaviors occurring cyclically: (1) Regular activity, which consists in the constant emission of water and mud breccias (i.e. viscous mud containing clay, silt, sand and clasts) associated with the constant expulsion of gas (mainly aqueous vapor with minor amounts of CO2 and CH4) (2) Geysering phase with intense bubbling, consisting in reduced vapor emission and more powerful bursting events that do not seem to have a regular pattern. (3) Geysering phase with intense vapor and degassing discharge and a typically dense plume that propagates up to 100 m height. (4) Quiescent phase marking the end of the geysering activity (and the observed cycle) with no gas emissions or bursts observed. To investigate the possible seismic activity beneath Lusi and the mechanisms controlling the Lusi pulsating behaviour, we deployed a network of 5 seismic stations and a HD camera around the Lusi crater. We characterize the observed types of seismic activity as tremor and volcano-tectonic events. Lusi tremor events occur in 5-10 Hz frequency band, while volcano tectonic events are abundant in the high frequencies range from 5 Hz until 25 Hz. We coupled the seismic monitoring with the images collected with the HD camera to study the correlation between the seismic tremor and the different phases of the geysering activity. Key words: Lusi

  2. Seismic and geodetic signatures of fault slip at the Slumgullion Landslide Natural Laboratory

    Science.gov (United States)

    Gomberg, J.; Schulz, W.; Bodin, P.; Kean, J.

    2011-01-01

    We tested the hypothesis that the Slumgullion landslide is a useful natural laboratory for observing fault slip, specifically that slip along its basal surface and side-bounding strike-slip faults occurs with comparable richness of aseismic and seismic modes as along crustal- and plate-scale boundaries. Our study provides new constraints on models governing landslide motion. We monitored landslide deformation with temporary deployments of a 29-element prism array surveyed by a robotic theodolite and an 88-station seismic network that complemented permanent extensometers and environmental instrumentation. Aseismic deformation observations show that large blocks of the landslide move steadily at approximately centimeters per day, possibly punctuated by variations of a few millimeters, while localized transient slip episodes of blocks less than a few tens of meters across occur frequently. We recorded a rich variety of seismic signals, nearly all of which originated outside the monitoring network boundaries or from the side-bounding strike-slip faults. The landslide basal surface beneath our seismic network likely slipped almost completely aseismically. Our results provide independent corroboration of previous inferences that dilatant strengthening along sections of the side-bounding strike-slip faults controls the overall landslide motion, acting as seismically radiating brakes that limit acceleration of the aseismically slipping basal surface. Dilatant strengthening has also been invoked in recent models of transient slip and tremor sources along crustal- and plate-scale faults suggesting that the landslide may indeed be a useful natural laboratory for testing predictions of specific mechanisms that control fault slip at all scales.

  3. The hydraulic structure of the Gole Larghe Fault Zone (Italian Southern Alps) through the seismic cycle

    Science.gov (United States)

    Bistacchi, A.; Mittempergher, S.; Di Toro, G.; Smith, S. A. F.; Garofalo, P. S.

    2017-12-01

    The 600 m-thick, strike slip Gole Larghe Fault Zone (GLFZ) experienced several hundred seismic slip events at c. 8 km depth, well-documented by numerous pseudotachylytes, was then exhumed and is now exposed in beautiful and very continuous outcrops. The fault zone was also characterized by hydrous fluid flow during the seismic cycle, demonstrated by alteration halos and precipitation of hydrothermal minerals in veins and cataclasites. We have characterized the GLFZ with > 2 km of scanlines and semi-automatic mapping of faults and fractures on several photogrammetric 3D Digital Outcrop Models (3D DOMs). This allowed us obtaining 3D Discrete Fracture Network (DFN) models, based on robust probability density functions for parameters of fault and fracture sets, and simulating the fault zone hydraulic properties. In addition, the correlation between evidences of fluid flow and the fault/fracture network parameters have been studied with a geostatistical approach, allowing generating more realistic time-varying permeability models of the fault zone. Based on this dataset, we have developed a FEM hydraulic model of the GLFZ for a period of some tens of years, covering one seismic event and a postseismic period. The higher permeability is attained in the syn- to early post-seismic period, when fractures are (re)opened by off-fault deformation, then permeability decreases in the postseismic due to fracture sealing. The flow model yields a flow pattern consistent with the observed alteration/mineralization pattern and a marked channelling of fluid flow in the inner part of the fault zone, due to permeability anisotropy related to the spatial arrangement of different fracture sets. Amongst possible seismological applications of our study, we will discuss the possibility to evaluate the coseismic fracture intensity due to off-fault damage, and the heterogeneity and evolution of mechanical parameters due to fluid-rock interaction.

  4. Constraining the dynamics of 2014-15 Bardarbunga-Holuhraun intrusion and eruption using seismic noise

    Science.gov (United States)

    Caudron, Corentin; Donaldson, Clare; White, Robert

    2016-04-01

    The 2010 Eyjafjallajokull volcanic eruption explosively emitted a large quantity of ash in the atmosphere and paralysed the European airspace for weeks. Several seismic scientific studies already contributed to the understanding of this complex eruption (e.g., Tarasewicz et al., 2012). Although an excellent network of seismometers recorded this eruption, some volcanological and seismological aspects are still poorly understood. In order to gain further constraints on the dynamics of this ground-breaking eruptions, we mine the seismic dataset using the seismic ambient noise technique between pairs of stations and the Seismic Amplitude Ratio Analysis (SARA). Our preliminary results reveal a strong contamination of the Cross Correlation Functions (CCF) by the volcanic tremor, particularly above 0.5 Hz even for station pairs located >50 km from the volcano. Although this volcanic tremor precludes the monitoring of the seismic velocities, it literally illuminated the medium. The two phases of the eruptions (i.e., effusive and explosive) are clearly distinguished in these functions due to their different locations. During the explosive phase, an intriguing shift of the main peaks of the cross correlation functions is evidenced (early May 2010). It is remarkably consistent with the downward migration proposed by Tarasewicz et al. (2012) and is interpreted as a migration of the volcanic tremor. SARA methodology, which is continuously imaging and tracking any significant seismicity at a 10-min time scale (Taisne et al., 2010), is applied in the 5-15 Hz frequency band in order to image to continuously migrating microseismicity. The analysis displays several shallow migrations (above 5 km of depth, in March 2010) preceding the effusive phase of the eruption. Interestingly, the results also evidence a fast and deep migration (> 5 km) starting a few hours before the beginning of the explosive phase (13 April 2010). These preliminary results may shed light on the triggering of

  5. The natural seismic hazard and induced seismicity of the european HDR (hot dry rock) geothermal energy project at Soultz-sous-Forets (Bas-Rhin, France); Alea sismique naturel et sismicite induite du projet geothermique europeen RCS (roche chaude seche) de Soultz-sous-Forets (Bas-Rhin, France)

    Energy Technology Data Exchange (ETDEWEB)

    Helm, J A

    1996-06-07

    Development of the Soultz-sous-Forets HDR (Hot Dry Rock) geothermal energy project will involve important fluid injections which will induce micro-seismic events. This thesis discusses the natural seismicity of the region and induced seismicity associated with fluid injections. A catalogue of all historical and instrument seismicity of the Soultz-sous-Forets (SSF) region has been compiled. This seismicity does not correspond to movements along the major tectonic features of the region. The area around SSF has been identified as being one where high heat flow corresponds to low seismicity. The largest well documented seismic event in the region which took place in 1952 had an epicentral intensity of VI. All important data pertaining to the series of seismic events which took place in the region from August to October 1952 have been collected and are presented. This work details the installation and operation of a permanent 3 station network of accelerometers and seismometers around the HDR site. Also the installation and operation of a mobile network of vertical seismometers during fluid injections. 167 micro-seismic events were recorded on the surface network, with magnitudes from -0.5 to 1.9. The preferential alignment of the micro-seismic cloud is N160 deg. Individual focal mechanisms of the larger seismic events correspond to an extensional tectonic regime. Stress inversion of P wave polarities indicates that the maximum stress is vertical and the intermediate and minimum stress axes horizontal. The largest of the horizontal stresses is orientated N124 deg and the smallest N34 deg. Induced seismic movement is taking place on pre-existing fractures controlled by the in situ stress seismic movement is taking place on pre-existing tectonic fractures controlled by the in situ stress field, and the largest of the induced events had a magnitude 1.9. This level of seismicity does not pose any environmental hazard to the region around Soultz-sous-Forets. (author) 151

  6. The influence of the mining operation on the mine seismicity of Vorkuta coal deposit

    Science.gov (United States)

    Zmushko, T.; Turuntaev, S. B.; Kulikov, V. I.

    2012-04-01

    The mine seismicity of Vorkuta coal deposit was analyzed. Seismic network consisting of 24 seismic sensors (accelerometers) cover the area of "Komsomolskaya" and "North" mines of Vorkuta deposit. Also there is seismic station of IDG RAS with three-component seismometer near this mines for better defining energy of the seismic events. The catalogs of seismic events contain 9000 and 7000 events with maximum magnitude M=2.3 for "Komsomolskaya" and "North" mines respectively and include the period from 01.09.2008 to 01.09.2011. The b-value of the magnitude-frequency relation was -1.0 and -1.15 respectively for the mines, meanwhile b-value for the nature seismicity was -0,9. It was found, that the number of seismic events per hour during mine combine operation is higher in 2.5 times than the number of seismic events during the break in the operation. Also, the total energy of the events per hour during the operation is higher in 3-5 times than during the break. The study showed, that the number and the energy of the seismic events relate with the hours of mine combine operation. The spatial distribution of the seismic events showed, that 80% of all events and 85% of strong events (M>1.6) were located in and near the longwall under development during the mine combine operations as well asduring the breaks. The isoclines of seismic event numbers proved that the direction of motion of the boundary of seismic events extension coincides with the direction of development, the maximum number of events for any period lies within the wall under operation. The rockburst with M=2.3 occurring at the North mine at July 16, 2011 was considered. The dependences of the energy and of the number of events with different magnitudes on the time showed that the number of events with M=1 and especially M=0.5 before the rockburst decreased, which corresponds to the prognostic seismic quietness, described in the research works. The spatial distribution of the events for the 6 month before the

  7. Seismic isolation - efficient procedure for seismic response assessement

    International Nuclear Information System (INIS)

    Zamfir, M. A.; Androne, M.

    2016-01-01

    The aim of this analysis is to reduce the dynamic response of a structure. The seismic isolation solution must take into consideration the specific site ground motion. In this paper will be presented results obtained by applying the seismic isolation method. Based on the obtained results, important conclusions can be outlined: the seismic isolation device has the ability to reduce seismic acceleration of the seismic isolated structure to values that no longer present a danger to people and environment; the seismic isolation solution is limiting devices deformations to safety values for ensuring structural integrity and stability of the entire system; the effective seismic energy dissipation and with no side effects both for the seismic isolated building and for the devices used, and the return to the initial position before earthquake occurence are obtained with acceptable permanent displacement. (authors)

  8. Seismic vulnerability of natural gas pipelines

    International Nuclear Information System (INIS)

    Lanzano, Giovanni; Salzano, Ernesto; Santucci de Magistris, Filippo; Fabbrocino, Giovanni

    2013-01-01

    This work deals with the analysis of the interaction of earthquakes with pipelines transporting and distributing natural gas for industrial and civil use. To this aim, a new large data-set of seismic information classified on the basis of selected seismological, geotechnical and structural parameters is presented and analyzed. Particular attention is devoted to continuous pipelines under strong ground shaking, which is the geotechnical effect due to passage of waves in soil. Results are provided in terms of the likelihood of the loss of containment with respect to Peak Ground Velocity (PGV), a seismic intensity parameter which may be easily retrieved either from local authorities and public databases or from site dependent hazard analysis. Fragility functions and seismic intensity threshold values for the failure and for the loss of containment of gas from pipeline systems are also given. The obtained functions can be easily implemented in existing codes and guidelines for industrial risk assessment, land-use planning, and for the design of public distribution network, with specific reference to Natural—Technological interaction (Na-Tech). -- Highlights: • The seismic vulnerability of natural gas pipelines is analyzed. • A collection of data for pipelines damaged by earthquake is given. • Damage states and risk states for pipelines are defined. • Consequence-based fragility formulations for the loss of containment are given • Seismic threshold values for public authority, risk assessment and gas distribution are shown

  9. Integration of onshore and offshore seismological data to study the seismicity of the Calabrian Region

    Science.gov (United States)

    D'Alessandro, Antonino; Guerra, Ignazio; D'Anna, Giuseppe; Gervasi, Anna; Harabaglia, Paolo; Luzio, Dario; Stellato, Gilda

    2014-05-01

    The Pollino Massif marks the transition from the Southern Appenninic to the Calabrian Arc. On the western side it is characterized by a moderately sized seismicity (about 9 M > 4 events in the last 50 years), well documented in the last 400 years. The moment tensor solutions available in this area yields, mainly, normal faults with coherent Southern Appeninic trend. This remains true also for the events that are localized on the calabrian side of Pollino, South of the massif. In most of the Sibari plane, seismic act